prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np import scipy.signal as signal from scipy.interpolate import interp1d import pandas as pd import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from astropy.io import fits import emcee import corner import copy import time import os import sys import smart def makeModel(teff, logg=5, metal=0, vsini=1, rv=0, tell_alpha=1.0, airmass=1.0, pwv=0.5, wave_offset=0, flux_offset=0,**kwargs): """ Return a forward model. Parameters ---------- teff : effective temperature data : an input science data used for continuum correction Optional Parameters ------------------- Returns ------- model: a synthesized model """ # read in the parameters order = kwargs.get('order', '33') modelset = kwargs.get('modelset', 'btsettl08') instrument = kwargs.get('instrument', 'nirspec') veiling = kwargs.get('veiling', 0) # flux veiling parameter lsf = kwargs.get('lsf', 4.5) # instrumental LSF include_fringe_model = kwargs.get('include_fringe_model', False) if instrument == 'apogee': try: import apogee_tools as ap except ImportError: print('Need to install the package "apogee_tools" (https://github.com/jbirky/apogee_tools) \n') xlsf = kwargs.get('xlsf', np.linspace(-7.,7.,43)) # APOGEE instrumental LSF sampling wave_off1 = kwargs.get('wave_off1') # wavelength offset for chip a wave_off2 = kwargs.get('wave_off2') # wavelength offset for chip b wave_off3 = kwargs.get('wave_off3') # wavelength offset for chip c c0_1 = kwargs.get('c0_1') # constant flux offset for chip a c0_2 = kwargs.get('c0_2') # linear flux offset for chip a c1_1 = kwargs.get('c1_1') # constant flux offset for chip b c1_2 = kwargs.get('c1_2') # linear flux offset for chip b c2_1 = kwargs.get('c2_1') # constant flux offset for chip c c2_2 = kwargs.get('c2_2') # linear flux offset for chip c tell = kwargs.get('tell', True) # apply telluric #tell_alpha = kwargs.get('tell_alpha', 1.0) # Telluric alpha power binary = kwargs.get('binary', False) # make a binary model # assume the secondary has the same metallicity if binary: teff2 = kwargs.get('teff2') logg2 = kwargs.get('logg2') rv2 = kwargs.get('rv2') vsini2 = kwargs.get('vsini2') flux_scale = kwargs.get('flux_scale', 0.8) data = kwargs.get('data', None) # for continuum correction and resampling output_stellar_model = kwargs.get('output_stellar_model', False) if data is not None and instrument == 'nirspec': order = data.order # read in a model #print('teff ',teff,'logg ',logg, 'z', z, 'order', order, 'modelset', modelset) #print('teff ',type(teff),'logg ',type(logg), 'z', type(z), 'order', type(order), 'modelset', type(modelset)) model = smart.Model(teff=teff, logg=logg, metal=metal, order=str(order), modelset=modelset, instrument=instrument) #elif data is not None and instrument == 'apogee': elif instrument == 'apogee': model = smart.Model(teff=teff, logg=logg, metal=metal, modelset=modelset, instrument=instrument) # Dirty fix here model.wave = model.wave[np.where(model.flux != 0)] model.flux = model.flux[np.where(model.flux != 0)] # apply vmicro vmicro = 2.478 - 0.325*logg model.flux = smart.broaden(wave=model.wave, flux=model.flux, vbroad=vmicro, rotate=False, gaussian=True) elif data is None and instrument == 'nirspec': model = smart.Model(teff=teff, logg=logg, metal=metal, order=str(order), modelset=modelset, instrument=instrument) # wavelength offset #model.wave += wave_offset # apply vsini model.flux = smart.broaden(wave=model.wave, flux=model.flux, vbroad=vsini, rotate=True, gaussian=False) # apply rv (including the barycentric correction) model.wave = rvShift(model.wave, rv=rv) # flux veiling model.flux += veiling ## if binary is True: make a binary model if binary: model2 = smart.Model(teff=teff2, logg=logg2, metal=metal, order=str(order), modelset=modelset, instrument=instrument) # apply vsini model2.flux = smart.broaden(wave=model2.wave, flux=model2.flux, vbroad=vsini2, rotate=True, gaussian=False) # apply rv (including the barycentric correction) model2.wave = rvShift(model2.wave, rv=rv2) # linearly interpolate the model2 onto the model1 grid fit = interp1d(model2.wave, model2.flux) select_wavelength = np.where( (model.wave < model2.wave[-1]) & (model.wave > model2.wave[0]) ) model.flux = model.flux[select_wavelength] model.wave = model.wave[select_wavelength] # combine the models together and scale the secondary flux model.flux += flux_scale * fit(model.wave) if output_stellar_model: stellar_model = copy.deepcopy(model) if binary: model2.flux = flux_scale * fit(model.wave) # apply telluric if tell is True: model = smart.applyTelluric(model=model, tell_alpha=tell_alpha, airmass=airmass, pwv=pwv) # fringe if include_fringe_model is True: #print('adding the fringe model') s1, s2, s3, s4, s5 = 0, 150, 400, 600, -1 piecewise_fringe_model = [s1, s2, s3, s4, s5] model.flux *= smart.double_sine_fringe(model, data, piecewise_fringe_model, teff, logg, vsini, rv, airmass, pwv, wave_offset, flux_offset, lsf, modelset) # instrumental LSF if instrument == 'nirspec': model.flux = smart.broaden(wave=model.wave, flux=model.flux, vbroad=lsf, rotate=False, gaussian=True) elif instrument == 'apogee': model.flux = ap.apogee_hack.spec.lsf.convolve(model.wave, model.flux, lsf=lsf, xlsf=xlsf).flatten() model.wave = ap.apogee_hack.spec.lsf.apStarWavegrid() # Remove the NANs model.wave = model.wave[~
np.isnan(model.flux)
numpy.isnan
import numpy as np import pytest from autolens.data.array import mask from autolens.data.array import interpolation from autolens.model.galaxy import galaxy from autolens.model.profiles import mass_profiles @pytest.fixture(name='scheme') def make_scheme(): return interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) @pytest.fixture(name='geometry') def make_geometry(): return interpolation.InterpolationGeometry(y_min=-1.0, y_max=1.0, x_min=-1.0, x_max=1.0, y_pixel_scale=1.0, x_pixel_scale=1.0) @pytest.fixture(name='galaxy_no_profiles', scope='function') def make_galaxy_no_profiles(): return galaxy.Galaxy() @pytest.fixture(name="galaxy_mass_sis") def make_galaxy_mass_sis(): sis = mass_profiles.SphericalIsothermal(einstein_radius=1.0) return galaxy.Galaxy(mass_profile=sis) class TestInterpolationScheme(object): class TestConstructor: def test__sets_up_attributes_correctly(self): image_coords = np.array([[-1.0, -6.0], [-1.0, 0.0], [-4.0, 2.0], [-0.0, -1.0], [0.0, 0.0], [0.0, 1.0], [3.0, -1.0], [1.0, 0.0], [1.0, 1.0]]) interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=image_coords, image_pixel_scale=1.0) assert interp.shape == (3, 3) assert interp.pixels == 9 assert (interp.image_coords == image_coords).all() assert interp.geometry.y_min == -6.0 assert interp.geometry.y_max == 2.0 assert interp.geometry.x_min == -4.0 assert interp.geometry.x_max == 3.0 assert interp.geometry.y_pixel_scale == 1.0 assert interp.geometry.x_pixel_scale == 1.0 assert interp.geometry.x_size == 7.0 assert interp.geometry.y_size == 8.0 assert interp.geometry.x_start == -4.5 assert interp.geometry.y_start == -6.5 class TestNeighbors: def test___3x3_grid_neighbors_all_correct(self): # |0|1|2| # |3|4|5| # |6|7|8| interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, -1, -1])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, -1, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, -1, -1])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() def test___3x4_grid_neighbors_all_correct(self): # |0|1| 2| 3| # |4|5| 6| 7| # |8|9|10|11| interp = interpolation.InterpolationScheme(shape=(3, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, -1, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 8, 9])).all() assert (interp.bottom_left_neighbors[6] == np.array([5, 9, 10])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 10, 11])).all() assert (interp.bottom_left_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[9] == np.array([8, -1, -1])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, -1, -1])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, 3])).all() assert (interp.top_right_neighbors[3] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[4] == np.array([0, 1, 5])).all() assert (interp.top_right_neighbors[5] == np.array([1, 2, 6])).all() assert (interp.top_right_neighbors[6] == np.array([2, 3, 7])).all() assert (interp.top_right_neighbors[7] == np.array([3, -1, -1])).all() assert (interp.top_right_neighbors[8] == np.array([4, 5, 9])).all() assert (interp.top_right_neighbors[9] == np.array([5, 6, 10])).all() assert (interp.top_right_neighbors[10] == np.array([6, 7, 11])).all() assert (interp.top_right_neighbors[11] == np.array([7, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, -1, 2])).all() assert (interp.top_left_neighbors[4] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[5] == np.array([0, 1, 4])).all() assert (interp.top_left_neighbors[6] == np.array([1, 2, 5])).all() assert (interp.top_left_neighbors[7] == np.array([2, 3, 6])).all() assert (interp.top_left_neighbors[8] == np.array([-1, 4, -1])).all() assert (interp.top_left_neighbors[9] == np.array([4, 5, 8])).all() assert (interp.top_left_neighbors[10] == np.array([5, 6, 9])).all() assert (interp.top_left_neighbors[11] == np.array([6, 7, 10])).all() def test___4x3_grid_neighbors_all_correct(self): # |0| 1| 2| # |3| 4| 5| # |6| 7| 8| # |9|10|11| interp = interpolation.InterpolationScheme(shape=(4, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 9, 10])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, 10, 11])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, 9])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 9, 10])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, 10, 11])).all() assert (interp.bottom_left_neighbors[9] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, -1, -1])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_right_neighbors[9] == np.array([6, 7, 10])).all() assert (interp.top_right_neighbors[10] == np.array([7, 8, 11])).all() assert (interp.top_right_neighbors[11] == np.array([8, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() assert (interp.top_left_neighbors[9] == np.array([-1, 6, -1])).all() assert (interp.top_left_neighbors[10] == np.array([6, 7, 9])).all() assert (interp.top_left_neighbors[11] == np.array([7, 8, 10])).all() def test___4x4_grid_neighbors_all_correct(self): # | 0| 1| 2| 3| # | 4| 5| 6| 7| # | 8| 9|10|11| # |12|13|14|15| interp = interpolation.InterpolationScheme(shape=(4, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, 12, 13])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, 13, 14])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, 14, 15])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, 15, -1])).all() assert (interp.bottom_right_neighbors[12] == np.array([13, -1, -1])).all() assert (interp.bottom_right_neighbors[13] == np.array([14, -1, -1])).all() assert (interp.bottom_right_neighbors[14] == np.array([15, -1, -1])).all() assert (interp.bottom_right_neighbors[15] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 8, 9])).all() assert (interp.bottom_left_neighbors[6] == np.array([5, 9, 10])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, 10, 11])).all() assert (interp.bottom_left_neighbors[8] == np.array([-1, -1, 12])).all() assert (interp.bottom_left_neighbors[9] == np.array([8, 12, 13])).all() assert (interp.bottom_left_neighbors[10] == np.array([9, 13, 14])).all() assert (interp.bottom_left_neighbors[11] == np.array([10, 14, 15])).all() assert (interp.bottom_left_neighbors[12] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[13] == np.array([12, -1, -1])).all() assert (interp.bottom_left_neighbors[14] == np.array([13, -1, -1])).all() assert (interp.bottom_left_neighbors[15] == np.array([14, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, 3])).all() assert (interp.top_right_neighbors[3] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[4] == np.array([0, 1, 5])).all() assert (interp.top_right_neighbors[5] == np.array([1, 2, 6])).all() assert (interp.top_right_neighbors[6] == np.array([2, 3, 7])).all() assert (interp.top_right_neighbors[7] == np.array([3, -1, -1])).all() assert (interp.top_right_neighbors[8] == np.array([4, 5, 9])).all() assert (interp.top_right_neighbors[9] == np.array([5, 6, 10])).all() assert (interp.top_right_neighbors[10] == np.array([6, 7, 11])).all() assert (interp.top_right_neighbors[11] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[12] == np.array([8, 9, 13])).all() assert (interp.top_right_neighbors[13] == np.array([9, 10, 14])).all() assert (interp.top_right_neighbors[14] == np.array([10, 11, 15])).all() assert (interp.top_right_neighbors[15] == np.array([11, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, -1, 2])).all() assert (interp.top_left_neighbors[4] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[5] == np.array([0, 1, 4])).all() assert (interp.top_left_neighbors[6] == np.array([1, 2, 5])).all() assert (interp.top_left_neighbors[7] ==
np.array([2, 3, 6])
numpy.array
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import pandas as pd from astropy.coordinates import SkyCoord from astropy import units as u from astropy.io import fits from astropy.nddata import Cutout2D from astropy.wcs import WCS from scipy.signal import fftconvolve import argparse # turn off runtime warnings (lots from logic on nans) import warnings warnings.filterwarnings("ignore", category=RuntimeWarning) def size_limit(x,y,image): yy,xx = image.shape ind = ((y > 0) & (y < yy-1) & (x > 0) & (x < xx-1)) return ind def region_cut(table,wcs): ra = table.ra.values dec = table.dec.values foot = wcs.calc_footprint() minra = min(foot[:,0]) maxra = max(foot[:,0]) mindec = min(foot[:,1]) maxdec = max(foot[:,1]) inddec = (dec < maxdec) & (dec> mindec) indra = (ra < maxra) & (ra> minra) ind = indra * inddec tab = table.iloc[ind] return tab def circle_app(rad): """ makes a kinda circular aperture, probably not worth using. """ mask = np.zeros((int(rad*2+.5)+1,int(rad*2+.5)+1)) c = rad x,y =np.where(mask==0) dist = np.sqrt((x-c)**2 + (y-c)**2) ind = (dist) < rad + .2 mask[y[ind],x[ind]]= 1 return mask def check_table_format(table): try: temp = table.x temp = table.y temp = table.ra temp = table.dec temp = table.radius temp = table.mag temp = table.mjd_start temp = table.mjd_end except: message = ("mask_table must be a csv with the following columns:\nx\ny\nra\ndec\nradius\nmag\nmjd_start\nmjd_end\n" + "Only a position (x,y) or (ra,dec) and size (radius) or (mag) is needed to run.") raise ValueError() #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import pandas as pd from astropy.coordinates import SkyCoord from astropy import units as u from astropy.io import fits from astropy.nddata import Cutout2D from astropy.wcs import WCS from scipy.signal import fftconvolve import argparse # turn off runtime warnings (lots from logic on nans) import warnings warnings.filterwarnings("ignore", category=RuntimeWarning) def size_limit(x,y,image): yy,xx = image.shape ind = ((y > 0) & (y < yy-1) & (x > 0) & (x < xx-1)) return ind def region_cut(table,wcs): ra = table.ra dec = table.dec foot = wcs.calc_footprint() minra = min(foot[:,0]) maxra = max(foot[:,0]) mindec = min(foot[:,1]) maxdec = max(foot[:,1]) inddec = (dec < maxdec) & (dec> mindec) indra = (ra < maxra) & (ra> minra) ind = indra * inddec tab = table.iloc[ind] return tab def circle_app(rad): """ makes a kinda circular aperture, probably not worth using. """ mask = np.zeros((int(rad*2+.5)+1,int(rad*2+.5)+1)) c = rad x,y =np.where(mask==0) dist = np.sqrt((x-c)**2 + (y-c)**2) ind = (dist) < rad + .2 mask[y[ind],x[ind]]= 1 return mask def check_table_format(table): try: temp = table.x temp = table.y temp = table.ra temp = table.dec temp = table.radius temp = table.mag temp = table.mjd_start temp = table.mjd_end except: message = ("mask_table must be a csv with the following columns:\nx\ny\nra\ndec\nradius\nmag\nmjd_start\nmjd_end\n" + "Only a position (x,y) or (ra,dec) and size (radius) or (mag) is needed to run.") raise ValueError() def Spot_mask(fits_file,mask_table,ext=0): table = pd.read_csv(mask_table) check_table_format(table) hdu = fits.open(fits_file)[ext] # uses the file name to set the time, not versitile t = float(fits_file.split('/')[-1].split('_')[1]) image = hdu.data wcs = WCS(hdu.header) spotmask =
np.zeros_like(image,dtype=float)
numpy.zeros_like
#!/usr/bin/env python # coding=utf-8 """ Data preprocessing functions | Option | Description | | ------ | ----------- | | title | prep.py | | authors | <NAME>, <NAME>, <NAME> | | date | 2020-03-18 | """ import numpy as np import copy import matplotlib.pyplot as plt import mne from autoreject import get_rejection_threshold, AutoReject from mne.preprocessing import ICA, corrmap def filt(raw_S: list) -> list: """ Filters list of raw data to remove slow drifts. Arguments: raw_S: list of Raw data (as an example: different occurences of a condition for a participant). Raws are MNE objects. Returns: raws: list of high-pass filtered raws. """ # TODO: l_freq and h_freq as param raws = [] for raw in raw_S: raws.append(mne.io.Raw.filter(raw, l_freq=2., h_freq=None)) return raws def ICA_choice_comp(icas: list, epochs: list) -> list: """ Plots Independent Components for each participant (calculated from Epochs), let the user choose the relevant components for artifact rejection and apply ICA on Epochs. Arguments: icas: list of Independent Components for each participant (IC are MNE objects). epochs: list of 2 Epochs objects (for each participant). Epochs_S1 and Epochs_S2 correspond to a condition and can result from the concatenation of Epochs from different experimental realisations of the condition. Epochs are MNE objects: data are stored in an array of shape (n_epochs, n_channels, n_times) and parameters information is stored in a disctionnary. Returns: cleaned_epochs_ICA: list of 2 cleaned Epochs for each participant (the chosen IC have been removed from the signal). """ # plotting Independant Components for each participant for ica in icas: ica.plot_components() # choosing participant and its component as a template for the other participant # if do not want to apply ICA on the data, do not fill the answer subj_numb = input("Which participant ICA do you want" " to use as a template for artifact rejection?" " Index begins at zero. (If you do not want to apply" " ICA on your data, do not enter nothing and press enter.)") comp_number = input("Which IC do you want to use as a template?" " Index begins at zero. (If you did not choose" "a participant number at first question," "then do not enter nothing and press enter again" "to not apply ICA on your data)") # applying ICA if (len(subj_numb) != 0 and len(comp_number) != 0): cleaned_epochs_ICA = ICA_apply(icas, int(subj_numb), int(comp_number), epochs) else: cleaned_epochs_ICA = epochs return cleaned_epochs_ICA def ICA_apply(icas: int, subj_number: int, comp_number: int, epochs: list) -> list: """ Applies ICA with template model from 1 participant in the dyad. See ICA_choice_comp for a detailed description of the parameters and output. """ cleaned_epochs_ICA = [] # selecting which ICs corresponding to the template template_eog_component = icas[subj_number].get_components()[:, comp_number] # applying corrmap with at least 1 component detected for each subj fig_template, fig_detected = corrmap(icas, template=template_eog_component, threshold=0.9, label='blink', ch_type='eeg') # labeling the ICs that capture blink artifacts print([ica.labels_ for ica in icas]) # selecting ICA components after viz for i in icas: i.exclude = i.labels_['blink'] epoch_all_ch = [] # applying ica on clean_epochs # for each participant for i, j in zip(range(0, len(epochs)), icas): # taking all channels to apply ICA bads = epochs[i].info['bads'] epoch_all_ch.append(mne.Epochs.copy(epochs[i])) epoch_all_ch[i].info['bads'] = [] j.apply(epoch_all_ch[i]) epoch_all_ch[i].info['bads'] = bads cleaned_epochs_ICA.append(epoch_all_ch[i]) return cleaned_epochs_ICA def ICA_fit(epochs: list, n_components: int, method: str, fit_params: dict, random_state: int) -> list: """ Computes global Autorejection to fit Independent Components Analysis on Epochs, for each participant. Pre requisite : install autoreject https://api.github.com/repos/autoreject/autoreject/zipball/master Arguments: epochs: list of 2 Epochs objects (for each participant). Epochs_S1 and Epochs_S2 correspond to a condition and can result from the concatenation of Epochs from different experimental realisations of the condition (Epochs are MNE objects). n_components: the number of principal components that are passed to the ICA algorithm during fitting, int. For a first estimation, n_components can be set to 15. method: the ICA method used, str 'fastica', 'infomax' or 'picard'. 'Fastica' is the most frequently used. Use the fit_params argument to set additional parameters. Specifically, if you want Extended Infomax, set method=’infomax’ and fit_params=dict(extended=True) (this also works for method=’picard’). fit_params: Additional parameters passed to the ICA estimator as specified by method. None by default. random_state: the parameter used to compute random distributions for ICA calulation, int or None. It can be useful to fix random_state value to have reproducible results. For 15 components, random_state can be set to 97, for 20 components to 0 for example. Note: If Autoreject and ICA take too much time, change the decim value (see MNE documentation). Please filter the Epochs between 2 and 30 Hz before ICA fit (mne.Epochs.filter(epoch, 2, 30, method='fir')). Returns: icas: list of Independant Components for each participant (IC are MNE objects, see MNE documentation for more details). """ icas = [] for epoch in epochs: # per subj # applying AR to find global rejection threshold reject = get_rejection_threshold(epoch, ch_types='eeg') # if very long, can change decim value print('The rejection dictionary is %s' % reject) # fitting ICA on filt_raw after AR ica = ICA(n_components=n_components, method=method, fit_params= fit_params, random_state=random_state).fit(epoch) # take bad channels into account in ICA fit epoch_all_ch = mne.Epochs.copy(epoch) epoch_all_ch.info['bads'] = [] icas.append(ica.fit(epoch_all_ch, reject=reject, tstep=1)) return icas def AR_local(cleaned_epochs_ICA: list, strategy:str = 'union', threshold:float = 50.0, verbose: bool = False) -> list: """ Applies local Autoreject to repair or reject bad epochs. Arguments: clean_epochs_ICA: list of Epochs after global Autoreject and ICA. strategy: more or less generous strategy to reject bad epochs: 'union' or 'intersection'. 'union' rejects bad epochs from subject 1 and subject 2 immediatly, whereas 'intersection' rejects shared bad epochs between subjects, tries to repare remaining bad epochs per subject, reject the non-reparable per subject and finally equalize epochs number between subjects. Set to 'union' by default. threshold: percentage of epochs removed that is accepted. Above this threshold, data are considered as a too shortened sample for further analyses. Set to 50.0 by default. verbose: option to plot data before and after AR, boolean, set to False by default. # use verbose = false until next Autoreject update Note: To reject or repair epochs, parameters are more or less conservative, see http://autoreject.github.io/generated/autoreject.AutoReject. Returns: cleaned_epochs_AR: list of Epochs after local Autoreject. dic_AR: dictionnary with the percentage of epochs rejection for each subject and for the intersection of the them. """ bad_epochs_AR = [] AR = [] dic_AR = {} dic_AR['strategy'] = strategy dic_AR['threshold'] = threshold # defaults values for n_interpolates and consensus_percs n_interpolates = np.array([1, 4, 32]) consensus_percs =
np.linspace(0, 1.0, 11)
numpy.linspace
# -*- coding: utf-8 -*- """ APARTADO 3 """ import numpy as np import matplotlib.pyplot as plt from matplotlib import animation from mpl_toolkits.mplot3d import axes3d #Dominio u = np.linspace(0, np.pi, 25) v = np.linspace(0, 2 * np.pi, 50) #Esfera x = np.outer(np.sin(u), np.sin(v)) y = np.outer(np.sin(u), np.cos(v)) z = np.outer(np.cos(u), np.ones_like(v)) #Curva t2 = np.linspace(0.001, 1, 200) x2 = abs(t2) * np.sin(30 * t2/2) y2 = abs(t2) * np.cos(30 * t2/2) z2 = np.sqrt(1-x2**2-y2**2) c2 = x2 + y2 def animate2(t): eps = 1e-16 #Esfera xt = 1/((1-t) + np.abs(np.tan(-1) - np.tan(z))*t + eps)*x yt = 1/((1-t) + np.abs(np.tan(-1) - np.tan(z))*t + eps)*y zt = -t + z*(1-t) #Curva x2t = 1/((1-t) + np.abs(np.tan(-1) - np.tan(z2))*t + eps)*x2 y2t = 1/((1-t) + np.abs(np.tan(-1) - np.tan(z2))*t + eps)*y2 z2t = -t + z2*(1-t) ax = plt.axes(projection='3d') ax.set_xlim3d(-1,1) ax.set_ylim3d(-1,1) ax.set_zlim3d(-1,1) ax.plot_surface(xt, yt, zt, rstride=1, cstride=1, cmap='viridis', edgecolor='none') ax.plot(x2t,y2t, z2t, '-b', c="black", zorder=3) return ax, def init2(): return animate2(0), animate2(0) plt.show() fig = plt.figure(figsize=(6,6)) ani = animation.FuncAnimation(fig, animate2, np.arange(0,1,0.05), init_func=init2, interval=20) ani.save("mi2ejemplo.gif", fps = 5) def animate(t): eps = 1e-16 #Esfera xt = 1/(np.tan(np.pi/4 - t) + np.abs(-1-z)*np.tan(t) + eps)*x yt = 1/(np.tan(np.pi/4 - t) + np.abs(-1-z)*np.tan(t) + eps)*y zt = np.tan(-t) + z*np.tan(np.pi/4 - t) #Curva x2t = 1/(np.tan(np.pi/4 - t) + np.abs(-1-z2)*np.tan(t) + eps)*x2 y2t = 1/(np.tan(np.pi/4 - t) + np.abs(-1-z2)*
np.tan(t)
numpy.tan
#!/usr/bin/env python # -*- coding: utf-8 -*- # 3rd party imports import numpy as np # Local imports from .find_closest import find_closest __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" def corr_deriv(inp0, inp1, flag: bool = False): r"""Correlate the derivatives of two time series Parameters ---------- inp0 : xarray.DataArray Time series of the first to variable to correlate with. inp1 : xarray.DataArray Time series of the second to variable to correlate with. flag : bool, Optional Flag if False (default) returns time instants of common highest first and second derivatives. If True returns time instants of common highest first derivative and zeros crossings. Returns ------- t1_d, t2_d : ndarray Time instants of common highest first derivatives. t1_dd, t2_dd : ndarray Time instants of common highest second derivatives or zero crossings. """ # 1st derivative tx1 = inp0.time.data.astype(int) * 1e-9 inp0 = inp0.data dtx1 = tx1[:-1] + 0.5 * np.diff(tx1) dx1 = np.diff(inp0) tx2 = inp1.time.data.astype(int) * 1e-9 inp1 = inp1.data dtx2 = tx2[:-1] + 0.5 * np.diff(tx2) dx2 = np.diff(inp1) ind_zeros1 = np.where(np.sign(dx1[:-1] * dx1[1:]) < 0)[0] if ind_zeros1 == 0: ind_zeros1 = ind_zeros1[1:] ind_zeros2 = np.where(np.sign(dx2[:-1] * dx2[1:]) < 0)[0] if ind_zeros2 == 0: ind_zeros2 = ind_zeros2[1:] ind_zeros1_p = np.where(dx1[ind_zeros1 - 1] - dx1[ind_zeros1] > 0)[0] ind_zeros2_p = np.where(dx2[ind_zeros2 - 1] - dx2[ind_zeros2] > 0)[0] ind_zeros1_m = np.where(dx1[ind_zeros1 - 1] - dx1[ind_zeros1] < 0)[0] ind_zeros2_m = np.where(dx2[ind_zeros2 - 1] - dx2[ind_zeros2] < 0)[0] ind1_p = ind_zeros1[ind_zeros1_p] ind1_m = ind_zeros1[ind_zeros1_m] t_zeros1_p = dtx1[ind1_p] + (dtx1[ind1_p + 1] - dtx1[ind1_p]) / ( 1 + np.abs(dx1[ind1_p + 1]) / np.abs(dx1[ind1_p])) t_zeros1_m = dtx1[ind1_m] + (dtx1[ind1_m + 1] - dtx1[ind1_m]) / ( 1 + np.abs(dx1[ind1_m + 1]) / np.abs(dx1[ind1_m])) ind2_p = ind_zeros2[ind_zeros2_p] ind2_m = ind_zeros2[ind_zeros2_m] t_zeros2_p = dtx2[ind2_p] + (dtx2[ind2_p + 1] - dtx2[ind2_p]) / ( 1 + np.abs(dx2[ind2_p + 1]) / np.abs(dx2[ind2_p])) t_zeros2_m = dtx2[ind2_m] + (dtx2[ind2_m + 1] - dtx2[ind2_m]) / ( 1 + np.abs(dx2[ind2_m + 1]) / np.abs(dx2[ind2_m])) # Remove repeating points t_zeros1_p = np.delete(t_zeros1_p, np.where(np.diff(t_zeros1_p) == 0)[0]) t_zeros2_p = np.delete(t_zeros2_p, np.where(np.diff(t_zeros2_p) == 0)[0]) # Define identical pairs of two time axis t1_d_p, t2_d_p, _, _ = find_closest(t_zeros1_p, t_zeros2_p) t1_d_m, t2_d_m, _, _ = find_closest(t_zeros1_m, t_zeros2_m) t1_d = np.vstack([t1_d_p, t1_d_m]) t1_d = t1_d[t1_d[:, 0].argsort(), 0] t2_d = np.vstack([t2_d_p, t2_d_m]) t2_d = t2_d[t2_d[:, 0].argsort(), 0] if flag: # zero crossings ind_zeros1 = np.where(np.sign(inp0[:-1] * inp0[1:]) < 0)[0] ind_zeros2 = np.where(np.sign(inp1[:-1] * inp1[1:]) < 0)[0] ind_zeros1 = np.delete(ind_zeros1, np.where(ind_zeros1 == 1)[0]) ind_zeros2 = np.delete(ind_zeros2, np.where(ind_zeros2 == 1)[0]) ind_zeros1_p =
np.where(inp0[ind_zeros1 - 1] - inp0[ind_zeros1] > 0)
numpy.where
import numpy as np import matplotlib matplotlib.rcParams.update({'font.size': 15}) import matplotlib.pyplot as plt import pandas as pd from scipy.optimize import leastsq ''' # Treat ori_pref as constant. # Double Gaussian function. def double_gaussian(x, ori_pref, params): (A1, A2, B, sigma) = params ori_pref2 = (ori_pref + 180.0) % 360.0 # For a simple Gaussian, we may run into boundary effects, where x close to 360 degrees may not have the corresponding y values # that represent properly the effect from a peak close to 0 degrees. It would be better to use a wrapped normal distribution here # (a Gaussian on a circle), but it is an infinite series; we approximate it by just three terms, with shifts at 0 degrees, # 360 degrees, and -360 degrees. In cases with relatively small sigma, this approximation should hold well. However, for large sigma # it may not be quite as reasonable. # NOTE THAT B+A1 AND B+A2 DO NOT CORRESPOND EXACTLY TO THE HEIGHTS OF THE PEAKS WITH THIS CHOICE OF THE FUNCTION. # For small sigma, the peaks should be very close to B+A1 and B+A2, but for large sigma they will deviate from those values significantly. r1 = A1 * np.exp( - (x - ori_pref)**2.0 / (2.0 * sigma**2.0) ) + A2 * np.exp( - (x - ori_pref2)**2.0 / (2.0 * sigma**2.0) ) r2 = A1 * np.exp( - (x - ori_pref + 360.0)**2.0 / (2.0 * sigma**2.0) ) + A2 * np.exp( - (x - ori_pref2 + 360.0)**2.0 / (2.0 * sigma**2.0) ) r3 = A1 * np.exp( - (x - ori_pref - 360.0)**2.0 / (2.0 * sigma**2.0) ) + A2 * np.exp( - (x - ori_pref2 - 360.0)**2.0 / (2.0 * sigma**2.0) ) return B + r1 + r2 + r3 def double_gaussian_fit( params, x, ori_pref, y_av ): fit = double_gaussian( x, ori_pref, params ) return (y_av - fit) ''' # Treat ori_pref as one of the parameters. # Double Gaussian function. def double_gaussian(x, params): (ori_pref, A1, A2, B, sigma) = params ori_pref2 = (ori_pref + 180.0) % 360.0 # For a simple Gaussian, we may run into boundary effects, where x close to 360 degrees may not have the corresponding y values # that represent properly the effect from a peak close to 0 degrees. It would be better to use a wrapped normal distribution here # (a Gaussian on a circle), but it is an infinite series; we approximate it by just three terms, with shifts at 0 degrees, # 360 degrees, and -360 degrees. In cases with relatively small sigma, this approximation should hold well. However, for large sigma # it may not be quite as reasonable. # NOTE THAT B+A1 AND B+A2 DO NOT CORRESPOND EXACTLY TO THE HEIGHTS OF THE PEAKS WITH THIS CHOICE OF THE FUNCTION. # For small sigma, the peaks should be very close to B+A1 and B+A2, but for large sigma they will deviate from those values significantly. r1 = A1 * np.exp( - (x - ori_pref)**2.0 / (2.0 * sigma**2.0) ) + A2 * np.exp( - (x - ori_pref2)**2.0 / (2.0 * sigma**2.0) ) r2 = A1 * np.exp( - (x - ori_pref + 360.0)**2.0 / (2.0 * sigma**2.0) ) + A2 *
np.exp( - (x - ori_pref2 + 360.0)**2.0 / (2.0 * sigma**2.0) )
numpy.exp
#!/usr/bin/env python3 """ Phonon Only harmonic Phonon subroutines implemented All numerically heavy computations are in f90 (f_phonon.f90) """ #import os #from itertools import islice, product from ..util.tool import my_flatten #from ..util.string_utils import fn_available from ..symm_kpts import HighSymmKpath from ..interface_vasp import Poscar #from ..structure import SupercellStructure import numpy as np from math import sqrt, pi try: # import matplotlib # matplotlib.use('AGG') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages except ImportError: print("WARNING: cannot import pyplot; plotting disabled") plt = None pass from f_phonon import f_phonon #import logging #logger = logging.getLogger(__name__) #debug_level = 10 class NA_correction(): """ long range non-analytic dipole-dipole correction for force-constants based phonon calculation """ def __init__(self, method, rho, Ncell=-1.0): """ method: -1 (disabled), 1 (Parlinski) or 2 (mixed-space) or 0 (dipole, FC MUST exclude dipole force) rho: mixing parameter in Parlinski Ncell: number of cells in the mixed-space approach """ self.id= method self.rho = rho self.Ncell = float(Ncell) self.uniq_ijk_idx = [] @classmethod def from_dict(cls, d): rho = d.getfloat('NAC_rho', 0.05) Ncell = d.getfloat('NAC_Ncell', -1.0) return cls(d.getint('nac',-1), rho, Ncell) class Phonon(): """ All phonon related stuff Note: all q-points (and hence real space coordinates) should be Cartesian unless explicitly specified """ def __init__(self, prim, LD, sol, pdfout, NAC=None, etafac=8.0): """ :param prim: :param LD: :param sol: solution vector :param NAC: long range dipole-dipole non-analytic correction :return: """ self.units = {'THz': (1, 'Freq. (THz)'), 'meV': (4.1356668, 'En (meV)'), 'eV': (0.0041356668, 'En (eV)'), 'cm': (33.3564227583, ' Freq. (cm^{-1})')} self.prim = prim self.LD = LD #self.dim = prim.num_sites*3 if prim.intensive_properties['epsilon_inf'] is None: NAC=None if NAC is not None: if (NAC.id != 0) and LD.dipole_force: raise ValueError('Must set nac=0 when dipole forces are considered explicitly') self.NAC = NAC self.pdfout = pdfout # process pair interactions self.pairinfo = LD.get_pair_info(LD.get_full_fct(sol)) self.setup_cell(self.prim) def setup_cell(self, cell): from ..util.mathtool import Union self.cell=cell self.dim=self.cell.num_sites*3 #print("debug tralslate pair to supercell, size=", cell.num_sites) pairinfo = self.pairinfo if cell is self.prim else self.LD.translate_pairinfo_to_supercell(cell, *self.pairinfo) f_phonon.init(cell.lattice._matrix, cell.atomic_masses, cell.frac_coords, *pairinfo) if (self.NAC is not None) and (self.NAC.id in [0, 1, 2]): self.NAC.uniq_ijk_idx = Union(self.pairinfo[0], True) if self.NAC.Ncell < 0: self.NAC.Ncell = float(len(self.NAC.uniq_ijk_idx)) else: if abs(self.NAC.Ncell - len(self.NAC.uniq_ijk_idx)) > 1E-6: print("WARNING: input Ncell not equal to the given number of ijk", len(self.NAC.uniq_ijk_idx)) f_phonon.init_nac(self.NAC.id, cell.intensive_properties['epsilon_inf'], cell.site_properties['born_charge'], self.NAC.rho, cell.lattice.volume, self.NAC.uniq_ijk_idx, 1.0) if (self.NAC.id==0) and (self.LD._dpcor is not None): print(" Loading dipole correction FCM for phonon") dpcor= self.LD._dpcor if cell is self.prim else self.LD.translate_pairinfo_to_supercell(cell, *self.LD._dpcor) f_phonon.init_dpcor(*dpcor) # short hand to get cartesian wave vector def to_c(self, kpts, cart): return np.array(kpts) if cart else self.prim.reciprocal_lattice.get_cartesian_coords(kpts) def get_dm(self, k_in, cart=True): """ :param k_in: list of cartesian K-points :return: """ # call fortran program return f_phonon.get_dm(self.to_c(k_in, cart), self.dim) def get_dmnomass(self, k_in, cart=True): """ Get the fourier transformed force constant matrix, without sqrt(M1,M2) """ mass= np.sqrt(self.cell.atomic_masses).repeat(3) return self.get_dm(k_in, cart)* (np.outer(mass, mass)[:,:,None]) @staticmethod def _maketicks(dist, lbl, plt): """ private utility method to add ticks to a band structure """ def _get_greek(ls): return ["$" + l + "$" if l.startswith("\\") or l.find("_") != -1 else l for l in ls] uniq_d = [] uniq_l = [] temp_ticks = list(map(list,zip(dist, _get_greek(lbl)))) for i in range(len(temp_ticks)): # if (i < len(temp_ticks)-1) and (temp_ticks[i][1] != temp_ticks[i+1][1]) and abs(temp_ticks[i][0]-temp_ticks[i+1][0])<1E-7: if (i < len(temp_ticks)-1) and abs(temp_ticks[i][0]-temp_ticks[i+1][0])<1E-7: temp_ticks[i][1] +="|" + temp_ticks[i+1][1] if (temp_ticks[i][1] != temp_ticks[i+1][1]) else '' temp_ticks[i+1][1] = "" if i == 0: uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) # logger.debug("Adding label {l} at {d}".format( # l=temp_ticks[i][0], d=temp_ticks[i][1])) else: if temp_ticks[i][1] == temp_ticks[i - 1][1]: # logger.debug("Skipping label {i}".format( # i=temp_ticks[i][1])) continue else: # logger.debug("Adding label {l} at {d}".format( # l=temp_ticks[i][0], d=temp_ticks[i][1])) uniq_d.append(temp_ticks[i][0]) uniq_l.append(temp_ticks[i][1]) # logger.debug("Unique labels are %s" % list(zip(uniq_d, uniq_l))) plt.gca().set_xticks(uniq_d) plt.gca().set_xticklabels(uniq_l) for i in range(len(lbl)): if lbl[i] is not None and lbl[i]: # don't print the same label twice if i != 0: if lbl[i] == lbl[i - 1]: # logger.debug("already print label... " # "skipping label {i}".format( # i=ticks['label'][i])) continue else: # logger.debug("Adding a line at {d}" # " for label {l}".format( # d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(dist[i], color='gray', linestyle='--') else: # logger.debug("Adding a line at {d} for label {l}".format( # d=ticks['distance'][i], l=ticks['label'][i])) plt.axvline(dist[i], color='gray', linestyle='--') plt.axhline(0, color='black') with open('wavevec_label.txt', 'w') as f: f.write(''.join([x[1]+'\n' for x in temp_ticks])) return plt #@staticmethod def str2kpt(self, s, cart): """ :param s: example "[[10, [0,0,0],'\\Gamma', [0.5,0.5,0.5], 'X', [0.5,0.5,0], 'K']]" or simply "[[10, 'X', 'K']]" or "Auto N_pt" for automatic K-path with N_pt points on each segment or "Auto" for default density (20) :param cart: boolean for cartesian coordinates :return: """ from csld.util.mathtool import vec_linspace s_list = s.split() symkp= HighSymmKpath(self.prim) if s_list[0] == 'Auto': kpts, lbls = symkp.get_kpoints(20 if len(s_list)<2 else int(s_list[1])) kpts = np.array(kpts) return kpts, lbls d = eval(s) lbls= [] kpts= [] kpt_dat= symkp.kpath['kpoints'] lbl_only = isinstance(d[0][1], str) npt= d[0][0] for x in d: if lbl_only: print(" found only labels in kpts specs.") lb_line = x[1:] kp_line = [kpt_dat[k] for k in lb_line] else: lb_line = x[2::2] kp_line = x[1::2] for i in range(len(lb_line)-1): lbls.extend([lb_line[i]] + (['']*(npt-2)) + [lb_line[i+1]]) kpts.extend(vec_linspace(kp_line, npt)) # lbls.append(x[2]) # for y in x[4::2]: # lbls.extend(['']*(x[0]-2)) # lbls.append(y) # kpts = np.vstack([vec_linspace(x[1::2], x[0]) for x in d]) kpts = np.array(kpts) if not lbl_only: kpts = self.to_c(kpts, cart) return kpts, lbls def replace_gamma(self, kpts, no_gamma): if no_gamma and self.NAC is not None: for i in range(len(kpts)): if not np.any(kpts[i]): if len(kpts)<2: kpts[i]=np.full((3),1e-6) elif i==0: kpts[i]=kpts[i+1]*1e-3 elif i==len(kpts)-1: kpts[i]=kpts[i-1]*1e-3 elif np.any(kpts[i+1]): kpts[i]=kpts[i+1]*1e-3 else: kpts[i]=kpts[i-1]*1e-3 def get_dispersion(self, k_in_s, unit='THz', cart=True, no_gamma=False): """ :param k_in_s: string "Auto" or K-points definition :return: """ #rec = self.prim.lattice.reciprocal_lattice kpts, labels = self.str2kpt(k_in_s, cart) self.replace_gamma(kpts, no_gamma) np.savetxt('wavevec_frac_cart.txt', np.hstack([self.prim.reciprocal_lattice.get_fractional_coords(kpts), kpts])) xval = np.zeros(len(kpts)) for i in range(1, len(kpts)): xval[i] = xval[i-1] + (0 if labels[i-1] and labels[i] else np.linalg.norm(kpts[i:i+1] - kpts[i-1:i])) eigE = f_phonon.get_dispersion(kpts, 1, self.dim)* self.units[unit][0] print(np.min(eigE),np.max(eigE)) np.savetxt('phonon-dispersion.out', np.hstack((np.array([xval]).T, eigE.T)), header= 'col1: wavevector distance; col 2 ...: band 1 ...: '+self.units[unit][1]) if False: ref_eigE= np.loadtxt('ref-dispersion.txt')[:,1:].T print(eigE.shape, ref_eigE.shape) else: ref_eigE= None if plt is not None and self.pdfout: plt.figure() if ref_eigE is not None: plt.plot(*my_flatten([[xval, eigE[i,:], 'b-'] for i in range(self.dim)]+ [[xval, ref_eigE[i,:], 'r-'] for i in range(self.dim)])) else: plt.plot(*my_flatten([[xval, eigE[i,:], 'b-'] for i in range(self.dim)])) plt.xlabel("Wavevector") plt.ylabel(self.units[unit][1]) #print(xval, labels) Phonon._maketicks(xval, labels, plt) plt.savefig(self.pdfout, format='pdf') plt.close() return eigE, kpts def get_eig_e_vec(self, k_in,unit='THz', cart=True): """ :param k_in: list of K-points :return: """ from scipy.io import mmwrite eigE, eigV = f_phonon.get_eig_e_vec(self.to_c(k_in, cart), self.dim) # dm = f_phonon.get_dm(self.to_c(k_in, cart), self.dim) # np.savetxt("eigE.txt", eigE) # for i in range(len(k_in)): # mmwrite("eigV_%d.mtx"%(i), eigV[:,:,i]) # mmwrite("dm_%d.mtx"%(i), dm[:,:,i]) # np.savetxt("hessian.txt", self.get_FCM()) return (eigE, eigV) def plot_dos(self, plt, x, y, title, unit): if plt is not None: plt.figure() plt.plot(x, y, 'b-') plt.xlabel(unit) plt.ylabel("Phonon DOS") plt.title(title) plt.savefig(self.pdfout, format='pdf') plt.close() def get_dos(self, mesh, nEdos, ismear, temp, epsilon, unit='THz', pdos=False, no_gamma=False): """ :param mesh: [nx ny nz] :param ngrid_en: number of energy points :param ismear: -1 for tetrahedron, 0 for Lorentzian smearing, 1 for Gaussian smearing :param epsilon: width of smearing :param unit: :return: numpy array [[t1, dos1], [t2, dos2], ...] """ kgrid = np.mgrid[0:1:1./mesh[0], 0:1:1./mesh[1], 0:1:1./mesh[2]].transpose((1,2,3,0)).reshape(-1,3) self.replace_gamma(kgrid, no_gamma) kred, wt = zip(*self.prim.syminfo.get_ir_reciprocal_mesh(mesh)) dos, pd = f_phonon.get_dos_new(pdos, mesh, self.to_c(kgrid, False), nEdos, ismear, epsilon, self.prim.num_sites) en = dos[:,0]* self.units[unit][0] self.plot_dos(plt, en, dos[:,1]/self.units[unit][0], "Total", self.units[unit][1]) # returned dos always in eV per primitive cell (3 N_atom modes) dos[:,0] *= self.units['eV'][0] dos[:,1] /= self.units['eV'][0] np.savetxt('phonon-total-dos'+str(temp)+'.out', dos, header='col1: energy in eV; col 2: DOS') if pdos: for i in range(self.prim.num_sites): self.plot_dos(plt, en, pd[i]/self.units[unit][0], "Partial for atom %d"%(i+1), self.units[unit][1]) pd /= self.units['eV'][0] np.savetxt('phonon-partial-dos'+str(temp)+'.out',
np.hstack((dos[:,0:1], pd.T))
numpy.hstack
from __future__ import division, print_function, absolute_import import sys import os import tensorflow as tf import numpy as np from tf_layers import linear_layer import tf_dataset as tfd from tf_model import getNetwork from center_loss import * import tf_log import sklearn.metrics from tf_validationInfo import RSquaredResults, CenterLossAEResults, ClassificationAutoencoderResults, \ ClassifierResults, AEResults import timeit def getOp(args): t = args.graph_type if t == 'DosageDrugRegression': print("loading DosageDrugRegression") return DosageDrugRegression elif t == 'AUCRegression': print("loading AUCRegression") return AUCRegression elif t == 'ClassificationAutoencoder': return ClassificationAutoencoder elif t == 'TumorClassifier': return TumorClassifier elif t == 'TumorAE': return TumorAE elif t == 'CenterLossAutoencoder': return CenterLossAutoencoder elif t == 'CenterLossAutoencoder40': return CenterLossAutoencoder40 elif t == 'ClassificationAutoencoder40': return ClassificationAutoencoder40 elif t == 'TumorClassifier40': return TumorClassifier40 elif t == 'TumorAE40': return TumorAE40 elif t == 'CenterLossAutoencoder20': return CenterLossAutoencoder20 elif t == 'ClassificationAutoencoder20': return ClassificationAutoencoder20 elif t == 'TumorClassifier20': return TumorClassifier20 elif t == 'TumorAE20': return TumorAE20 else: print("unrecognized type", t) class Network(object): def __init__(self, args, dataset, checkpoint=None, pretrained=None): self.args = args self.dataset = dataset self.checkpoint = checkpoint self.pretrained = pretrained self.makePlaceholders() self.makeNetwork() self.makeCostFunction() self.makeOptimizer() # Initializing the variables self.init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) self.sess = tf.Session() self.sess.run(self.init) self.loadWeights() def loadWeights(self): print("checkpoint is", self.checkpoint) #tensorflow saver. if os.path.exists(self.checkpoint+".index"): # check if resuming previous run print("restoring from previous run") self.saver = tf.train.Saver(tf.global_variables()) self.saver.restore(self.sess, self.checkpoint) else: # default create saver with all variables. self.saver = tf.train.Saver(tf.global_variables()) class EncodeDecodeOriginal: def encoder(self): # for MNIST. expects self.X to have 28^2 flat input vector self.dropout_test = tf.reduce_mean(tf.layers.dropout(self.X, rate=1-self.keep_prob)) fc1 = tf.layers.dense(self.X, 5000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc1") fc2 = tf.layers.dense(tf.layers.dropout(fc1, rate=1-self.keep_prob), 3000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc2") fc3 = tf.layers.dense(tf.layers.dropout(fc2, rate=1-self.keep_prob), 2000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc3") fc4 = tf.layers.dense(tf.layers.dropout(fc3, rate=1-self.keep_prob), 943, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc4") return fc4 def decoder(self): # for MNIST. expects self.X to have 28^2 flat input vector de_fc1 = tf.layers.dense(tf.layers.dropout(self.encoded, rate=1-self.keep_prob), 2000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc1") de_fc2 = tf.layers.dense(tf.layers.dropout(de_fc1, rate=1-self.keep_prob), 3000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc2") de_fc3 = tf.layers.dense(tf.layers.dropout(de_fc2, rate=1-self.keep_prob), 5000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc3") de_fc4 = tf.layers.dense(de_fc3, self.dataset.numFeatures, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), activation=tf.nn.relu, name="de_fc4") return de_fc4 class EncodeDecode40: def encoder(self): # for MNIST. expects self.X to have 28^2 flat input vector fc1 = tf.layers.dense(self.X, 5000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc1") fc2 = tf.layers.dense(tf.layers.dropout(fc1, rate=1-self.keep_prob), 1000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc2") fc3 = tf.layers.dense(tf.layers.dropout(fc2, rate=1-self.keep_prob), 200, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc3") fc4 = tf.layers.dense(tf.layers.dropout(fc3, rate=1-self.keep_prob), 40, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc4") return fc4 def decoder(self): # for MNIST. expects self.X to have 28^2 flat input vector de_fc1 = tf.layers.dense(tf.layers.dropout(self.encoded, rate=1-self.keep_prob), 200, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc1") de_fc2 = tf.layers.dense(tf.layers.dropout(de_fc1, rate=1-self.keep_prob), 1000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc2") de_fc3 = tf.layers.dense(tf.layers.dropout(de_fc2, rate=1-self.keep_prob), 5000, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc3") de_fc4 = tf.layers.dense(de_fc3, self.dataset.numFeatures, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), activation=tf.nn.relu, name="de_fc4") return de_fc4 class EncodeDecode20: def encoder(self): # for MNIST. expects self.X to have 28^2 flat input vector fc1 = tf.layers.dense(self.X, 2500, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc1") fc2 = tf.layers.dense(tf.layers.dropout(fc1, rate=1-self.keep_prob), 500, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc2") fc3 = tf.layers.dense(tf.layers.dropout(fc2, rate=1-self.keep_prob), 100, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc3") fc4 = tf.layers.dense(tf.layers.dropout(fc3, rate=1-self.keep_prob), 20, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="fc4") return fc4 def decoder(self): # for MNIST. expects self.X to have 28^2 flat input vector de_fc1 = tf.layers.dense(tf.layers.dropout(self.encoded, rate=1-self.keep_prob), 100, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc1") de_fc2 = tf.layers.dense(tf.layers.dropout(de_fc1, rate=1-self.keep_prob), 500, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc2") de_fc3 = tf.layers.dense(tf.layers.dropout(de_fc2, rate=1-self.keep_prob), 2500, activation=tf.nn.selu, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), name="de_fc3") de_fc4 = tf.layers.dense(de_fc3, self.dataset.numFeatures, kernel_initializer=tf.variance_scaling_initializer(scale=1.0, mode='fan_in'), activation=tf.nn.relu, name="de_fc4") return de_fc4 class ClassificationAutoencoder__(Network): @staticmethod def buildTrainDataset(args): # check to see which chunk we left off on trainData = tfd.ChunkGroup(pathFeatures=[args.trainx], pathLabels=args.trainy, batch_size=args.batch_size, preprocessing_fn=os.path.join(args.outputFolder, 'onehot_labelencoder.pkl')) valData = ClassificationAutoencoder.buildValidationDataset(args) return trainData, valData @staticmethod def buildValidationDataset(args): valData = tfd.ChunkGroup(pathFeatures=[args.valid], pathLabels=args.validy, batch_size=args.valid_size, shuffle=False, preprocessing_fn=os.path.join(args.outputFolder, 'onehot_labelencoder.pkl')) return valData @staticmethod def buildSplitDataset(args): pairs = zip(args.valid, args.validy) datasets = [] for x, y in pairs: datasets.append(tfd.ChunkGroup(pathFeatures=[[x]], pathLabels=[y], batch_size=args.valid_size, shuffle=False, preprocessing_fn=os.path.join(args.outputFolder, 'onehot_labelencoder.pkl'))) return datasets @staticmethod def getPreferedLogger(): return tf_log.ClassificationAutoencoderLog def makePlaceholders(self): # Placeholders for inputs self.X = tf.placeholder(tf.float32, [None, self.dataset.numFeatures], name='ph_input_tensor') self.y_true = tf.placeholder(tf.int32, [None, self.dataset.numClasses], name='ph_y_true') # drop out self.keep_prob = tf.placeholder(tf.float32, name='ph_keep_prob') # can be used for exponential decay learning rate self.epoch = tf.placeholder(tf.int32, name='ph_epoch') self.learning_rate = tf.placeholder(tf.float32, name='ph_learning_rate') def makeNetwork(self): self.encoded = self.encoder() self.y_pred = self.decoder() self.logits = tf.layers.dense(self.encoded, self.dataset.numClasses) indicies = tf.argmax(tf.nn.softmax(self.logits), axis=1) self.class_prediction = tf.one_hot(indicies, self.dataset.numClasses) def makeCostFunction(self): # Targets (Labels) are the input data. # Define loss and optimizer, minimize the squared error self.reconstructionError = tf.sqrt(tf.reduce_mean(tf.pow(self.X - self.y_pred, 2))) self.cross_entropy_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2( logits=self.logits, labels=self.y_true)) self.cost = (1-self.args.center_loss_alpha)*self.reconstructionError + \ self.args.center_loss_alpha*self.cross_entropy_loss def makeOptimizer(self): #decayedLearn = tf.train.exponential_decay(self.learning_rate, \ #self.epoch, 1, .9, staircase=True) #tf.summary.scalar("decayedLearn", decayedLearn) #opt = tf.train.GradientDescentOptimizer(self.learning_rate) opt = tf.train.AdamOptimizer(self.learning_rate) self.optimizer = opt.minimize(self.cost) def partialFit(self, data, epoch): X, y, loop = data feed_dict={self.X : X, self.epoch : epoch, \ self.keep_prob : self.args.keep_prob, \ self.learning_rate : self.args.learning_rate, \ self.y_true : y} start = timeit.default_timer() cost, y_pred, class_pred, opt, = self.sess.run([self.cost, \ self.y_pred, self.class_prediction, self.optimizer \ ], feed_dict) return timeit.default_timer()-start, \ ClassificationAutoencoderResults(X=X, y=self.dataset.inverse_transform(y), pred_X=y_pred, pred_y=self.dataset.inverse_transform(class_pred), cost=cost) def validate(self, data): X, y, loop = data feed_dict={self.X : X, \ self.learning_rate : 0, self.epoch : 0, \ self.y_true : y} if self.args.keep_mask_loops == 1: feed_dict[self.keep_prob] = 1 else: feed_dict[self.keep_prob] = self.args.keep_prob cost, y_recon, class_pred = \ self.sess.run([self.cost, \ self.y_pred, \ self.class_prediction], \ feed_dict) return ClassificationAutoencoderResults(X=X, y=self.dataset.inverse_transform(y), pred_X=y_recon, pred_y=self.dataset.inverse_transform(class_pred), cost=cost) def encode(self, data): X, y, loop = data feed_dict={self.X : X, \ self.learning_rate : 0, self.epoch : 0, \ self.y_true : y} # ask for the activiations from the tensor saved as self.encoded [encoded] = self.sess.run([self.encoded] , feed_dict) return encoded class ClassificationAutoencoder(ClassificationAutoencoder__, EncodeDecodeOriginal): pass class ClassificationAutoencoder40(ClassificationAutoencoder__, EncodeDecode40): pass class ClassificationAutoencoder20(ClassificationAutoencoder__, EncodeDecode20): pass class CenterLossAutoencoder__(ClassificationAutoencoder__): @staticmethod def getPreferedLogger(): return tf_log.CenterLossAELog def makeCostFunction(self): # center loss stuff # calculate binary labels for center_loss, must be in one_hot encoding self.center_loss, centers, self.centers_update_op = \ calc_center_loss(self.encoded, self.y_true, self.args.center_loss_alpha) self.reconstruction_error = tf.sqrt(tf.reduce_mean(tf.pow(self.X - self.y_pred, 2))) self.cross_entropy_loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits_v2( logits=self.logits, labels=self.y_true)) lambdas = np.array(self.args.center_loss_lambdas) normed_lambdas = lambdas /
np.sum(lambdas)
numpy.sum
################################################################################# # Example: System Identification # ################################################################################# # # # In this example we have a typical system identification scenario. We want # # to estimate the filter coefficients of an unknown system given by Wo. In # # order to accomplish this task we use an adaptive filter with the same # # number of coefficients, N, as the unkown system. The procedure is: # # 1) Excitate both filters (the unknown and the adaptive) with the signal # # x. In this case, x is chosen according to the 4-QAM constellation. # # The variance of x is normalized to 1. # # 2) Generate the desired signal, d = Wo' x + n, which is the output of the # # unknown system considering some disturbance (noise) in the model. The # # noise power is given by sigma_n2. # # 3) Choose an adaptive filtering algorithm to govern the rules of coefficient # # updating. # # # # Adaptive Algorithm used here: LMS # # # ################################################################################# # Imports import numpy as np import matplotlib.pyplot as plt import pydaptivefiltering as pdf def LMS_example(): """ Types: ------ None -> '(Filter, dictionary["outputs", "errors", "coefficients"])' Example for the LMS algorithm, SignData and SignError. """ # Parameters K = 70 # Number of iterations H = np.array([0.32+0.21*1j, -0.3+0.7*1j, 0.5-0.8*1j, 0.2+0.5*1j]) Wo = H # Uknown System sigman2 = 0.04 # Noise Power N = 4 # Number of coefficients of the adaptative filter mu = 0.1 # Convergence factor (step) (0 < μ < 1) # Initializing W = np.ones(shape=(N, K+1)) # Input at a certain iteration (tapped delay line) X = np.zeros(N) x = (np.random.randn(K) + np.random.randn(K)*1j)/
np.sqrt(2)
numpy.sqrt
# -*- coding: utf-8 -*- import unittest import pandas as pd import numpy as np # from ThymeBoost.trend_models import (linear_trend, mean_trend, median_trend, # loess_trend, ransac_trend, ewm_trend, # ets_trend, arima_trend, moving_average_trend, # zero_trend, svr_trend, naive_trend) from ThymeBoost.trend_models import * def testing_data(): seasonality = ((np.cos(np.arange(1, 101))*10 + 50)) np.random.seed(100) true =
np.linspace(-1, 1, 100)
numpy.linspace
#!/usr/bin/env python import argparse import os import pprint import warnings import time import pickle import random from collections import OrderedDict from pathlib import Path import shutil import sys sys.path.append("..") from src.training_manager import TrainingManager, get_current_time import download_weights import generate import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torch.nn.utils import clip_grad_norm_ from torch.nn.utils import spectral_norm from torch.nn.parallel import DataParallel as DP import wandb device = torch.device("cuda" if torch.cuda.is_available() else "cpu") torch.multiprocessing.set_sharing_strategy("file_system") loss_funcs = OrderedDict( [ ("G", None), ("D", None), ("RealD", None), ("FakeD", None), ("Convergence", None), ("NoiseRecon", None), ("RealRecon", None), ] ) class VocDataset(Dataset): def __init__(self, ids, path): self.metadata = ids self.path = path def __getitem__(self, index): id = self.metadata[index] # voc_fp = os.path.join(self.path, id, "vocals.npy") voc_fp = os.path.join(self.path, f"{id}.npy") voc = np.load(voc_fp) return voc def __len__(self): return len(self.metadata) def get_voc_datasets(path, feat_type, batch_size): dataset_fp = os.path.join(path, f"dataset.pkl") in_dir = os.path.join(path, feat_type) with open(dataset_fp, "rb") as f: dataset = pickle.load(f) dataset_ids = [x[0] for x in dataset] random.seed(1234) random.shuffle(dataset_ids) split_at = int(len(dataset_ids) * 0.9) tr_ids = dataset_ids[:split_at] va_ids = dataset_ids[split_at:] tr_dataset = VocDataset(tr_ids, in_dir) va_dataset = VocDataset(va_ids, in_dir) num_tr = len(tr_dataset) num_va = len(va_dataset) if num_va < batch_size: batch_va = num_va else: batch_va = batch_size iterator_tr = DataLoader( tr_dataset, batch_size=batch_size, num_workers=5, shuffle=True, drop_last=True, pin_memory=True, ) iterator_va = DataLoader( va_dataset, batch_size=batch_va, num_workers=0, shuffle=False, drop_last=True, pin_memory=True, ) return iterator_tr, num_tr, iterator_va, num_va def validate(epoch, step, iterator_va, num_va): # Store random state cpu_rng_state_tr = torch.get_rng_state() if device.type == "cuda": gpu_rng_state_tr = torch.cuda.get_rng_state() # Set random stae torch.manual_seed(123) # ### sum_losses_va = OrderedDict([(loss_name, 0) for loss_name in loss_funcs]) count_all_va = num_va # In validation, set netG.eval() netG.eval() netD.eval() netE.eval() num_batches_va = len(iterator_va) with torch.set_grad_enabled(False): for i_batch, batch in enumerate(iterator_va): # voc.shape=(bs, feat_dim, num_frames) voc = batch voc = voc.to(device) voc = (voc - mean) / std bs, _, nf = voc.size() # ### Train generator ### z = ( torch.zeros((bs, z_dim, int(np.ceil(nf / z_total_scale_factor)))) .normal_(0, 1) .float() .to(device) ) fake_voc = netG(z) z_fake = netE(fake_voc) z_real = netE(voc) gloss = torch.mean(torch.abs(netD(fake_voc) - fake_voc)) noise_rloss = torch.mean(torch.abs(z_fake - z)) real_rloss = torch.mean(torch.abs(netG(z_real)[..., :nf] - voc[..., :nf])) # ### Train discriminator ### real_dloss = torch.mean(torch.abs(netD(voc) - voc)) fake_dloss = torch.mean( torch.abs(netD(fake_voc.detach()) - fake_voc.detach()) ) dloss = real_dloss - k * fake_dloss # ### Convergence ### _, convergence = recorder(real_dloss, fake_dloss, update_k=False) # ### Losses ### losses = OrderedDict( [ ("G", gloss), ("D", dloss), ("RealD", real_dloss), ("FakeD", fake_dloss), ("Convergence", convergence), ("NoiseRecon", noise_rloss), ("RealRecon", real_rloss), ] ) # ### Misc ### # count_all_va += bs # Accumulate losses losses_va = OrderedDict( [(loss_name, lo.item()) for loss_name, lo in losses.items()] ) for loss_name, lo in losses_va.items(): sum_losses_va[loss_name] += lo * bs if i_batch % 10 == 0: print("{}/{}".format(i_batch, num_batches_va)) wandb.log({"loss/eval": losses, "epoch": epoch}, step=step) mean_losses_va = OrderedDict( [(loss_name, slo / count_all_va) for loss_name, slo in sum_losses_va.items()] ) # Restore rng state torch.set_rng_state(cpu_rng_state_tr) if device.type == "cuda": torch.cuda.set_rng_state(gpu_rng_state_tr) return mean_losses_va def make_inf_iterator(data_iterator): while True: for data in data_iterator: yield data class BEGANRecorder(nn.Module): def __init__(self, lambda_k, init_k, gamma): super().__init__() self.lambda_k = lambda_k self.init_k = float(init_k) self.gamma = gamma self.k = nn.Parameter(torch.tensor(self.init_k)) def forward(self, real_dloss, fake_dloss, update_k=False): # convergence diff = self.gamma * real_dloss - fake_dloss convergence = real_dloss + torch.abs(diff) # Update k if update_k: self.k.data = torch.clamp(self.k + self.lambda_k * diff, 0, 1).data return self.k.item(), convergence class RCBlock(nn.Module): def __init__(self, feat_dim, ks, dilation, num_groups): super().__init__() ksm1 = ks - 1 mfd = feat_dim di = dilation self.num_groups = num_groups self.relu = nn.LeakyReLU() self.rec = nn.GRU(mfd, mfd, num_layers=1, batch_first=True, bidirectional=True) self.conv = nn.Conv1d( mfd, mfd, ks, 1, ksm1 * di // 2, dilation=di, groups=num_groups ) self.gn = nn.GroupNorm(num_groups, mfd) def init_hidden(self, batch_size, hidden_size): num_layers = 1 num_directions = 2 hidden = torch.zeros(num_layers * num_directions, batch_size, hidden_size) hidden.normal_(0, 1) return hidden def forward(self, x): bs, mfd, nf = x.size() hidden = self.init_hidden(bs, mfd).to(x.device) r = x.transpose(1, 2) r, _ = self.rec(r, hidden) r = r.transpose(1, 2).view(bs, 2, mfd, nf).sum(1) c = self.relu(self.gn(self.conv(r))) x = x + r + c return x class BodyGBlock(nn.Module): def __init__(self, input_dim, output_dim, middle_dim, num_groups): super().__init__() ks = 3 # kernel size mfd = middle_dim self.input_dim = input_dim self.output_dim = output_dim self.mfd = mfd self.num_groups = num_groups # ### Main body ### block = [ nn.Conv1d(input_dim, mfd, 3, 1, 1), nn.GroupNorm(num_groups, mfd), nn.LeakyReLU(), RCBlock(mfd, ks, dilation=1, num_groups=num_groups), nn.Conv1d(mfd, output_dim, 3, 1, 1), ] self.block = nn.Sequential(*block) def forward(self, x): # ### Main ### x = self.block(x) return x class NetG(nn.Module): def __init__(self, feat_dim, z_dim, z_scale_factors): super().__init__() mfd = 512 num_groups = 4 self.num_groups = num_groups self.mfd = mfd self.feat_dim = feat_dim self.z_dim = z_dim self.z_scale_factors = z_scale_factors # ### Main body ### self.block0 = BodyGBlock(z_dim, mfd, mfd, num_groups) self.head0 = nn.Conv1d(mfd, feat_dim, 3, 1, 1) blocks = [] heads = [] for scale_factor in z_scale_factors: block = BodyGBlock(mfd, mfd, mfd, num_groups) blocks.append(block) head = nn.Conv1d(mfd, feat_dim, 3, 1, 1) heads.append(head) self.blocks = nn.ModuleList(blocks) self.heads = nn.ModuleList(heads) def forward(self, z): # SBlock0 z_scale_factors = self.z_scale_factors x_body = self.block0(z) x_head = self.head0(x_body) for ii, (block, head, scale_factor) in enumerate( zip(self.blocks, self.heads, z_scale_factors) ): x_body = F.interpolate(x_body, scale_factor=scale_factor, mode="nearest") x_head = F.interpolate(x_head, scale_factor=scale_factor, mode="nearest") x_body = x_body + block(x_body) x_head = x_head + head(x_body) return x_head class BNSNConv2dDBlock(nn.Module): def __init__( self, input_dim, output_dim, kernel_size, frequency_stride, time_dilation ): super().__init__() ks = kernel_size ksm1d2 = (ks - 1) // 2 self.input_dim = input_dim self.output_dim = output_dim self.kernel_size = kernel_size self.time_dilation = time_dilation self.frequency_stride = frequency_stride block = [ spectral_norm( nn.Conv2d( input_dim, output_dim, ks, (frequency_stride, 1), (1, time_dilation * ksm1d2), dilation=(1, time_dilation), ) ), nn.BatchNorm2d(output_dim), nn.LeakyReLU(), ] self.block = nn.Sequential(*block) def forward(self, x): x = self.block(x) return x class BNSNConv1dDBlock(nn.Module): def __init__(self, input_dim, output_dim, kernel_size, dilation): super().__init__() ks = kernel_size ksm1d2 = (ks - 1) // 2 self.input_dim = input_dim self.output_dim = output_dim self.kernel_size = kernel_size self.dilation = dilation block = [ spectral_norm( nn.Conv1d( input_dim, output_dim, ks, 1, dilation * ksm1d2, dilation=dilation ) ), nn.BatchNorm1d(output_dim), nn.LeakyReLU(), ] self.block = nn.Sequential(*block) def forward(self, x): x = self.block(x) return x class StridedBNSNConv1dDBlock(nn.Module): def __init__(self, input_dim, output_dim, kernel_size, stride): super().__init__() ks = kernel_size ksm1d2 = (ks - 1) // 2 self.input_dim = input_dim self.output_dim = output_dim self.kernel_size = kernel_size self.stride = stride block = [ spectral_norm(nn.Conv1d(input_dim, output_dim, ks, stride, ksm1d2)), nn.BatchNorm1d(output_dim), nn.LeakyReLU(), ] self.block = nn.Sequential(*block) def forward(self, x): x = self.block(x) return x class NetD(nn.Module): def __init__(self, input_size): super().__init__() ks = 3 # kernel size mfd = 512 * int(input_size / 80) self.mfd = mfd self.input_size = input_size # ### Main body ### blocks2d = [ BNSNConv2dDBlock(1, 4, ks, 2, 2), BNSNConv2dDBlock(4, 16, ks, 2, 4), BNSNConv2dDBlock(16, 64, ks, 2, 8), ] blocks1d = [ BNSNConv1dDBlock(64 * 10 * int(input_size / 80), mfd, 3, 1), BNSNConv1dDBlock(mfd, mfd, ks, 16), BNSNConv1dDBlock(mfd, mfd, ks, 32), BNSNConv1dDBlock(mfd, mfd, ks, 64), BNSNConv1dDBlock(mfd, mfd, ks, 128), ] self.body2d = nn.Sequential(*blocks2d) self.body1d = nn.Sequential(*blocks1d) self.head = spectral_norm(nn.Conv1d(mfd, input_size, 3, 1, 1)) def forward(self, x): """ x.shape=(batch_size, feat_dim, num_frames) cond.shape=(batch_size, cond_dim, num_frames) """ bs, fd, nf = x.size() # ### Process generated ### # shape=(bs, 1, fd, nf) x = x.unsqueeze(1) # shape=(bs, 64, 10, nf_) x = self.body2d(x) # shape=(bs, 64*10, nf_) x = x.view(bs, -1, x.size(3)) # ### Merging ### x = self.body1d(x) # ### Head ### # shape=(bs, input_size, nf) # out = torch.sigmoid(self.head(x)) out = self.head(x) # Pad # out = F.pad(out, pad=(0, nf-out.size(2))) return out class Encoder(nn.Module): def __init__(self, input_size, z_dim, z_scale_factors): super().__init__() ks = 3 # kernel size mfd = 512 self.mfd = mfd self.input_size = input_size self.z_dim = z_dim self.z_scale_factors = z_scale_factors # ### Main body ### blocks2d = [ BNSNConv2dDBlock(1, 4, ks, 2, 2), BNSNConv2dDBlock(4, 16, ks, 2, 4), BNSNConv2dDBlock(16, 64, ks, 2, 8), ] # (input_size / 80) to make channel scalable with feat_dim/input_size . blocks1d = [BNSNConv1dDBlock(64 * 10 * int(input_size / 80), mfd, 3, 1)] for sf in z_scale_factors: blocks1d.append(StridedBNSNConv1dDBlock(mfd, mfd, ks, sf)) self.body2d = nn.Sequential(*blocks2d) self.body1d = nn.Sequential(*blocks1d) self.head = spectral_norm(nn.Conv1d(mfd, z_dim, 3, 1, 1)) def forward(self, x): """ x.shape=(batch_size, feat_dim, num_frames) cond.shape=(batch_size, cond_dim, num_frames) """ bs, fd, nf = x.size() # ### Process generated ### # shape=(bs, 1, fd, nf) x = x.unsqueeze(1) # shape=(bs, 64, 10, nf_) x = self.body2d(x) # shape=(bs, 64*10, nf_) x = x.view(bs, -1, x.size(3)) # ### Merging ### x = self.body1d(x) # ### Head ### # shape=(bs, input_size, nf) # out = torch.sigmoid(self.head(x)) out = self.head(x) return out if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-id", type=str) parser.add_argument("--audio_db_dir", type=str) parser.add_argument("--batches-per-epoch", type=int, default=500) parser.add_argument("--notes", type=str) parser.add_argument( "--wandb-dir", type=str, default="wandb", help="Directory with wandb runs" ) # argument for log data (need to set vocoder to generate wav samples) parser.add_argument("--melgan_run_id", default="") parser.add_argument("--log_num_samples", type=int, default=1) parser.add_argument("--wav_generate_dir", type=str, default="models/custom") # new argument parser.add_argument("--feat_dim", type=int, default=80) parser.add_argument("--z_dim", type=int, default=20) parser.add_argument("--z_scale_factors", default=[2, 2, 2, 2]) parser.add_argument("--num_va", type=int, default=200) # BEGAN parameters parser.add_argument("--gamma", type=float, default=1.0) parser.add_argument("--lambda_k", type=float, default=0.01) parser.add_argument("--init_k", type=float, default=0.0) parser.add_argument("--init_lr", type=float, default=0.0001) parser.add_argument("--num_epochs", type=int, default=1000) parser.add_argument("--lambda_cycle", type=int, default=1) parser.add_argument("--max_grad_norm", type=int, default=3) parser.add_argument("--save_rate", type=int, default=20) parser.add_argument("--batch_size", type=int, default=5) args = parser.parse_args() script_path = os.path.realpath(__file__) print(script_path) data_dir = "./training_data/exp_data" log_num_samples = args.log_num_samples wav_generate_dir = args.wav_generate_dir model_id = args.model_id if model_id: api = wandb.Api() previous_run = api.run(f"demiurge/unagan/{model_id}") args = argparse.Namespace(**previous_run.config) if hasattr(args, "log_num_samples"): log_num_samples = args.log_num_samples else: args.log_num_samples = log_num_samples if hasattr(args, "melgan_run_id"): melgan_run_id = args.melgan_run_id if melgan_run_id == "": melgan_run_id = None else: melgan_run_id = None if hasattr(args, "wav_generate_dir"): wav_generate_dir = args.wav_generate_dir else: args.wav_generate_dir = wav_generate_dir feat_dim = args.feat_dim z_dim = args.z_dim z_scale_factors = args.z_scale_factors z_total_scale_factor = np.prod(z_scale_factors) num_va = args.num_va feat_type = "mel" # BEGAN parameters gamma = args.gamma lambda_k = args.lambda_k init_k = args.init_k # ############################################################# # ### Set the validation losses that are used in evaluation ### # ############################################################# eval_metrics = [ ("Convergence", "lower_better"), ] # ############################################################# # Training options init_lr = args.init_lr num_epochs = args.num_epochs batches_per_epoch = args.batches_per_epoch lambda_cycle = args.lambda_cycle max_grad_norm = args.max_grad_norm save_rate = args.save_rate batch_size = args.batch_size config_keys = [ "script_path", "data_dir", "feat_dim", "z_dim", "z_scale_factors", "z_total_scale_factor", "num_va", "feat_type", "gamma", "lambda_k", "init_k", "init_lr", "num_epochs", "lambda_cycle", "max_grad_norm", "save_rate", "batch_size", ] locs = locals() config = {**{k: locs[k] for k in config_keys}, **args.__dict__} pprint.pprint(config) if model_id: print(f"Resuming wandb run ID {model_id}.") resume_training = True else: print("Starting new run from scratch.") resume_training = False if melgan_run_id: print(f"Downloading wandb melgan run ID {melgan_run_id} for wav generation.") download_weights.main( melgan_run_id=melgan_run_id, unagan_run_id=None, model_dir=Path("models/custom"), ) Path(args.wandb_dir).mkdir(parents=True, exist_ok=True) wandb.init( dir=args.wandb_dir, id=model_id, entity="demiurge", project="unagan", config=config, resume=resume_training, notes=args.notes, ) print(f"wandb: Run ID: {wandb.run.id}") output_dir = wandb.run.dir # XXX Saving models this way breaks torch restore functionality! # Only use it for other files. for files_to_save in ["record/*"]: print(f"Registering paths matching {files_to_save} to save in wandb.") wandb.save(files_to_save) # Dirs and fps iterator_tr, num_tr, iterator_va, num_va = get_voc_datasets( data_dir, feat_type, batch_size ) print("tr: {}, va: {}".format(num_tr, num_va)) inf_iterator_tr = make_inf_iterator(iterator_tr) # Prepare mean and std mean_fp = os.path.join(data_dir, f"mean.{feat_type}.npy") std_fp = os.path.join(data_dir, f"std.{feat_type}.npy") wandb.save(mean_fp) wandb.save(std_fp) # also save a copy for wav generation if melgan_run_id: temp_dir = Path(args.wav_generate_dir) temp_dir.mkdir(parents=True, exist_ok=True) shutil.copy(mean_fp, temp_dir / f"mean.{feat_type}.npy") shutil.copy(std_fp, temp_dir / f"std.{feat_type}.npy") mean = torch.from_numpy(np.load(mean_fp)).float().to(device).view(1, feat_dim, 1) std = torch.from_numpy(np.load(std_fp)).float().to(device).view(1, feat_dim, 1) # Model if torch.cuda.device_count() > 1: netG = DP(NetG(feat_dim, z_dim, z_scale_factors).to(device)) netD = DP(NetD(feat_dim).to(device)) netE = DP(Encoder(feat_dim, z_dim, z_scale_factors).to(device)) recorder = BEGANRecorder(lambda_k, init_k, gamma) print(f"We have {torch.cuda.device_count()} gpus. Use data parallel.") else: netG = NetG(feat_dim, z_dim, z_scale_factors).to(device) netD = NetD(feat_dim).to(device) netE = Encoder(feat_dim, z_dim, z_scale_factors).to(device) recorder = BEGANRecorder(lambda_k, init_k, gamma) print(f"We have {torch.cuda.device_count()} gpu.") # Optimizers optimizerG = optim.Adam(netG.parameters(), lr=init_lr) optimizerD = optim.Adam(netD.parameters(), lr=init_lr) optimizerE = optim.Adam(netE.parameters(), lr=init_lr) # ################################### # ### Initialize training manager ### # ################################### manager = TrainingManager( [netG, netD, netE, recorder], # networks [optimizerG, optimizerD, optimizerE, None], # optimizers, could be None [ "Generator", "Discriminator", "Encoder", "BEGANRecorder", ], # names of the corresponding networks output_dir, save_rate, script_path=script_path, wav_generate_dir=args.wav_generate_dir, ) # ################################### # ### k ### k = recorder.k.item() # ### Resume training ### if resume_training: # Rolling back an unfinished epoch may cause wandb to drop logs. # Moving to the next epoch. init_epoch = manager.resume_training(output_dir) + 1 print(f"Resumed k: {k}") else: init_epoch = 1 manager.save_initial() print(f"Initial epoch: {init_epoch}") # ### Train ### epoch = init_epoch while not (epoch >= 1 + num_epochs): # for epoch in range(init_epoch, 1 + num_epochs): t0 = time.time() # ### Training ### print("Training...") sum_losses_tr = OrderedDict([(loss_name, 0) for loss_name in loss_funcs]) count_all_tr = 0 num_batches_tr = batches_per_epoch tt0 = time.time() # In training, set net.train() netG.train() netD.train() netE.train() for i_batch in range(batches_per_epoch): batch = next(inf_iterator_tr) step = epoch * batches_per_epoch + i_batch # voc.shape=(bs, feat_dim, num_frames) voc = batch voc = voc.to(device) voc = (voc - mean) / std bs, _, nf = voc.size() # ### Train generator ### z = ( torch.zeros((bs, z_dim, int(np.ceil(nf / z_total_scale_factor)))) .normal_(0, 1) .float() .to(device) ) fake_voc = netG(z) z_fake = netE(fake_voc) z_real = netE(voc) gloss = torch.mean(torch.abs(netD(fake_voc) - fake_voc)) noise_rloss = torch.mean(torch.abs(z_fake - z)) real_rloss = torch.mean(torch.abs(netG(z_real)[..., :nf] - voc[..., :nf])) # Back propagation netG.zero_grad() netE.zero_grad() (gloss + lambda_cycle * (noise_rloss + real_rloss)).backward( retain_graph=True ) if max_grad_norm is not None: clip_grad_norm_(netG.parameters(), max_grad_norm) clip_grad_norm_(netE.parameters(), max_grad_norm) optimizerG.step() optimizerE.step() # ### Train discriminator ### real_dloss = torch.mean(torch.abs(netD(voc) - voc)) fake_dloss = torch.mean( torch.abs(netD(fake_voc.detach()) - fake_voc.detach()) ) dloss = real_dloss - k * fake_dloss # Update netD.zero_grad() dloss.backward() if max_grad_norm is not None: clip_grad_norm_(netD.parameters(), max_grad_norm) optimizerD.step() # ### Convergence and update k ### k, convergence = recorder(real_dloss, fake_dloss, update_k=True) # ### Losses ### losses = OrderedDict( [ ("G", gloss), ("D", dloss), ("RealD", real_dloss), ("FakeD", fake_dloss), ("Convergence", convergence), ("NoiseRecon", noise_rloss), ("RealRecon", real_rloss), ] ) wandb.log({"loss/train": losses, "epoch": epoch}, step=step) # ### Misc ### # Accumulate losses losses_tr = OrderedDict( [(loss_name, lo.item()) for loss_name, lo in losses.items()] ) for loss_name, lo in losses_tr.items(): sum_losses_tr[loss_name] += lo count_all_tr += 1 # ### Print info ### if i_batch % 10 == 0: batch_info = "Epoch {}. Batch: {}/{}, T: {:.3f}, ".format( epoch, i_batch, num_batches_tr, time.time() - tt0 ) + "".join( [ "(tr) {}: {:.5f}, ".format(loss_name, lo) for loss_name, lo in losses_tr.items() ] ) print(batch_info, k) tt0 = time.time() # check if training value NaN detect_NaN = False for loss_name, lo in losses_tr.items(): if np.isnan(lo): detect_NaN = True break if detect_NaN: break # Compute average loss mean_losses_tr = OrderedDict( [ (loss_name, slo / count_all_tr) for loss_name, slo in sum_losses_tr.items() ] ) # ### Validation ### print("") print("Validation...") mean_losses_va = validate(epoch, step, iterator_va, num_va) # ########################################################################### # ### Check the best validation losses and save information in the middle ### # ########################################################################### # Check and update the best validation loss va_metrics = [ (metric_name, mean_losses_va[metric_name], higher_or_lower) for metric_name, higher_or_lower in eval_metrics ] best_va_metrics = manager.check_best_va_metrics(va_metrics, epoch) # Save the record record = { "mean_losses_tr": mean_losses_tr, "mean_losses_va": mean_losses_va, "best_va_metrics": best_va_metrics, } # check all values in train record are not NaN. # if NaN, resume from best_model detect_NaN = False for loss_name, slo in sum_losses_tr.items(): if
np.isnan(slo)
numpy.isnan
import numpy as np import cv2 import json, codecs from random import * from random import randint import scipy.io as sio import os import os.path as osp import matplotlib as mpl if os.environ.get('DISPLAY','') == '': print('no display found. Using non-interactive Agg backend') mpl.use('Agg') import matplotlib.pyplot as plt import sys from manage_data.utils import join_json, resize def is_valid(X, Y, img): return X>=0 and X<img.shape[1] and Y>=0 and Y<img.shape[0] def json_to_string(labels): if len(labels)==0: return '[]' line = '[' for i in range(len(labels)): line += '{\"x\":'+str(labels[i]['x'])+',\"y\":'+str(labels[i]['y'])+'},' return line[0:len(line)-1]+']' def count_people(heads,labels,position, x_low, x_upper , y_low, y_upper): cont =0 new_labels = [] for x in range(x_low, x_upper): for y in range(y_low, y_upper): if heads[y, x] == 1: cont += 1 auxLabel = labels[int(position[y, x])].copy() auxLabel['y'] -= y_low auxLabel['x'] -= x_low new_labels.append(auxLabel) return cont,new_labels def add_noise(image, noise_type = 's&p'): if noise_type == "gauss": row,col= image.shape mean = 0 var = 0.1 sigma = var**0.5 gauss = np.random.normal(mean,sigma,(row,col)) gauss = gauss.reshape(row,col) noisy = image + gauss return noisy elif noise_type == "s&p": row,col = image.shape s_vs_p = 0.5 amount = 0.04 out = np.copy(image) # Salt mode num_salt = np.ceil(amount * image.size * s_vs_p) coords = [np.random.randint(0, i - 1, int(num_salt)) for i in image.shape] out[coords] = 1 # Pepper mode num_pepper = np.ceil(amount* image.size * (1. - s_vs_p)) coords = [np.random.randint(0, i - 1, int(num_pepper)) for i in image.shape] out[coords] = 0 return out else: raise RuntimeError("'{}' is not a valid noise type".format(noise_type)) def noise_augmentation(out_img_dir, out_lab_dir, out_den_dir, img_id): file_names = os.listdir(out_img_dir) for file_name in file_names: file_extension = file_name.split('.')[-1] if file_extension == 'jpg': img_id += 1 in_img_path = osp.join(out_img_dir, file_name) in_lab_path = osp.join(out_lab_dir, file_name[:len(file_name) - len(file_extension)] + 'json') in_den_path = osp.join(out_den_dir, file_name[:len(file_name) - len(file_extension)] + 'npy') img = cv2.imread(in_img_path, 0) new_den =
np.load(in_den_path)
numpy.load
""" The :mod:'atml.exp' module holds a set of functions to perform machine learning experiments and gather the corresponding performances metrics. """ # Author: <NAME> (<EMAIL>) # License: BSD-3 import numpy import pandas import openml def get_random_split_measurement(model_instance, x, y, measure, sparse=False, cap_size=10000, test_size=0.5): """ Perform a random split validation experiment for a given combination of model, dataset, and evaluation measure. Parameters ---------- model_instance: sklearn.predictor A model instance with the sklearn.predictor template, it should have a fit() method for model training, and a predict_proba() method to predict probability vectors on test data. x: numpy.ndarray The data matrix with shape (n samples, d dimensions) y: numpy.ndarray The label vector with shape (n samples, 1) measure: atml.Measure A evaluation measure selected from the atml.measure module. sparse: boolean To indicate whether to only use a subset of the dataset to perform the experiments. cap_size: integer In the case sparse=True, cap_size specifies the maximum size of the dataset to run the experiments. test_size: float The proportion of the dataset that is used as the testing set (validation set). Returns ---------- measurement: float The performance measurement on the testing set (validation set). """ # x : shape(n, m) # y : shape(n, 1) # y_vector: shape(n, k) n = numpy.shape(x)[0] _, y = numpy.unique(y, return_inverse=True) k = len(numpy.unique(y)) shuffle_idx = numpy.random.permutation(numpy.arange(0, n)) x = x[shuffle_idx, :] y = y[shuffle_idx] y_vector = numpy.zeros((n, k)) for i in range(0, k): y_vector[:, i] = (y == i) if sparse & (n > cap_size): class_count = numpy.ceil(numpy.mean(y_vector, axis=0) * cap_size).astype('int') tmp_x = [] tmp_y = [] tmp_y_vector = [] for i in range(0, k): idx_list = numpy.argwhere(y == i).ravel() tmp_idx = numpy.random.choice(idx_list, class_count[i], replace=False) tmp_x.append(x[tmp_idx, :]) tmp_y.append(y[tmp_idx]) tmp_y_vector.append(y_vector[tmp_idx, :]) x = numpy.vstack(tmp_x) y = numpy.hstack(tmp_y) y_vector = numpy.vstack(tmp_y_vector) n_train = numpy.ceil(n * (1 - test_size)).astype('int') selected_idx = numpy.zeros(n) class_count = numpy.ceil(numpy.mean(y_vector, axis=0) * n_train).astype('int') x_train = [] y_train = [] for j in range(0, k): idx_list = numpy.argwhere(y == j).ravel() tmp_idx = numpy.random.choice(idx_list, class_count[j], replace=False) x_train.append(x[tmp_idx, :]) y_train.append(y[tmp_idx]) selected_idx[tmp_idx] = 1.0 x_train = numpy.vstack(x_train) y_train = numpy.hstack(y_train) x_test = x[selected_idx == 0, :] y_test = y[selected_idx == 0] y_train_vector = numpy.zeros((len(y_train), k)) y_test_vector = numpy.zeros((len(y_test), k)) for k in range(0, k): y_train_vector[:, k] = (y_train == k) y_test_vector[:, k] = (y_test == k) mdl = model_instance mdl.fit(x_train, y_train) s_test = mdl.predict_proba(x_test) s_test[~numpy.isfinite(
numpy.sum(s_test, axis=1)
numpy.sum
import argparse import json import multiprocessing import neuroglancer import numpy as np import os import glob import sys import tempfile import tifffile import tqdm import webbrowser import time from scipy.spatial import KDTree from neuroglancer.server import BaseRequestHandler from .utils.ngutils import * from .ngreference import NGReference viewer = None COLOR_POINTS = "yellow" COLOR_DETECTED_POINTS = "green" COLOR_DELETING_POINTS = "red" class NuggtViewer: """The neuroglancer viewer controller This holds the state for displaying the current edit window. """ def __init__(self, img_path, alt_img_path, seg_path, points_file, detected_points_file = None, x0=None, x1=None, y0=None, y1=None, z0=None, z1=None, min_distance=10): self.viewer = neuroglancer.Viewer() self.points_file = points_file self.img_path = img_path self.alt_img_path=alt_img_path self.seg_path=seg_path self.min_distance = min_distance if os.path.exists(points_file): with open(points_file) as fd: self.points = np.array(json.load(fd)) else: self.points = np.zeros((0, 3), np.float32) if detected_points_file is not None: with open(detected_points_file) as fd: self.detected_points = json.load(fd) else: self.detected_points = None self.deleting_points = None self.box_coords = None filenames = sorted(glob.glob(img_path)) if len(filenames) == 1: self.z_extent, self.y_extent, self.x_extent = \ tifffile.imread(filenames[0]).shape else: self.y_extent, self.x_extent = tifffile.imread(filenames[0]).shape self.z_extent = len(filenames) if x0 is not None and x1 is not None: self.width = x1 - x0 self.x0 = x0 self.x1 = x1 else: self.width = self.x_extent self.x0 = 0 self.x1 = self.x_extent if y0 is not None and y1 is not None: self.height = y1 - y0 self.y0 = y0 self.y1 = y1 else: self.height = self.y_extent self.y0 = 0 self.y1 = self.height if z0 is not None and z1 is not None: self.depth = z1 - z0 self.z0 = z0 self.z1 = z1 else: self.depth = self.z_extent self.z0 = 0 self.z1 = self.z_extent self.display() save_fn = lambda s: self.save() annotate_fn = self.action_handler delete_fn = self.delete_handler self.viewer.actions.add("save", save_fn) self.viewer.actions.add("annotatepts", annotate_fn) self.viewer.actions.add("deletepts", delete_fn) self.viewer.actions.add("start-selection", self.start_selection_handler) self.viewer.actions.add("extend-selection", self.extend_selection_handler) self.viewer.actions.add("delete-selected", self.delete_selected_handler) # # Hint: this page lets you type a character and see its code # https://developer.mozilla.org/en-US/docs/Web/API/KeyboardEvent/code # with self.viewer.config_state.txn() as s: s.input_event_bindings.viewer["shift+keya"] = "annotatepts" s.input_event_bindings.viewer["shift+keys"] = "save" s.input_event_bindings.viewer["shift+keyd"] = "deletepts" s.input_event_bindings.viewer["bracketleft"] = "start-selection" s.input_event_bindings.viewer["bracketright"] = "extend-selection" s.input_event_bindings.viewer["shift+keyx"] = "delete-selected" @property def shape(self): """The size of the potential display volume""" return (self.z_extent, self.y_extent, self.x_extent) def center(self): with self.viewer.txn() as txn: txn.position.voxel_coordinates = \ ((self.x0 + self.x1) / 2, (self.y0 + self.y1) / 2, (self.z0 + self.z1) / 2) def display(self): img = load_image(self.img_path, self.x0, self.x1, self.y0, self.y1, self.z0, self.z1) if self.alt_img_path is not None: alt_img = load_image(self.alt_img_path, self.x0, self.x1, self.y0, self.y1, self.z0, self.z1) if self.seg_path is not None: seg = load_image(self.seg_path, self.x0, self.x1, self.y0, self.y1, self.z0, self.z1) with self.viewer.txn() as txn: layer(txn, "image", img, gray_shader, 1.0, self.x0, self.y0, self.z0) if self.alt_img_path is not None: layer(txn, "alt-image", alt_img, green_shader, 1.0, self.x0, self.y0, self.z0) if self.seg_path is not None: seglayer(txn, "segmentation", seg, self.x0, self.y0, self.z0) self.display_points(txn, self.points, "annotation", COLOR_POINTS) if self.detected_points is not None: self.display_points(txn, self.detected_points, "detected", COLOR_DETECTED_POINTS) elif has_layer(txn, "detected"): del txn.layers["detected"] if self.deleting_points is not None: self.display_points(txn, self.deleting_points, "deleting", COLOR_DELETING_POINTS) elif has_layer(txn, "deleting"): del txn.layers["deleting"] if self.box_coords is not None: self.display_bounding_box(txn) elif has_layer(txn, "selection"): del txn.layers["selection"] self.center() def display_bounding_box(self, txn): box = neuroglancer.AxisAlignedBoundingBoxAnnotation() box.point_a = self.box_coords[0] box.point_b = self.box_coords[1] box.id = "selection" txn.layers["selection"] = neuroglancer.AnnotationLayer( annotations=[box]) def display_points(self, txn, points, layer_name, color): mask = (points[:, 0] >= self.x0) & (points[:, 0] < self.x1) & \ (points[:, 1] >= self.y0) & (points[:, 1] < self.y1) & \ (points[:, 2] >= self.z0) & (points[:, 2] < self.z1) display_points = points[mask] pointlayer(txn, layer_name, display_points[:, 0], display_points[:, 1], display_points[:, 2], color) def say(self, msg, category): with self.viewer.config_state.txn() as txn: txn.status_messages[category] = msg def action_handler(self, s): point = np.array(s.mouse_voxel_coordinates) neighbors = self.find_nearby_points(point) if len(neighbors) > 0: self.say("Point too close to some other point!", "annotation") return self.points = np.vstack((self.points, point)) with self.viewer.txn() as txn: self.display_points(txn, self.points, "annotation", COLOR_POINTS) self.say("Added point at %.2f, %.2f, %.2f" % (point[0], point[1], point[2]), "annotation") def find_nearby_points(self, point, return_index=False): diff = self.points - point[np.newaxis, :] distances = np.sqrt(np.sum(np.square(diff), 1)) indexes = np.where(distances < self.min_distance)[0] if len(indexes) == 0: if return_index: return np.zeros((0, 3), np.float32), np.zeros(0, int) else: return np.zeros((0, 3), np.float32) result = self.points[indexes] order = np.argsort(distances[indexes]) if return_index: return result[order], indexes[order] else: return result[order] def delete_handler(self, s): point = np.array(s.mouse_voxel_coordinates) neighbors, indexes = self.find_nearby_points(point, return_index=True) if len(neighbors) == 0: self.say("No nearby point", "delete") return to_delete = self.points[indexes[0]] self.points = np.delete(self.points, indexes[0], 0) with self.viewer.txn() as txn: self.display_points(txn, self.points, "annotation", COLOR_POINTS) self.say("Deleting %.2f, %.2f, %.2f" % (to_delete[0], to_delete[1], to_delete[2]), "delete") def partition_points(self): """Partition points inside/outside bounding box""" for idx in range(3): if self.box_coords[0][idx] == self.box_coords[1][idx]: self.box_coords[1][idx] += 1 (x0, x1), (y0, y1), (z0, z1) = [ [fn(self.box_coords[0][idx], self.box_coords[1][idx]) for fn in (min, max)] for idx in range(3)] all_points = self.all_points mask = (all_points[:, 0] >= x0) & (all_points[:, 0] < x1) & \ (all_points[:, 1] >= y0) & (all_points[:, 1] < y1) & \ (all_points[:, 2] >= z0) & (all_points[:, 2] < z1) self.points, self.deleting_points = all_points[~mask], all_points[mask] with self.viewer.txn() as txn: self.display_points(txn, self.points, "annotation", COLOR_POINTS) self.display_points(txn, self.deleting_points, "deleting", COLOR_DELETING_POINTS) self.display_bounding_box(txn) def start_selection_handler(self, s): point =
np.array(s.mouse_voxel_coordinates)
numpy.array
## @package teetool # This module contains the Visual_2d class # # See Visual_2d class for more details import numpy as np from scipy.interpolate import griddata import matplotlib.pyplot as plt import teetool as tt ## Visual_2d class generates the 2d output using Matplotlib # # Even 3-dimensional trajectories can be output in 2d (sliced) class Visual_2d(object): ## Constructor for Visual_2d # @param self object pointer # @param thisWorld World object, filled with trajectory data and models # @param kwargs additional parameters for plt.figure() def __init__(self, thisWorld, **kwargs): """ <description> """ ## figure object self._fig = plt.figure(facecolor="white", **kwargs) ## axis object self._ax = self._fig.gca() # set colour of axis #self._ax.set_axis_bgcolor('white') #self._ax.set_facecolor('white') ## World object self._world = thisWorld ## Labels of plots self._labels = [] ## Plot mean of trajectories # @param self object pointer # @param list_icluster list of clusters to plot # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotMean(self, list_icluster=None, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract data clusters = self._world.getCluster(list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, this_cluster) in enumerate(clusters): # pass clusters Y = this_cluster["model"].getMean() a_line, = self._ax.plot(Y[:, 0], Y[:, 1], color=colours[list_icluster[i]], **kwargs) ## Plot trajectories of cluster # @param self object pointer # @param list_icluster list of clusters to plot # @param ntraj maximum number of trajectories # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotTrajectories(self, list_icluster=None, ntraj=50, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract data clusters = self._world.getCluster(list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, this_cluster) in enumerate(clusters): # pass clusters for itraj, (x, Y) in enumerate(this_cluster["data"]): a_line, = self._ax.plot(Y[:, 0], Y[:, 1], color=colours[i], **kwargs) # limit number of trajectories if itraj > ntraj: break self._labels.append((a_line, "data")) ## Plot trajectories of cluster # @param self object pointer # @param x1 point from [0,1] to visualise # @param list_icluster list of clusters to plot # @param ntraj maximum number of trajectories # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotTrajectoriesPoints(self, x1, list_icluster=None, ntraj=50, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # obtain points clustersP = self._world.getClusterPoints(x1, list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, A) in enumerate(clustersP): # pass clusters for itraj, a in enumerate(A): a_line, = self._ax.plot(a[0], a[1], color=colours[i], **kwargs) # limit number of trajectories if itraj > ntraj: break self._labels.append((a_line, "data")) ## Plot time-series of trajectories # @param self object pointer # @param icluster select cluster to plot # @param idim select dimension to plot # @param ntraj maximum number of trajectories # @param colour specificy colour of trajectories # @param kwargs additional parameters for plotting def plotTimeSeries(self, icluster=0, idim=0, ntraj=50, colour='k', **kwargs): # number of subplots, 2 or 3 ndim = self._world._ndim # subplot #f, axarr = plt.subplots(ndim, sharex=True) # check validity [icluster] = self._world._check_list_icluster([icluster]) # extract data clusters = self._world.getCluster([icluster]) for (i, this_cluster) in enumerate(clusters): # pass clusters for itraj, (x, Y) in enumerate(this_cluster["data"]): #for d in range(ndim): x_norm = (x - x.min()) / (x.max() - x.min()) a_line, = self._ax.plot(x_norm, Y[:,idim], color=colour, **kwargs) if itraj > ntraj: break self._labels.append((a_line, "data")) ## Plot a box based on two coordinates # @param self object pointer # @param coord_lowerleft lower-left coordinate (x,y) # @param coord_upperright upper-right coordinate (x,y) # @param kwargs additional parameters for plotting def plotBox(self, coord_lowerleft, coord_upperright, **kwargs): x_lo = coord_lowerleft[0] x_hi = coord_upperright[0] y_lo = coord_lowerleft[1] y_hi = coord_upperright[1] coords = np.array([[x_lo, y_lo], [x_hi, y_lo], [x_hi, y_hi], [x_lo, y_hi], [x_lo, y_lo]]) coords_x = coords[:,0] coords_y = coords[:,1] self._ax.plot(coords_x, coords_y, **kwargs) ## standard plotting function for Matplotlib # @param self object pointer # @param args additional arguments for plotting # @param kwargs additional labeled parameters for plotting def plot(self, *args, **kwargs): # plot self._ax.plot(*args, **kwargs) ## Plot samples of model # @param self object pointer # @param list_icluster list of clusters to plot # @param ntraj number of trajectories # @param colour if specified, overwrites distinct colours # @param kwargs additional parameters for plotting def plotSamples(self, list_icluster=None, ntraj=50, colour=None, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # unique colours colours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for (i, icluster) in enumerate(list_icluster): these_samples = self._world.getSamples(icluster, nsamples=ntraj) for (x, Y) in these_samples: a_line, = self._ax.plot(Y[:, 0], Y[:, 1], color=colours[i], linestyle=":", **kwargs) self._labels.append((a_line, "samples")) ## Add legend to plot # @param self object pointer def plotLegend(self): list_lines = [] list_label = [] for (a_line, a_label) in self._labels: list_lines.append(a_line) list_label.append(a_label) plt.legend(handles=list_lines, labels=list_label) ## Plots a confidence region of variance sigma # @param self object pointer # @param list_icluster list of clusters to plot # @param sdwidth variance to evaluate # @param z if specified, it evaluates the confidence region at a constant altitude for 3D trajectories # @param resolution sets resolution for which to calculate the tube, can be a single integer, or an actual measurement [dim1 dim2] (2d) [dim1 dim2 dim3] (3d) # @param colour if specified, overwrites distinct colours # @param alpha opacity for the confidence region # @param kwargs additional parameters for plotting def plotTube(self, list_icluster=None, sdwidth=1, z=None, resolution=None, colour=None, alpha=.1, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract (ss_list, [xx, yy, zz]) = self._world.getTube(list_icluster, sdwidth, z=z, resolution=resolution) # unique colours lcolours = tt.helpers.getDistinctColours(len(self._world._clusters), colour) for i, ss1 in enumerate(ss_list): #plt.contourf(xx, yy, 1.*ss1, levels=[-np.inf, 1., np.inf], colors=(lcolours[i],), alpha=alpha, **kwargs) # plot an iso surface line plt.contour(xx, yy, ss1, levels=[.5], colors=(lcolours[list_icluster[i]], 'w'), **kwargs) ## Plots the difference confidence region of variance sigma for two models # @param self object pointer # @param list_icluster list of 2 clusters to compare # @param sdwidth variance to evaluate # @param z if specified, it evaluates the confidence region at a constant altitude for 3D trajectories # @param resolution specify resolution of region # @param colour if specified, overwrites distinct colours # @param alpha opacity for the confidence region # @param kwargs additional parameters for plotting def plotTubeDifference(self, list_icluster=None, sdwidth=1, z=None, resolution=None, colour=None, alpha=.1, **kwargs): # check validity list_icluster = self._world._check_list_icluster(list_icluster) # extract first two only! list_icluster = list_icluster[:2] # extract (ss_list, [xx, yy, zz]) = self._world.getTube(list_icluster, sdwidth, z=z, resolution=resolution) # to plot ss_plot = - np.inf * np.ones_like(ss_list[0]) # 1 :: blocks added ss_added = ((ss_list[0] - ss_list[1])==-1) # 2 :: blocks removed ss_removed = ((ss_list[0] - ss_list[1])==1) # 3 :: present in both ss_neutral = ((ss_list[0] + ss_list[1])==2) ss_plot[ss_added] = 1. ss_plot[ss_removed] = -1. ss_plot[ss_neutral] = 0. #plt.contourf(xx, yy, ss_plot, levels=[-np.inf, -1., 0., 1., np.inf], colors='none', hatches=['//', '.', '/'], **kwargs) plt.contourf(xx, yy, ss_plot, levels=[-np.inf, -1., 0., 1., np.inf], colors=('r','b','g'), alpha=alpha, **kwargs) for i in [1, 2, 3]: if i == 1: ss1 = 1.*ss_removed color = 'r' elif i == 2: ss1 = 1.*ss_added color = 'g' elif i == 3: ss1 = 1.*ss_neutral color = 'b' # plot an iso surface plt.contour(xx, yy, ss1, levels=[0.5], colors=color) ## Plot the log-likehood of confidence regions -- which can be related to traffic complexity in the future # @param self object pointer # @param list_icluster list of clusters to compare # @param pmin minimum value on a normalised scale # @param pmax maximum value on a normalised scale # @param z if specified, it evaluates the confidence region at a constant altitude for 3D trajectories # @param resolution specify resolution of region def plotLogLikelihood(self, list_icluster=None, pmin=0, pmax=1, z=None, resolution=None): # check validity list_icluster = self._world._check_list_icluster(list_icluster) (ss_list, [xx, yy, zz]) = self._world.getLogLikelihood(list_icluster, resolution, z) ss = ss_list[0] # initialise for ss1 in ss_list: # find those greater mask = np.greater(ss1, ss) # replace ss[mask] = ss1[mask] # normalise ss_norm = (ss - np.min(ss)) / (np.max(ss) - np.min(ss)) # plot contours self._ax.pcolor(xx, yy, ss_norm, cmap="viridis", vmin=pmin, vmax=pmax) def plotComplexityMap(self, list_icluster=None, complexity=1, pmin=0, pmax=1, z=None, resolution=None, cmap1="Reds"): ss, xx, yy, zz = self._world.getComplexityMap(list_icluster, complexity, resolution, z) # normalise ss_norm = (ss - np.min(ss)) / (
np.max(ss)
numpy.max
import argparse import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras.losses import categorical_crossentropy from keras.optimizers import Adam from keras.regularizers import l2 from keras.callbacks import ReduceLROnPlateau, TensorBoard, EarlyStopping, ModelCheckpoint class TrainFER(): def __init__(self, data_path='./data/fer2013.csv', model_path='./models/model.h5'): self.data_path = data_path self.model_path = model_path self.num_features = 128 self.num_labels = 7 self.batch_size = 64 self.epochs = 100 self.width, self.height = 48, 48 self.data = pd.read_csv(self.data_path) self.model = self.build_model() self.X_train, self.X_val,self.X_test,\ self.y_train, self.y_val, self.y_test = self.load_data() def load_data(self): # get label emotions = pd.get_dummies(self.data['emotion']).values pixels = self.data['pixels'].tolist() faces = [] for pixel_row in pixels: face = [int(pixel) for pixel in pixel_row.split(' ')] face = np.asarray(face).reshape(self.width, self.height) faces.append(face.astype('float32')) faces = np.asarray(faces) faces = np.expand_dims(faces, -1) X_train, X_test, y_train, y_test = train_test_split(faces, emotions, test_size=0.1, random_state=15) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=24) return X_train, X_val, X_test, y_train, y_val, y_test def build_model(self): model = Sequential() model.add(Conv2D(self.num_features, kernel_size=(3, 3), activation='relu', input_shape=(self.width, self.height, 1), data_format='channels_last', kernel_regularizer=l2(0.01))) model.add(Conv2D(self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(2*2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(2*2*self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Conv2D(2**3*self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(Conv2D(2**3*self.num_features, kernel_size=(3, 3), activation='relu', padding='same')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2))) model.add(Dropout(0.5)) model.add(Flatten()) model.add(Dense(2**3*self.num_features, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(2*2*self.num_features, activation='relu')) model.add(Dropout(0.4)) model.add(Dense(2*self.num_features, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(self.num_labels, activation='softmax')) model.compile(loss=categorical_crossentropy, optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7), metrics=['accuracy']) print(model.summary()) self.lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.9, patience=3, verbose=1) self.tensorboard = TensorBoard(log_dir='./logs') self.early_stopper = EarlyStopping(monitor='val_loss', min_delta=0, patience=8, verbose=1, mode='auto') self.checkpointer = ModelCheckpoint(self.model_path, monitor='val_loss', verbose=1, save_best_only=True) return model def train(self): self.model.fit(
np.array(self.X_train)
numpy.array
import cv2 import numpy as np class Threshold: @staticmethod def filter_bgr(img, bgr_thresh=[(0, 0, 0), (255, 255, 255)], **kwargs): src = np.copy(img) return cv2.inRange(src, np.uint8(bgr_thresh[0]), np.uint8(bgr_thresh[1])) @staticmethod def filter_hsv(img, hsv_thresh=[(0, 0, 0), (255, 255, 255)], **kwargs): src = np.copy(img) src = cv2.cvtColor(src, cv2.COLOR_BGR2HSV) return cv2.inRange(src, np.uint8(hsv_thresh[0]), np.uint8(hsv_thresh[1])) @staticmethod def filter_hls(img, hls_thresh=[(0, 0, 0), (255, 255, 255)], **kwargs): src = np.copy(img) src = cv2.cvtColor(src, cv2.COLOR_BGR2HLS) return cv2.inRange(src, np.uint8(hls_thresh[0]), np.uint8(hls_thresh[1])) @staticmethod def filter_lab(img, lab_thresh=[(0, 0, 0), (255, 255, 255)], **kwargs): src = np.copy(img) src = cv2.cvtColor(src, cv2.COLOR_BGR2LAB) return cv2.inRange(src, np.uint8(lab_thresh[0]), np.uint8(lab_thresh[1])) @staticmethod def sobel(sobel_result, thresh=(0, 255), **kwargs): # Take the absolute value of the derivative or gradient abs_sobel = np.absolute(sobel_result) # Scale to 8-bit (0 - 255) then convert to type = np.uint8 scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel)) # Create a mask of 1's where the scaled gradient magnitude # is > thresh_min and < thresh_max binary_sobel = np.zeros_like(scaled_sobel, dtype=np.uint8) binary_sobel[(scaled_sobel >= thresh[0]) & (scaled_sobel <= thresh[1])] = 1 return binary_sobel @staticmethod def magnitude(sobel_x, sobel_y, thresh=(0, 255), **kwargs): sobel_mag = np.sqrt(sobel_x ** 2 + sobel_y ** 2) # Scale to 8-bit (0 - 255) and convert to type = np.uint8 scaled_sobel = np.uint8(255 * sobel_mag / np.max(sobel_mag)) # Create a binary mask where mag thresholds are met binary_magnitude =
np.zeros_like(scaled_sobel, dtype=np.uint8)
numpy.zeros_like
import pandas as pd import numpy as np def read_goog_sp500_dataframe(): """Returns a dataframe with the results for Google and S&P 500""" # Point to where you've stored the CSV file on your local machine googFile = 'data/GOOG.csv' spFile = 'data/SP_500.csv' goog = pd.read_csv(googFile, sep=",", usecols=[0, 5], names=['Date', 'Goog'], header=0) sp = pd.read_csv(spFile, sep=",", usecols=[0, 5], names=['Date', 'SP500'], header=0) goog['SP500'] = sp['SP500'] # The date object is a string, format it as a date goog['Date'] = pd.to_datetime(goog['Date'], format='%Y-%m-%d') goog = goog.sort_values(['Date'], ascending=[True]) returns = goog[[key for key in dict(goog.dtypes) if dict(goog.dtypes)[key] in ['float64', 'int64']]].pct_change() return returns def read_goog_sp500_logistic_data(): """Returns a dataframe with the results for Google and S&P 500 set up for logistic regression""" returns = read_goog_sp500_dataframe() returns['Intercept'] = 1 # Leave out the first row since it will not have a prediction for UP/DOWN # Leave out the last row as it will not have a value for returns # Resultant dataframe with the S&P500 and intercept values of all 1s xData = np.array(returns[["SP500", "Intercept"]][1:-1]) yData = (returns["Goog"] > 0)[1:-1] return (xData, yData) def read_goog_sp500_data(): """Returns a tuple with 2 fields, the returns for Google and the S&P 500. Each of the returns are in the form of a 1D array""" returns = read_goog_sp500_dataframe() # Filter out the very first row which does not have any value for returns xData =
np.array(returns["SP500"])
numpy.array
# -*- coding: utf-8 -*- import os, sys import numpy as np import deepdish as dd import math, random import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data.dataset import Dataset from thyroid_config import multi_class_map_dict from thyroid_config import folder_map_dict, folder_reverse_map from utils import aggregate_label, get_all_files class ThyroidDataSet(Dataset): def __init__(self, data_dir, testing=False, testing_num=128, pre_load=True): self.data_dir = data_dir self.pre_load = pre_load self.testing = testing self.testing_num = testing_num # category configuration self.folder_map_dict = folder_map_dict self.folder_reverse_map = folder_reverse_map self.class_map_dict = multi_class_map_dict self.cur_filename = None file_list, label_list = get_all_files(data_dir, inputext = ['.h5'], class_map_dict=self.folder_map_dict, pre_load=self.pre_load) self.file_list = file_list self.label_list = label_list summery_label_dict = aggregate_label(label_list) self.label_dict = summery_label_dict self.img_num = len(self.file_list) self.indices = list(range(self.img_num)) self.chosen_num_list = list(range(testing_num, testing_num+64)) self.max_num = testing_num+64 if not self.testing else self.testing_num self.fixed_num = 40 self.additoinal_num = 20 def get_true_label(self, label): new_label = self.class_map_dict[self.folder_reverse_map[label]] return new_label def __len__(self): return self.img_num def __getitem__(self, index): if self.pre_load == True: data = self.file_list[index] else: this_data_path = self.file_list[index] data = dd.io.load(this_data_path) self.cur_filename = os.path.basename(this_data_path) probs, feas, bboxes = data['probs'], data['feas'], data['bboxes'] total_ind = np.array(range(0, len(probs))) feas_placeholder = np.zeros((self.max_num, feas.shape[1]), dtype=np.float32) box_placeholder = np.zeros((self.max_num, bboxes.shape[1]), dtype=np.int64) if self.testing: if len(probs) > self.testing_num: chosen_total_ind_ = total_ind[:self.testing_num] else: chosen_total_ind_ = total_ind else: if len(probs) > self.max_num: chosen_num = random.choice(self.chosen_num_list) # front fixed chosen part fixed_chosen_num = self.fixed_num+self.additoinal_num fixed_chosen_ind = np.random.choice(total_ind[:fixed_chosen_num], self.fixed_num) # later random chosen part random_chosen_num = chosen_num-self.fixed_num pos_probs =
np.sum(probs[fixed_chosen_num:, 1:], axis=1)
numpy.sum
import pytest import numpy as np from Animate.Movie import Movie from Animate.Animation import Animation import matplotlib as mpl def test_ratio_2(): m = Movie(dt=1.0/14, height_ratio=2) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (1, 1) assert a.gs.get_height_ratios() is None m = Movie(dt=1.0/14, height_ratio=2) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') m.add_axis('x', 'y') m.add_trace(np.arange(4)) a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (2, 1) assert a.gs.get_height_ratios() == (2, 1) m = Movie(dt=1.0 / 14, height_ratio=2) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') m.add_axis('x', 'y') m.add_trace(np.arange(4)) m.add_axis('x', 'y') m.add_trace(np.arange(4), axis=1) a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (3, 1) assert a.gs.get_height_ratios() == (4, 1, 1) def test_ratio_1(): m = Movie(dt=1.0 / 14, height_ratio=1) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (1, 1) assert a.gs.get_height_ratios() is None m = Movie(dt=1.0 / 14, height_ratio=1) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') m.add_axis('x', 'y') m.add_trace(np.arange(4)) a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (2, 1) assert a.gs.get_height_ratios() == (1, 1) m = Movie(dt=1.0 / 14, height_ratio=1) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') m.add_axis('x', 'y') m.add_trace(np.arange(4)) m.add_axis('x', 'y') m.add_trace(np.arange(4), axis=1) a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (3, 1) assert a.gs.get_height_ratios() == (2, 1, 1) def test_ratio_1p5(): m = Movie(dt=1.0 / 14, height_ratio=1.5) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (1, 1) assert a.gs.get_height_ratios() is None m = Movie(dt=1.0 / 14, height_ratio=1.5) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') m.add_axis('x', 'y') m.add_trace(np.arange(4)) a = Animation(m) a._init_draw() assert a.gs.get_geometry() == (2, 1) assert a.gs.get_height_ratios() == (1.5, 1) m = Movie(dt=1.0 / 14, height_ratio=1.5) img = np.arange(100).reshape(4, 5, 5) m.add_image(img, style='dark_img') m.add_axis('x', 'y') m.add_trace(
np.arange(4)
numpy.arange
import trimesh from trimesh.base import Trimesh import trimesh.creation from trimesh.remesh import subdivide_to_size import matplotlib.tri as mtri import numpy as np import torch import quaternion import os from tqdm import tqdm_notebook as tqdm from matplotlib import pyplot as plt def plot_info(history_grad_norm, history_quad_loss, history_smooth_loss, history_loss, history_p_deviation, history_p_deviation_target, history_p_deviation_mean, history_p_deviation_target_mean): plt.figure(figsize=(10, 8)) plt.semilogy(history_grad_norm) plt.title('Grad norm') plt.show() plt.figure(figsize=(10, 8)) plt.semilogy(np.array(history_quad_loss)) plt.title('Quad energy') plt.show() plt.figure(figsize=(10, 8)) plt.plot(np.array(history_smooth_loss)) plt.title('Smooth energy') plt.show() plt.figure(figsize=(10, 8)) plt.semilogy(np.array(history_loss)) plt.title('Data energy') plt.show() plt.figure(figsize=(10, 8)) plt.semilogy(np.array(history_p_deviation), c='b', label='from origin') plt.semilogy(np.array(history_p_deviation_target), c='r', label='from target') plt.legend() plt.title('Deviation') plt.show() plt.figure(figsize=(10, 8)) plt.semilogy(np.array(history_p_deviation_mean), c='b', label='from origin') plt.semilogy(np.array(history_p_deviation_target_mean), c='r', label='from target') plt.legend() plt.title('Mean deviation') plt.show() def make_M_from_tqs(t, q, s): q = np.quaternion(q[0], q[1], q[2], q[3]) T = np.eye(4) T[0:3, 3] = t R = np.eye(4) R[0:3, 0:3] = quaternion.as_rotation_matrix(q) S = np.eye(4) S[0:3, 0:3] = np.diag(s) M = T.dot(R).dot(S) return M def two_tetrahedrons(): vertices_1 = np.array([[0, 0, 0], [1, 0, 0], [0, 1, 0], [0, 0, 1]]) vertices_2 = np.array([[2, 0, 0], [3, 0, 0], [2, 1, 0], [2, 0, 2]]) faces_1 = np.array([[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3], [0, 2, 1], [0, 3, 2], [0, 3, 1], [1, 3, 2]]) faces_2 = np.array([[0, 1, 2], [0, 2, 3], [0, 1, 3], [1, 2, 3], [0, 2, 1], [0, 3, 2], [0, 3, 1], [1, 3, 2]]) mesh_1 = Trimesh(vertices_1, faces_1) mesh_2 = Trimesh(vertices_2, faces_2) return mesh_1, mesh_2 def sphere(subdivisions=3, radius=1.0): mesh = trimesh.primitives.Sphere(subdivisions=subdivisions, radius=radius) return mesh def plane(width=2, length=2, num_points=2500): x = np.linspace(0, length, num=int(np.sqrt(num_points))) y = np.linspace(0, width, num=int(np.sqrt(num_points))) x, y = np.meshgrid(x, y) z = np.zeros_like(x) tri = mtri.Triangulation(x.flatten(), y.flatten()) faces = tri.triangles faces_dual = faces[: ,[0, 2, 1]] faces = np.vstack([faces, faces_dual]) vertices = np.array([x.flatten(), y.flatten(), z.flatten()]).T plane = Trimesh(vertices=vertices, faces=faces) return plane def saddle(num_points=2500): def f(x, y): return x ** 2 - y ** 2 x = np.linspace(-1, 1, num=int(np.sqrt(num_points))) y = np.linspace(-1, 1, num=int(np.sqrt(num_points))) x, y = np.meshgrid(x, y) z = f(x, y) tri = mtri.Triangulation(x.flatten(), y.flatten()) faces = tri.triangles faces_dual = faces[: ,[0, 2, 1]] faces = np.vstack([faces, faces_dual]) vertices = np.array([x.flatten(), y.flatten(), z.flatten()]).T saddle = Trimesh(vertices=vertices, faces=faces) return saddle def monkey_saddle(num_points=2500): def f(x, y): return x ** 3 - 3 * x * y ** 2 x = np.linspace(-1, 1, num=int(np.sqrt(num_points))) y = np.linspace(-1, 1, num=int(np.sqrt(num_points))) x, y = np.meshgrid(x, y) z = f(x, y) tri = mtri.Triangulation(x.flatten(), y.flatten()) faces = tri.triangles faces_dual = faces[: ,[0, 2, 1]] faces = np.vstack([faces, faces_dual]) vertices = np.array([x.flatten(), y.flatten(), z.flatten()]).T saddle = Trimesh(vertices=vertices, faces=faces) return saddle def box(size=(1, 1, 1), max_edge=0.1): box = trimesh.creation.box(extents=size) vertices, faces = subdivide_to_size(box.vertices, box.faces, max_edge) mesh = Trimesh(vertices, faces) return mesh def mesh_pcloud(points, size=0.1, color=None): boxes = [] for point in points: box = trimesh.creation.box(extents=(size, size, size)) box.apply_transform(translate([point - np.array([size/2, size/2, size/2])])) if color is not None: for facet in box.facets: box.visual.face_colors[facet] = color boxes += [box] boxes = trimesh.util.concatenate(boxes) return boxes def set_new_mesh_vertices(mesh, vertices): mesh_new = Trimesh(vertices=vertices.copy(), faces=mesh.faces, process=False) return mesh_new def affine_transform(mesh, transform): mesh_new = mesh.copy() mesh_new.apply_transform(transform) return mesh_new def rot_x(angle=0): angle = angle * np.pi / 180 return np.array([[1, 0, 0, 0], [0, np.cos(angle), -np.sin(angle), 0], [0, np.sin(angle), np.cos(angle), 0], [0, 0, 0, 1]]) def rot_y(angle=0): angle = angle * np.pi / 180 return np.array([[np.cos(angle), 0, -np.sin(angle), 0], [0, 1, 0, 0], [np.sin(angle), 0, np.cos(angle), 0], [0, 0, 0, 1]]) def rot_z(angle=0): angle = angle * np.pi / 180 return np.array([[np.cos(angle), -np.sin(angle), 0, 0], [np.sin(angle), np.cos(angle), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) def translate(vector=(0, 0, 0)): transform = np.eye(4, dtype=float) transform[:3, 3] = np.array(vector) return transform def scale(scale=(1, 1, 1)): transform = np.eye(4, dtype=float) transform[0, 0] = np.array([scale[0]]) transform[1, 1] = np.array([scale[1]]) transform[2, 2] = np.array([scale[2]]) return transform def compose(transforms): identity = np.eye(4, dtype=float) for transform in transforms: identity = transform @ identity return identity def remove_duplicate_vertices(mesh): unique_vertices, unique_inverse = np.unique(mesh.vertices, axis=0, return_inverse=True) old2new_vertices = dict(zip(np.arange(len(mesh.vertices)), unique_inverse)) new_faces = np.copy(mesh.faces) for i, face in enumerate(new_faces): new_face = np.array([old2new_vertices[face[0]], old2new_vertices[face[1]], old2new_vertices[face[2]]]) new_faces[i] = new_face new_mesh = Trimesh(unique_vertices, new_faces, process=False) return new_mesh, old2new_vertices def mesh_subsample(mesh, vertices): num_vertices = len(vertices) new_faces = [] for face in mesh.faces: if (face[0] < num_vertices) and (face[1] < num_vertices) and (face[2] < num_vertices): new_faces += [face] new_mesh = Trimesh(vertices, new_faces) return new_mesh def pcloud_subsample(points, num=100): if num > len(points): num = len(points) points = np.array(points) new_points = [points[0]] new_points_numpy =
np.array(new_points)
numpy.array
##### # some functions are borrowed from https://github.com/taigw/brats17/ ##### import nibabel import numpy as np import random import os import SimpleITK as sitk import pickle from scipy import ndimage import config import copy def flip_lr(data): data = copy.deepcopy(data) img = data['images'] img = np.transpose(img, [3, 0 ,1, 2]) weight = data['weights'][:,:,:,0] flipped_data = [] for moda in range(len(img)): flipped_data.append(np.flip(img[moda], axis=-1)) flipped_data = np.array(flipped_data) weight = np.flip(weight, axis=-1) data['images'] = np.transpose(flipped_data, [1, 2, 3, 0]) data['weights'] = np.transpose(weight[np.newaxis, ...], [1, 2, 3, 0]) data['is_flipped'] = True return data def crop_brain_region(im, gt, with_gt=True): mods = sorted(im.keys()) volume_list = [] for mod_idx, mod in enumerate(mods): filename = im[mod] volume = load_nifty_volume_as_array(filename, with_header=False) # 155 244 244 if mod_idx == 0: # contain whole tumor margin = 5 # small padding value original_shape = volume.shape bbmin, bbmax = get_none_zero_region(volume, margin) volume = crop_ND_volume_with_bounding_box(volume, bbmin, bbmax) if mod_idx == 0: weight = np.asarray(volume > 0, np.float32) if config.INTENSITY_NORM == 'modality': volume = itensity_normalize_one_volume(volume) volume_list.append(volume) ## volume_list [(depth, h, w)*4] if with_gt: label = load_nifty_volume_as_array(gt, False) if config.NUM_CLASS == 4: label[label == 4] = 3 else: label[label == 4] = 1 label[label == 2] = 1 label = crop_ND_volume_with_bounding_box(label, bbmin, bbmax) return volume_list, label, weight, original_shape, [bbmin, bbmax] else: return volume_list, None, weight, original_shape, [bbmin, bbmax] def load_pancreas_img(im, gt, with_gt=True): volume_list = [] filename = im volume = load_nifty_volume_as_array(filename, with_header=False) weight = np.ones_like(volume, np.float32) if config.INTENSITY_NORM == 'modality': volume = itensity_rescaling_one_volume(volume) volume_list.append(volume) if with_gt: label = load_nifty_volume_as_array(gt, False) return volume_list, label, weight else: return volume_list, None, weight def transpose_volumes(volumes, slice_direction): """ transpose a list of volumes inputs: volumes: a list of nd volumes slice_direction: 'axial', 'sagittal', or 'coronal' outputs: tr_volumes: a list of transposed volumes """ if (slice_direction == 'axial'): tr_volumes = volumes elif(slice_direction == 'sagittal'): if isinstance(volumes, list) or len(volumes.shape) > 3: tr_volumes = [np.transpose(x, (2, 0, 1)) for x in volumes] else: tr_volumes = np.transpose(volumes, (2, 0, 1)) elif(slice_direction == 'coronal'): if isinstance(volumes, list) or len(volumes.shape) > 3: tr_volumes = [np.transpose(x, (1, 0, 2)) for x in volumes] else: tr_volumes = np.transpose(volumes, (1, 0, 2)) else: print('undefined slice direction:', slice_direction) tr_volumes = volumes return tr_volumes def remove_external_core(lab_main, lab_ext): """ remove the core region that is outside of whole tumor """ # for each component of lab_ext, compute the overlap with lab_main s = ndimage.generate_binary_structure(3,2) # iterate structure labeled_array, numpatches = ndimage.label(lab_ext,s) # labeling sizes = ndimage.sum(lab_ext,labeled_array,range(1,numpatches+1)) sizes_list = [sizes[i] for i in range(len(sizes))] new_lab_ext = np.zeros_like(lab_ext) for i in range(len(sizes)): sizei = sizes_list[i] labeli = np.where(sizes == sizei)[0] + 1 componenti = labeled_array == labeli overlap = componenti * lab_main if((overlap.sum()+ 0.0)/sizei >= 0.5): new_lab_ext = np.maximum(new_lab_ext, componenti) return new_lab_ext def get_largest_two_component(img, print_info = False, threshold = None): """ Get the largest two components of a binary volume inputs: img: the input 3D volume threshold: a size threshold outputs: out_img: the output volume """ s = ndimage.generate_binary_structure(3,2) # iterate structure labeled_array, numpatches = ndimage.label(img,s) # labeling sizes = ndimage.sum(img,labeled_array,range(1,numpatches+1)) sizes_list = [sizes[i] for i in range(len(sizes))] sizes_list.sort() if(print_info): print('component size', sizes_list) if(len(sizes) == 1): out_img = img else: if(threshold): out_img = np.zeros_like(img) for temp_size in sizes_list: if(temp_size > threshold): temp_lab = np.where(sizes == temp_size)[0] + 1 temp_cmp = labeled_array == temp_lab out_img = (out_img + temp_cmp) > 0 return out_img else: max_size1 = sizes_list[-1] max_size2 = sizes_list[-2] max_label1 = np.where(sizes == max_size1)[0] + 1 max_label2 = np.where(sizes == max_size2)[0] + 1 component1 = labeled_array == max_label1 component2 = labeled_array == max_label2 if(max_size2*10 > max_size1): component1 = (component1 + component2) > 0 out_img = component1 return out_img def get_ND_bounding_box(label, margin): """ get the bounding box of the non-zero region of an ND volume """ input_shape = label.shape if(type(margin) is int ): margin = [margin]*len(input_shape) assert(len(input_shape) == len(margin)) indxes = np.nonzero(label) idx_min = [] idx_max = [] for i in range(len(input_shape)): idx_min.append(indxes[i].min()) idx_max.append(indxes[i].max()) for i in range(len(input_shape)): idx_min[i] = max(idx_min[i] - margin[i], 0) idx_max[i] = min(idx_max[i] + margin[i], input_shape[i] - 1) return idx_min, idx_max def set_ND_volume_roi_with_bounding_box_range(volume, bb_min, bb_max, sub_volume): """ set a subregion to an nd image. """ dim = len(bb_min) out = volume if(dim == 2): out[np.ix_(range(bb_min[0], bb_max[0] + 1), range(bb_min[1], bb_max[1] + 1))] = sub_volume elif(dim == 3): out[np.ix_(range(bb_min[0], bb_max[0] + 1), range(bb_min[1], bb_max[1] + 1), range(bb_min[2], bb_max[2] + 1))] = sub_volume elif(dim == 4): out[np.ix_(range(bb_min[0], bb_max[0] + 1), range(bb_min[1], bb_max[1] + 1), range(bb_min[2], bb_max[2] + 1), range(bb_min[3], bb_max[3] + 1))] = sub_volume else: raise ValueError("array dimension should be 2, 3 or 4") return out def convert_label(in_volume, label_convert_source, label_convert_target): """ convert the label value in a volume inputs: in_volume: input nd volume with label set label_convert_source label_convert_source: a list of integers denoting input labels, e.g., [0, 1, 2, 4] label_convert_target: a list of integers denoting output labels, e.g.,[0, 1, 2, 3] outputs: out_volume: the output nd volume with label set label_convert_target """ mask_volume = np.zeros_like(in_volume) convert_volume = np.zeros_like(in_volume) for i in range(len(label_convert_source)): source_lab = label_convert_source[i] target_lab = label_convert_target[i] if(source_lab != target_lab): temp_source = np.asarray(in_volume == source_lab) temp_target = target_lab * temp_source mask_volume = mask_volume + temp_source convert_volume = convert_volume + temp_target out_volume = in_volume * 1 out_volume[mask_volume>0] = convert_volume[mask_volume>0] return out_volume def set_roi_to_volume(volume, center, sub_volume): """ set the content of an roi of a 3d/4d volume to a sub volume inputs: volume: the input 3D/4D volume center: the center of the roi sub_volume: the content of sub volume outputs: output_volume: the output 3D/4D volume """ volume_shape = volume.shape patch_shape = sub_volume.shape output_volume = volume for i in range(len(center)): if(center[i] >= volume_shape[i]): return output_volume r0max = [int(x/2) for x in patch_shape] r1max = [patch_shape[i] - r0max[i] for i in range(len(r0max))] r0 = [min(r0max[i], center[i]) for i in range(len(r0max))] r1 = [min(r1max[i], volume_shape[i] - center[i]) for i in range(len(r0max))] patch_center = r0max if(len(center) == 3): output_volume[np.ix_(range(center[0] - r0[0], center[0] + r1[0]), range(center[1] - r0[1], center[1] + r1[1]), range(center[2] - r0[2], center[2] + r1[2]))] = \ sub_volume[np.ix_(range(patch_center[0] - r0[0], patch_center[0] + r1[0]), range(patch_center[1] - r0[1], patch_center[1] + r1[1]), range(patch_center[2] - r0[2], patch_center[2] + r1[2]))] elif(len(center) == 4): output_volume[np.ix_(range(center[0] - r0[0], center[0] + r1[0]), range(center[1] - r0[1], center[1] + r1[1]), range(center[2] - r0[2], center[2] + r1[2]), range(center[3] - r0[3], center[3] + r1[3]))] = \ sub_volume[np.ix_(range(patch_center[0] - r0[0], patch_center[0] + r1[0]), range(patch_center[1] - r0[1], patch_center[1] + r1[1]), range(patch_center[2] - r0[2], patch_center[2] + r1[2]), range(patch_center[3] - r0[3], patch_center[3] + r1[3]))] else: raise ValueError("array dimension should be 3 or 4") return output_volume def binary_dice3d(s,g): """ dice score of 3d binary volumes inputs: s: segmentation volume g: ground truth volume outputs: dice: the dice score """ assert(len(s.shape)==3) [Ds, Hs, Ws] = s.shape [Dg, Hg, Wg] = g.shape assert(Ds==Dg and Hs==Hg and Ws==Wg) prod = np.multiply(s, g) s0 = prod.sum() s1 = s.sum() s2 = g.sum() dice = (2.0*s0 + 1e-10)/(s1 + s2 + 1e-10) return dice def load_nifty_volume_as_array(filename, with_header = False): """ load nifty image into numpy array, and transpose it based on the [z,y,x] axis order The output array shape is like [Depth, Height, Width] inputs: filename: the input file name, should be *.nii or *.nii.gz with_header: return affine and hearder infomation outputs: data: a numpy data array """ img = nibabel.load(filename) data = img.get_data() data = np.transpose(data, [2,1,0]) if(with_header): return data, img.affine, img.header else: return data def get_none_zero_region(im, margin): """ get the bounding box of the non-zero region of an ND volume """ input_shape = im.shape if(type(margin) is int ): margin = [margin]*len(input_shape) assert(len(input_shape) == len(margin)) indxes = np.nonzero(im) idx_min = [] idx_max = [] for i in range(len(input_shape)): idx_min.append(indxes[i].min()) idx_max.append(indxes[i].max()) for i in range(len(input_shape)): idx_min[i] = max(idx_min[i] - margin[i], 0) idx_max[i] = min(idx_max[i] + margin[i], input_shape[i] - 1) return idx_min, idx_max def itensity_normalize_one_volume(volume): """ normalize the itensity of an nd volume based on the mean and std of nonzeor region inputs: volume: the input nd volume outputs: out: the normalized nd volume """ pixels = volume[volume > 0] mean = pixels.mean() std = pixels.std() out = (volume - mean)/std # random normal too slow #out_random = np.random.normal(0, 1, size = volume.shape) out_random = np.zeros(volume.shape) out[volume == 0] = out_random[volume == 0] return out def itensity_rescaling_one_volume(volume): """ Rescaling the itensity of an nd volume based on max and min value inputs: volume: the input nd volume outputs: out: the normalized nd volume """ out = (volume + 100) / 340 return out def crop_ND_volume_with_bounding_box(volume, min_idx, max_idx): """ crop/extract a subregion form an nd image. """ dim = len(volume.shape) assert(dim >= 2 and dim <= 5) if(dim == 2): output = volume[np.ix_(range(min_idx[0], max_idx[0] + 1), range(min_idx[1], max_idx[1] + 1))] elif(dim == 3): output = volume[np.ix_(range(min_idx[0], max_idx[0] + 1), range(min_idx[1], max_idx[1] + 1), range(min_idx[2], max_idx[2] + 1))] elif(dim == 4): output = volume[np.ix_(range(min_idx[0], max_idx[0] + 1), range(min_idx[1], max_idx[1] + 1), range(min_idx[2], max_idx[2] + 1), range(min_idx[3], max_idx[3] + 1))] elif(dim == 5): output = volume[np.ix_(range(min_idx[0], max_idx[0] + 1), range(min_idx[1], max_idx[1] + 1), range(min_idx[2], max_idx[2] + 1), range(min_idx[3], max_idx[3] + 1), range(min_idx[4], max_idx[4] + 1))] else: raise ValueError("the dimension number shoud be 2 to 5") return output def get_random_roi_sampling_center(input_shape, output_shape, sample_mode='full', bounding_box = None): """ get a random coordinate representing the center of a roi for sampling inputs: input_shape: the shape of sampled volume output_shape: the desired roi shape sample_mode: 'valid': the entire roi should be inside the input volume 'full': only the roi centre should be inside the input volume bounding_box: the bounding box which the roi center should be limited to outputs: center: the output center coordinate of a roi """ center = [] for i in range(len(input_shape)): if(sample_mode[i] == 'full'): if(bounding_box): x0 = bounding_box[i*2]; x1 = bounding_box[i*2 + 1] else: x0 = 0; x1 = input_shape[i] else: if(bounding_box): x0 = bounding_box[i*2] + int(output_shape[i]/2) x1 = bounding_box[i*2+1] - int(output_shape[i]/2) else: x0 = int(output_shape[i]/2) x1 = input_shape[i] - x0 if(x1 <= x0): centeri = int((x0 + x1)/2) else: centeri = random.randint(x0, x1) center.append(centeri) return center def extract_roi_from_volume(volume, in_center, output_shape, fill = 'random'): """ extract a roi from a 3d volume inputs: volume: the input 3D volume in_center: the center of the roi output_shape: the size of the roi fill: 'random' or 'zero', the mode to fill roi region where is outside of the input volume outputs: output: the roi volume """ input_shape = volume.shape if(fill == 'random'): #output = np.random.normal(0, 1, size = output_shape) output = np.random.random_sample(size = output_shape) else: output =
np.zeros(output_shape)
numpy.zeros
import ctypes from ctypes import c_int, c_uint8, c_uint16, c_uint32, c_int32, c_float, c_char_p, c_void_p, c_long, windll, CDLL, POINTER import os import numpy as np import time import logging # add logger, to allow logging to Labber's instrument log log = logging.getLogger('AlazarTech') # define constants ADMA_NPT = 0x200 ADMA_EXTERNAL_STARTCAPTURE = 0x1 sample_rate_id = { '1 kS/s': 0x01, '10 kS/s': 0x08, '20 kS/s': 0x0A, '50 kS/s': 0x0C, '100 kS/s': 0x0E, '200 kS/s': 0x10, '500 kS/s': 0x12, '1 MS/s': 0x14, '2 MS/s': 0x18, '5 MS/s': 0x1A, '10 MS/s': 0x1C, '20 MS/s': 0x1E, '50 MS/s': 0x22, '100 MS/s': 0x24, '125 MS/s': 0x25, } try: # For Python 3 sample_rate = {v: int(float(k.replace(" kS/s", "E3").replace(" MS/s", "E6"))) for k, v in sample_rate_id.items()} except: # For Python 2 sample_rate = dict((v, int(float(k.replace(" kS/s", "E3").replace(" MS/s", "E6")))) for k, v in sample_rate_id.iteritems()) input_range = { '20 mV': 1, '40 mV': 2, '50 mV': 3, '80 mV': 4, '100 mV': 5, '200 mV': 6, '400 mV': 7, '500 mV': 8, '800 mV': 9, '1 V': 10, '2 V': 11, '4 V': 12, '5 V': 13, '8 V': 14, '10 V': 15, } class DMABuffer: """"Buffer for DMA""" def __init__(self, c_sample_type, size_bytes): self.size_bytes = size_bytes npSampleType = { c_uint8: np.uint8, c_uint16: np.uint16, c_uint32: np.uint32, c_int32: np.int32, c_float: np.float32 }.get(c_sample_type, 0) bytes_per_sample = { c_uint8: 1, c_uint16: 2, c_uint32: 4, c_int32: 4, c_float: 4 }.get(c_sample_type, 0) self.addr = None if os.name == 'nt': MEM_COMMIT = 0x1000 PAGE_READWRITE = 0x4 windll.kernel32.VirtualAlloc.argtypes = [c_void_p, c_long, c_long, c_long] windll.kernel32.VirtualAlloc.restype = c_void_p self.addr = windll.kernel32.VirtualAlloc( 0, c_long(size_bytes), MEM_COMMIT, PAGE_READWRITE) elif os.name == 'posix': libc = CDLL("libc.so.6") libc.valloc.argtypes = [c_long] libc.valloc.restype = c_void_p self.addr = libc.valloc(size_bytes) else: raise Exception("Unsupported OS") ctypes_array = (c_sample_type * (size_bytes // bytes_per_sample)).from_address(self.addr) self.buffer = np.frombuffer(ctypes_array, dtype=npSampleType) self.ctypes_buffer = ctypes_array pointer, read_only_flag = self.buffer.__array_interface__['data'] def __exit__(self): if os.name == 'nt': MEM_RELEASE = 0x8000 windll.kernel32.VirtualFree.argtypes = [c_void_p, c_long, c_long] windll.kernel32.VirtualFree.restype = c_int windll.kernel32.VirtualFree(c_void_p(self.addr), 0, MEM_RELEASE) elif os.name == 'posix': libc = CDLL("libc.so.6") libc.free(self.addr) else: raise Exception("Unsupported OS") # error type returned by this class class Error(Exception): pass class TimeoutError(Error): pass class Digitizer(): """Represent the Alazartech digitizer, redefines the dll functions in python""" _success = 512 _error_codes = { 513: 'ApiFailed', 514: 'ApiAccessDenied', 515: 'ApiDmaChannelUnavailable', 516: 'ApiDmaChannelInvalid', 517: 'ApiDmaChannelTypeError', 518: 'ApiDmaInProgress', 519: 'ApiDmaDone', 520: 'ApiDmaPaused', 521: 'ApiDmaNotPaused', 522: 'ApiDmaCommandInvalid', 523: 'ApiDmaManReady', 524: 'ApiDmaManNotReady', 525: 'ApiDmaInvalidChannelPriority', 526: 'ApiDmaManCorrupted', 527: 'ApiDmaInvalidElementIndex', 528: 'ApiDmaNoMoreElements', 529: 'ApiDmaSglInvalid', 530: 'ApiDmaSglQueueFull', 531: 'ApiNullParam', 532: 'ApiInvalidBusIndex', 533: 'ApiUnsupportedFunction', 534: 'ApiInvalidPciSpace', 535: 'ApiInvalidIopSpace', 536: 'ApiInvalidSize', 537: 'ApiInvalidAddress', 538: 'ApiInvalidAccessType', 539: 'ApiInvalidIndex', 540: 'ApiMuNotReady', 541: 'ApiMuFifoEmpty', 542: 'ApiMuFifoFull', 543: 'ApiInvalidRegister', 544: 'ApiDoorbellClearFailed', 545: 'ApiInvalidUserPin', 546: 'ApiInvalidUserState', 547: 'ApiEepromNotPresent', 548: 'ApiEepromTypeNotSupported', 549: 'ApiEepromBlank', 550: 'ApiConfigAccessFailed', 551: 'ApiInvalidDeviceInfo', 552: 'ApiNoActiveDriver', 553: 'ApiInsufficientResources', 554: 'ApiObjectAlreadyAllocated', 555: 'ApiAlreadyInitialized', 556: 'ApiNotInitialized', 557: 'ApiBadConfigRegEndianMode', 558: 'ApiInvalidPowerState', 559: 'ApiPowerDown', 560: 'ApiFlybyNotSupported', 561: 'ApiNotSupportThisChannel', 562: 'ApiNoAction', 563: 'ApiHSNotSupported', 564: 'ApiVPDNotSupported', 565: 'ApiVpdNotEnabled', 566: 'ApiNoMoreCap', 567: 'ApiInvalidOffset', 568: 'ApiBadPinDirection', 569: 'ApiPciTimeout', 570: 'ApiDmaChannelClosed', 571: 'ApiDmaChannelError', 572: 'ApiInvalidHandle', 573: 'ApiBufferNotReady', 574: 'ApiInvalidData', 575: 'ApiDoNothing', 576: 'ApiDmaSglBuildFailed', 577: 'ApiPMNotSupported', 578: 'ApiInvalidDriverVersion', 579: ('ApiWaitTimeout: operation did not finish during ' 'timeout interval. Check your trigger.'), 580: 'ApiWaitCanceled', 581: 'ApiBufferTooSmall', 582: ('ApiBufferOverflow:rate of acquiring data > rate of ' 'transferring data to local memory. Try reducing sample rate, ' 'reducing number of enabled channels, increasing size of each ' 'DMA buffer or increase number of DMA buffers.'), 583: 'ApiInvalidBuffer', 584: 'ApiInvalidRecordsPerBuffer', 585: ('ApiDmaPending:Async I/O operation was successfully started, ' 'it will be completed when sufficient trigger events are ' 'supplied to fill the buffer.'), 586: ('ApiLockAndProbePagesFailed:Driver or operating system was ' 'unable to prepare the specified buffer for DMA transfer. ' 'Try reducing buffer size or total number of buffers.'), 587: 'ApiWaitAbandoned', 588: 'ApiWaitFailed', 589: ('ApiTransferComplete:This buffer is last in the current ' 'acquisition.'), 590: 'ApiPllNotLocked:hardware error, contact AlazarTech', 591: ('ApiNotSupportedInDualChannelMode:Requested number of samples ' 'per channel is too large to fit in on-board memory. Try ' 'reducing number of samples per channel, or switch to ' 'single channel mode.') } _board_names = { 1: 'ATS850', 2: 'ATS310', 3: 'ATS330', 4: 'ATS855', 5: 'ATS315', 6: 'ATS335', 7: 'ATS460', 8: 'ATS860', 9: 'ATS660', 10: 'ATS665', 11: 'ATS9462', 12: 'ATS9434', 13: 'ATS9870', 14: 'ATS9350', 15: 'ATS9325', 16: 'ATS9440', 17: 'ATS9410', 18: 'ATS9351', 19: 'ATS9310', 20: 'ATS9461', 21: 'ATS9850', 22: 'ATS9625', 23: 'ATG6500', 24: 'ATS9626', 25: 'ATS9360', 26: 'AXI9870', 27: 'ATS9370', 28: 'ATU7825', 29: 'ATS9373', 30: 'ATS9416' } def __init__(self, systemId=1, boardId=1, timeout=10.0): """The init case defines a session ID, used to identify the instrument""" # range settings; default value of 400mV for 9373; # will be overwritten if model is 9870 and AlazarInputControl called self.input_range = {1: 0.4, 2: 0.4} self.buffers = [] self.timeout = timeout # create a session id try: self._ATS_dll = ctypes.cdll.LoadLibrary('ATSApi') except: # if failure, try to open in driver folder sPath = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'atsapi') self._ATS_dll = ctypes.CDLL(os.path.join(sPath, 'ATSApi')) self._handle = self._ATS_dll.AlazarGetBoardBySystemID(systemId, boardId) if not self._handle: raise Exception('AlazarTech_ATS not found at system {}, board {}'.format(systemId, boardId)) # func = getattr(self._ATS_dll, 'AlazarNumOfSystems') # func.restype = c_uint32 # func = getattr(self._ATS_dll, 'AlazarGetBoardBySystemID') # func.restype = c_void_p # handle = func(c_uint32(systemId), c_uint32(boardId)) if self._handle is None: raise Error('Device with system ID=%d and board ID=%d could not be found.' % (systemId, boardId)) # get mem and bitsize (self.memorySize_samples, self.bitsPerSample) = self.get_channel_info(self._handle) def find_boards(cls, dll_path=None): """ Find Alazar boards connected Args: dll_path: (string) path of the Alazar driver dll Returns: list: list of board info for each connected board """ system_count = cls._ATS_dll.AlazarNumOfSystems() boards = [] for system_id in range(1, system_count + 1): board_count = cls._ATS_dll.AlazarBoardsInSystemBySystemID(system_id) for board_id in range(1, board_count + 1): boards.append(cls.get_board_info(cls._ATS_dll, system_id, board_id)) return boards def get_board_info(self, system_id, board_id): """ Get the information from a connected Alazar board Args: dll (string): path of the Alazar driver dll system_id: id of the Alazar system board_id: id of the board within the alazar system Return: Dictionary containing - system_id - board_id - board_kind (as string) - max_samples - bits_per_sample """ # make a temporary instrument for this board, to make it easier # to get its info board_kind = self._board_names[self._ATS_dll.AlazarGetBoardKind(self._handle)] max_s, bps = self.get_channel_info(self._handle) return { 'system_id': system_id, 'board_id': board_id, 'board_kind': board_kind, 'max_samples': max_s, 'bits_per_sample': bps } def get_channel_info(self, handle): memorySize = np.array([0], dtype=np.uint32) # memorySize memory size in samples bitsPerSample = np.array([0], dtype=np.uint8) # bitsPerSample bits per sample memorySize_ptr = memorySize.ctypes.data_as(POINTER(c_uint32)) bitsPerSample_ptr = bitsPerSample.ctypes.data_as(POINTER(c_uint8)) # self._ATS_dll.AlazarGetChannelInfo(handle, memorySize.ctypes.data, bitsPerSample.ctypes.data) self._ATS_dll.AlazarGetChannelInfo(handle, memorySize_ptr, bitsPerSample_ptr) return memorySize[0], bitsPerSample[0] def testLED(self): import time self._call_dll('AlazarSetLED', self._handle, c_uint32(1)) time.sleep(0.1) self._call_dll('AlazarSetLED', self._handle, c_uint32(0)) def _call_dll(self, func_name, *args): """General function caller with restype=status, also checks for errors""" # get function from DLL args_out = [] for arg in args: args_out.append(arg) func = getattr(self._ATS_dll, func_name) return_code = func(*args_out) # check for errors if (return_code != self._success) and (return_code != 518): # TODO(damazter) (C) log error argrepr = repr(args_out) if len(argrepr) > 100: argrepr = argrepr[:96] + '...]' if return_code not in self._error_codes: raise RuntimeError( 'unknown error {} from function {} with args: {}'.format( return_code, func_name, argrepr)) raise RuntimeError( 'error {}: {} from function {} with args: {}'.format( return_code, self._error_codes[return_code], func_name, argrepr)) def getError(self, status): """Convert the error in status to a string""" func = getattr(self._ATS_dll, 'AlazarErrorToText') func.restype = c_char_p # const char* AlazarErrorToText(RETURN_CODE retCode) errorText = func(c_int(status)) return str(errorText) def AlazarGetChannelInfo(self): """Get the on-board memory in samples per channel and sample size in bits per sample""" memorySize_samples = c_uint32(0) bitsPerSample = c_uint8(0) self._call_dll('AlazarGetChannelInfo', self._handle) return (int(memorySize_samples.value), int(bitsPerSample.value)) def AlazarSetCaptureClock(self, SourceId, SampleRateId, EdgeId=0, Decimation=0): # sample_rate: {0x01: 1e3, 0x08: 10e3, 0x0A: 20e3, 0x0C: 50e3, 0x0E: 100e3, 0x10: 200e3, 0x12: 500e3, 0x14: 1e6, 0x18: 2e6, 0x1A: 5e6, 0x1C: 10e6, 0x1E: 20e6, 0x22: 50e6, 0x24: 100e6, 0x25: 125e6} self.sample_rate = sample_rate[SampleRateId] self._call_dll('AlazarSetCaptureClock', self._handle, c_uint32(SourceId), c_uint32(SampleRateId), c_uint32(EdgeId), c_uint32(Decimation)) def AlazarInputControl(self, Channel, Coupling, InputRange, Impedance): # keep track of input range dConv = {15: 10.0, 14: 8.0, 13: 5.0, 12: 4.0, 11: 2.0, 10: 1.0, 9: 0.8, 8: 0.5, 7: 0.4, 6: 0.2, 5: 0.1, 4: 0.08, 3: 0.05, 2: 0.04, 1: 0.02} self.input_range[Channel] = dConv[InputRange] self._call_dll('AlazarInputControl', self._handle, c_uint8(Channel), c_uint32(Coupling), c_uint32(InputRange), c_uint32(Impedance)) def AlazarSetBWLimit(self, Channel, enable): self._call_dll('AlazarSetBWLimit', self._handle, c_uint32(Channel), c_uint32(enable)) def AlazarSetParameter(self, Channel, parameter, value): self._call_dll('AlazarSetParameter', self._handle, c_uint8(Channel), c_uint32(parameter), c_long(value)) def AlazarSetParameterUL(self, Channel, parameter, value): self._call_dll('AlazarSetParameter', self._handle, c_uint8(Channel), c_uint32(parameter), c_uint32(value)) def AlazarGetParameter(self, Channel, parameter): value = c_long(0) self._call_dll('AlazarSetParameter', self._handle, c_uint8(Channel), c_uint32(parameter), c_uint32(value)) return value.value def AlazarSetTriggerOperation(self, TriggerOperation=0, TriggerEngine1=0, Source1=0, Slope1=1, Level1=128, TriggerEngine2=1, Source2=3, Slope2=1, Level2=128): """Configure the trigger engines of a board to use an external trigger inputand, optionally, synchronize the start of an acquisition with the next external trigger event after AlazarStartCaptureis called Slope: 1: Positive slope 2: Nevative slope Level: Specify a trigger level code representing the trigger level in volts that an external trigger signal connected must pass through to generate a trigger event. """ self._call_dll('AlazarSetTriggerOperation', self._handle, c_uint32(TriggerOperation), c_uint32(TriggerEngine1), c_uint32(Source1), c_uint32(Slope1), c_uint32(Level1), c_uint32(TriggerEngine2), c_uint32(Source2), c_uint32(Slope2), c_uint32(Level2)) def AlazarSetExternalTrigger(self, Coupling, Range=0): self._call_dll('AlazarSetExternalTrigger', self._handle, c_uint32(Coupling), c_uint32(Range)) def AlazarSetTriggerDelay(self, Delay=0): self._call_dll('AlazarSetTriggerDelay', self._handle, c_uint32(Delay)) def AlazarSetTriggerTimeOut(self, time=0.0): tick = c_uint32(int(time * 1E5)) self._call_dll('AlazarSetTriggerTimeOut', self._handle, tick) def AlazarSetRecordSize(self, PreSize, PostSize): self.nPreSize = int(PreSize) self.nPostSize = int(PostSize) self._call_dll('AlazarSetRecordSize', self._handle, c_uint32(PreSize), c_uint32(PostSize)) def AlazarSetRecordCount(self, Count): self.nRecord = int(Count) self._call_dll('AlazarSetRecordCount', self._handle, c_uint32(Count)) def AlazarStartCapture(self): self._call_dll('AlazarStartCapture', self._handle) def AlazarAbortCapture(self): self._call_dll('AlazarAbortCapture', self._handle) # c_uint32 AlazarBusy( HANDLE h); def AlazarBusy(self): # get function from DLL func = getattr(self._ATS_dll, 'AlazarBusy') func.restype = c_uint32 # call function, return result return bool(func(self._handle)) def AlazarRead(self, Channel, buffer, ElementSize, Record, TransferOffset, TransferLength): self._call_dll('AlazarRead', self._handle, c_uint32(Channel), buffer, c_int(ElementSize), c_long(Record), c_long(TransferOffset), c_uint32(TransferLength)) def AlazarBeforeAsyncRead(self, channels, transferOffset, samplesPerRecord, recordsPerBuffer, recordsPerAcquisition, flags): """Prepares the board for an asynchronous acquisition.""" self._call_dll('AlazarBeforeAsyncRead', self._handle, channels, transferOffset, samplesPerRecord, recordsPerBuffer, recordsPerAcquisition, flags) def AlazarAbortAsyncRead(self): """Cancels any asynchronous acquisition running on a board.""" self._call_dll('AlazarAbortAsyncRead', self._handle) def AlazarPostAsyncBuffer(self, buffer, bufferLength): """Posts a DMA buffer to a board.""" self._call_dll('AlazarPostAsyncBuffer', self._handle, buffer, bufferLength) def AlazarWaitAsyncBufferComplete(self, buffer, timeout_ms): """Blocks until the board confirms that buffer is filled with data.""" self._call_dll('AlazarWaitAsyncBufferComplete', self._handle, buffer, timeout_ms) def readTracesDMA(self, bGetCh1, bGetCh2, nSamples, nRecord, nBuffer, nAverage=1, bConfig=True, bArm=True, bMeasure=True, funcStop=None, funcProgress=None, timeout=None, bufferSize=512, firstTimeout=None, maxBuffers=1024): """read traces in NPT AutoDMA mode, convert to float, average to single trace""" t0 = time.clock() lT = [] # use global timeout if not given timeout = self.timeout if timeout is None else timeout # first timeout can be different in case of slow initial arming firstTimeout = timeout if firstTimeout is None else firstTimeout # Select the number of pre-trigger samples...not supported in NPT, keeping for consistency preTriggerSamplesValue = 0 # change alignment to be 128 if preTriggerSamplesValue > 0: preTriggerSamples = int(np.ceil(preTriggerSamplesValue / 128.) * 128) else: preTriggerSamples = 0 # Select the number of samples per record. postTriggerSamplesValue = nSamples # change alignment to be 128 postTriggerSamples = int(np.ceil(postTriggerSamplesValue / 128.) * 128) samplesPerRecordValue = preTriggerSamplesValue + postTriggerSamplesValue # Select the number of records per DMA buffer. nRecordTotal = nRecord * nAverage if nRecord > 1: # if multiple records wanted, set records per buffer to match recordsPerBuffer = nRecord else: # else, use 100 records per buffers recordsPerBuffer = nBuffer buffersPerAcquisition = int(np.ceil(nRecordTotal / float(recordsPerBuffer))) if nRecordTotal < recordsPerBuffer: recordsPerBuffer = nRecordTotal # Select the active channels. Channel1 = 1 if bGetCh1 else 0 Channel2 = 2 if bGetCh2 else 0 channels = Channel1 | Channel2 channelCount = 0 for n in range(16): c = int(2**n) channelCount += (c & channels == c) # return directly if no active channels if channelCount == 0: return [np.array([], dtype=float), np.array([], dtype=float)] # Compute the number of bytes per record and per buffer bytesPerSample = (self.bitsPerSample + 7) // 8 samplesPerRecord = preTriggerSamples + postTriggerSamples bytesPerRecord = bytesPerSample * samplesPerRecord bytesPerBuffer = bytesPerRecord * recordsPerBuffer * channelCount # force buffer size to be integer of 256 * 16 = 4096, not sure why bytesPerBufferMem = int(4096 * np.ceil(bytesPerBuffer / 4096.)) recordsPerAcquisition = recordsPerBuffer * buffersPerAcquisition # TODO: Select number of DMA buffers to allocate MEM_SIZE = int(bufferSize * 1024 * 1024) # force buffer count to be even number, seems faster for allocating maxBufferCount = int(MEM_SIZE // (2 * bytesPerBufferMem)) bufferCount = max(1, 2 * maxBufferCount) # don't allocate more buffers than needed for all data bufferCount = min(bufferCount, buffersPerAcquisition, maxBuffers) lT.append('Total buffers needed: %d' % buffersPerAcquisition) lT.append('Buffer count: %d' % bufferCount) lT.append('Buffer size: %d' % bytesPerBuffer) lT.append('Buffer size, memory: %d' % bytesPerBufferMem) lT.append('Records per buffer: %d' % recordsPerBuffer) # configure board, if wanted if bConfig: self.AlazarSetRecordSize(preTriggerSamples, postTriggerSamples) self.AlazarSetRecordCount(recordsPerAcquisition) # Allocate DMA buffers sample_type = ctypes.c_uint8 if bytesPerSample > 1: sample_type = ctypes.c_uint16 # clear old buffers self.removeBuffersDMA() # create new buffers self.buffers = [] for i in range(bufferCount): self.buffers.append(DMABuffer(sample_type, bytesPerBufferMem)) # arm and start capture, if wanted if bArm: # Configure the board to make a Traditional AutoDMA acquisition self.AlazarBeforeAsyncRead(channels, -preTriggerSamples, samplesPerRecord, recordsPerBuffer, recordsPerAcquisition, ADMA_EXTERNAL_STARTCAPTURE | ADMA_NPT) # Post DMA buffers to board for buf in self.buffers: self.AlazarPostAsyncBuffer(buf.addr, buf.size_bytes) try: self.AlazarStartCapture() except: # make sure buffers release memory if failed self.removeBuffersDMA() raise # if not waiting for result, return here if not bMeasure: return lT.append('Post: %.1f ms' % ((time.clock() - t0) * 1000)) try: lT.append('Start: %.1f ms' % ((time.clock() - t0) * 1000)) buffersCompleted = 0 bytesTransferred = 0 # initialize data array nPtsOut = samplesPerRecord * nRecord nAvPerBuffer = recordsPerBuffer / nRecord vData = [np.zeros(nPtsOut, dtype=float), np.zeros(nPtsOut, dtype=float)] # range and zero for conversion to voltages codeZero = 2 ** (float(self.bitsPerSample) - 1) - 0.5 codeRange = 2 ** (float(self.bitsPerSample) - 1) - 0.5 # range and zero for each channel, combined with bit shifting range1 = self.input_range[1] / codeRange / 16. range2 = self.input_range[2] / codeRange / 16. offset = 16. * codeZero timeout_ms = int(firstTimeout * 1000) log.info(str(lT)) lT = [] while (buffersCompleted < buffersPerAcquisition): # Wait for the buffer at the head of the list of available # buffers to be filled by the board. buf = self.buffers[buffersCompleted % len(self.buffers)] self.AlazarWaitAsyncBufferComplete(buf.addr, timeout_ms=timeout_ms) # lT.append('Wait: %.1f ms' % ((time.clock() - t0) * 1000)) # reset timeout time, can be different than first call timeout_ms = int(timeout * 1000) buffersCompleted += 1 bytesTransferred += buf.size_bytes # break if stopped from outside if funcStop is not None and funcStop(): break # report progress if funcProgress is not None: funcProgress(float(buffersCompleted) / float(buffersPerAcquisition)) # remove extra elements for getting even 256*16 buffer sizes if bytesPerBuffer == bytesPerBufferMem: buf_truncated = buf.buffer else: buf_truncated = buf.buffer[:(bytesPerBuffer // bytesPerSample)] # reshape, sort and average data if nAverage > 1: if channels == 1: rs = buf_truncated.reshape((nAvPerBuffer, nPtsOut)) vData[0] += range1 * (np.mean(rs, 0) - offset) elif channels == 2: rs = buf_truncated.reshape((nAvPerBuffer, nPtsOut)) vData[1] += range2 * (
np.mean(rs, 0)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Aug 7 11:13:37 2019 @author: aasl """ import numpy as np import matplotlib.pyplot as plt from scipy import signal from sklearn.cluster import DBSCAN from scipy.io.matlab import loadmat from os.path import dirname, join refractory_period = 54 def mode(vec): return np.argmax(np.bincount(vec)) def filter_output_fir(detect, prediction): ##Filtering Stage 1 Ladj = len(detect) start_sz = np.int32(np.round(100*np.sum(detect)/Ladj)) # start_sz = 8 remainder = start_sz % 2 if remainder == 1: filter_size = np.max([start_sz, 3]) else: filter_size = np.max([start_sz-1, 3]) b = 1/filter_size * np.ones(filter_size) fpred = signal.filtfilt(b, 1, detect) # plt.figure() # plt.stem(fpred) # plt.show() # fpred2 = fpred ** 2 thr = ((np.floor(filter_size/2) - 1) / filter_size) ** 2 detect_unpad = (fpred2 > thr) detect2 = detect_unpad # plt.figure() # plt.stem(detect2) # plt.show() #Padding for u in range(2): pad_val = np.pad(detect2, (1, 1), 'constant', constant_values=0) detect2 = np.array(pad_val[2:]) + np.array(pad_val[0:-2]) + detect2 # plt.figure() # plt.plot(detect2) # plt.show() ##Filtering Stage 2 b2 = np.array([-1, 0, 1]) detect2_filt = signal.filtfilt(b2, 1, detect2) # plt.figure() # plt.plot(detect2_filt) # plt.show() detect6 = np.array(detect2_filt == 1) detect4 = np.array(-detect2_filt == 1) detect5 = np.pad(detect4, (1, 1), 'constant', constant_values=0) detect7 = np.array(detect5[0:-2]) & detect6 detect8 = np.array(detect5[2:]) & detect6 detect3 = detect7 | detect8 positions = np.array(np.nonzero(detect3)).squeeze() # plt.figure() este en el original # plt.plot(positions) # plt.show() return positions def filter_output_dbscan(prediction, hw_size): detect = np.array(prediction != 2, dtype='int').squeeze() detect2 = np.array(np.nonzero(detect)).squeeze() detect3 = detect2.reshape(-1, 1) db = DBSCAN(eps=10, min_samples=hw_size, metric='cityblock') clusters = db.fit_predict(detect3) top = np.max(clusters) + 1 class_out = np.zeros(top-1) pos_out =
np.zeros(top-1, dtype='int')
numpy.zeros
import os import os.path as osp import numpy as np import matplotlib.pyplot as plt from dataclasses import dataclass from typing import List from .xfoil_lib import read_polar, read_cp import pandas as pd import math import subprocess import time, platform, signal import ctypes @dataclass class xfdata: ''' Input structure into XFOIL ''' airfoil_name:str alpha_min:float alpha_max:float alpha_step:float ncrit:float Reynolds:float Mach:float num_nodes:int save_airfoil_filename:str save_polar_filename:str # save results filename root_folder:str xfoil_input:str xss: np.ndarray yss: np.ndarray xps: np.ndarray yps: np.ndarray def create_psav(xfoil_data:xfdata): """Save the airfoil in plain coordinate format for xfoil to read Args: xfoil_data (xfdata): class that contains everything needed to call xfoil """ with open(osp.join(xfoil_data.root_folder, xfoil_data.save_airfoil_filename),'w') as f: for i in range(len(xfoil_data.xss)): f.write(' {0:0.7f} {1:0.7f}\n'.format(xfoil_data.xss[i],xfoil_data.yss[i])) for i in range(len(xfoil_data.xps)): f.write(' {0:0.7f} {1:0.7f}\n'.format(xfoil_data.xps[i],xfoil_data.yps[i])) def run_xfoil(xfoil_data:xfdata,exe_path:str,return_cp=True,return_polars=True, check_convergence=True): """Runs xfoil simulation. Args: xfoil_data (xfdata): Class which represents the inputs to pass to xfoil exe_path (str): path to xfoil executable return_cp (bool, optional): Returns the cp value. Defaults to True. return_polars (bool, optional): Returns only Cl,Cd,Cdp,Cm. Defaults to True. check_convergence (bool, optional): Checks to see if xfoil simulation converged. Defaults to True. Returns: pd.dataframe or None: If simulation did not converge then None is returned otherwise a dataframe with the results is returned """ for item in os.listdir(xfoil_data.root_folder): if item.endswith(".txt") or item.endswith(".cp"): os.remove(os.path.join(xfoil_data.root_folder, item)) create_psav(xfoil_data) # Create the airfoil data def get_cp(aoa): # Get the Cp with open(osp.join(xfoil_data.root_folder,xfoil_data.xfoil_input),"w") as fid: # Add Operation fid.write('LOAD {0}\n{1}\n'.format(str(osp.join(xfoil_data.root_folder,xfoil_data.save_airfoil_filename)),xfoil_data.airfoil_name)) fid.write('PPAR\nN\n{0}\n\n\n'.format(xfoil_data.num_nodes)) fid.write('GDES\nCADD\n\n\n\n\n'.format(xfoil_data.num_nodes)) fid.write("OPER\n") fid.write('VPAR\n') fid.write('N \n{0}\n'.format(xfoil_data.ncrit)) fid.write('XTR \n{0}\n{1}\n\n'.format(1.0,1.0)) fid.write('VISC {0}\n'.format(xfoil_data.Reynolds)) fid.write('MACH {0}\n'.format(xfoil_data.Mach)) fid.write('ITER {0}\n'.format(100)) fid.write('ALFA 0.0\n') fid.write('INIT\n') fid.write('PACC \n{0}\ntemp.dump\n'.format('temp_polar.txt')) fid.write('ALFA {0}\n'.format(aoa)) fid.write("CPWR \n {0}.cp\n\n\n\n".format(osp.join(xfoil_data.root_folder,'Cp_'+ str(aoa)))) fid.write("QUIT" + "\n") os.system("timeout 0.5s {0} < {1}".format(exe_path,osp.join(xfoil_data.root_folder,xfoil_data.xfoil_input))) return osp.join(xfoil_data.root_folder,'Cp_'+str(aoa)+'.cp') def get_polars(): # Get the Polar (Cl vs angle of attack) with open(osp.join(xfoil_data.root_folder,xfoil_data.xfoil_input),"w") as fid: # Add Operation fid.write('LOAD {0}\n{1}\n'.format(str(osp.join(xfoil_data.root_folder,xfoil_data.save_airfoil_filename)),xfoil_data.save_airfoil_filename)) fid.write('PPAR\nN\n{0}\n\n\n'.format(xfoil_data.num_nodes)) fid.write('GDES\nCADD\n\n\n\n\n'.format(xfoil_data.num_nodes)) fid.write("OPER\n") fid.write('VPAR\n') fid.write('N \n{0}\n'.format(xfoil_data.ncrit)) fid.write('XTR \n{0}\n{1}\n\n'.format(1.0,1.0)) fid.write('VISC {0}\n'.format(xfoil_data.Reynolds)) fid.write('MACH {0}\n'.format(xfoil_data.Mach)) fid.write('ITER {0}\n'.format(1000)) fid.write('ASEQ\n') fid.write('{0}\n'.format(xfoil_data.alpha_min)) fid.write('{0}\n'.format(xfoil_data.alpha_max)) fid.write('{0}\n'.format(xfoil_data.alpha_step)) fid.write('INIT\n') fid.write('PACC\n{0}\ntemp.dump\n'.format(osp.join(xfoil_data.root_folder, xfoil_data.save_polar_filename))) fid.write('ASEQ \n{0}\n{1}\n{2}\n'.format(xfoil_data.alpha_min,xfoil_data.alpha_max,xfoil_data.alpha_step)) # fid.write("CPWR \n polar_temp.cp\n\n\n\n") fid.write("QUIT" + "\n") # os.system("xfoil < {0}".format(xfoil_data.xfoil_input)) os.system("timeout 1s {0} < {1}".format(exe_path,osp.join(xfoil_data.root_folder,xfoil_data.xfoil_input))) if osp.exists('temp.dump'): # delete the dump file os.remove('temp.dump') if osp.exists('temp_polar.txt'): # delete the temp polar file os.remove('temp_polar.txt') if (return_cp and return_polars): get_polars() df_polar = read_polar(osp.join(xfoil_data.root_folder,xfoil_data.save_polar_filename)) df_polar['x_cp'] = math.nan df_polar['Cp'] = math.nan df_polar['xss'] = None df_polar['yss'] = None df_polar['xps'] = None df_polar['yps'] = None df_polar=df_polar.astype(object) if (xfoil_data.alpha_min == xfoil_data.alpha_max): aoa_cp_file = get_cp(xfoil_data.alpha_min) x,cp = read_cp(aoa_cp_file) row = df_polar.index[df_polar['alpha'] == xfoil_data.alpha_min] if len(row)>0: row = row.values[0] df_polar.at[row,'xss'] = np.flip(xfoil_data.xss).tolist() df_polar.at[row,'yss'] = np.flip(xfoil_data.yss).tolist() df_polar.at[row,'xps'] = np.flip(xfoil_data.xps)[1:].tolist() # TODO: Need to double check this for other airfoils, works with test naca foil df_polar.at[row,'yps'] = np.flip(xfoil_data.yps)[1:].tolist() if (x is not None and cp is not None): df_polar.at[row,'x_cp'] = x.tolist() df_polar.at[row,'Cp'] = cp.tolist() else: aoa_list =
np.arange(xfoil_data.alpha_min, xfoil_data.alpha_max,xfoil_data.alpha_step)
numpy.arange
import argparse import pickle import numpy as np import torch from mvt.cores.metric_ops import LpDistance def parse_args(): parser = argparse.ArgumentParser(description="evaluate emdedding") parser.add_argument("reference", help="reference embedding file path") parser.add_argument("query", help="query embedding file path") args = parser.parse_args() return args def load_embedding(file_path): with open(file_path, "rb") as f: data = pickle.load(f) return data["embeddings"], data["labels"] def print_info(embeddings, labels): print("Number of samples: ", embeddings.shape[0]) print("Number of classes: ", np.unique(labels).size) def main(): args = parse_args() ref_path = args.reference qry_path = args.query ref_emb, ref_labels = load_embedding(ref_path) print("Loaded reference embeddings") print_info(ref_emb, ref_labels) qry_emb, qry_labels = load_embedding(qry_path) print("Loaded query embeddings") print_info(qry_emb, qry_labels) valid_inds = [] valid_labels =
np.unique(ref_labels)
numpy.unique
import cv2 import base as bs import numpy as np def sobel_filter(img, K_size=3, sigma=1.3): if len(img.shape) == 3: H, W, C = img.shape else: img = np.expand_dims(img, axis=-1) H, W, C = img.shape ##padding pad = K_size // 2 out_v =
np.zeros((H + pad * 2, W + pad * 2, C), dtype=np.float)
numpy.zeros
__author__ = 'saeedamen' # <NAME> # # Copyright 2016-2020 Cuemacro # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and limitations under the License. # import numpy as np import pandas as pd import pytz import datetime from datetime import timedelta from findatapy.timeseries.calendar import Calendar from findatapy.util.dataconstants import DataConstants from findatapy.util.loggermanager import LoggerManager constants = DataConstants() class Filter(object): """Functions for filtering time series by dates and columns. This class is used extensively in both findatapy and finmarketpy. Market holidays are collected from web sources such as https://www.timeanddate.com/holidays/ and also individual exchange websites, and is manually updated from time to time to take into account newly instituted holidays, and stored in conf/holidays_table.parquet - if you need to add your own holidays. """ _time_series_cache = {} # shared across all instances of object! def __init__(self): self._calendar = Calendar() def filter_time_series(self, market_data_request, data_frame, pad_columns=False): """Filters a time series given a set of criteria (like start/finish date and tickers) Parameters ---------- market_data_request : MarketDataRequest defining time series filtering data_frame : DataFrame time series to be filtered pad_columns : boolean true, non-existant columns with nan Returns ------- DataFrame """ start_date = market_data_request.start_date finish_date = market_data_request.finish_date data_frame = self.filter_time_series_by_date(start_date, finish_date, data_frame) # Filter by ticker.field combinations requested columns = self.create_tickers_fields_list(market_data_request) if (pad_columns): data_frame = self.pad_time_series_columns(columns, data_frame) else: data_frame = self.filter_time_series_by_columns(columns, data_frame) return data_frame def filter_time_series_by_holidays(self, data_frame, cal='FX', holidays_list=[]): """Removes holidays from a given time series Parameters ---------- data_frame : DataFrame data frame to be filtered cal : str business calendar to use Returns ------- DataFrame """ # Optimal case for weekdays: remove Saturday and Sunday if (cal == 'WEEKDAY' or cal == 'WKY'): return data_frame[data_frame.index.dayofweek <= 4] # Select only those holidays in the sample holidays_start = self._calendar.get_holidays(data_frame.index[0], data_frame.index[-1], cal, holidays_list=holidays_list) if (holidays_start.size == 0): return data_frame holidays_end = holidays_start + np.timedelta64(1, 'D') # floored_dates = data_frame.index.normalize() # # filter_by_index_start = floored_dates.searchsorted(holidays_start) # filter_by_index_end = floored_dates.searchsorted(holidays_end) # # indices_to_keep = [] # # if filter_by_index_end[0] == 0: # counter = filter_by_index_end[0] + 1 # start_index = 1 # else: # counter = 0 # start_index = 0 # # for i in range(start_index, len(holidays_start)): # indices = list(range(counter, filter_by_index_start[i] - 1)) # indices_to_keep = indices_to_keep + indices # # counter = filter_by_index_end[i] + 1 # # indices = list(range(counter, len(floored_dates))) # indices_to_keep = indices_to_keep + indices # # data_frame_filtered = data_frame[indices_to_keep] if data_frame.index.tz is None: holidays_start = holidays_start.tz_localize(None) holidays_end = holidays_end.tz_localize(None) data_frame_left = data_frame data_frame_filtered = [] for i in range(0, len(holidays_start)): data_frame_temp = data_frame_left[data_frame_left.index < holidays_start[i]] data_frame_left = data_frame_left[data_frame_left.index >= holidays_end[i]] data_frame_filtered.append(data_frame_temp) data_frame_filtered.append(data_frame_left) return pd.concat(data_frame_filtered) def filter_time_series_by_date(self, start_date, finish_date, data_frame): """Filter time series by start/finish dates Parameters ---------- start_date : DateTime start date of calendar finish_date : DataTime finish date of calendar data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ offset = 0 # inclusive return self.filter_time_series_by_date_offset(start_date, finish_date, data_frame, offset, exclude_start_end=False) def filter_time_series_by_days(self, days, data_frame): """Filter time series by start/finish dates Parameters ---------- start_date : DateTime start date of calendar finish_date : DataTime finish date of calendar data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ offset = 0 # inclusive finish_date = datetime.datetime.utcnow() start_date = finish_date - timedelta(days=days) return self.filter_time_series_by_date_offset(start_date, finish_date, data_frame, offset) def filter_time_series_by_date_exc(self, start_date, finish_date, data_frame): """Filter time series by start/finish dates (exclude start & finish dates) Parameters ---------- start_date : DateTime start date of calendar finish_date : DataTime finish date of calendar data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ offset = 1 # exclusive of start finish date return self.filter_time_series_by_date_offset(start_date, finish_date, data_frame, offset, exclude_start_end=True) # try: # # filter by dates for intraday data # if(start_date is not None): # data_frame = data_frame.loc[start_date <= data_frame.index] # # if(finish_date is not None): # # filter by start_date and finish_date # data_frame = data_frame.loc[data_frame.index <= finish_date] # except: # # filter by dates for daily data # if(start_date is not None): # data_frame = data_frame.loc[start_date.date() <= data_frame.index] # # if(finish_date is not None): # # filter by start_date and finish_date # data_frame = data_frame.loc[data_frame.index <= finish_date.date()] # # return data_frame def filter_time_series_by_date_offset(self, start_date, finish_date, data_frame, offset, exclude_start_end=False): """Filter time series by start/finish dates (and an offset) Parameters ---------- start_date : DateTime start date of calendar finish_date : DataTime finish date of calendar data_frame : DataFrame data frame to be filtered offset : int offset to be applied Returns ------- DataFrame """ if hasattr(data_frame.index, 'tz'): if data_frame.index.tz is not None: # If the start/finish dates are timezone naive, overwrite with the DataFrame timezone if not (isinstance(start_date, str)): start_date = start_date.replace(tzinfo=data_frame.index.tz) if not (isinstance(finish_date, str)): finish_date = finish_date.replace(tzinfo=data_frame.index.tz) else: # Otherwise remove timezone from start_date/finish_date if not (isinstance(start_date, str)): try: start_date = start_date.replace(tzinfo=None) except: pass if not (isinstance(finish_date, str)): try: finish_date = finish_date.replace(tzinfo=None) except: pass if 'int' in str(data_frame.index.dtype): return data_frame try: data_frame = self.filter_time_series_aux(start_date, finish_date, data_frame, offset) except: # start_date = start_date.date() # finish_date = finish_date.date() # if isinstance(start_date, str): # # format expected 'Jun 1 2005 01:33', '%b %d %Y %H:%M' # try: # start_date = datetime.datetime.strptime(start_date, '%b %d %Y %H:%M') # except: # i = 0 # # if isinstance(finish_date, str): # # format expected 'Jun 1 2005 01:33', '%b %d %Y %H:%M' # try: # finish_date = datetime.datetime.strptime(finish_date, '%b %d %Y %H:%M') # except: # i = 0 # try: # start_date = start_date.date() # except: pass # # try: # finish_date = finish_date.date() # except: pass # if we have dates stored as opposed to TimeStamps (ie. daily data), we use a simple (slower) method # for filtering daily data if (start_date is not None): if exclude_start_end: data_frame = data_frame.loc[start_date < data_frame.index] else: data_frame = data_frame.loc[start_date <= data_frame.index] if (finish_date is not None): if exclude_start_end: data_frame = data_frame.loc[data_frame.index < finish_date] else: # filter by start_date and finish_date data_frame = data_frame.loc[data_frame.index <= finish_date] return data_frame def filter_time_series_aux(self, start_date, finish_date, data_frame, offset): """Filter time series by start/finish dates (and an offset) Parameters ---------- start_date : DateTime start date of calendar finish_date : DataTime finish date of calendar data_frame : DataFrame data frame to be filtered offset : int (not implemented!) offset to be applied Returns ------- DataFrame """ # start_index = 0 # finish_index = len(data_frame.index) - offset # filter by dates for intraday data # if(start_date is not None): # start_index = data_frame.index.searchsorted(start_date) # # if (0 <= start_index + offset < len(data_frame.index)): # start_index = start_index + offset # # # data_frame = data_frame[start_date < data_frame.index] # # if(finish_date is not None): # finish_index = data_frame.index.searchsorted(finish_date) # # if (0 <= finish_index - offset < len(data_frame.index)): # finish_index = finish_index - offset # CAREFUL: need + 1 otherwise will only return 1 less than usual # return data_frame.iloc[start_date:finish_date] # Just use pandas, quicker and simpler code! if data_frame is None: return None # Slower method.. # return data_frame.loc[start_date:finish_date] # Much faster, start and finish dates are inclusive return data_frame[(data_frame.index >= start_date) & (data_frame.index <= finish_date)] def filter_time_series_by_time_of_day_timezone(self, hour, minute, data_frame, timezone_of_snap='UTC'): old_tz = data_frame.index.tz data_frame = data_frame.tz_convert(pytz.timezone(timezone_of_snap)) data_frame = data_frame[data_frame.index.minute == minute] data_frame = data_frame[data_frame.index.hour == hour] data_frame = data_frame.tz_convert(old_tz) return data_frame def filter_time_series_by_time_of_day(self, hour, minute, data_frame, in_tz=None, out_tz=None): """Filter time series by time of day Parameters ---------- hour : int hour of day minute : int minute of day data_frame : DataFrame data frame to be filtered in_tz : str (optional) time zone of input data frame out_tz : str (optional) time zone of output data frame Returns ------- DataFrame """ if out_tz is not None: try: if in_tz is not None: data_frame = data_frame.tz_localize(pytz.timezone(in_tz)) except: data_frame = data_frame.tz_convert(pytz.timezone(in_tz)) data_frame = data_frame.tz_convert(pytz.timezone(out_tz)) # change internal representation of time data_frame.index = pd.DatetimeIndex(data_frame.index.values) data_frame = data_frame[data_frame.index.minute == minute] data_frame = data_frame[data_frame.index.hour == hour] return data_frame def filter_time_series_by_minute_of_hour(self, minute, data_frame, in_tz=None, out_tz=None): """Filter time series by minute of hour Parameters ---------- minute : int minute of hour data_frame : DataFrame data frame to be filtered in_tz : str (optional) time zone of input data frame out_tz : str (optional) time zone of output data frame Returns ------- DataFrame """ if out_tz is not None: if in_tz is not None: data_frame = data_frame.tz_localize(pytz.timezone(in_tz)) data_frame = data_frame.tz_convert(pytz.timezone(out_tz)) # change internal representation of time data_frame.index = pd.DatetimeIndex(data_frame.index.values) data_frame = data_frame[data_frame.index.minute == minute] return data_frame def filter_time_series_between_hours(self, start_hour, finish_hour, data_frame): """Filter time series between hours of the day Parameters ---------- start_hour : int start of hour filter finish_hour : int finish of hour filter data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ data_frame = data_frame[data_frame.index.hour <= finish_hour] data_frame = data_frame[data_frame.index.hour >= start_hour] return data_frame def filter_time_series_by_columns(self, columns, data_frame): """Filter time series by certain columns Parameters ---------- columns : list(str) start of hour filter data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ if data_frame is not None and columns is not None: return data_frame[columns] return None def pad_time_series_columns(self, columns, data_frame): """Selects time series from a dataframe and if necessary creates empty columns Parameters ---------- columns : str columns to be included with this keyword data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ old_columns = data_frame.columns.tolist() common_columns = [val for val in columns if val in old_columns] uncommon_columns = [val for val in columns if val not in old_columns] uncommon_columns = [str(x) for x in uncommon_columns] data_frame = data_frame[common_columns] if len(uncommon_columns) > 0: logger = LoggerManager().getLogger(__name__) logger.info("Padding missing columns...") # " + str(uncommon_columns)) new_data_frame = pd.DataFrame(index=data_frame.index, columns=uncommon_columns) data_frame = pd.concat([data_frame, new_data_frame], axis=1) # Force new columns to float NaNs (not objects which causes problems with newer pandas versions) # or to NaT if they are date columns for u in uncommon_columns: is_date = False for c in constants.always_date_columns: if c in u: is_date = True if is_date: data_frame[u] = np.datetime64('NaT') else: data_frame[u] = np.nan # SLOW method below # for x in uncommon_columns: data_frame.loc[:,x] = np.nan # Get columns in same order again data_frame = data_frame[columns] return data_frame def filter_time_series_by_excluded_keyword(self, keyword, data_frame): """Filter time series to exclude columns which contain keyword Parameters ---------- keyword : str columns to be excluded with this keyword data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ if not (isinstance(keyword, list)): keyword = [keyword] columns = [] for k in keyword: columns.append([elem for elem in data_frame.columns if k not in elem]) columns = self._calendar.flatten_list_of_lists(columns) return self.filter_time_series_by_columns(columns, data_frame) def filter_time_series_by_included_keyword(self, keyword, data_frame): """Filter time series to include columns which contain keyword Parameters ---------- keyword : str columns to be included with this keyword data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ if not (isinstance(keyword, list)): keyword = [keyword] columns = [] for k in keyword: columns.append([elem for elem in data_frame.columns if k in elem]) columns = self._calendar.flatten_list_of_lists(columns) return self.filter_time_series_by_columns(columns, data_frame) def filter_time_series_by_minute_freq(self, freq, data_frame): """Filter time series where minutes correspond to certain minute filter Parameters ---------- freq : int minute frequency to be filtered data_frame : DataFrame data frame to be filtered Returns ------- DataFrame """ return data_frame.loc[data_frame.index.minute % freq == 0] def create_tickers_fields_list(self, market_data_request): """Creates a list of tickers concatenated with fields from a MarketDataRequest Parameters ---------- market_data_request : MarketDataRequest request to be expanded Returns ------- list(str) """ tickers = market_data_request.tickers fields = market_data_request.fields if isinstance(tickers, str): tickers = [tickers] if isinstance(fields, str): fields = [fields] tickers_fields_list = [] # Create ticker.field combination for series we wish to return for f in fields: for t in tickers: tickers_fields_list.append(t + '.' + f) return tickers_fields_list def resample_time_series(self, data_frame, freq): return data_frame.asfreq(freq, method='pad') def resample_time_series_frequency(self, data_frame, data_resample_freq, data_resample_type='mean', fill_empties=False): # Should we take the mean, first, last in our resample if data_resample_type == 'mean': data_frame_r = data_frame.resample(data_resample_freq).mean() elif data_resample_type == 'first': data_frame_r = data_frame.resample(data_resample_freq).first() elif data_resample_type == 'last': data_frame_r = data_frame.resample(data_resample_freq).last() else: # TODO implement other types return if fill_empties == True: data_frame, data_frame_r = data_frame.align(data_frame_r, join='left', axis=0) data_frame_r = data_frame_r.fillna(method='ffill') return data_frame_r def make_FX_1_min_working_days(self, data_frame): data_frame = data_frame.resample('1min').mean() data_frame = self.filter_time_series_by_holidays(data_frame, 'FX') data_frame = data_frame.fillna(method='ffill') data_frame = self.remove_out_FX_out_of_hours(data_frame) return data_frame def remove_out_FX_out_of_hours(self, data_frame): """Filtered a time series for FX hours (ie. excludes 22h GMT Fri - 19h GMT Sun and New Year's Day) Parameters ---------- data_frame : DataFrame data frame with FX prices Returns ------- list(str) """ # assume data_frame is in GMT time # remove Fri after 22:00 GMT # remove Sat # remove Sun before 19:00 GMT # Monday = 0, ..., Sunday = 6 data_frame = data_frame[~((data_frame.index.dayofweek == 4) & (data_frame.index.hour > 22))] data_frame = data_frame[~((data_frame.index.dayofweek == 5))] data_frame = data_frame[~((data_frame.index.dayofweek == 6) & (data_frame.index.hour < 19))] data_frame = data_frame[~((data_frame.index.day == 1) & (data_frame.index.month == 1))] return data_frame def remove_duplicate_indices(self, df): return df[~df.index.duplicated(keep='first')] def mask_time_series_by_time(self, df, time_list, time_zone): """ Mask a time series by time of day and time zone specified e.g. given a time series minutes data want to keep data at specific time periods every day with a considered time zone Parameters ---------- df : DateTime time series needed to be masked time_list : list of tuples deciding the time periods which we want to keep the data on each day e.g. time_list = [('01:08', '03:02'),('12:24','12:55'),('17:31','19:24')] * Note: assume no overlapping of these tuples time_zone: str e.g. 'Europe/London' Returns ------- DataFrame (which the time zone is 'UTC') """ # Change the time zone from 'UTC' to a given one df.index = df.index.tz_convert(time_zone) df_mask = pd.DataFrame(0, index=df.index, columns=['mask']) # Mask data with each given tuple for i in range(0, len(time_list)): start_hour = int(time_list[i][0].split(':')[0]) start_minute = int(time_list[i][0].split(':')[1]) end_hour = int(time_list[i][1].split(':')[0]) end_minute = int(time_list[i][1].split(':')[1]) # E.g. if tuple is ('01:08', '03:02'), # take hours in target - take values in [01:00,04:00] narray = np.where(df.index.hour.isin(range(start_hour, end_hour + 1)), 1, 0) df_mask_temp = pd.DataFrame(index=df.index, columns=df_mask.columns.tolist(), data=narray) # Remove minutes not in target - remove values in [01:00,01:07], [03:03,03:59] narray = np.where(((df.index.hour == start_hour) & (df.index.minute < start_minute)), 0, 1) df_mask_temp = df_mask_temp * pd.DataFrame(index=df.index, columns=df_mask.columns.tolist(), data=narray) narray = np.where((df.index.hour == end_hour) & (df.index.minute > end_minute), 0, 1) df_mask_temp = df_mask_temp * pd.DataFrame(index=df.index, columns=df_mask.columns.tolist(), data=narray) # Collect all the periods we want to keep the data df_mask = df_mask + df_mask_temp narray =
np.where(df_mask == 1, df, 0)
numpy.where
# -*- coding: utf-8 -*- #@Author: <NAME> #@Date: 2019-11-29 01:47:58 #@Last Modified by: <NAME> #@Last Modified time: 2019-11-29 01:47:58 import numpy as np import os import json def bbox_overlaps(bboxes1, bboxes2, mode='iou'): """Calculate the ious between each bbox of bboxes1 and bboxes2. Args: bboxes1(ndarray): shape (n, 4) bboxes2(ndarray): shape (k, 4) mode(str): iou (intersection over union) or iof (intersection over foreground) Returns: ious(ndarray): shape (n, k) """ assert mode in ['iou', 'iof'] bboxes1 = bboxes1.astype(np.float32) bboxes2 = bboxes2.astype(np.float32) rows = bboxes1.shape[0] cols = bboxes2.shape[0] ious = np.zeros((rows, cols), dtype=np.float32) if rows * cols == 0: return ious exchange = False if bboxes1.shape[0] > bboxes2.shape[0]: bboxes1, bboxes2 = bboxes2, bboxes1 ious = np.zeros((cols, rows), dtype=np.float32) exchange = True area1 = (bboxes1[:, 2] - bboxes1[:, 0] + 1) * ( bboxes1[:, 3] - bboxes1[:, 1] + 1) area2 = (bboxes2[:, 2] - bboxes2[:, 0] + 1) * ( bboxes2[:, 3] - bboxes2[:, 1] + 1) for i in range(bboxes1.shape[0]): x_start = np.maximum(bboxes1[i, 0], bboxes2[:, 0]) y_start = np.maximum(bboxes1[i, 1], bboxes2[:, 1]) x_end = np.minimum(bboxes1[i, 2], bboxes2[:, 2]) y_end = np.minimum(bboxes1[i, 3], bboxes2[:, 3]) overlap = np.maximum(x_end - x_start + 1, 0) * np.maximum( y_end - y_start + 1, 0) if mode == 'iou': union = area1[i] + area2 - overlap else: union = area1[i] if not exchange else area2 ious[i, :] = overlap / union if exchange: ious = ious.T return ious data_path='/backdata01/KITTI/kitti/tracking' with open(os.path.join(data_path,'kitti_train.json'),'r',encoding='utf-8') as f: data=json.load(f) occlusion=[] partial_occlusion=[] for i in data: boxt=np.array(i['ann']['bboxes']) if len(boxt)==0: continue iou=bbox_overlaps(boxt,boxt) check=
np.sum(iou,axis=0)
numpy.sum
import sys import numba as nb import numpy as np try: from numba.experimental import jitclass except ImportError: from numba import jitclass @jitclass( [ ("__data", nb.int64[:]), ] ) class UnionFind: def __init__(self, n: int) -> None: self.__data =
np.full(n, -1, np.int64)
numpy.full
""" Tests for the correlation function calculations. """ import numpy as np from numpy.testing import ( run_module_suite, assert_, assert_array_almost_equal, assert_raises, ) from matsubara.correlation import ( sum_of_exponentials, biexp_fit, bath_correlation, underdamped_brownian, nonmatsubara_exponents, matsubara_exponents, matsubara_zero_analytical, coth, spectrum, spectrum_matsubara, spectrum_non_matsubara, _S, _A, ) def test_sum_of_exponentials(): """ correlation: Test the sum of exponentials. """ tlist = [0.0, 0.5, 1.0, 1.5, 2.0] # Complex coefficients and frequencies. ck1 = [0.5 + 2j, -0.1] vk1 = [-0.5 + 3j, 1 - 1j] corr1 = sum_of_exponentials(ck1, vk1, tlist) y1 = np.array( [ 0.4 + 2.0j, -1.67084356 + 0.57764922j, -0.61828702 - 0.92938927j, 0.84201641 + 0.0170242j, 0.68968912 + 1.32694318j, ] ) assert_array_almost_equal(corr1, y1) # Real coefficients and frequencies. ck2 = [0.5, -0.3] vk2 = [-0.9, -0.3] corr2 = sum_of_exponentials(ck2, vk2, tlist) y2 = np.array([0.2, 0.060602, -0.018961, -0.061668, -0.081994]) assert_array_almost_equal(corr2, y2) def test_biexp_fit(): """ correlation: Tests biexponential fitting. """ tlist = np.linspace(0.0, 10, 100) ck = [-0.21, -0.13] vk = [-0.4, -1.5] corr = sum_of_exponentials(ck, vk, tlist) ck_fit, vk_fit = biexp_fit(tlist, corr) corr_fit = sum_of_exponentials(ck_fit, vk_fit, tlist) max_error = np.max(np.abs(corr - corr_fit)) max_amplitude = np.max(
np.abs(corr)
numpy.abs
"""Rangeland Production Model.""" import os import logging import tempfile import shutil from builtins import range import re import math import pickle import numpy import pandas from osgeo import ogr from osgeo import osr from osgeo import gdal import pygeoprocessing from rangeland_production import utils from rangeland_production import validation LOGGER = logging.getLogger('rangeland_production.forage') # we only have these types of soils SOIL_TYPE_LIST = ['clay', 'silt', 'sand'] # temporary directory to store intermediate files PROCESSING_DIR = None # user-supplied crude protein of vegetation CRUDE_PROTEIN = None # state variables and parameters take their names from Century # _SITE_STATE_VARIABLE_FILES contains state variables that are a # property of the site, including: # carbon in each soil compartment # (structural, metabolic, som1, som2, som3) and layer (1=surface, 2=soil) # e.g., som2c_2 = carbon in soil som2; # N and P in each soil layer and compartment (1=N, 2=P) # e.g., som2e_1_1 = N in surface som2, som2e_1_2 = P in surface som2; # water in each soil layer, asmos_<layer> # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _SITE_STATE_VARIABLE_FILES = { 'metabc_1_path': 'metabc_1.tif', 'metabc_2_path': 'metabc_2.tif', 'som1c_1_path': 'som1c_1.tif', 'som1c_2_path': 'som1c_2.tif', 'som2c_1_path': 'som2c_1.tif', 'som2c_2_path': 'som2c_2.tif', 'som3c_path': 'som3c.tif', 'strucc_1_path': 'strucc_1.tif', 'strucc_2_path': 'strucc_2.tif', 'strlig_1_path': 'strlig_1.tif', 'strlig_2_path': 'strlig_2.tif', 'metabe_1_1_path': 'metabe_1_1.tif', 'metabe_2_1_path': 'metabe_2_1.tif', 'som1e_1_1_path': 'som1e_1_1.tif', 'som1e_2_1_path': 'som1e_2_1.tif', 'som2e_1_1_path': 'som2e_1_1.tif', 'som2e_2_1_path': 'som2e_2_1.tif', 'som3e_1_path': 'som3e_1.tif', 'struce_1_1_path': 'struce_1_1.tif', 'struce_2_1_path': 'struce_2_1.tif', 'metabe_1_2_path': 'metabe_1_2.tif', 'metabe_2_2_path': 'metabe_2_2.tif', 'plabil_path': 'plabil.tif', 'secndy_2_path': 'secndy_2.tif', 'parent_2_path': 'parent_2.tif', 'occlud_path': 'occlud.tif', 'som1e_1_2_path': 'som1e_1_2.tif', 'som1e_2_2_path': 'som1e_2_2.tif', 'som2e_1_2_path': 'som2e_1_2.tif', 'som2e_2_2_path': 'som2e_2_2.tif', 'som3e_2_path': 'som3e_2.tif', 'struce_1_2_path': 'struce_1_2.tif', 'struce_2_2_path': 'struce_2_2.tif', 'asmos_1_path': 'asmos_1.tif', 'asmos_2_path': 'asmos_2.tif', 'asmos_3_path': 'asmos_3.tif', 'asmos_4_path': 'asmos_4.tif', 'asmos_5_path': 'asmos_5.tif', 'asmos_6_path': 'asmos_6.tif', 'asmos_7_path': 'asmos_7.tif', 'asmos_8_path': 'asmos_8.tif', 'asmos_9_path': 'asmos_9.tif', 'avh2o_3_path': 'avh2o_3.tif', 'minerl_1_1_path': 'minerl_1_1.tif', 'minerl_2_1_path': 'minerl_2_1.tif', 'minerl_3_1_path': 'minerl_3_1.tif', 'minerl_4_1_path': 'minerl_4_1.tif', 'minerl_5_1_path': 'minerl_5_1.tif', 'minerl_6_1_path': 'minerl_6_1.tif', 'minerl_7_1_path': 'minerl_7_1.tif', 'minerl_8_1_path': 'minerl_8_1.tif', 'minerl_9_1_path': 'minerl_9_1.tif', 'minerl_10_1_path': 'minerl_10_1.tif', 'minerl_1_2_path': 'minerl_1_2.tif', 'minerl_2_2_path': 'minerl_2_2.tif', 'minerl_3_2_path': 'minerl_3_2.tif', 'minerl_4_2_path': 'minerl_4_2.tif', 'minerl_5_2_path': 'minerl_5_2.tif', 'minerl_6_2_path': 'minerl_6_2.tif', 'minerl_7_2_path': 'minerl_7_2.tif', 'minerl_8_2_path': 'minerl_8_2.tif', 'minerl_9_2_path': 'minerl_9_2.tif', 'minerl_10_2_path': 'minerl_10_2.tif', 'snow_path': 'snow.tif', 'snlq_path': 'snlq.tif', } # _PFT_STATE_VARIABLES contains state variables that are a # property of a PFT, including: # carbon, nitrogen, and phosphorous in aboveground biomass # where 1=N, 2=P # e.g. aglivc = C in aboveground live biomass, # aglive_1 = N in aboveground live biomass; # carbon, nitrogen, and phosphorous in aboveground standing dead # biomass, stdedc and stdede; # carbon, nitrogen and phosphorous in belowground live biomass, # aglivc and aglive # state variables fully described in this table: # https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing _PFT_STATE_VARIABLES = [ 'aglivc', 'bglivc', 'stdedc', 'aglive_1', 'bglive_1', 'stdede_1', 'aglive_2', 'bglive_2', 'stdede_2', 'avh2o_1', 'crpstg_1', 'crpstg_2', ] # intermediate parameters that do not change between timesteps, # including field capacity and wilting point of each soil layer, # coefficients describing effect of soil texture on decomposition # rates _PERSISTENT_PARAMS_FILES = { 'afiel_1_path': 'afiel_1.tif', 'afiel_2_path': 'afiel_2.tif', 'afiel_3_path': 'afiel_3.tif', 'afiel_4_path': 'afiel_4.tif', 'afiel_5_path': 'afiel_5.tif', 'afiel_6_path': 'afiel_6.tif', 'afiel_7_path': 'afiel_7.tif', 'afiel_8_path': 'afiel_8.tif', 'afiel_9_path': 'afiel_9.tif', 'awilt_1_path': 'awilt_1.tif', 'awilt_2_path': 'awilt_2.tif', 'awilt_3_path': 'awilt_3.tif', 'awilt_4_path': 'awilt_4.tif', 'awilt_5_path': 'awilt_5.tif', 'awilt_6_path': 'awilt_6.tif', 'awilt_7_path': 'awilt_7.tif', 'awilt_8_path': 'awilt_8.tif', 'awilt_9_path': 'awilt_9.tif', 'wc_path': 'wc.tif', 'eftext_path': 'eftext.tif', 'p1co2_2_path': 'p1co2_2.tif', 'fps1s3_path': 'fps1s3.tif', 'orglch_path': 'orglch.tif', 'fps2s3_path': 'fps2s3.tif', 'rnewas_1_1_path': 'rnewas_1_1.tif', 'rnewas_2_1_path': 'rnewas_2_1.tif', 'rnewas_1_2_path': 'rnewas_1_2.tif', 'rnewas_2_2_path': 'rnewas_2_2.tif', 'rnewbs_1_1_path': 'rnewbs_1_1.tif', 'rnewbs_1_2_path': 'rnewbs_1_2.tif', 'rnewbs_2_1_path': 'rnewbs_2_1.tif', 'rnewbs_2_2_path': 'rnewbs_2_2.tif', 'vlossg_path': 'vlossg.tif', } # site-level values that are updated once per year _YEARLY_FILES = { 'annual_precip_path': 'annual_precip.tif', 'baseNdep_path': 'baseNdep.tif', } # pft-level values that are updated once per year _YEARLY_PFT_FILES = ['pltlig_above', 'pltlig_below'] # intermediate values for each plant functional type that are shared # between submodels, but do not need to be saved as output _PFT_INTERMEDIATE_VALUES = [ 'h2ogef_1', 'tgprod_pot_prod', 'cercrp_min_above_1', 'cercrp_min_above_2', 'cercrp_max_above_1', 'cercrp_max_above_2', 'cercrp_min_below_1', 'cercrp_min_below_2', 'cercrp_max_below_1', 'cercrp_max_below_2', 'tgprod', 'rtsh', 'flgrem', 'fdgrem'] # intermediate site-level values that are shared between submodels, # but do not need to be saved as output _SITE_INTERMEDIATE_VALUES = [ 'amov_1', 'amov_2', 'amov_3', 'amov_4', 'amov_5', 'amov_6', 'amov_7', 'amov_8', 'amov_9', 'amov_10', 'snowmelt', 'bgwfunc', 'diet_sufficiency'] # fixed parameters for each grazing animal type are adapted from the GRAZPLAN # model as described by Freer et al. 2012, "The GRAZPLAN animal biology model # for sheep and cattle and the GrazFeed decision support tool" _FREER_PARAM_DICT = { 'b_indicus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.31, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'b_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.36, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'indicus_x_taurus': { 'CN1': 0.0115, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.025, 'CI2': 1.7, 'CI8': 62, 'CI9': 1.7, 'CI15': 0.5, 'CI19': 0.416, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00078, 'CR5': 0.6, 'CR6': 0.00074, 'CR7': 0.5, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.375, 'CL1': 4, 'CL2': 30, 'CL3': 0.6, 'CL5': 0.94, 'CL6': 3.1, 'CL15': 0.032, 'CM1': 0.09, 'CM2': 0.335, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.0025, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CP1': 285, 'CP4': 0.33, 'CP5': 1.8, 'CP6': 2.42, 'CP7': 1.16, 'CP8': 4.11, 'CP9': 343.5, 'CP10': 0.0164, 'CP15': 0.07, }, 'sheep': { 'CN1': 0.0157, 'CN2': 0.27, 'CN3': 0.4, 'CI1': 0.04, 'CI2': 1.7, 'CI8': 28, 'CI9': 1.4, 'CI12': 0.15, 'CI13': 0.02, 'CI14': 0.002, 'CI20': 1.5, 'CR1': 0.8, 'CR2': 0.17, 'CR3': 1.7, 'CR4': 0.00112, 'CR5': 0.6, 'CR6': 0.00112, 'CR7': 0, 'CR12': 0.8, 'CR13': 0.35, 'CK1': 0.5, 'CK2': 0.02, 'CK3': 0.85, 'CK5': 0.4, 'CK6': 0.02, 'CK8': 0.133, 'CL0': 0.486, 'CL1': 2, 'CL2': 22, 'CL3': 1, 'CL5': 0.94, 'CL6': 4.7, 'CL15': 0.045, 'CM1': 0.09, 'CM2': 0.26, 'CM3': 0.00008, 'CM4': 0.84, 'CM6': 0.02, 'CM7': 0.9, 'CM16': 0.0026, 'CRD1': 0.3, 'CRD2': 0.25, 'CRD4': 0.007, 'CRD5': 0.005, 'CRD6': 0.35, 'CRD7': 0.1, 'CA1': 0.05, 'CA2': 0.85, 'CA3': 5.5, 'CA4': 0.178, 'CA6': 1, 'CA7': 0.6, 'CW1': 24, 'CW2': 0.004, 'CW3': 0.7, 'CW5': 0.25, 'CW6': 0.072, 'CW7': 1.35, 'CW8': 0.016, 'CW9': 1, 'CW12': 0.025, 'CP1': 150, 'CP4': 0.33, 'CP5': 1.43, 'CP6': 3.38, 'CP7': 0.91, 'CP8': 4.33, 'CP9': 4.37, 'CP10': 0.965, 'CP15': 0.1, }, } # Target nodata is for general rasters that are positive, and _IC_NODATA are # for rasters that are any range _TARGET_NODATA = -1.0 _IC_NODATA = float(numpy.finfo('float32').min) # SV_NODATA is for state variables _SV_NODATA = -1.0 def execute(args): """InVEST Forage Model. [model description] Parameters: args['workspace_dir'] (string): path to target output workspace. args['results_suffix'] (string): (optional) string to append to any output file names args['starting_month'] (int): what month to start reporting where the range 1..12 is equivalent to Jan..Dec. args['starting_year'] (int): what year to start runs. this value is used to notate outputs in the form [month_int]_[year] args['n_months'] (int): number of months to run model, the model run will start reporting in `args['starting_month']`. args['aoi_path'] (string): path to polygon vector indicating the desired spatial extent of the model. This has the effect of clipping the computational area of the input datasets to be the area intersected by this polygon. args['management_threshold'] (float): biomass in kg/ha required to be left standing at each model step after offtake by grazing animals args['proportion_legume_path'] (string): path to raster containing fraction of pasture that is legume, by weight args['bulk_density_path'] (string): path to bulk density raster. args['ph_path'] (string): path to soil pH raster. args['clay_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is clay args['silt_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is silt args['sand_proportion_path'] (string): path to raster representing per-pixel proportion of soil component that is sand args['precip_dir'] (string): path to a directory containing monthly precipitation rasters. The model requires at least 12 months of precipitation and expects to find a precipitation file input for every month of the simulation, so the number of precipitation files should be the maximum of 12 and `n_months`. The file name of each precipitation raster must end with the year, followed by an underscore, followed by the month number. E.g., Precip_2016_1.tif for January of 2016. args['min_temp_dir'] (string): path to a directory containing monthly minimum temperature rasters. The model requires one minimum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each minimum temperature raster must end with the month number. E.g., Min_temperature_1.tif for January. args['max_temp_dir'] (string): path to a directory containing monthly maximum temperature rasters. The model requires one maximum temperature raster for each month of the year, or each month that the model is run, whichever is smaller. The file name of each maximum temperature raster must end with the month number. E.g., Max_temperature_1.tif for January. args['site_param_table'] (string): path to csv file giving site parameters. This file must contain a column named "site" that contains unique integers. These integer values correspond to site type identifiers which are values in the site parameter spatial index raster. Other required fields for this table are site and "fixed" parameters from the Century model, i.e., the parameters in the Century input files site.100 and fix.100. args['site_param_spatial_index_path'] (string): path to a raster file that indexes site parameters, indicating which set of site parameter values should apply at each pixel in the raster. The raster should be composed of integers that correspond to values in the field "site" in `site_param_table`. args['veg_trait_path'] (string): path to csv file giving vegetation traits for each plant functional type available for grazing. This file must contain a column named "PFT" that contains unique integers. These integer values correspond to PFT identifiers of veg spatial composition rasters. Other required fields for this table are vegetation input parameters from the Century model, for example maximum intrinsic growth rate, optimum temperature for production, minimum C/N ratio, etc. args['veg_spatial_composition_path_pattern'] (string): path to vegetation rasters, one per plant functional type available for grazing, where <PFT> can be replaced with an integer that is indexed in the veg trait csv. Example: if this value is given as `./vegetation/pft_<PFT>.tif` and the directory `./vegetation/` contains these files: "pft_1.tif" "pft_12.tif" "pft_50.tif", then the "PFT" field in the vegetation trait table must contain the values 1, 12, and 50. args['animal_trait_path'] (string): path to csv file giving animal traits for each animal type - number - duration combination. This table must contain a column named "animal_id" that contains unique integers. These integer values correspond to features in the animal management layer. Other required fields in this table are: type (allowable values: b_indicus, b_taurus, indicus_x_taurus, sheep, camelid, hindgut_fermenter) sex (allowable values: entire_m, castrate, breeding_female, NA) age (days) weight (kg) SRW (standard reference weight, kg; the weight of a mature female in median condition) SFW (standard fleece weight, kg; the average weight of fleece of a mature adult; for sheep only) birth_weight (kg) grz_months (a string of integers, separated by ','; months of the simulation when animals are present, relative to `starting_month`. For example, if `n_months` is 3, and animals are present during the entire simulation period, `grz_months` should be "1,2,3") args['animal_grazing_areas_path'] (string): path to animal vector inputs giving the location of grazing animals. Must have a field named "animal_id", containing unique integers that correspond to the values in the "animal_id" column of the animal trait csv, and a field named "num_animal" giving the number of animals grazing inside each polygon feature. args['initial_conditions_dir'] (string): optional input, path to directory containing initial conditions. If this directory is not supplied, a site_initial_table and pft_initial_table must be supplied. If supplied, this directory must contain a series of rasters with initial values for each PFT and for the site. Required rasters for each PFT: initial variables that are a property of PFT in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing e.g., aglivc_<PFT>.tif Required for the site: initial variables that are a property of site in the table https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['site_initial_table'] (string): optional input, path to table containing initial conditions for each site state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each site code and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['pft_initial_table'] (string): optional input, path to table containing initial conditions for each plant functional type state variable. If an initial conditions directory is not supplied, this table must be supplied. This table must contain a value for each plant functional type index and each state variable listed in the following table: https://docs.google.com/spreadsheets/d/1TGCDOJS4nNsJpzTWdiWed390NmbhQFB2uUoMs9oTTYo/edit?usp=sharing args['save_sv_rasters'] (boolean): optional input, default false. Should rasters containing all state variables be saved for each model time step? args['animal_density'] (string): optional input, density of grazing animals in animals per hectare. args['crude_protein'] (float): optional input, crude protein concentration of forage for the purposes of animal diet selection. Should be a value between 0-1. If included, this value is substituted for N content of forage when calculating digestibility and "ingestibility" of forage, and protein content of the diet, for grazing animals. Returns: None. """ LOGGER.info("model execute: %s", args) starting_month = int(args['starting_month']) starting_year = int(args['starting_year']) n_months = int(args['n_months']) try: delete_sv_folders = not args['save_sv_rasters'] except KeyError: delete_sv_folders = True try: global CRUDE_PROTEIN CRUDE_PROTEIN = args['crude_protein'] except KeyError: pass try: animal_density_path = args['animal_density'] except KeyError: args['animal_density'] = None # this set will build up the integer months that are used so we can index # them with temperature later temperature_month_set = set() # this dict will be used to build the set of input rasters associated with # a reasonable lookup ID so we can have a nice dataset to align for raster # stack operations base_align_raster_path_id_map = {} precip_dir_list = [ os.path.join(args['precip_dir'], f) for f in os.listdir(args['precip_dir'])] for month_index in range(n_months): month_i = (starting_month + month_index - 1) % 12 + 1 temperature_month_set.add(month_i) year = starting_year + (starting_month + month_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No precipitation data found for year %d, month %d" % (year, month_i)) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_{}'.format(month_index)] = file_list[0] # the model requires 12 months of precipitation data to calculate # atmospheric N deposition and potential production from annual precip n_precip_months = int(args['n_months']) if n_precip_months < 12: m_index = int(args['n_months']) while n_precip_months < 12: month_i = (starting_month + m_index - 1) % 12 + 1 year = starting_year + (starting_month + m_index - 1) // 12 year_month_match = re.compile( r'.*[^\d]%d_%d\.[^.]+$' % (year, month_i)) file_list = [ month_file_path for month_file_path in precip_dir_list if year_month_match.match(month_file_path)] if len(file_list) == 0: break if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for year %d, month %d: %s" % (year, month_i, file_list)) base_align_raster_path_id_map[ 'precip_%d' % m_index] = file_list[0] n_precip_months = n_precip_months + 1 m_index = m_index + 1 if n_precip_months < 12: raise ValueError("At least 12 months of precipitation data required") # collect monthly temperature data min_temp_dir_list = [ os.path.join(args['min_temp_dir'], f) for f in os.listdir(args['min_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in min_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No minimum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'min_temp_%d' % month_i] = file_list[0] max_temp_dir_list = [ os.path.join(args['max_temp_dir'], f) for f in os.listdir(args['max_temp_dir'])] for month_i in temperature_month_set: month_file_match = re.compile(r'.*[^\d]%d\.[^.]+$' % month_i) file_list = [ month_file_path for month_file_path in max_temp_dir_list if month_file_match.match(month_file_path)] if len(file_list) == 0: raise ValueError( "No maximum temperature data found for month %d" % month_i) if len(file_list) > 1: raise ValueError( "Ambiguous set of files found for month %d: %s" % (month_i, file_list)) base_align_raster_path_id_map[ 'max_temp_%d' % month_i] = file_list[0] # lookup to provide path to soil percent given soil type for soil_type in SOIL_TYPE_LIST: base_align_raster_path_id_map[soil_type] = ( args['%s_proportion_path' % soil_type]) if not os.path.exists(base_align_raster_path_id_map[soil_type]): raise ValueError( "Couldn't find %s for %s" % ( base_align_raster_path_id_map[soil_type], soil_type)) base_align_raster_path_id_map['bulk_d_path'] = args['bulk_density_path'] base_align_raster_path_id_map['ph_path'] = args['ph_path'] # make sure site initial conditions and parameters exist for each site # identifier base_align_raster_path_id_map['site_index'] = ( args['site_param_spatial_index_path']) n_bands = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['n_bands'] if n_bands > 1: raise ValueError( 'Site spatial index raster must contain only one band') site_datatype = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['datatype'] if site_datatype not in [1, 2, 3, 4, 5]: raise ValueError('Site spatial index raster must be integer type') # get unique values in site param raster site_index_set = set() for offset_map, raster_block in pygeoprocessing.iterblocks( (args['site_param_spatial_index_path'], 1)): site_index_set.update(numpy.unique(raster_block)) site_nodata = pygeoprocessing.get_raster_info( args['site_param_spatial_index_path'])['nodata'][0] if site_nodata in site_index_set: site_index_set.remove(site_nodata) site_param_table = utils.build_lookup_from_csv( args['site_param_table'], 'site') missing_site_index_list = list( site_index_set.difference(site_param_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find parameter values for the following site " + "indices: %s\n\t" + ", ".join(missing_site_index_list)) # make sure plant functional type parameters exist for each pft raster pft_dir = os.path.dirname(args['veg_spatial_composition_path_pattern']) pft_basename = os.path.basename( args['veg_spatial_composition_path_pattern']) files = [ f for f in os.listdir(pft_dir) if os.path.isfile( os.path.join(pft_dir, f))] pft_regex = re.compile(pft_basename.replace('<PFT>', r'(\d+)')) pft_matches = [ m for m in [pft_regex.search(f) for f in files] if m is not None] pft_id_set = set([int(m.group(1)) for m in pft_matches]) for pft_i in pft_id_set: pft_path = args['veg_spatial_composition_path_pattern'].replace( '<PFT>', '%d' % pft_i) base_align_raster_path_id_map['pft_%d' % pft_i] = pft_path veg_trait_table = utils.build_lookup_from_csv( args['veg_trait_path'], 'PFT') missing_pft_trait_list = pft_id_set.difference(veg_trait_table.keys()) if missing_pft_trait_list: raise ValueError( "Couldn't find trait values for the following plant functional " + "types: %s\n\t" + ", ".join(missing_pft_trait_list)) frtcindx_set = set([ pft_i['frtcindx'] for pft_i in veg_trait_table.values()]) if frtcindx_set.difference(set([0, 1])): raise ValueError("frtcindx parameter contains invalid values") base_align_raster_path_id_map['proportion_legume_path'] = args[ 'proportion_legume_path'] # track separate state variable files for each PFT pft_sv_dict = {} for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: pft_sv_dict['{}_{}_path'.format( sv, pft_i)] = '{}_{}.tif'.format(sv, pft_i) # make sure animal traits exist for each feature in animal management # layer anim_id_list = [] driver = ogr.GetDriverByName('ESRI Shapefile') datasource = driver.Open(args['animal_grazing_areas_path'], 0) layer = datasource.GetLayer() for feature in layer: anim_id_list.append(feature.GetField('animal_id')) input_animal_trait_table = utils.build_lookup_from_csv( args['animal_trait_path'], 'animal_id') missing_animal_trait_list = set( anim_id_list).difference(input_animal_trait_table.keys()) if missing_animal_trait_list: raise ValueError( "Couldn't find trait values for the following animal " + "ids: %s\n\t" + ", ".join(missing_animal_trait_list)) # if animal density is supplied, align inputs to match its resolution # otherwise, match resolution of precipitation rasters if args['animal_density']: target_pixel_size = pygeoprocessing.get_raster_info( args['animal_density'])['pixel_size'] base_align_raster_path_id_map['animal_density'] = args[ 'animal_density'] else: target_pixel_size = pygeoprocessing.get_raster_info( base_align_raster_path_id_map['precip_0'])['pixel_size'] LOGGER.info( "pixel size of aligned inputs: %s", target_pixel_size) # temporary directory for intermediate files global PROCESSING_DIR PROCESSING_DIR = os.path.join(args['workspace_dir'], "temporary_files") if not os.path.exists(PROCESSING_DIR): os.makedirs(PROCESSING_DIR) # set up a dictionary that uses the same keys as # 'base_align_raster_path_id_map' to point to the clipped/resampled # rasters to be used in raster calculations for the model. aligned_raster_dir = os.path.join( args['workspace_dir'], 'aligned_inputs') if os.path.exists(aligned_raster_dir): shutil.rmtree(aligned_raster_dir) os.makedirs(aligned_raster_dir) aligned_inputs = dict([(key, os.path.join( aligned_raster_dir, 'aligned_%s' % os.path.basename(path))) for key, path in base_align_raster_path_id_map.items()]) # align all the base inputs to be the minimum known pixel size and to # only extend over their combined intersections source_input_path_list = [ base_align_raster_path_id_map[k] for k in sorted( base_align_raster_path_id_map.keys())] aligned_input_path_list = [ aligned_inputs[k] for k in sorted(aligned_inputs.keys())] pygeoprocessing.align_and_resize_raster_stack( source_input_path_list, aligned_input_path_list, ['near'] * len(source_input_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], vector_mask_options={'mask_vector_path': args['aoi_path']}) _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set) file_suffix = utils.make_suffix_string(args, 'results_suffix') # create animal trait spatial index raster from management polygon aligned_inputs['animal_index'] = os.path.join( aligned_raster_dir, 'animal_spatial_index.tif') pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], aligned_inputs['animal_index'], gdal.GDT_Int32, [_TARGET_NODATA], fill_value_list=[_TARGET_NODATA]) pygeoprocessing.rasterize( args['animal_grazing_areas_path'], aligned_inputs['animal_index'], option_list=["ATTRIBUTE=animal_id"]) # create uniform animal density raster, if not supplied as input if not args['animal_density']: aligned_inputs['animal_density'] = os.path.join( aligned_raster_dir, 'animal_density.tif') _animal_density(aligned_inputs, args['animal_grazing_areas_path']) # Initialization sv_dir = os.path.join(args['workspace_dir'], 'state_variables_m-1') os.makedirs(sv_dir) initial_conditions_dir = None try: initial_conditions_dir = args['initial_conditions_dir'] except KeyError: pass if initial_conditions_dir: # check that a raster for each required state variable is supplied missing_initial_values = [] # set _SV_NODATA from initial rasters state_var_nodata = set([]) # align initial state variables to resampled inputs resample_initial_path_map = {} for sv in _SITE_STATE_VARIABLE_FILES: sv_path = os.path.join( initial_conditions_dir, _SITE_STATE_VARIABLE_FILES[sv]) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'][0]])) resample_initial_path_map[sv] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) for pft_i in pft_id_set: for sv in _PFT_STATE_VARIABLES: sv_key = '{}_{}_path'.format(sv, pft_i) sv_path = os.path.join( initial_conditions_dir, '{}_{}.tif'.format(sv, pft_i)) state_var_nodata.update( set([pygeoprocessing.get_raster_info(sv_path)['nodata'] [0]])) resample_initial_path_map[sv_key] = sv_path if not os.path.exists(sv_path): missing_initial_values.append(sv_path) if missing_initial_values: raise ValueError( "Couldn't find the following required initial values: " + "\n\t".join(missing_initial_values)) if len(state_var_nodata) > 1: raise ValueError( "Initial state variable rasters contain >1 nodata value") global _SV_NODATA _SV_NODATA = list(state_var_nodata)[0] # align initial values with inputs initial_path_list = ( [aligned_inputs['precip_0']] + [resample_initial_path_map[key] for key in sorted( resample_initial_path_map.keys())]) aligned_initial_path_list = ( [os.path.join(PROCESSING_DIR, 'aligned_input_template.tif')] + [os.path.join( sv_dir, os.path.basename(resample_initial_path_map[key])) for key in sorted(resample_initial_path_map.keys())]) pygeoprocessing.align_and_resize_raster_stack( initial_path_list, aligned_initial_path_list, ['near'] * len(initial_path_list), target_pixel_size, 'intersection', base_vector_path_list=[args['aoi_path']], raster_align_index=0, vector_mask_options={'mask_vector_path': args['aoi_path']}) sv_reg = dict( [(key, os.path.join(sv_dir, os.path.basename(path))) for key, path in resample_initial_path_map.items()]) else: # create initialization rasters from tables try: site_initial_conditions_table = utils.build_lookup_from_csv( args['site_initial_table'], 'site') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_site_index_list = list( site_index_set.difference(site_initial_conditions_table.keys())) if missing_site_index_list: raise ValueError( "Couldn't find initial conditions values for the following " + "site indices: %s\n\t" + ", ".join(missing_site_index_list)) try: pft_initial_conditions_table = utils.build_lookup_from_csv( args['pft_initial_table'], 'PFT') except KeyError: raise ValueError( "If initial conditions rasters are not supplied, initial " + "conditions tables must be supplied") missing_pft_index_list = pft_id_set.difference( pft_initial_conditions_table.keys()) if missing_pft_index_list: raise ValueError( "Couldn't find initial condition values for the following " "plant functional types: %s\n\t" + ", ".join( missing_pft_index_list)) sv_reg = initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table) # calculate persistent intermediate parameters that do not change during # the simulation persist_param_dir = os.path.join( args['workspace_dir'], 'intermediate_parameters') utils.make_directories([persist_param_dir]) pp_reg = utils.build_file_registry( [(_PERSISTENT_PARAMS_FILES, persist_param_dir)], file_suffix) # calculate derived animal traits that do not change during the simulation freer_parameter_df = pandas.DataFrame.from_dict( _FREER_PARAM_DICT, orient='index') freer_parameter_df['type'] = freer_parameter_df.index animal_trait_table = calc_derived_animal_traits( input_animal_trait_table, freer_parameter_df) # calculate maximum potential intake of each animal type for animal_id in animal_trait_table.keys(): revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # calculate field capacity and wilting point LOGGER.info("Calculating field capacity and wilting point") _afiel_awilt( aligned_inputs['site_index'], site_param_table, sv_reg['som1c_2_path'], sv_reg['som2c_2_path'], sv_reg['som3c_path'], aligned_inputs['sand'], aligned_inputs['silt'], aligned_inputs['clay'], aligned_inputs['bulk_d_path'], pp_reg) # calculate other persistent parameters LOGGER.info("Calculating persistent parameters") _persistent_params( aligned_inputs['site_index'], site_param_table, aligned_inputs['sand'], aligned_inputs['clay'], pp_reg) # calculate required ratios for decomposition of structural material LOGGER.info("Calculating required ratios for structural decomposition") _structural_ratios( aligned_inputs['site_index'], site_param_table, sv_reg, pp_reg) # make yearly directory for values that are updated every twelve months year_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) year_reg = dict( [(key, os.path.join(year_dir, path)) for key, path in _YEARLY_FILES.items()]) for pft_i in pft_id_set: for file in _YEARLY_PFT_FILES: year_reg['{}_{}'.format(file, pft_i)] = os.path.join( year_dir, '{}_{}.tif'.format(file, pft_i)) # make monthly directory for monthly intermediate parameters that are # shared between submodels, but do not need to be saved as output month_temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) month_reg = {} for pft_i in pft_id_set: for val in _PFT_INTERMEDIATE_VALUES: month_reg['{}_{}'.format( val, pft_i)] = os.path.join( month_temp_dir, '{}_{}.tif'.format(val, pft_i)) for val in _SITE_INTERMEDIATE_VALUES: month_reg[val] = os.path.join(month_temp_dir, '{}.tif'.format(val)) output_dir = os.path.join(args['workspace_dir'], "output") if not os.path.exists(output_dir): os.makedirs(output_dir) # provisional state variable registry contains provisional biomass in # absence of grazing provisional_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) provisional_sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, provisional_sv_dir), (pft_sv_dict, provisional_sv_dir)], file_suffix) intermediate_sv_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) # Main simulation loop # for each step in the simulation for month_index in range(n_months): if (month_index % 12) == 0: # Update yearly quantities _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg) current_month = (starting_month + month_index - 1) % 12 + 1 current_year = starting_year + (starting_month + month_index - 1) // 12 # track state variables from previous step prev_sv_reg = sv_reg for animal_id in animal_trait_table.keys(): if animal_trait_table[animal_id]['sex'] == 'breeding_female': revised_animal_trait_dict = update_breeding_female_status( animal_trait_table[animal_id], month_index) animal_trait_table[animal_id] = revised_animal_trait_dict revised_animal_trait_dict = calc_max_intake( animal_trait_table[animal_id]) animal_trait_table[animal_id] = revised_animal_trait_dict # enforce absence of grazing as zero biomass removed for pft_i in pft_id_set: pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['flgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) pygeoprocessing.new_raster_from_base( aligned_inputs['pft_{}'.format(pft_i)], month_reg['fdgrem_{}'.format(pft_i)], gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) # populate provisional_sv_reg with provisional biomass in absence of # grazing _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, provisional_sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, provisional_sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, provisional_sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, provisional_sv_reg) intermediate_sv_reg = copy_intermediate_sv( pft_id_set, provisional_sv_reg, intermediate_sv_dir) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, provisional_sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, provisional_sv_reg) # estimate grazing offtake by animals relative to provisional biomass # at an intermediate step, after senescence but before new growth _calc_grazing_offtake( aligned_inputs, args['aoi_path'], args['management_threshold'], intermediate_sv_reg, pft_id_set, aligned_inputs['animal_index'], animal_trait_table, veg_trait_table, current_month, month_reg) # estimate actual biomass production for this step, integrating impacts # of grazing sv_dir = os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index) utils.make_directories([sv_dir]) sv_reg = utils.build_file_registry( [(_SITE_STATE_VARIABLE_FILES, sv_dir), (pft_sv_dict, sv_dir)], file_suffix) _potential_production( aligned_inputs, site_param_table, current_month, month_index, pft_id_set, veg_trait_table, prev_sv_reg, pp_reg, month_reg) _root_shoot_ratio( aligned_inputs, site_param_table, current_month, pft_id_set, veg_trait_table, prev_sv_reg, year_reg, month_reg) _soil_water( aligned_inputs, site_param_table, veg_trait_table, current_month, month_index, prev_sv_reg, pp_reg, pft_id_set, month_reg, sv_reg) _decomposition( aligned_inputs, current_month, month_index, pft_id_set, site_param_table, year_reg, month_reg, prev_sv_reg, pp_reg, sv_reg) _death_and_partition( 'stded', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _death_and_partition( 'bgliv', aligned_inputs, site_param_table, current_month, year_reg, pft_id_set, veg_trait_table, prev_sv_reg, sv_reg) _shoot_senescence( pft_id_set, veg_trait_table, prev_sv_reg, month_reg, current_month, sv_reg) delta_agliv_dict = _new_growth( pft_id_set, aligned_inputs, site_param_table, veg_trait_table, month_reg, current_month, sv_reg) _animal_diet_sufficiency( sv_reg, pft_id_set, aligned_inputs, animal_trait_table, veg_trait_table, current_month, month_reg) _grazing( aligned_inputs, site_param_table, month_reg, animal_trait_table, pft_id_set, sv_reg) _apply_new_growth(delta_agliv_dict, pft_id_set, sv_reg) _leach(aligned_inputs, site_param_table, month_reg, sv_reg) _write_monthly_outputs( aligned_inputs, provisional_sv_reg, sv_reg, month_reg, pft_id_set, current_year, current_month, output_dir, file_suffix) # summary results summary_output_dir = os.path.join(output_dir, 'summary_results') os.makedirs(summary_output_dir) summary_shp_path = os.path.join( summary_output_dir, 'grazing_areas_results_rpm{}.shp'.format(file_suffix)) create_vector_copy( args['animal_grazing_areas_path'], summary_shp_path) field_pickle_map, field_header_order_list = aggregate_and_pickle_results( output_dir, summary_shp_path) _add_fields_to_shapefile( field_pickle_map, field_header_order_list, summary_shp_path) # clean up shutil.rmtree(persist_param_dir) shutil.rmtree(PROCESSING_DIR) if delete_sv_folders: for month_index in range(-1, n_months): shutil.rmtree( os.path.join( args['workspace_dir'], 'state_variables_m%d' % month_index)) def raster_multiplication( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Multiply raster1 by raster2. Multiply raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_multiply_op(raster1, raster2): """Multiply two rasters.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata result[valid_mask] = raster1[valid_mask] * raster2[valid_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_multiply_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_division( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_path_nodata): """Divide raster1 by raster2. Divide raster1 by raster2 element-wise. In any pixel where raster1 or raster2 is nodata, the result is nodata. The result is always of float datatype. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_divide_op(raster1, raster2): """Divide raster1 by raster2.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) raster1 = raster1.astype(numpy.float32) raster2 = raster2.astype(numpy.float32) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_path_nodata error_mask = ((raster1 != 0) & (raster2 == 0.) & valid_mask) zero_mask = ((raster1 == 0.) & (raster2 == 0.) & valid_mask) nonzero_mask = ((raster2 != 0.) & valid_mask) result[error_mask] = target_path_nodata result[zero_mask] = 0. result[nonzero_mask] = raster1[nonzero_mask] / raster2[nonzero_mask] return result pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_divide_op, target_path, gdal.GDT_Float32, target_path_nodata) def raster_list_sum( raster_list, input_nodata, target_path, target_nodata, nodata_remove=False): """Calculate the sum per pixel across rasters in a list. Sum the rasters in `raster_list` element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. If nodata is treated as zero, areas where all inputs are nodata will be nodata in the output. Parameters: raster_list (list): list of paths to rasters to sum input_nodata (float or int): nodata value in the input rasters target_path (string): path to location to store the result target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(*raster_list): """Add the rasters in raster_list without removing nodata values.""" invalid_mask = numpy.any( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters def raster_sum_op_nodata_remove(*raster_list): """Add the rasters in raster_list, treating nodata as zero.""" invalid_mask = numpy.all( numpy.isclose(numpy.array(raster_list), input_nodata), axis=0) for r in raster_list: numpy.place(r, numpy.isclose(r, input_nodata), [0]) sum_of_rasters = numpy.sum(raster_list, axis=0) sum_of_rasters[invalid_mask] = target_nodata return sum_of_rasters if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in raster_list], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_sum( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Add raster 1 and raster2. Add raster1 and raster2, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to one raster operand raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to second raster operand raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the sum target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the sum in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_sum_op(raster1, raster2): """Add raster1 and raster2 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] + raster2[valid_mask] return result def raster_sum_op_nodata_remove(raster1, raster2): """Add raster1 and raster2, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 + raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_sum_op, target_path, gdal.GDT_Float32, target_nodata) def raster_difference( raster1, raster1_nodata, raster2, raster2_nodata, target_path, target_nodata, nodata_remove=False): """Subtract raster2 from raster1. Subtract raster2 from raster1 element-wise, allowing nodata values in the rasters to propagate to the result or treating nodata as zero. Parameters: raster1 (string): path to raster from which to subtract raster2 raster1_nodata (float or int): nodata value in raster1 raster2 (string): path to raster which should be subtracted from raster1 raster2_nodata (float or int): nodata value in raster2 target_path (string): path to location to store the difference target_nodata (float or int): nodata value for the result raster nodata_remove (bool): if true, treat nodata values in input rasters as zero. If false, the difference in a pixel where any input raster is nodata is nodata. Side effects: modifies or creates the raster indicated by `target_path` Returns: None """ def raster_difference_op(raster1, raster2): """Subtract raster2 from raster1 without removing nodata values.""" valid_mask = ( (~numpy.isclose(raster1, raster1_nodata)) & (~numpy.isclose(raster2, raster2_nodata))) result = numpy.empty(raster1.shape, dtype=numpy.float32) result[:] = target_nodata result[valid_mask] = raster1[valid_mask] - raster2[valid_mask] return result def raster_difference_op_nodata_remove(raster1, raster2): """Subtract raster2 from raster1, treating nodata as zero.""" numpy.place(raster1, numpy.isclose(raster1, raster1_nodata), [0]) numpy.place(raster2, numpy.isclose(raster2, raster2_nodata), [0]) result = raster1 - raster2 return result if nodata_remove: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op_nodata_remove, target_path, gdal.GDT_Float32, target_nodata) else: pygeoprocessing.raster_calculator( [(path, 1) for path in [raster1, raster2]], raster_difference_op, target_path, gdal.GDT_Float32, target_nodata) def reclassify_nodata(target_path, new_nodata_value): """Reclassify the nodata value of a raster to a new value. Convert all areas of nodata in the target raster to the new nodata value, which must be an integer. Parameters: target_path (string): path to target raster new_nodata_value (integer): new value to set as nodata Side effects: modifies the raster indicated by `target_path` Returns: None """ def reclassify_op(target_raster): reclassified_raster = numpy.copy(target_raster) reclassify_mask = (target_raster == previous_nodata_value) reclassified_raster[reclassify_mask] = new_nodata_value return reclassified_raster fd, temp_path = tempfile.mkstemp(dir=PROCESSING_DIR) shutil.copyfile(target_path, temp_path) previous_nodata_value = pygeoprocessing.get_raster_info( target_path)['nodata'][0] pygeoprocessing.raster_calculator( [(temp_path, 1)], reclassify_op, target_path, gdal.GDT_Float32, new_nodata_value) # clean up os.close(fd) os.remove(temp_path) def weighted_state_variable_sum( sv, sv_reg, aligned_inputs, pft_id_set, weighted_sum_path): """Calculate weighted sum of state variable across plant functional types. To sum a state variable across PFTs within a grid cell, the state variable must be weighted by the fractional cover of each PFT inside the grid cell. First multiply the state variable by its fractional cover, and then add up the weighted products. Parameters: sv (string): state variable to be summed across plant functional types sv_reg (dict): map of key, path pairs giving paths to state variables, including sv, the state variable to be summed aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types weighted_sum_path (string): path to raster that should contain the weighted sum across PFTs Side effects: modifies or creates the raster indicated by `weighted_sum_path` Returns: None """ temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) temp_val_dict = {} for pft_i in pft_id_set: val = '{}_weighted'.format(sv) temp_val_dict['{}_{}'.format(val, pft_i)] = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) weighted_path_list = [] for pft_i in pft_id_set: target_path = temp_val_dict['{}_weighted_{}'.format(sv, pft_i)] pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_multiplication( sv_reg['{}_{}_path'.format(sv, pft_i)], _SV_NODATA, aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, target_path, _TARGET_NODATA) weighted_path_list.append(target_path) raster_list_sum( weighted_path_list, _TARGET_NODATA, weighted_sum_path, _TARGET_NODATA, nodata_remove=True) # clean up temporary files shutil.rmtree(temp_dir) def _check_pft_fractional_cover_sum(aligned_inputs, pft_id_set): """Check the sum of fractional cover across plant functional types. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including fractional cover of each plant functional type pft_id_set (set): set of integers identifying plant functional types Raises: ValueError if the pixel-wise sum of fractional cover values across plant functional types exceeds 1 Returns: None """ with tempfile.NamedTemporaryFile( prefix='cover_sum', dir=PROCESSING_DIR) as cover_sum_temp_file: cover_sum_path = cover_sum_temp_file.name with tempfile.NamedTemporaryFile( prefix='operand_temp', dir=PROCESSING_DIR) as operand_temp_file: operand_temp_path = operand_temp_file.name # initialize sum to zero pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], cover_sum_path, gdal.GDT_Float32, [_TARGET_NODATA], fill_value_list=[0]) for pft_i in pft_id_set: shutil.copyfile(cover_sum_path, operand_temp_path) pft_nodata = pygeoprocessing.get_raster_info( aligned_inputs['pft_{}'.format(pft_i)])['nodata'][0] raster_sum( aligned_inputs['pft_{}'.format(pft_i)], pft_nodata, operand_temp_path, _TARGET_NODATA, cover_sum_path, _TARGET_NODATA) # get maximum sum of fractional cover max_cover = 0. for offset_map, raster_block in pygeoprocessing.iterblocks( (cover_sum_path, 1)): valid_mask = (raster_block != _TARGET_NODATA) if raster_block[valid_mask].size > 0: max_cover = max(max_cover, numpy.amax(raster_block[valid_mask])) if max_cover > 1: raise ValueError( "Fractional cover across plant functional types exceeds 1") # clean up os.remove(cover_sum_path) def initial_conditions_from_tables( aligned_inputs, sv_dir, pft_id_set, site_initial_conditions_table, pft_initial_conditions_table): """Generate initial state variable registry from initial conditions tables. Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including site spatial index raster and fractional cover of each plant functional type sv_dir (string): path to directory where initial state variable rasters should be stored pft_id_set (set): set of integers identifying plant functional types site_initial_conditions_table (dict): map of site spatial index to dictionaries that contain initial values for site-level state variables pft_initial_conditions_table (dict): map of plant functional type index to dictionaries that contain initial values for plant functional type-level state variables Returns: initial_sv_reg, map of key, path pairs giving paths to initial state variable rasters """ def full_masked(pft_cover, fill_val): """Create a constant raster masked by pft fractional cover. Parameters: pft_cover (numpy.ndarray): input, fractional cover of the plant functional type fill_val (float): constant value with which to fill raster in areas where fractional cover > 0 Returns: full_masked, a raster containing `fill_val` in areas where `pft_cover` > 0 """ valid_mask = ( (~numpy.isclose(pft_cover, _SV_NODATA)) & (pft_cover > 0)) full_masked = numpy.empty(pft_cover.shape, dtype=numpy.float32) full_masked[:] = _SV_NODATA full_masked[valid_mask] = fill_val return full_masked initial_sv_reg = {} # site-level state variables # check for missing state variable values required_site_state_var = set( [sv_key[:-5] for sv_key in _SITE_STATE_VARIABLE_FILES.keys()]) for site_code in site_initial_conditions_table.keys(): missing_site_state_var = required_site_state_var.difference( site_initial_conditions_table[site_code].keys()) if missing_site_state_var: raise ValueError( "The following state variables were not found in the site " + "initial conditions table: \n\t" + "\n\t".join( missing_site_state_var)) for sv_key, basename in _SITE_STATE_VARIABLE_FILES.items(): state_var = sv_key[:-5] site_to_val = dict( [(site_code, float(table[state_var])) for ( site_code, table) in site_initial_conditions_table.items()]) target_path = os.path.join(sv_dir, basename) initial_sv_reg[sv_key] = target_path pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _SV_NODATA) # PFT-level state variables for pft_i in pft_id_set: # check for missing values missing_pft_state_var = set(_PFT_STATE_VARIABLES).difference( pft_initial_conditions_table[pft_i].keys()) if missing_pft_state_var: raise ValueError( "The following state variables were not found in the plant " + "functional type initial conditions table: \n\t" + "\n\t".join( missing_pft_state_var)) for state_var in _PFT_STATE_VARIABLES: fill_val = pft_initial_conditions_table[pft_i][state_var] pft_cover_path = aligned_inputs['pft_{}'.format(pft_i)] target_path = os.path.join( sv_dir, '{}_{}.tif'.format(state_var, pft_i)) sv_key = '{}_{}_path'.format(state_var, pft_i) initial_sv_reg[sv_key] = target_path pygeoprocessing.raster_calculator( [(pft_cover_path, 1), (fill_val, 'raw')], full_masked, target_path, gdal.GDT_Float32, _SV_NODATA) return initial_sv_reg def _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path, ompc_path): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): path to active organic soil carbon raster som2c_2_path (string): path to slow organic soil carbon raster som3c_path (string): path to passive organic soil carbon raster bulkd_path (string): path to bulk density of soil raster edepth (string): path to depth of soil raster ompc_path (string): path to result, total soil organic matter Side effects: modifies or creates the raster indicated by `ompc_path` Returns: None """ def ompc_op(som1c_2, som2c_2, som3c, bulkd, edepth): """Estimate total soil organic matter. Total soil organic matter is the sum of soil carbon across slow, active, and passive compartments, weighted by bulk density and total modeled soil depth. Lines 220-222, Prelim.f Parameters: som1c_2_path (string): state variable, active organic soil carbon som2c_2_path (string): state variable, slow organic soil carbon som3c_path (string): state variable, passive organic soil carbon bulkd_path (string): input, bulk density of soil edepth_path (string): parameter, depth of soil for this calculation Returns: ompc, total soil organic matter weighted by bulk density. """ ompc = numpy.empty(som1c_2.shape, dtype=numpy.float32) ompc[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(som1c_2, _SV_NODATA)) & (~numpy.isclose(som2c_2, _SV_NODATA)) & (~numpy.isclose(som3c, _SV_NODATA)) & (~numpy.isclose(bulkd, bulkd_nodata)) & (edepth != _IC_NODATA)) ompc[valid_mask] = ( (som1c_2[valid_mask] + som2c_2[valid_mask] + som3c[valid_mask]) * 1.724 / (10000. * bulkd[valid_mask] * edepth[valid_mask])) return ompc bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ som1c_2_path, som2c_2_path, som3c_path, bulkd_path, edepth_path]], ompc_op, ompc_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulkd_path, afiel_path): """Calculate field capacity for one soil layer. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster afiel_path (string): path to result raster, field capacity for this soil layer Side effects: creates the raster indicated by `afiel_path` Returns: None """ def afiel_op(sand, silt, clay, ompc, bulkd): """Calculate field capacity for one soil layer. Field capacity, maximum soil moisture retention capacity, from <NAME> Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: afiel, field capacity for this soil layer """ afiel = numpy.empty(sand.shape, dtype=numpy.float32) afiel[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) afiel[valid_mask] = ( 0.3075 * sand[valid_mask] + 0.5886 * silt[valid_mask] + 0.8039 * clay[valid_mask] + 2.208E-03 * ompc[valid_mask] + -0.1434 * bulkd[valid_mask]) return afiel sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], afiel_op, afiel_path, gdal.GDT_Float32, _TARGET_NODATA) def _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulkd_path, awilt_path): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): path to proportion sand in soil raster silt_path (string): path to proportion silt in soil raster clay_path (string): path to proportion clay in soil raster ompc_path (string): path to estimated total soil organic matter raster bulkd_path (string): path to bulk density of soil raster awilt_path (string): path to result raster, wilting point for this soil layer Side effects: creates the raster indicated by `awilt_path` Returns: None """ def awilt_op(sand, silt, clay, ompc, bulkd): """Calculate wilting point for one soil layer. Wilting point, minimum soil water required by plants before wilting, from Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Parameters: sand_path (string): input, proportion sand in soil silt_path (string): input, proportion silt in soil clay_path (string): input, proportion clay in soil ompc_path (string): derived, estimated total soil organic matter bulkd_path (string): input, bulk density of soil Returns: awilt, wilting point for this soil layer """ awilt = numpy.empty(sand.shape, dtype=numpy.float32) awilt[:] = _TARGET_NODATA valid_mask = ( (~numpy.isclose(sand, sand_nodata)) & (~numpy.isclose(silt, silt_nodata)) & (~numpy.isclose(clay, clay_nodata)) & (ompc != _TARGET_NODATA) & (~numpy.isclose(bulkd, bulkd_nodata))) awilt[valid_mask] = ( -0.0059 * sand[valid_mask] + 0.1142 * silt[valid_mask] + 0.5766 * clay[valid_mask] + 2.228E-03 * ompc[valid_mask] + 0.02671 * bulkd[valid_mask]) return awilt sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] silt_nodata = pygeoprocessing.get_raster_info(silt_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] bulkd_nodata = pygeoprocessing.get_raster_info(bulkd_path)['nodata'][0] pygeoprocessing.raster_calculator( [(path, 1) for path in [ sand_path, silt_path, clay_path, ompc_path, bulkd_path]], awilt_op, awilt_path, gdal.GDT_Float32, _TARGET_NODATA) def _afiel_awilt( site_index_path, site_param_table, som1c_2_path, som2c_2_path, som3c_path, sand_path, silt_path, clay_path, bulk_d_path, pp_reg): """Calculate field capacity and wilting point for each soil layer. Computations based on Gupta and Larson 1979, 'Estimating soil and water retention characteristics from particle size distribution, organic matter percent and bulk density'. Water Resources Research 15:1633. Field capacity is calculated for -0.33 bar; wilting point is calculated for water content at -15 bars. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters including 'edepth' field som1c_2_path (string): path to the state variable 'som1c_2', active organic soil carbon som2c_2_path (string): path to the state variable 'som2c_2', slow organic soil carbon som3c_path (string): path to the state variable 'som3c', passive organic soil carbon sand_path (string): path to raster containing proportion sand in soil silt_path (string): path to raster containing proportion silt in soil clay_path (string): path to raster containing proportion clay in soil bulk_d_path (string): path to raster containing bulk density of soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation Modifies the rasters pp_reg['afiel_<layer>'] and pp_reg['awilt_<layer>'] for all soil layers. Returns: None """ def decrement_ompc(ompc_orig_path, ompc_dec_path): """Decrease estimated organic matter to 85% of its value. In each subsequent soil layer, estimated organic matter is decreased by 15%, to 85% of its previous value. Parameters: ompc_orig_path (string): path to estimated soil organic matter raster ompc_dec_path (string): path to result raster, estimated soil organic matter decreased to 85% of its previous value Side effects: modifies or creates the raster indicated by `ompc_dec_path` Returns: None """ def decrement_op(ompc_orig): """Reduce organic matter to 85% of its previous value.""" ompc_dec = numpy.empty(ompc_orig.shape, dtype=numpy.float32) ompc_dec[:] = _TARGET_NODATA valid_mask = (ompc_orig != _TARGET_NODATA) ompc_dec[valid_mask] = ompc_orig[valid_mask] * 0.85 return ompc_dec pygeoprocessing.raster_calculator( [(ompc_orig_path, 1)], decrement_op, ompc_dec_path, gdal.GDT_Float32, _TARGET_NODATA) # temporary intermediate rasters for calculating field capacity and # wilting point temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) edepth_path = os.path.join(temp_dir, 'edepth.tif') ompc_path = os.path.join(temp_dir, 'ompc.tif') site_to_edepth = dict( [(site_code, float(table['edepth'])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_edepth, edepth_path, gdal.GDT_Float32, _IC_NODATA) # estimate total soil organic matter _calc_ompc( som1c_2_path, som2c_2_path, som3c_path, bulk_d_path, edepth_path, ompc_path) # calculate field capacity and wilting point for each soil layer, # decreasing organic matter content by 85% with each layer for lyr in range(1, 10): afiel_path = pp_reg['afiel_{}_path'.format(lyr)] awilt_path = pp_reg['awilt_{}_path'.format(lyr)] _calc_afiel( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, afiel_path) _calc_awilt( sand_path, silt_path, clay_path, ompc_path, bulk_d_path, awilt_path) ompc_dec_path = os.path.join(temp_dir, 'ompc{}.tif'.format(lyr)) decrement_ompc(ompc_path, ompc_dec_path) ompc_path = ompc_dec_path # clean up temporary files shutil.rmtree(temp_dir) def _persistent_params( site_index_path, site_param_table, sand_path, clay_path, pp_reg): """Calculate persistent parameters. The calculated values do not change over the course of the simulation. Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sand_path (string): path to raster containing proportion sand in soil clay_path (string): path to raster containing proportion clay in soil pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['wc_path'] pp_reg['eftext_path'] pp_reg['p1co2_2_path'] pp_reg['fps1s3_path'] pp_reg['fps2s3_path'] pp_reg['orglch_path'] pp_reg['vlossg_path'] Returns: None """ sand_nodata = pygeoprocessing.get_raster_info(sand_path)['nodata'][0] clay_nodata = pygeoprocessing.get_raster_info(clay_path)['nodata'][0] # temporary intermediate rasters for persistent parameters calculation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in[ 'peftxa', 'peftxb', 'p1co2a_2', 'p1co2b_2', 'ps1s3_1', 'ps1s3_2', 'ps2s3_1', 'ps2s3_2', 'omlech_1', 'omlech_2', 'vlossg']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for ( site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_wc(afiel_1, awilt_1): """Calculate water content of soil layer 1.""" return afiel_1 - awilt_1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ pp_reg['afiel_1_path'], pp_reg['awilt_1_path']]], calc_wc, pp_reg['wc_path'], gdal.GDT_Float32, _TARGET_NODATA) def calc_eftext(peftxa, peftxb, sand): """Calculate effect of soil texture on microbial decomposition. Use an empirical regression to estimate the effect of soil sand content on the microbe decomposition rate. Line 359 Prelim.f Parameters: peftxa (numpy.ndarray): parameter, regression intercept peftxb (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: eftext, coefficient that modifies microbe decomposition rate. """ eftext = numpy.empty(sand.shape, dtype=numpy.float32) eftext[:] = _IC_NODATA valid_mask = ( (peftxa != _IC_NODATA) & (peftxb != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) eftext[valid_mask] = ( peftxa[valid_mask] + (peftxb[valid_mask] * sand[valid_mask])) return eftext pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['peftxa'], param_val_dict['peftxb'], sand_path]], calc_eftext, pp_reg['eftext_path'], gdal.GDT_Float32, _IC_NODATA) def calc_p1co2_2(p1co2a_2, p1co2b_2, sand): """Calculate the fraction of carbon lost to CO2 from som1c_2. During decomposition from active organic soil carbon, a fraction of decomposing material is lost to CO2 as the soil respires. Line 366 Prelim.f Parameters: p1co2a_2 (numpy.ndarray): parameter, intercept of regression predicting loss to CO2 from active organic soil carbon p1co2b_2 (numpy.ndarray): parameter, slope of regression predicting loss to CO2 from active organic soil carbon sand (numpy.ndarray): input, proportion sand in soil Returns: p1co2_2, fraction of carbon that flows to CO2 from active organic soil carbon """ p1co2_2 = numpy.empty(sand.shape, dtype=numpy.float32) p1co2_2[:] = _IC_NODATA valid_mask = ( (p1co2a_2 != _IC_NODATA) & (p1co2b_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) p1co2_2[valid_mask] = ( p1co2a_2[valid_mask] + (p1co2b_2[valid_mask] * sand[valid_mask])) return p1co2_2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['p1co2a_2'], param_val_dict['p1co2b_2'], sand_path]], calc_p1co2_2, pp_reg['p1co2_2_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps1s3(ps1s3_1, ps1s3_2, clay): """Calculate effect of clay content on decomposition from som1c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from soil organic matter with fast turnover to soil organic matter with slow turnover. Line 370 Prelim.f Parameters: ps1s3_1 (numpy.ndarray): parameter, regression intercept ps1s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps1s3, coefficient that modifies rate of decomposition from som1c_2 """ fps1s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps1s3[:] = _IC_NODATA valid_mask = ( (ps1s3_1 != _IC_NODATA) & (ps1s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps1s3[valid_mask] = ( ps1s3_1[valid_mask] + (ps1s3_2[valid_mask] * clay[valid_mask])) return fps1s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps1s3_1'], param_val_dict['ps1s3_2'], clay_path]], calc_fps1s3, pp_reg['fps1s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_fps2s3(ps2s3_1, ps2s3_2, clay): """Calculate effect of clay content on decomposition from som2c_2. Use an empirical regression to estimate the effect of clay content of soil on flow from slow soil organic carbon to soil passive organic carbon. Line 371 Prelim.f Parameters: ps2s3_1 (numpy.ndarray): parameter, regression intercept ps2s3_2 (numpy.ndarray): parameter, regression slope clay (numpy.ndarray): input, proportion clay in soil Returns: fps2s3, coefficient that modifies rate of decomposition from som2c_2 to som3c """ fps2s3 = numpy.empty(clay.shape, dtype=numpy.float32) fps2s3[:] = _IC_NODATA valid_mask = ( (ps2s3_1 != _IC_NODATA) & (ps2s3_2 != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) fps2s3[valid_mask] = ( ps2s3_1[valid_mask] + (ps2s3_2[valid_mask] * clay[valid_mask])) return fps2s3 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['ps2s3_1'], param_val_dict['ps2s3_2'], clay_path]], calc_fps2s3, pp_reg['fps2s3_path'], gdal.GDT_Float32, _IC_NODATA) def calc_orglch(omlech_1, omlech_2, sand): """Calculate the effect of sand content on leaching from soil. Use an empirical regression to estimate the effect of sand content of soil on rate of organic leaching from soil when there is drainage of soil water from soil layer 1 to soil layer 2. Line 110 Predec.f Parameters: omlech_1 (numpy.ndarray): parameter, regression intercept omlech_2 (numpy.ndarray): parameter, regression slope sand (numpy.ndarray): input, proportion sand in soil Returns: orglch, the fraction of organic compounds leaching from soil with drainage from soil layer 1 to layer 2 """ orglch = numpy.empty(sand.shape, dtype=numpy.float32) orglch[:] = _IC_NODATA valid_mask = ( (omlech_1 != _IC_NODATA) & (omlech_2 != _IC_NODATA) & (~numpy.isclose(sand, sand_nodata))) orglch[valid_mask] = ( omlech_1[valid_mask] + (omlech_2[valid_mask] * sand[valid_mask])) return orglch pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['omlech_1'], param_val_dict['omlech_2'], sand_path]], calc_orglch, pp_reg['orglch_path'], gdal.GDT_Float32, _IC_NODATA) def calc_vlossg(vlossg_param, clay): """Calculate proportion of gross mineralized N that is volatized. During decomposition, some N is lost to volatilization. This is a function of the gross mineralized N and is calculated according to this multiplier, which varies with soil clay content. Parameters: vlossg (numpy.ndarray): parameter, volatilization loss multiplier clay (numpy.ndarray): input, proportion clay in soil Returns: vlossg, proportion of gross mineralized N that is volatized """ valid_mask = ( (vlossg_param != _IC_NODATA) & (~numpy.isclose(clay, clay_nodata))) vlossg = numpy.empty(vlossg_param.shape, dtype=numpy.float32) vlossg[:] = _IC_NODATA max_mask = ((clay > 0.3) & valid_mask) min_mask = ((clay < 0.1) & valid_mask) vlossg[valid_mask] = -0.1 * (clay[valid_mask] - 0.3) + 0.01 vlossg[max_mask] = 0.01 vlossg[min_mask] = 0.03 vlossg[valid_mask] = vlossg[valid_mask] * vlossg_param[valid_mask] return vlossg pygeoprocessing.raster_calculator( [(path, 1) for path in [param_val_dict['vlossg'], clay_path]], calc_vlossg, pp_reg['vlossg_path'], gdal.GDT_Float32, _IC_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _aboveground_ratio(anps, tca, pcemic_1, pcemic_2, pcemic_3): """Calculate C/<iel> ratios of decomposing aboveground material. This ratio is used to test whether there is sufficient <iel> (N or P) in aboveground material for the material to decompose. Agdrat.f Parameters: anps (numpy.ndarray): state variable, N or P in the donor material tca (numpy.ndarray): state variable, total C in the donor material pcemic_1 (numpy.ndarray): parameter, maximum C/<iel> of new material pcemic_2 (numpy.ndarray): parameter, minimum C/<iel> of new material pcemic_3 (numpy.ndarray): parameter, minimum <iel> content of decomposing material that gives minimum C/<iel> of new material Returns: agdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(anps, _SV_NODATA)) & (~numpy.isclose(tca, _SV_NODATA)) & (pcemic_1 != _IC_NODATA) & (pcemic_2 != _IC_NODATA) & (pcemic_3 != _IC_NODATA)) cemicb = numpy.empty(anps.shape, dtype=numpy.float32) cemicb[:] = _IC_NODATA cemicb[valid_mask] = ( (pcemic_2[valid_mask] - pcemic_1[valid_mask]) / pcemic_3[valid_mask]) econt = numpy.empty(anps.shape, dtype=numpy.float32) econt[:] = _TARGET_NODATA econt[valid_mask] = 0 decompose_mask = ((tca > 0.) & valid_mask) econt[decompose_mask] = anps[decompose_mask] / (tca[decompose_mask] * 2.5) agdrat = numpy.empty(anps.shape, dtype=numpy.float32) agdrat[:] = _TARGET_NODATA agdrat[valid_mask] = pcemic_2[valid_mask] compute_mask = ((econt <= pcemic_3) & valid_mask) agdrat[compute_mask] = ( pcemic_1[compute_mask] + econt[compute_mask] * cemicb[compute_mask]) return agdrat def _belowground_ratio(aminrl, varat_1_iel, varat_2_iel, varat_3_iel): """Calculate C/<iel> ratios of decomposing belowground material. This ratio is used to test whether there is sufficient <iel> (N or P) in soil metabolic material to decompose. Bgdrat.f Parameters: aminrl (numpy.ndarray): derived, average surface mineral <iel> varat_1_iel (numpy.ndarray): parameter, maximum C/<iel> ratio for newly decomposed material varat_2_iel (numpy.ndarray): parameter, minimum C/<iel> ratio varat_3_iel (numpy.ndarray): parameter, amount of <iel> present when minimum ratio applies Returns: bgdrat, the C/<iel> ratio of new material """ valid_mask = ( (~numpy.isclose(aminrl, _SV_NODATA)) & (varat_1_iel != _IC_NODATA) & (varat_2_iel != _IC_NODATA) & (varat_3_iel != _IC_NODATA)) bgdrat = numpy.empty(aminrl.shape, dtype=numpy.float32) bgdrat[:] = _TARGET_NODATA bgdrat[valid_mask] = ( (1. - aminrl[valid_mask] / varat_3_iel[valid_mask]) * (varat_1_iel[valid_mask] - varat_2_iel[valid_mask]) + varat_2_iel[valid_mask]) max_mask = ((aminrl <= 0) & valid_mask) bgdrat[max_mask] = varat_1_iel[max_mask] min_mask = ((aminrl > varat_3_iel) & valid_mask) bgdrat[min_mask] = varat_2_iel[min_mask] return bgdrat def _structural_ratios(site_index_path, site_param_table, sv_reg, pp_reg): """Calculate maximum C/N and C/P ratios for structural material. These ratios limit decomposition of structural material (i.e., material containing lignin). Lines 31-77 Predec.f Parameters: site_index_path (string): path to site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters sv_reg (dict): map of key, path pairs giving paths to state variables for the current month pp_reg (dict): map of key, path pairs giving paths to persistent intermediate parameters that do not change over the course of the simulation. Modifies the persistent parameter rasters indexed by the following keys: pp_reg['rnewas_1_1_path'] pp_reg['rnewas_1_2_path'] pp_reg['rnewas_2_1_path'] pp_reg['rnewas_2_2_path'] pp_reg['rnewbs_1_1_path'] pp_reg['rnewbs_1_2_path'] pp_reg['rnewbs_2_1_path'] pp_reg['rnewbs_2_2_path'] Returns: None """ # temporary parameter rasters for structural ratios calculations temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for iel in [1, 2]: for val in[ 'pcemic1_2', 'pcemic1_1', 'pcemic1_3', 'pcemic2_2', 'pcemic2_1', 'pcemic2_3', 'rad1p_1', 'rad1p_2', 'rad1p_3', 'varat1_1', 'varat22_1']: target_path = os.path.join(temp_dir, '{}_{}.tif'.format(val, iel)) param_val_dict['{}_{}'.format(val, iel)] = target_path site_to_val = dict( [(site_code, float(table['{}_{}'.format(val, iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) def calc_rnewas_som2( pcemic2_2, pcemic2_1, pcemic2_3, struce_1, strucc_1, rad1p_1, rad1p_2, rad1p_3, pcemic1_2, rnewas1): """Calculate C/<iel> ratio for decomposition into som2. This ratio is calculated separately for each nutrient (i.e., N, P). When material decomposes into the surface slow organic pool, the C/<iel> ratio of decomposing material must be smaller than or equal to this ratio. A portion of the ratio of material entering som1, the surface active pool, is also added to som2 and calculated here. Parameters: pcemic2_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface slow organic pool pcemic2_1 (numpy.ndarray): parameter, maximum C/<iel> ratio for surface slow organic pool pcemic2_3 (numpy.ndarray): parameter, mimimum <iel> content of decomposing aboveground material, above which the C/<iel> ratio of the surface slow organic pool equals pcemic1_2 struce_1 (numpy.ndarray): state variable, <iel> in surface structural material strucc_1 (numpy.ndarray): state variable, C in surface structural material rad1p_1 (numpy.ndarray): parameter, intercept of regression used to calculate addition of <iel> from surface active pool rad1p_2 (numpy.ndarray): parameter, slope of regression used to calculate addition of <iel> from surface active pool rad1p_3 (numpy.ndarray): parameter, minimum allowable C/<iel> used to calculate addition term for C/<iel> ratio of som2 formed from surface active pool pcemic1_2 (numpy.ndarray): parameter, minimum C/<iel> ratio for surface active organic pool rnewas1 (numpy.ndarray): derived, C/<iel> ratio for decomposition into som1 Returns: rnewas2, required ratio for decomposition of structural material into som2 for one nutrient """ valid_mask = ( (pcemic2_2 != _IC_NODATA) & (pcemic2_1 != _IC_NODATA) & (pcemic2_3 != _IC_NODATA) & (~numpy.isclose(struce_1, _SV_NODATA)) & (~numpy.isclose(strucc_1, _SV_NODATA)) & (rad1p_1 != _IC_NODATA) & (rad1p_2 != _IC_NODATA) & (rad1p_3 != _IC_NODATA) & (pcemic1_2 != _IC_NODATA) & (rnewas1 != _TARGET_NODATA)) rnewas2 = _aboveground_ratio( struce_1, strucc_1, pcemic2_1, pcemic2_2, pcemic2_3) radds1 = numpy.empty(strucc_1.shape, dtype=numpy.float32) radds1[:] = _TARGET_NODATA radds1[valid_mask] = ( rad1p_1[valid_mask] + rad1p_2[valid_mask] * (rnewas1[valid_mask] - pcemic1_2[valid_mask])) rnewas2[valid_mask] = rnewas1[valid_mask] + radds1[valid_mask] rnewas2[valid_mask] = numpy.maximum( rnewas2[valid_mask], rad1p_3[valid_mask]) return rnewas2 for iel in [1, 2]: # calculate rnewas_iel_1 - aboveground material to SOM1 pygeoprocessing.raster_calculator( [(path, 1) for path in [ sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['pcemic1_1_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], param_val_dict['pcemic1_3_{}'.format(iel)]]], _aboveground_ratio, pp_reg['rnewas_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewas_iel_2 - aboveground material to SOM2 pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['pcemic2_2_{}'.format(iel)], param_val_dict['pcemic2_1_{}'.format(iel)], param_val_dict['pcemic2_3_{}'.format(iel)], sv_reg['struce_1_{}_path'.format(iel)], sv_reg['strucc_1_path'], param_val_dict['rad1p_1_{}'.format(iel)], param_val_dict['rad1p_2_{}'.format(iel)], param_val_dict['rad1p_3_{}'.format(iel)], param_val_dict['pcemic1_2_{}'.format(iel)], pp_reg['rnewas_{}_1_path'.format(iel)]]], calc_rnewas_som2, pp_reg['rnewas_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_1 - belowground material to SOM1 site_to_varat1_1 = dict([ (site_code, float(table['varat1_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat1_1, pp_reg['rnewbs_{}_1_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # calculate rnewbs_iel_2 - belowground material to SOM2 # rnewbs(iel,2) = varat22(1,iel) site_to_varat22_1 = dict([ (site_code, float(table['varat22_1_{}'.format(iel)])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (site_index_path, 1), site_to_varat22_1, pp_reg['rnewbs_{}_2_path'.format(iel)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _yearly_tasks( aligned_inputs, site_param_table, veg_trait_table, month_index, pft_id_set, year_reg): """Calculate quantities that remain static for 12 months. These quantities are annual precipitation, annual atmospheric N deposition, and the fraction of plant residue which is lignin for each pft. Century also calculates non-symbiotic soil N fixation once yearly, but here those were moved to monthly tasks. Century uses precipitation in the future 12 months (prcgrw) to predict root:shoot ratios, but here we instead use the sum of monthly precipitation in 12 months including the current one, if data for 12 future months are not available. Lines 79-82, 164 Eachyr.f Parameters: aligned_inputs (dict): map of key, path pairs indicating paths to aligned model inputs, including monthly precipitation and site spatial index raster site_param_table (dict): map of site spatial index to dictionaries that contain site-level parameters veg_trait_table (dict): map of pft id to dictionaries containing plant functional type parameters month_index (int): current monthly step, relative to 0 so that month_index=0 at first monthly time step pft_id_set (set): set of integers identifying plant functional types year_reg (dict): map of key, path pairs giving paths to the annual precipitation and N deposition rasters Side effects: modifies or creates the rasters indicated by: year_reg['annual_precip_path'] year_reg['baseNdep_path'] year_reg['pltlig_above_<pft>'] for each pft year_reg['pltlig_below_<pft>'] for each pft Returns: None Raises: ValueError if fewer than 12 monthly precipitation rasters can be found """ def calc_base_N_dep(epnfa_1, epnfa_2, prcann): """Calculate base annual atmospheric N deposition. Parameters: epnfa_1 (numpy.ndarray): parameter, intercept of regression predicting atmospheric N deposition from precipitation epnfa_2 (numpy.ndarray): parameter, slope of regression predicting atmospheric N deposition from precipitation prcann (numpy.ndarray): derived, annual precipitation Returns: baseNdep, annual atmospheric N deposition """ baseNdep = numpy.empty(prcann.shape, dtype=numpy.float32) baseNdep[:] = 0. valid_mask = ( (epnfa_1 != _IC_NODATA) & (epnfa_2 != _IC_NODATA) & (prcann != _TARGET_NODATA)) baseNdep[valid_mask] = ( epnfa_1[valid_mask] + (epnfa_2[valid_mask] * numpy.minimum(prcann[valid_mask], 80.))) baseNdep[baseNdep < 0] = 0. return baseNdep def calc_pltlig(fligni_1_lyr, fligni_2_lyr, prcann): """Calculate the fraction of residue that is lignin. Cmplig.f This fraction is used to calculate the fraction of residue (i.e., incoming litter from fall of standing dead or incoming soil from death of roots) that is partitioned to metabolic vs structural pools. It is calculated once per year from annual precipitation and fixed parameters. Parameters: fligni_1_lyr (numpy.ndarray): parameter, intercept for regression predicting lignin content fraction from rainfall fligni_2_lyr (numpy.ndarray): parameter, slope for regression predicting lignin content fraction from rainfall prcann (numpy.ndarray): derived, annual precipitation Returns: pltlig_lyr, fraction of residue that is lignin """ valid_mask = ( (fligni_1_lyr != _IC_NODATA) & (fligni_2_lyr != _IC_NODATA) & (prcann != _TARGET_NODATA)) pltlig = numpy.empty(fligni_1_lyr.shape, dtype=numpy.float32) pltlig[:] = _TARGET_NODATA pltlig[valid_mask] = ( fligni_1_lyr[valid_mask] + fligni_2_lyr[valid_mask] * prcann[valid_mask]) pltlig[valid_mask] = numpy.clip(pltlig[valid_mask], 0.02, 0.5) return pltlig offset = -12 annual_precip_rasters = [] while len(annual_precip_rasters) < 12: offset += 1 if offset == 12: raise ValueError("Insufficient precipitation rasters were found") precip_month = month_index + offset try: annual_precip_rasters.append( aligned_inputs['precip_%d' % precip_month]) except KeyError: continue precip_nodata = set([]) for precip_raster in annual_precip_rasters: precip_nodata.update( set([pygeoprocessing.get_raster_info(precip_raster)['nodata'][0]])) if len(precip_nodata) > 1: raise ValueError("Precipitation rasters include >1 nodata value") precip_nodata = list(precip_nodata)[0] raster_list_sum( annual_precip_rasters, precip_nodata, year_reg['annual_precip_path'], _TARGET_NODATA) # intermediate parameter rasters for this operation temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) param_val_dict = {} for val in['epnfa_1', 'epnfa_2']: target_path = os.path.join(temp_dir, '{}.tif'.format(val)) param_val_dict[val] = target_path site_to_val = dict( [(site_code, float(table[val])) for (site_code, table) in site_param_table.items()]) pygeoprocessing.reclassify_raster( (aligned_inputs['site_index'], 1), site_to_val, target_path, gdal.GDT_Float32, _IC_NODATA) for val in ['fligni_1_1', 'fligni_2_1', 'fligni_1_2', 'fligni_2_2']: for pft_i in pft_id_set: target_path = os.path.join( temp_dir, '{}_{}.tif'.format(val, pft_i)) param_val_dict['{}_{}'.format(val, pft_i)] = target_path fill_val = veg_trait_table[pft_i][val] pygeoprocessing.new_raster_from_base( aligned_inputs['site_index'], target_path, gdal.GDT_Float32, [_IC_NODATA], fill_value_list=[fill_val]) # calculate base N deposition pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['epnfa_1'], param_val_dict['epnfa_2'], year_reg['annual_precip_path']]], calc_base_N_dep, year_reg['baseNdep_path'], gdal.GDT_Float32, _TARGET_NODATA) for pft_i in pft_id_set: # fraction of surface residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_1_{}'.format(pft_i)], param_val_dict['fligni_2_1_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_above_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # fraction of soil residue that is lignin pygeoprocessing.raster_calculator( [(path, 1) for path in [ param_val_dict['fligni_1_2_{}'.format(pft_i)], param_val_dict['fligni_2_2_{}'.format(pft_i)], year_reg['annual_precip_path']]], calc_pltlig, year_reg['pltlig_below_{}'.format(pft_i)], gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def calc_latitude(template_raster, latitude_raster_path): """Calculate latitude at the center of each pixel in a template raster.""" pygeoprocessing.new_raster_from_base( template_raster, latitude_raster_path, gdal.GDT_Float32, [_IC_NODATA]) latitude_raster = gdal.OpenEx( latitude_raster_path, gdal.OF_RASTER | gdal.GA_Update) target_band = latitude_raster.GetRasterBand(1) base_raster_info = pygeoprocessing.get_raster_info(template_raster) geotransform = base_raster_info['geotransform'] for offset_map, raster_block in pygeoprocessing.iterblocks( (template_raster, 1)): n_y_block = raster_block.shape[0] n_x_block = raster_block.shape[1] # offset by .5 so we're in the center of the pixel xoff = offset_map['xoff'] + 0.5 yoff = offset_map['yoff'] + 0.5 # calculate the projected x and y coordinate bounds for the block x_range = numpy.linspace( geotransform[0] + geotransform[1] * xoff, geotransform[0] + geotransform[1] * (xoff + n_x_block - 1), n_x_block) y_range = numpy.linspace( geotransform[3] + geotransform[5] * yoff, geotransform[3] + geotransform[5] * (yoff + n_y_block - 1), n_y_block) # we'll use this to avoid generating any nodata points valid_mask = raster_block != base_raster_info['nodata'] # these indexes correspond to projected coordinates # y_vector is what we want, an array of latitude coordinates x_vector, y_vector = numpy.meshgrid(x_range, y_range) target_band.WriteArray( y_vector, xoff=offset_map['xoff'], yoff=offset_map['yoff']) # Making sure the band and dataset is flushed and not in memory target_band.FlushCache() target_band.FlushCache() target_band = None gdal.Dataset.__swig_destroy__(latitude_raster) latitude_raster = None def _calc_daylength(template_raster, month, daylength_path): """Calculate estimated hours of daylength. Daylen.c. Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January daylength_path (string): path to shortwave radiation raster Side effects: modifies or creates the raster indicated by `daylength_path` Returns: None """ def daylength(month): def _daylength(latitude): """Estimate hours of daylength for a given month and latitude.""" # Julian day at beginning of each month jday_list = [ 1, 32, 61, 92, 122, 153, 183, 214, 245, 275, 306, 337] jday = jday_list[month - 1] # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) declin = 0.4014 * numpy.sin(6.283185 * (jday - 77.0) / 365) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0] = 0 par1 = numpy.sqrt(temp) par2 = -numpy.tan(rlatitude) * numpy.tan(declin) ahou = numpy.arctan2(par1, par2) hours_of_daylength = (ahou / numpy.pi) * 24 return hours_of_daylength return _daylength # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], daylength(month), daylength_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _shortwave_radiation(template_raster, month, shwave_path): """Calculate shortwave radiation outside the atmosphere. Shortwave radiation outside the atmosphere is calculated according to Penman (1948), "Natural evaporation from open water, bare soil and grass", Proc. Roy. Soc. London. The latitude of each pixel is required to calculate radiation and is calculated as an intermediate step from the input `template_raster`. shwave.f Parameters: template_raster (string): path to a raster in geographic coordinates that is aligned with model inputs month (int): current month of the year, such that month=0 indicates January shwave_path (string): path to shortwave radiation raster Side effects: Modifies the raster indicated by `shwave_path` Returns: None """ def shwave(month): def _shwave(latitude): """Calculate shortwave radiation outside the atmosphere. Parameters: latitude (float): latitude of current site in degrees month (int): current month of the year, such that month=1 indicates January Returns: shwave, short wave solar radiation outside the atmosphere """ # Julian date in middle of each month of the year jday_list = [ 16, 46, 75, 106, 136, 167, 197, 228, 259, 289, 320, 350] jday = jday_list[month - 1] transcof = 0.8 # Convert latitude from degrees to radians rlatitude = latitude * (numpy.pi / 180.0) # short wave solar radiation on a clear day declin = 0.401426 * numpy.sin(6.283185 * (jday - 77.0) / 365.0) temp = 1.0 - (-numpy.tan(rlatitude) * numpy.tan(declin))**2 temp[temp < 0.] = 0. par1 = numpy.sqrt(temp) par2 = (-numpy.tan(rlatitude) * numpy.tan(declin)) ahou = numpy.arctan2(par1, par2) ahou[ahou < 0.] = 0. solrad = ( 917.0 * transcof * ( ahou * numpy.sin(rlatitude) * numpy.sin(declin) + numpy.cos(rlatitude) * numpy.cos(declin) * numpy.sin(ahou))) # short wave radiation outside the atmosphere shwave = solrad / transcof return shwave return _shwave # calculate an intermediate input, latitude at each pixel center temp_dir = tempfile.mkdtemp(dir=PROCESSING_DIR) latitude_raster_path = os.path.join(temp_dir, 'latitude.tif') calc_latitude(template_raster, latitude_raster_path) pygeoprocessing.raster_calculator( [(latitude_raster_path, 1)], shwave(month), shwave_path, gdal.GDT_Float32, _TARGET_NODATA) # clean up temporary files shutil.rmtree(temp_dir) def _reference_evapotranspiration( max_temp_path, min_temp_path, shwave_path, fwloss_4_path, pevap_path): """Calculate reference evapotranspiration. Reference evapotranspiration from the FAO Penman-Monteith equation in "Guidelines for computing crop water requirements", FAO Irrigation and drainage paper 56 (http://www.fao.org/docrep/X0490E/x0490e08.htm), modified by the parameter fwloss(4). Parameters: max_temp_path (string): path to maximum monthly temperature min_temp_path (string): path to minimum monthly temperature shwave_path (string): path to shortwave radiation outside the atmosphere fwloss_4_path (string): path to parameter, scaling factor for reference evapotranspiration pevap_path (string): path to result, reference evapotranspiration raster Side effects: modifies or creates the raster indicated by `pevap_path` Returns: None """ def _calc_pevap(max_temp, min_temp, shwave, fwloss_4): """Calculate reference evapotranspiration. Pevap.f Parameters: max_temp (numpy.ndarray): input, maximum monthly temperature min_temp (numpy.ndarray): input, minimum monthly temperature shwave (numpy.ndarray): derived, shortwave radiation outside the atmosphere fwloss_4 (numpy.ndarray): parameter, scaling factor for reference evapotranspiration Returns: pevap, reference evapotranspiration """ const1 = 0.0023 const2 = 17.8 langleys2watts = 54.0 valid_mask = ( (~numpy.isclose(max_temp, maxtmp_nodata)) & (~numpy.isclose(min_temp, mintmp_nodata)) & (shwave != _TARGET_NODATA) & (fwloss_4 != _IC_NODATA)) trange = numpy.empty(fwloss_4.shape, dtype=numpy.float32) trange[:] = _TARGET_NODATA trange[valid_mask] = max_temp[valid_mask] - min_temp[valid_mask] tmean = numpy.empty(fwloss_4.shape, dtype=numpy.float32) tmean[:] = _IC_NODATA tmean[valid_mask] = (max_temp[valid_mask] + min_temp[valid_mask]) / 2.0 # daily reference evapotranspiration daypet = numpy.empty(fwloss_4.shape, dtype=numpy.float32) daypet[:] = _TARGET_NODATA in1 = const1 * (tmean[valid_mask] + const2) in2 = numpy.sqrt(trange[valid_mask]) in3 = (shwave[valid_mask] / langleys2watts) daypet[valid_mask] = ( const1 * (tmean[valid_mask] + const2) * numpy.sqrt(trange[valid_mask]) * (shwave[valid_mask] / langleys2watts)) # monthly reference evapotranspiration, from mm to cm, # bounded to be at least 0.5 monpet = (daypet * 30.) / 10. monpet[monpet <= 0.5] = 0.5 pevap =
numpy.empty(fwloss_4.shape, dtype=numpy.float32)
numpy.empty
import logging from pathlib import Path import numpy as np from keras import backend as K from keras.callbacks import Callback, EarlyStopping, CSVLogger, ModelCheckpoint, TensorBoard, LearningRateScheduler from sklearn.metrics import f1_score, precision_score, recall_score, classification_report, confusion_matrix import setting from .tools import init_path LOGGER = logging.getLogger(setting.LOGGING_NAME) class MetricCallback(Callback): def __init__(self, predict_batch_size=64, include_on_batch=False): super(MetricCallback, self).__init__() self.predict_batch_size = predict_batch_size self.include_on_batch = include_on_batch def on_batch_end(self, batch, logs=None): if self.include_on_batch: logs['val_recall'] = np.float32('-inf') logs['val_precision'] = np.float32('-inf') logs['val_f1'] = np.float32('-inf') if self.validation_data: y_true = np.argmax(self.validation_data[1], axis=1) y_pred = np.argmax(self.model.predict(self.validation_data[0], batch_size=self.predict_batch_size), axis=1) self.set_scores(y_true, y_pred, logs) def on_train_begin(self, logs=None): if 'val_recall' not in self.params['metrics']: self.params['metrics'].append('val_recall') if 'val_precision' not in self.params['metrics']: self.params['metrics'].append('val_precision') if 'val_f1' not in self.params['metrics']: self.params['metrics'].append('val_f1') if 'val_auc' not in self.params['metrics']: self.params['metrics'].append('val_auc') def on_epoch_end(self, epoch, logs=None): logs['val_recall'] = np.float32('-inf') logs['val_precision'] =
np.float32('-inf')
numpy.float32
import numpy as np def random_policy(env): counter = 0 total_rewards = 0 reward = None while reward != 20: env.render() state, reward, done, info = env.step(env.action_space.sample()) counter += 1 total_rewards += reward print("Solved in {} Steps with a total reward of {}".format(counter, total_rewards)) # random_policy() # result : Solved in 3768 Steps with a total reward of -14556 def q_learning(env, episodes=1000, reward_decay=0.9, alpha=0.618): reward_tracker = [] n_states = env.observation_space.n n_actions = env.action_space.n Q = np.zeros([n_states, n_actions]) total_rewards = 0 for episode in range(1, episodes + 1): done = False total_rewards, reward = 0, 0 state = env.reset() while not done: action =
np.argmax(Q[state])
numpy.argmax
import gmsh import numpy as np from .mesher import Mesher def removeSurfaceMeshes(model: Mesher) -> None: """ In order to assign face based boundary conditions to surfaces (e.g. flux, convection), the surface mesh is compared to the volumetric mesh to identify the actual surface mesh. This is then removed afterwards. :param model: Mesher: The GMSH model """ tags = model.getPhysicalGroups(2) for tag in tags: # Remove all tri group surfaces print('removing surface {:s}'.format(model.getPhysicalName(2, tag[1]))) model.removePhysicalGroups(tag) def getNodesFromVolume(volumeName : str, model: Mesher): """ Gets the nodes for a specified volume :param volumeName: str - The volume domain in the model to obtain the nodes from :param model: Mesher: The GMSH model :return: """ vols = model.getPhysicalGroups(3) names = [(model.getPhysicalName(3, x[1]), x[1]) for x in vols] volTagId = -1 for name in names: if name[0] == volumeName: volTagId = name[1] if volTagId == -1: raise ValueError('Volume region ({:s}) was not found'.format(volumeName)) return model.mesh.getNodesForPhysicalGroup(3, volTagId)[0] def getNodesFromRegion(surfaceRegionName: str, model : Mesher): """ Gets the nodes for a specified surface region :param surfaceRegionName: str - The volume domain in the model to obtain the nodes from :param model: Mesher: The GMSH model :return: """ surfs = model.getPhysicalGroups(2) names = [(model.getPhysicalName(2, x[1]), x[1]) for x in surfs] surfTagId = -1 for name in names: if name[0] == surfaceRegionName: surfTagId = name[1] if surfTagId == -1: raise ValueError('Surface region ({:s}) was not found'.format(surfaceRegionName)) return model.mesh.getNodesForPhysicalGroup(2, surfTagId)[0] def getSurfaceFacesFromRegion(regionName, model): """ Gets the faces from a surface region, which are compatible with GMSH in order to apply surface BCs to. :param surfaceRegionName: str - The volume domain in the model to obtain the nodes from :param model: Mesher: The GMSH model :return: """ surfs = model.getPhysicalGroups(2) names = [(model.getPhysicalName(2, x[1]), x[1]) for x in surfs] surfTagId = -1 for name in names: if name[0] == regionName: surfTagId = name[1] if surfTagId == -1: raise ValueError('Surface region ({:s}) was not found'.format(regionName)) mesh = model.mesh surfNodeList2 = mesh.getNodesForPhysicalGroup(2, surfTagId)[0] # Get tet elements tetElList = mesh.getElementsByType(4) tetNodes = tetElList[1].reshape(-1, 4) tetMinEl = np.min(tetElList[0]) mask = np.isin(tetNodes, surfNodeList2) # Mark nodes which are on boundary ab =
np.sum(mask, axis=1)
numpy.sum
import pandas as pd import numpy as np import scipy as sp import os import errno from sklearn.decomposition import PCA import umap.distances as dist from sklearn.utils.extmath import svd_flip from sklearn.utils import check_array, check_random_state from scipy import sparse import sklearn.utils.sparsefuncs as sf from umap.umap_ import nearest_neighbors __version__ = "0.8.7" def find_corr_genes(sam, input_gene): """Rank genes by their spatially averaged expression pattern correlations to a desired gene. Parameters ---------- sam - SAM The analyzed SAM object input_gene - string The gene ID with respect to which correlations will be computed. Returns ------- A ranked list of gene IDs based on correlation to the input gene. """ all_gene_names = np.array(list(sam.adata.var_names)) D_avg = sam.adata.layers["X_knn_avg"] input_gene = np.where(all_gene_names == input_gene)[0] if input_gene.size == 0: print( "Gene note found in the filtered dataset. Note " "that genes are case sensitive." ) return pw_corr = generate_correlation_map(D_avg.T.A, D_avg[:, input_gene].T.A) return all_gene_names[np.argsort(-pw_corr.flatten())] def _pca_with_sparse(X, npcs, solver='arpack', mu=None, seed=0): random_state = check_random_state(seed) np.random.set_state(random_state.get_state()) random_init = np.random.rand(np.min(X.shape)) X = check_array(X, accept_sparse=['csr', 'csc']) if mu is None: mu = X.mean(0).A.flatten()[None, :] mdot = mu.dot mmat = mdot mhdot = mu.T.dot mhmat = mu.T.dot Xdot = X.dot Xmat = Xdot XHdot = X.T.conj().dot XHmat = XHdot ones = np.ones(X.shape[0])[None, :].dot def matvec(x): return Xdot(x) - mdot(x) def matmat(x): return Xmat(x) - mmat(x) def rmatvec(x): return XHdot(x) - mhdot(ones(x)) def rmatmat(x): return XHmat(x) - mhmat(ones(x)) XL = sp.sparse.linalg.LinearOperator( matvec=matvec, dtype=X.dtype, matmat=matmat, shape=X.shape, rmatvec=rmatvec, rmatmat=rmatmat, ) u, s, v = sp.sparse.linalg.svds(XL, solver=solver, k=npcs, v0=random_init) u, v = svd_flip(u, v) idx = np.argsort(-s) v = v[idx, :] X_pca = (u * s)[:, idx] ev = s[idx] ** 2 / (X.shape[0] - 1) total_var = sf.mean_variance_axis(X, axis=0)[1].sum() ev_ratio = ev / total_var output = { 'X_pca': X_pca, 'variance': ev, 'variance_ratio': ev_ratio, 'components': v, } return output def nearest_neighbors_wrapper(X,n_neighbors=15,metric='correlation',metric_kwds={},angular=True,random_state=0): random_state=np.random.RandomState(random_state) return nearest_neighbors(X,n_neighbors,metric,metric_kwds,angular,random_state)[:2] def knndist(nnma): x, y = nnma.nonzero() data = nnma.data knn = y.reshape((nnma.shape[0], nnma[0, :].data.size)) val = data.reshape(knn.shape) return knn, val def save_figures(filename, fig_IDs=None, **kwargs): """ Save figures. Parameters ---------- filename - str Name of output file fig_IDs - int, numpy.array, list, optional, default None A list of open figure IDs or a figure ID that will be saved to a pdf/png file respectively. **kwargs - Extra keyword arguments passed into 'matplotlib.pyplot.savefig'. """ import matplotlib.pyplot as plt if fig_IDs is not None: if type(fig_IDs) is list: savetype = "pdf" else: savetype = "png" else: savetype = "pdf" if savetype == "pdf": from matplotlib.backends.backend_pdf import PdfPages if len(filename.split(".")) == 1: filename = filename + ".pdf" else: filename = ".".join(filename.split(".")[:-1]) + ".pdf" pdf = PdfPages(filename) if fig_IDs is None: figs = [plt.figure(n) for n in plt.get_fignums()] else: figs = [plt.figure(n) for n in fig_IDs] for fig in figs: fig.savefig(pdf, format="pdf", **kwargs) pdf.close() elif savetype == "png": plt.figure(fig_IDs).savefig(filename, **kwargs) def weighted_PCA(mat, do_weight=True, npcs=None, solver="auto",seed = 0): # mat = (mat - np.mean(mat, axis=0)) if do_weight: if min(mat.shape) >= 10000 and npcs is None: print( "More than 10,000 cells. Running with 'npcs' set to < 1000 is" " recommended." ) if npcs is None: ncom = min(mat.shape) else: ncom = min((min(mat.shape), npcs)) pca = PCA(svd_solver=solver, n_components=ncom,random_state=check_random_state(seed)) reduced = pca.fit_transform(mat) scaled_eigenvalues = pca.explained_variance_ scaled_eigenvalues = scaled_eigenvalues / scaled_eigenvalues.max() reduced_weighted = reduced * scaled_eigenvalues[None, :] ** 0.5 else: pca = PCA(n_components=npcs, svd_solver=solver,random_state=check_random_state(seed)) reduced = pca.fit_transform(mat) if reduced.shape[1] == 1: pca = PCA(n_components=2, svd_solver=solver,random_state=check_random_state(seed)) reduced = pca.fit_transform(mat) reduced_weighted = reduced return reduced_weighted, pca def transform_wPCA(mat, pca): mat = mat - pca.mean_ reduced = mat.dot(pca.components_.T) v = pca.explained_variance_ # .var(0) scaled_eigenvalues = v / v.max() reduced_weighted = np.array(reduced) * scaled_eigenvalues[None, :] ** 0.5 return reduced_weighted def search_string(vec, s, case_sensitive=False, invert=False): vec = np.array(vec) if isinstance(s,list): S = s else: S = [s] V=[]; M=[] for s in S: m = [] if not case_sensitive: s = s.lower() for i in range(len(vec)): if case_sensitive: st = vec[i] else: st = vec[i].lower() b = st.find(s) if not invert and b != -1 or invert and b == -1: m.append(i) if len(m) > 0: V.append(vec[np.array(m)]); M.append(np.array(m)) if len(V)>0: i = len(V) if not invert: V = np.concatenate(V); M = np.concatenate(M); if i > 1: ix = np.sort(np.unique(M,return_index=True)[1]) V=V[ix]; M=M[ix]; else: for i in range(len(V)): V[i]=list(set(V[i]).intersection(*V)) V = vec[np.in1d(vec,np.unique(np.concatenate(V)))] M = np.array([np.where(vec==x)[0][0] for x in V]) return V,M else: return -1,-1 def distance_matrix_error(dist1, dist2): s = 0 for k in range(dist1.shape[0]): s += np.corrcoef(dist1[k, :], dist2[k, :])[0, 1] return 1 - s / dist1.shape[0] def generate_euclidean_map(A, B): a = (A ** 2).sum(1).flatten() b = (B ** 2).sum(1).flatten() x = a[:, None] + b[None, :] - 2 * np.dot(A, B.T) x[x < 0] = 0 return np.sqrt(x) def generate_correlation_map(x, y): mu_x = x.mean(1) mu_y = y.mean(1) n = x.shape[1] if n != y.shape[1]: raise ValueError("x and y must " + "have the same number of timepoints.") s_x = x.std(1, ddof=n - 1) s_y = y.std(1, ddof=n - 1) s_x[s_x == 0] = 1 s_y[s_y == 0] = 1 cov = np.dot(x, y.T) - n * np.dot(mu_x[:, None], mu_y[None, :]) return cov / np.dot(s_x[:, None], s_y[None, :]) def extract_annotation(cn, x, c="_"): m = [] if x is not None: for i in range(cn.size): f = cn[i].split(c) x = min(len(f) - 1, x) m.append(f[x]) return np.array(m) else: ms = [] ls = [] for i in range(cn.size): f = cn[i].split(c) m = [] for x in range(len(f)): m.append(f[x]) ms.append(m) ls.append(len(m)) ml = max(ls) for i in range(len(ms)): ms[i].extend([""] * (ml - len(ms[i]))) if ml - len(ms[i]) > 0: ms[i] = np.concatenate(ms[i]) ms = np.vstack(ms) MS = [] for i in range(ms.shape[1]): MS.append(ms[:, i]) return MS def isolate(dt, x1, x2, y1, y2): return np.where( np.logical_and( np.logical_and(dt[:, 0] > x1, dt[:, 0] < x2), np.logical_and(dt[:, 1] > y1, dt[:, 1] < y2), ) )[0] def to_lower(y): x = y.copy().flatten() for i in range(x.size): x[i] = x[i].lower() return x def to_upper(y): x = y.copy().flatten() for i in range(x.size): x[i] = x[i].upper() return x def create_folder(path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def convert_annotations(A): x = np.unique(A) y = np.zeros(A.size) z = 0 for i in x: y[A == i] = z z += 1 return y.astype("int") def nearest_neighbors_hnsw(x,ef=200,M=48,n_neighbors = 100): import hnswlib labels = np.arange(x.shape[0]) p = hnswlib.Index(space = 'cosine', dim = x.shape[1]) p.init_index(max_elements = x.shape[0], ef_construction = ef, M = M) p.add_items(x, labels) p.set_ef(ef) idx, dist = p.knn_query(x, k = n_neighbors) return idx,dist def calc_nnm(g_weighted, k, distance=None): if g_weighted.shape[0] > 0: if distance == 'cosine': nnm, dists = nearest_neighbors_hnsw(g_weighted, n_neighbors=k) else: nnm, dists = nearest_neighbors_wrapper(g_weighted, n_neighbors=k, metric=distance) EDM = gen_sparse_knn(nnm, dists) EDM = EDM.tocsr() return EDM def compute_distances(A, dm): if dm == "euclidean": m = np.dot(A, A.T) h = np.diag(m) x = h[:, None] + h[None, :] - 2 * m x[x < 0] = 0 dist =
np.sqrt(x)
numpy.sqrt
""" Implement a Vanilla NBP and NRW model for MC simulation of the NTE. Code for the article "Monte Carlo Methods for the Neutron Transport Equation. By <NAME>, <NAME>, <NAME>, <NAME>. Thi sfile contains the code to produce the plots in the case of the 2D version of the NTE. MIT License Copyright (c) <NAME>, 2020. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from scipy.ndimage.filters import gaussian_filter class circle: """Shape to determine area of scatter/branching.""" def __init__(self, centre, radius): self.centre = centre self.radius = radius def time_in_circle(self, pos, theta, v): """Compute entry, exit times in circle for given trajectory.""" a = v**2 b = 2*v*((pos[0] - self.centre[0])*np.cos(theta) + (pos[1] - self.centre[1])*np.sin(theta)) c = ((pos[0] - self.centre[0])**2 + (pos[1] - self.centre[1])**2 - self.radius**2) det = b**2 - 4*a*c if det < 0: self.entry_time = -100 self.exit_time = -100 elif det == 0: self.entry_time = (-b - np.sqrt(det))/(2*a) self.exit_time = self.entry_time else: if -b - np.sqrt(det) < 0: if -b + np.sqrt(det) > 0: self.entry_time = 0 self.exit_time = (-b + np.sqrt(det))/(2*a) else: self.entry_time = -100 self.exit_time = -100 else: self.entry_time = (-b - np.sqrt(det))/(2*a) self.exit_time = (-b + np.sqrt(det))/(2*a) return self.entry_time, self.exit_time def interval_in_circle(self, traj, max_time): """Compute entry, exit times for a given "stick".""" en, ex = self.time_in_circle(traj[1], traj[2], traj[3]) if (en >= 0 and en < (max_time-traj[0])): return traj[0]+en, min(traj[0]+ex, max_time) else: return None def in_circle(self, pos): """Return true if the position is in the circle.""" return ((pos[0]-self.centre[0])**2. + (pos[1]-self.centre[1])**2. <= self.radius**2.) class domain: """Define a spatial domain (in 2d) with Scattering rates and boundaries.""" def __init__(self, L=1, A=np.array([[-1, 0], [1, 0], [0, 1], [0, -1]]), b=np.array([1.0, 1.0, 1.0, 1.0])): # L is outer box size. Might be used to discretize space in e.g. # plotting. # A, b define the domain, so x is in the domain if and only if # |x_i| <= L and A x \le b for each coordinate. # The default is the box [-1,1] x [-1,1] # List of scatter locations self.A = A self.b = b self.L = L def is_in_domain(self, pos): """Is the position pos in the Domain.""" return np.all((self.b - self.A@pos >= 0)) def exit_time(self, pos, theta, v=1.0): """When does the particle exit the Domain.""" z = np.array([np.cos(theta), np.sin(theta)]) return min(filter(lambda x: x >= 0, (self.b-self.A@pos)/(v*self.A@z))) def exit_time_reverse(self, pos, theta, v=1.0): """When does the particle exit the domain, travelling in reverse.""" z = np.array([np.cos(theta), np.sin(theta)]) return min(filter(lambda x: x >= 0, (self.A@pos - self.b)/(v*self.A@z))) class SubPathCircles: """Define a subpath of a 2D-neutron trajectory through domain with circles. Note that in circle, rates are for additional branching/scattering over base rate of domain. """ def __init__(self, tstart, xstart, thetastart, vstart, tfin, srate_dom, srate_circ, brate_dom, brate_circ): self.tstart = tstart self.xstart = xstart self.thetastart = thetastart self.vstart = vstart self.tfin = tfin self.drate = srate_dom self.crate = srate_circ self.drate_b = brate_dom self.crate_b = brate_circ self.alive = True self.c1 = circle(np.array([0.5, 0.5]), 0.25) self.c2 = circle(np.array([0.5, -0.5]), 0.25) self.c3 = circle(np.array([-0.5, 0.5]), 0.25) self.c4 = circle(np.array([-0.5, -0.5]), 0.25) self.c = [self.c1, self.c2, self.c3, self.c4] self.d = domain() self.circle_time = [] self.turn = [[self.tstart, self.xstart, self.thetastart, self.vstart]] self.scatter(self.tfin, self.drate, self.crate, self.drate_b, self.crate_b) # self.time_in_circle(self.c) def in_circle(self, time_in, time_out, event_time): """Return true if particle is in any circle at event time. Expects time_in, time_out to be entry/exit times of circle. Event time is time after the entry. """ return (time_in + event_time <= time_out) def scatter(self, tfin, srate_dom, srate_circ, brate_dom, brate_circ): """ Generate paths up to time tfin. Parameters ---------- tfin : TYPE real Time to generate paths up to. srate_dom : TYPE Scatter rate in the domain. srate_circ : TYPE Extra scatter rate observed in circles. brate_dom : TYPE Branch rate in domain. brate_circ : TYPE Extra scatter observed in circles. Returns ------- TYPE list List of times and places of scatter events up to tfin, or death. If particle survives, last location is not a scatter. """ zeta = self.d.exit_time(self.xstart, self.thetastart, self.vstart) temp = self.tstart position = self.xstart angle = self.thetastart speed = self.vstart while temp < tfin and self.alive: circle_times = [circ.time_in_circle(position, angle, speed) for circ in self.c] if (srate_dom+brate_dom) > 0: d_exp = -np.log(np.random.uniform())/(srate_dom+brate_dom) else: d_exp = math.inf if (srate_circ+brate_circ) > 0: c_exp = (-np.log(np.random.uniform(size=len(self.c))) / (srate_circ + brate_circ)).tolist() Exp = min(d_exp, min([math.inf] + [(circle_times[c_exp.index(stime)][0] + stime) for stime in c_exp if self.in_circle( circle_times[c_exp.index(stime)][0], circle_times[c_exp.index(stime)][1], stime)])) else: Exp = d_exp # if (Exp == math.inf) and (temp + zeta < tfin): # self.alive = False # self.tfin = temp + zeta # self.turn.append([self.tfin, # [position[0]+speed*np.cos(angle)*zeta, # position[1]+speed*np.sin(angle)*zeta], # angle, speed]) # temp += Exp if np.min([temp + Exp, temp + zeta]) < tfin: if Exp >= zeta: # Hits Boundary before tfin self.alive = False self.tfin = temp + zeta self.turn.append([temp + zeta, [position[0] + speed * np.cos(angle) * zeta, position[1] + speed * np.sin(angle) * zeta], angle, speed]) temp = temp + zeta else: # Scatter before tfin position = [position[0] + np.cos(angle) * speed * Exp, position[1] + np.sin(angle) * speed * Exp] angle = np.random.uniform(0, 2 * np.pi)-np.pi speed = self.vstart zeta = self.d.exit_time(position, angle, speed) self.tfin = temp + Exp temp = temp + Exp self.turn.append([temp, position, angle, speed]) else: # reach tfin: position = [position[0] +
np.cos(angle)
numpy.cos
""" ==================================== SDE INTEGRATION AND REALIZATIONS OF STOCHASTIC PROCESSES ==================================== * ``paths_generator``, ``integrator``, ``SDE`` and ``SDEs`` classes, * ``integrate`` decorator, * realization of stochastic processes. """ import numpy as np from numpy import sqrt, exp, log from .infrastructure import ( process, wiener_source, poisson_source, cpoisson_source, norm_rv, double_exp_rv ) ######################################## # Private functions for recurring tasks ######################################## from .infrastructure import ( _get_default_rng, _shape_setup, _const_param_setup, _variable_param_setup, _source_setup, _signature, _empty ) ############################ # The paths_generator class ############################ class paths_generator: """ Step by step generation of stochastic simulations across multiple paths, intended for subclassing. Given a number of requested paths, shapes and output timeline, encapsulates the low level tasks of memory allocation and step by step iteration along the timeline. The definition of the target iteration steps (``pace`` method), initialization (``begin`` method), computation of next step (``next`` method), storing results at points on the requested timeline (``store`` method), cleaning up (``end`` method) and evaluation of a final result to be returned (``exit`` method), are delegated to subclasses. Instances are callables with signature ``(timeline)`` that iterate subclass methods along the given timeline, using the configuration set out at instantiation. Parameters ---------- paths : int Size of last axis of the allocated arrays (number of paths of the simulation). xshape : int or tuple of int Shape of values that will be stored at each point of the output timeline. wshape : int or tuple of int Shape of working space used for step by step iteration. dtype : data-type Data-type of the output and working space. steps : iterable, or int, or None Specification of the time points to be touched during the simulation (as defined by the ``pace`` method). Default behaviour is: - if ``None``, the simulated steps coincide with the timeline; - if ``int``, the simulated steps touch all timeline points, as well as ``steps`` equally spaced points between the minimum and maximum point in the timeline; - if iterable, the simulated steps touch all timeline points, as well as all values in ``steps`` between the minimum and maximum points in the timeline. i0 : int Index along the timeline at which the simulation starts. The timeline is assumed to be in ascending order. The simulation is performed backwards from ``timeline[i0]`` to ``timeline[0]``, and forwards from ``timeline[i0]`` to ``timeline[-1]``. info : dict, or None Diagnostic information about the simulation is stored in this dictionary and is accessible as the ``info`` attribute. If ``None``, a new empty ``dict`` is used. getinfo : bool If ``True`` (default), records basic information in the ``info`` attribute about the last performed simulation (if the simulation is both backwards and forwards, the information pertains to the forwards part only). Used by subclasses to enable/disable diagnostic info generation. Returns ------- simulation results Once instantiated as ``p``, ``p(timeline)`` runs the simulation along the given timeline, based on parameters of instantiation, returning results as determined by subclass methods. Defaults to ``(tt, xx)`` where ``tt`` is a reference to ``timeline`` and ``xx`` is an array of ``numpy.nan`` of the requested shape. See Also -------- integrator SDE SDEs Notes ----- All initialization parameters are stored as attributes of the same name, and may be accessed by subclasses. During the simulation, a ``itervars`` attribute is present, pointing to a dictionary that contains the following items, to be used by subclass methods (double letters refer to values along the entire timeline, single letters refer to single time points): * ``steps_tt`` : an array of all time points to be touched by the simulation. It consolidates the output timeline and the time points to be touched, as specified by ``steps``. * ``tt``: the output timeline. * ``xx``: simulation output, an array of shape ``tt.shape + xshape + (paths,)``. ``xx[i]`` is the simulated value at time ``tt[i]``. * ``sw``: working space for time points, an array of shape ``(depth,)``. * ``xw``: working space for paths generation, an array of objects of shape ``(depth,)``, where each of ``xw[k]`` is an array of shape ``wshape + (paths,)``. * ``reverse`` : ``True`` if the simulation runs backwards, ``False`` otherwise. If ``True``, ``steps_tt`` and ``tt`` are in descending order. * ``i`` : such that ``tt[i]`` is the next point along the timeline that will be reached (when invoking ``next``), or the point that was just reached (when invoking ``store``). Note that: * ``sw`` and ``xw`` are rolled at each iteration: subclass methods should not rely on storing references to their elements across iterations. * ``xw[k][...] = value`` broadcasts ``value`` into the allocated memory of ``xw[k]`` (this is usually what you want), ``xw[k] = value`` stores ``value``, as an object, in ``xw[k]`` (avoid). * ``xx`` and ``xw[k]`` are initialized to arrays filled with ``numpy.nan``. Attributes ---------- depth : int Number of time points to be stored in the working space. Defaults to 2. Methods ------- __call__ pace begin next store end exit """ def __init__(self, *, paths=1, xshape=(), wshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True): self.paths = paths self.xshape = _shape_setup(xshape) self.wshape = _shape_setup(wshape) self.dtype = dtype self.steps, self.i0 = steps, i0 self.info = {} if info is None else info self.getinfo = getinfo super().__init__() # public interface vs subclasses # ------------------------------ depth = 2 # should be set in subclasses to be an integer >= 2 def pace(self, timeline): """ Target integration steps for the current integration. Parameters ---------- timeline : array Requested simulation timeline, cast as an array of float data-type. Returns ------- array Target time points to be touched during the simulation (typically, more thinly spaced than the output time points in ``timeline``, based on the ``steps`` parameter), to be merged with ``timeline``. May be overridden by subclasses. For default behaviour, see paths_generator class documentation. """ steps = self.steps ttype = timeline.dtype if timeline.size == 1: return timeline elif steps is None: return np.array((), dtype=ttype) elif np.isscalar(steps): return np.linspace(timeline[0], timeline[-1], steps, dtype=ttype) else: return np.fromiter(steps, dtype=ttype) def begin(self): """ Set initial conditions. Given the time points ``sw[0], ..., sw[depth - 2]``, should define and store in the working space the corresponding initial values ``xw[0], ..., xw[depth - 2]``. Note that when ``begin`` gets called, ``sw[depth - 1]`` and ``xw[depth - 1]`` are undefined and will be respectively set, and computed, at the first iteration. Notes ----- It is called once for each backwards and forwards simulation, after memory allocation and before starting the iteration along the time points in ``steps_tt``. Outline of expected code for ``depth=2``:: # access itervars iv = self.itervars sw, xw = iv['sw'], iv['xw'] # this is the initial time, taken from the # simulation timeline t0 = sw[0] assert t0 == iv['steps_tt'][0] == iv['tt'][0] # store the initial condition xw[0][...] = 1. Must be provided by subclasses. """ pass def next(self): """ Numerical simulation step. Given the points ``sw[0], ..., sw[depth - 2]`` and the corresponding values ``xw[0], ..., xw[depth - 2]``, should: 1. Optionally modify the target next time point ``sw[depth - 1]``, to a value between ``sw[depth - 2]`` and ``sw[depth - 1]`` (this allows for adaptive time steps, with the constraint of touching all point specified by the output timeline and the ``steps`` parameter). 2. Compute the corresponding value ``xw[depth - 1]`` Notes ----- It is called once per iteration step. Outline of expected code for ``depth=2``:: # access itervars iv = self.itervars sw, xw = iv['sw'], iv['xw'] # get starting values, and time step to be taken s0, x0 = sw[0], xw[0] ds = sw[1] - sw[0] # compute and store the next step xw[1][...] = x0 + ds Must be provided by subclasses. """ pass def store(self, i, k): """ Store the current integration step into the integration output. Should take the k-th value in the working space ``xw``, transform it if need be, and store it as the output ``xx[i]`` at the output time point ``tt[i]``. Parameters ---------- i : int Index of the output timeline point to set as output. k : int Index of the working space point to use as input. Notes ----- It is called initially to store the initial values that belong to the output timeline, among those put into the working space by ``begin``, and later during the iteration, each time the simulation touches a point on the output timeline. Outline of expected code for ``xshape == wshape`` and an exponentiation transformation:: # access itervars iv = self.itervars sw, xw = iv['sw'], iv['xw'] xx = iv['xx'] # this is the current time, also found # along the output timeline s = sw[k] assert s == iv['tt'][i] # transform and store np.exp(xw[k], out=xx[i]) Must be provided by subclasses. """ pass def end(self): """ End of iteration optional tasks. It is called once for each backwards and forwards simulation, once the final point in the output timeline has been reached and the simulation ends. After it is called, ``itervars`` are deleted. May be provided by subclasses. """ pass def exit(self, tt, xx): """ Final tasks and construction of the output value(s). Parameters ---------- tt : array Output timeline. It is the timeline passed to the ``__call__`` method, cast as an array, with its original data-type (if the data-type is of integer kind, the simulation is carried out using floats). xx : array Output values along the timeline, as computed by ``next`` and stored by ``store`` methods. Notes ----- It is called once, after backwards and/or forwards simulations have been completed, and its return value is returned. Default implementation:: return tt, xx May be provided by subclasses. """ return tt, xx # private methods # --------------- def _store_if_reached(self, i, k): iv = self.itervars tt, sw, reverse = iv['tt'], iv['sw'], iv['reverse'] diff = (tt[i] - sw[k]) * (-1 if reverse else 1) if diff < 0: # should never occur raise RuntimeError( 'invalid path generation step encountered in {}: ' 'realized s={} is beyond target value t={}' .format(self, sw[k], tt[i])) elif tt[i] == sw[k]: self.store(i, k) return 1 else: return 0 def _generate_paths(self, steps_tt, tt, xx, sw, xw, reverse): K = self.depth # set itervars to be used by subclass methods # ------------------------------------------- self.itervars = dict(steps_tt=steps_tt, tt=tt, xx=xx, sw=sw, xw=xw, reverse=reverse) # set steps iterator # ------------------ st = iter(steps_tt) # initialize working space # ------------------------ # set sw[0] ... sw[K-2] for k in range(K-1): sw[k] = next(st) # invoke cooperative subclass method 'being' # (should initialize xw[0:K-1], given sw[0:K-1]) self.begin() # store initial condition x[0] at t[0] == sw[0], and possibly # other output values if any of the sw[1], ..., sw[K-1] is # part of the requested timeline t i = 0 for k in range(K-1): # invoke cooperative subclass method 'store' i += self._store_if_reached(i, k) # MAIN LOOP # --------- target_s = current_s = sw[-2] # any same value will do while i < tt.size: # when the iteration begins: # sw[0:K-1], xw[0:K-1] refer to the last stored K-1 steps # s[K-1] == s[-1], xw[K-1] == xw[-1] are undefined # and will be used to store the next computed step # i is such that x[i] is the last stored output value # ------------------------------------------------------ # if the previous step reached target_s, get next time point if current_s == target_s: target_s = next(st) # set sw[-1] to the target time point sw[-1] = target_s self.itervars['i'] = i # call cooperative subclass method 'next' # (should decrease or leave unchanged, but not # increase, the time point sw[-1], and compute the # corresponding xw[-1]) self.next() # check the adjusted step size is within permitted bounds order_ok = (sw[-2] > sw[-1] >= target_s if reverse else sw[-2] < sw[-1] <= target_s) if not order_ok: raise RuntimeError( 'invalid path generation step encountered in {}: ' 's={} was followed by s+ds={}, beyond requested s+ds={}' .format(self, sw[-2], sw[-1], target_s)) # invoke cooperative subclass method 'store' di = self._store_if_reached(i=i, k=-1) # update diagnostic info if self.getinfo: self.info['computed_steps'] += 1 self.info['stored_steps'] += di # prepare next iteration current_s = sw[-1] sw[...] = np.roll(sw, -1) xw[...] = np.roll(xw, -1) i += di # invoke cooperative subclass method 'end' self.end() # clean up temporary variables del self.itervars def __call__(self, timeline): """ Run the simulation along the given timeline. Parameters ---------- timeline : array-like A one dimensional array of strictly increasing numbers, defining the timeline of the simulation. Returns ------- Simulation results, as specified by subclass methods. """ paths, xshape, wshape = self.paths, self.xshape, self.wshape dtype, i0 = self.dtype, self.i0 K = self.depth # set dtype default if dtype is None: dtype = float # enforce depth >= 2 if K < 2: raise ValueError( 'the depth of the integrator algorithm should be ' '>= 2, not {}'.format(K)) # preprocess and validate the result's timeline # --------------------------------------------- tt = np.asarray(timeline) if tt.shape != (tt.size,): raise ValueError( 'the integration timeline should be a one-dimensional array, ' 'not an array of shape {}'.format(tt.shape)) if not np.array_equal(tt, np.unique(tt)): raise ValueError( 'the integration timeline sholud be ' 'an array of strictly increasing numbers, ' 'but {} was given' .format(tt)) try: if not np.isscalar(tt[i0]): raise IndexError() except IndexError: raise IndexError( 'i0 should be an integer indexing an element of the ' 'integration timeline, but {} was given' .format(i0)) # NOTE: # if tt is an integer type, the use of floats is forced in # computations. the integer tt is finally passed to self.exit # to be set as the timeline of the returned process ttype = float if tt.dtype.kind == 'i' else tt.dtype tt, tt_asis = tt.astype(ttype), tt # built the integration steps # --------------------------- tmin, tmax = tt[0], tt[-1] target_tt = self.pace(tt) target_tt = target_tt[np.logical_and(target_tt >= tmin, target_tt <= tmax)] steps_tt = np.unique(np.concatenate((target_tt, tt))) if len(steps_tt) < K-1: raise ValueError( 'at least {} time points are needed ' 'for a paths_generator with depth {}' .format(K-1, K) ) # steps_tt consolidates all target integration points and all points # in the timeline to be returned # memory allocation # ----------------- xx = np.full(tt.shape + xshape + (paths,), np.nan, dtype=dtype) xw = np.empty(K, dtype=object) sw = np.full(K, np.nan, dtype=ttype) for k in range(K): xw[k] = np.full(wshape + (paths,), np.nan, dtype=dtype) # store/initialize info # --------------------- if self.getinfo: self.info.update( t0=tt[i0], tmin=tt[0], tmax=tt[-1], computed_steps=0, stored_steps=0 ) # MAIN LOOP # --------- # get integration timeline and locate tt[i0] into it j0 = np.where(steps_tt == tt[i0]) assert len(j0) == 1 and j0[0].shape == (1,) j0 = j0[0][0] # integrate backwards if not starting from the first point if i0 != 0: self._generate_paths(steps_tt[j0::-1], tt[i0::-1], xx[i0::-1], sw, xw, reverse=True) # integrate forwards if not starting from last point # (if tt.size==1, integrates only forwards) if i0 == 0 or i0 not in (-1, tt.size - 1): self._generate_paths(steps_tt[j0:], tt[i0:], xx[i0:], sw, xw, reverse=False) # Postprocess and exit # -------------------- return self.exit(tt_asis, xx) ############################################ # SDE integration frameword: # the integraor and SDE cooperating classes ############################################ # ------------------------- # The integrator class # ------------------------- class integrator(paths_generator): """ Step by step numerical integration of Ito Stochastic Differential Equations (SDEs), intended for subclassing. For usage, see the ``SDE`` class documentation. This class encapsulates SDE integration methods, and cooperates with the ``SDE`` class, that should always have precedence in method resolution order. As long as the respective APIs are complied with, a new integrator stated as an ``integrator`` subclass will interoperate with existing SDEs (as described by ``SDE`` subclasses), and a new SDE will interoperate with existing integrators. Parameters ---------- paths, xshape, wshape, dtype, steps, i0, info, getinfo See ``paths_generator`` class documentation. method : string Integration method. Defaults to ``'euler'``, for the Euler-Maruyama method (at present, this single method is supported). It is stored as an attribute of the same name. Returns ------- process Once instantiated as ``p``, ``p(timeline)`` performs the integration along the given timeline, based on parameters of instantiation, returning the resulting process as determined by the cooperating ``SDE`` subclass and the chosen integration method. Defaults to a process of ``numpy.nan`` along the given timeline. See Also -------- paths_generator SDE SDEs Notes ----- The equation to be integrated is exposed to the integration algorithm in a standardized form, via methods ``A`` and ``dZ`` delegated to a cooperating ``SDE`` class. The latter should take care of equation parameters, initial conditions, expected paths and shapes, and should instantiate all necessary stochasticity sources. The integration method is exposed as the ``next`` method to the ``paths_generator`` parent class. If the ``getinfo`` attribute is set to ``True``, at each integration step the following items are added to the ``itervars`` dictionary, made available to subclasses to track the integration progress: * ``last_t``: starting time point of the last integration step. * ``last_dt``: time increment of the last integration step. * ``last_x`` : starting value of the process, at time ``last_t``. * ``last_A``: dictionary of the last computed values of the SDE terms, at time ``last_t``. * ``last_dZ``: dictionary of the last realized SDE stochasticity source values, cumulated in the interval from ``last_t`` to ``last_t + last_dt``. * ``new_x`` : computed value of the process, at time ``last_t + last_dt``. This becomes relevant in case the output timeline is coarse (e.g. just the initial and final time) but diagnostic information is needed about all integration steps performed (e.g., to track how often the process has changed sign, or to count the number of realized jumps). Methods ------- A dZ next euler_next """ def _check_integration_method(self, id): if not hasattr(self, id + '_next'): raise ValueError( 'unrecognized integration method {}: ' "use 'euler' " 'or provide a properly defined ' '`{}_next` integrator class method' .format(id, id)) def _get_integration_method(self, id): return getattr(self, id + '_next') def __init__(self, *, paths=1, xshape=(), wshape=(), dtype=None, steps=None, i0=0, info=None, getinfo=True, method='euler'): # setup the required integration method self.method = method self._check_integration_method(method) self._method_next = self._get_integration_method(method) # set up the paths_generator parent class super().__init__(paths=paths, xshape=xshape, wshape=wshape, dtype=dtype, steps=steps, i0=i0, info=info, getinfo=getinfo) # integration methods # ------------------- def euler_next(self): """ Euler-Maruyama integration step. """ iv = self.itervars sw, xw = iv['sw'], iv['xw'] s, ds = sw[0], sw[1] - sw[0] x = xw[0] # compute A, dZ and make them available as attributes A, dZ = self.A(s, x), self.dZ(s, ds) xw[1][...] = x + sum(A.get(id, 0)*dZ[id] for id in A.keys()) if self.getinfo: iv.update(last_t=s, last_dt=ds, last_x=xw[0], last_A=A, last_dZ=dZ, new_x=xw[1]) # interface vs parent paths_generator class, and # delegation to cooperating class methods # ---------------------------------------------- depth = 2 def next(self): """Perform an integration step with the requested method.""" super().next() self._method_next() def exit(self, tt, xx): """See documentation of paths_generator.exit""" return process(t=tt, x=xx) # interface vs cooperating SDE class # ---------------------------------- def A(self, t, x): """Value of the SDE terms at time t and process value x. Example of expected code for the SDE ``dx = (1 - x)*dt + 2*dw(t)``:: return { 'dt': (1 - x), 'dw': 2 } The ``SDE`` class takes care of casting user-specified equations into this format. """ return {'dt': x + np.nan} def dZ(self, t, dt): """Value of the SDE differentials at time t, for time increment dt. Example of expected code for the SDE ``dx = (1 - x)*dt + 2*dw(t)``, where ``x`` has two components:: shape = (2, self.paths) return { 'dt': dt, 'dw': wiener_source(vshape=2, paths=self.paths)(0, dt) } The ``SDE`` class takes care of instantiating user-specified stochasticity sources and casting them into this format. """ return {'dt': dt + np.nan} # ------------------------------------------------------------ # The SDE (one equation) and SDEs (multiple equations) classes # ------------------------------------------------------------ class SDE: """ Class representation of a user defined Stochastic Differential Equation (SDE), intended for subclassing. This class aims to provide an easy to use and flexible interface, allowing to specify user-defined SDEs and expose them in a standardized form to the cooperating ``integrator`` class (the latter should always follow in method resolution order). A minimal definition of an Ornstein-Uhlenbeck process is as follows: >>> from sdepy import SDE, integrator >>> class my_process(SDE, integrator): ... def sde(self, t, x, theta=1., k=1., sigma=1.): ... return {'dt': k*(theta - x), 'dw': sigma} An SDE is stated as a dictionary, containing for each differential the value of the corresponding coefficient:: dx = f(t, x)*dt + g(t, x)*dw + h(t, x)*dj translates to:: {'dt': f(t, x), 'dw': g(t, x), 'dj': h(t, x)} Instances are callables with signature ``(timeline)`` that integrate the SDE along the given timeline, using the configuration set out in the instantiation parameters: >>> P = my_process(x0=1, sigma=0.5, paths=100*1000, steps=100) >>> x = P(timeline=(0., 0.5, 1.)) >>> x.shape (3, 100000) Subclasses can specify or customize: the equation and its parameters (``sde`` method), initial conditions and preprocessing (``init`` method and ``log`` attribute), shape of the values to be computed and stored (``shapes`` method), stochastic differentials appearing in the equation (``sources`` attribute) and their parameters and initialization (methods ``source_dt``, ``source_dw``, ``source_dn``, ``source_dj``, or any custom ``source_{id}`` method for a corresponding differential ``'{id}'`` declared in ``sources`` and used as a key in ``sde`` return values), optional non array-like parameters (``more`` method), how to store results at points on the requested timeline (``let`` method), and postprocessing (``result`` method and ``log`` attribute). Parameters ---------- paths : int Number of paths of the process. vshape : int or tuple of int Shape of the values of the process. dtype : data-type, optional Data-type of the process. Defaults to the numpy default. rng : numpy.random.Generator, or numpy.random.RandomState, or None Random numbers generator used to instantiate sources. If ``None``, defaults to ``sdepy.infrastructure.default_rng``, a global variabile initialized on import to ``numpy.random.default_rng()``. steps : iterable, or int, or None Specification of the time points to be touched during integration (as accepted by a cooperating ``integrator`` class). Default behaviour is: - if ``None``, the simulated steps coincide with the timeline; - if ``int``, the simulated steps touch all timeline points, as well as ``steps`` equally spaced points between the minimum and maximum point in the timeline; - if iterable, the simulated steps touch all timeline points, as well as all values in ``steps`` between the minimum and maximum points in the timeline. i0 : int Index along the timeline at which the integration starts. The timeline is assumed to be in ascending order. Initial conditions are set at ``timeline[i0]``, the integration is performed backwards from ``timeline[i0]`` to ``timeline[0]``, and forwards from ``timeline[i0]`` to ``timeline[-1]``. info : dict, optional Diagnostic information about the integration is stored in this dictionary and is accessible as the ``info`` attribute. Defaults to a new empty ``dict``. getinfo : bool If ``True``, subclass methods ``info_begin``, ``info_next``, ``info_store``, ``info_end`` are invoked during integration. Defaults to ``True``. method : str Integration method, as accepted by the ``integrator`` cooperating class. **args : SDE-specific parameters SDE parameters and initial conditions, as implied by the signature of ``sde``, ``init`` and ``more`` methods, and stochasticity sources parameters, as implied by the signature of ``source_{id}`` methods. Each keyword should be used once (e.g. ``corr``, a ``source_dw`` parameter, should not be used as the name of a SDE parameter) or, if repeated, must have consistent default values. Returns ------- process Once instantiated as ``p``, ``p(timeline)`` performs the integration along the given timeline, based on parameters of instantiation, and returns the resulting process as defined by subclass methods. Defaults to a process of ``numpy.nan`` along the given timeline. See Also -------- paths_generator integrator SDEs Notes ----- Custom stochastic differentials used in the SDE should be recognized, and treated appropriately, by the chosen integration method. This may require customization of the ``next`` method of the ``integrator`` class. All named initialization parameters (``paths``, ``steps`` etc.) are stored as attributes. Notes on SDE-specific parameters: * ``init`` parameters are converted to arrays via ``np.asarray``. * ``sde`` and source quantitative parameters may be array-like, or time dependent with signature ``(t)``. * both are converted to arrays via ``np.asarray``, and for both, their constant value, or values at each time point, should be broadcastable to a shape ``wshape + (paths,)``. * ``more`` parameters undergo no further initialization, before being made available to the ``shapes`` and ``more`` methods. If ``getinfo`` is ``True``, the invoked info subclass methods may initialize and cumulate diagnostic information in items of the ``info`` dictionary, based on read-only access of the internal variables set during integration by ``paths_generator`` and ``integrator`` cooperating classes, as exposed in the ``itervars`` attribute. Attributes ---------- sources : set or dict As a class attribute, holds the names of the differentials ``'dz'`` expected to appear in the equation. As an instance attribute, ``sources['dz']`` is an object, complying with the ``source`` protocol, that instantiates the differential ``'dz'`` used during integration. ``sources['dz'](t, dt)`` is computed at every step for each ``'dz' in sources``, as required by the chosen integration method. args : dict Stores parameters passed as ``**args`` upon initialization of the SDE. Should be used by subclass methods to access and modify their values. log : bool If True, the natural logarithm of the initial values set by the ``init`` method is taken as the initial value of the integration, and the result of the integration is exponentiated back before serving it to the ``result`` method. The ``sde`` should expose the appropriate equation for integrating the logarithm of the intended process. Methods ------- sde shapes source_dt source_dw source_dn source_dj more init let result info_begin info_next info_store info_end """ # public attributes # ----------------- sources = {'dt', 'dw'} log = False q = None addaxis = None # q and addaxis are not used in this class # (inserted for consistency with subclass SDEs) # private methods and attributes # ------------------------------ def _check_source_id(self, id): if not hasattr(self, 'source_' + id): raise ValueError( 'unrecognized source {}: ' "use one of 'dt', 'dw', 'dn', 'dj', " 'or provide a properly defined ' 'SDE class method `source_{}`' .format(id, id)) def _get_source_setup_method(self, id): return getattr(self, 'source_' + id) def _get_args(self, keys): return {k: z for k, z in self._args.items() if k in keys} def _inspect_args_defaults(self, sde_nvars=1): # inspect signatures to find expected args and defaults, # apply user-defined defaults if any expected_source_args = {} for id in self.sources: self._check_source_id(id) source_setup_method = self._get_source_setup_method(id) expected_source_args[id] = \ dict(_signature(source_setup_method)) # first two parameters of sde.init are expected to be t and out_x expected_init_args = dict(_signature(self.init)[2:]) # first two parameters of sde callable are expected to be t and x, # (for SDEs, first 1+q parameters are t, x1, x2, ... xq) expected_sde_args = dict(_signature(self.sde)[1+sde_nvars:]) expected_more_args = dict(_signature(self.more)) # consolidate expected_args = {} for D in (tuple(expected_source_args.values()) + (expected_init_args, expected_sde_args, expected_more_args)): expected_args.update(D) # check for multiple occurrencies of the same expected arg, # with different defaults defaults = {k: [] for k in expected_args} for D in (tuple(expected_source_args.values()) + (expected_init_args, expected_sde_args, expected_more_args)): for k, z in D.items(): defaults[k].append(z) repeated = {k for k in defaults if len(set(defaults[k])) > 1} if repeated: raise TypeError( 'two or more incompatible defaults found ' 'for SDE parameter(s) {}' .format(repeated)) # store arg keys for later use in self._get_args() self._source_args_keys = {} for id in self.sources: self._source_args_keys[id] = set(expected_source_args[id]) self._init_args_keys = set(expected_init_args) self._sde_args_keys = set(expected_sde_args) self._more_args_keys = set(expected_more_args) # store args defaults for later use by _consolidate_args self._expected_args = expected_args def _consolidate_args(self, **args): expected_args = self._expected_args # consolidate given args with expected defaults and check all_args = {**expected_args, **args} unexpected = set(all_args).difference(expected_args) missing = {k for (k, v) in all_args.items() if v is _empty} if unexpected: raise TypeError( 'unexpected keyword(s): {}' .format(unexpected)) if missing: raise TypeError( 'no value and no default found for sde parameter(s) {}' .format(missing)) # return a unique dict with all args return all_args def _sde_args_setup(self, sde_args): # convert to array all sde args, preserving optional # time dependence new_sde_args = {k: _variable_param_setup(z) for (k, z) in sde_args.items()} return new_sde_args def _init_args_setup(self, init_args): # initialize and convert to array all init args new_init_args = {k: _const_param_setup(z) for (k, z) in init_args.items()} return new_init_args def _sources_setup(self): # initialize stochasticity sources sources = {id: self._get_source_setup_method(id)( **self._get_args(self._source_args_keys[id])) for id in self.sources} return sources # initialization # -------------- def __init__(self, *, paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', **args): if not isinstance(self, integrator): raise TypeError( 'cannot instantiate SDE subclass {} that is not a subclass ' 'of a cooperating integrator class' .format(type(self))) elif hasattr(self, 'method'): raise TypeError( 'improper method resolution order in class {}: ' 'the integrator class cannot precede the the SDE class' .format(type(self))) # self.vshape is used by SDEs subclass # to force self.addaxis in case vshape == () self.vshape = _shape_setup(vshape) # get default args by inspection # (stored as private attributes) self._inspect_args_defaults() # consolidate given args with defaults self._args = self._consolidate_args(**args) # preprocess sde and init args init_args = self._init_args_setup(self._get_args(self._init_args_keys)) self._args.update(init_args) sde_args = self._sde_args_setup(self._get_args(self._sde_args_keys)) self._args.update(sde_args) # compute shapes (self.vshape, self.xshape, self.wshape) = self.shapes(self.vshape) # set paths and dtype self.paths = paths self.dtype = dtype # set rng passed upon source instantiation # (needed for compatibility with legacy numpy versions, # for which sources accept only rng=None) self._rng_asis = rng # set rng accessed via the rng attribute (in case rng is None, # should be the default_rng at the time of instantiation) self._rng = _get_default_rng() if (rng is None) else rng # setup stochasticity sources # (this uses paths, shapes and dtype attributes) self.sources = self._sources_setup() self._ordered_source_ids = sorted(list(self.sources)) # optional further initializations delegated to subclasses # (may include read or write access to _args items # via the 'args' property) self.more(**self._get_args(self._more_args_keys)) # further initialization by a superclass # (should be an integrator) super().__init__(paths=self.paths, xshape=self.xshape, wshape=self.wshape, dtype=self.dtype, steps=steps, i0=i0, info=info, getinfo=getinfo, method=method) # public interface vs the integrator and # paths_generator classes # -------------------------------------- def begin(self): """See documentation of paths_generator.begin""" super().begin() iv = self.itervars t0 = iv['sw'][0] out_x = iv['xw'][0] assert t0 == iv['steps_tt'][0] == iv['tt'][0] init_args = self._get_args(self._init_args_keys) self.init(t0, out_x, **init_args) if self.log: log(out_x, out=out_x) if self.getinfo: self.info_begin() def next(self): """See documentation of paths_generator.next""" super().next() if self.getinfo: self.info_next() def store(self, i, k): """See documentation of paths_generator.store""" super().store(i, k) iv = self.itervars t = iv['sw'][k] x = iv['xw'][k] out_x = iv['xx'][i] assert iv['tt'][i] == t self.let(t, out_x, x) if self.getinfo: self.info_store() def end(self): """See documentation of paths_generator.end""" super().end() if self.getinfo: self.info_end() def exit(self, tt, xx): """See documentation paths_generator.exit""" if self.log: exp(xx, out=xx) return self.result(tt, xx) # public interface vs the integration # algorithm of the integrator class # ----------------------------------- def _check_sde_values(self, A): if not isinstance(A, dict): raise TypeError( 'invalid {} return values: a dict, not a {} object expected' .format(self.sde, type(A)) ) if not set(A.keys()).issubset(self.sources): raise KeyError( 'invalid {} return values: {} entries expected (one per ' 'stochasticity source), not {}' .format(self.sde, set(self.sources), set(A.keys())) ) def A(self, t, x): """See documentation integrator.A""" sde_args_eval = { k: (z(t) if callable(z) else z) for (k, z) in self._get_args(self._sde_args_keys).items() } # get and check sde values A_ = self.sde(t, x, **sde_args_eval) self._check_sde_values(A_) return A_ def dZ(self, t, dt): """See documentation of integrator.dZ""" sources = self.sources # sources are evaluated in order of ascending id # (safeguards reproduciblility of outcomes after # seeding numpy.random) return {id: sources[id](t, dt) for id in self._ordered_source_ids} # public interface vs subclasses # ------------------------------ @property def rng(self): """Read-only access to the random number generator used to instantiate stochasticity sources. """ # prevent modifications of the `rng` attribute (changes would silently # fail to propagate to sources). return self._rng @property def args(self): """ Stores parameters passed as ``**args`` upon initialization of the SDE. Should be used by subclass methods to access and modify their values. """ return self._args def shapes(self, vshape): """ Shape of the values to be computed and stored upon integration of the SDE. Parameters ---------- vshape : int or tuple of int Shape of the values of the integration result, as requested upon instantiation of ``SDE``. Returns ------- vshape : int or tuple of int Confirms or overrides the given ``vshape``. xshape : int or tuple of int Shape of the values stored during integration at the output time points. ``out_x`` array passed to the ``let`` method has shape ``xshape + (paths,)``. Defaults to ``vshape``. wshape : int or tuple of int Shape of the working space used during integration. ``x`` values passed to the ``sde`` and ``let`` methods have shape ``wshape + (paths,)``. Defaults to ``vshape``. Notes ----- ``xshape`` and ``wshape`` are passed to the parent ``paths_generator`` class. ``hull_white_SDE`` and ``heston_SDE`` classes illustrate use cases for different values of ``vshape``, ``xshape`` and/or ``wshape``. """ xshape = wshape = vshape return vshape, xshape, wshape def source_dt(self): """ Setup a source of deterministic increments, to be used as 'dt' during integration. Returns ------- An object ``z`` complying with the ``source`` protocol, such that ``z(t, dt) == dt``. """ def dt(s, ds): return ds dt.paths = self.paths dt.vshape = self.wshape return dt def source_dw(self, dw=None, corr=None, rho=None): """Setup a source of standard Wiener process (Brownian motion) increments, to be used as 'dw' during integration. Parameters ---------- dw : source, or source subclass, or None If an object complying with the ``source`` protocol, it is returned (``corr`` and ``rho``, as well as ``self.dtype`` and ``self.rng``, are ignored). If a source subclass, it is instantiated with the given parameters, and returned. If None, a new instance of ``wiener_source`` is returned, with the given parameters. corr, rho : see ``wiener_source`` documentation Returns ------- An object complying with the ``source`` protocol, instantiating the requested stochasticity source. The shape and paths of source values are set to ``self.paths``, ``self.wshape`` respectively. If instantiated, ``dtype=self.dtype`` and ``rng=self.rng`` keywords are used upon instantiation. See Also -------- wiener_source """ return _source_setup(dw, wiener_source, paths=self.paths, vshape=self.wshape, dtype=self.dtype, rng=self._rng_asis, corr=corr, rho=rho) def source_dn(self, dn=None, ptype=int, lam=1.): """ Setup a source of Poisson process increments, to be used as 'dn' during integration. Parameters ---------- dn : source, or source subclass, or None If an object complying with the ``source`` protocol, it is returned (``ptype`` and ``lam``, as well as ``self.rng``, are ignored). If a source subclass, it is instantiated with the given parameters, and returned. If None, a new instance of ``poisson_source`` is returned, with the given parameters. ptype, lam : see ``poisson_source`` documentation Returns ------- An object complying with the ``source`` protocol, instantiating the requested stochasticity source. The shape and paths of source values are set to ``self.paths``, ``self.wshape`` respectively. If instantiated, ``rng=self.rng`` keyword is used upon instantiation. See Also -------- poisson_source """ return _source_setup(dn, poisson_source, paths=self.paths, vshape=self.wshape, # dtype of the poisson source is ptype dtype=ptype, rng=self._rng_asis, lam=lam) def source_dj(self, dj=None, dn=None, ptype=int, lam=1., y=None): """ Set up a source of compound Poisson process increments (jumps), to be used as 'dj' during integration. Parameters ---------- dj : source, or source subclass, or None If an object complying with the ``source`` protocol, it is returned (``ptype``, ``lam`` and ``y``, as well as ``self.dtype`` and ``self.rng``, are ignored). If a source subclass, it is instantiated with the given parameters, and returned. If None, a new instance of ``cpoisson_source`` is returned, with the given parameters. ptype, lam, y : see ``cpoisson_source`` documentation Returns ------- An object complying with the ``source`` protocol, instantiating the requested stochasticity source. The shape and paths of source values are set to ``self.paths``, ``self.wshape`` respectively. If instantiated, ``dtype=self.dtype`` and ``rng=self.rng`` keywords are used upon instantiation. See Also -------- cpoisson_source """ return _source_setup(dj, cpoisson_source, paths=self.paths, vshape=self.wshape, dtype=self.dtype, # dtype of the source rng=self._rng_asis, dn=dn, ptype=ptype, # dtype of underlying poisson source lam=lam, y=y) def more(self): """ Further optional non array parameters, and initializations. Parameters ---------- more_args : zero or more keyword arguments Further, possibly non array-like, SDE parameters, as implied by the ``more`` method signature. Passed upon instantiation of the ``SDE`` class, are served to the ``more`` method and made available to other methods as items in the ``args`` attribute. Notes ----- The ``factors`` parameter of ``hull_white_SDE`` illustrates a use case for the ``more`` method. """ pass def init(self, t, out_x, x0=1.): """ Set initial conditions for SDE integration. Parameters ---------- t : float Time point at which initial conditions should be imposed. out_x : array Array, shaped ``wshape + (paths,)``, where initial conditions are to be stored. init_args : zero or more arrays, as keyword arguments Initialization parameters, as implied by the ``init`` method signature. Passed upon instantiation of the ``SDE`` class as array-like, these parameters are served to the ``init`` method converted to arrays via ``np.asarray``. Notes ----- The default implementation has a single ``x0`` parameter, and sets ``out_x[...] = x0``. """ out_x[...] = x0 def sde(self, t, x): """ Stochastic Differential Equation (SDE) to be integrated. Parameters ---------- t : float Time point at which the SDE should be evaluated. x : array Values that the stochastic process takes at time ``t``. sde_args : zero or more arrays, as keyword arguments SDE parameters, as implied by the ``sde`` method signature. Passed upon instantiation of the ``SDE`` class as possibly time-dependent array-like, these parameters are served to the ``sde`` method once evaluated at ``t`` and converted to arrays via ``np.asarray``. Returns ------- sde_terms : dict of arrays Contains, for each differential stated in the ``source`` attribute, the value of the corresponding coefficient in the represented SDE. Notes ----- ``x`` should be treated as read-only. """ return {'dt': x + np.nan} def let(self, t, out_x, x): """ Store the value of the integrated process at time point ``t`` belonging to the requested output timeline. Parameters ---------- t : float Time point to which the integration result ``x`` refers. out_x : array Array, shaped ``xshape + (paths,)``, where the result ``x`` is to be stored. x : array Integration result at time ``t``, shaped ``wshape + (paths,)`` Notes ----- The default implementation sets ``out_x[...] = x``. In case ``xshape != wshape``, this method should operate as needed in order to store in ``out_x`` a value broadcastable to its shape (e.g. it might store in ``out_x`` only some of the components of ``x``). ``x`` should be treated as read-only. """ out_x[...] = x def result(self, tt, xx): """ Compute the integration output. Parameters ---------- tt : array Output integration timeline. xx : array Integration result, shaped ``tt.shape + xshape + (paths,)``. Returns ------- result Final result, returned to the user. Notes ----- The default implementation returns ``sdepy.process(t=tt, x=xx)``. In case ``vshape != xshape``, this method should operate as needed in order to return a process with values shaped as ``vshape`` (e.g. it might return a function of the components of ``xx``). """ return process(t=tt, x=xx) def info_begin(self): """ Optional diagnostic information logging function, called before the integration begins. """ pass def info_next(self): """ Optional diagnostic information logging function, called after each integration step. """ pass def info_store(self): """ Optional diagnostic information logging function, called after each invocation of the let method. """ pass def info_end(self): """ Optional diagnostic information logging function, called after the integration has been completed. """ pass class SDEs(SDE): """ Class representation of a user defined system of Stochastic Differential Equations (SDEs), intended for subclassing. The parent ``SDE`` class represents a single SDE, scalar or multidimensional: by an appropriate choice of the ``vshape`` parameter, and composition of equation values, it suffices to describe any system of SDEs. Its ``SDEs`` subclass is added for convenience of representation: it allows to state each equation separately and to retrieve separate processes as a result. The number of equations must be stated as the ``q`` attribute. The ``vshape`` parameter is taken as the common shape of values in each equation in the system. A minimal definition of a lognormal process ``x`` with stochastic volatility ``y`` is as follows:: >>> from sdepy import SDEs, integrator >>> class my_process(SDEs, integrator): ... q = 2 ... def sde(self, t, x, y, mu=0., sigma=1., xi=1.): ... return ({'dt': mu*x, 'dw': y*x}, ... {'dt': 0, 'dw': xi*y}) >>> P = my_process(x0=(1., 2.), xi=0.5, vshape=5, ... paths=100*1000, steps=100, ) >>> x, y = P(timeline=(0., 0.5, 1.)) >>> x.shape, y.shape ((3, 5, 100000), (3, 5, 100000)) See Also -------- SDE integrator paths_generator Notes ----- By default, the stochasticity sources of each component equation are realized independently, even if represented in the ``sde`` output by the same key (``'dw'`` in the example above). The way stochasticity sources are instantiated and dispatched to each equation, and how correlations of the Wiener source are set via the ``corr`` parameter, depend on the value of the ``addaxis`` attribute: * If ``True``, source values have shape ``vshape + (q,)``, and the ``[kk, i]`` component of source values is dispatched to the ``kk`` component of equation ``i`` (``kk`` is a multiindex spanning shape ``vshape``). If given, ``corr`` must be of shape ``(q, q)`` and correlates corresponding components across equations. * If ``addaxis`` is ``False`` (default) and ``N`` is the size of the last axis of ``vshape``, the values of the sources have shape ``vshape[:-1] + (N*q,)``, and the ``[kk, i*N + h]`` component of the source values is dispatched to the ``[kk, h]`` component of equation ``i`` (``kk`` is a multiindex spanning shape ``vshape[:-1]``, and ``h`` is in ``range(N)``). If given, ``corr`` must be of shape ``(N*q, N*q)``, and correlates all last components of all equations to each other. After instantiation, stochasticity sources and correlation matrices may be inspected as follows:: >>> P = my_process(vshape=(), rho=0.5) >>> P.sources['dw'].vshape (2,) >>> P.sources['dw'].corr.shape (2, 2) >>> P.sources['dw'].corr[0, 1] 0.5 Attributes ---------- q : int Number of equations. addaxis : bool Affects the internal representation of the equations: if ``True``, a last axis of size ``q`` is added to ``vshape``, if ``False``, components are stacked onto the last axis of ``vshape``. Defaults to ``False``. It is forced to ``True`` if the process components have scalar values. Methods ------- pack unpack """ # public attributes # ----------------- q = 1 addaxis = False # private methods and attributes # ------------------------------ def _inspect_args_defaults(self): if self.q < 1: raise ValueError( 'the number of equations q should be positive, but ' '{} was given'.format(self.q)) if self.vshape == (): # force adding an axis for equations self.addaxis = True super()._inspect_args_defaults(sde_nvars=self.q) # public interface vs the integration # algorithm of the integrator class # ----------------------------------- def _check_sde_values(self, As): if not isinstance(As, (list, tuple)): raise TypeError( 'invalid {} return values: a list or tuple of {} dict ' '(one per equation) expected, not a {} object' .format(self.sde, self.q, type(As)) ) if len(As) != self.q: raise ValueError( 'invalid {} return values: {} equations expected, ' 'not {}'.format(self.sde, self.q, len(As))) for a in As: super()._check_sde_values(a) def A(self, t, X): """See documentation of integrator.A""" sde_args_eval = { k: (z(t) if callable(z) else z) for (k, z) in self._get_args(self._sde_args_keys).items() } # unpack X, as feeded by integrator.next, in a list # of arrays (one per equation) xs = self.unpack(X) # get and check sde values As = self.sde(t, *xs, **sde_args_eval) self._check_sde_values(As) A_ids = set() for a in As: A_ids.update(a.keys()) A = {id: self.pack(tuple(a.get(id, 0) for a in As)) for id in A_ids} return A # public interface vs subclasses # ------------------------------ def unpack(self, X): """Unpacks the given array into multiple arrays (one per equation). Parameters ---------- X : array Array with a last dimension enumerating paths, and a second last dimension to be unpacked according to the ``addaxis`` attribute setting. Returns ------- x, y, ... : list of arrays List of ``self.q`` arrays, unpacking the given ``X``. """ q = self.q if self.addaxis: xs = tuple(X[..., k, :] for k in range(q)) else: d = self.vshape[-1] xs = tuple(X[..., k*d:(k+1)*d, :] for k in range(q)) return xs def pack(self, xs): """Packs the given arrays (one per equation) into a single array. Parameters ---------- xs : list of arrays List of ``self.q`` arrays to be packed according to the ``addaxis`` attribute setting. Returns ------- X : array Array packing the given ``xs`` along its second-last dimension (the last dimension enumerates paths). """ target_shape = self.vshape + (self.paths,) if self.addaxis: i = np.index_exp[..., np.newaxis, :] else: i = np.index_exp[...] X = np.concatenate(tuple( np.broadcast_to(x, target_shape)[i] for x in xs ), axis=-2) return X def shapes(self, vshape): """See documentation of SDE.shapes""" q = self.q if self.addaxis: xshape = wshape = vshape + (q,) else: xshape = wshape = vshape[:-1] + (vshape[-1]*q,) return vshape, xshape, wshape def init(self, t, out_X, x0=1.): """See documentation of SDE.init""" x0s = x0 # in init's calling signature, x0 is kept for compatibility with SDE; # should be a list or tuple or array of the q initial conditions if x0s.shape == (): # scalar values are broadcasted to all equations x0s = (x0s,)*self.q X0 = self.pack(x0s) super().init(t, out_X, X0) def sde(self, t, x): """Stochastic Differential Equations (SDEs) to be integrated. Parameters ---------- t : float Time point at which the SDE should be evaluated. x, y, ... : arrays Values that each equation variable takes at time ``t``. There should be as many parameters as the number of equations stated in ``self.q``. sde_args : zero or more arrays, as keyword arguments See documentation of ``SDE.sde``. Returns ------- sde_terms : list or tuple of dict of arrays A list or tuple of dictionaries, one per equation. See documentation of ``SDE.sde``. Notes ----- ``x, y, ...`` should be treated as read-only. """ return ({'dt': x + np.nan},) def result(self, tt, XX): """See documentation of SDE.result""" if self.log: exp(XX, out=XX) xxs = self.unpack(XX) return tuple(process(t=tt, x=xx) for xx in xxs) # ----------------------- # integration interface: # the integrate decorator # ----------------------- def _SDE_from_function(f, q=None, sources=None, log=False, addaxis=False): if q is not None and sources is not None: neq = q ids = set(sources) SDE_class = SDE if neq == 0 else SDEs else: # perform a test evaluation of f try: try: test_val = f() except Exception: test_val = f(np.array(1.), np.array(1.)) except Exception: raise TypeError( 'test evaluation of {} failed' .format(f)) # infer neq, ids and SDE_class from test_val if isinstance(test_val, (tuple, list)): neq = len(test_val) if neq == 0: raise ValueError('non empty list or tuple expected') SDE_class = SDEs else: neq = 0 SDE_class = SDE test_val = (test_val,) ids = set() for z in test_val: ids.update(z.keys()) # consistency check if ((q is not None and neq != q) or (sources is not None and set(sources) != ids)): raise TypeError( 'test evaluation of {} inconsistent with given ' "'q' or 'sources'".format(f)) # avoid namespace conflicts inside SDE_wrapper log_flag = log addaxis_flag = addaxis class SDE_wrapper(SDE_class): q = neq sources = ids log = log_flag addaxis = addaxis_flag sde = staticmethod(f) return SDE_wrapper def integrate(sde=None, *, q=None, sources=None, log=False, addaxis=False): """Decorator for Ito Stochastic Differential Equation (SDE) integration. Decorates a function representing the SDE or SDEs into the corresponding ``sdepy`` integrator. Parameters ---------- sde : function Function to be wrapped. Its signature and values should be as expected for the ``sde`` method of the ``sdepy.SDE`` or ``sdepy.SDEs`` classes. q : int Number of equations. If ``None``, attempts a test evaluation of ``sde`` to find out. ``q=0`` indicates a single equation. sources : set Stochasticity sources used in the equation. If ``None``, attempts a test evaluation of ``sde`` to find out. log : bool Sets the ``log`` attribute for the wrapping class. addaxis : bool Sets the ``addaxis`` attribute for the wrapping class. Returns ------- A subclass of ``sdepy.SDE`` or ``sdepy.SDEs`` as appropriate, and of ``sdepy.integrator``, with the given ``sde`` cast as its ``sde`` method. Notes ----- To prevent a test evaluation of ``sde``, explicitly provide the intended ``q`` and ``sources`` as keyword arguments to ``integrate()``. The test evaluation is attempted as ``sde()`` and, upon failure, again as ``sde(1., 1.)``. Examples -------- >>> from sdepy import integrate >>> @integrate ... def my_process(t, x, theta=1., k=1., sigma=1.): ... return {'dt': k*(theta - x), 'dw': sigma} >>> P = my_process(x0=1, sigma=0.5, paths=100*1000, steps=100) >>> x = P(timeline=(0., 0.5, 1.)) >>> x.shape (3, 100000) """ if sde is None: def decorator(sde): return integrate(sde, q=q, sources=sources, log=log, addaxis=addaxis) return decorator else: SDE_class = _SDE_from_function(sde, q=q, sources=sources, log=log, addaxis=addaxis) class sde_integrator(SDE_class, integrator): pass return sde_integrator ############################################# # Process generators withoud SDE integration ############################################# # THIS CODE HAS BEEN REMOVED AND NOT KEPT UP TO DATE # all the point was to gain speed, and as of april 2018 # the cumsum operation on which const_wiener_process and # const_lognorm_process rely takes longer than step by step # integration with lognorm_process and wiener_process # (tested on 1000 time steps and 10000 paths) # # the code is frozen as a string in case one might # consider re-inclusion in the future ''' class const_wiener_process: """ Wiener process (Brownian motion), with time-independent parameters. """ def __init__(self, paths=1, vshape=(), dtype=None, dw=None, corr=None, rho=None, x0=0., mu=0., sigma=1. ): self.paths = paths self.vshape = vshape = _shape_setup(vshape) self.xshape = self.wshape = vshape self.dtype = dtype args = {'x0': x0, 'mu': mu, 'sigma': sigma} args = {k: _const_param_setup(z) for (k, z) in args.items()} self._args = args # the setup of corr, rho is delegated to 'wiener' self.sources = {'dt': lambda t, dt: dt, 'dw': _dw_source_setup( dw, paths, vshape, dtype, corr, rho)} @property def params(self): return self._args.copy() def __call__(self, t): paths, vshape, dtype = self.paths, self.vshape, self.dtype # timeline and time increments setup t = np.asarray(t) if t.shape != (t.size,): raise ValueError( 'the process timeline should be a ' 'one-dimensional array, not an array of shape {}' .format(t.shape)) dt = np.concatenate((0*t[:1], np.diff(t))) # dt[0] == 0 shifted_t = np.concatenate((t[:1], t[:-1])) tx = t.reshape((-1,) + (1,)*len(vshape) + (1,)) \ # initial condition and parameters setup x0, mu, sigma = [self._args[k] for k in ('x0', 'mu', 'sigma')] # generate process dw = self.sources['dw'](shifted_t, dt) x = np.empty(t.shape + vshape + (paths,), dtype=dtype) x[...] = x0 + mu * (tx - tx[0]) + sigma * dw.cumsum(axis=0) return process(t, x=x) class const_lognorm_process(const_wiener_process): """ Lognormal process, with time-independent parameters. """ def __init__(self, paths=1, vshape=(), dtype=None, dw=None, corr=None, rho=None, x0=1., mu=0., sigma=1. ): super().__init__(paths=paths, vshape=vshape, dtype=dtype, dw=dw, corr=corr, rho=rho, x0=x0, mu=mu, sigma=sigma) def __call__(self, t): x0, mu, sigma = [self._args[k] for k in ('x0', 'mu', 'sigma')] wp = const_wiener_process( paths=self.paths, vshape=self.vshape, dtype=self.dtype, dw=self.sources['dw'], x0=log(x0), mu=mu - sigma*sigma/2, sigma=sigma)(t) exp(wp, out=wp) return wp ''' ########################################## # Process generators with SDE integration ########################################## class wiener_SDE(SDE): """ SDE for a Wiener process (Brownian motion) with drift. See Also -------- wiener_process """ # set x0 default value to 0. def init(self, s, out_x, x0=0.): super().init(s, out_x, x0) def sde(self, t, x, mu=0., sigma=1.): return {'dt': mu, 'dw': sigma} class wiener_process(wiener_SDE, integrator): """ wiener_process(paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=0., mu=0., sigma=1., dw=None, corr=None, rho=None) Wiener process (Brownian motion) with drift. Generates a process ``x(t)`` that solves the following SDE:: dx(t) = mu(t)*dt + sigma(t)*dw(t, dt) where ``dw(t, dt)`` are standard Wiener process increments with correlation matrix specified by ``corr(t)`` or ``rho(t)``. ``x0``, SDE parameters and ``dw(t, dt)`` should broadcast to ``vshape + (paths,)``. Parameters ---------- paths, vshape, dtype, rng, steps, i0, info, getinfo, method See ``SDE`` class documentation. x0 : array-like Initial condition. mu, sigma : array-like, or callable SDE parameters. dw, corr, rho Specification of stochasticity source of Wiener process increments. See ``SDE.source_dw`` documentation. Returns ------- x : process Once instantiated as ``p``, ``p(timeline)`` performs the integration along the given timeline, based on parameters of instantiation, and returns the resulting process. See also -------- SDE SDE.source_dw wiener_source wiener_SDE """ pass class lognorm_SDE(SDE): """ SDE for a lognormal process with drift. See Also -------- lognorm_process """ log = True def sde(self, t, x, mu=0., sigma=1.): return {'dt': mu - sigma*sigma/2, 'dw': sigma} class lognorm_process(lognorm_SDE, integrator): """ lognorm_process(paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., mu=0., sigma=1., dw=None, corr=None, rho=None) Lognormal process. Generates a process ``x(t)`` that solves the following SDE:: dx(t) = mu(t)*x(t)*dt + sigma(t)*x(t)*dw(t, dt) where ``dw(t, dt)`` are standard Wiener process increments with correlation matrix specified by ``corr(t)`` or ``rho(t)``. ``x0``, SDE parameters and ``dw(t, dt)`` should broadcast to ``vshape + (paths,)``. ``x0`` should be positive. Parameters ---------- paths, vshape, dtype, rng, steps, i0, info, getinfo, method See ``SDE`` class documentation. x0 : array-like Initial condition. mu, sigma : array-like, or callable SDE parameters. dw, corr, rho Specification of stochasticity source of Wiener process increments. See ``SDE.source_dw`` documentation. Returns ------- x : process Once instantiated as ``p``, ``p(timeline)`` performs the integration along the given timeline, based on parameters of instantiation, and returns the resulting process. See also -------- SDE SDE.source_dw wiener_source wiener_SDE Notes ----- ``x(t)`` is obtained via Euler-Maruyama numerical integration of the following equivalent SDE for ``a(t) = log(x(t))``:: da(t) = (mu(t) - sigma(t)**2/2)*dt + sigma(t)*dw(t, dt) """ class ornstein_uhlenbeck_SDE(SDE): """ SDE for an Ornstein-Uhlenbeck process. See Also -------- ornstein_uhlenbeck_process """ # set x0 default value to 0. def init(self, s, out_x, x0=0.): super().init(s, out_x, x0) def sde(self, s, x, theta=0., k=1., sigma=1.): return {'dt': k*(theta - x), 'dw': sigma} class ornstein_uhlenbeck_process(ornstein_uhlenbeck_SDE, integrator): """ ornstein_uhlenbeck_process(paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=0., theta=0., k=1., sigma=1., dw=None, corr=None, rho=None) Ornstein-Uhlenbeck process (mean-reverting Brownian motion). Generates a process ``x(t)`` that solves the following SDE:: dx(t) = k(t)*(theta(t) - x(t))*dt + sigma(t)*dw(t, dt) where ``dw(t, dt)`` are standard Wiener process increments with correlation matrix specified by ``corr(t)`` or ``rho(t)``. ``x0``, SDE parameters and ``dw(t, dt)`` should broadcast to ``vshape + (paths,)``. Parameters ---------- paths, vshape, dtype, rng, steps, i0, info, getinfo, method See ``SDE`` class documentation. x0 : array-like Initial condition. theta, k, sigma : array-like, or callable SDE parameters. dw, corr, rho Specification of stochasticity source of Wiener process increments. See ``SDE.source_dw`` documentation. Returns ------- x : process Once instantiated as ``p``, ``p(timeline)`` performs the integration along the given timeline, based on parameters of instantiation, and returns the resulting process. See also -------- SDE SDE.source_dw wiener_source ornstein_uhlenbeck_SDE """ class hull_white_SDE(SDE): """ SDE for an F-factors Hull White process. See Also -------- hull_white_process """ # set x0 default value to 0. def init(self, s, out_x, x0=0.): super().init(s, out_x, x0) def more(self, factors=1): pass def shapes(self, vshape): xshape = vshape wshape = vshape + (self.args['factors'],) return vshape, xshape, wshape def sde(self, s, x, theta=0., k=1., sigma=1.): return {'dt': k*(theta - x), 'dw': sigma} def let(self, s, out_x, x): out_x[...] = x.sum(axis=-2) class hull_white_process(hull_white_SDE, integrator): """ hull_white_process(paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', factors=1, x0=0., theta=0., k=1., sigma=1., dw=None, corr=None, rho=None) F-factors Hull-White process (sum of F correlated mean-reverting Brownian motions). Generates a process x(t) that solves the following SDE:: x(t) = y_1(t) + ... + y_F(t) dy_i(t) = k_i(t)*(theta_i(t) - y_i(t))*dt + + sigma_i(t)*dw_i(t, dt) where ``dw_i(t, dt)`` are standard Wiener process increments with correlations ``dw_i(t, dt)*dw_j(t, dt) = corr(t)[i, j]``. ``x0``, SDE parameters and ``dw(t, dt)`` should broadcast to ``vshape + (factors, paths)``. Parameters ---------- paths, vshape, dtype, rng, steps, i0, info, getinfo, method See ``SDE`` class documentation. x0 : array-like Initial condition. theta, k, sigma : array-like, or callable SDE parameters. dw, corr, rho Specification of stochasticity source of Wiener process increments. See ``SDE.source_dw`` documentation. See also -------- SDE SDE.source_dw wiener_source hull_white_SDE ornstein_uhlenbeck_process """ pass class hull_white_1factor_process(ornstein_uhlenbeck_process): """ hull_white_1factor_process(paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=0., theta=0., k=1., sigma=1., dw=None, corr=None, rho=None) 1-factor Hull-White process (F=1 Hull-White process with F-index collapsed to a scalar). See ``hull_white_process`` class documentation. See Also -------- hull_white_process ornstein_uhlenbeck_process Notes ----- Class added for naming convenience. Differs from a ``hull_white_process`` with ``factors=1`` in that the last index of the process parameters has not been reserved to enumerate factors, and no ``factors`` parameter is present. Synonymous with ``ornstein_uhlenbeck_process``. """ pass class cox_ingersoll_ross_SDE(SDE): """ SDE for a Cox-Ingersoll-Ross mean reverting process. See Also -------- cox_ingersoll_ross_process """ def sde(self, s, x, theta=1., k=1., xi=1.): x_plus = np.maximum(x, 0.) return {'dt': k*(theta - x_plus), 'dw': xi * sqrt(x_plus)} class cox_ingersoll_ross_process(cox_ingersoll_ross_SDE, integrator): """ cox_ingersoll_ross_process(paths=1, vshape=(), dtype=None, rng=None, steps=None, i0=0, info=None, getinfo=True, method='euler', x0=1., theta=1., k=1., xi=1., dw=None, corr=None, rho=None) Cox-Ingersoll-Ross mean reverting process. Generates a process ``x(t)`` that solves the following SDE:: dx(t) = k(t)*(theta(t) - x(t))*dt + xi(t)*sqrt(x(t))*dw(t, dt) where ``dw(t, dt)`` are standard Wiener process increments with correlation matrix specified by ``corr(t)`` or ``rho(t)``. ``x0``, SDE parameters and ``dw(t, dt)`` should broadcast to ``vshape + (paths,)``. ``x0, theta, k`` should be positive. Parameters ---------- paths, vshape, dtype, rng, steps, i0, info, getinfo, method See ``SDE`` class documentation. x0 : array-like Initial condition. theta, k, xi : array-like, or callable SDE parameters. dw, corr, rho Specification of stochasticity source of Wiener process increments. See ``SDE.source_dw`` documentation. Returns ------- x : process Once instantiated as ``p``, ``p(timeline)`` performs the integration along the given timeline, based on parameters of instantiation, and returns the resulting process. See also -------- SDE SDE.source_dw wiener_source cox_ingersoll_ross_SDE """ pass class full_heston_SDE(SDEs): """ SDE for a Heston stochastic volatility process. See Also -------- full_heston_process heston_process """ q = 2 addaxis = False log = False def init(self, s, out_X, x0=1., y0=1.): out_x, out_y = self.unpack(out_X) out_x[...] = log(x0) out_y[...] = y0 def info_begin(self): self.info['negative_y_count'] = np.zeros( self.vshape + (self.paths,), dtype=int) def sde(self, t, x, y, mu=0., sigma=1., theta=1., k=1., xi=1.): y_plus =
np.maximum(y, 0.)
numpy.maximum
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import scipy.sparse as sps import pandas as pd from mars import dataframe as md from mars import tensor as mt from mars.core import get_tiled from mars.tensor.base import copyto, transpose, moveaxis, broadcast_to, broadcast_arrays, where, \ expand_dims, rollaxis, atleast_1d, atleast_2d, atleast_3d, argwhere, array_split, split, \ hsplit, vsplit, dsplit, roll, squeeze, diff, ediff1d, flip, flipud, fliplr, repeat, tile, \ isin, searchsorted, unique, sort, argsort, partition, argpartition, topk, argtopk, \ trapz, shape, to_gpu, to_cpu, swapaxes from mars.tensor.datasource import tensor, ones, zeros, arange from mars.tests.core import require_cupy, TestBase class Test(TestBase): def setUp(self): self.ctx, self.executor = self._create_test_context() def testRechunkExecution(self): raw = np.random.RandomState(0).random((11, 8)) arr = tensor(raw, chunk_size=3) arr2 = arr.rechunk(4) res = self.executor.execute_tensor(arr2) self.assertTrue(np.array_equal(res[0], raw[:4, :4])) self.assertTrue(np.array_equal(res[1], raw[:4, 4:])) self.assertTrue(np.array_equal(res[2], raw[4:8, :4])) self.assertTrue(np.array_equal(res[3], raw[4:8, 4:])) self.assertTrue(np.array_equal(res[4], raw[8:, :4])) self.assertTrue(np.array_equal(res[5], raw[8:, 4:])) def testCopytoExecution(self): a = ones((2, 3), chunk_size=1) b = tensor([3, -1, 3], chunk_size=2) copyto(a, b, where=b > 1) res = self.executor.execute_tensor(a, concat=True)[0] expected = np.array([[3, 1, 3], [3, 1, 3]]) np.testing.assert_equal(res, expected) a = ones((2, 3), chunk_size=1) b = tensor(np.asfortranarray(np.random.rand(2, 3)), chunk_size=2) copyto(b, a) res = self.executor.execute_tensor(b, concat=True)[0] expected = np.asfortranarray(np.ones((2, 3))) np.testing.assert_array_equal(res, expected) self.assertTrue(res.flags['F_CONTIGUOUS']) self.assertFalse(res.flags['C_CONTIGUOUS']) def testAstypeExecution(self): raw = np.random.random((10, 5)) arr = tensor(raw, chunk_size=3) arr2 = arr.astype('i8') res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0], raw.astype('i8')) raw = sps.random(10, 5, density=.2) arr = tensor(raw, chunk_size=3) arr2 = arr.astype('i8') res = self.executor.execute_tensor(arr2, concat=True) self.assertTrue(np.array_equal(res[0].toarray(), raw.astype('i8').toarray())) raw = np.asfortranarray(np.random.random((10, 5))) arr = tensor(raw, chunk_size=3) arr2 = arr.astype('i8', order='C') res = self.executor.execute_tensor(arr2, concat=True)[0] np.testing.assert_array_equal(res, raw.astype('i8')) self.assertTrue(res.flags['C_CONTIGUOUS']) self.assertFalse(res.flags['F_CONTIGUOUS']) def testTransposeExecution(self): raw = np.random.random((11, 8, 5)) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0], raw.T) arr3 = transpose(arr, axes=(-2, -1, -3)) res = self.executor.execute_tensor(arr3, concat=True) np.testing.assert_array_equal(res[0], raw.transpose(1, 2, 0)) raw = sps.random(11, 8) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr) self.assertTrue(arr2.issparse()) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0].toarray(), raw.T.toarray()) # test order raw = np.asfortranarray(np.random.random((11, 8, 5))) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = np.transpose(raw).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) arr = tensor(raw, chunk_size=3) arr2 = transpose(arr, (1, 2, 0)) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = np.transpose(raw, (1, 2, 0)).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) df = md.DataFrame(mt.random.rand(10, 5, chunk_size=5)) df = df[df[0] < 1] # generate tensor with unknown shape t = df.to_tensor() t2 = transpose(t) res = self.executor.execute_tensor(t2, concat=True)[0] self.assertEqual(res.shape, (5, 10)) def testSwapaxesExecution(self): raw = np.random.random((11, 8, 5)) arr = swapaxes(raw, 2, 0) res = self.executor.execute_tensor(arr, concat=True) np.testing.assert_array_equal(res[0], raw.swapaxes(2, 0)) raw = np.random.random((11, 8, 5)) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(2, 0) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0], raw.swapaxes(2, 0)) raw = sps.random(11, 8, density=.2) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(1, 0) res = self.executor.execute_tensor(arr2, concat=True) np.testing.assert_array_equal(res[0].toarray(), raw.toarray().swapaxes(1, 0)) # test order raw = np.asfortranarray(np.random.rand(11, 8, 5)) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(2, 0) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = raw.swapaxes(2, 0).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(0, 2) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = raw.swapaxes(0, 2).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) arr = tensor(raw, chunk_size=3) arr2 = arr.swapaxes(1, 0) res = self.executor.execute_tensor(arr2, concat=True)[0] expected = raw.swapaxes(1, 0).copy(order='A') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) def testMoveaxisExecution(self): x = zeros((3, 4, 5), chunk_size=2) t = moveaxis(x, 0, -1) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (4, 5, 3)) t = moveaxis(x, -1, 0) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 3, 4)) t = moveaxis(x, [0, 1], [-1, -2]) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 4, 3)) t = moveaxis(x, [0, 1, 2], [-1, -2, -3]) res = self.executor.execute_tensor(t, concat=True)[0] self.assertEqual(res.shape, (5, 4, 3)) def testBroadcastToExecution(self): raw = np.random.random((10, 5, 1)) arr = tensor(raw, chunk_size=2) arr2 = broadcast_to(arr, (5, 10, 5, 6)) res = self.executor.execute_tensor(arr2, concat=True)[0] np.testing.assert_array_equal(res, np.broadcast_to(raw, (5, 10, 5, 6))) # test chunk with unknown shape arr1 = mt.random.rand(3, 4, chunk_size=2) arr2 = mt.random.permutation(arr1) arr3 = broadcast_to(arr2, (2, 3, 4)) res = self.executor.execute_tensor(arr3, concat=True)[0] self.assertEqual(res.shape, (2, 3, 4)) def testBroadcastArraysExecutions(self): x_data = [[1, 2, 3]] x = tensor(x_data, chunk_size=1) y_data = [[1], [2], [3]] y = tensor(y_data, chunk_size=2) a = broadcast_arrays(x, y) res = [self.executor.execute_tensor(arr, concat=True)[0] for arr in a] expected = np.broadcast_arrays(x_data, y_data) for r, e in zip(res, expected): np.testing.assert_equal(r, e) def testWhereExecution(self): raw_cond = np.random.randint(0, 2, size=(4, 4), dtype='?') raw_x = np.random.rand(4, 1) raw_y = np.random.rand(4, 4) cond, x, y = tensor(raw_cond, chunk_size=2), tensor(raw_x, chunk_size=2), tensor(raw_y, chunk_size=2) arr = where(cond, x, y) res = self.executor.execute_tensor(arr, concat=True) self.assertTrue(np.array_equal(res[0], np.where(raw_cond, raw_x, raw_y))) raw_cond = sps.csr_matrix(np.random.randint(0, 2, size=(4, 4), dtype='?')) raw_x = sps.random(4, 1, density=.1) raw_y = sps.random(4, 4, density=.1) cond, x, y = tensor(raw_cond, chunk_size=2), tensor(raw_x, chunk_size=2), tensor(raw_y, chunk_size=2) arr = where(cond, x, y) res = self.executor.execute_tensor(arr, concat=True)[0] self.assertTrue(np.array_equal(res.toarray(), np.where(raw_cond.toarray(), raw_x.toarray(), raw_y.toarray()))) # GH 2009 raw_x = np.arange(9.).reshape(3, 3) x = arange(9.).reshape(3, 3) arr = where(x < 5, 2, -1) res = self.executor.execute_tensor(arr, concat=True)[0] np.testing.assert_array_equal(res, np.where(raw_x < 5, 2, -1)) def testReshapeExecution(self): raw_data = np.random.rand(10, 20, 30) x = tensor(raw_data, chunk_size=6) y = x.reshape(-1, 30) res = self.executor.execute_tensor(y, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(-1, 30)) y2 = x.reshape(10, -1) res = self.executor.execute_tensor(y2, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(10, -1)) y3 = x.reshape(-1) res = self.executor.execute_tensor(y3, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(-1)) y4 = x.ravel() res = self.executor.execute_tensor(y4, concat=True) np.testing.assert_array_equal(res[0], raw_data.ravel()) raw_data = np.random.rand(30, 100, 20) x = tensor(raw_data, chunk_size=6) y = x.reshape(-1, 20, 5, 5, 4) res = self.executor.execute_tensor(y, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(-1, 20, 5, 5, 4)) y2 = x.reshape(3000, 10, 2) res = self.executor.execute_tensor(y2, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(3000, 10, 2)) y3 = x.reshape(60, 25, 40) res = self.executor.execute_tensor(y3, concat=True) np.testing.assert_array_equal(res[0], raw_data.reshape(60, 25, 40)) y4 = x.reshape(60, 25, 40) y4.op.extra_params['_reshape_with_shuffle'] = True size_res = self.executor.execute_tensor(y4, mock=True) res = self.executor.execute_tensor(y4, concat=True) self.assertEqual(res[0].nbytes, sum(v[0] for v in size_res)) self.assertTrue(np.array_equal(res[0], raw_data.reshape(60, 25, 40))) y5 = x.ravel(order='F') res = self.executor.execute_tensor(y5, concat=True)[0] expected = raw_data.ravel(order='F') np.testing.assert_array_equal(res, expected) self.assertEqual(res.flags['C_CONTIGUOUS'], expected.flags['C_CONTIGUOUS']) self.assertEqual(res.flags['F_CONTIGUOUS'], expected.flags['F_CONTIGUOUS']) def testExpandDimsExecution(self): raw_data = np.random.rand(10, 20, 30) x = tensor(raw_data, chunk_size=6) y = expand_dims(x, 1) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, 1))) y = expand_dims(x, 0) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, 0))) y = expand_dims(x, 3) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, 3))) y = expand_dims(x, -1) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, -1))) y = expand_dims(x, -4) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.expand_dims(raw_data, -4))) with self.assertRaises(np.AxisError): expand_dims(x, -5) with self.assertRaises(np.AxisError): expand_dims(x, 4) def testRollAxisExecution(self): x = ones((3, 4, 5, 6), chunk_size=1) y = rollaxis(x, 3, 1) res = self.executor.execute_tensor(y, concat=True) self.assertTrue(np.array_equal(res[0], np.rollaxis(np.ones((3, 4, 5, 6)), 3, 1))) def testAtleast1dExecution(self): x = 1 y = ones(3, chunk_size=2) z = ones((3, 4), chunk_size=2) t = atleast_1d(x, y, z) res = [self.executor.execute_tensor(i, concat=True)[0] for i in t] self.assertTrue(np.array_equal(res[0], np.array([1]))) self.assertTrue(np.array_equal(res[1], np.ones(3))) self.assertTrue(np.array_equal(res[2], np.ones((3, 4)))) def testAtleast2dExecution(self): x = 1 y = ones(3, chunk_size=2) z = ones((3, 4), chunk_size=2) t = atleast_2d(x, y, z) res = [self.executor.execute_tensor(i, concat=True)[0] for i in t] self.assertTrue(np.array_equal(res[0], np.array([[1]]))) self.assertTrue(np.array_equal(res[1], np.atleast_2d(np.ones(3)))) self.assertTrue(np.array_equal(res[2], np.ones((3, 4)))) def testAtleast3dExecution(self): x = 1 y = ones(3, chunk_size=2) z = ones((3, 4), chunk_size=2) t = atleast_3d(x, y, z) res = [self.executor.execute_tensor(i, concat=True)[0] for i in t] self.assertTrue(np.array_equal(res[0], np.atleast_3d(x))) self.assertTrue(np.array_equal(res[1], np.atleast_3d(np.ones(3)))) self.assertTrue(np.array_equal(res[2], np.atleast_3d(np.ones((3, 4))))) def testArgwhereExecution(self): x = arange(6, chunk_size=2).reshape(2, 3) t = argwhere(x > 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.argwhere(np.arange(6).reshape(2, 3) > 1) np.testing.assert_array_equal(res, expected) data = np.asfortranarray(np.random.rand(10, 20)) x = tensor(data, chunk_size=10) t = argwhere(x > 0.5) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.argwhere(data > 0.5) np.testing.assert_array_equal(res, expected) self.assertTrue(res.flags['F_CONTIGUOUS']) self.assertFalse(res.flags['C_CONTIGUOUS']) def testArraySplitExecution(self): x = arange(48, chunk_size=3).reshape(2, 3, 8) ss = array_split(x, 3, axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.array_split(np.arange(48).reshape(2, 3, 8), 3, axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] ss = array_split(x, [3, 5, 6, 10], axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.array_split(np.arange(48).reshape(2, 3, 8), [3, 5, 6, 10], axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] def testSplitExecution(self): for a in ((1, 1, 1, 2, 2, 3), [1, 1, 1, 2, 2, 3]): splits = split(a, (3, 5)) self.assertEqual(len(splits), 3) splits0 = self.executor.execute_tensor(splits[0], concat=True)[0] np.testing.assert_array_equal(splits0, (1, 1, 1)) splits1 = self.executor.execute_tensor(splits[1], concat=True)[0] np.testing.assert_array_equal(splits1, (2, 2)) splits2 = self.executor.execute_tensor(splits[2], concat=True)[0] np.testing.assert_array_equal(splits2, (3,)) x = arange(48, chunk_size=3).reshape(2, 3, 8) ss = split(x, 4, axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.split(np.arange(48).reshape(2, 3, 8), 4, axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] ss = split(x, [3, 5, 6, 10], axis=2) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.split(np.arange(48).reshape(2, 3, 8), [3, 5, 6, 10], axis=2) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] # hsplit x = arange(120, chunk_size=3).reshape(2, 12, 5) ss = hsplit(x, 4) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.hsplit(np.arange(120).reshape(2, 12, 5), 4) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] # vsplit x = arange(48, chunk_size=3).reshape(8, 3, 2) ss = vsplit(x, 4) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.vsplit(np.arange(48).reshape(8, 3, 2), 4) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] # dsplit x = arange(48, chunk_size=3).reshape(2, 3, 8) ss = dsplit(x, 4) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.dsplit(np.arange(48).reshape(2, 3, 8), 4) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r, e) for r, e in zip(res, expected)] x_data = sps.random(12, 8, density=.1) x = tensor(x_data, chunk_size=3) ss = split(x, 4, axis=0) res = [self.executor.execute_tensor(i, concat=True)[0] for i in ss] expected = np.split(x_data.toarray(), 4, axis=0) self.assertEqual(len(res), len(expected)) [np.testing.assert_equal(r.toarray(), e) for r, e in zip(res, expected)] def testRollExecution(self): x = arange(10, chunk_size=2) t = roll(x, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10), 2) np.testing.assert_equal(res, expected) x2 = x.reshape(2, 5) t = roll(x2, 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10).reshape(2, 5), 1) np.testing.assert_equal(res, expected) t = roll(x2, 1, axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10).reshape(2, 5), 1, axis=0) np.testing.assert_equal(res, expected) t = roll(x2, 1, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.roll(np.arange(10).reshape(2, 5), 1, axis=1) np.testing.assert_equal(res, expected) def testSqueezeExecution(self): data = np.array([[[0], [1], [2]]]) x = tensor(data, chunk_size=1) t = squeeze(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.squeeze(data) np.testing.assert_equal(res, expected) t = squeeze(x, axis=2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.squeeze(data, axis=2) np.testing.assert_equal(res, expected) def testDiffExecution(self): data = np.array([1, 2, 4, 7, 0]) x = tensor(data, chunk_size=2) t = diff(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data) np.testing.assert_equal(res, expected) t = diff(x, n=2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data, n=2) np.testing.assert_equal(res, expected) data = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) x = tensor(data, chunk_size=2) t = diff(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data) np.testing.assert_equal(res, expected) t = diff(x, axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(data, axis=0) np.testing.assert_equal(res, expected) x = mt.arange('1066-10-13', '1066-10-16', dtype=mt.datetime64) t = diff(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.diff(np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)) np.testing.assert_equal(res, expected) def testEdiff1d(self): data = np.array([1, 2, 4, 7, 0]) x = tensor(data, chunk_size=2) t = ediff1d(x) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ediff1d(data) np.testing.assert_equal(res, expected) to_begin = tensor(-99, chunk_size=2) to_end = tensor([88, 99], chunk_size=2) t = ediff1d(x, to_begin=to_begin, to_end=to_end) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ediff1d(data, to_begin=-99, to_end=np.array([88, 99])) np.testing.assert_equal(res, expected) data = [[1, 2, 4], [1, 6, 24]] t = ediff1d(tensor(data, chunk_size=2)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.ediff1d(data) np.testing.assert_equal(res, expected) def testFlipExecution(self): a = arange(8, chunk_size=2).reshape((2, 2, 2)) t = flip(a, 0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flip(np.arange(8).reshape(2, 2, 2), 0) np.testing.assert_equal(res, expected) t = flip(a, 1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flip(np.arange(8).reshape(2, 2, 2), 1) np.testing.assert_equal(res, expected) t = flipud(a) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.flipud(np.arange(8).reshape(2, 2, 2)) np.testing.assert_equal(res, expected) t = fliplr(a) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.fliplr(np.arange(8).reshape(2, 2, 2)) np.testing.assert_equal(res, expected) def testRepeatExecution(self): a = repeat(3, 4) res = self.executor.execute_tensor(a)[0] expected = np.repeat(3, 4) np.testing.assert_equal(res, expected) x_data = np.random.randn(20, 30) x = tensor(x_data, chunk_size=(3, 4)) t = repeat(x, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, 2) np.testing.assert_equal(res, expected) t = repeat(x, 3, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, 3, axis=1) np.testing.assert_equal(res, expected) t = repeat(x, np.arange(20), axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, np.arange(20), axis=0) np.testing.assert_equal(res, expected) t = repeat(x, arange(20, chunk_size=5), axis=0) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data, np.arange(20), axis=0) np.testing.assert_equal(res, expected) x_data = sps.random(20, 30, density=.1) x = tensor(x_data, chunk_size=(3, 4)) t = repeat(x, 2, axis=1) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.repeat(x_data.toarray(), 2, axis=1) np.testing.assert_equal(res.toarray(), expected) def testTileExecution(self): a_data = np.array([0, 1, 2]) a = tensor(a_data, chunk_size=2) t = tile(a, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(a_data, 2) np.testing.assert_equal(res, expected) t = tile(a, (2, 2)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(a_data, (2, 2)) np.testing.assert_equal(res, expected) t = tile(a, (2, 1, 2)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(a_data, (2, 1, 2)) np.testing.assert_equal(res, expected) b_data = np.array([[1, 2], [3, 4]]) b = tensor(b_data, chunk_size=1) t = tile(b, 2) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(b_data, 2) np.testing.assert_equal(res, expected) t = tile(b, (2, 1)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(b_data, (2, 1)) np.testing.assert_equal(res, expected) c_data = np.array([1, 2, 3, 4]) c = tensor(c_data, chunk_size=3) t = tile(c, (4, 1)) res = self.executor.execute_tensor(t, concat=True)[0] expected = np.tile(c_data, (4, 1)) np.testing.assert_equal(res, expected) def testIsInExecution(self): element = 2 * arange(4, chunk_size=1).reshape((2, 2)) test_elements = [1, 2, 4, 8] mask = isin(element, test_elements) res = self.executor.execute_tensor(mask, concat=True)[0] expected = np.isin(2 * np.arange(4).reshape((2, 2)), test_elements) np.testing.assert_equal(res, expected) res = self.executor.execute_tensor(element[mask], concat=True)[0] expected = np.array([2, 4]) np.testing.assert_equal(res, expected) mask = isin(element, test_elements, invert=True) res = self.executor.execute_tensor(mask, concat=True)[0] expected = np.isin(2 * np.arange(4).reshape((2, 2)), test_elements, invert=True) np.testing.assert_equal(res, expected) res = self.executor.execute_tensor(element[mask], concat=True)[0] expected = np.array([0, 6]) np.testing.assert_equal(res, expected) test_set = {1, 2, 4, 8} mask = isin(element, test_set) res = self.executor.execute_tensor(mask, concat=True)[0] expected = np.isin(2 * np.arange(4).reshape((2, 2)), test_set) np.testing.assert_equal(res, expected) def testRavelExecution(self): arr = ones((10, 5), chunk_size=2) flat_arr = mt.ravel(arr) res = self.executor.execute_tensor(flat_arr, concat=True)[0] self.assertEqual(len(res), 50) np.testing.assert_equal(res, np.ones(50)) def testSearchsortedExecution(self): raw = np.sort(np.random.randint(100, size=(16,))) # test different chunk_size, 3 will have combine, 6 will skip combine for chunk_size in (3, 6): arr = tensor(raw, chunk_size=chunk_size) # test scalar, with value in the middle t1 = searchsorted(arr, 20) res = self.executor.execute_tensor(t1, concat=True)[0] expected = np.searchsorted(raw, 20) np.testing.assert_array_equal(res, expected) # test scalar, with value larger than 100 t2 = searchsorted(arr, 200) res = self.executor.execute_tensor(t2, concat=True)[0] expected = np.searchsorted(raw, 200) np.testing.assert_array_equal(res, expected) # test scalar, side left, with value exact in the middle of the array t3 = searchsorted(arr, raw[10], side='left') res = self.executor.execute_tensor(t3, concat=True)[0] expected = np.searchsorted(raw, raw[10], side='left') np.testing.assert_array_equal(res, expected) # test scalar, side right, with value exact in the middle of the array t4 = searchsorted(arr, raw[10], side='right') res = self.executor.execute_tensor(t4, concat=True)[0] expected = np.searchsorted(raw, raw[10], side='right') np.testing.assert_array_equal(res, expected) # test scalar, side left, with value exact in the end of the array t5 = searchsorted(arr, raw[15], side='left') res = self.executor.execute_tensor(t5, concat=True)[0] expected = np.searchsorted(raw, raw[15], side='left') np.testing.assert_array_equal(res, expected) # test scalar, side right, with value exact in the end of the array t6 = searchsorted(arr, raw[15], side='right') res = self.executor.execute_tensor(t6, concat=True)[0] expected = np.searchsorted(raw, raw[15], side='right') np.testing.assert_array_equal(res, expected) # test scalar, side left, with value exact in the start of the array t7 = searchsorted(arr, raw[0], side='left') res = self.executor.execute_tensor(t7, concat=True)[0] expected = np.searchsorted(raw, raw[0], side='left') np.testing.assert_array_equal(res, expected) # test scalar, side right, with value exact in the start of the array t8 = searchsorted(arr, raw[0], side='right') res = self.executor.execute_tensor(t8, concat=True)[0] expected = np.searchsorted(raw, raw[0], side='right') np.testing.assert_array_equal(res, expected) raw2 = np.random.randint(100, size=(3, 4)) # test tensor, side left t9 = searchsorted(arr, tensor(raw2, chunk_size=2), side='left') res = self.executor.execute_tensor(t9, concat=True)[0] expected = np.searchsorted(raw, raw2, side='left') np.testing.assert_array_equal(res, expected) # test tensor, side right t10 = searchsorted(arr, tensor(raw2, chunk_size=2), side='right') res = self.executor.execute_tensor(t10, concat=True)[0] expected = np.searchsorted(raw, raw2, side='right') np.testing.assert_array_equal(res, expected) # test one chunk arr = tensor(raw, chunk_size=16) # test scalar, tensor to search has 1 chunk t11 = searchsorted(arr, 20) res = self.executor.execute_tensor(t11, concat=True)[0] expected = np.searchsorted(raw, 20) np.testing.assert_array_equal(res, expected) # test tensor with 1 chunk, tensor to search has 1 chunk t12 = searchsorted(arr, tensor(raw2, chunk_size=4)) res = self.executor.execute_tensor(t12, concat=True)[0] expected = np.searchsorted(raw, raw2) np.testing.assert_array_equal(res, expected) # test tensor with more than 1 chunk, tensor to search has 1 chunk t13 = searchsorted(arr, tensor(raw2, chunk_size=2)) res = self.executor.execute_tensor(t13, concat=True)[0] expected = np.searchsorted(raw, raw2) np.testing.assert_array_equal(res, expected) # test sorter raw3 = np.random.randint(100, size=(16,)) arr = tensor(raw3, chunk_size=3) order = np.argsort(raw3) order_arr = tensor(order, chunk_size=4) t14 = searchsorted(arr, 20, sorter=order_arr) res = self.executor.execute_tensor(t14, concat=True)[0] expected = np.searchsorted(raw3, 20, sorter=order) np.testing.assert_array_equal(res, expected) def testUniqueExecution(self): rs = np.random.RandomState(0) raw = rs.randint(10, size=(10,)) for chunk_size in (10, 3): x = tensor(raw, chunk_size=chunk_size) y = unique(x) res = self.executor.execute_tensor(y, concat=True)[0] expected = np.unique(raw) np.testing.assert_array_equal(res, expected) y, indices = unique(x, return_index=True) res = self.executor.execute_tensors([y, indices]) expected = np.unique(raw, return_index=True) self.assertEqual(len(res), 2) self.assertEqual(len(expected), 2) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) y, inverse = unique(x, return_inverse=True) res = self.executor.execute_tensors([y, inverse]) expected = np.unique(raw, return_inverse=True) self.assertEqual(len(res), 2) self.assertEqual(len(expected), 2) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) y, counts = unique(x, return_counts=True) res = self.executor.execute_tensors([y, counts]) expected = np.unique(raw, return_counts=True) self.assertEqual(len(res), 2) self.assertEqual(len(expected), 2) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) y, indices, inverse, counts = unique(x, return_index=True, return_inverse=True, return_counts=True) res = self.executor.execute_tensors([y, indices, inverse, counts]) expected = np.unique(raw, return_index=True, return_inverse=True, return_counts=True) self.assertEqual(len(res), 4) self.assertEqual(len(expected), 4) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) np.testing.assert_array_equal(res[2], expected[2]) np.testing.assert_array_equal(res[3], expected[3]) y, indices, counts = unique(x, return_index=True, return_counts=True) res = self.executor.execute_tensors([y, indices, counts]) expected = np.unique(raw, return_index=True, return_counts=True) self.assertEqual(len(res), 3) self.assertEqual(len(expected), 3) np.testing.assert_array_equal(res[0], expected[0]) np.testing.assert_array_equal(res[1], expected[1]) np.testing.assert_array_equal(res[2], expected[2]) raw2 = rs.randint(10, size=(4, 5, 6)) x2 = tensor(raw2, chunk_size=chunk_size) y2 = unique(x2) res = self.executor.execute_tensor(y2, concat=True)[0] expected = np.unique(raw2) np.testing.assert_array_equal(res, expected) y2 = unique(x2, axis=1) res = self.executor.execute_tensor(y2, concat=True)[0] expected = np.unique(raw2, axis=1) np.testing.assert_array_equal(res, expected) y2 = unique(x2, axis=2) res = self.executor.execute_tensor(y2, concat=True)[0] expected = np.unique(raw2, axis=2) np.testing.assert_array_equal(res, expected) raw = rs.randint(10, size=(10, 20)) raw[:, 0] = raw[:, 11] = rs.randint(10, size=(10,)) x = tensor(raw, chunk_size=2) y, ind, inv, counts = unique(x, aggregate_size=3, axis=1, return_index=True, return_inverse=True, return_counts=True) res_unique, res_ind, res_inv, res_counts = self.executor.execute_tensors((y, ind, inv, counts)) exp_unique, exp_ind, exp_counts = np.unique(raw, axis=1, return_index=True, return_counts=True) raw_res_unique = res_unique res_unique_df = pd.DataFrame(res_unique) res_unique_ind = np.asarray(res_unique_df.sort_values(list(range(res_unique.shape[0])), axis=1).columns) res_unique = res_unique[:, res_unique_ind] res_ind = res_ind[res_unique_ind] res_counts = res_counts[res_unique_ind] np.testing.assert_array_equal(res_unique, exp_unique) np.testing.assert_array_equal(res_ind, exp_ind) np.testing.assert_array_equal(raw_res_unique[:, res_inv], raw) np.testing.assert_array_equal(res_counts, exp_counts) x = (mt.random.RandomState(0).rand(1000, chunk_size=20) > 0.5).astype(np.int32) y = unique(x) res = np.sort(self.executor.execute_tensor(y, concat=True)[0]) np.testing.assert_array_equal(res, np.array([0, 1])) # test sparse sparse_raw = sps.random(10, 3, density=0.1, format='csr', random_state=rs) x = tensor(sparse_raw, chunk_size=2) y = unique(x) res = np.sort(self.executor.execute_tensor(y, concat=True)[0]) np.testing.assert_array_equal(res, np.unique(sparse_raw.data)) # test empty x = tensor([]) y = unique(x) res = self.executor.execute_tensor(y, concat=True)[0] np.testing.assert_array_equal(res, np.unique([])) x = tensor([[]]) y = unique(x) res = self.executor.execute_tensor(y, concat=True)[0] np.testing.assert_array_equal(res, np.unique([[]])) @require_cupy def testToGPUExecution(self): raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=3) gx = to_gpu(x) res = self.executor.execute_tensor(gx, concat=True)[0] np.testing.assert_array_equal(res.get(), raw) @require_cupy def testToCPUExecution(self): raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=3, gpu=True) cx = to_cpu(x) res = self.executor.execute_tensor(cx, concat=True)[0] np.testing.assert_array_equal(res, raw) def testSortExecution(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # 1-d chunk raw = np.random.rand(100) x = tensor(raw, chunk_size=10) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # test force need_align=True sx = sort(x) sx.op._need_align = True res = self.executor.execute_tensor(sx, concat=True)[0] self.assertEqual(get_tiled(sx).nsplits, get_tiled(x).nsplits) np.testing.assert_array_equal(res, np.sort(raw)) # test psrs_kinds sx = sort(x, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # structured dtype raw = np.empty(100, dtype=[('id', np.int32), ('size', np.int64)]) raw['id'] = np.random.randint(1000, size=100, dtype=np.int32) raw['size'] = np.random.randint(1000, size=100, dtype=np.int64) x = tensor(raw, chunk_size=10) sx = sort(x, order=['size', 'id']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, order=['size', 'id'])) # test psrs_kinds with structured dtype sx = sort(x, order=['size', 'id'], psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, order=['size', 'id'])) # test flatten case raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=5) sx = sort(x, axis=None) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=None)) # test multi-dimension raw = np.random.rand(10, 100) x = tensor(raw, chunk_size=(2, 10)) sx = sort(x, psrs_kinds=['quicksort'] * 3) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) raw = np.random.rand(10, 99) x = tensor(raw, chunk_size=(2, 10)) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) # test 3-d raw = np.random.rand(20, 25, 28) x = tensor(raw, chunk_size=(10, 5, 7)) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, axis=0) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=0)) sx = sort(x, axis=0, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=0)) sx = sort(x, axis=1) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=1)) sx = sort(x, axis=1, psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=1)) # test multi-dimension with structured type raw = np.empty((10, 100), dtype=[('id', np.int32), ('size', np.int64)]) raw['id'] = np.random.randint(1000, size=(10, 100), dtype=np.int32) raw['size'] = np.random.randint(1000, size=(10, 100), dtype=np.int64) x = tensor(raw, chunk_size=(3, 10)) sx = sort(x) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw)) sx = sort(x, order=['size', 'id']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, order=['size', 'id'])) sx = sort(x, order=['size']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, order=['size'])) sx = sort(x, axis=0, order=['size', 'id']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=0, order=['size', 'id'])) sx = sort(x, axis=0, order=['size', 'id'], psrs_kinds=[None, None, 'quicksort']) res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=0, order=['size', 'id'])) # test inplace sort raw = np.random.rand(10, 12) a = tensor(raw, chunk_size=(5, 4)) a.sort(axis=1) res = self.executor.execute_tensor(a, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw, axis=1)) a.sort(axis=0) res = self.executor.execute_tensor(a, concat=True)[0] np.testing.assert_array_equal(res, np.sort(np.sort(raw, axis=1), axis=0)) # test with empty chunk raw = np.random.rand(20, 10) raw[:, :8] = 1 a = tensor(raw, chunk_size=5) filtered = a[a < 1] filtered.sort() res = self.executor.execute_tensor(filtered, concat=True)[0] np.testing.assert_array_equal(res, np.sort(raw[raw < 1])) def testSortIndicesExecution(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) r = sort(x, return_index=True) sr, si = self.executor.execute_tensors(r) np.testing.assert_array_equal(sr, np.take_along_axis(raw, si, axis=-1)) x = tensor(raw, chunk_size=(22, 4)) r = sort(x, return_index=True) sr, si = self.executor.execute_tensors(r) np.testing.assert_array_equal(sr, np.take_along_axis(raw, si, axis=-1)) raw = np.random.rand(100) x = tensor(raw, chunk_size=23) r = sort(x, axis=0, return_index=True) sr, si = self.executor.execute_tensors(r) np.testing.assert_array_equal(sr, raw[si]) def testArgsort(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) xa = argsort(x) r = self.executor.execute_tensor(xa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw), np.take_along_axis(raw, r, axis=-1)) x = tensor(raw, chunk_size=(22, 4)) xa = argsort(x) r = self.executor.execute_tensor(xa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw), np.take_along_axis(raw, r, axis=-1)) raw = np.random.rand(100) x = tensor(raw, chunk_size=23) xa = argsort(x, axis=0) r = self.executor.execute_tensor(xa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw, axis=0), raw[r]) def testPartitionExecution(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) px = partition(x, [1, 8]) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res, np.partition(raw, [1, 8])) # 1-d chunk raw = np.random.rand(100) x = tensor(raw, chunk_size=10) kth = np.random.RandomState(0).randint(-100, 100, size=(10,)) px = partition(x, kth) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res[kth], np.partition(raw, kth)[kth]) # structured dtype raw = np.empty(100, dtype=[('id', np.int32), ('size', np.int64)]) raw['id'] = np.random.randint(1000, size=100, dtype=np.int32) raw['size'] = np.random.randint(1000, size=100, dtype=np.int64) x = tensor(raw, chunk_size=10) px = partition(x, kth, order=['size', 'id']) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal( res[kth], np.partition(raw, kth, order=['size', 'id'])[kth]) # test flatten case raw = np.random.rand(10, 10) x = tensor(raw, chunk_size=5) px = partition(x, kth, axis=None) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res[kth], np.partition(raw, kth, axis=None)[kth]) # test multi-dimension raw = np.random.rand(10, 100) x = tensor(raw, chunk_size=(2, 10)) kth = np.random.RandomState(0).randint(-10, 10, size=(3,)) px = partition(x, kth) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res[:, kth], np.partition(raw, kth)[:, kth]) raw = np.random.rand(10, 99) x = tensor(raw, chunk_size=(2, 10)) px = partition(x, kth) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res[:, kth], np.partition(raw, kth)[:, kth]) # test 3-d raw = np.random.rand(20, 25, 28) x = tensor(raw, chunk_size=(10, 5, 7)) kth = np.random.RandomState(0).randint(-28, 28, size=(3,)) px = partition(x, kth) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal( res[:, :, kth], np.partition(raw, kth)[:, :, kth]) kth = np.random.RandomState(0).randint(-20, 20, size=(3,)) px = partition(x, kth, axis=0) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res[kth], np.partition(raw, kth, axis=0)[kth]) kth = np.random.RandomState(0).randint(-25, 25, size=(3,)) px = partition(x, kth, axis=1) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal( res[:, kth], np.partition(raw, kth, axis=1)[:, kth]) # test multi-dimension with structured type raw = np.empty((10, 100), dtype=[('id', np.int32), ('size', np.int64)]) raw['id'] = np.random.randint(1000, size=(10, 100), dtype=np.int32) raw['size'] = np.random.randint(1000, size=(10, 100), dtype=np.int64) x = tensor(raw, chunk_size=(3, 10)) kth = np.random.RandomState(0).randint(-100, 100, size=(10,)) px = partition(x, kth) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal(res[:, kth], np.partition(raw, kth)[:, kth]) px = partition(x, kth, order=['size', 'id']) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal( res[:, kth], np.partition(raw, kth, order=['size', 'id'])[:, kth]) px = partition(x, kth, order=['size']) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal( res[:, kth], np.partition(raw, kth, order=['size'])[:, kth]) kth = np.random.RandomState(0).randint(-10, 10, size=(5,)) px = partition(x, kth, axis=0, order=['size', 'id']) res = self.executor.execute_tensor(px, concat=True)[0] np.testing.assert_array_equal( res[kth], np.partition(raw, kth, axis=0, order=['size', 'id'])[kth]) raw = np.random.rand(10, 12) a = tensor(raw, chunk_size=(5, 4)) kth = np.random.RandomState(0).randint(-12, 12, size=(2,)) a.partition(kth, axis=1) res = self.executor.execute_tensor(a, concat=True)[0] np.testing.assert_array_equal( res[:, kth], np.partition(raw, kth, axis=1)[:, kth]) kth = np.random.RandomState(0).randint(-10, 10, size=(2,)) a.partition(kth, axis=0) raw_base = res res = self.executor.execute_tensor(a, concat=True)[0] np.testing.assert_array_equal( res[kth], np.partition(raw_base, kth, axis=0)[kth]) # test kth which is tensor raw = np.random.rand(10, 12) a = tensor(raw, chunk_size=(3, 5)) kth = (mt.random.rand(5) * 24 - 12).astype(int) px = partition(a, kth) sx = sort(a) res = self.executor.execute_tensor(px, concat=True)[0] kth_res = self.executor.execute_tensor(kth, concat=True)[0] sort_res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res[:, kth_res], sort_res[:, kth_res]) a = tensor(raw, chunk_size=(10, 12)) kth = (mt.random.rand(5) * 24 - 12).astype(int) px = partition(a, kth) sx = sort(a) res = self.executor.execute_tensor(px, concat=True)[0] kth_res = self.executor.execute_tensor(kth, concat=True)[0] sort_res = self.executor.execute_tensor(sx, concat=True)[0] np.testing.assert_array_equal(res[:, kth_res], sort_res[:, kth_res]) def testPartitionIndicesExecution(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) kth = [2, 5, 9] r = partition(x, kth, return_index=True) pr, pi = self.executor.execute_tensors(r) np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1)) np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth]) x = tensor(raw, chunk_size=(22, 4)) r = partition(x, kth, return_index=True) pr, pi = self.executor.execute_tensors(r) np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1)) np.testing.assert_array_equal(np.sort(raw)[:, kth], pr[:, kth]) raw = np.random.rand(100) x = tensor(raw, chunk_size=23) r = partition(x, kth, axis=0, return_index=True) pr, pi = self.executor.execute_tensors(r) np.testing.assert_array_equal(pr, np.take_along_axis(raw, pi, axis=-1)) np.testing.assert_array_equal(np.sort(raw)[kth], pr[kth]) def testArgpartitionExecution(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) kth = [6, 3, 8] pa = argpartition(x, kth) r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw)[:, kth], np.take_along_axis(raw, r, axis=-1)[:, kth]) x = tensor(raw, chunk_size=(22, 4)) pa = argpartition(x, kth) r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw)[:, kth], np.take_along_axis(raw, r, axis=-1)[:, kth]) raw = np.random.rand(100) x = tensor(raw, chunk_size=23) pa = argpartition(x, kth, axis=0) r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw, axis=0)[kth], raw[r][kth]) @staticmethod def _topk_slow(a, k, axis, largest, order): if axis is None: a = a.flatten() axis = 0 a = np.sort(a, axis=axis, order=order) if largest: a = a[(slice(None),) * axis + (slice(None, None, -1),)] return a[(slice(None),) * axis + (slice(k),)] @staticmethod def _handle_result(result, axis, largest, order): result = np.sort(result, axis=axis, order=order) if largest: ax = axis if axis is not None else 0 result = result[(slice(None),) * ax + (slice(None, None, -1),)] return result def testTopkExecution(self): raw1, order1 = np.random.rand(5, 6, 7), None raw2 = np.empty((5, 6, 7), dtype=[('a', np.int32), ('b', np.float64)]) raw2['a'] = np.random.randint(1000, size=(5, 6, 7), dtype=np.int32) raw2['b'] = np.random.rand(5, 6, 7) order2 = ['b', 'a'] for raw, order in [(raw1, order1), (raw2, order2)]: for chunk_size in [7, 4]: a = tensor(raw, chunk_size=chunk_size) for axis in [0, 1, 2, None]: size = raw.shape[axis] if axis is not None else raw.size for largest in [True, False]: for to_sort in [True, False]: for parallel_kind in ['tree', 'psrs']: for k in [2, size - 2, size, size + 2]: r = topk(a, k, axis=axis, largest=largest, sorted=to_sort, order=order, parallel_kind=parallel_kind) result = self.executor.execute_tensor(r, concat=True)[0] if not to_sort: result = self._handle_result(result, axis, largest, order) expected = self._topk_slow(raw, k, axis, largest, order) np.testing.assert_array_equal(result, expected) r = topk(a, k, axis=axis, largest=largest, sorted=to_sort, order=order, parallel_kind=parallel_kind, return_index=True) ta, ti = self.executor.execute_tensors(r) raw2 = raw if axis is None: raw2 = raw.flatten() np.testing.assert_array_equal(ta, np.take_along_axis(raw2, ti, axis)) if not to_sort: ta = self._handle_result(ta, axis, largest, order) np.testing.assert_array_equal(ta, expected) def testArgtopk(self): # only 1 chunk when axis = -1 raw = np.random.rand(100, 10) x = tensor(raw, chunk_size=10) pa = argtopk(x, 3, parallel_kind='tree') r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw)[:, -1:-4:-1], np.take_along_axis(raw, r, axis=-1)) pa = argtopk(x, 3, parallel_kind='psrs') r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw)[:, -1:-4:-1], np.take_along_axis(raw, r, axis=-1)) x = tensor(raw, chunk_size=(22, 4)) pa = argtopk(x, 3, parallel_kind='tree') r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw)[:, -1:-4:-1], np.take_along_axis(raw, r, axis=-1)) pa = argtopk(x, 3, parallel_kind='psrs') r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw)[:, -1:-4:-1], np.take_along_axis(raw, r, axis=-1)) raw = np.random.rand(100) x = tensor(raw, chunk_size=23) pa = argtopk(x, 3, axis=0, parallel_kind='tree') r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw, axis=0)[-1:-4:-1], raw[r]) pa = argtopk(x, 3, axis=0, parallel_kind='psrs') r = self.executor.execute_tensor(pa, concat=True)[0] np.testing.assert_array_equal(np.sort(raw, axis=0)[-1:-4:-1], raw[r]) def testCopy(self): x = tensor([1, 2, 3]) y = mt.copy(x) z = x x[0] = 10 y_res = self.executor.execute_tensor(y)[0] np.testing.assert_array_equal(y_res, np.array([1, 2, 3])) z_res = self.executor.execute_tensor(z)[0] np.testing.assert_array_equal(z_res, np.array([10, 2, 3])) def testTrapzExecution(self): raws = [ np.random.rand(10), np.random.rand(10, 3) ] for raw in raws: for chunk_size in (4, 10): for dx in (1.0, 2.0): t = tensor(raw, chunk_size=chunk_size) r = trapz(t, dx=dx) result = self.executor.execute_tensor(r, concat=True)[0] expected = np.trapz(raw, dx=dx) np.testing.assert_almost_equal(result, expected, err_msg=f'failed when raw={raw}, ' f'chunk_size={chunk_size}, dx={dx}') # test x not None raw_ys = [np.random.rand(10), np.random.rand(10, 3)] raw_xs = [np.random.rand(10),
np.random.rand(10, 3)
numpy.random.rand
# Copyright 2019 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. r"""Unit tests for the poly_quad_expectations method in the states.py submodule""" import pytest import numpy as np from scipy.stats import multivariate_normal from scipy.integrate import simps from scipy.linalg import block_diag from strawberryfields import backends from strawberryfields import utils from strawberryfields.backends.shared_ops import rotation_matrix as R, changebasis # some tests require a higher cutoff for accuracy CUTOFF = 12 a = 0.3 + 0.1j r = 0.23 phi = 0.123 qphi = 0.78 @pytest.mark.backends("fock", "gaussian") class TestSingleModePolyQuadratureExpectations: """Test single mode poly_quad_expectation methods""" @pytest.fixture def gaussian_state(self, hbar): """A test Gaussian state to use in testing""" # quadrature rotation # construct the expected vector of means and covariance matrix mu = R(qphi).T @ np.array([a.real, a.imag]) * np.sqrt(2 * hbar) cov = R(qphi).T @ utils.squeezed_cov(r, phi, hbar=hbar) @ R(qphi) return mu, cov @pytest.fixture def sample_normal_expectations(self, gaussian_state): """Returns the expectation value E(f) and the variance var(f) for some normal distribution X~N(mu, cov). Args: mu (array): means vector cov (array): covariance matrix func (function): function acting on the random variables X, P, XP, returning a second order polynomial Returns: tuple: tuple of expectation value and variance. """ def _sample(func, correction=0, mu=None, cov=None): """wrapped function""" if mu is None: mu = gaussian_state[0] if cov is None: cov = gaussian_state[1] X, P = np.mgrid[-7:7:0.01, -7:7:0.01] grid = np.dstack((X, P)) XP = np.prod(grid, axis=2) poly = func(X, P, XP) PDF = multivariate_normal.pdf(grid, mu, cov) Ex = simps(simps(poly * PDF, P[0]), X.T[0]) ExSq = simps(simps(poly ** 2 * PDF, P[0]), X.T[0]) var = ExSq - Ex ** 2 + correction return Ex, var return _sample def test_no_expectation(self, setup_backend, tol): """Test the case E(0), var(0)""" backend = setup_backend(3) state = backend.state() A = np.zeros([6, 6]) d = np.zeros([6]) k = 0 mean, var = state.poly_quad_expectation(A, d, k) assert np.allclose(mean, 0, atol=tol, rtol=0) assert np.allclose(var, 0, atol=tol, rtol=0) def test_constant(self, setup_backend, tol): """Test the case E(k), var(k)""" backend = setup_backend(3) state = backend.state() A = np.zeros([6, 6]) d = np.zeros([6]) k = 0.543 mean, var = state.poly_quad_expectation(A, d, k) assert np.allclose(mean, k, atol=tol, rtol=0) assert np.allclose(var, 0, atol=tol, rtol=0) def test_linear_vacuum(self, setup_backend, tol, hbar): """Test that the correct results are returned for the vacuum state.""" backend = setup_backend(3) state = backend.state() A = np.zeros([6, 6]) # create an arbitrary linear combination d = np.array([1, 1, 0, 1, 0, 0]) k = 0 mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) assert np.allclose(mean, 0, atol=tol, rtol=0) assert np.allclose(var, len(d) * hbar / 4, atol=tol, rtol=0) def test_x_squeezed(self, setup_backend, tol, pure, hbar): """Test that the correct E(x) is returned for the squeezed state.""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) A = None d = np.array([1, 0, 0, 0, 0, 0]) k = 0 # prepare a squeezed state backend.squeeze(r, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=0) assert np.allclose(mean, 0, atol=tol, rtol=0) assert np.allclose(var, np.exp(-2 * r)*hbar/2, atol=tol, rtol=0) def test_x_displaced(self, setup_backend, tol, hbar): """Test that the correct E(x) is returned for a displaced state.""" backend = setup_backend(3) A = None d = np.array([1, 0, 0, 0, 0, 0]) k = 0 # prepare a displaced state backend.displacement(a, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=0) assert np.allclose(mean, a.real * np.sqrt(2 * hbar), atol=tol, rtol=0) assert np.allclose(var, hbar / 2, atol=tol, rtol=0) def test_x_displaced_squeezed(self, setup_backend, tol, gaussian_state): """Test that the correct E(x) is returned for the displaced squeezed state.""" backend = setup_backend(3) mu, cov = gaussian_state A = None d = np.array([1, 0, 0, 0, 0, 0]) k = 0 # prepare a displaced squeezed state backend.prepare_displaced_squeezed_state(a, r, phi, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) assert np.allclose(mean, mu[0], atol=tol, rtol=0) assert np.allclose(var, cov[0, 0], atol=tol, rtol=0) def test_p_displaced_squeezed(self, setup_backend, tol, gaussian_state): """Test that the correct E(p) is returned for the displaced squeezed state.""" backend = setup_backend(3) mu, cov = gaussian_state A = None d = np.array([0, 0, 0, 1, 0, 0]) k = 0 # prepare a displaced squeezed state backend.prepare_displaced_squeezed_state(a, r, phi, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) assert np.allclose(mean, mu[1], atol=tol, rtol=0) assert np.allclose(var, cov[1, 1], atol=tol, rtol=0) def test_linear_combination(self, setup_backend, tol, gaussian_state): """Test that the correct result is returned for E(ax+bp)""" backend = setup_backend(3) mu, cov = gaussian_state A = None d = np.array([0.4234, 0, 0, 0.1543, 0, 0]) k = 0 # prepare a displaced squeezed state backend.prepare_displaced_squeezed_state(a, r, phi, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) # E(ax+bp) = aE(x) + bE(p) mean_expected = d[0] * mu[0] + d[3] * mu[1] assert np.allclose(mean, mean_expected, atol=tol, rtol=0) # var(ax+bp) = a**2 var(x)+b**2 var(p)+2ab cov(x,p) var_expected = ( cov[0, 0] * d[0] ** 2 + cov[1, 1] * d[3] ** 2 + 2 * d[0] * d[3] * cov[0, 1] ) assert np.allclose(var, var_expected, atol=tol, rtol=0) def test_n_thermal(self, setup_backend, tol, hbar, pure): """Test expectation and variance of the number operator on a thermal state""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) nbar = 0.423 backend.prepare_thermal_state(nbar, 0) state = backend.state() # n = a^\dagger a = (X^2 +P^2)/2\hbar - I/2 A = np.zeros([6, 6]) A[0, 0] = 1 / (2 * hbar) A[3, 3] = 1 / (2 * hbar) k = -0.5 mean, var = state.poly_quad_expectation(A, d=None, k=k, phi=0) assert np.allclose(mean, nbar, atol=tol, rtol=0) assert np.allclose(var, nbar * (nbar + 1), atol=tol, rtol=0) def test_n_squeeze(self, setup_backend, tol, hbar, pure): """Test expectation and variance of the number operator on a squeezed state""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) backend.prepare_squeezed_state(r, phi, 0) state = backend.state() # n = a^\dagger a = (X^2 +P^2)/2\hbar - I/2 A = np.zeros([6, 6]) A[0, 0] = 1 / (2 * hbar) A[3, 3] = 1 / (2 * hbar) k = -0.5 mean, var = state.poly_quad_expectation(A, None, k, phi=qphi) mean_ex = np.sinh(r) ** 2 var_ex = 0.5 * np.sinh(2 * r) ** 2 assert np.allclose(mean, mean_ex, atol=tol, rtol=0) assert np.allclose(var, var_ex, atol=tol, rtol=0) def test_x_squared(self, setup_backend, tol, pure, sample_normal_expectations): """Test that the correct result is returned for E(x^2)""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) A = np.zeros([6, 6]) A[0, 0] = 1 d = None k = 0 # prepare a displaced squeezed state backend.prepare_displaced_squeezed_state(a, r, phi, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) mean_ex, var_ex = sample_normal_expectations(lambda X, P, XP: A[0, 0] * X ** 2) assert np.allclose(mean, mean_ex, atol=tol, rtol=0) assert np.allclose(var, var_ex, atol=tol, rtol=0) def test_p_squared(self, setup_backend, tol, pure, sample_normal_expectations): """Test that the correct result is returned for E(p^2)""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) A = np.zeros([6, 6]) A[3, 3] = 1 d = None k = 0 # prepare a displaced squeezed state backend.prepare_displaced_squeezed_state(a, r, phi, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) mean_ex, var_ex = sample_normal_expectations(lambda X, P, XP: P ** 2) assert np.allclose(mean, mean_ex, atol=tol, rtol=0) assert np.allclose(var, var_ex, atol=tol, rtol=0) def test_xp_vacuum(self, setup_backend, tol, sample_normal_expectations, hbar): """Test that the correct result is returned for E(xp) on the vacuum state""" backend = setup_backend(3) # set quadratic coefficient A = np.zeros([6, 6]) A[3, 0] = A[0, 3] = 0.5 d = None k = 0 state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=0) mean_ex, var_ex = sample_normal_expectations( lambda X, P, XP: XP, correction=-np.linalg.det(hbar * A[:, [0, 3]][[0, 3]]), mu=np.zeros([2]), cov=np.identity(2)*hbar/2, ) assert np.allclose(mean, mean_ex, atol=tol, rtol=0) assert np.allclose(var, var_ex, atol=tol, rtol=0) def test_xp_displaced_squeezed( self, setup_backend, tol, pure, sample_normal_expectations, hbar ): """Test that the correct result is returned for E(xp) on a displaced squeezed state""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) # set quadratic coefficient A = np.zeros([6, 6]) A[3, 0] = A[0, 3] = 0.5 d = None k = 0 # prepare a displaced squeezed state backend.prepare_displaced_squeezed_state(a, r, phi, 0) state = backend.state() mean, var = state.poly_quad_expectation(A, d, k, phi=qphi) mean_ex, var_ex = sample_normal_expectations( lambda X, P, XP: XP, correction=-np.linalg.det(hbar * A[:, [0, 3]][[0, 3]]) ) assert np.allclose(mean, mean_ex, atol=tol, rtol=0) assert np.allclose(var, var_ex, atol=tol, rtol=0) def test_arbitrary_quadratic( self, setup_backend, tol, pure, sample_normal_expectations, hbar ): """Test that the correct result is returned for E(c0 x^2 + c1 p^2 + c2 xp + c3 x + c4 p + k) on a displaced squeezed state""" backend = setup_backend(3) backend.reset(cutoff_dim=CUTOFF, pure=pure) c0 = 1 / np.sqrt(2) c1 = 3 c2 = 0.53 c3 = 1 / 3.0 c4 = -1 # define the arbitrary quadratic A =
np.zeros([6, 6])
numpy.zeros
#!/usr/bin/env python """Tests for the linalg.isolve.gcrotmk module """ from numpy.testing import (assert_, assert_allclose, assert_equal, suppress_warnings) import numpy as np from numpy import zeros, array, allclose from scipy.linalg import norm from scipy.sparse import csr_matrix, eye, rand from scipy.sparse.linalg.interface import LinearOperator from scipy.sparse.linalg import splu from scipy.sparse.linalg.isolve import gcrotmk, gmres Am = csr_matrix(array([[-2,1,0,0,0,9], [1,-2,1,0,5,0], [0,1,-2,1,0,0], [0,0,1,-2,1,0], [0,3,0,1,-2,1], [1,0,0,0,1,-2]])) b = array([1,2,3,4,5,6]) count = [0] def matvec(v): count[0] += 1 return Am*v A = LinearOperator(matvec=matvec, shape=Am.shape, dtype=Am.dtype) def do_solve(**kw): count[0] = 0 with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x0, flag = gcrotmk(A, b, x0=zeros(A.shape[0]), tol=1e-14, **kw) count_0 = count[0] assert_(allclose(A*x0, b, rtol=1e-12, atol=1e-12), norm(A*x0-b)) return x0, count_0 class TestGCROTMK(object): def test_preconditioner(self): # Check that preconditioning works pc = splu(Am.tocsc()) M = LinearOperator(matvec=pc.solve, shape=A.shape, dtype=A.dtype) x0, count_0 = do_solve() x1, count_1 = do_solve(M=M) assert_equal(count_1, 3) assert_(count_1 < count_0/2) assert_(allclose(x1, x0, rtol=1e-14)) def test_arnoldi(self): np.random.seed(1) A = eye(2000) + rand(2000, 2000, density=5e-4) b = np.random.rand(2000) # The inner arnoldi should be equivalent to gmres with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x0, flag0 = gcrotmk(A, b, x0=zeros(A.shape[0]), m=15, k=0, maxiter=1) x1, flag1 = gmres(A, b, x0=zeros(A.shape[0]), restart=15, maxiter=1) assert_equal(flag0, 1)
assert_equal(flag1, 1)
numpy.testing.assert_equal
import numpy as np from scipy.special import loggamma, gammaln, gamma from matplotlib import pyplot as plt from scipy.optimize import minimize from scipy.optimize import root from mpl_toolkits import mplot3d np.seterr(divide = 'raise') logmoments = np.load("logmoments_Harmonic_4.npy") moments = np.load("moments_Harmonic_4.npy") s_values = np.load("s_values_Harmonic_4.npy") N_base = 7 N_constant = 0 N_plus = 0 N_minus = 0 PPT = 2 N_params_shift = N_base + N_constant + PPT*N_plus + PPT*N_minus ## Scaled def func(sr,si, *q): p=list(q) s = sr+1j*si base = loggamma(p[3] + p[2]*s) + np.log(p[0]**2) + s*np.log(p[1]**2) #+ s**2 * np.log(p[2]**2) + s**3 * np.log(p[3]**2) + s**4 * np.log(p[4]**2) polynom = np.log(p[4] + p[5]*s + p[6]*s**2) #constant = loggamma(p[2]) - loggamma(p[3]) off = N_base + N_constant plus = np.sum([ loggamma(p[off + PPT*k + 0]+ p[off + PPT*k + 1]*s) for k in range(N_plus)]) off = N_base + N_constant + PPT*N_plus minus = np.sum([ -loggamma(p[off + PPT*k + 0]+p[off + PPT*k + 1]*s) for k in range(N_minus)]) return base + polynom + plus - minus ## Allow for nearby branches in the solution def spc(m,sr,si,*p): qq = np.imag(func(sr,si,*p)) ## Allow for 5 branches a = [(m - qq + k*2*np.pi)**2 for k in range(-2,3)] return np.amin(a) ## The difference to minimize def diff(p,S_R,S_I,M_R,M_I): ## Add a regularisation term to force real inputs (s) to have real outputs (i.e. zero imaginary part) loss_real = np.sum([ (m - np.real(func(sr,si,*p)))**2 for sr,si,m in zip(S_R,S_I,M_R)]) loss_imag = np.sum([ spc(m,sr,si,*p) for sr,si,m in zip(S_R,S_I,M_I)]) ret = loss_real + loss_imag print(p) print(ret) return ret p0 = np.random.rand(N_params_shift) p0 = np.ones(N_params_shift) + 0.2 * np.random.rand(N_params_shift) ## Chop up real_s = np.real(s_values) imag_s = np.imag(s_values) real_logm = np.real(logmoments) imag_logm = np.imag(logmoments) real_m = np.real(moments) imag_m = np.imag(moments) if(True): res = minimize(diff,p0,args = (real_s,imag_s,real_logm,imag_logm),method = 'BFGS') print(res) popt=res.x fit = np.array([ func(sr,si,*popt) for sr,si in zip(real_s,imag_s)]) loss_real = np.sum([ (m - np.real(func(sr,si,*popt)))**2 for sr,si,m in zip(real_s,imag_s,real_m)]) loss_imag = np.sum([ spc(m,sr,si,*popt) for sr,si,m in zip(real_s,imag_s,imag_m)]) print("Final Loss:",loss_real+loss_imag) if(False): ax = plt.axes(projection='3d') # Data for three-dimensional scattered points ax.scatter3D(real_s, imag_s, real_m, c=real_m, cmap='Reds', label = "Numeric") ax.scatter3D(real_s, imag_s, np.real(fit), c=np.real(fit), cmap='Greens', label = "Theoretical") ax.set_xlabel('Re(s)') ax.set_ylabel('Im(s)') ax.set_zlabel('$Re(E[x^{s-1}])$') plt.legend() plt.show() ax = plt.axes(projection='3d') # Data for three-dimensional scattered points ax.scatter3D(real_s, imag_s, imag_m, c=imag_m, cmap='Reds', label = "Numeric") ax.scatter3D(real_s, imag_s, np.imag(fit), c=
np.imag(fit)
numpy.imag
import pytest import numpy as np import os from ansys import dpf from ansys.dpf import core from ansys.dpf.core.common import shell_layers, locations from ansys.dpf.core import FieldDefinition from ansys.dpf.core import operators as ops from conftest import local_server @pytest.fixture() def stress_field(allkindofcomplexity): model = dpf.core.Model(allkindofcomplexity) stress = model.results.stress() return stress.outputs.fields_container()[0] def test_create_field(): field = dpf.core.Field() assert field._message.id != 0 def test_create_field_from_helper_scalar(): data = np.random.random(10) field_a = dpf.core.field_from_array(data) assert np.allclose(field_a.data, data) def test_create_field_from_helper_vector(): data = np.random.random((10, 3)) field_a = dpf.core.field_from_array(data) assert np.allclose(field_a.data, data) def test_createbycopy_field(): field = dpf.core.Field() field2 = dpf.core.Field(field=field._message) assert field._message.id == field2._message.id def test_set_get_scoping(): field = dpf.core.Field() scoping = dpf.core.Scoping() ids=[1,2,3,5,8,9,10] scoping.ids=ids field.scoping = scoping assert field.scoping.ids == ids def test_set_get_data_field(): field = dpf.core.Field(nentities=20, nature=dpf.core.natures.scalar) scoping = dpf.core.Scoping() ids = [] data= [] for i in range(0, 20): ids.append(i+1) data.append(i+0.001) scoping.ids = ids field.scoping = scoping field.data = data assert np.allclose(field.data,data) def test_set_get_data_array_field(): field= dpf.core.Field(nentities=20, nature=dpf.core.natures.vector) scoping = dpf.core.Scoping() ids =[] data=[] for i in range(0, 20): ids.append(i+1) data.append(i+0.001) data.append(i+0.001) data.append(i+0.001) data = np.array(data) data =data.reshape((20,3)) scoping.ids = ids field.scoping = scoping field.data = data assert np.allclose(field.data,data) def test_append_data_field(): field= dpf.core.Field(nentities=20, nature=dpf.core.natures.vector) for i in range(0,20): scopingid= i+1 scopingindex=i data = [0.01+i,0.02+i,0.03+i] field.append(data, scopingid) scopingOut = field.scoping assert scopingOut.ids == list(range(1,21)) for i in range(0,20): scopingid= i+1 scopingindex=i datain = [0.01+i,0.02+i,0.03+i] dataout = field.get_entity_data(scopingindex) assert np.allclose(dataout,datain) def test_set_get_entity_data_array_field(): field= dpf.core.Field(nentities=20, nature=dpf.core.natures.vector) for i in range(0,20): scopingid= i+1 scopingindex=i data = [0.01+i,0.02+i,0.03+i] data = np.array(data) data =data.reshape((1,3)) field.append(data,scopingid) scopingOut = field.scoping assert scopingOut.ids == list(range(1,21)) for i in range(0,20): scopingid= i+1 scopingindex=i datain = [0.01+i,0.02+i,0.03+i] dataout = field.get_entity_data(scopingindex) assert np.allclose(dataout,datain) dataout = field.get_entity_data_by_id(scopingid) assert np.allclose(dataout,datain) #def test_get_data_ptr_field(): # field= dpf.core.Field(nentities=3, nature=dpf.core.natures.scalar, # location=dpf.core.locations.elemental_nodal) # data = [0.01,0.02,0.03] # field.set_entity_data(data,0,1) # data = [0.01,0.02,0.03,0.01,0.02,0.03] # field.set_entity_data(data,1,2) # data = [0.01,0.02,0.03,0.01] # field.set_entity_data(data,2,3) # scopingOut = field.scoping # assert scopingOut.ids == [1,2,3] # dataptr = field.data_ptr # assert dataptr == [0,3,9] def test_set_get_data_property_field(): field= core.Field(nentities=20, nature=dpf.core.natures.scalar) scoping = core.Scoping() ids = [] data= [] for i in range(0, 20): ids.append(i+1) data.append(i+0.001) scoping.ids = ids field.scoping = scoping field.data = data assert np.allclose(field.data,data) def test_count_field(): field= dpf.core.Field(nentities=20, nature=dpf.core.natures.scalar) scoping = dpf.core.Scoping() ids = [] data= [] for i in range(0, 20): ids.append(i+1) data.append(i+0.001) scoping.ids = ids field.scoping = scoping field.data = data assert field.component_count == 1 assert field.elementary_data_count == 20 assert field.size == 20 def test_resize_field(): field= dpf.core.Field(nentities=1, nature=dpf.core.natures.scalar) scoping = dpf.core.Scoping() ids = [] data= [] for i in range(0, 20): ids.append(i+1) data.append(i+0.001) field.resize(20,20) scoping.ids = ids field.scoping = scoping field.data = data assert field.component_count == 1 assert field.elementary_data_count == 20 assert field.size == 20 def test_fromarray_field(): data = np.empty((100, 6)) f = dpf.core.field_from_array(data) assert f.shape == (100, 6) def test_field_definition_field(allkindofcomplexity): dataSource = dpf.core.DataSources() dataSource.set_result_file_path(allkindofcomplexity) op = dpf.core.Operator("U") op.connect(4, dataSource) fcOut = op.get_output(0, dpf.core.types.fields_container) f = fcOut[0] assert f.unit == "m" assert f.location == dpf.core.locations.nodal def test_field_definition_modif_field(allkindofcomplexity): dataSource = dpf.core.DataSources() dataSource.set_result_file_path(allkindofcomplexity) op = dpf.core.Operator("U") op.connect(4, dataSource) fcOut = op.get_output(0, dpf.core.types.fields_container) f = fcOut[0] fielddef = f.field_definition assert fielddef.unit == "m" assert fielddef.location == dpf.core.locations.nodal assert fielddef.dimensionality.nature == dpf.core.natures.vector assert fielddef.dimensionality.dim == [3] assert fielddef.shell_layers == dpf.core.shell_layers.layerindependent fielddef.unit = "mm" assert fielddef.unit == "mm" fielddef.location = dpf.core.locations.elemental assert fielddef.location == dpf.core.locations.elemental fielddef.dimensionality = dpf.core.Dimensionality.scalar_dim() assert fielddef.dimensionality.nature == dpf.core.natures.scalar assert fielddef.dimensionality.dim == [1] fielddef.dimensionality = dpf.core.Dimensionality.tensor_dim() assert fielddef.dimensionality.nature == dpf.core.natures.symmatrix assert fielddef.dimensionality.dim == [3,3] fielddef.dimensionality = dpf.core.Dimensionality.vector_3d_dim() assert fielddef.dimensionality.nature == dpf.core.natures.vector assert fielddef.dimensionality.dim == [3] fielddef.dimensionality = dpf.core.Dimensionality.vector_dim(4) assert fielddef.dimensionality.nature == dpf.core.natures.vector assert fielddef.dimensionality.dim == [4] fielddef.shell_layers = dpf.core.shell_layers.bottom assert fielddef.shell_layers == dpf.core.shell_layers.bottom def test_field_definition_set_in_field(allkindofcomplexity): dataSource = dpf.core.DataSources() dataSource.set_result_file_path(allkindofcomplexity) op = dpf.core.Operator("U") op.connect(4, dataSource) fcOut = op.get_output(0, dpf.core.types.fields_container) f = fcOut[0] fielddef = f.field_definition fielddef.unit = "mm" fielddef.location = dpf.core.locations.elemental fielddef.dimensionality = dpf.core.Dimensionality.scalar_dim() fielddef.shell_layers = dpf.core.shell_layers.bottom f.field_definition = fielddef fielddef = f.field_definition assert fielddef.unit == "mm" assert fielddef.location == dpf.core.locations.elemental assert fielddef.dimensionality.nature == dpf.core.natures.scalar assert fielddef.dimensionality.dim == [1] assert fielddef.shell_layers == dpf.core.shell_layers.bottom assert f.unit == "mm" assert f.location == dpf.core.locations.elemental assert f.dimensionality.nature == dpf.core.natures.scalar assert f.dimensionality.dim == [1] assert f.shell_layers == dpf.core.shell_layers.bottom def test_change_field_definition_in_field(allkindofcomplexity): dataSource = dpf.core.DataSources() dataSource.set_result_file_path(allkindofcomplexity) op = dpf.core.Operator("U") op.connect(4, dataSource) fcOut = op.get_output(0, dpf.core.types.fields_container) f = fcOut[0] f.unit = "mm" f.location = dpf.core.locations.elemental f.dimensionality = dpf.core.Dimensionality.scalar_dim() f.shell_layers = dpf.core.shell_layers.bottom fielddef = f.field_definition assert fielddef.unit == "mm" assert fielddef.location == dpf.core.locations.elemental assert fielddef.dimensionality.nature == dpf.core.natures.scalar assert fielddef.dimensionality.dim == [1] assert fielddef.shell_layers == dpf.core.shell_layers.bottom assert f.unit == "mm" assert f.location == dpf.core.locations.elemental assert f.dimensionality.nature == dpf.core.natures.scalar assert f.dimensionality.dim == [1] assert f.shell_layers == dpf.core.shell_layers.bottom def test_create_overall_field(): field_overall = dpf.core.Field(nentities=1, location="overall", nature="vector") field_overall.scoping.location = "overall" field_overall.scoping.ids =[0] field_overall.data = [1.0, 2.0, 3.0] field = dpf.core.Field(nentities=5, location="nodal") field.scoping.location = "nodal" field.scoping.ids = list(range(1,6)) data =[float(i) for i in range(0,15)] field.data = data add = dpf.core.Operator("add") add.inputs.fieldA(field) add.inputs.fieldB(field_overall) field_added= add.outputs.field() data_added = field_added.data for i in range(0,5): assert np.allclose(data_added[i],[i*3.0+1.0,i*3.0+3.0,i*3.0+5.0]) def test_data_pointer_field(allkindofcomplexity): dataSource = dpf.core.DataSources() dataSource.set_result_file_path(allkindofcomplexity) op = dpf.core.Operator("S") op.connect(4, dataSource) fcOut = op.get_output(0, dpf.core.types.fields_container) data_pointer = fcOut[0]._data_pointer assert len(data_pointer)==len(fcOut[0].scoping) assert data_pointer[0] == 0 assert data_pointer[1] == 72 f = fcOut[0] data_pointer[1] = 40 f._data_pointer = data_pointer data_pointer = fcOut[0]._data_pointer assert len(data_pointer)==len(fcOut[0].scoping) assert data_pointer[0] == 0 assert data_pointer[1] == 40 def test_data_pointer_prop_field(): pfield = dpf.core.PropertyField() pfield.append([1,2,3],1) pfield.append([1,2,3,4],2) pfield.append([1,2,3],3) data_pointer = pfield._data_pointer assert len(data_pointer)==3 assert data_pointer[0] == 0 assert data_pointer[1] == 3 assert data_pointer[2] == 7 data_pointer[1]=4 pfield._data_pointer = data_pointer data_pointer = pfield._data_pointer assert len(data_pointer)==3 assert data_pointer[0] == 0 assert data_pointer[1] == 4 assert data_pointer[2] == 7 def test_append_data_elemental_nodal_field(allkindofcomplexity): model = dpf.core.Model(allkindofcomplexity) stress = model.results.stress() f = stress.outputs.fields_container()[0] assert f.location == "ElementalNodal" f_new= dpf.core.Field(f.scoping.size, nature=dpf.core.natures.symmatrix, location=dpf.core.locations.elemental_nodal) for i in range(0,int(f.scoping.size/10)): f_new.append(f.get_entity_data(i),f.scoping.id(i)) for i in range(0,int(f.scoping.size/10)): assert np.allclose(f_new.get_entity_data(i), f.get_entity_data(i)) def test_str_field(stress_field): assert 'Location' in str(stress_field) assert 'ElementalNodal' in str(stress_field) assert 'Unit'in str(stress_field) assert 'Pa' in str(stress_field) assert '9255' in str(stress_field) assert '40016' in str(stress_field) assert '6' in str(stress_field) def test_to_nodal(stress_field): assert stress_field.location == 'ElementalNodal' field_out = stress_field.to_nodal() assert field_out.location == 'Nodal' def test_mesh_support_field(stress_field): mesh = stress_field.meshed_region assert len(mesh.nodes.scoping) == 15129 assert len(mesh.elements.scoping) == 10292 def test_shell_layers_1(allkindofcomplexity): model = dpf.core.Model(allkindofcomplexity) stress = model.results.stress() f = stress.outputs.fields_container()[0] assert f.shell_layers == shell_layers.topbottommid model = dpf.core.Model(allkindofcomplexity) disp = model.results.displacement() f = disp.outputs.fields_container()[0] assert f.shell_layers == shell_layers.layerindependent def test_shell_layers_2(velocity_acceleration): model = dpf.core.Model(velocity_acceleration) stress = model.results.stress() f = stress.outputs.fields_container()[0] assert f.shell_layers == shell_layers.nonelayer def test_mesh_support_field_model(allkindofcomplexity): model = dpf.core.Model(allkindofcomplexity) stress = model.results.stress() f = stress.outputs.fields_container()[0] mesh =f.meshed_region assert len(mesh.nodes.scoping)==15129 assert len(mesh.elements.scoping)==10292 def test_delete_auto_field(): field = dpf.core.Field() field2 = dpf.core.Field(field=field) del field with pytest.raises(Exception): field2.get_ids() def test_create_and_update_field_definition(): fieldDef = FieldDefinition() assert fieldDef is not None with pytest.raises(Exception): assert fieldDef.location is None fieldDef.location = locations.nodal assert fieldDef.location == locations.nodal def test_set_support_timefreq(simple_bar): tfq = dpf.core.TimeFreqSupport() time_frequencies = dpf.core.Field(nature=dpf.core.natures.scalar, location=dpf.core.locations.time_freq) time_frequencies.scoping.location = dpf.core.locations.time_freq_step time_frequencies.append([0.1, 0.32, 0.4], 1) tfq.time_frequencies = time_frequencies model = dpf.core.Model(simple_bar) disp = model.results.displacement() fc = disp.outputs.fields_container() field = fc[0] # initial_support = field.time_freq_support # assert initial_support is None field.time_freq_support = tfq tfq_to_check = field.time_freq_support assert np.allclose(tfq.time_frequencies.data, tfq_to_check.time_frequencies.data) def test_set_support_mesh(simple_bar): mesh = dpf.core.MeshedRegion() mesh.nodes.add_node(1, [0.0,0.0,0.0]) model = dpf.core.Model(simple_bar) disp = model.results.displacement() fc = disp.outputs.fields_container() field = fc[0] field.meshed_region = mesh mesh_to_check = field.meshed_region assert mesh_to_check.nodes.n_nodes == 1 assert mesh_to_check.elements.n_elements == 0 mesh.nodes.add_node(2, [1.0,0.0,0.0]) mesh.nodes.add_node(3, [1.0,1.0,0.0]) mesh.nodes.add_node(4,[0.0,1.0,0.0]) field.meshed_region = mesh mesh_to_check_2 = field.meshed_region assert mesh_to_check_2.nodes.n_nodes == 4 assert mesh_to_check_2.elements.n_elements == 0 def test_local_field_append(): num_entities = 400 field_to_local = dpf.core.fields_factory.create_3d_vector_field(num_entities) with field_to_local.as_local_field() as f: for i in range(1,num_entities+1): f.append([0.1*i,0.2*i, 0.3*i],i) field = dpf.core.fields_factory.create_3d_vector_field(num_entities) for i in range(1,num_entities+1): field.append([0.1*i,0.2*i, 0.3*i],i) assert np.allclose(field.data, field_to_local.data) assert np.allclose(field.scoping.ids, field_to_local.scoping.ids) assert len(field_to_local._data_pointer)==0 def test_local_elemental_nodal_field_append(): num_entities = 100 field_to_local = dpf.core.fields_factory.create_3d_vector_field(num_entities, location=dpf.core.locations.elemental_nodal) with field_to_local.as_local_field() as f: for i in range(1,num_entities+1): f.append([[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]],i) field = dpf.core.fields_factory.create_3d_vector_field(num_entities) for i in range(1,num_entities+1): field.append([[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]],i) assert np.allclose(field.data, field_to_local.data) assert np.allclose(field.scoping.ids, field_to_local.scoping.ids) assert len(field_to_local._data_pointer)==num_entities #flat data field_to_local = dpf.core.fields_factory.create_3d_vector_field(num_entities, location=dpf.core.locations.elemental_nodal) with field_to_local.as_local_field() as f: for i in range(1,num_entities+1): f.append([0.1*i,0.2*i, 0.3*i,0.1*i,0.2*i, 0.3*i],i) assert np.allclose(field.data, field_to_local.data) assert np.allclose(field.scoping.ids, field_to_local.scoping.ids) assert len(field_to_local._data_pointer)==num_entities def test_local_array_field_append(): num_entities = 400 field_to_local = dpf.core.fields_factory.create_3d_vector_field(num_entities) with field_to_local.as_local_field() as f: for i in range(1,num_entities+1): f.append(np.array([0.1*i,0.2*i, 0.3*i]),i) field = dpf.core.fields_factory.create_3d_vector_field(num_entities) for i in range(1,num_entities+1): field.append(np.array([0.1*i,0.2*i, 0.3*i]),i) assert np.allclose(field.data, field_to_local.data) assert np.allclose(field.scoping.ids, field_to_local.scoping.ids) assert len(field_to_local._data_pointer)==0 def test_local_elemental_nodal_array_field_append(): num_entities = 100 field_to_local = dpf.core.fields_factory.create_3d_vector_field(num_entities, location=dpf.core.locations.elemental_nodal) with field_to_local.as_local_field() as f: for i in range(1,num_entities+1): f.append(np.array([[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]]),i) field = dpf.core.fields_factory.create_3d_vector_field(num_entities) for i in range(1,num_entities+1): field.append(np.array([[0.1*i,0.2*i, 0.3*i],[0.1*i,0.2*i, 0.3*i]]),i) assert np.allclose(field.data, field_to_local.data) assert np.allclose(field.scoping.ids, field_to_local.scoping.ids) assert len(field_to_local._data_pointer)==num_entities #flat data field_to_local = dpf.core.fields_factory.create_3d_vector_field(num_entities, location=dpf.core.locations.elemental_nodal) with field_to_local.as_local_field() as f: for i in range(1,num_entities+1): f.append(np.array([0.1*i,0.2*i, 0.3*i,0.1*i,0.2*i, 0.3*i]),i) assert np.allclose(field.data, field_to_local.data) assert
np.allclose(field.scoping.ids, field_to_local.scoping.ids)
numpy.allclose
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num =
N.array([0,0,0])
numpy.array
# coding: utf-8 # # This code is part of lattpy. # # Copyright (c) 2021, <NAME> # # This code is licensed under the MIT License. The copyright notice in the # LICENSE file in the root directory and this permission notice shall # be included in all copies or substantial portions of the Software. import numpy as np import lattpy as lp from numpy.testing import assert_array_equal, assert_array_almost_equal from lattpy import Lattice PI = np.pi TWOPI = 2 * np.pi chain = Lattice.chain(a=1.0) rchain = Lattice(TWOPI) square = Lattice.square(a=1.0) rsquare = Lattice(TWOPI * np.eye(2)) rect = Lattice.rectangular(a1=2.0, a2=1.0) rrect = Lattice(PI * np.array([[1, 0], [0, 2]])) hexagonal = Lattice.hexagonal(a=1) rhexagonal = Lattice(np.array([[+2.0943951, +3.62759873], [+2.0943951, -3.62759873]])) sc = Lattice.sc(a=1.0) rsc = Lattice(TWOPI * np.eye(3)) fcc = Lattice.fcc(a=1.0) rfcc = Lattice(TWOPI * np.array([[+1, +1, -1], [+1, -1, +1], [-1, +1, +1]])) bcc = Lattice.bcc(a=1.0) rbcc = Lattice(TWOPI * np.array([[+1, +1, 0], [0, -1, +1], [-1, 0, +1]])) def test_is_reciprocal(): # Chain rvecs = rchain.vectors assert chain.is_reciprocal(rvecs) assert not chain.is_reciprocal(-1 * rvecs) assert not chain.is_reciprocal(+2 * rvecs) assert not chain.is_reciprocal(0.5 * rvecs) assert not chain.is_reciprocal(0.0 * rvecs) # Square rvecs = rsquare.vectors assert square.is_reciprocal(rvecs) assert not square.is_reciprocal(-1 * rvecs) assert not square.is_reciprocal(+2 * rvecs) assert not square.is_reciprocal(0.5 * rvecs) assert not square.is_reciprocal(0.0 * rvecs) # Rectangular rvecs = rrect.vectors assert rect.is_reciprocal(rvecs) assert not rect.is_reciprocal(-1 * rvecs) assert not rect.is_reciprocal(+2 * rvecs) assert not rect.is_reciprocal(0.5 * rvecs) assert not rect.is_reciprocal(0.0 * rvecs) # Hexagonal rvecs = rhexagonal.vectors assert hexagonal.is_reciprocal(rvecs) assert not hexagonal.is_reciprocal(-1 * rvecs) assert not hexagonal.is_reciprocal(+2 * rvecs) assert not hexagonal.is_reciprocal(0.5 * rvecs) assert not hexagonal.is_reciprocal(0.0 * rvecs) # Cubic rvecs = rsc.vectors assert sc.is_reciprocal(rvecs) assert not sc.is_reciprocal(-1 * rvecs) assert not sc.is_reciprocal(+2 * rvecs) assert not sc.is_reciprocal(0.5 * rvecs) assert not sc.is_reciprocal(0.0 * rvecs) # Face-centerec-cudic (fcc) rvecs = rfcc.vectors assert fcc.is_reciprocal(rvecs) assert not fcc.is_reciprocal(-1 * rvecs) assert not fcc.is_reciprocal(+2 * rvecs) assert not fcc.is_reciprocal(0.5 * rvecs) assert not fcc.is_reciprocal(0.0 * rvecs) # Body-centerec-cudic (bcc) rvecs = rbcc.vectors assert bcc.is_reciprocal(rvecs) assert not bcc.is_reciprocal(-1 * rvecs) assert not bcc.is_reciprocal(+2 * rvecs) assert not bcc.is_reciprocal(0.5 * rvecs) assert not bcc.is_reciprocal(0.0 * rvecs) def test_reciprocal_vectors(): # Chain expected = rchain.vectors actual = chain.reciprocal_vectors() assert_array_equal(expected, actual) # Square expected = rsquare.vectors actual = square.reciprocal_vectors() assert_array_equal(expected, actual) # Rectangular expected = rrect.vectors actual = rect.reciprocal_vectors() assert_array_equal(expected, actual) # Hexagonal expected = rhexagonal.vectors actual = hexagonal.reciprocal_vectors() assert_array_almost_equal(expected, actual) # Cubic expected = rsc.vectors actual = sc.reciprocal_vectors() assert_array_equal(expected, actual) # Face-centerec-cudic (fcc) expected = rfcc.vectors actual = fcc.reciprocal_vectors() assert_array_equal(expected, actual) # Body-centerec-cudic (bcc) expected = rbcc.vectors actual = bcc.reciprocal_vectors() assert_array_equal(expected, actual) def test_reciprocal_vectors_double(): # Chain expected = chain.vectors actual = chain.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) # Square expected = square.vectors actual = square.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) # Rectangular expected = rect.vectors actual = rect.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) # Hexagonal expected = hexagonal.vectors actual = hexagonal.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) # Cubic expected = sc.vectors actual = sc.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) # Face-centerec-cudic (fcc) expected = fcc.vectors actual = fcc.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) # Body-centerec-cudic (bcc) expected = bcc.vectors actual = bcc.reciprocal_lattice().reciprocal_vectors() assert_array_equal(expected, actual) def test_translate(): # Square lattice expected = [2.0, 0.0] actual = square.translate([2, 0], [0.0, 0.0]) assert_array_equal(expected, actual) expected = [0.0, 2.0] actual = square.translate([0, 2], [0.0, 0.0]) assert_array_equal(expected, actual) expected = [1.0, 2.0] actual = square.translate([1, 2], [0.0, 0.0]) assert_array_equal(expected, actual) # Rectangular lattice expected = [4.0, 0.0] actual = rect.translate([2, 0], [0.0, 0.0]) assert_array_equal(expected, actual) expected = [0.0, 2.0] actual = rect.translate([0, 2], [0.0, 0.0]) assert_array_equal(expected, actual) expected = [2.0, 2.0] actual = rect.translate([1, 2], [0.0, 0.0]) assert_array_equal(expected, actual) def test_itranslate(): # Square lattice expected = [2, 0], [0.0, 0.0] actual = square.itranslate([2.0, 0.0]) assert_array_equal(expected, actual) expected = [0, 2], [0.0, 0.0] actual = square.itranslate([0.0, 2.0]) assert_array_equal(expected, actual) expected = [1, 2], [0.0, 0.0] actual = square.itranslate([1.0, 2.0]) assert_array_equal(expected, actual) # Rectangular lattice expected = [1, 0], [0.0, 0.0] actual = rect.itranslate([2.0, 0.0])
assert_array_equal(expected, actual)
numpy.testing.assert_array_equal
import numpy as np import csv def get_model(model_name, power, test_window_size, power_window_size): """ get score of model Args: model_name: str, we use model_name to find the folder power: ndarray, power of each fold to fuse test_window_size: list, the window_size we selected to fuse power_window_size: ndarray, power of each window_size to fuse Returns: score: score of model """ out = np.zeros((634, 30), dtype='float32') power = power / power.sum() power_window_size = power_window_size / power_window_size.sum() for i in range(0, 5): for j in range(0, len(test_window_size)): path = "./output/%s_fold%s/score_%s.npy" % (model_name, i, test_window_size[j]) print(path) data = np.load(path) out = out + data * power[i] * power_window_size[j] return out def get_agcn(): model_name = 'AGCN' power = np.array([1.5, 1, 1.5, 1, 2], dtype='float32') test_window_size = [300, 350, 500] power_window_size = np.array([1, 1, 1], dtype='float32') return get_model(model_name, power, test_window_size, power_window_size) def get_ctrgcn(): model_name = 'CTRGCN' power = np.array([1, 1, 2, 2, 3], dtype='float32') test_window_size = [300, 350, 450] power_window_size = np.array([1, 1, 1], dtype='float32') return get_model(model_name, power, test_window_size, power_window_size) def get_ctrgcn2(): model_name = 'CTRGCN2' power = np.array([1, 1, 2, 2, 3], dtype='float32') test_window_size = [350] power_window_size = np.array([1], dtype='float32') return get_model(model_name, power, test_window_size, power_window_size) def get_stgcn(): model_name = 'STGCN' power = np.array([1, 1, 2, 1, 2], dtype='float32') test_window_size = [350] power_window_size =
np.array([1], dtype='float32')
numpy.array
# Name: <NAME> # Date: 2 March 2020 # Program: biot_helix.py import numpy as np import matplotlib.pyplot as plt import time as time from matplotlib.patches import Circle def biot(Rvec, wire, I): mu_4pi = 10 dB = np.zeros((len(wire), 3)) R = Rvec - wire Rsqr = np.sum( R**2, axis = 1 ) dL = (np.roll(wire, -1, axis = 0) - np.roll(wire, +1, axis = 0))/2 cr = np.cross(dL, R, axis = 1 ) dB = mu_4pi * I * cr/Rsqr[:,None]**(3/2) dB = np.concatenate((dB, [dB[0,:]]), axis = 0) Btot = np.array([simpson(dB[:,0], 1), simpson(dB[:,1], 1), simpson(dB[:,2], 1)]) return Btot def simpson(f, dr): total = dr/3*(np.sum(f[1:] + f[:-1]) + 2*np.sum(f[1::2])) return total def trapz(f, dL): return dL/2*np.sum(f[1:] + f[:-1]) # setting up the square loop of wire I = 0.01 # current, in amperes L = 0.20 # length of helix in m N = 500 # number of segments per side of square segL = L/N # segment length in m turns = 20 # number of loops in helix radius = 0.03 # some useful segments to build a position array of the segments in helical wire helix_x = np.arange(-L/2, L/2, segL) helix_y, helix_z = np.zeros(helix_x.size), np.zeros(helix_x.size) theta_steps = N/turns dtheta = 2*np.pi/theta_steps for i in range (N): helix_y[i] = -np.sin(i*dtheta)*radius helix_z[i] = np.cos(i*dtheta)*radius helix = np.column_stack((helix_x, helix_y, helix_z)) # test the biot function for a single point (the origin) pointCalc = True if pointCalc: # choose a point in space at which to calculate B point = np.array([0.1,0.0,0.0]) Ti = time.time() # call the biot function to calculate B B = biot(point, helix,I) print(point) print(B) print("duration: %5f" % (time.time()-Ti) ) # Create a 2D grid of x, y points using numpy's meshgrid function gridstep=50 nx, ny, nz = gridstep,gridstep,gridstep x = np.linspace(-0.2, 0.2, nx) y = np.linspace(-0.2, 0.2, ny) z = np.linspace(-0.2, 0.2, nz) fig = plt.figure(figsize = (18,6)) ax1 = fig.add_subplot(2, 3, 1) ax2 = fig.add_subplot(2, 3, 2) ax3 = fig.add_subplot(2, 3, 3) # Set up meshgrid as needed for the particular 2D streamplot X, Z = np.meshgrid(x,z) # Set up 3D array, Bgrid, for x,y,z-components of B at points in space Bgrid = np.zeros([nx,nz,3]) Ti = time.time() # Use for loops to populate Bgrid array with relevant B-field values # XZ Plane for i in range(nx): for k in range(nz): Bgrid[k,i, :] = biot(np.array([x[i],0.,z[k]]),helix,I) # XY Plane for i in range(nx): for k in range(nz): Bgrid[k,i, :] = biot(
np.array([x[i],y[k],0.0])
numpy.array
""" Revised by <NAME> Code reference <NAME>, <NAME>, <NAME>, and <NAME>. Inducing Domain-Specific Sentiment Lexicons from Unlabeled Corpora. Proceedings of EMNLP. 2016. (to appear; arXiv:1606.02820). """ import random import time import codecs import numpy as np import config import embedding import base_words from transformation_method import densify from sklearn.metrics import roc_auc_score, average_precision_score start_time = time.time() DEFAULT_ARGUMENTS = dict( # for iterative graph algorithms similarity_power=1, arccos=True, max_iter=50, epsilon=1e-6, sym=True, # for learning embeddings transformation n_epochs=50, force_orthogonal=False, batch_size=100, cosine=False, ## bootstrap num_boots=1, n_procs=1, ) def generate_random_seeds(lexicon, num=10): items = lexicon.items() pos_items = [item for item in items if item[1] == 1] neg_items = [item for item in items if item[1] == -1] pos_seeds, _ = zip(*(random.sample(pos_items, num))) neg_seeds, _ = zip(*(random.sample(neg_items, num))) return pos_seeds, neg_seeds def generate_random_seeds_imbalanced(lexicon, num=10, num2=10): items = lexicon.items() pos_items = [item for item in items if item[1] == 1] neg_items = [item for item in items if item[1] == -1] pos_seeds, _ = zip(*(random.sample(pos_items, num))) neg_seeds, _ = zip(*(random.sample(neg_items, num2))) return pos_seeds, neg_seeds def top_n_words(score_dict, eval_words, scope, n=10): sorted_list = sorted(score_dict.items(), key=lambda item: -item[1]) # not use np.linalg.norm(item[1]). polarities are ignored. top_n_pos, top_n_neg = [], [] count = 0 for i, (word, value) in enumerate(sorted_list): if count < n and word in eval_words: top_n_pos.append((word, value)) count += 1 count = 0 for i, (word, value) in enumerate(sorted_list[::-1]): if count < n and word in eval_words: top_n_neg.append((word, value)) count += 1 print("top{} {} / {}: {} / {}".format(n, scope[0], scope[1], top_n_pos, top_n_neg)) def mitigate_embedding(): print("Getting evaluation words and embeddings... in {:.2f} sec".format(config.whattime())) print("Input: {} / Output: {}".format(config.WORD_EMBEDDING_NAME, config.MITIGATED_EMBEDDING_NAME)) lexicon = config.load_sent_lexicon() eval_words = set(lexicon.keys()) lexicon2, lexicon2_vocab = config.load_entity_lexicon() eval_words2 = set(lexicon2.keys()) num = int(config.BASE_WORD_NUM) if not config.RANDOM_BASE_WORDS: positive_seeds, negative_seeds = base_words.sent_seeds(num) entity_seeds, notity_seeds = base_words.entity_seeds(num) else: positive_seeds, negative_seeds = generate_random_seeds(lexicon, num=num) if config.UNBALANCED_BASE_WORDS: entity_seeds, notity_seeds = generate_random_seeds_imbalanced(lexicon2, num=num, num2=3 * num) else: entity_seeds, notity_seeds = generate_random_seeds(lexicon2, num=num) print('pos / neg = {} / {}'.format(positive_seeds, negative_seeds)) print('entity / notity = {} / {}'.format(entity_seeds, notity_seeds)) common_embed = embedding.WordEmbedding(config.WORD_EMBEDDING_NAME, eval_words.union(positive_seeds).union(negative_seeds).union(eval_words2)) print("Complete to load original embedding... in {:.2f} sec".format(config.whattime())) common_words = set(common_embed.iw) eval_words = eval_words.intersection(common_words) eval_words2 = eval_words2.intersection(common_words) eval_words = [word for word in eval_words if not word in positive_seeds and not word in negative_seeds] eval_words2 = [word for word in eval_words2 if not word in entity_seeds and not word in notity_seeds] print("Generate a word embedding... in {:.2f} sec".format(time.time() - start_time)) polarities, entities = run_method(positive_seeds, negative_seeds, entity_seeds, notity_seeds, common_embed.get_subembed( set(eval_words).union(negative_seeds).union(positive_seeds).union( eval_words2).union(entity_seeds).union(notity_seeds)), method=densify, lr=0.001, regularization_strength=0.001, lexicon2_vocab=lexicon2_vocab, **DEFAULT_ARGUMENTS) with codecs.open(config.MITIGATED_EMBEDDING_INFO, "w", encoding='utf-8', errors='ignore') as f: evaluate(polarities, lexicon, eval_words, f, scope=('pos', 'neg')) evaluate(entities, lexicon2, eval_words2, f, scope=('entity', 'notity')) print("Program end... in {:.2f} sec".format(config.whattime())) def run_method(positive_seeds, negative_seeds, entity_seeds, notity_seeds, embeddings, method=densify, lexicon2_vocab={}, **kwargs): positive_seeds = [s for s in positive_seeds if s in embeddings] negative_seeds = [s for s in negative_seeds if s in embeddings] entity_seeds = [s for s in entity_seeds if s in embeddings] notity_seeds = [s for s in notity_seeds if s in embeddings] return method(embeddings, positive_seeds, negative_seeds, entity_seeds, notity_seeds, lexicon2_vocab=lexicon2_vocab, **kwargs) def evaluate(polarities, lexicon, eval_words, f, scope=('pos', 'neg')): acc, auc, avg_prec, cutoff = binary_metrics(polarities, lexicon, eval_words) space_order = 1 if auc < 0.5: polarities = {word: -1 * polarities[word] for word in polarities} acc, auc, avg_prec, cutoff = binary_metrics(polarities, lexicon, eval_words) space_order = -1 top_n_words(polarities, eval_words, scope) f.write('{} / {} cutoff:{} with space_order: {}\n'.format(scope[0], scope[1], cutoff, space_order)) print("{} / {} cutoff: {} with space_order: {}".format(scope[0], scope[1], cutoff, space_order)) print("Binary metrics:") print("==============") print("Accuracy with optimal threshold: {:.4f}".format(acc)) print("ROC AUC Score: {:.4f}".format(auc)) print("Average Precision Score: {:.4f}".format(avg_prec)) def binary_metrics(polarities, lexicon, eval_words, top_perc=None): eval_words = [word for word in eval_words if lexicon[word] != 0] y_prob, y_true = [], [] if top_perc: polarities = {word: polarities[word] for word in sorted(eval_words, key=lambda w: abs(polarities[w] - 0.5), reverse=True)[ :int(top_perc * len(polarities))]} else: polarities = {word: polarities[word] for word in eval_words} for w in polarities: y_prob.append(polarities[w]) y_true.append((1 + lexicon[w]) / 2) n = len(y_true) ordered_labels = [y_true[i] for i in sorted(range(n), key=lambda i: y_prob[i])] positive = sum(ordered_labels) cumsum =
np.cumsum(ordered_labels)
numpy.cumsum
#!/usr/bin/env python # coding:utf-8 """ Author : <NAME> Contact : <EMAIL> """ import os import sys import cv2 import time # import gtts import numpy as np import pandas as pd import mediapipe as mp import tensorflow as tf from datetime import datetime from playsound import playsound from goprocam import GoProCamera, constants from PySide6.QtCore import QThread, Signal, Slot, QAbstractTableModel, Qt, QModelIndex from PySide6.QtGui import QAction, QImage, QKeySequence, QPixmap from PySide6.QtWidgets import (QApplication, QComboBox, QGroupBox, QHBoxLayout, QLabel, QMainWindow, QPushButton, QSizePolicy, QVBoxLayout, QWidget, QStatusBar, QToolBar, QTableView, QHeaderView) class KeepAliveThread(QThread): def __init__(self, parent=None): QThread.__init__(self, parent) self.gopro = GoProCamera.GoPro() def run(self): self.gopro.stream("udp://127.0.0.1:10000") class InferThread(QThread): updateFrame = Signal(QImage) updateText = Signal(str) updateTable = Signal(dict) def __init__(self, parent=None): QThread.__init__(self, parent) self.interpreter = None self.signatures = None self.input_index = None self.output_index = None self.status = True self.cap = True self.actions = {0: 'None', 1: 'Start', 2: 'Stop'} self.goproCamera = GoProCamera.GoPro() self.tracking = False # tts = gtts.gTTS("Enregistrement", lang="fr") # tts.save("tts.mp3") def print_config(self): info = self.goproCamera.infoCamera() self.updateText.emit("Streaming {} ({})".format(info['model_name'], info['serial_number'])) def print_message(self, message): self.updateText.emit(message) def set_file(self, fname): self.interpreter = tf.lite.Interpreter(model_path=fname) self.interpreter.allocate_tensors() self.signatures = self.interpreter.get_signature_list() self.input_index = self.interpreter.get_input_details()[0]["index"] self.output_index = self.interpreter.get_output_details()[0]["index"] self.updateText.emit("Model loaded: {}".format(fname)) def run(self): self.cap = cv2.VideoCapture("udp://127.0.0.1:10000?overrun_nonfatal=1&fifo_size=300000", cv2.CAP_FFMPEG) while self.status: tracking_start = None with mp.solutions.hands.Hands(model_complexity=0, min_detection_confidence=0.5, min_tracking_confidence=0.5) as hands: while self.cap.isOpened(): success, image = self.cap.read() if not success: print("Ignoring empty camera frame.") else: image.flags.writeable = False image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) results = hands.process(image) image.flags.writeable = True image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) h, w, c = image.shape frame_landmarks = np.zeros(shape=(42, 3)) if results.multi_hand_landmarks: if 0 < len(results.multi_hand_landmarks) < 3: for j, hand in enumerate(results.multi_hand_landmarks): for i, landmark in enumerate(hand.landmark): frame_landmarks[21 * j + i][0] = int(landmark.x * w) frame_landmarks[21 * j + i][1] = int(landmark.y * h) frame_landmarks[21 * j + i][2] = landmark.z * w _max = np.amax(frame_landmarks, axis=0) _min = np.amin(frame_landmarks, axis=0) frame_landmarks[:, -1] = 255 * ((frame_landmarks[:, -1] - _min[-1] ) / (_max[-1] - _min[-1])) for lm in frame_landmarks: cv2.circle(image, (int(lm[0]), int(lm[1])), 8, thickness=-1, color=[lm[2]] * 3) _max1 = np.amax(frame_landmarks[:21], axis=0) _min1 = np.amin(frame_landmarks[:21], axis=0) cv2.rectangle(image, (int(_min1[0]), int(_min1[1])), (int(_max1[0]), int(_max1[1])), (255, 0, 0), 3) _max2 = np.amax(frame_landmarks[21:], axis=0) _min2 = np.amin(frame_landmarks[21:], axis=0) cv2.rectangle(image, (int(_min2[0]), int(_min2[1])), (int(_max2[0]), int(_max2[1])), (255, 0, 0), 3) frame_landmarks -= frame_landmarks[0] to_predict = frame_landmarks[:21, :2].flatten() self.interpreter.set_tensor(self.input_index, np.expand_dims(to_predict, axis=0).astype(np.float32)) self.interpreter.invoke() predict_result = self.interpreter.get_tensor(self.output_index)[0] cv2.putText(image, self.actions[np.argmax(predict_result)], _min1[:2].astype(np.uint16), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3) to_predict = frame_landmarks[21:, :2].flatten() self.interpreter.set_tensor(self.input_index, np.expand_dims(to_predict, axis=0).astype(np.float32)) self.interpreter.invoke() predict_result2 = self.interpreter.get_tensor(self.output_index)[0] cv2.putText(image, self.actions[np.argmax(predict_result2)], _min2[:2].astype(np.uint16), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 3) if (np.argmax(predict_result2) == 1 or np.argmax(predict_result) == 1) and not self.tracking: playsound("resources/tts.mp3", block=False) tracking_start = datetime.now() self.print_message("Tracking started at {}".format(tracking_start)) self.tracking = True elif (np.argmax(predict_result2) == 2 or
np.argmax(predict_result)
numpy.argmax
""" Linear mixed effects models for Statsmodels The data are partitioned into disjoint groups. The probability model for group i is: Y = X*beta + Z*gamma + epsilon where * n_i is the number of observations in group i * Y is a n_i dimensional response vector * X is a n_i x k_fe design matrix for the fixed effects * beta is a k_fe-dimensional vector of fixed effects slopes * Z is a n_i x k_re design matrix for the random effects * gamma is a k_re-dimensional random vector with mean 0 and covariance matrix Psi; note that each group gets its own independent realization of gamma. * epsilon is a n_i dimensional vector of iid normal errors with mean 0 and variance sigma^2; the epsilon values are independent both within and between groups Y, X and Z must be entirely observed. beta, Psi, and sigma^2 are estimated using ML or REML estimation, and gamma and epsilon are random so define the probability model. The mean structure is E[Y|X,Z] = X*beta. If only the mean structure is of interest, GEE is a good alternative to mixed models. The primary reference for the implementation details is: <NAME>, <NAME> (1988). "Newton Raphson and EM algorithms for linear mixed effects models for repeated measures data". Journal of the American Statistical Association. Volume 83, Issue 404, pages 1014-1022. See also this more recent document: http://econ.ucsb.edu/~doug/245a/Papers/Mixed%20Effects%20Implement.pdf All the likelihood, gradient, and Hessian calculations closely follow Lindstrom and Bates. The following two documents are written more from the perspective of users: http://lme4.r-forge.r-project.org/lMMwR/lrgprt.pdf http://lme4.r-forge.r-project.org/slides/2009-07-07-Rennes/3Longitudinal-4.pdf Notation: * `cov_re` is the random effects covariance matrix (referred to above as Psi) and `scale` is the (scalar) error variance. For a single group, the marginal covariance matrix of endog given exog is scale*I + Z * cov_re * Z', where Z is the design matrix for the random effects in one group. Notes: 1. Three different parameterizations are used here in different places. The regression slopes (usually called `fe_params`) are identical in all three parameterizations, but the variance parameters differ. The parameterizations are: * The "natural parameterization" in which cov(endog) = scale*I + Z * cov_re * Z', as described above. This is the main parameterization visible to the user. * The "profile parameterization" in which cov(endog) = I + Z * cov_re1 * Z'. This is the parameterization of the profile likelihood that is maximized to produce parameter estimates. (see Lindstrom and Bates for details). The "natural" cov_re is equal to the "profile" cov_re1 times scale. * The "square root parameterization" in which we work with the Cholesky factor of cov_re1 instead of cov_re1 directly. All three parameterizations can be "packed" by concatenating fe_params together with the lower triangle of the dependence structure. Note that when unpacking, it is important to either square or reflect the dependence structure depending on which parameterization is being used. 2. The situation where the random effects covariance matrix is singular is numerically challenging. Small changes in the covariance parameters may lead to large changes in the likelihood and derivatives. 3. The optimization strategy is to first use OLS to get starting values for the mean structure. Then we optionally perform a few EM steps, followed by optionally performing a few steepest ascent steps. This is followed by conjugate gradient optimization using one of the scipy gradient optimizers. The EM and steepest ascent steps are used to get adequate starting values for the conjugate gradient optimization, which is much faster. """ import numpy as np import statsmodels.base.model as base from scipy.optimize import fmin_ncg, fmin_cg, fmin_bfgs, fmin from statsmodels.tools.decorators import cache_readonly from scipy.stats.distributions import norm import pandas as pd import patsy from statsmodels.compat.collections import OrderedDict from statsmodels.compat import range import warnings from statsmodels.tools.sm_exceptions import ConvergenceWarning from statsmodels.base._penalties import Penalty from statsmodels.compat.numpy import np_matrix_rank from pandas import DataFrame def _get_exog_re_names(exog_re): if isinstance(exog_re, (pd.Series, pd.DataFrame)): return exog_re.columns.tolist() return ["Z{0}".format(k + 1) for k in range(exog_re.shape[1])] class MixedLMParams(object): """ This class represents a parameter state for a mixed linear model. Parameters ---------- k_fe : integer The number of covariates with fixed effects. k_re : integer The number of covariates with random effects. use_sqrt : boolean If True, the covariance matrix is stored using as the lower triangle of its Cholesky square root, otherwise it is stored as the lower triangle of the covariance matrix. Notes ----- This object represents the parameter state for the model in which the scale parameter has been profiled out. """ def __init__(self, k_fe, k_re, use_sqrt=True): self.k_fe = k_fe self.k_re = k_re self.k_re2 = k_re * (k_re + 1) / 2 self.k_tot = self.k_fe + self.k_re2 self.use_sqrt = use_sqrt self._ix = np.tril_indices(self.k_re) self._params = np.zeros(self.k_tot) def from_packed(params, k_fe, use_sqrt): """ Factory method to create a MixedLMParams object based on the given packed parameter vector. Parameters ---------- params : array-like The mode parameters packed into a single vector. k_fe : integer The number of covariates with fixed effects use_sqrt : boolean If True, the random effects covariance matrix is stored as its Cholesky factor, otherwise the lower triangle of the covariance matrix is stored. Returns ------- A MixedLMParams object. """ k_re2 = len(params) - k_fe k_re = (-1 + np.sqrt(1 + 8*k_re2)) / 2 if k_re != int(k_re): raise ValueError("Length of `packed` not compatible with value of `fe`.") k_re = int(k_re) pa = MixedLMParams(k_fe, k_re, use_sqrt) pa.set_packed(params) return pa from_packed = staticmethod(from_packed) def from_components(fe_params, cov_re=None, cov_re_sqrt=None, use_sqrt=True): """ Factory method to create a MixedLMParams object from given values for each parameter component. Parameters ---------- fe_params : array-like The fixed effects parameter (a 1-dimensional array). cov_re : array-like The random effects covariance matrix (a square, symmetric 2-dimensional array). cov_re_sqrt : array-like The Cholesky (lower triangular) square root of the random effects covariance matrix. use_sqrt : boolean If True, the random effects covariance matrix is stored as the lower triangle of its Cholesky factor, otherwise the lower triangle of the covariance matrix is stored. Returns ------- A MixedLMParams object. """ k_fe = len(fe_params) k_re = cov_re.shape[0] pa = MixedLMParams(k_fe, k_re, use_sqrt) pa.set_fe_params(fe_params) pa.set_cov_re(cov_re) return pa from_components = staticmethod(from_components) def copy(self): """ Returns a copy of the object. """ obj = MixedLMParams(self.k_fe, self.k_re, self.use_sqrt) obj.set_packed(self.get_packed().copy()) return obj def get_packed(self, use_sqrt=None): """ Returns the model parameters packed into a single vector. Parameters ---------- use_sqrt : None or bool If None, `use_sqrt` has the value of this instance's `use_sqrt`. Otherwise it is set to the given value. """ if (use_sqrt is None) or (use_sqrt == self.use_sqrt): return self._params pa = self._params.copy() cov_re = self.get_cov_re() if use_sqrt: L = np.linalg.cholesky(cov_re) pa[self.k_fe:] = L[self._ix] else: pa[self.k_fe:] = cov_re[self._ix] return pa def set_packed(self, params): """ Sets the packed parameter vector to the given vector, without any validity checking. """ self._params = params def get_fe_params(self): """ Returns the fixed effects paramaters as a ndarray. """ return self._params[0:self.k_fe] def set_fe_params(self, fe_params): """ Set the fixed effect parameters to the given vector. """ self._params[0:self.k_fe] = fe_params def set_cov_re(self, cov_re=None, cov_re_sqrt=None): """ Set the random effects covariance matrix to the given value. Parameters ---------- cov_re : array-like The random effects covariance matrix. cov_re_sqrt : array-like The Cholesky square root of the random effects covariance matrix. Only the lower triangle is read. Notes ----- The first of `cov_re` and `cov_re_sqrt` that is not None is used. """ if cov_re is not None: if self.use_sqrt: cov_re_sqrt = np.linalg.cholesky(cov_re) self._params[self.k_fe:] = cov_re_sqrt[self._ix] else: self._params[self.k_fe:] = cov_re[self._ix] elif cov_re_sqrt is not None: if self.use_sqrt: self._params[self.k_fe:] = cov_re_sqrt[self._ix] else: cov_re = np.dot(cov_re_sqrt, cov_re_sqrt.T) self._params[self.k_fe:] = cov_re[self._ix] def get_cov_re(self): """ Returns the random effects covariance matrix. """ pa = self._params[self.k_fe:] cov_re = np.zeros((self.k_re, self.k_re)) cov_re[self._ix] = pa if self.use_sqrt: cov_re = np.dot(cov_re, cov_re.T) else: cov_re = (cov_re + cov_re.T) - np.diag(np.diag(cov_re)) return cov_re # This is a global switch to use direct linear algebra calculations # for solving factor-structured linear systems and calculating # factor-structured determinants. If False, use the # Sherman-Morrison-Woodbury update which is more efficient for # factor-structured matrices. Should be False except when testing. _no_smw = False def _smw_solve(s, A, AtA, B, BI, rhs): """ Solves the system (s*I + A*B*A') * x = rhs for x and returns x. Parameters ---------- s : scalar See above for usage A : square symmetric ndarray See above for usage AtA : square ndarray A.T * A B : square symmetric ndarray See above for usage BI : square symmetric ndarray The inverse of `B`. Can be None if B is singular rhs : ndarray See above for usage Returns ------- x : ndarray See above If the global variable `_no_smw` is True, this routine uses direct linear algebra calculations. Otherwise it uses the Sherman-Morrison-Woodbury identity to speed up the calculation. """ # Direct calculation if _no_smw or BI is None: mat = np.dot(A, np.dot(B, A.T)) # Add constant to diagonal mat.flat[::mat.shape[0]+1] += s return np.linalg.solve(mat, rhs) # Use SMW identity qmat = BI + AtA / s u = np.dot(A.T, rhs) qmat = np.linalg.solve(qmat, u) qmat = np.dot(A, qmat) rslt = rhs / s - qmat / s**2 return rslt def _smw_logdet(s, A, AtA, B, BI, B_logdet): """ Use the matrix determinant lemma to accelerate the calculation of the log determinant of s*I + A*B*A'. Parameters ---------- s : scalar See above for usage A : square symmetric ndarray See above for usage AtA : square matrix A.T * A B : square symmetric ndarray See above for usage BI : square symmetric ndarray The inverse of `B`; can be None if B is singular. B_logdet : real The log determinant of B Returns ------- The log determinant of s*I + A*B*A'. """ p = A.shape[0] if _no_smw or BI is None: mat = np.dot(A, np.dot(B, A.T)) # Add constant to diagonal mat.flat[::p+1] += s _, ld = np.linalg.slogdet(mat) return ld ld = p * np.log(s) qmat = BI + AtA / s _, ld1 = np.linalg.slogdet(qmat) return B_logdet + ld + ld1 class MixedLM(base.LikelihoodModel): """ An object specifying a linear mixed effects model. Use the `fit` method to fit the model and obtain a results object. Parameters ---------- endog : 1d array-like The dependent variable exog : 2d array-like A matrix of covariates used to determine the mean structure (the "fixed effects" covariates). groups : 1d array-like A vector of labels determining the groups -- data from different groups are independent exog_re : 2d array-like A matrix of covariates used to determine the variance and covariance structure (the "random effects" covariates). If None, defaults to a random intercept for each group. use_sqrt : bool If True, optimization is carried out using the lower triangle of the square root of the random effects covariance matrix, otherwise it is carried out using the lower triangle of the random effects covariance matrix. missing : string The approach to missing data handling Notes ----- The covariates in `exog` and `exog_re` may (but need not) partially or wholly overlap. `use_sqrt` should almost always be set to True. The main use case for use_sqrt=False is when complicated patterns of fixed values in the covariance structure are set (using the `free` argument to `fit`) that cannot be expressed in terms of the Cholesky factor L. """ def __init__(self, endog, exog, groups, exog_re=None, use_sqrt=True, missing='none', **kwargs): self.use_sqrt = use_sqrt # Some defaults self.reml = True self.fe_pen = None self.re_pen = None # If there is one covariate, it may be passed in as a column # vector, convert these to 2d arrays. # TODO: Can this be moved up in the class hierarchy? # yes, it should be done up the hierarchy if exog is not None and exog.ndim == 1: exog = exog[:,None] if exog_re is not None and exog_re.ndim == 1: exog_re = exog_re[:,None] # Calling super creates self.endog, etc. as ndarrays and the # original exog, endog, etc. are self.data.endog, etc. super(MixedLM, self).__init__(endog, exog, groups=groups, exog_re=exog_re, missing=missing, **kwargs) self.k_fe = exog.shape[1] # Number of fixed effects parameters if exog_re is None: # Default random effects structure (random intercepts). self.k_re = 1 self.k_re2 = 1 self.exog_re = np.ones((len(endog), 1), dtype=np.float64) self.data.exog_re = self.exog_re self.data.param_names = self.exog_names + ['Intercept'] else: # Process exog_re the same way that exog is handled # upstream # TODO: this is wrong and should be handled upstream wholly self.data.exog_re = exog_re self.exog_re = np.asarray(exog_re) if not self.data._param_names: # HACK: could've been set in from_formula already # needs refactor (self.data.param_names, self.data.exog_re_names) = self._make_param_names(exog_re) # Model dimensions # Number of random effect covariates self.k_re = exog_re.shape[1] # Number of covariance parameters self.k_re2 = self.k_re * (self.k_re + 1) // 2 self.k_params = self.k_fe + self.k_re2 # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. group_labels = list(set(groups)) group_labels.sort() row_indices = dict((s, []) for s in group_labels) for i,g in enumerate(groups): row_indices[g].append(i) self.row_indices = row_indices self.group_labels = group_labels self.n_groups = len(self.group_labels) # Split the data by groups self.endog_li = self.group_list(self.endog) self.exog_li = self.group_list(self.exog) self.exog_re_li = self.group_list(self.exog_re) # Precompute this. self.exog_re2_li = [np.dot(x.T, x) for x in self.exog_re_li] # The total number of observations, summed over all groups self.n_totobs = sum([len(y) for y in self.endog_li]) # why do it like the above? self.nobs = len(self.endog) # Set the fixed effects parameter names if self.exog_names is None: self.exog_names = ["FE%d" % (k + 1) for k in range(self.exog.shape[1])] def _make_param_names(self, exog_re): exog_names = list(self.exog_names) exog_re_names = _get_exog_re_names(exog_re) param_names = [] jj = self.k_fe for i in range(exog_re.shape[1]): for j in range(i + 1): if i == j: param_names.append(exog_re_names[i] + " RE") else: param_names.append(exog_re_names[j] + " x " + exog_re_names[i] + " RE") jj += 1 return exog_names + exog_re_names, exog_re_names @classmethod def from_formula(cls, formula, data, re_formula=None, subset=None, *args, **kwargs): """ Create a Model from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model data : array-like The data for the model. See Notes. re_formula : string A one-sided formula defining the variance structure of the model. The default gives a random intercept for each group. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of df to use in the model. Assumes df is a `pandas.DataFrame` args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with one exception. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Returns ------- model : Model instance Notes ------ `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. If `re_formula` is not provided, the default is a random intercept for each group. This method currently does not correctly handle missing values, so missing values should be explicitly dropped from the DataFrame before calling this method. """ if "groups" not in kwargs.keys(): raise AttributeError("'groups' is a required keyword argument in MixedLM.from_formula") # If `groups` is a variable name, retrieve the data for the # groups variable. if type(kwargs["groups"]) == str: kwargs["groups"] = np.asarray(data[kwargs["groups"]]) if re_formula is not None: eval_env = kwargs.get('eval_env', None) if eval_env is None: eval_env = 1 elif eval_env == -1: from patsy import EvalEnvironment eval_env = EvalEnvironment({}) exog_re = patsy.dmatrix(re_formula, data, eval_env=eval_env) exog_re_names = exog_re.design_info.column_names exog_re = np.asarray(exog_re) else: exog_re = np.ones((data.shape[0], 1), dtype=np.float64) exog_re_names = ["Intercept RE"] mod = super(MixedLM, cls).from_formula(formula, data, subset=None, exog_re=exog_re, *args, **kwargs) mod.data.param_names = mod.exog_names + exog_re_names mod.data.exog_re_names = exog_re_names return mod def group_list(self, array): """ Returns `array` split into subarrays corresponding to the grouping structure. """ if array.ndim == 1: return [np.array(array[self.row_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.row_indices[k], :]) for k in self.group_labels] def fit_regularized(self, start_params=None, method='l1', alpha=0, ceps=1e-4, ptol=1e-6, maxit=200, **fit_kwargs): """ Fit a model in which the fixed effects parameters are penalized. The dependence parameters are held fixed at their estimated values in the unpenalized model. Parameters ---------- method : string of Penalty object Method for regularization. If a string, must be 'l1'. alpha : array-like Scalar or vector of penalty weights. If a scalar, the same weight is applied to all coefficients; if a vector, it contains a weight for each coefficient. If method is a Penalty object, the weights are scaled by alpha. For L1 regularization, the weights are used directly. ceps : positive real scalar Fixed effects parameters smaller than this value in magnitude are treaded as being zero. ptol : positive real scalar Convergence occurs when the sup norm difference between successive values of `fe_params` is less than `ptol`. maxit : integer The maximum number of iterations. fit_kwargs : keywords Additional keyword arguments passed to fit. Returns ------- A MixedLMResults instance containing the results. Notes ----- The covariance structure is not updated as the fixed effects parameters are varied. The algorithm used here for L1 regularization is a"shooting" or cyclic coordinate descent algorithm. If method is 'l1', then `fe_pen` and `cov_pen` are used to obtain the covariance structure, but are ignored during the L1-penalized fitting. References ---------- <NAME>., <NAME>. and <NAME>. Regularized Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1) (2008) http://www.jstatsoft.org/v33/i01/paper http://statweb.stanford.edu/~tibs/stat315a/Supplements/fuse.pdf """ if type(method) == str and (method.lower() != 'l1'): raise ValueError("Invalid regularization method") # If method is a smooth penalty just optimize directly. if isinstance(method, Penalty): # Scale the penalty weights by alpha method.alpha = alpha fit_kwargs.update({"fe_pen": method}) return self.fit(**fit_kwargs) if np.isscalar(alpha): alpha = alpha * np.ones(self.k_fe, dtype=np.float64) # Fit the unpenalized model to get the dependence structure. mdf = self.fit(**fit_kwargs) fe_params = mdf.fe_params cov_re = mdf.cov_re scale = mdf.scale try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None for itr in range(maxit): fe_params_s = fe_params.copy() for j in range(self.k_fe): if abs(fe_params[j]) < ceps: continue # The residuals fe_params[j] = 0. expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval # The loss function has the form # a*x^2 + b*x + pwt*|x| a, b = 0., 0. for k, lab in enumerate(self.group_labels): exog = self.exog_li[k] ex_r = self.exog_re_li[k] ex2_r = self.exog_re2_li[k] resid = resid_all[self.row_indices[lab]] x = exog[:,j] u = _smw_solve(scale, ex_r, ex2_r, cov_re, cov_re_inv, x) a += np.dot(u, x) b -= 2 * np.dot(u, resid) pwt1 = alpha[j] if b > pwt1: fe_params[j] = -(b - pwt1) / (2 * a) elif b < -pwt1: fe_params[j] = -(b + pwt1) / (2 * a) if np.abs(fe_params_s - fe_params).max() < ptol: break # Replace the fixed effects estimates with their penalized # values, leave the dependence parameters in their unpenalized # state. params_prof = mdf.params.copy() params_prof[0:self.k_fe] = fe_params scale = self.get_scale(fe_params, mdf.cov_re_unscaled) # Get the Hessian including only the nonzero fixed effects, # then blow back up to the full size after inverting. hess = self.hessian_full(params_prof) pcov = np.nan * np.ones_like(hess) ii = np.abs(params_prof) > ceps ii[self.k_fe:] = True ii = np.flatnonzero(ii) hess1 = hess[ii, :][:, ii] pcov[np.ix_(ii,ii)] = np.linalg.inv(-hess1) results = MixedLMResults(self, params_prof, pcov / scale) results.fe_params = fe_params results.cov_re = cov_re results.scale = scale results.cov_re_unscaled = mdf.cov_re_unscaled results.method = mdf.method results.converged = True results.cov_pen = self.cov_pen results.k_fe = self.k_fe results.k_re = self.k_re results.k_re2 = self.k_re2 return MixedLMResultsWrapper(results) def _reparam(self): """ Returns parameters of the map converting parameters from the form used in optimization to the form returned to the user. Returns ------- lin : list-like Linear terms of the map quad : list-like Quadratic terms of the map Notes ----- If P are the standard form parameters and R are the modified parameters (i.e. with square root covariance), then P[i] = lin[i] * R + R' * quad[i] * R """ k_fe, k_re, k_re2 = self.k_fe, self.k_re, self.k_re2 k_tot = k_fe + k_re2 ix = np.tril_indices(self.k_re) lin = [] for k in range(k_fe): e = np.zeros(k_tot) e[k] = 1 lin.append(e) for k in range(k_re2): lin.append(np.zeros(k_tot)) quad = [] for k in range(k_tot): quad.append(np.zeros((k_tot, k_tot))) ii = np.tril_indices(k_re) ix = [(a,b) for a,b in zip(ii[0], ii[1])] for i1 in range(k_re2): for i2 in range(k_re2): ix1 = ix[i1] ix2 = ix[i2] if (ix1[1] == ix2[1]) and (ix1[0] <= ix2[0]): ii = (ix2[0], ix1[0]) k = ix.index(ii) quad[k_fe+k][k_fe+i2, k_fe+i1] += 1 for k in range(k_tot): quad[k] = 0.5*(quad[k] + quad[k].T) return lin, quad def hessian_sqrt(self, params): """ Returns the Hessian matrix of the log-likelihood evaluated at a given point, calculated with respect to the parameterization in which the random effects covariance matrix is represented through its Cholesky square root. Parameters ---------- params : MixedLMParams or array-like The model parameters. If array-like, must contain packed parameters that are compatible with this model. Returns ------- The Hessian matrix of the profile log likelihood function, evaluated at `params`. Notes ----- If `params` is provided as a MixedLMParams object it may be of any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) score0 = self.score_full(params) hess0 = self.hessian_full(params) params_vec = params.get_packed(use_sqrt=True) lin, quad = self._reparam() k_tot = self.k_fe + self.k_re2 # Convert Hessian to new coordinates hess = 0. for i in range(k_tot): hess += 2 * score0[i] * quad[i] for i in range(k_tot): vi = lin[i] + 2*np.dot(quad[i], params_vec) for j in range(k_tot): vj = lin[j] + 2*np.dot(quad[j], params_vec) hess += hess0[i, j] * np.outer(vi, vj) return hess def loglike(self, params): """ Evaluate the (profile) log-likelihood of the linear mixed effects model. Parameters ---------- params : MixedLMParams, or array-like. The parameter value. If array-like, must be a packed parameter vector compatible with this model. Returns ------- The log-likelihood value at `params`. Notes ----- This is the profile likelihood in which the scale parameter `scale` has been profiled out. The input parameter state, if provided as a MixedLMParams object, can be with respect to any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) fe_params = params.get_fe_params() cov_re = params.get_cov_re() try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None _, cov_re_logdet = np.linalg.slogdet(cov_re) # The residuals expval = np.dot(self.exog, fe_params) resid_all = self.endog - expval likeval = 0. # Handle the covariance penalty if self.cov_pen is not None: likeval -= self.cov_pen.func(cov_re, cov_re_inv) # Handle the fixed effects penalty if self.fe_pen is not None: likeval -= self.fe_pen.func(fe_params) xvx, qf = 0., 0. for k, lab in enumerate(self.group_labels): exog = self.exog_li[k] ex_r = self.exog_re_li[k] ex2_r = self.exog_re2_li[k] resid = resid_all[self.row_indices[lab]] # Part 1 of the log likelihood (for both ML and REML) ld = _smw_logdet(1., ex_r, ex2_r, cov_re, cov_re_inv, cov_re_logdet) likeval -= ld / 2. # Part 2 of the log likelihood (for both ML and REML) u = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, resid) qf += np.dot(resid, u) # Adjustment for REML if self.reml: mat = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, exog) xvx += np.dot(exog.T, mat) if self.reml: likeval -= (self.n_totobs - self.k_fe) * np.log(qf) / 2. _,ld = np.linalg.slogdet(xvx) likeval -= ld / 2. likeval -= (self.n_totobs - self.k_fe) * np.log(2 * np.pi) / 2. likeval += ((self.n_totobs - self.k_fe) * np.log(self.n_totobs - self.k_fe) / 2.) likeval -= (self.n_totobs - self.k_fe) / 2. else: likeval -= self.n_totobs * np.log(qf) / 2. likeval -= self.n_totobs * np.log(2 * np.pi) / 2. likeval += self.n_totobs * np.log(self.n_totobs) / 2. likeval -= self.n_totobs / 2. return likeval def _gen_dV_dPsi(self, ex_r, max_ix=None): """ A generator that yields the derivative of the covariance matrix V (=I + Z*Psi*Z') with respect to the free elements of Psi. Each call to the generator yields the index of Psi with respect to which the derivative is taken, and the derivative matrix with respect to that element of Psi. Psi is a symmetric matrix, so the free elements are the lower triangle. If max_ix is not None, the iterations terminate after max_ix values are yielded. """ jj = 0 for j1 in range(self.k_re): for j2 in range(j1 + 1): if max_ix is not None and jj > max_ix: return mat = np.outer(ex_r[:,j1], ex_r[:,j2]) if j1 != j2: mat += mat.T yield jj,mat jj += 1 def score(self, params): """ Returns the score vector of the profile log-likelihood. Notes ----- The score vector that is returned is computed with respect to the parameterization defined by this model instance's `use_sqrt` attribute. The input value `params` can be with respect to any parameterization. """ if self.use_sqrt: return self.score_sqrt(params) else: return self.score_full(params) def hessian(self, params): """ Returns the Hessian matrix of the profile log-likelihood. Notes ----- The Hessian matrix that is returned is computed with respect to the parameterization defined by this model's `use_sqrt` attribute. The input value `params` can be with respect to any parameterization. """ if self.use_sqrt: return self.hessian_sqrt(params) else: return self.hessian_full(params) def score_full(self, params): """ Calculates the score vector for the profiled log-likelihood of the mixed effects model with respect to the parameterization in which the random effects covariance matrix is represented in its full form (not using the Cholesky factor). Parameters ---------- params : MixedLMParams or array-like The parameter at which the score function is evaluated. If array-like, must contain packed parameter values that are compatible with the current model. Returns ------- The score vector, calculated at `params`. Notes ----- The score vector that is returned is taken with respect to the parameterization in which `cov_re` is represented through its lower triangle (without taking the Cholesky square root). The input, if provided as a MixedLMParams object, can be of any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) fe_params = params.get_fe_params() cov_re = params.get_cov_re() try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None score_fe = np.zeros(self.k_fe, dtype=np.float64) score_re = np.zeros(self.k_re2, dtype=np.float64) # Handle the covariance penalty. if self.cov_pen is not None: score_re -= self.cov_pen.grad(cov_re, cov_re_inv) # Handle the fixed effects penalty. if self.fe_pen is not None: score_fe -= self.fe_pen.grad(fe_params) # resid' V^{-1} resid, summed over the groups (a scalar) rvir = 0. # exog' V^{-1} resid, summed over the groups (a k_fe # dimensional vector) xtvir = 0. # exog' V^{_1} exog, summed over the groups (a k_fe x k_fe # matrix) xtvix = 0. # V^{-1} exog' dV/dQ_jj exog V^{-1}, where Q_jj is the jj^th # covariance parameter. xtax = [0.,] * self.k_re2 # Temporary related to the gradient of log |V| dlv = np.zeros(self.k_re2, dtype=np.float64) # resid' V^{-1} dV/dQ_jj V^{-1} resid (a scalar) rvavr = np.zeros(self.k_re2, dtype=np.float64) for k in range(self.n_groups): exog = self.exog_li[k] ex_r = self.exog_re_li[k] ex2_r = self.exog_re2_li[k] # The residuals expval = np.dot(exog, fe_params) resid = self.endog_li[k] - expval if self.reml: viexog = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, exog) xtvix += np.dot(exog.T, viexog) # Contributions to the covariance parameter gradient jj = 0 vex = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, ex_r) vir = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, resid) for jj,mat in self._gen_dV_dPsi(ex_r): dlv[jj] = np.trace(_smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, mat)) rvavr[jj] += np.dot(vir, np.dot(mat, vir)) if self.reml: xtax[jj] += np.dot(viexog.T, np.dot(mat, viexog)) # Contribution of log|V| to the covariance parameter # gradient. score_re -= 0.5 * dlv # Needed for the fixed effects params gradient rvir += np.dot(resid, vir) xtvir += np.dot(exog.T, vir) fac = self.n_totobs if self.reml: fac -= self.exog.shape[1] score_fe += fac * xtvir / rvir score_re += 0.5 * fac * rvavr / rvir if self.reml: for j in range(self.k_re2): score_re[j] += 0.5 * np.trace(np.linalg.solve( xtvix, xtax[j])) score_vec = np.concatenate((score_fe, score_re)) if self._freepat is not None: return self._freepat.get_packed() * score_vec else: return score_vec def score_sqrt(self, params): """ Returns the score vector with respect to the parameterization in which the random effects covariance matrix is represented through its Cholesky square root. Parameters ---------- params : MixedLMParams or array-like The model parameters. If array-like must contain packed parameters that are compatible with this model instance. Returns ------- The score vector. Notes ----- The input, if provided as a MixedLMParams object, can be of any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) score_full = self.score_full(params) params_vec = params.get_packed(use_sqrt=True) lin, quad = self._reparam() scr = 0. for i in range(len(params_vec)): v = lin[i] + 2 * np.dot(quad[i], params_vec) scr += score_full[i] * v if self._freepat is not None: return self._freepat.get_packed() * scr else: return scr def hessian_full(self, params): """ Calculates the Hessian matrix for the mixed effects model with respect to the parameterization in which the covariance matrix is represented directly (without square-root transformation). Parameters ---------- params : MixedLMParams or array-like The model parameters at which the Hessian is calculated. If array-like, must contain the packed parameters in a form that is compatible with this model instance. Returns ------- hess : 2d ndarray The Hessian matrix, evaluated at `params`. Notes ----- Tf provided as a MixedLMParams object, the input may be of any parameterization. """ if type(params) is not MixedLMParams: params = MixedLMParams.from_packed(params, self.k_fe, self.use_sqrt) fe_params = params.get_fe_params() cov_re = params.get_cov_re() try: cov_re_inv = np.linalg.inv(cov_re) except np.linalg.LinAlgError: cov_re_inv = None # Blocks for the fixed and random effects parameters. hess_fe = 0. hess_re = np.zeros((self.k_re2, self.k_re2), dtype=np.float64) hess_fere = np.zeros((self.k_re2, self.k_fe), dtype=np.float64) fac = self.n_totobs if self.reml: fac -= self.exog.shape[1] rvir = 0. xtvix = 0. xtax = [0.,] * self.k_re2 B = np.zeros(self.k_re2, dtype=np.float64) D = np.zeros((self.k_re2, self.k_re2), dtype=np.float64) F = [[0.,]*self.k_re2 for k in range(self.k_re2)] for k in range(self.n_groups): exog = self.exog_li[k] ex_r = self.exog_re_li[k] ex2_r = self.exog_re2_li[k] # The residuals expval = np.dot(exog, fe_params) resid = self.endog_li[k] - expval viexog = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, exog) xtvix += np.dot(exog.T, viexog) vir = _smw_solve(1., ex_r, ex2_r, cov_re, cov_re_inv, resid) rvir += np.dot(resid, vir) for jj1,mat1 in self._gen_dV_dPsi(ex_r): hess_fere[jj1,:] += np.dot(viexog.T,
np.dot(mat1, vir)
numpy.dot
#!/usr/bin/env python # -*- coding=utf-8 -*- ########################################################################### # Copyright (C) 2013-2016 by Caspar. All rights reserved. # File Name: txtclf.py # Author: <NAME> # E-mail: <EMAIL> # Created Time: 2016-07-05 14:39:18 ########################################################################### # import os, sys, difflib, itertools from time import time import numpy as np import scipy as sp import scipy.stats as stats import pandas as pd from sklearn.base import clone from sklearn.preprocessing import MinMaxScaler, LabelBinarizer, label_binarize, normalize from sklearn.multiclass import OneVsRestClassifier from sklearn.pipeline import Pipeline from sklearn.model_selection import StratifiedShuffleSplit, StratifiedKFold, KFold, GridSearchCV, RandomizedSearchCV from sklearn import metrics from .util import io, func, plot from .util import math as imath common_cfg = {} def init(plot_cfg={}, plot_common={}): if (len(plot_cfg) > 0 and plot_cfg['MON'] is not None): plot.MON = plot_cfg['MON'] global common_cfg if (len(plot_common) > 0): common_cfg = plot_common def get_featw(pipeline, feat_num): feat_w_dict, sub_feat_w = [{} for i in range(2)] filt_feat_idx = feature_idx = np.arange(feat_num) for component in ('featfilt', 'clf'): if (type(pipeline) != Pipeline): if (component == 'featfilt'): continue else: cmpn = pipeline elif (component in pipeline.named_steps): cmpn = pipeline.named_steps[component] else: continue if (hasattr(cmpn, 'estimators_')): for i, estm in enumerate(cmpn.estimators_): filt_subfeat_idx = feature_idx[:] if (hasattr(estm, 'get_support')): filt_subfeat_idx = feature_idx[estm.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(estm, measure)): filt_subfeat_w = getattr(estm, measure) subfeat_w = (filt_subfeat_w.min() - 1) * np.ones_like(feature_idx) # subfeat_w[filt_subfeat_idx] = normalize(estm.feature_importances_, norm='l1') subfeat_w[filt_subfeat_idx] = filt_subfeat_w # print 'Sub FI shape: (%s)' % ','.join([str(x) for x in filt_subfeat_w.shape]) # print 'Feature Importance inside %s Ensemble Method: %s' % (component, filt_subfeat_w) sub_feat_w[(component, i)] = subfeat_w if (hasattr(component, 'get_support')): filt_feat_idx = feature_idx[component.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(cmpn, measure)): filt_feat_w = getattr(cmpn, measure) # print '*' * 80 + '\n%s\n'%filt_feat_w + '*' * 80 feat_w = (filt_feat_w.min() - 1) * np.ones_like(feature_idx) # feat_w[filt_feat_idx] = normalize(filt_feat_w, norm='l1') feat_w[filt_feat_idx] = filt_feat_w # print '*' * 80 + '\n%s\n'%feat_w + '*' * 80 feat_w_dict[(component, measure)] = feat_w print('FI shape: (%s)' % ','.join([str(x) for x in feat_w_dict[(component, measure)].shape])) print('Sample 10 Feature from %s.%s: %s' % (component, measure, feat_w[feat_w > 0][:10])) # print 'Feature Importance from %s.%s: %s' % (component, measure, feat_w) return feat_w_dict, sub_feat_w def get_score(pipeline, X_test, mltl=False): if ((not isinstance(pipeline, Pipeline) and hasattr(pipeline, 'predict_proba')) or(isinstance(pipeline.named_steps['clf'], OneVsRestClassifier) and hasattr(pipeline.named_steps['clf'].estimators_[0], 'predict_proba')) or (not isinstance(pipeline.named_steps['clf'], OneVsRestClassifier) and hasattr(pipeline, 'predict_proba'))): if (mltl): return pipeline.predict_proba(X_test) else: # return pipeline.predict_proba(X_test)[:, 1] return pipeline.predict_proba(X_test) elif (hasattr(pipeline, 'decision_function')): return pipeline.decision_function(X_test) else: print('Neither probability estimate nor decision function is supported in the classification model!') return [0] * Y_test.shape[0] # Benchmark def benchmark(pipeline, X_train, Y_train, X_test, Y_test, mltl=False, signed=False, average='micro'): print('+' * 80) print('Training Model: ') print(pipeline) t0 = time() pipeline.fit(X_train, Y_train) train_time = time() - t0 print('train time: %0.3fs' % train_time) t0 = time() orig_pred = pred = pipeline.predict(X_test) orig_prob = prob = pipeline.predict_proba(X_test) if hasattr(pipeline, 'predict_proba') else pipeline.decision_function(X_test) test_time = time() - t0 print('+' * 80) print('Testing: ') print('test time: %0.3fs' % test_time) is_mltl = mltl if (signed): Y_test = np.column_stack([np.abs(Y_test).reshape((Y_test.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(Y_test).astype('int8').reshape((Y_test.shape[0],-1))).T]) if (len(Y_test.shape) < 2 or Y_test.shape[1] == 1 or np.where(Y_test<0)[0].shape[0]>0) else Y_test pred = np.column_stack([np.abs(pred).reshape((pred.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(pred).astype('int8').reshape((pred.shape[0],-1))).T]) if (len(pred.shape) < 2 or pred.shape[1] == 1 or np.where(pred<0)[0].shape[0]>0) else pred is_mltl = True try: accuracy = metrics.accuracy_score(Y_test, pred) except ValueError as e: print(e) Y_test, pred = Y_test.ravel(), pred.ravel() accuracy = metrics.accuracy_score(Y_test, pred) print('accuracy: %0.3f' % accuracy) if (is_mltl and average == 'all'): micro_precision = metrics.precision_score(Y_test, pred, average='micro') print('micro-precision: %0.3f' % micro_precision) micro_recall = metrics.recall_score(Y_test, pred, average='micro') print('micro-recall: %0.3f' % micro_recall) micro_fscore = metrics.fbeta_score(Y_test, pred, beta=1, average='micro') print('micro-fscore: %0.3f' % micro_fscore) macro_precision = metrics.precision_score(Y_test, pred, average='macro') print('macro-precision: %0.3f' % macro_precision) macro_recall = metrics.recall_score(Y_test, pred, average='macro') print('macro-recall: %0.3f' % macro_recall) macro_fscore = metrics.fbeta_score(Y_test, pred, beta=1, average='macro') print('macro-fscore: %0.3f' % macro_fscore) else: precision = metrics.precision_score(Y_test, pred, average=average if is_mltl else 'binary') print('precision: %0.3f' % precision) recall = metrics.recall_score(Y_test, pred, average=average if is_mltl else 'binary') print('recall: %0.3f' % recall) fscore = metrics.fbeta_score(Y_test, pred, beta=1, average=average if is_mltl else 'binary') print('fscore: %0.3f' % fscore) print('classification report:') # print metrics.classification_report(Y_test, pred) metric_df = pd.DataFrame(metrics.classification_report(Y_test, pred, output_dict=True)).T[['precision', 'recall', 'f1-score', 'support']] print(metric_df) print('confusion matrix:') if (is_mltl): pass else: print(metrics.confusion_matrix(Y_test, pred)) print('+' * 80) clf = pipeline.named_steps['clf'] if (type(pipeline) is Pipeline) else pipeline if ((isinstance(clf, OneVsRestClassifier) and hasattr(clf.estimators_[0], 'predict_proba')) or (not isinstance(clf, OneVsRestClassifier) and hasattr(pipeline, 'predict_proba'))): if (mltl): scores = pipeline.predict_proba(X_test) if (type(scores) == list): scores = np.concatenate([score[:, -1].reshape((-1, 1)) for score in scores], axis=1) else: scores = pipeline.predict_proba(X_test)[:, -1] elif (hasattr(pipeline, 'decision_function')): scores = pipeline.decision_function(X_test) else: print('Neither probability estimate nor decision function is supported in the classification model! ROC and PRC figures will be invalid.') scores = [0] * Y_test.shape[0] if (signed and (len(scores.shape) < 2 or scores.shape[1] < pred.shape[1])): scores = np.concatenate([np.abs(scores).reshape((scores.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,:2] for lb in (np.sign(scores).astype('int8').reshape((scores.shape[0],-1))).T], axis=1) if (is_mltl): if ((len(Y_test.shape) == 1 or Y_test.shape[1] == 1) and len(np.unique(Y_test)) > 2): lbz = LabelBinarizer() Y_test = lbz.fit_transform(Y_test) def micro(): # Micro-average ROC curve y_true = np.array(Y_test) s_array = np.array(scores) if (len(s_array.shape) == 3): s_array = s_array[:,:,1].reshape((s_array.shape[0],s_array.shape[1],)) if (y_true.shape[0] == s_array.shape[1] and y_true.shape[1] == s_array.shape[0]): s_array = s_array.T return metrics.roc_curve(y_true.ravel(), s_array.ravel()) def macro(): # Macro-average ROC curve n_classes = Y_test.shape[1] fpr, tpr = [dict() for i in range(2)] for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(Y_test[:, i], scores[:, i]) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += np.interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes return all_fpr, mean_tpr, _ if (average == 'micro'): roc = micro() elif (average == 'macro'): roc = macro() elif (average == 'all'): micro_roc = micro() macro_roc = macro() if (type(scores) == list): scores = np.array(scores)[:,:,0] prc = metrics.precision_recall_curve(Y_test.ravel(), scores.ravel()) # Only micro-prc is supported else: roc = metrics.roc_curve(Y_test, scores) prc = metrics.precision_recall_curve(Y_test, scores) # print 'ROC:\n%s\n%s' % (roc[0], roc[1]) # print 'PRC:\n%s\n%s' % (prc[0], prc[1]) print('Training and Testing X shape: %s; %s' % (', '.join(['(%s)' % ','.join([str(x) for x in X.shape]) for X in X_train]) if type(X_train) is list else '(%s)' % ','.join([str(x) for x in X_train.shape]), ', '.join(['(%s)' % ','.join([str(x) for x in X.shape]) for X in X_test]) if type(X_test) is list else '(%s)' % ','.join([str(x) for x in X_test.shape]))) feat_w_dict, sub_feat_w = [{} for i in range(2)] filt_feat_idx = feature_idx = np.arange(X_train[0].shape[1] if type(X_train) is list else X_train.shape[1]) for component in ('featfilt', 'clf'): if (type(pipeline) != Pipeline): if (component == 'featfilt'): continue else: cmpn = pipeline elif (component in pipeline.named_steps): cmpn = pipeline.named_steps[component] else: continue if (hasattr(cmpn, 'estimators_')): for i, estm in enumerate(cmpn.estimators_): filt_subfeat_idx = filt_feat_idx[:] if (hasattr(estm, 'get_support')): filt_subfeat_idx = filt_feat_idx[estm.get_support()] for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(estm, measure)): filt_subfeat_w = getattr(estm, measure) subfeat_w = (filt_subfeat_w.min() - 1) * np.ones_like(feature_idx) # subfeat_w[filt_subfeat_idx][:len(estm.feature_importances_)] = normalize(estm.feature_importances_, norm='l1') subfeat_w[filt_subfeat_idx][:len(filt_subfeat_w)] = filt_subfeat_w # print 'Sub FI shape: (%s)' % ','.join([str(x) for x in filt_subfeat_w.shape]) # print 'Feature Importance inside %s Ensemble Method: %s' % (component, filt_subfeat_w) sub_feat_w[(component, i)] = subfeat_w for measure in ('feature_importances_', 'coef_', 'scores_'): if (hasattr(cmpn, measure)): filt_feat_w = getattr(cmpn, measure) # print '*' * 80 + '\n%s\n'%filt_feat_w + '*' * 80 feat_w = (filt_feat_w.min() - 1) * np.ones_like(feature_idx) # feat_w[filt_feat_idx][:filt_feat_w.shape[1] if len(filt_feat_w.shape) > 1 else len(filt_feat_w)] = normalize(filt_feat_w[1,:] if len(filt_feat_w.shape) > 1 else filt_feat_w, norm='l1') feat_w[filt_feat_idx][:filt_feat_w.shape[1] if len(filt_feat_w.shape) > 1 else len(filt_feat_w)] = filt_feat_w[1,:] if len(filt_feat_w.shape) > 1 else filt_feat_w # print '*' * 80 + '\n%s\n'%feat_w + '*' * 80 feat_w_dict[(component, measure)] = feat_w print('FI shape: (%s)' % ','.join([str(x) for x in feat_w_dict[(component, measure)].shape])) print('Sample 10 Feature from %s.%s: %s' % (component, measure, feat_w[feat_w > 0][:10])) # print 'Feature Importance from %s.%s: %s' % (component, measure, feat_w) if (hasattr(cmpn, 'get_support')): filt_feat_idx = filt_feat_idx[cmpn.get_support()] print('\n') if (is_mltl and average == 'all'): return {'accuracy':accuracy, 'micro-precision':micro_precision, 'micro-recall':micro_recall, 'micro-fscore':micro_fscore, 'macro-precision':macro_precision, 'macro-recall':macro_recall, 'macro-fscore':macro_fscore, 'train_time':train_time, 'test_time':test_time, 'micro-roc':micro_roc, 'macro-roc':macro_roc, 'prc':prc, 'feat_w':feat_w_dict, 'sub_feat_w':sub_feat_w, 'pred_lb':orig_pred, 'metrics':metric_df} else: return {'accuracy':accuracy, 'precision':precision, 'recall':recall, 'fscore':fscore, 'train_time':train_time, 'test_time':test_time, 'roc':roc, 'prc':prc, 'feat_w':feat_w_dict, 'sub_feat_w':sub_feat_w, 'pred_lb':orig_pred, 'pred_prob':orig_prob, 'metrics':metric_df} # Calculate the venn digram overlaps def pred_ovl(preds, pred_true=None, axis=1): if (axis == 0): preds = preds.T if (pred_true is not None): pred_true = pred_true.reshape((-1,)) # Row represents feature, column represents instance var_num, dim = preds.shape[0], preds.shape[1] orig_idx = np.arange(var_num) if (len(preds.shape) < 2 or preds.shape[1] == 1): if (pred_true is None): return np.ones(shape=(1,), dtype='int') else: overlap_mt = np.ones(shape=(1,2), dtype='int') overlap_mt[0,1] = orig_idx[preds.reshape((-1,)) == pred_true].shape[0] return overlap_mt # Calculate possible subsets of all the instance indices subset_idx = list(imath.subset(list(range(dim)), min_crdnl=1)) # Initialize result matrix if (pred_true is None): overlap_mt = np.zeros(shape=(len(subset_idx),), dtype='int') else: overlap_mt = np.zeros(shape=(len(subset_idx), 2), dtype='int') # Calculate overlap for each subset for i, idx in enumerate(subset_idx): rmn_idx = set(range(dim)) - set(idx) # Select the positions of the target instance that without any overlap with other instances pred_sum, chsn_sum, rmn_sum = preds.sum(axis=1), preds[:,idx].sum(axis=1), preds[:,list(rmn_idx)].sum(axis=1) condition = np.all([np.logical_or(chsn_sum == 0, chsn_sum == len(idx)), np.logical_or(rmn_sum == 0, rmn_sum == len(rmn_idx)), np.logical_or(pred_sum == len(idx), pred_sum == len(rmn_idx))], axis=0) if (pred_true is None): overlap_mt[i] = orig_idx[condition].shape[0] else: # And the selected positions should be true true_cond = np.logical_and(condition, preds[:,idx[0]] == pred_true) overlap_mt[i,0] = orig_idx[condition].shape[0] overlap_mt[i,1] = orig_idx[true_cond].shape[0] return overlap_mt def save_featw(features, crsval_featw, crsval_subfeatw, cfg_param={}, lbid=''): lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' for k, v in crsval_featw.items(): measure_str = k.replace(' ', '_').strip('_').lower() feat_w_mt = np.column_stack(v) mms = MinMaxScaler() feat_w_mt = mms.fit_transform(feat_w_mt) feat_w_avg = feat_w_mt.mean(axis=1) feat_w_std = feat_w_mt.std(axis=1) sorted_idx = np.argsort(feat_w_avg, axis=-1)[::-1] # sorted_idx = sorted(range(feat_w_avg.shape[0]), key=lambda k: feat_w_avg[k])[::-1] sorted_feat_w = np.column_stack((features[sorted_idx], feat_w_avg[sorted_idx], feat_w_std[sorted_idx])) feat_w_df = pd.DataFrame(sorted_feat_w, index=sorted_idx, columns=['Feature Name', 'Importance Mean', 'Importance Std']) if (cfg_param.setdefault('save_featw', False)): feat_w_df.to_excel('featw%s_%s.xlsx' % (lbidstr, measure_str)) if (cfg_param.setdefault('save_featw_npz', False)): io.write_df(feat_w_df, 'featw%s_%s' % (lbidstr, measure_str), with_idx=True) if (cfg_param.setdefault('plot_featw', False)): plot.plot_bar(feat_w_avg[sorted_idx[:10]].reshape((1,-1)), feat_w_std[sorted_idx[:10]].reshape((1,-1)), features[sorted_idx[:10]], labels=None, title='Feature importances', fname='fig_featw%s_%s' % (lbidstr, measure_str), plot_cfg=common_cfg) for k, v in crsval_subfeatw.items(): measure_str = k.replace(' ', '_').strip('_').lower() subfeat_w_mt = np.column_stack(v) mms = MinMaxScaler() subfeat_w_mt = mms.fit_transform(subfeat_w_mt) subfeat_w_avg = subfeat_w_mt.mean(axis=1) subfeat_w_std = subfeat_w_mt.std(axis=1) sorted_idx = np.argsort(subfeat_w_avg, axis=-1)[::-1] sorted_subfeat_w = np.column_stack((features[sorted_idx], subfeat_w_avg[sorted_idx], subfeat_w_std[sorted_idx])) subfeat_w_df = pd.DataFrame(sorted_subfeat_w, index=sorted_idx, columns=['Feature Name', 'Importance Mean', 'Importance Std']) if (cfg_param.setdefault('save_subfeatw', False)): subfeat_w_df.to_excel('subfeatw%s_%s.xlsx' % (lbidstr, measure_str)) if (cfg_param.setdefault('save_subfeatw_npz', False)): io.write_df(subfeat_w_df, 'subfeatw%s_%s' % (lbidstr, measure_str), with_idx=True) if (cfg_param.setdefault('plot_subfeatw', False)): plot.plot_bar(subfeat_w_avg[sorted_idx[:10]].reshape((1,-1)), subfeat_w_std[sorted_idx[:10]].reshape((1,-1)), features[sorted_idx[:10]], labels=None, title='Feature importances', fname='fig_subfeatw_%s' % measure_str, plot_cfg=common_cfg) # Classification def classification(X_train, Y_train, X_test, model_iter, model_param={}, cfg_param={}, global_param={}, lbid=''): print('Classifing...') global common_cfg FILT_NAMES, CLF_NAMES, PL_NAMES, PL_SET = model_param['glb_filtnames'], model_param['glb_clfnames'], global_param['pl_names'], global_param['pl_set'] lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' to_hdf, hdf5_fpath = cfg_param.setdefault('to_hdf', False), '%s' % 'crsval_dataset.h5' if cfg_param.setdefault('hdf5_fpath', 'crsval_dataset.h5') is None else cfg_param['hdf5_fpath'] # Format the data if (type(X_train) == list): assert all([len(x) == len(X_train[0]) for x in X_train[1:]]) X_train = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_train] X_train = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_train] else: if (type(X_train) != pd.io.parsers.TextFileReader and type(X_train) != pd.DataFrame): X_train = pd.DataFrame(X_train) X_train = pd.concat(X_train) if (type(X_train) == pd.io.parsers.TextFileReader and not to_hdf) else X_train if (type(X_test) == list): assert all([len(x) == len(X_test[0]) for x in X_test[1:]]) X_test = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_test] X_test = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_test] else: if (type(X_test) != pd.io.parsers.TextFileReader and type(X_test) != pd.DataFrame): X_test = pd.DataFrame(X_test) X_test = pd.concat(X_test) if (type(X_test) == pd.io.parsers.TextFileReader and not to_hdf) else X_test if (type(Y_train) != pd.io.parsers.TextFileReader and type(Y_train) != pd.DataFrame): Y_train = pd.DataFrame(Y_train) Y_train_mt = Y_train.values.reshape((Y_train.shape[0],)) if (len(Y_train.shape) == 1 or Y_train.shape[1] == 1) else Y_train.values mltl=True if len(Y_train_mt.shape) > 1 and Y_train_mt.shape[1] > 1 or 2 in Y_train_mt else False print('Classification is starting...') preds, probs, scores = [[] for i in range(3)] crsval_featw, crsval_subfeatw = [{} for i in range(2)] for vars in model_iter(**model_param): if (global_param['comb']): mdl_name, mdl = [vars[x] for x in range(2)] else: filt_name, filter, clf_name, clf= [vars[x] for x in range(4)] print('#' * 80) # Assemble a pipeline if ('filter' in locals() and filter != None): model_name = '%s [Ft Filt] & %s [CLF]' % (filt_name, clf_name) pipeline = Pipeline([('featfilt', clone(filter)), ('clf', clf)]) elif ('clf' in locals() and clf != None): model_name = '%s [CLF]' % clf_name pipeline = Pipeline([('clf', clf)]) else: model_name = mdl_name pipeline = mdl if (type(mdl) is Pipeline) else Pipeline([('clf', mdl)]) if (model_name in PL_SET): continue PL_NAMES.append(model_name) PL_SET.add(model_name) print(model_name) # Build the model print('+' * 80) print('Training Model: ') print(pipeline) t0 = time() pipeline.fit(X_train, Y_train_mt) train_time = time() - t0 print('train time: %0.3fs' % train_time) t0 = time() pred = pipeline.predict(X_test) prob = pipeline.predict_proba(X_test) test_time = time() - t0 print('+' * 80) print('Testing: ') print('test time: %0.3fs' % test_time) preds.append(pred) probs.append(prob) scores.append(get_score(pipeline, X_test, mltl)) # Save predictions and model if (cfg_param.setdefault('save_pred', True)): io.write_npz(dict(pred_lb=pred, pred_prob=prob), 'clf_pred_%s%s' % (model_name.replace(' ', '_').lower(), lbidstr)) if (cfg_param.setdefault('save_model', True)): mdl_name = '%s' % model_name.replace(' ', '_').lower() if (all([hasattr(pipeline.steps[i][1], 'save') for i in range(len(pipeline.steps))])): for sub_mdl_name, mdl in pipeline.steps: mdl.save('%s_%s%s' % (mdl_name, sub_mdl_name.replace(' ', '_').lower(), lbidstr), **global_param.setdefault('mdl_save_kwargs', {})) else: io.write_obj(pipeline, '%s%s' % (mdl_name, lbidstr)) # Feature importances feat_w, sub_feat_w = get_featw(pipeline, X_train[0].shape[1] if (type(X_train) is list) else X_train.shape[1]) for k, v in feat_w.items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) crsval_featw.setdefault(key, []).append(v) for k, v in sub_feat_w.items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) crsval_subfeatw.setdefault(key, []).append(v) print('\n') if (len(preds) > 1): # Prediction overlap preds_mt = np.column_stack([x.ravel() for x in preds]) povl = np.array(pred_ovl(preds_mt)) # Spearman's rank correlation spmnr, spmnr_pval = stats.spearmanr(preds_mt) # Kendall rank correlation # kendalltau = stats.kendalltau(preds_mt)[0] # Pearson correlation # pearson = tats.pearsonr(preds_mt)[0] ## Save performance data povl_idx = [' & '.join(x) for x in imath.subset(PL_NAMES, min_crdnl=1)] povl_df = pd.DataFrame(povl, index=povl_idx, columns=['pred_ovl']) spmnr_df = pd.DataFrame(spmnr, index=PL_NAMES, columns=PL_NAMES) spmnr_pval_df = pd.DataFrame(spmnr_pval, index=PL_NAMES, columns=PL_NAMES) if (cfg_param.setdefault('save_povl', False)): povl_df.to_excel('cpovl_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_povl_npz', False)): io.write_df(povl_df, 'povl_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr', False)): spmnr_df.to_excel('spmnr_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_npz', False)): io.write_df(spmnr_df, 'spmnr_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr_pval', False)): spmnr_pval_df.to_excel('spmnr_pval_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_pval_npz', False)): io.write_df(spmnr_pval_df, 'spmnr_pval_clf%s.npz' % lbidstr, with_idx=True) save_featw(X_train[0].columns.values if (type(X_train) is list) else X_train.columns.values, crsval_featw, crsval_subfeatw, cfg_param=cfg_param, lbid=lbid) return preds, scores def kf2data(kf, X, Y, to_hdf=False, hdf5_fpath='crsval_dataset.h5'): if (to_hdf): import h5py from keras.utils.io_utils import HDF5Matrix hdf5_fpath = hdf5_fpath if hdf5_fpath else os.path.abspath('crsval_dataset.h5') for i, (train_idx, test_idx) in enumerate(kf): if (type(X)==list): if (type(X[0]) == pd.io.parsers.TextFileReader): pass assert all([len(x) == len(X[0]) for x in X[1:]]) X_train, X_test = [x[train_idx,:] for x in X] if to_hdf and type(X[0]) == HDF5Matrix or type(X[0]) != pd.DataFrame else [x.iloc[train_idx,:] for x in X], [x[test_idx,:] for x in X] if to_hdf and type(X[0]) == HDF5Matrix or type(X[0]) != pd.DataFrame else [x.iloc[test_idx,:] for x in X] train_idx_df, test_idx_df = pd.DataFrame(np.arange(X_train[0].shape[0]), index=X[0].index[train_idx]), pd.DataFrame(np.arange(X_test[0].shape[0]), index=X[0].index[test_idx]) else: if (type(X) == pd.io.parsers.TextFileReader): pass X_train, X_test = X[train_idx] if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.iloc[train_idx,:], X[test_idx] if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.iloc[test_idx,:] train_idx_df, test_idx_df = pd.DataFrame(np.arange(X_train.shape[0]), index=None if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.index[train_idx]), pd.DataFrame(np.arange(X_test.shape[0]), index=None if to_hdf and type(X) == HDF5Matrix or type(X) != pd.DataFrame else X.index[test_idx]) Y_train, Y_test = Y[train_idx], Y[test_idx] # Y_train = Y_train.reshape((Y_train.shape[0],)) if (len(Y_train.shape) > 1 and Y_train.shape[1] == 1) else Y_train # Y_test = Y_test.reshape((Y_test.shape[0],)) if (len(Y_test.shape) > 1 and Y_test.shape[1] == 1) else Y_test if (to_hdf): with h5py.File(hdf5_fpath, 'w') as hf: if (type(X_train) == list): for idx, x_train in enumerate(X_train): hf.create_dataset('X_train%i' % idx, data=x_train.values if type(X) != HDF5Matrix else x_train[:]) else: hf.create_dataset('X_train', data=X_train.values if type(X) != HDF5Matrix else X_train[:]) if (type(X_test) == list): for idx, x_test in enumerate(X_test): hf.create_dataset('X_test%i' % idx, data=x_test.values if type(X) != HDF5Matrix else x_test[:]) else: hf.create_dataset('X_test', data=X_test.values if type(X) != HDF5Matrix else X_test[:]) hf.create_dataset('Y_train', data=Y_train if type(Y) != HDF5Matrix else Y_train[:]) hf.create_dataset('Y_test', data=Y_test if type(Y) != HDF5Matrix else Y_test[:]) yield i, [HDF5Matrix(hdf5_fpath, 'X_train%i' % idx) for idx in range(len(X_train))] if (type(X_train) == list) else HDF5Matrix(hdf5_fpath, 'X_train'), [HDF5Matrix(hdf5_fpath, 'X_test%i' % idx) for idx in range(len(X_test))] if (type(X_test) == list) else HDF5Matrix(hdf5_fpath, 'X_test'), HDF5Matrix(hdf5_fpath, 'Y_train'), HDF5Matrix(hdf5_fpath, 'Y_test'), train_idx_df, test_idx_df # The implementation of HDF5Matrix is not good since it keep all the hdf5 file opened, so we need to manually close them. remove_hfps = [] for hfpath, hf in HDF5Matrix.refs.items(): if (hfpath.startswith(hdf5_fpath)): hf.close() remove_hfps.append(hfpath) for hfpath in remove_hfps: HDF5Matrix.refs.pop(hfpath, None) else: yield i, [x.values for x in X_train] if (type(X_train) == list) else X_train.values, [x.values for x in X_test] if (type(X_test) == list) else X_test.values, Y_train, Y_test, train_idx_df, test_idx_df # Evaluation def evaluate(X_train, Y_train, X_test, Y_test, model_iter, model_param={}, avg='micro', kfold=5, cfg_param={}, global_param={}, lbid=''): print('Evaluating...') from keras.utils.io_utils import HDF5Matrix global common_cfg FILT_NAMES, CLF_NAMES, PL_NAMES, PL_SET = model_param['glb_filtnames'], model_param['glb_clfnames'], global_param['pl_names'], global_param['pl_set'] lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' # Format the data if (type(X_train) == list): assert all([len(x) == len(X_train[0]) for x in X_train[1:]]) X_train = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_train] X_train = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_train] else: if (type(X_train) != pd.io.parsers.TextFileReader and type(X_train) != pd.DataFrame): X_train = pd.DataFrame(X_train) if type(X_train) != HDF5Matrix else X_train X_train = pd.concat(X_train) if (type(X_train) == pd.io.parsers.TextFileReader and not to_hdf) else X_train if (type(Y_train) != pd.io.parsers.TextFileReader and type(Y_train) != pd.DataFrame): Y_train = pd.DataFrame(Y_train) if (type(Y_train) == pd.io.parsers.TextFileReader and not to_hdf) else Y_train if (type(Y_train) != HDF5Matrix): Y_train = Y_train.values.reshape((Y_train.shape[0],)) if (len(Y_train.shape) == 1 or Y_train.shape[1] == 1) else Y_train.values else: Y_train = Y_train if (type(X_test) == list): assert all([len(x) == len(X_test[0]) for x in X_test[1:]]) X_test = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X_test] X_test = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X_test] else: if (type(X_test) != pd.io.parsers.TextFileReader and type(X_test) != pd.DataFrame): X_test = pd.DataFrame(X_test) if type(X_test) != HDF5Matrix else X_test X_test = pd.concat(X_test) if (type(X_test) == pd.io.parsers.TextFileReader and not to_hdf) else X_test if (type(Y_test) != pd.io.parsers.TextFileReader and type(Y_test) != pd.DataFrame): Y_test = pd.DataFrame(Y_test) if (type(Y_test) == pd.io.parsers.TextFileReader and not to_hdf) else Y_test if (type(Y_test) != HDF5Matrix): Y_test = Y_test.values.reshape((Y_test.shape[0],)) if (len(Y_test.shape) == 1 or Y_test.shape[1] == 1) else Y_test.values else: Y_test = Y_test is_mltl = True if len(Y_train.shape) > 1 and Y_train.shape[1] > 1 or 2 in Y_train else False print('Benchmark is starting...') mean_fpr = np.linspace(0, 1, 100) mean_recall = np.linspace(0, 1, 100) xdf = X_train[0] if type(X_train)==list else X_train roc_dict, prc_dict, featw_data, subfeatw_data = [{} for i in range(4)] ## Copy from cross_validate function Start ## del PL_NAMES[:] PL_SET.clear() if (cfg_param.setdefault('npg_ratio', None) is not None): npg_ratio = cfg_param['npg_ratio'] Y_train = np.array(Y_train) # HDF5Matrix is not working in matrix slicing and boolean operation y = Y_train[:,0] if (len(Y_train.shape) > 1) else Y_train if (1.0 * np.abs(y).sum() / Y_train.shape[0] < 1.0 / (npg_ratio + 1)): all_true = np.arange(Y_train.shape[0])[y > 0].tolist() all_false = np.arange(Y_train.shape[0])[y <= 0].tolist() true_id = np.random.choice(len(all_true), size=int(1.0 / npg_ratio * len(all_false)), replace=True) true_idx = [all_true[i] for i in true_id] all_train_idx = sorted(set(true_idx + all_false)) X_train = [x.iloc[all_train_idx] if type(x) != HDF5Matrix else x[all_train_idx] for x in X_train] if (type(X_train) is list) else X_train.iloc[all_train_idx] if type(x) != HDF5Matrix else X_train[all_train_idx] Y_train = Y_train[all_train_idx,:] if (len(Y_train.shape) > 1) else Y_train[all_train_idx] results, preds = [[] for x in range(2)] # Y_test = np.column_stack([np.abs(Y_test).reshape((Y_test.shape[0],-1))] + [label_binarize(lb, classes=[-1,1,0])[:,1] for lb in (np.sign(Y_test).astype('int8').reshape((Y_test.shape[0],-1))).T]) if (len(Y_test.shape) < 2 or Y_test.shape[1] == 1 or np.where(Y_test<0)[0].shape[0]>0) else Y_test for vars in model_iter(**model_param): if (global_param['comb']): mdl_name, mdl = [vars[x] for x in range(2)] else: filt_name, filter, clf_name, clf= [vars[x] for x in range(4)] print('#' * 80) # Assemble a pipeline if ('filter' in locals() and filter != None): model_name = '%s [Ft Filt] & %s [CLF]' % (filt_name, clf_name) pipeline = Pipeline([('featfilt', clone(filter)), ('clf', clf)]) elif ('clf' in locals() and clf != None): model_name = '%s [CLF]' % clf_name pipeline = Pipeline([('clf', clf)]) else: model_name = mdl_name pipeline = mdl if (model_name in PL_SET): continue PL_NAMES.append(model_name) PL_SET.add(model_name) print(model_name) # Benchmark results bm_results = benchmark(pipeline, X_train, Y_train, X_test, Y_test, mltl=is_mltl, signed=global_param.setdefault('signed', True if np.where(Y_train<0)[0].shape[0]>0 else False), average=avg) # Clear the model environment (e.g. GPU resources) del pipeline # if (type(pipeline) is Pipeline): # for cmpn in pipeline.named_steps.values(): # if (getattr(cmpn, "clear", None)): cmpn.clear() # else: # if (getattr(pipeline, "clear", None)): # pipeline.clear() # Obtain the results if (is_mltl and avg == 'all'): results.append([bm_results[x] for x in ['accuracy', 'micro-precision', 'micro-recall', 'micro-fscore', 'macro-precision', 'macro-recall', 'macro-fscore', 'train_time', 'test_time']]) else: results.append([bm_results[x] for x in ['accuracy', 'precision', 'recall', 'fscore', 'train_time', 'test_time']]) preds.append(bm_results['pred_lb']) if (cfg_param.setdefault('save_pred', False)): io.write_npz(dict(pred_lb=bm_results['pred_lb'], pred_prob=bm_results['pred_prob'], true_lb=Y_test), 'pred_%s%s' % (model_name.replace(' ', '_').lower(), lbidstr)) if (is_mltl and avg == 'all'): micro_id, macro_id = '-'.join([model_name,'micro']), '-'.join([model_name,'macro']) roc_dict[micro_id] = roc_dict.setdefault(micro_id, 0) + np.interp(mean_fpr, bm_results['micro-roc'][0], bm_results['micro-roc'][1]) roc_dict[macro_id] = roc_dict.setdefault(macro_id, 0) + np.interp(mean_fpr, bm_results['macro-roc'][0], bm_results['macro-roc'][1]) else: roc_dict[model_name] = roc_dict.setdefault(model_name, 0) + np.interp(mean_fpr, bm_results['roc'][0], bm_results['roc'][1]) prc_dict[model_name] = prc_dict.setdefault(model_name, 0) + np.interp(mean_recall, bm_results['prc'][0], bm_results['prc'][1]) for k, v in bm_results['feat_w'].items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) featw_data[key] = v for k, v in bm_results['sub_feat_w'].items(): key = '%s_%s_%s' % (model_name, k[0], k[1]) subfeatw_data[key] = v print('\n') # Prediction overlap if (True if len(Y_train.shape) > 1 and Y_train.shape[1] > 1 else False): preds_mt = np.column_stack([x.ravel() for x in preds]) else: preds_mt = np.column_stack(preds) preds.append(Y_test) tpreds_mt = np.column_stack([x.ravel() for x in preds]) ## Copy from cross_validate function End ## povl = pred_ovl(preds_mt, Y_test) # Spearman's rank correlation spearman = stats.spearmanr(tpreds_mt) # Kendall rank correlation # kendalltau = stats.kendalltau(preds_mt) # Pearson correlation # pearson = stats.pearsonr(preds_mt) ## Save performance data if (is_mltl and avg == 'all'): metric_idx = ['Accuracy', 'Micro Precision', 'Micro Recall', 'Micro F score', 'Macro Precision', 'Macro Recall', 'Macro F score', 'Train time', 'Test time'] else: metric_idx = ['Accuracy', 'Precision', 'Recall', 'F score', 'Train time', 'Test time'] perf_df = pd.DataFrame(np.array(results).T, index=metric_idx, columns=PL_NAMES) povl_idx = [' & '.join(x) for x in imath.subset(PL_NAMES, min_crdnl=1)] povl_df = pd.DataFrame(np.array(povl), index=povl_idx, columns=['pred_ovl', 'tpred_ovl']) spmnr_val_df = pd.DataFrame(spearman[0], index=PL_NAMES+['Annotations'], columns=PL_NAMES+['Annotations']) spmnr_pval_df = pd.DataFrame(spearman[1], index=PL_NAMES+['Annotations'], columns=PL_NAMES+['Annotations']) if (cfg_param.setdefault('save_tpred', True)): io.write_npz(tpreds_mt, 'tpred_clf%s' % lbidstr) if (cfg_param.setdefault('save_perf', True)): perf_df.to_excel('perf_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_perf_npz', False)): io.write_df(perf_df, 'perf_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_povl', False)): povl_df.to_excel('povl_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_povl_npz', False)): io.write_df(povl_df, 'povl_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr', False)): spmnr_val_df.to_excel('spmnr_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_npz', False)): io.write_df(spmnr_val_df, 'spmnr_clf%s.npz' % lbidstr, with_idx=True) if (cfg_param.setdefault('save_spmnr_pval', False)): spmnr_pval_df.to_excel('spmnr_pval_clf%s.xlsx' % lbidstr) if (cfg_param.setdefault('save_spmnr_pval_npz', False)): io.write_df(spmnr_pval_df, 'spmnr_pval_clf%s.npz' % lbidstr, with_idx=True) # Feature importances try: save_featw(xdf.columns.values if type(xdf) != HDF5Matrix else np.arange(xdf.shape[1]), featw_data, subfeatw_data, cfg_param=cfg_param, lbid=lbid) except Exception as e: print(e) ## Plot figures if (is_mltl and avg == 'all'): micro_roc_data, micro_roc_labels, micro_roc_aucs, macro_roc_data, macro_roc_labels, macro_roc_aucs = [[] for i in range(6)] else: roc_data, roc_labels, roc_aucs = [[] for i in range(3)] prc_data, prc_labels, prc_aucs = [[] for i in range(3)] for pl in PL_NAMES: if (is_mltl and avg == 'all'): micro_id, macro_id = '-'.join([pl,'micro']), '-'.join([pl,'macro']) micro_mean_tpr, macro_mean_tpr = roc_dict[micro_id], roc_dict[macro_id] micro_roc_auc = metrics.auc(mean_fpr, micro_mean_tpr) macro_roc_auc = metrics.auc(mean_fpr, macro_mean_tpr) micro_roc_data.append([mean_fpr, micro_mean_tpr]) micro_roc_aucs.append(micro_roc_auc) micro_roc_labels.append('%s (AUC=%0.2f)' % (pl, micro_roc_auc)) macro_roc_data.append([mean_fpr, macro_mean_tpr]) macro_roc_aucs.append(macro_roc_auc) macro_roc_labels.append('%s (AUC=%0.2f)' % (pl, macro_roc_auc)) else: mean_tpr = roc_dict[pl] mean_roc_auc = metrics.auc(mean_fpr, mean_tpr) roc_data.append([mean_fpr, mean_tpr]) roc_aucs.append(mean_roc_auc) roc_labels.append('%s (AUC=%0.2f)' % (pl, mean_roc_auc)) mean_prcn = prc_dict[pl] mean_prc_auc = metrics.auc(mean_recall, mean_prcn) prc_data.append([mean_recall, mean_prcn]) prc_aucs.append(mean_prc_auc) prc_labels.append('%s (AUC=%0.2f)' % (pl, mean_prc_auc)) group_dict = {} for i, pl in enumerate(PL_NAMES): group_dict.setdefault(tuple(set(difflib.get_close_matches(pl, PL_NAMES))), []).append(i) if (not cfg_param.setdefault('group_by_name', False) or len(group_dict) == len(PL_NAMES)): groups = None else: group_array = np.array(group_dict.values()) group_array.sort() groups = group_array.tolist() if (is_mltl and avg == 'all'): aucs_df = pd.DataFrame([micro_roc_aucs, macro_roc_aucs, prc_aucs], index=['Micro ROC AUC', 'Macro ROC AUC', 'PRC AUC'], columns=PL_NAMES) if (cfg_param.setdefault('plot_roc', True)): plot.plot_roc(micro_roc_data, micro_roc_labels, groups=groups, fname='micro_roc%s'%lbidstr, plot_cfg=common_cfg) plot.plot_roc(macro_roc_data, macro_roc_labels, groups=groups, fname='macro_roc%s'%lbidstr, plot_cfg=common_cfg) else: aucs_df = pd.DataFrame([roc_aucs, prc_aucs], index=['ROC AUC', 'PRC AUC'], columns=PL_NAMES) if (cfg_param.setdefault('plot_roc', True)): plot.plot_roc(roc_data, roc_labels, groups=groups, fname='roc%s'%lbidstr, plot_cfg=common_cfg) if (cfg_param.setdefault('plot_prc', True)): plot.plot_prc(prc_data, prc_labels, groups=groups, fname='prc%s'%lbidstr, plot_cfg=common_cfg) if (cfg_param.setdefault('save_auc', False)): aucs_df.to_excel('auc%s.xlsx' % lbidstr) filt_num, clf_num = len(FILT_NAMES), len(CLF_NAMES) if (cfg_param.setdefault('plot_metric', False)): for mtrc in metric_idx: mtrc_avg_list, mtrc_std_list = [[] for i in range(2)] if (global_param['comb']): mtrc_avg = perf_avg_df.ix[mtrc,:].values.reshape((1,-1)) mtrc_std = perf_std_df.ix[mtrc,:].values.reshape((1,-1)) plot.plot_bar(mtrc_avg, mtrc_std, xlabels=PL_NAMES, labels=None, title='%s by Classifier and Feature Selection' % mtrc, fname='%s_clf_ft%s' % (mtrc.replace(' ', '_').lower(), lbidstr), plot_cfg=common_cfg) else: for i in range(filt_num): offset = i * clf_num mtrc_avg_list.append(perf_avg_df.ix[mtrc,offset:offset+clf_num].values.reshape((1,-1))) mtrc_std_list.append(perf_std_df.ix[mtrc,offset:offset+clf_num].values.reshape((1,-1))) mtrc_avg = np.concatenate(mtrc_avg_list) mtrc_std = np.concatenate(mtrc_std_list) plot.plot_bar(mtrc_avg, mtrc_std, xlabels=CLF_NAMES, labels=FILT_NAMES, title='%s by Classifier and Feature Selection' % mtrc, fname='%s_clf_ft%s' % (mtrc.replace(' ', '_').lower(), lbidstr), plot_cfg=common_cfg) # Cross validation def cross_validate(X, Y, model_iter, model_param={}, avg='micro', kfold=5, cfg_param={}, split_param={}, global_param={}, lbid=''): print('Cross validating...') from keras.utils.io_utils import HDF5Matrix global common_cfg FILT_NAMES, CLF_NAMES, PL_NAMES, PL_SET = model_param['glb_filtnames'], model_param['glb_clfnames'], global_param['pl_names'], global_param['pl_set'] lbidstr = ('_' + (str(lbid) if lbid != -1 else 'all')) if lbid is not None and lbid != '' else '' to_hdf, hdf5_fpath = cfg_param.setdefault('to_hdf', False), 'crsval_dataset%s.h5' % lbidstr if cfg_param.setdefault('hdf5_fpath', 'crsval_dataset%s.h5' % lbidstr) is None else cfg_param['hdf5_fpath'] # Format the data if (type(X) == list): assert all([len(x) == len(X[0]) for x in X[1:]]) X = [pd.DataFrame(x) if (type(x) != pd.io.parsers.TextFileReader and type(x) != pd.DataFrame) else x for x in X] X = [pd.concat(x) if (type(x) == pd.io.parsers.TextFileReader and not to_hdf) else x for x in X] else: if (type(X) != pd.io.parsers.TextFileReader and type(X) != pd.DataFrame): X = pd.DataFrame(X) if type(X) != HDF5Matrix else X X = pd.concat(X) if (type(X) == pd.io.parsers.TextFileReader and not to_hdf) else X if (type(Y) != pd.io.parsers.TextFileReader and type(Y) != pd.DataFrame): Y = pd.DataFrame(Y) if (type(Y) == pd.io.parsers.TextFileReader and not to_hdf) else Y if (type(Y) != HDF5Matrix): Y_mt = Y.values.reshape((Y.shape[0],)) if (len(Y.shape) == 1 or Y.shape[1] == 1) else Y.values else: Y_mt = Y is_mltl = True if len(Y_mt.shape) > 1 and Y_mt.shape[1] > 1 or 2 in Y_mt else False print('Benchmark is starting...') mean_fpr = np.linspace(0, 1, 100) mean_recall = np.linspace(0, 1, 100) xdf = X[0] if type(X)==list else X if (len(split_param) == 0): if (type(xdf) != HDF5Matrix): kf = list(KFold(n_splits=kfold, shuffle=True, random_state=0).split(xdf, Y_mt)) if (len(Y_mt.shape) == 1) else list(KFold(n_splits=kfold, shuffle=True, random_state=0).split(xdf, Y_mt[:,0].reshape((Y_mt.shape[0],)))) else: kf = list(KFold(n_splits=kfold, shuffle=False, random_state=0).split(xdf[:], Y_mt[:])) if (len(Y_mt.shape) == 1) else list(KFold(n_splits=kfold, shuffle=False, random_state=0).split(xdf[:], Y_mt[:].reshape((-1,)))) # HDF5Matrix is not working in shuffle indices else: split_param['shuffle'] = True if type(xdf) != HDF5Matrix else False # To-do: implement the split method for multi-label data if ('train_size' in split_param and 'test_size' in split_param): kf = list(StratifiedShuffleSplit(n_splits=kfold, train_size=split_param['train_size'], test_size=split_param['test_size'], random_state=0).split(xdf, Y_mt)) if (len(Y_mt.shape) == 1) else list(StratifiedShuffleSplit(n_splits=kfold, train_size=split_param['train_size'], test_size=split_param['test_size'], random_state=0).split(xdf, Y_mt[:,0].reshape((Y_mt.shape[0],)))) else: kf = list(StratifiedKFold(n_splits=kfold, shuffle=split_param.setdefault('shuffle', True), random_state=0).split(xdf, Y_mt)) if (len(Y_mt.shape) == 1) else list(StratifiedKFold(n_splits=kfold, shuffle=split_param.setdefault('shuffle', True), random_state=0).split(xdf, Y_mt[:,0].reshape((Y_mt.shape[0],)))) crsval_results, crsval_tpreds, crsval_povl, crsval_spearman, crsval_kendalltau, crsval_pearson = [[] for i in range(6)] crsval_roc, crsval_prc, crsval_featw, crsval_subfeatw = [{} for i in range(4)] # for i, (train_idx, test_idx) in enumerate(kf): for i, X_train, X_test, Y_train, Y_test, train_idx_df, test_idx_df in kf2data(kf, X, Y_mt, to_hdf=to_hdf, hdf5_fpath=hdf5_fpath): del PL_NAMES[:] PL_SET.clear() print('\n' + '-' * 80 + '\n' + '%s time validation' % imath.ordinal(i+1) + '\n' + '-' * 80 + '\n') if (cfg_param.setdefault('save_crsval_idx', False)): io.write_df(train_idx_df, 'train_idx_crsval_%s%s.npz' % (i, lbidstr), with_idx=True) io.write_df(test_idx_df, 'test_idx_crsval_%s%s.npz' % (i, lbidstr), with_idx=True) if (cfg_param.setdefault('npg_ratio', None) is not None): npg_ratio = cfg_param['npg_ratio'] Y_train = np.array(Y_train) # HDF5Matrix is not working in matrix slicing and boolean operation y = Y_train[:,0] if (len(Y_train.shape) > 1) else Y_train if (1.0 * np.abs(y).sum() / Y_train.shape[0] < 1.0 / (npg_ratio + 1)): all_true =
np.arange(Y_train.shape[0])
numpy.arange
"""Test function to rotate vector onto vector.""" from __future__ import absolute_import, division, print_function import unittest import numpy as np import rowan class TestVectorVector(unittest.TestCase): """Test rotation of a vector onto another vector.""" def test_simple(self): """Test finding quaternion to rotate a vector onto another vector.""" vec1 = np.array([1, 0, 0]) vec2 = np.array([0, 1, 0]) vec3 = np.array([0, 0, 1]) quat = rowan.vector_vector_rotation(vec1, vec2) self.assertTrue( np.allclose(quat, np.array([[0, np.sqrt(2) / 2, np.sqrt(2) / 2, 0]])) ) quat = rowan.vector_vector_rotation(vec1, vec3) self.assertTrue( np.allclose(quat, np.array([[0, np.sqrt(2) / 2, 0, np.sqrt(2) / 2]])) ) def test_ap(self): """Test finding quaternion to rotate antiparallel vectors onto each other.""" # For this test, there are multiple quaternions that would effect the # correct rotation, so rather than checking for a specific one we check # that the appropriate rotation results from applying the quaternion vec1 = np.array([1, 0, 0]) vec2 = np.array([0, 1, 0]) quat = rowan.vector_vector_rotation(vec1, vec2) self.assertTrue( np.allclose(rowan.rotate(quat, vec1), vec2 / np.linalg.norm(vec2, axis=-1)) ) vec1 = np.array([1, 0, 0]) vec2 = np.array([[0, 1, 0], [2, 0, 0], [-2, 0, 0]]) quat = rowan.vector_vector_rotation(vec1, vec2) self.assertTrue( np.allclose( rowan.rotate(quat, vec1), vec2 / np.linalg.norm(vec2, axis=-1)[:, np.newaxis], ) ) vec1 = np.array([0, 1, 0]) vec2 = np.array([[0, 0, 1], [0, 2, 0], [0, -2, 0]]) quat = rowan.vector_vector_rotation(vec1, vec2) self.assertTrue( np.allclose( rowan.rotate(quat, vec1), vec2 / np.linalg.norm(vec2, axis=-1)[:, np.newaxis], ) ) def test_broadcast(self): """Test broadcasting.""" vec1 = np.array([1, 0, 0]) vec2 = np.array([0, 1, 0]) vec3 = np.array([0, 0, 1]) arr1 = np.stack((vec2, vec3), axis=0) output = np.array( [ [0, np.sqrt(2) / 2, np.sqrt(2) / 2, 0], [0,
np.sqrt(2)
numpy.sqrt
################################################################################ # Peach - Computational Intelligence for Python # <NAME> # # This file: optm/optm.py # Basic definitions and base class ################################################################################ # Doc string, reStructuredText formatted: __doc__ = """ Basic definitons and base class for optimizers This sub-package exports some auxiliary functions to work with cost functions, namely, a function to calculate gradient vectors and hessian matrices, which are extremely important in optimization. Also, a base class, ``Optimizer``, for all optimizers. Sub-class this class if you want to create your own optmizer, and follow the interface. This will allow easy configuration of your own scripts and comparison between methods. """ ################################################################################ from numpy import array, zeros ################################################################################ # Auxiliary functions ################################################################################ def gradient(f, dx=1e-5): ''' Creates a function that calculates the gradient vector of a scalar field. This function takes as a parameter a scalar function and creates a new function that is able to calculate the derivative (in case of single variable functions) or the gradient vector (in case of multivariable functions. Please, note that this function takes as a parameter a *function*, and returns as a result *another function*. Calling the returned function on a point will give the gradient vector of the original function at that point:: >>> def f(x): return x^2 >>> df = gradient(f) >>> df(1) 2 In the above example, ``df`` is a generated function which will return the result of the expression ``2*x``, the derivative of the original function. In the case ``f`` is a multivariable function, it is assumed that its argument is a line vector. :Parameters: f Any function, one- or multivariable. The function must be an scalar function, though there is no checking at the moment the function is created. If ``f`` is not an scalar function, an exception will be raised at the moment the returned function is used. dx Optional argument that gives the precision of the calculation. It is recommended that ``dx = sqrt(D)``, where ``D`` is the machine precision. It defaults to ``1e-5``, which usually gives a good estimate. :Returns: A new function which, upon calling, gives the derivative or gradient vector of the original function on the analised point. The parameter of the returned function is a real number or a line vector where the gradient should be calculated. ''' def _df(x): try: x = float(x) return (f(x+dx) - f(x-dx)) / (2.*dx) except TypeError: n = x.size df = zeros((n, )) for i in xrange(n): xl = array(x) xl[i] = xl[i] - dx xr = array(x) xr[i] = xr[i] + dx df[i] = (f(xr) - f(xl)) / (2.*dx) return df return _df def hessian(f, dx=1e-5): ''' Creates a function that calculates the hessian matrix of a scalar field. This function takes as a parameter a scalar function and creates a new function that is able to calculate the second derivative (in case of single variable functions) or the hessian matrix (in case of multivariable functions. Please, note that this function takes as a parameter a *function*, and returns as a result *another function*. Calling the returned function on a point will give the hessian matrix of the original function at that point:: >>> def f(x): return x^4 >>> ddf = hessian(f) >>> ddf(1) 12 In the above example, ``ddf`` is a generated function which will return the result of the expression ``12*x**2``, the second derivative of the original function. In the case ``f`` is a multivariable function, it is assumed that its argument is a line vector. :Parameters: f Any function, one- or multivariable. The function must be an scalar function, though there is no checking at the moment the function is created. If ``f`` is not an scalar function, an exception will be raised at the moment the returned function is used. dx Optional argument that gives the precision of the calculation. It is recommended that ``dx = sqrt(D)``, where ``D`` is the machine precision. It defaults to ``1e-5``, which usually gives a good estimate. :Returns: A new function which, upon calling, gives the second derivative or hessian matrix of the original function on the analised point. The parameter of the returned function is a real number or a line vector where the hessian should be calculated. ''' def _hf(x): try: x = float(x) return (f(x+dx) - 2*f(x) + f(x-dx)) / (4.*dx*dx) except TypeError: n = x.size hf = zeros((n, n)) for i in range(n): for j in range(n): xll = array(x) xll[i] = xll[i] - dx xll[j] = xll[j] - dx xul =
array(x)
numpy.array
from . import GeneExpressionDataset from .anndataset import AnnDatasetFromAnnData, DownloadableAnnDataset import torch import pickle import os import numpy as np import pandas as pd import anndata class AnnDatasetKeywords(GeneExpressionDataset): def __init__(self, data, select_genes_keywords=[]): super().__init__() if isinstance(data, str): anndataset = anndata.read(data) else: anndataset = data idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in enumerate(list(anndataset.var.index)) ] for keyword in select_genes_keywords: idx_and_gene_names = [ (idx, gene_name) for idx, gene_name in idx_and_gene_names if keyword.lower() in gene_name.lower() ] gene_indices =
np.array([idx for idx, _ in idx_and_gene_names])
numpy.array
""" Evaluate NPL posterior samples predictive performance/time """ import numpy as np import pickle import matplotlib.pyplot as plt import seaborn as sns import pandas as pd from tqdm import tqdm import scipy as sp import importlib import npl.sk_gaussian_mixture as skgm from npl.evaluate import gmm_ll as gll from sklearn.mixture.gaussian_mixture import _compute_precision_cholesky from joblib import Parallel, delayed def IS_lppd(y,pi,mu,sigma,K,logweights_is): #calculate posterior predictive of test model = skgm.GaussianMixture(K, covariance_type = 'diag') B = np.shape(mu)[0] N_test = np.shape(y)[0] ll_test =
np.zeros(N_test)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Dec 21 14:57:02 2019 @author: Learning Deep Kernels for Two-sample Test @Implementation of Deep-kernel ME (selecting test locations) on CIFAR dataset (Interpretability experiments). BEFORE USING THIS CODE: 1. This code requires PyTorch 1.1.0, which can be found in https://pytorch.org/get-started/previous-versions/ (CUDA version is 10.1). 2. This code also requires freqopttest repo (interpretable nonparametric two-sample test) to implement ME and SCF tests, which can be installed by pip install git+https://github.com/wittawatj/interpretable-test 3. Numpy, Sklearn, Matplotlib are also required. Users can install Python via Anaconda (Python 3.7.3) to obtain both packages. Anaconda can be found in https://www.anaconda.com/distribution/#download-section . """ import argparse import os import numpy as np import torchvision.transforms as transforms from torch.utils.data import DataLoader from torchvision import datasets from torch.autograd import Variable import torch.nn as nn import torch import matplotlib.pyplot as plt from utils_HD import compute_ME_stat, MatConvert, MMDu, TST_ME_DK_per # Setup seeds os.makedirs("images", exist_ok=True) np.random.seed(819) torch.manual_seed(819) torch.cuda.manual_seed(819) torch.backends.cudnn.deterministic = True is_cuda = True # parameters setting parser = argparse.ArgumentParser() parser.add_argument("--n_epochs", type=int, default=1000, help="number of epochs of training") parser.add_argument("--batch_size", type=int, default=100, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate") parser.add_argument("--img_size", type=int, default=64, help="size of each image dimension") parser.add_argument("--channels", type=int, default=3, help="number of image channels") parser.add_argument("--n", type=int, default=1000, help="number of samples") opt = parser.parse_args() print(opt) dtype = torch.float device = torch.device("cuda:0") cuda = True if torch.cuda.is_available() else False N_per = 100 # permutation times alpha = 0.05 # test threshold N1 = opt.n # number of samples in one set K = 10 # number of trails J = 1 # number of test locations N = 100 # number of test sets N_f = 100.0 # number of test sets (float) # Loss function adversarial_loss = torch.nn.CrossEntropyLoss() # Naming variables ep_OPT = np.zeros([K]) s_OPT = np.zeros([K]) s0_OPT = np.zeros([K]) T_org_OPT = torch.zeros([K,J,3,64,64]) # Record test locations obtained by MMD-D Results = np.zeros([1,K]) # Define the deep network for distinguishing two sets of samples class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0)] if bn: block.append(nn.BatchNorm2d(out_filters, 0.8)) return block self.model = nn.Sequential( *discriminator_block(opt.channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = opt.img_size // 2 ** 4 self.adv_layer = nn.Sequential( nn.Linear(128 * ds_size ** 2, 300), nn.ReLU(), nn.Linear(300, 2), nn.Softmax()) def forward(self, img): out = self.model(img) out = out.view(out.shape[0], -1) validity = self.adv_layer(out) return validity # Define the deep network for MMD-D class Featurizer(nn.Module): def __init__(self): super(Featurizer, self).__init__() def discriminator_block(in_filters, out_filters, bn=True): block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0)] #0.25 if bn: block.append(nn.BatchNorm2d(out_filters, 0.8)) return block self.model = nn.Sequential( *discriminator_block(opt.channels, 16, bn=False), *discriminator_block(16, 32), *discriminator_block(32, 64), *discriminator_block(64, 128), ) # The height and width of downsampled image ds_size = opt.img_size // 2 ** 4 self.adv_layer = nn.Sequential( nn.Linear(128 * ds_size ** 2, 300)) def forward(self, img): out = self.model(img) out = out.view(out.shape[0], -1) feature = self.adv_layer(out) return feature # Configure data loader dataset_test = datasets.CIFAR10(root='./data/cifar10', download=True,train=False, transform=transforms.Compose([ transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ])) dataloader_test = torch.utils.data.DataLoader(dataset_test, batch_size=10000, shuffle=False, num_workers=1) dataset_test_org = datasets.CIFAR10(root='./data/cifar10', download=True,train=False, transform=transforms.Compose([transforms.ToTensor()])) dataloader_test_org = torch.utils.data.DataLoader(dataset_test_org, batch_size=10000, shuffle=False, num_workers=1) # Obtain CIFAR10 images for i, (imgs, Labels) in enumerate(dataloader_test): data_all = imgs label_all = Labels for i, (imgs, Labels) in enumerate(dataloader_test_org): data_all_org= imgs label_all_org = Labels print(data_all_org.shape) Ind_all = np.arange(len(data_all)) # Obtain CIFAR10.1 images data_new = np.load('./cifar10.1_v4_data.npy') data_T = np.transpose(data_new, [0,3,1,2]) TT = transforms.Compose([transforms.Resize(opt.img_size),transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) TT_org = transforms.Compose([transforms.ToTensor()]) trans = transforms.ToPILImage() data_trans = torch.zeros([len(data_T),3,opt.img_size,opt.img_size]) data_trans_org = torch.zeros([len(data_T),3,32,32]) data_T_tensor = torch.from_numpy(data_T) for i in range(len(data_T)): d0 = trans(data_T_tensor[i]) data_trans[i] = TT(d0) for i in range(len(data_T)): d0 = trans(data_T_tensor[i]) data_trans_org[i] = TT_org(d0) print(data_trans_org.shape) Ind_v4_all = np.arange(len(data_T)) # Repeat experiments K times (K = 10) and report average test power (rejection rate) for kk in range(K): print(kk) torch.manual_seed(kk * 19 + N1) torch.cuda.manual_seed(kk * 19 + N1) np.random.seed(seed=1102 * (kk + 10) + N1) # Initialize deep networks for MMD-D featurizer = Featurizer() discriminator = Discriminator() # Initialize parameters epsilonOPT = torch.log(MatConvert(np.random.rand(1) * 10 ** (-10), device, dtype)) epsilonOPT.requires_grad = True sigmaOPT = MatConvert(np.ones(1) * np.sqrt(2 * 32 * 32), device, dtype) sigmaOPT.requires_grad = True sigma0OPT = MatConvert(np.ones(1) * np.sqrt(0.005), device, dtype) sigma0OPT.requires_grad = True TT_org = MatConvert(np.random.randn(J,3,64,64), device, dtype) TT_org.requires_grad = True print(epsilonOPT.item()) if cuda: featurizer.cuda() discriminator.cuda() adversarial_loss.cuda() # Collect CIFAR10 images Ind_tr = np.random.choice(len(data_all), N1, replace=False) Ind_te = np.delete(Ind_all, Ind_tr) train_data = [] for i in Ind_tr: train_data.append([data_all[i], label_all[i]]) print(len(train_data)) dataloader = torch.utils.data.DataLoader( train_data, batch_size=opt.batch_size, shuffle=False, ) # Collect CIFAR10.1 images np.random.seed(seed=819 * (kk + 9) + N1) Ind_tr_v4 = np.random.choice(len(data_T), N1, replace=False) Ind_te_v4 = np.delete(Ind_v4_all, Ind_tr_v4) Fake_MNIST_tr = data_trans[Ind_tr_v4] Fake_MNIST_te = data_trans[Ind_te_v4] # Optimizers optimizer_F = torch.optim.Adam(list(featurizer.parameters()) + [epsilonOPT] + [sigmaOPT] + [sigma0OPT], lr=opt.lr) # optimizer for training deep kernel optimizer_T = torch.optim.Adam([sigmaOPT] + [sigma0OPT] + [TT_org], lr=opt.lr) # optimizer for training test location optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr) # optimizer for training deep networks to distinguish two sets of samples Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # --------------------- # Training deep kernel # --------------------- np.random.seed(seed=1102) torch.manual_seed(1102) torch.cuda.manual_seed(1102) for epoch in range(opt.n_epochs): for i, (imgs, _) in enumerate(dataloader): if True: ind = np.random.choice(N1, imgs.shape[0], replace=False) Fake_imgs = Fake_MNIST_tr[ind] # Adversarial ground truths valid = Variable(Tensor(imgs.shape[0], 1).fill_(1.0), requires_grad=False) fake = Variable(Tensor(imgs.shape[0], 1).fill_(0.0), requires_grad=False) # Configure input real_imgs = Variable(imgs.type(Tensor)) Fake_imgs = Variable(Fake_imgs.type(Tensor)) X = torch.cat([real_imgs, Fake_imgs], 0) Y = torch.cat([valid, fake], 0).squeeze().long() # ------------------------------ # Train deep network for MMD-D # ------------------------------ # Initialize optimizer optimizer_F.zero_grad() # Compute output of deep network modelu_output = featurizer(X) # Compute epsilon, sigma and sigma_0 ep = torch.exp(epsilonOPT) / (1 + torch.exp(epsilonOPT)) sigma = sigmaOPT ** 2 sigma0_u = sigma0OPT ** 2 # Compute Compute J (STAT_u) TEMP = MMDu(modelu_output, imgs.shape[0], X.view(X.shape[0], -1), sigma, sigma0_u, ep) mmd_value_temp = -1 * (TEMP[0]) mmd_std_temp = torch.sqrt(TEMP[1] + 10 ** (-8)) STAT_u_F = torch.div(mmd_value_temp, mmd_std_temp) # Compute gradient STAT_u_F.backward() # Update weights using gradient descent optimizer_F.step() # ------------------------------------------------------ # Train deep network to distinguish two sets of samples # ------------------------------------------------------ # Initialize optimizer optimizer_D.zero_grad() # Compute Cross-Entropy (loss_C) loss between two samples loss_C = adversarial_loss(discriminator(X), Y) # Compute gradient loss_C.backward() # Update weights using gradient descent optimizer_D.step() if (epoch + 1) % 100 == 0: print( "[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [Stat: %f]" % (epoch, opt.n_epochs, i, len(dataloader), loss_C.item(), -STAT_u_F.item()) ) batches_done = epoch * len(dataloader) + i else: break # ------------------------------- # SELECT the best test location # ------------------------------- # Fetch training data s1 = data_all[Ind_tr] s2 = data_trans[Ind_tr_v4] S = torch.cat([s1.cpu(), s2.cpu()], 0).cuda() print(S.shape) Sv = S.view(2 * N1, -1) # Select the best test location max_stat = 0 for ti in range(2*N1): stat__me = compute_ME_stat(featurizer(S[:N1, :]), featurizer(S[N1:, :]), featurizer(S[ti, :].unsqueeze(0)), S[:N1, :].view(N1, -1), S[N1:, :].view(N1, -1), S[ti, :].view(J, -1), sigma, sigma0_u, ep) if stat__me > max_stat: max_stat = stat__me T_org = S[ti, :].unsqueeze(0) if ti < N1: test_locs = data_all_org[Ind_tr[ti]] else: test_locs = data_trans_org[Ind_tr_v4[ti-N1]] print("Maximum statistics", max_stat) # Run two-sample test based on deep-kernel ME h_u, threshold_u, mmd_value_u = TST_ME_DK_per(featurizer(S[:N1, :]), featurizer(S[N1:, :]), featurizer(T_org), S[:N1, :].view(N1, -1), S[N1:, :].view(N1, -1), T_org.view(J, -1), alpha, sigma, sigma0_u, ep) print("h:", h_u, "Threshold:", threshold_u, "MMD_value:", mmd_value_u, "stats:", stat__me) # Record the best epsilon, sigma, sigma_0 and test location ep_OPT[kk] = ep.item() s_OPT[kk] = sigma.item() s0_OPT[kk] = sigma0_u.item() T_org_OPT[kk] = T_org # Compute test power of MMD-D H_u = np.zeros(N) T_u = np.zeros(N) M_u =
np.zeros(N)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Wed Oct 22 11:35:00 2014 @author: <NAME> """ import os import inspect import warnings import sympy as sp from sympy import sin, cos, exp import numpy as np import scipy as sc import scipy.integrate import symbtools as st from symbtools import lzip try: import control except ImportError: control = None from symbtools.test import unittesthelper as uth import unittest from symbtools.test import test_core1 from symbtools.test import test_time_deriv from symbtools.test import test_pickle_tools uth.inject_tests_into_namespace(globals(), test_time_deriv) uth.inject_tests_into_namespace(globals(), test_core1) def make_abspath(*args): """ returns new absolute path, basing on the path of this module """ current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) return os.path.join(current_dir, *args) # Avoid warnings of undefined symbols from the IDE, # but still make use of st.make_global x1 = x2 = x3 = x4 = None y1 = y2 = y3 = None a1 = z4 = z7 = z10 = None # noinspection PyShadowingNames,PyPep8Naming,PySetFunctionToLiteral class InteractiveConvenienceTest(unittest.TestCase): def setUp(self): pass def test_no_IPS_call(self): """ test whether there is some call to interactive IPython (legacy from debugging) """ srclines = inspect.getsourcelines(st)[0] def filter_func(tup): idx, line = tup return 'IPS()' in line and not line.strip()[0] == '#' res = list(filter(filter_func, enumerate(srclines, 1))) self.assertEqual(res, []) def test_symbol_atoms(self): a, b, t = sp.symbols("a, b, t") x1 = a + b x2 = a + b - 3 + sp.pi M1 = sp.Matrix([x2, t, a**2]) M2 = sp.ImmutableDenseMatrix(M1) self.assertEqual(set([a]), a.s) self.assertEqual(x1.atoms(), x1.s) self.assertEqual(x2.atoms(sp.Symbol), x2.s) self.assertEqual(set([a, b, t]), M1.s) self.assertEqual(set([a, b, t]), M2.s) def test_count_ops(self): a, b, t = sp.symbols("a, b, t") x1 = a + b x2 = a + b - 3 + sp.pi M1 = sp.Matrix([x2, t, a**2]) M2 = sp.ImmutableDenseMatrix(M1) self.assertEqual(st.count_ops(a), a.co) self.assertEqual(st.count_ops(x1), x1.co) self.assertEqual(st.count_ops(x2), x2.co) self.assertEqual(st.count_ops(M1), M1.co) self.assertEqual(st.count_ops(M2), M2.co) def test_count_ops2(self): a, b, t = sp.symbols("a, b, t") x1 = a + b x2 = a + b - 3 + sp.pi M1 = sp.Matrix([x2, t, a**2, 0, 1]) M2 = sp.ImmutableDenseMatrix(M1) self.assertEqual(st.count_ops(0), 0) self.assertEqual(st.count_ops(a), 1) self.assertEqual(st.count_ops(1.3), 1) self.assertEqual(st.count_ops(x1), 2) self.assertEqual(st.count_ops(x2), 4) self.assertEqual(st.count_ops(M1), sp.Matrix([4, 1, 2, 0, 1])) self.assertEqual(st.count_ops(M2), sp.Matrix([4, 1, 2, 0, 1])) def test_srn(self): x, y, z = xyz = st.symb_vector('x, y, z') st.random.seed(3319) self.assertAlmostEqual(x.srn01, 0.843044195656457) st.random.seed(3319) x_srn = x.srn self.assertNotAlmostEqual(x_srn, 8.59) self.assertAlmostEqual(x_srn, 8.58739776090811) # now apply round st.random.seed(3319) self.assertAlmostEqual(x.srnr, 8.59) # test compatibility with sp.Matrix # the order might depend on the platform (due to dict ordering) expected_res = [5.667115517927374668261109036393463611602783203125, 7.76957198624519962404377793063758872449398040771484375, 8.58739776090810946751474830307415686547756195068359375] st.random.seed(3319) xyz_srn = list(xyz.srn) xyz_srn.sort() for a, b in zip(xyz_srn, expected_res): self.assertAlmostEqual(a, b) # should live in a separate test !! st.random.seed(3319) # ensure that application to matrix does raise exception _ = xyz.srnr test_matrix = sp.Matrix(expected_res) rounded_res = sp.Matrix([[5.667], [ 7.77], [8.587]]) self.assertNotEqual(test_matrix, rounded_res) self.assertEqual(test_matrix.ar, rounded_res) def test_subz(self): x1, x2, x3 = xx = sp.Matrix(sp.symbols("x1, x2, x3")) y1, y2, y3 = yy = sp.symbols("y1, y2, y3") a = x1 + 7*x2*x3 M1 = sp.Matrix([x2, x1*x2, x3**2]) M2 = sp.ImmutableDenseMatrix(M1) self.assertEqual(x1.subs(lzip(xx, yy)), x1.subz(xx, yy)) self.assertEqual(a.subs(lzip(xx, yy)), a.subz(xx, yy)) self.assertEqual(M1.subs(lzip(xx, yy)), M1.subz(xx, yy)) self.assertEqual(M2.subs(lzip(xx, yy)), M2.subz(xx, yy)) def test_smplf(self): x1, x2, x3 = xx = sp.Matrix(sp.symbols("x1, x2, x3")) y1, y2, y3 = yy = sp.symbols("y1, y2, y3") a = x1**2*(x2/x1 + 7) - x1*x2 M1 = sp.Matrix([sin(x1)**2 + cos(x1)**2, a, x3]) self.assertEqual(M1.smplf, sp.simplify(M1)) self.assertEqual(a.smplf, sp.simplify(a)) def test_subz0(self): x1, x2, x3 = xx = st.symb_vector("x1, x2, x3") y1, y2, y3 = yy = st.symb_vector("y1, y2, y3") XX = (x1, x2) a = x1 + 7*x2*x3 M1 = sp.Matrix([x2, x1*x2, x3**2]) M2 = sp.ImmutableDenseMatrix(M1) self.assertEqual(x1.subs(st.zip0(XX)), x1.subz0(XX)) self.assertEqual(a.subs(st.zip0(XX)), a.subz0(XX)) self.assertEqual(M1.subs(st.zip0(XX)), M1.subz0(XX)) self.assertEqual(M2.subs(st.zip0(XX)), M2.subz0(XX)) konst = sp.Matrix([1,2,3]) zz = konst + xx + 5*yy self.assertEqual(zz.subz0(xx, yy), konst) # noinspection PyShadowingNames,PyPep8Naming,PySetFunctionToLiteral class LieToolsTest(unittest.TestCase): def setUp(self): pass def test_involutivity_test(self): x1, x2, x3 = xx = st.symb_vector('x1:4') st.make_global(xx) # not involutive f1 = sp.Matrix([x2*x3 + x1**2, 3*x1, 4 + x2*x3]) f2 = sp.Matrix([x3 - 2*x1*x3, x2 - 5, 3 + x1*x2]) dist1 = st.col_stack(f1, f2) # involutive f3 = sp.Matrix([-x2, x1, 0]) f4 = sp.Matrix([0, -x3, x2]) dist2 = st.col_stack(f3, f4) res, fail = st.involutivity_test(dist1, xx) self.assertFalse(res) self.assertEqual(fail, (0, 1)) res2, fail2 = st.involutivity_test(dist2, xx) self.assertTrue(res2) self.assertEqual(fail2, []) def test_lie_deriv_cartan(self): x1, x2, x3 = xx = sp.symbols('x1:4') u1, u2 = uu = sp.Matrix(sp.symbols('u1:3')) # ordinary lie_derivative # source: inspired by the script of Prof. Kugi (TU-Wien) f = sp.Matrix([-x1**3, cos(x1)*cos(x2), x2]) g = sp.Matrix([cos(x2), 1, exp(x1)]) h = x3 Lfh = x2 Lf2h = f[1] Lgh = exp(x1) res1 = st.lie_deriv_cartan(h, f, xx) res2 = st.lie_deriv_cartan(h, f, xx, order=2) self.assertEqual(res1, Lfh) self.assertEqual(res2, Lf2h) # incorporating the input h2 = u1 udot1, udot2 = uudot = st.time_deriv(uu, uu, order=1) uddot1, uddot2 = st.time_deriv(uu, uu, order=2) res_a1 = st.lie_deriv_cartan(h2, f, xx, uu, order=1) res_a2 = st.lie_deriv_cartan(h2, f, xx, uu, order=2) self.assertEqual(res_a1, udot1) self.assertEqual(res_a2, uddot1) res_a3 = st.lie_deriv_cartan(udot1, f, xx, [uu, uudot], order=1) self.assertEqual(res_a3, uddot1) # more complex examples h3 = x3 + u1 fg = f + g * u2 res_b1 = st.lie_deriv_cartan(h3, fg, xx, uu, order=1) res_b2 = st.lie_deriv_cartan(h3, fg, xx, uu, order=2) res_b3 = st.lie_deriv_cartan(res_b1, fg, xx, [uu, uudot], order=1) self.assertEqual(res_b1, Lfh + Lgh*u2 + udot1) self.assertEqual(sp.expand(res_b2 - res_b3), 0) h4 = x3 * sin(x2) fg = f + g * u2 res_c1 = st.lie_deriv_cartan(h4, fg, xx, uu, order=1) res_c2 = st.lie_deriv_cartan(res_c1, fg, xx, uu, order=1) res_c3 = st.lie_deriv_cartan(h4, fg, xx, uu, order=2) self.assertEqual(sp.expand(res_c2 - res_c3), 0) def test_lie_deriv(self): xx = st.symb_vector('x1:4') st.make_global(xx) f = sp.Matrix([x1 + x3*x2, 7*exp(x1), cos(x2)]) h1 = x1**2 + sin(x3)*x2 res1 = st.lie_deriv(h1, f, xx) eres1 = 2*x1**2 + 2*x1*x2*x3 + 7*exp(x1)*sin(x3) + x2*cos(x2)*cos(x3) self.assertEqual(res1.expand(), eres1) res2a = st.lie_deriv(h1, f, xx, order=2).expand() res2b = st.lie_deriv(h1, f, xx, 2).expand() eres2 = st.lie_deriv(eres1, f, xx).expand() self.assertEqual(res2a, eres2) self.assertEqual(res2b, eres2) res2c = st.lie_deriv(h1, f, f, xx).expand() res2d = st.lie_deriv(h1, f, f, xx=xx).expand() self.assertEqual(res2c, eres2) self.assertEqual(res2d, eres2) F = f[:-1, :] with self.assertRaises(ValueError) as cm: # different lengths of vectorfields: res1 = st.lie_deriv(h1, F, f, xx) # noinspection PyTypeChecker def test_lie_bracket(self): xx = st.symb_vector('x1:4') st.make_global(xx) fx = sp.Matrix([[(x2 - 1)**2 + 1/x3], [x1 + 7], [-x3**2*(x2 - 1)]]) v = sp.Matrix([[0], [0], [-x3**2]]) dist = st.col_stack(v, st.lie_bracket(-fx, v, xx), st.lie_bracket(-fx, v, xx, order=2)) v0, v1, v2 = st.col_split(dist) self.assertEqual(v1, sp.Matrix([1, 0, 0])) self.assertEqual(v2, sp.Matrix([0, 1, 0])) self.assertEqual(st.lie_bracket(fx, fx, xx), sp.Matrix([0, 0, 0])) def test_lie_deriv_covf(self): xx = st.symb_vector('x1:4') st.make_global(xx) # we test this by building the observability matrix with two different but equivalent approaches f = sp.Matrix([x1 + x3*x2, 7*exp(x1), cos(x2)]) y = x1**2 + sin(x3)*x2 ydot = st.lie_deriv(y, f, xx) yddot = st.lie_deriv(ydot, f, xx) cvf1 = st.gradient(y, xx) cvf2 = st.gradient(ydot, xx) cvf3 = st.gradient(yddot, xx) # these are the rows of the observability matrix # second approach dh0 = cvf1 dh1 = st.lie_deriv_covf(dh0, f, xx) dh2a = st.lie_deriv_covf(dh1, f, xx) dh2b = st.lie_deriv_covf(dh0, f, xx, order=2) zero = dh0*0 self.assertEqual((dh1 - cvf2).expand(), zero) self.assertEqual((dh2a - cvf3).expand(), zero) self.assertEqual((dh2b - cvf3).expand(), zero) # noinspection PyShadowingNames,PyPep8Naming,PySetFunctionToLiteral class TestSupportFunctions(unittest.TestCase): """ Test functionality which is used indirectly by other functions """ def setUp(self): pass def test_recursive_function_decorator(self): @st.recursive_function def myfactorial(thisfunc, x): if x == 0: return 1 else: return x*thisfunc(x-1) nn = [0, 1, 3, 5, 10] res1 = [sp.factorial(x) for x in nn] res2 = [myfactorial(x) for x in nn] self.assertEqual(res1, res2) def test_get_custom_attr_map(self): t = st.t x1, x2 = xx = st.symb_vector("x1, x2") xdot1, xdot2 = xxd = st.time_deriv(xx, xx) xddot1, xddot2 = xxdd = st.time_deriv(xx, xx, order=2) m1 = st.get_custom_attr_map("ddt_child") em1 = [(x1, xdot1), (x2, xdot2), (xdot1, xddot1), (xdot2, xddot2)] # convert to set because sorting might depend on plattform self.assertEqual(set(m1), set(em1)) m2 = st.get_custom_attr_map("ddt_parent") em2 = [(xdot1, x1), (xdot2, x2), (xddot1, xdot1), (xddot2, xdot2)] self.assertEqual(set(m2), set(em2)) m3 = st.get_custom_attr_map("ddt_func") # ensure unique sorting m3.sort(key=lambda x: "{}_{}".format(x[0].difforder, str(x[0]))) self.assertEqual(len(m3), 6) x2_func = sp.Function(x2.name)(t) self.assertEqual(type(type(m3[0][1])), sp.function.UndefinedFunction) self.assertEqual(m3[-1][1], x2_func.diff(t, t)) # noinspection PyShadowingNames,PyPep8Naming,PySetFunctionToLiteral class SymbToolsTest2(unittest.TestCase): def setUp(self): pass def test_solve_scalar_ode_1sto(self): a, b = sp.symbols("a, b", nonzero=True) t, x1, x2 = sp.symbols("t, x1, x2") # x1_dot = <rhs> rhs1 = sp.S(0) rhs2 = sp.S(2.5) rhs3 = x1 rhs5 = x1*(3-t) rhs6 = cos(b*t) # coeff must be nonzero to prevent case distinction res1 = st.solve_scalar_ode_1sto(rhs1, x1, t) self.assertEqual(res1.diff(t), rhs1.subs(x1, res1)) res2 = st.solve_scalar_ode_1sto(rhs2, x1, t) self.assertEqual(res2.diff(t), rhs2.subs(x1, res2)) res3, iv3 = st.solve_scalar_ode_1sto(rhs3, x1, t, return_iv=True) self.assertEqual(res3.diff(t), rhs3.subs(x1, res3)) self.assertEqual(res3, iv3*exp(t)) res5 = st.solve_scalar_ode_1sto(rhs5, x1, t) test_difference5 = res5.diff(t) - rhs5.subs(x1, res5) self.assertEqual(test_difference5.expand(), 0) res6 = st.solve_scalar_ode_1sto(rhs6, x1, t) self.assertEqual(res6.diff(t), rhs6.subs(x1, res6).expand()) @uth.skip_slow def test_solve_scalar_ode_1sto_2(self): a, b = sp.symbols("a, b", nonzero=True) t, x1, x2 = sp.symbols("t, x1, x2") rhs4 = sin(a*x1) # this test works but is slow with st.warnings.catch_warnings(record=True) as cm: res4 = st.solve_scalar_ode_1sto(rhs4, x1, t) self.assertEqual(len(cm), 1) self.assertTrue('multiple solutions' in str(cm[0].message)) test_difference4 = res4.diff(t) - rhs4.subs(x1, res4) self.assertEqual(test_difference4.simplify(), 0) def test_calc_flow_from_vectorfield(self): a, b = sp.symbols("a, b", nonzero=True) t, x1, x2, x3, x4 = sp.symbols("t, x1, x2, x3, x4") xx = x1, x2, x3, x4 vf1 = sp.Matrix([0, 1, x3]) vf2 = sp.Matrix([0, 1, x3, sin(a*x2)]) res1, fp, iv1 = st.calc_flow_from_vectorfield(vf1, xx[:-1], flow_parameter=t) vf1_sol = vf1.subs(lzip(xx[:-1], res1)) self.assertEqual(fp, t) self.assertEqual(res1.diff(t), vf1_sol) res2, fp, iv2 = st.calc_flow_from_vectorfield(vf2, xx, flow_parameter=t) vf2_sol = vf2.subs(lzip(xx[:-1], res2)) self.assertEqual(fp, t) self.assertEqual(res2.diff(t), vf2_sol) res3, fp, iv3 = st.calc_flow_from_vectorfield(sp.Matrix([x1, 1, x1]), xx[:-1]) t = fp x1_0, x2_0, x3_0 = iv3 ref3 = sp.Matrix([[x1_0*sp.exp(t)], [t + x2_0], [x1_0*sp.exp(t) - x1_0 + x3_0]]) self.assertEqual(res3, ref3) def test_create_simfunction(self): x1, x2, x3, x4 = xx = sp.Matrix(sp.symbols("x1, x2, x3, x4")) u1, u2 = uu = sp.Matrix(sp.symbols("u1, u2")) # inputs p1, p2, p3, p4 = pp = sp.Matrix(sp.symbols("p1, p2, p3, p4")) # parameter t = sp.Symbol('t') A = A0 = sp.randMatrix(len(xx), len(xx), -10, 10, seed=704) B = B0 = sp.randMatrix(len(xx), len(uu), -10, 10, seed=705) v1 = A[0, 0] A[0, 0] = p1 v2 = A[2, -1] A[2, -1] = p2 v3 = B[3, 0] B[3, 0] = p3 v4 = B[2, 1] B[2, 1] = p4 par_vals = lzip(pp, [v1, v2, v3, v4]) f = A*xx G = B fxu = (f + G*uu).subs(par_vals) # some random initial values x0 = st.to_np( sp.randMatrix(len(xx), 1, -10, 10, seed=706) ).squeeze() # Test handling of unsubstituted parameters mod = st.SimulationModel(f, G, xx, model_parameters=par_vals[1:]) with self.assertRaises(ValueError) as cm: rhs0 = mod.create_simfunction() self.assertTrue("unexpected symbols" in cm.exception.args[0]) # create the model and the rhs-function mod = st.SimulationModel(f, G, xx, par_vals) rhs0 = mod.create_simfunction() self.assertFalse(mod.compiler_called) self.assertFalse(mod.use_sp2c) res0_1 = rhs0(x0, 0) dres0_1 = st.to_np(fxu.subs(lzip(xx, x0) + st.zip0(uu))).squeeze() bin_res01 = np.isclose(res0_1, dres0_1) # binary array self.assertTrue( np.all(bin_res01) ) # difference should be [0, 0, ..., 0] self.assertFalse( np.any(rhs0(x0, 0) - rhs0(x0, 3.7) ) ) # simulate tt = np.linspace(0, 0.5, 100) # simulation should be short due to instability res1 = sc.integrate.odeint(rhs0, x0, tt) # create and try sympy_to_c bridge (currently only works on linux # and if sympy_to_c is installed (e.g. with `pip install sympy_to_c`)) # until it is not available for windows we do not want it as a requirement # see also https://stackoverflow.com/a/10572833/333403 try: import sympy_to_c except ImportError: # noinspection PyUnusedLocal sympy_to_c = None sp2c_available = False else: sp2c_available = True if sp2c_available: rhs0_c = mod.create_simfunction(use_sp2c=True) self.assertTrue(mod.compiler_called) res1_c = sc.integrate.odeint(rhs0_c, x0, tt) self.assertTrue(np.all(np.isclose(res1_c, res1))) mod.compiler_called = None rhs0_c = mod.create_simfunction(use_sp2c=True) self.assertTrue(mod.compiler_called is None) # proof calculation # x(t) = x0*exp(A*t) Anum = st.to_np(A.subs(par_vals)) Bnum = st.to_np(G.subs(par_vals)) # noinspection PyUnresolvedReferences xt = [ np.dot( sc.linalg.expm(Anum*T), x0 ) for T in tt ] xt = np.array(xt) # test whether numeric results are close within given tolerance bin_res1 = np.isclose(res1, xt, rtol=2e-5) # binary array self.assertTrue( np.all(bin_res1) ) # test handling of parameter free models: mod2 = st.SimulationModel(Anum*xx, Bnum, xx) rhs2 = mod2.create_simfunction() res2 = sc.integrate.odeint(rhs2, x0, tt) self.assertTrue(np.allclose(res1, res2)) # test input functions des_input = st.piece_wise((0, t <= 1 ), (t, t < 2), (0.5, t < 3), (1, True)) des_input_func_scalar = st.expr_to_func(t, des_input) des_input_func_vec = st.expr_to_func(t, sp.Matrix([des_input, des_input]) ) # noinspection PyUnusedLocal with self.assertRaises(TypeError) as cm: mod2.create_simfunction(input_function=des_input_func_scalar) rhs3 = mod2.create_simfunction(input_function=des_input_func_vec) # noinspection PyUnusedLocal res3_0 = rhs3(x0, 0) rhs4 = mod2.create_simfunction(input_function=des_input_func_vec, time_direction=-1) res4_0 = rhs4(x0, 0) self.assertTrue(np.allclose(res3_0, np.array([119., -18., -36., -51.]))) self.assertTrue(np.allclose(res4_0, - res3_0)) def test_create_simfunction2(self): x1, x2, x3, x4 = xx = sp.Matrix(sp.symbols("x1, x2, x3, x4")) u1, u2 = uu = sp.Matrix(sp.symbols("u1, u2")) # inputs p1, p2, p3, p4 = pp = sp.Matrix(sp.symbols("p1, p2, p3, p4")) # parameter t = sp.Symbol('t') A = A0 = sp.randMatrix(len(xx), len(xx), -10, 10, seed=704) B = B0 = sp.randMatrix(len(xx), len(uu), -10, 10, seed=705) v1 = A[0, 0] A[0, 0] = p1 v2 = A[2, -1] A[2, -1] = p2 v3 = B[3, 0] B[3, 0] = p3 v4 = B[2, 1] B[2, 1] = p4 par_vals = lzip(pp, [v1, v2, v3, v4]) f = A*xx G = B fxu = (f + G*uu).subs(par_vals) # some random initial values x0 = st.to_np( sp.randMatrix(len(xx), 1, -10, 10, seed=706) ).squeeze() u0 = st.to_np( sp.randMatrix(len(uu), 1, -10, 10, seed=2257) ).squeeze() # create the model and the rhs-function mod = st.SimulationModel(f, G, xx, par_vals) rhs_xx_uu = mod.create_simfunction(free_input_args=True) res0_1 = rhs_xx_uu(x0, u0, 0) dres0_1 = st.to_np(fxu.subs(lzip(xx, x0) + lzip(uu, u0))).squeeze() bin_res01 = np.isclose(res0_1, dres0_1) # binary array self.assertTrue( np.all(bin_res01) ) def test_num_trajectory_compatibility_test(self): x1, x2, x3, x4 = xx = sp.Matrix(sp.symbols("x1, x2, x3, x4")) u1, u2 = uu = sp.Matrix(sp.symbols("u1, u2")) # inputs t = sp.Symbol('t') # we want to create a random but stable matrix np.random.seed(2805) diag = np.diag( np.random.random(len(xx))*-10 ) T = sp.randMatrix(len(xx), len(xx), -10, 10, seed=704) Tinv = T.inv() A = Tinv*diag*T B = B0 = sp.randMatrix(len(xx), len(uu), -10, 10, seed=705) x0 = st.to_np( sp.randMatrix(len(xx), 1, -10, 10, seed=706) ).squeeze() tt = np.linspace(0, 5, 2000) des_input = st.piece_wise((2-t, t <= 1 ), (t, t < 2), (2*t-2, t < 3), (4, True)) des_input_func_vec = st.expr_to_func(t, sp.Matrix([des_input, des_input]) ) mod2 = st.SimulationModel(A*xx, B, xx) rhs3 = mod2.create_simfunction(input_function=des_input_func_vec) XX = sc.integrate.odeint(rhs3, x0, tt) UU = des_input_func_vec(tt) res1 = mod2.num_trajectory_compatibility_test(tt, XX, UU) self.assertTrue(res1) # slightly different input signal -> other results res2 = mod2.num_trajectory_compatibility_test(tt, XX, UU*1.1) self.assertFalse(res2) def test_expr_to_func(self): x1, x2 = xx = sp.Matrix(sp.symbols("x1, x2")) t, = sp.symbols("t,") r_ = np.r_ f1 = st.expr_to_func(x1, 2*x1) self.assertEqual(f1(5.1), 10.2) XX1 = np.r_[1, 2, 3.7] res1 = f1(XX1) == 2*XX1 self.assertTrue(res1.all) f2 = st.expr_to_func(x1, sp.Matrix([x1*2, x1+5, 4])) res2 = f2(3) == r_[6, 8, 4] self.assertTrue(res2.all()) res2b = f2(r_[3, 10, 0]) == np.array([[6, 8, 4], [20, 15, 4], [0, 5, 4]]) self.assertTrue(res2b.all()) f3 = st.expr_to_func(xx, sp.Matrix([x1*2, x2+5, 4])) res3 = np.allclose(f3(-3.1, 4), r_[-6.2, 9, 4]) self.assertTrue(res3) # test compatibility with Piecewise Expressions des_input = st.piece_wise((0, t <= 1 ), (t, t < 2), (0.5, t < 3), (1, True)) f4s = st.expr_to_func(t, des_input) f4v = st.expr_to_func(t, sp.Matrix([des_input, des_input]) ) self.assertEqual(f4s(2.7), 0.5) sol = r_[0, 1.6, 0.5, 1, 1] res4a = f4s(r_[0.3, 1.6, 2.2, 3.1, 500]) == sol self.assertTrue(res4a.all()) res4b = f4v(r_[0.3, 1.6, 2.2, 3.1, 500]) col1, col2 = res4b.T self.assertTrue(np.array_equal(col1, sol)) self.assertTrue(np.array_equal(col2, sol)) spmatrix = sp.Matrix([[x1, x1*x2], [0, x2**2]]) fnc1 = st.expr_to_func(xx, spmatrix, keep_shape=False) fnc2 = st.expr_to_func(xx, spmatrix, keep_shape=True) res1 = fnc1(1.0, 2.0) res2 = fnc2(1.0, 2.0) self.assertEqual(res1.shape, (4, )) self.assertEqual(res2.shape, (2, 2)) # noinspection PyTypeChecker self.assertTrue(np.all(res1 == [1, 2, 0, 4])) # noinspection PyTypeChecker self.assertTrue(np.all(res1 == res2.flatten())) fnc = st.expr_to_func(xx, x1 + x2) self.assertEqual(fnc(1, 3), 4) xx_res = np.array([1, 3, 1.1, 3, 1.2, 3.0]).reshape(3, -1) self.assertTrue(np.allclose(fnc(*xx_res.T), np.array([4, 4.1, 4.2]))) fnc1 = st.expr_to_func(xx, 3*xx) fnc2 = st.expr_to_func(xx, 3*xx, allow_kwargs=True) self.assertTrue(np.allclose(fnc1(10, 100), fnc2(x2=100, x1=10))) def test_reformulate_Integral(self): t = sp.Symbol('t') c = sp.Symbol('c') F = sp.Function('F') x = sp.Function('x')(t) a = sp.Function('a') i1 = sp.Integral(F(t), t) j1 = st.reformulate_integral_args(i1) self.assertEqual(j1.subs(t, 0).doit(), 0) ode = x.diff(t) + x -a(t)*x**c sol = sp.dsolve(ode, x).rhs # the solution contains an undetemined integral self.assertTrue( len(sol.atoms(sp.Integral)) == 1) # extract the integration constant (not necessary for test) # C1 = list(sol.atoms(sp.Symbol)-ode.atoms(sp.Symbol))[0] sol2 = st.reformulate_integral_args(sol) self.assertTrue( len(sol2.atoms(sp.Integral)) == 1) sol2_at_0 = sol2.subs(t, 0).doit() self.assertTrue( len(sol2_at_0.atoms(sp.Integral)) == 0) # noinspection PyShadowingNames,PyPep8Naming,PySetFunctionToLiteral class SymbToolsTest3(unittest.TestCase): def setUp(self): st.init_attribute_store(reinit=True) def test_get_symbols_by_name(self): c1, C1, x, a, t, Y = sp.symbols('c1, C1, x, a, t, Y') F = sp.Function('F') expr1 = c1*(C1+x**x)/(sp.sin(a*t)) expr2 = sp.Matrix([sp.Integral(F(x), x)*sp.sin(a*t) - \ 1/F(x).diff(x)*C1*Y]) res1 = st.get_symbols_by_name(expr1, 'c1') self.assertEqual(res1, c1) res2 = st.get_symbols_by_name(expr1, 'C1') self.assertEqual(res2, C1) res3 = st.get_symbols_by_name(expr1, *'c1 x a'.split()) self.assertEqual(res3, [c1, x, a]) with self.assertRaises(ValueError) as cm: st.get_symbols_by_name(expr1, 'Y') with self.assertRaises(ValueError) as cm: st.get_symbols_by_name(expr1, 'c1', 'Y') res4 = st.get_symbols_by_name(expr2, 'Y') self.assertEqual(res4, Y) res5 = st.get_symbols_by_name(expr2, 'C1') self.assertEqual(res5, C1) res6 = st.get_symbols_by_name(expr2, *'C1 x a'.split()) self.assertEqual(res6, [C1, x, a]) def test_general_attribute(self): st.register_new_attribute_for_sp_symbol("foo", save_setter=False) st.register_new_attribute_for_sp_symbol("bar", getter_default="__self__") x1 = sp.Symbol('x1') self.assertEqual(x1.foo, None) self.assertEqual(x1.bar, x1) x1.foo = 7 self.assertEqual(x1.foo, 7) x1.foo = "some string" self.assertEqual(x1.foo, "some string") x1.foo = x1 self.assertEqual(x1.foo, x1) x1.bar = 12 # noinspection PyUnusedLocal with self.assertRaises(ValueError) as cm: x1.bar = 13 def test_difforder_attribute(self): x1 = sp.Symbol('x1') self.assertEqual(x1.difforder, 0) xddddot1 = st.time_deriv(x1, [x1], order=4) self.assertEqual(xddddot1.difforder, 4) xx = sp.Matrix(sp.symbols("x1, x2, x3")) xxd = st.time_deriv(xx, xx) xxdd = st.time_deriv(xx, xx, order=2) for xdd in xxdd: self.assertEqual(xdd.difforder, 2) # once, this was a bug y = sp.Symbol('y') ydot = st.time_deriv(y, [y]) yddot = st.time_deriv(ydot, [y, ydot]) self.assertEqual(yddot.difforder, 2) z = sp.Symbol('z') zdot_false = sp.Symbol('zdot') st.global_data.attribute_store[(zdot_false, 'difforder')] = -7 with self.assertRaises(ValueError) as cm: st.time_deriv( z, [z]) # ensure that difforder is not changed after value_set z2 = sp.Symbol('z2') z2.difforder = 3 z2.difforder = 3 # same value is allowed with self.assertRaises(ValueError) as cm: z2.difforder = 4 # not allowed def test_introduce_abreviations(self): x1, x2, x3 = xx = st.symb_vector('x1:4') a1, a2, a3 = aa = st.symb_vector('a1:4') P1 = sp.eye(3) P2 = sp.Matrix([x1**2, a1+a2, a3*x2, 13.7, 1, 0]) res1 = st.introduce_abreviations(P1) res2 = st.introduce_abreviations(P1, time_dep_symbs=xx) res3 = st.introduce_abreviations(P2, time_dep_symbs=xx) self.assertEqual(res1[0], P1) self.assertEqual(res2[0], P1) # test subs_tuples self.assertNotEqual(res3[0], P2) self.assertEqual(res3[0].subs(res3[1]), P2) # time dependend symbols tds = res3[2] original_expressions = tds.subs(res3[1]) self.assertEqual(original_expressions, sp.Matrix([x1**2, a3*x2])) def _test_make_global(self): xx = st.symb_vector('x1:4') yy = st.symb_vector('y1:4') st.make_global(xx) self.assertEqual(x1 + x2, xx[0] + xx[1]) # test if set is accepted st.make_global(yy.atoms(sp.Symbol)) self.assertEqual(y1 + y2, yy[0] + yy[1]) with self.assertRaises(TypeError) as cm: st.make_global(dict()) def test_make_global(self): aa = tuple(st.symb_vector('a1:4')) xx = st.symb_vector('x1:4') yy = st.symb_vector('y1:4') zz = st.symb_vector('z1:11').reshape(2, 5) # tollerate if there are numbers in the sequences: zz[0] = 0 zz[1] = 10 st.make_global(xx, yy, zz, aa) res = a1 + x2 + y3 + z4 + z7 + z10 res2 = aa[0] + xx[1] + yy[2] + zz[3] + zz[6] + zz[9] self.assertEqual(res, res2) # noinspection PyShadowingNames,PyPep8Naming,PySetFunctionToLiteral class SymbToolsTest4(unittest.TestCase): def setUp(self): st.init_attribute_store(reinit=True) def test_re_im(self): x, y = sp.symbols('x, y', real=True) M1 = sp.Matrix([[x, 0], [sp.pi, 5*x**2]]) M2 = sp.Matrix([[y, 3], [sp.exp(1), 7/y]]) M = M1 + 1j*M2 R = st.re(M) I = st.im(M) self.assertEqual(R-M1, R*0) self.assertEqual(I-M2, R*0) def test_is_number(self): x1, x2, x3 = xx = st.symb_vector('x1:4') self.assertTrue(st.is_number(x1/x1)) self.assertTrue(st.is_number(5)) self.assertTrue(st.is_number(5.3)) self.assertTrue(st.is_number(sp.pi)) self.assertTrue(st.is_number(sp.Rational(2, 7))) self.assertTrue(st.is_number(sp.Rational(2, 7).evalf(30))) self.assertTrue(st.is_number(sin(7))) self.assertTrue(st.is_number(np.float(9000))) self.assertFalse(st.is_number(x1)) self.assertFalse(st.is_number(sin(x1))) with self.assertRaises(TypeError) as cm: st.is_number( sp.eye(3) ) with self.assertRaises(TypeError) as cm: st.is_number( "567" ) def test_is_scalar(self): x1, x2, x3 = xx = st.symb_vector('x1:4') self.assertTrue(st.is_scalar(x1/x1)) self.assertTrue(st.is_scalar(5)) self.assertTrue(st.is_scalar(5.3)) self.assertTrue(st.is_scalar(sp.pi)) self.assertTrue(st.is_scalar(sp.Rational(2, 7))) self.assertTrue(st.is_scalar(sp.Rational(2, 7).evalf(30))) self.assertTrue(st.is_scalar(sin(7))) self.assertTrue(st.is_scalar(np.float(9000))) self.assertTrue(st.is_scalar(x1**2 + x3)) self.assertFalse(st.is_scalar( sp.eye(3)*x2 )) self.assertFalse(st.is_scalar( sp.zeros(2, 4)*x2 )) self.assertFalse(st.is_scalar( sp.eye(0)*x2 )) def test_is_scalar2(self): x1, x2, x3 = xx = st.symb_vector('x1:4') a1, a2, a3 = aa = st.symb_vector('a1:4') M1 = sp.Matrix([[0, 0], [a1, a2], [0, a3]]) M2 = sp.ImmutableDenseMatrix(M1) iss = st.is_scalar self.assertTrue(iss(x1)) self.assertTrue(iss(x1 ** 2 + sp.sin(x2))) self.assertTrue(iss(0)) self.assertTrue(iss(0.1)) self.assertTrue(iss(7.5 - 23j)) self.assertTrue(iss(np.float64(0.1))) self.assertFalse(iss(M1)) self.assertFalse(iss(M2)) self.assertFalse(iss(M1[:1, :1])) self.assertFalse(iss(
np.arange(5)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import pandas as pd import matplotlib.pyplot as plt from mhmcmc import MHMCMCSampler, GaussianStep from mhmcmc import display_trace, autocorrelation table = pd.read_csv('../../data/mcmc/exercise_linear_regression.csv') def log_likelihood(x): delta = table.logM_B - (x[0] + x[1]*(table.logsig-np.log10(200))) sigma = table.logM_B_err return -np.sum(delta**2/sigma**2/2) step = GaussianStep(np.array([0.02, 0.15])) model = MHMCMCSampler(log_likelihood, step) x0 = np.array([7.0, 8.0]) model.initialize(x0) sample = model.generate(1000) x = np.linspace(-0.5,0.5,50) a,b = sample[400:].mean(axis=0) fig = plt.figure(figsize=(8,6)) def update(i, sample): fig.clf() ax = fig.add_subplot() ax.errorbar( x = table.logsig-
np.log10(200)
numpy.log10
import sys sys.path.append('../lib') import exchange import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime from scipy.optimize import minimize from sklearn.linear_model import LinearRegression from scipy.stats import norm def moving_average(a, n=1000) : ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n def main(): e = exchange.Exchange('../lib/binance.db') times = [datetime.datetime(2018, 4, 1) + i * datetime.timedelta(hours=1) for i in range(10000)] variances = [] prices = [] average_distances = [] order_average = 25 for start, end in zip(times[:-1], times[1:]): print(start) it = e.get_orders('BTCUSDT', start.timestamp() * 1000, end.timestamp() * 1000) trades = {'price': [], 'time': []} for order in it: trades['time'].append(order.time) trades['price'].append(order.average_price) trades = pd.DataFrame(trades) if trades['time'].values.shape[0] == 0: continue price_changes =
np.diff(trades['price'])
numpy.diff
# -*- coding: utf-8 -*- import numpy as np def sortAngles(vis_cors_row,norm_n,norm_e,norm_d,terrain): ''' This function sorts the visible points in the histogram by camera viewing angle This lets us specify that points must be covered from a variety of angles INPUTS vis_cors: Contains one row of the visibility histogram matrix, and the orientation of the corresponding camera [-3:] norm_n: North component of surface normals norm_e: East component of surface normals norm_d: Vertical component of surface normals OUTPUTS visibilityRowAngles: Histogram row duplicated to account for each angle bin ''' # Camera location vector cam = vis_cors_row[-6:-3] # Camera orientation vector cor = vis_cors_row[-3:] # Visibility for the camera vis = vis_cors_row[:-6] # Flatten 2D grids to 1D vectors nu = np.ravel(terrain.nn) eu =
np.ravel(terrain.ee)
numpy.ravel
import numpy as np import numpy.linalg as LA import scipy.sparse as sp from scipy.stats.mstats import gmean from time import time from multiprocessing import Process, Pipe import sys, os, warnings from a2dr.precondition import precondition from a2dr.acceleration import aa_weights from a2dr.utilities import get_version sys_stdout_origin = sys.stdout def map_g(p_list,A,b,v,t,dk,n_list_cumsum): N=len(p_list) # v_list = [v[n_list_cumsum[i]:n_list_cumsum[i+1]] for i in range(N) ] x_list = [p_list[i](v_list[i],t) for i in range(N)] x_half = np.concatenate(x_list, axis=0) v_half = 2*x_half-v dk = sp.linalg.lsqr(A, A.dot(v_half) - b, atol=1e-10, btol=1e-10, x0=dk)[0] x_new = v_half - dk f = x_new - x_half v_new = v + f return v_new, f, dk, x_half, x_half - v def lmaa(p_list, A_list=[], b=np.array([]), v_init=None, n_list=None, *args, **kwargs): start = time() # Problem parameters. max_iter = kwargs.pop("max_iter", 1000) t_init = kwargs.pop("t_init", 1 / 10) # Step size. eps_abs = kwargs.pop("eps_abs", 1e-6) # Absolute stopping tolerance. eps_rel = kwargs.pop("eps_rel", 1e-8) # Relative stopping tolerance. precond = kwargs.pop("precond", True) # Precondition A and b? ada_reg = kwargs.pop("ada_reg", True) # Adaptive regularization? # AA-II parameters. anderson = kwargs.pop("anderson", True) m_accel = int(kwargs.pop("m_accel", 10)) # Maximum past iterations to keep (>= 0). lam_accel = kwargs.pop("lam_accel", 1e-8) # AA-II regularization weight. aa_method = kwargs.pop("aa_method", "lstsq") # Algorithm for solving AA LS problem. # Safeguarding parameters. D_safe = kwargs.pop("D_safe", 1e6) eps_safe = kwargs.pop("eps_safe", 1e-6) M_safe = kwargs.pop("M_safe", int(max_iter / 100)) c = kwargs.pop("c", 1-1e-6) # Printout parameters verbose = kwargs.pop("verbose", True) # Validate parameters. if max_iter <= 0: raise ValueError("max_iter must be a positive integer.") if t_init <= 0: raise ValueError("t_init must be a positive scalar.") if eps_abs < 0: raise ValueError("eps_abs must be a non-negative scalar.") if eps_rel < 0: raise ValueError("eps_rel must be a non-negative scalar.") if m_accel <= 0: raise ValueError("m_accel must be a positive integer.") if lam_accel < 0: raise ValueError("lam_accel must be a non-negative scalar.") if not aa_method in ["lstsq", "lsqr"]: raise ValueError("aa_method must be either 'lstsq' or 'lsqr'.") # if D_safe < 0: # raise ValueError("D_safe must be a non-negative scalar.") # if eps_safe < 0: # raise ValueError("eps_safe must be a non-negative scalar.") # if M_safe <= 0: # raise ValueError("M_safe must be a positive integer.") # DRS parameters. N = len(p_list) # Number of subproblems. has_constr = len(A_list) != 0 if len(A_list) == 0: if b.size != 0: raise ValueError("Dimension mismatch: nrow(A_i) != nrow(b)") if n_list is not None: if len(n_list) != N: raise ValueError("n_list must have exactly {} entries".format(N)) A_list = [sp.csr_matrix((0, ni)) for ni in n_list] elif v_init is not None: if len(v_init) != N: raise ValueError("v_init must be None or contain exactly {} entries".format(N)) A_list = [sp.csr_matrix((0, vi.shape[0])) for vi in v_init] else: raise ValueError("n_list or v_init must be defined if A_list and b are empty") if len(A_list) != N: raise ValueError("A_list must be empty or contain exactly {} entries".format(N)) if v_init is None: # v_init = [np.random.randn(A.shape[1]) for A in A_list] v_init = [np.zeros(A.shape[1]) for A in A_list] # v_init = [sp.csc_matrix((A.shape[1],1)) for A in A_list] if len(v_init) != N: raise ValueError("v_init must be None or contain exactly {} entries".format(N)) # Variable size list. if n_list is None: n_list = [A_list[i].shape[1] for i in range(N)] if len(n_list) != N: raise ValueError("n_list must be None or contain exactly {} entries".format(N)) n_list_cumsum = np.insert(np.cumsum(n_list), 0, 0) for i in range(N): if A_list[i].shape[0] != b.shape[0]: raise ValueError("Dimension mismatch: nrow(A_i) != nrow(b)") elif A_list[i].shape[1] != v_init[i].shape[0]: raise ValueError("Dimension mismatch: ncol(A_i) != nrow(v_i)") elif A_list[i].shape[1] != n_list[i]: raise ValueError("Dimension mismatch: ncol(A_i) != n_i") if not sp.issparse(A_list[i]): A_list[i] = sp.csr_matrix(A_list[i]) if verbose: version = get_version("__init__.py") line_solver = "a2dr v" + version + " - Prox-Affine Distributed Convex Optimization Solver" dashes = "-" * len(line_solver) ddashes = "=" * len(line_solver) line_authors = "(c) <NAME>, <NAME>" num_spaces_authors = (len(line_solver) - len(line_authors)) // 2 line_affil = "Stanford University 2019" num_spaces_affil = (len(line_solver) - len(line_affil)) // 2 print(dashes) print(line_solver) print(" " * num_spaces_authors + line_authors) print(" " * num_spaces_affil + line_affil) print(dashes) # Precondition data. if precond and has_constr: if verbose: print('### Preconditioning starts ... ###') p_list, A_list, b, e_pre = precondition(p_list, A_list, b) t_init = 1 / gmean(e_pre) ** 2 / 10 if verbose: print('### Preconditioning finished. ###') sigma0 = kwargs.pop("sigma0", 1e-10) sigma1 = kwargs.pop("sigma1", 1) c=max((t_init*sigma1-1)/(t_init*sigma1+1),(1-t_init*sigma0)/(1+t_init*sigma0)) c=np.sqrt((3+c**2))/2 if verbose: print("max_iter = {}, t_init (after preconditioning) = {:.2f}".format( max_iter, t_init)) print("eps_abs = {:.2e}, eps_rel = {:.2e}, precond = {!r}".format( eps_abs, eps_rel, precond)) print("ada_reg = {!r}, anderson = {!r}, m_accel = {}".format( ada_reg, anderson, m_accel)) print("lam_accel = {:.2e}, aa_method = {}, D_safe = {:.2e}".format( lam_accel, aa_method, D_safe)) print("eps_safe = {:.2e}, M_safe = {:d}".format( eps_safe, M_safe)) # Store constraint matrix for projection step. A = sp.csr_matrix(sp.hstack(A_list)) if verbose: print("variables n = {}, constraints m = {}".format(A.shape[1], A.shape[0])) print("nnz(A) = {}".format(A.nnz)) print("Setup time: {:.2e}".format(time() - start)) # Check linear feasibility sys.stdout = open(os.devnull, 'w') r1norm = sp.linalg.lsqr(A, b)[3] sys.stdout.close() sys.stdout = sys_stdout_origin if r1norm >= np.sqrt(eps_abs): # infeasible if verbose: print('Infeasible linear equality constraint: minimum constraint violation = {:.2e}'.format(r1norm)) print('Status: Terminated due to linear infeasibility') print("Solve time: {:.2e}".format(time() - start)) return {"x_vals": None, "primal": None, "dual": None, "num_iters": None, "solve_time": None} if verbose: print("----------------------------------------------------") print(" iter | total res | primal res | dual res | time (s)") print("----------------------------------------------------") # Set up the workers. # Initialize AA-II variables. if anderson: # TODO: Store and update these efficiently as arrays. n_sum = np.sum([np.prod(v.shape) for v in v_init]) g_vec = np.zeros(n_sum) # g^(k) = v^(k) - F(v^(k)). s_hist = [] # History of s^(j) = v^(j+1) - v^(j), kept in S^(k) = [s^(k-m_k) ... s^(k-1)]. y_hist = [] # History of y^(j) = g^(j+1) - g^(j), kept in Y^(k) = [y^(k-m_k) ... y^(k-1)]. n_AA = M_AA = 0 # Safeguarding counters. # A2DR loop. k = 0 finished = False safeguard = True r_primal = np.zeros(max_iter) r_dual = np.zeros(max_iter) r_dr = np.zeros(max_iter) time_iter = np.zeros(max_iter) r_best = np.inf # Warm start terms. dk = np.zeros(A.shape[1]) sol = np.zeros(A.shape[0]) v =np.concatenate(v_init) f_list = np.zeros((A.shape[1],m_accel+1)) g_list = np.zeros((A.shape[1],m_accel+1)) x_list = np.zeros((A.shape[1],m_accel+1)) F_norm = np.zeros((m_accel+1)) M = np.zeros((m_accel+1,m_accel+1)) idx = 0 eta0 = 2 eta1 = 0.25 mu = 1e-8 delta = 2 p1 = 0.01 p2 = 0.25 curr_dk = dk.copy() while not finished: if k==0: x_list[:,0] = v curr_g, curr_f, curr_dk, curr_x_half, curr_xvdiff =map_g(p_list,A,b,v,t_init,curr_dk,n_list_cumsum) g_list[:,0] = curr_g F_norm[0] = np.sum(curr_f**2) f_list[:, 0] = curr_f/np.sqrt(F_norm[0]) M[0,0] = 1 Ax_half = A.dot(curr_x_half) r_primal_vec = (Ax_half) - b r_primal[k] = LA.norm(r_primal_vec, ord=2) subgrad = curr_xvdiff / t_init # sol = LA.lstsq(A.T, subgrad, rcond=None)[0] sys.stdout = open(os.devnull, 'w') sol = sp.linalg.lsqr(A.T, subgrad, atol=1e-10, btol=1e-10, x0=sol)[0] sys.stdout.close() sys.stdout = sys_stdout_origin r_dual_vec = A.T.dot(sol) - subgrad r_dual[k] = LA.norm(r_dual_vec, ord=2) # Save x_i^(k+1/2) if residual norm is smallest so far. r_all = LA.norm(np.concatenate([r_primal_vec, r_dual_vec]), ord=2) # Store ||r^0||_2 for stopping criterion. r_all_0 = r_all x_final = curr_x_half r_best = r_all k_best = k r_dr[k] = np.sqrt(F_norm[0]) time_iter[k] = time() - start v = curr_g.copy() curr_g, curr_f, curr_dk, curr_x_half, curr_xvdiff = map_g(p_list,A,b,v,t_init,curr_dk,n_list_cumsum) idx += 1 m_hat = min(idx, m_accel) id = np.mod(idx,m_accel+1) x_list[:,id] = v g_list[:,id] = curr_g F_norm[id] = np.sum(curr_f ** 2) f_list[:, id] = curr_f / np.sqrt(F_norm[id]) k += 1 continue if id>0: M[0:id,id] = (f_list[:,0:id]).T @ f_list[:,id] if id<m_hat: M[id+1:m_hat+1,id]= (f_list[:,id+1:m_hat+1]).T @ f_list[:,id] M[id,id] = 1 M[id, 0:m_hat+1] = (M[0:m_hat+1,id]).T k0=np.argmin(F_norm[0:m_hat+1]) normal_Fnorm= np.sqrt(F_norm[0:m_hat+1])/np.sqrt(F_norm[k0]) lam = mu tM = np.diag(normal_Fnorm)@ M[0:m_hat+1,0:m_hat+1] @ np.diag(normal_Fnorm) bb = tM[:,k0] B = np.repeat(np.array([bb]).T,m_hat+1,axis=1) D = tM + 1 - B - B.T D = np.delete(D, k0, axis=0) D = np.delete(D, k0, axis=1) tb = 1 - bb tb = np.delete(tb,k0) tA = D + lam*np.eye(m_hat) alpha = np.linalg.lstsq(tA,tb,rcond=None)[0] gamma = 1e-4*np.ones((m_hat+1)); gamma[k0] =1 - 1e-4 * (m_hat); sum_f =np.dot( F_norm[0:m_hat+1] , gamma) g_k0=g_list[:,k0] temp_alpha= np.concatenate((alpha[0:k0],[1-np.sum(alpha)],alpha[k0:])) g_hat= np.dot(g_list[:,0:m_hat+1],temp_alpha) descent = alpha.T @ D @ alpha -2 * np.dot(tb, alpha) normf_hat = F_norm[k0]*(1+descent) trial_g, trial_f, trial_dk, trial_x_half, trial_xvdiff=map_g(p_list,A,b,g_hat,t_init,curr_dk,n_list_cumsum) trial_Fnorm = np.sum(trial_f**2) pred = sum_f - c*c*normf_hat ared = sum_f - trial_Fnorm rho = ared/pred if rho<p1: mu = eta0 * mu elif rho>p2: mu = eta1 * mu if rho<p1: v = g_k0.copy() curr_g, curr_f, curr_dk, curr_x_half, curr_xvdiff = map_g(p_list,A,b,v,t_init,curr_dk,n_list_cumsum) idx = idx + 1 m_hat = min(idx, m_accel) id = np.mod(idx, m_accel+1) x_list[:,id] = v g_list[:,id] = curr_g F_norm[id] = np.sum(curr_f**2) f_list[:,id] = curr_f/(np.sqrt(F_norm[id])) else: v = g_hat.copy() curr_g = trial_g.copy() curr_f = trial_f.copy() curr_dk, curr_x_half, curr_xvdiff = trial_dk.copy(),trial_x_half.copy(),trial_xvdiff.copy() idx = idx + 1 m_hat = min(idx, m_accel) id = np.mod(idx, m_accel + 1) x_list[:, id] = v g_list[:, id] = curr_g F_norm[id] =
np.sum(curr_f ** 2)
numpy.sum
# -*- coding: utf-8 -*- """ Created on Mon Sep 4 21:44:21 2017 @author: wangronin """ import pdb import warnings import numpy as np from numpy import sqrt, exp, pi from scipy.stats import norm from abc import ABCMeta, abstractmethod # warnings.filterwarnings("error") # TODO: perphas also enable acquisition function engineering here? # meaning the combination of the acquisition functions class InfillCriteria: __metaclass__ = ABCMeta def __init__(self, model, plugin=None, minimize=True): assert hasattr(model, 'predict') self.model = model self.minimize = minimize # change maximization problem to minimization self.plugin = plugin if self.minimize else -plugin if self.plugin is None: self.plugin = np.min(model.y) if minimize else -np.max(self.model.y) @abstractmethod def __call__(self, X): raise NotImplementedError def _predict(self, X): y_hat, sd2 = self.model.predict(X, eval_MSE=True) sd = sqrt(sd2) if not self.minimize: y_hat = -y_hat return y_hat, sd def _gradient(self, X): y_dx, sd2_dx = self.model.gradient(X) if not self.minimize: y_dx = -y_dx return y_dx, sd2_dx def check_X(self, X): """Keep input as '2D' object """ return np.atleast_2d(X) # return [X] if not hasattr(X[0], '__iter__') else X # TODO: test UCB implementation class UCB(InfillCriteria): """ Upper Confidence Bound """ def __init__(self, model, plugin=None, minimize=True, alpha=1e-10): super(EpsilonPI, self).__init__(model, plugin, minimize) self.alpha = alpha def __call__(self, X, dx=False): X = self.check_X(X) y_hat, sd = self._predict(X) try: f_value = y_hat + self.alpha * sd except Exception: # in case of numerical errors f_value = 0 if dx: y_dx, sd2_dx = self._gradient(X) sd_dx = sd2_dx / (2. * sd) try: f_dx = y_dx + self.alpha * sd_dx except Exception: f_dx = np.zeros((len(X[0]), 1)) return f_value, f_dx return f_value class EI(InfillCriteria): """ Expected Improvement """ # perhaps separate the gradient computation here def __call__(self, X, dx=False): X = self.check_X(X) y_hat, sd = self._predict(X) # if the Kriging variance is to small # TODO: check the rationale of 1e-6 and why the ratio if intended # TODO: implement a counterpart of 'sigma2' for randomforest if hasattr(self.model, 'sigma2'): if sd / np.sqrt(self.model.sigma2) < 1e-6: return (np.array([0.]), np.zeros((len(X[0]), 1))) if dx else 0. try: # TODO: I have save xcr_ becasue xcr * sd != xcr_ numerically # find out the cause of such an error, probably representation error... xcr_ = self.plugin - y_hat xcr = xcr_ / sd xcr_prob, xcr_dens = norm.cdf(xcr), norm.pdf(xcr) f_value = xcr_ * xcr_prob + sd * xcr_dens except Exception: # in case of numerical errors # IMPORTANT: always keep the output in the same type f_value = np.array([0.]) if dx: y_dx, sd2_dx = self._gradient(X) sd_dx = sd2_dx / (2. * sd) try: f_dx = -y_dx * xcr_prob + sd_dx * xcr_dens except Exception: f_dx = np.zeros((len(X[0]), 1)) return f_value, f_dx return f_value class EpsilonPI(InfillCriteria): """ epsilon-Probability of Improvement # TODO: verify the implementation """ def __init__(self, model, plugin=None, minimize=True, epsilon=1e-10): super(EpsilonPI, self).__init__(model, plugin, minimize) self.epsilon = epsilon def __call__(self, X, dx=False): X = self.check_X(X) y_hat, sd = self._predict(X) coef = 1 - self.epsilon if y_hat > 0 else (1 + self.epsilon) try: xcr_ = self.plugin - coef * y_hat xcr = xcr_ / sd f_value = norm.cdf(xcr) except Exception: f_value = 0. if dx: y_dx, sd2_dx = self._gradient(X) sd_dx = sd2_dx / (2. * sd) try: f_dx = -(coef * y_dx + xcr * sd_dx) * norm.pdf(xcr) / sd except Exception: f_dx = np.zeros((len(X[0]), 1)) return f_value, f_dx return f_value class PI(EpsilonPI): """ Probability of Improvement """ def __init__(self, model, plugin=None, minimize=True): super(PI, self).__init__(model, plugin, minimize, epsilon=0) class MGFI(InfillCriteria): """ Moment-Generating Function of Improvement My new acquisition function proposed in SMC'17 paper """ def __init__(self, model, plugin=None, minimize=True, t=1): super(MGFI, self).__init__(model, plugin, minimize) self.t = t def __call__(self, X, dx=False): X = self.check_X(X) y_hat, sd = self._predict(X) # if the Kriging variance is to small # TODO: check the rationale of 1e-6 and why the ratio if intended if np.isclose(sd, 0): return (np.array([0.]), np.zeros((len(X[0]), 1))) if dx else 0. try: y_hat_p = y_hat - self.t * sd ** 2. beta_p = (self.plugin - y_hat_p) / sd term = self.t * (self.plugin - y_hat - 1) f_ = norm.cdf(beta_p) * exp(term + self.t ** 2. * sd ** 2. / 2.) except Exception: # in case of numerical errors f_ = np.array([0.]) if np.isinf(f_): f_ = np.array([0.]) if dx: y_dx, sd2_dx = self._gradient(X) sd_dx = sd2_dx / (2. * sd) try: term = exp(self.t * (self.plugin + self.t * sd ** 2. / 2 - y_hat - 1)) m_prime_dx = y_dx - 2. * self.t * sd * sd_dx beta_p_dx = -(m_prime_dx + beta_p * sd_dx) / sd f_dx = term * (norm.pdf(beta_p) * beta_p_dx + \ norm.cdf(beta_p) * ((self.t ** 2) * sd * sd_dx - self.t * y_dx)) except Exception: f_dx = np.zeros((len(X[0]), 1)) return f_, f_dx return f_ class GEI(InfillCriteria): """ Generalized Expected Improvement """ def __init__(self, model, plugin=None, minimize=True, g=1): super(GEI, self).__init__(model, plugin, minimize) self.g = g def __call__(self, X, dx=False): pass if __name__ == '__main__': # TODO: diagnostic plot for the gradient of Infill-Criteria # goes to unittest from GaussianProcess.trend import linear_trend, constant_trend from GaussianProcess import GaussianProcess from GaussianProcess.utils import plot_contour_gradient import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from deap import benchmarks np.random.seed(123) plt.ioff() fig_width = 16 fig_height = 16 noise_var = 0. def fitness(X): X = np.atleast_2d(X) return np.array([benchmarks.schwefel(x)[0] for x in X]) + \ np.sqrt(noise_var) * np.random.randn(X.shape[0]) dim = 2 n_init_sample = 10 x_lb =
np.array([-5] * dim)
numpy.array
import time import inspect import logging import json import functools from abc import abstractmethod from typing import Dict, Union, List from pathlib import Path from collections import OrderedDict import numpy as np import torch as th from numpy.random import randint from torch.utils.data import Dataset from typeguard import typechecked import data_loader from utils.util import ensure_tensor, expert_tensor_storage from zsvision.zs_utils import memcache # For SLURM usage, buffering makes it difficult to see events as they happen, so we set # the global print statement to enforce flushing print = functools.partial(print, flush=True) class BaseDataset(Dataset): @staticmethod @abstractmethod @typechecked def dataset_paths() -> Dict[str, Union[Path, str]]: """Generates a datastructure containing all the paths required to load features """ raise NotImplementedError @abstractmethod def sanity_checks(self): """Run sanity checks on loaded data """ raise NotImplementedError @abstractmethod def load_features(self): """Load features from disk """ raise NotImplementedError @typechecked def __init__( self, data_dir: Path, fuse_captions: bool, spatial_feats: bool, challenge_mode: bool, eval_only: bool, use_zeros_for_missing: bool, task: str, text_agg: str, text_feat: str, split_name: str, cls_partition: str, root_feat_folder: str, challenge_test_root_feat_folder: str, subsample_training_data_fraction: float, text_dim: int, num_test_captions: int, restrict_train_captions: int, max_tokens: Dict[str, int], text_dropout: float, logger: logging.Logger, raw_input_dims: Dict[str, int], feat_aggregation: Dict[str, Dict], ): self.task = task self.eval_only = eval_only self.logger = logger self.challenge_mode = challenge_mode self.text_feat = text_feat self.data_dir = data_dir self.text_dim = text_dim self.spatial_feats = spatial_feats self.text_dropout = text_dropout self.restrict_train_captions = restrict_train_captions self.subsample_training_data_fraction = subsample_training_data_fraction self.max_tokens = max_tokens self.cls_partition = cls_partition self.fuse_captions = fuse_captions self.num_test_captions = num_test_captions self.feat_aggregation = feat_aggregation self.root_feat = data_dir / root_feat_folder self.challenge_test_root_feat_folder = data_dir / challenge_test_root_feat_folder self.experts = set(raw_input_dims.keys()) # This attributes can be overloaded by different datasets, so it must be set # before the `load_features() method call` self.restrict_test_captions = None self.text_features = None self.label_features = None self.video_labels = None self.raw_captions = None self.features = None # Use a single caption per video when forming training minibatches (different # captions from the same video may still be used across different minibatches) self.captions_per_video = 1 # TODO(Samuel) - is a global fixed ordering still necessary? self.ordered_experts = list(raw_input_dims.keys()) # Training and test lists are set by dataset-specific subclasses self.partition_lists = {} self.configure_train_test_splits(split_name=split_name) # All retrieval-based tasks use a single dataloader (and handle the retrieval # data separately), whereas for classification we use one dataloader for # training and one for validation. self.logger.info("The current task is {}".format(self.task)) self.sample_list = self.partition_lists["train"] if self.subsample_training_data_fraction < 1: num_train = len(self.sample_list) num_keep = int(self.subsample_training_data_fraction * num_train) sampled_train = np.random.choice(self.sample_list, num_keep, replace=False) self.logger.info(f"Sampling training samples [{num_train} -> {num_keep}]") self.sample_list = sampled_train.tolist() self.num_samples = len(self.sample_list) num_val = len(self.partition_lists["val"]) if self.task == "classification": self.sample_list = self.partition_lists[self.cls_partition] self.num_samples = len(self.sample_list) self.logger.info("The current cls_partition is {}".format(self.cls_partition)) # The number of classes and class type (i.e. single or multi-label) must be # overriden in the subclass self.num_classes = None self.class_type = None self.raw_input_dims = raw_input_dims # we store default paths to enable visualisations (this can be overloaded by # dataset-specific classes) self.video_path_retrieval = [f"videos/{x}.mp4" for x in self.partition_lists["val"]] # NOTE: We use nans rather than zeros to indicate missing faces, unless we wish # to test single modality strength, which requires passing zeroed features for # missing videos if use_zeros_for_missing: self.MISSING_VAL = 0 else: self.MISSING_VAL = np.nan # load the dataset-specific features into memory self.load_features() if text_agg == "avg": self.logger.info("averaging the text features...") for key, val in self.text_features.items(): self.text_features[key] = [np.mean(x, 0, keepdims=1) for x in val] self.logger.info("finished averaging the text features") self.trn_config = {} self.raw_config = {} self.tensor_storage = expert_tensor_storage(self.experts, self.feat_aggregation) for static_expert in self.tensor_storage["fixed"]: if static_expert in self.feat_aggregation: if "trn_seg" in self.feat_aggregation[static_expert].keys(): self.trn_config[static_expert] = \ self.feat_aggregation[static_expert]["trn_seg"] if "raw" in self.feat_aggregation[static_expert]["temporal"]: self.raw_config[static_expert] = 1 if self.task == "classification": # for classification we don't need to preload additional features return retrieval = { expert: np.zeros((num_val, self.max_tokens[expert], raw_input_dims[expert])) for expert in self.tensor_storage["variable"] } retrieval.update({expert: np.zeros((num_val, raw_input_dims[expert])) for expert in self.tensor_storage["fixed"]}) self.retrieval = retrieval self.test_ind = {expert: th.ones(num_val) for expert in self.experts} self.raw_captions_retrieval = [None] * num_val if self.task == "retrieval-as-classification": # Treat each category label as a query num_labels = len(self.label_features) self.text_retrieval = np.zeros((num_labels, 1, 1, self.text_dim)) self.query_masks = np.zeros((num_labels, num_val)) for ii, video_name in enumerate(self.partition_lists["val"]): labels = self.video_labels[video_name] self.query_masks[
np.array(labels)
numpy.array
# ****************************************************************************** # Copyright 2017-2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import numpy as np import pytest import ngraph as ng @pytest.fixture() def _proposal_node(): attributes = { "base_size": np.uint16(1), "pre_nms_topn": np.uint16(20), "post_nms_topn": np.uint16(64), "nms_thresh": np.float64(0.34), "feat_stride": np.uint16(16), "min_size": np.uint16(32), "ratio": np.array([0.1, 1.5, 2.0, 2.5], dtype=np.float64), "scale": np.array([2, 3, 3, 4], dtype=np.float64), } batch_size = 7 class_probs = ng.parameter([batch_size, 12, 34, 62], np.float64, "class_probs") bbox_deltas = ng.parameter([batch_size, 24, 34, 62], np.float64, "bbox_deltas") image_shape = ng.parameter([3], np.float64, "image_shape") return ng.proposal(class_probs, bbox_deltas, image_shape, attributes) def test_dynamic_attributes_softmax(): axis = 2 data = ng.parameter([1, 2, 3, 4], np.float32, "data_in") node = ng.softmax(data, axis) assert node.get_axis() == axis node.set_axis(3) assert node.get_axis() == 3 @pytest.mark.parametrize( "int_dtype, fp_dtype", [ (np.int8, np.float32), (np.int16, np.float32), (np.int32, np.float32), (np.int64, np.float32), (np.uint8, np.float32), (np.uint16, np.float32), (np.uint32, np.float32), (np.uint64, np.float32), (np.int32, np.float16), (np.int32, np.float64), ], ) def test_dynamic_get_attribute_value(int_dtype, fp_dtype): attributes = { "attrs.num_classes": int_dtype(85), "attrs.background_label_id": int_dtype(13), "attrs.top_k": int_dtype(16), "attrs.variance_encoded_in_target": True, "attrs.keep_top_k": np.array([64, 32, 16, 8], dtype=int_dtype), "attrs.code_type": "pytorch.some_parameter_name", "attrs.share_location": False, "attrs.nms_threshold": fp_dtype(0.645), "attrs.confidence_threshold": fp_dtype(0.111), "attrs.clip_after_nms": True, "attrs.clip_before_nms": False, "attrs.decrease_label_id": True, "attrs.normalized": True, "attrs.input_height": int_dtype(86), "attrs.input_width": int_dtype(79), "attrs.objectness_score": fp_dtype(0.77), } box_logits = ng.parameter([4, 1, 5, 5], fp_dtype, "box_logits") class_preds = ng.parameter([2, 1, 4, 5], fp_dtype, "class_preds") proposals = ng.parameter([2, 1, 4, 5], fp_dtype, "proposals") aux_class_preds = ng.parameter([2, 1, 4, 5], fp_dtype, "aux_class_preds") aux_box_preds = ng.parameter([2, 1, 4, 5], fp_dtype, "aux_box_preds") node = ng.detection_output(box_logits, class_preds, proposals, attributes, aux_class_preds, aux_box_preds) assert node.get_num_classes() == int_dtype(85) assert node.get_background_label_id() == int_dtype(13) assert node.get_top_k() == int_dtype(16) assert node.get_variance_encoded_in_target() assert np.all(np.equal(node.get_keep_top_k(), np.array([64, 32, 16, 8], dtype=int_dtype))) assert node.get_code_type() == "pytorch.some_parameter_name" assert not node.get_share_location() assert np.isclose(node.get_nms_threshold(), fp_dtype(0.645)) assert np.isclose(node.get_confidence_threshold(), fp_dtype(0.111)) assert node.get_clip_after_nms() assert not node.get_clip_before_nms() assert node.get_decrease_label_id() assert node.get_normalized() assert node.get_input_height() == int_dtype(86) assert node.get_input_width() == int_dtype(79) assert np.isclose(node.get_objectness_score(), fp_dtype(0.77)) assert node.get_num_classes() == int_dtype(85) @pytest.mark.parametrize( "int_dtype, fp_dtype", [ (np.uint8, np.float32), (np.uint16, np.float32), (np.uint32, np.float32), (np.uint64, np.float32), (np.uint32, np.float16), (np.uint32, np.float64), ], ) def test_dynamic_set_attribute_value(int_dtype, fp_dtype): attributes = { "base_size": int_dtype(1), "pre_nms_topn": int_dtype(20), "post_nms_topn": int_dtype(64), "nms_thresh": fp_dtype(0.34), "feat_stride": int_dtype(16), "min_size": int_dtype(32), "ratio": np.array([0.1, 1.5, 2.0, 2.5], dtype=fp_dtype), "scale": np.array([2, 3, 3, 4], dtype=fp_dtype), } batch_size = 7 class_probs = ng.parameter([batch_size, 12, 34, 62], fp_dtype, "class_probs") bbox_deltas = ng.parameter([batch_size, 24, 34, 62], fp_dtype, "bbox_deltas") image_shape = ng.parameter([3], fp_dtype, "image_shape") node = ng.proposal(class_probs, bbox_deltas, image_shape, attributes) node.set_base_size(int_dtype(15)) node.set_pre_nms_topn(int_dtype(7)) node.set_post_nms_topn(int_dtype(33)) node.set_nms_thresh(fp_dtype(1.55)) node.set_feat_stride(int_dtype(8)) node.set_min_size(int_dtype(123)) node.set_ratio(np.array([1.1, 2.5, 3.0, 4.5], dtype=fp_dtype)) node.set_scale(np.array([2.1, 3.2, 3.3, 4.4], dtype=fp_dtype)) node.set_clip_before_nms(True) node.set_clip_after_nms(True) node.set_normalize(True) node.set_box_size_scale(fp_dtype(1.34)) node.set_box_coordinate_scale(fp_dtype(0.88)) node.set_framework("OpenVINO") assert node.get_base_size() == int_dtype(15) assert node.get_pre_nms_topn() == int_dtype(7) assert node.get_post_nms_topn() == int_dtype(33) assert np.isclose(node.get_nms_thresh(), fp_dtype(1.55)) assert node.get_feat_stride() == int_dtype(8) assert node.get_min_size() == int_dtype(123) assert np.allclose(node.get_ratio(), np.array([1.1, 2.5, 3.0, 4.5], dtype=fp_dtype)) assert np.allclose(node.get_scale(), np.array([2.1, 3.2, 3.3, 4.4], dtype=fp_dtype)) assert node.get_clip_before_nms() assert node.get_clip_after_nms() assert node.get_normalize() assert np.isclose(node.get_box_size_scale(), fp_dtype(1.34)) assert np.isclose(node.get_box_coordinate_scale(), fp_dtype(0.88)) assert node.get_framework() == "OpenVINO" def test_dynamic_attr_cache(_proposal_node): node = _proposal_node assert not node._attr_cache_valid node.set_nms_thresh(1.3453678102) assert not node._attr_cache_valid assert np.isclose(node.get_nms_thresh(), np.float64(1.3453678102)) assert node._attr_cache_valid def test_dynamic_attr_transitivity(_proposal_node): node = _proposal_node node2 = node node.set_ratio(np.array([1.1, 2.5, 3.0, 4.5], dtype=np.float64)) assert np.allclose(node.get_ratio(), np.array([1.1, 2.5, 3.0, 4.5], dtype=np.float64)) assert np.allclose(node2.get_ratio(), np.array([1.1, 2.5, 3.0, 4.5], dtype=np.float64)) node2.set_scale(np.array([2.1, 3.2, 3.3, 4.4], dtype=np.float64)) assert np.allclose(node2.get_scale(),
np.array([2.1, 3.2, 3.3, 4.4], dtype=np.float64)
numpy.array
import subprocess as sp import numpy as np from sk import SK,get_speech_ts_adaptive from pdb import set_trace CHUNK_SIZE = 4000 def video_frames_ffmpeg(url): iterator = 0 cmd = f'ffmpeg -loglevel quiet -re -i {url} -acodec pcm_f32le -f f32le -vn -sn -dn -ar 16000 -ac 1 -'.split(" ") p = sp.Popen(cmd, stdout=sp.PIPE) asr = SK(model="silero_en_large") buffer = [] current_text = "" current_len = 0 skip = False repeated = 0 while True: data = p.stdout.read(CHUNK_SIZE*10) data =
np.frombuffer(data, dtype=np.float32)
numpy.frombuffer
#!/usr/bin/env python u""" read_cryosat_L1b.py Written by <NAME> (02/2020) Reads CryoSat Level-1b data products from baselines A, B and C Reads CryoSat Level-1b netCDF4 data products from baseline D Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR INPUTS: full_filename: full path of CryoSat .DBL or .nc file OUTPUTS: Location: Time and Orbit Group Data: Measurements Group Geometry: External Corrections Group Waveform_1Hz: Average Waveforms Group Waveform_20Hz: Waveforms Group (with SAR/SARIN Beam Behavior Parameters) METADATA: MPH, SPH and DSD Header data PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Updated 02/2020: tilde-expansion of cryosat-2 files before opening add scale factors function for converting packed units in binary files convert from hard to soft tabulation Updated 11/2019: empty placeholder dictionary for baseline D DSD headers Updated 09/2019: added netCDF4 read function for baseline D will output with same variable names as the binary read functions Updated 04/2019: USO correction signed 32 bit int Updated 10/2018: updated header read functions for python3 Updated 05/2016: using __future__ print and division functions Written 03/2016 """ from __future__ import print_function from __future__ import division import os import re import netCDF4 import numpy as np #-- PURPOSE: Initiate L1b MDS variables for CryoSat Baselines A and B def cryosat_baseline_AB(fid, n_records, MODE): n_SARIN_RW = 512 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 #-- CryoSat-2 Time and Orbit Group Location = {} #-- Time: day part Location['Day'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Time: second part Location['Second'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- Time: microsecond part Location['Micsec'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- USO correction factor Location['USO_Corr'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Mode ID Location['Mode_ID'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Source sequence counter Location['SSC'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Instrument configuration Location['Inst_config'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- Record Counter Location['Rec_Count'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Location['Lat'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Location['Lon'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Location['Alt'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) Location['Alt_rate'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) #-- ITRF= International Terrestrial Reference Frame Location['Sat_velocity'] = np.zeros((n_records,n_blocks,3),dtype=np.int32) #-- Real beam direction vector. In CRF: packed units (micro-m, 1e-6 m) #-- CRF= CryoSat Reference Frame. Location['Real_beam'] = np.zeros((n_records,n_blocks,3),dtype=np.int32) #-- Interferometric baseline vector. In CRF: packed units (micro-m, 1e-6 m) Location['Baseline'] = np.zeros((n_records,n_blocks,3),dtype=np.int32) #-- Measurement Confidence Data Flags #-- Generally the MCD flags indicate problems when set #-- If MCD is 0 then no problems or non-nominal conditions were detected #-- Serious errors are indicated by setting bit 31 Location['MCD'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- CryoSat-2 Measurement Group #-- Derived from instrument measurement parameters Data_20Hz = {} #-- Window Delay reference (two-way) corrected for instrument delays Data_20Hz['TD'] = np.zeros((n_records,n_blocks),dtype=np.int64) #-- H0 Initial Height Word from telemetry Data_20Hz['H_0'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- COR2 Height Rate: on-board tracker height rate over the radar cycle Data_20Hz['COR2'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Coarse Range Word (LAI) derived from telemetry Data_20Hz['LAI'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Fine Range Word (FAI) derived from telemetry Data_20Hz['FAI'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. #-- Gain calibration corrections are applied (Sum of AGC stages 1 and 2 #-- plus the corresponding corrections) (dB/100) Data_20Hz['AGC_CH1'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. #-- Gain calibration corrections are applied (dB/100) Data_20Hz['AGC_CH2'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) Data_20Hz['TR_gain_CH1'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) Data_20Hz['TR_gain_CH2'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Transmit Power in microWatts Data_20Hz['TX_Power'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Doppler range correction: Radial component (mm) #-- computed for the component of satellite velocity in the nadir direction Data_20Hz['Doppler_range'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Range Correction: transmit-receive antenna (mm) #-- Calibration correction to range on channel 1 computed from CAL1. Data_20Hz['TR_inst_range'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Range Correction: receive-only antenna (mm) #-- Calibration correction to range on channel 2 computed from CAL1. Data_20Hz['R_inst_range'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Gain Correction: transmit-receive antenna (dB/100) #-- Calibration correction to gain on channel 1 computed from CAL1 Data_20Hz['TR_inst_gain'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Gain Correction: receive-only (dB/100) #-- Calibration correction to gain on channel 2 computed from CAL1 Data_20Hz['R_inst_gain'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Internal Phase Correction (microradians) Data_20Hz['Internal_phase'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- External Phase Correction (microradians) Data_20Hz['External_phase'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Noise Power measurement (dB/100): converted from telemetry units to be #-- the noise floor of FBR measurement echoes. #-- Set to -9999.99 when the telemetry contains zero. Data_20Hz['Noise_power'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Phase slope correction (microradians) #-- Computed from the CAL-4 packets during the azimuth impulse response #-- amplitude (SARIN only). Set from the latest available CAL-4 packet. Data_20Hz['Phase_slope'] = np.zeros((n_records,n_blocks),dtype=np.int32) Data_20Hz['Spares1'] = np.zeros((n_records,n_blocks,4),dtype=np.int8) #-- CryoSat-2 External Corrections Group Geometry = {} #-- Dry Tropospheric Correction packed units (mm, 1e-3 m) Geometry['dryTrop'] = np.zeros((n_records),dtype=np.int32) #-- Wet Tropospheric Correction packed units (mm, 1e-3 m) Geometry['wetTrop'] = np.zeros((n_records),dtype=np.int32) #-- Inverse Barometric Correction packed units (mm, 1e-3 m) Geometry['InvBar'] = np.zeros((n_records),dtype=np.int32) #-- Delta Inverse Barometric Correction packed units (mm, 1e-3 m) Geometry['DAC'] = np.zeros((n_records),dtype=np.int32) #-- GIM Ionospheric Correction packed units (mm, 1e-3 m) Geometry['Iono_GIM'] = np.zeros((n_records),dtype=np.int32) #-- Model Ionospheric Correction packed units (mm, 1e-3 m) Geometry['Iono_model'] = np.zeros((n_records),dtype=np.int32) #-- Ocean tide Correction packed units (mm, 1e-3 m) Geometry['ocTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) Geometry['lpeTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Ocean loading tide Correction packed units (mm, 1e-3 m) Geometry['olTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Solid Earth tide Correction packed units (mm, 1e-3 m) Geometry['seTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Geocentric Polar tide Correction packed units (mm, 1e-3 m) Geometry['gpTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Surface Type: enumerated key to classify surface at nadir #-- 0 = Open Ocean #-- 1 = Closed Sea #-- 2 = Continental Ice #-- 3 = Land Geometry['Surf_type'] = np.zeros((n_records),dtype=np.uint32) Geometry['Spare1'] = np.zeros((n_records,4),dtype=np.int8) #-- Corrections Status Flag Geometry['Corr_status'] = np.zeros((n_records),dtype=np.uint32) #-- Correction Error Flag Geometry['Corr_error'] = np.zeros((n_records),dtype=np.uint32) Geometry['Spare2'] = np.zeros((n_records,4),dtype=np.int8) #-- CryoSat-2 Average Waveforms Groups Waveform_1Hz = {} if (MODE == 'LRM'): #-- Low-Resolution Mode #-- Data Record Time (MDSR Time Stamp) Waveform_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) Waveform_1Hz['Second'] = np.zeros((n_records),dtype=np.uint32) Waveform_1Hz['Micsec'] = np.zeros((n_records),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lat'] = np.zeros((n_records),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lon'] = np.zeros((n_records),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Waveform_1Hz['Alt'] = np.zeros((n_records),dtype=np.int32) #-- Window Delay (two-way) corrected for instrument delays Waveform_1Hz['TD'] = np.zeros((n_records),dtype=np.int64) #-- 1 Hz Averaged Power Echo Waveform Waveform_1Hz['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_1Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Echo Scale Power (a power of 2) Waveform_1Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Number of echoes averaged Waveform_1Hz['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) Waveform_1Hz['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (MODE == 'SAR'): #-- SAR Mode #-- Data Record Time (MDSR Time Stamp) Waveform_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) Waveform_1Hz['Second'] = np.zeros((n_records),dtype=np.uint32) Waveform_1Hz['Micsec'] = np.zeros((n_records),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lat'] = np.zeros((n_records),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lon'] = np.zeros((n_records),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Waveform_1Hz['Alt'] = np.zeros((n_records),dtype=np.int32) #-- Window Delay (two-way) corrected for instrument delays Waveform_1Hz['TD'] = np.zeros((n_records),dtype=np.int64) #-- 1 Hz Averaged Power Echo Waveform Waveform_1Hz['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_1Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Echo Scale Power (a power of 2) Waveform_1Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Number of echoes averaged Waveform_1Hz['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) Waveform_1Hz['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (MODE == 'SIN'): #-- SARIN Mode #-- Same as the LRM/SAR groups but the waveform array is 512 bins instead of #-- 128 and the number of echoes averaged is different. #-- Data Record Time (MDSR Time Stamp) Waveform_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) Waveform_1Hz['Second'] = np.zeros((n_records),dtype=np.uint32) Waveform_1Hz['Micsec'] = np.zeros((n_records),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lat'] = np.zeros((n_records),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lon'] = np.zeros((n_records),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Waveform_1Hz['Alt'] = np.zeros((n_records),dtype=np.int32) #-- Window Delay (two-way) corrected for instrument delays Waveform_1Hz['TD'] = np.zeros((n_records),dtype=np.int64) #-- 1 Hz Averaged Power Echo Waveform Waveform_1Hz['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_1Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Echo Scale Power (a power of 2) Waveform_1Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Number of echoes averaged Waveform_1Hz['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) Waveform_1Hz['Flags'] = np.zeros((n_records),dtype=np.uint16) #-- CryoSat-2 Waveforms Groups #-- Beam Behavior Parameters Beam_Behavior = {} #-- Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- 3rd moment: providing the degree of asymmetry of the range integrated #-- stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) #-- 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-5),dtype=np.int16) #-- CryoSat-2 mode specific waveforms Waveform_20Hz = {} if (MODE == 'LRM'): #-- Low-Resolution Mode #-- Averaged Power Echo Waveform [128] Waveform_20Hz['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_20Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Echo Scale Power (a power of 2 to scale echo to Watts) Waveform_20Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Number of echoes averaged Waveform_20Hz['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) Waveform_20Hz['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (MODE == 'SAR'): #-- SAR Mode #-- Averaged Power Echo Waveform [128] Waveform_20Hz['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_20Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Echo Scale Power (a power of 2 to scale echo to Watts) Waveform_20Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Number of echoes averaged Waveform_20Hz['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) Waveform_20Hz['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Beam behaviour parameters Waveform_20Hz['Beam'] = Beam_Behavior elif (MODE == 'SIN'): #-- SARIN Mode #-- Averaged Power Echo Waveform [512] Waveform_20Hz['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_20Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Echo Scale Power (a power of 2 to scale echo to Watts) Waveform_20Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Number of echoes averaged Waveform_20Hz['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) Waveform_20Hz['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Beam behaviour parameters Waveform_20Hz['Beam'] = Beam_Behavior #-- Coherence [512]: packed units (1/1000) Waveform_20Hz['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int16) #-- Phase Difference [512]: packed units (microradians) Waveform_20Hz['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int32) #-- for each record in the CryoSat file for r in range(n_records): #-- CryoSat-2 Time and Orbit Group for b in range(n_blocks): Location['Day'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Location['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Location['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) Location['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) Location['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) Location['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) #-- CryoSat-2 Measurement Group #-- Derived from instrument measurement parameters for b in range(n_blocks): Data_20Hz['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) Data_20Hz['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) #-- CryoSat-2 External Corrections Group Geometry['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) Geometry['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) Geometry['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) Geometry['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) Geometry['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) #-- CryoSat-2 Average Waveforms Groups if (MODE == 'LRM'): #-- Low-Resolution Mode Waveform_1Hz['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) Waveform_1Hz['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) Waveform_1Hz['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) Waveform_1Hz['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (MODE == 'SAR'): #-- SAR Mode Waveform_1Hz['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) Waveform_1Hz['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) Waveform_1Hz['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) Waveform_1Hz['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (MODE == 'SIN'): #-- SARIN Mode Waveform_1Hz['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) Waveform_1Hz['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) Waveform_1Hz['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) Waveform_1Hz['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) #-- CryoSat-2 Waveforms Groups if (MODE == 'LRM'): #-- Low-Resolution Mode for b in range(n_blocks): Waveform_20Hz['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) Waveform_20Hz['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) elif (MODE == 'SAR'): #-- SAR Mode for b in range(n_blocks): Waveform_20Hz['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) Waveform_20Hz['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-5)) elif (MODE == 'SIN'): #-- SARIN Mode for b in range(n_blocks): Waveform_20Hz['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) Waveform_20Hz['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-5)) Waveform_20Hz['Coherence'][r,b,:] = np.fromfile(fid,dtype='>i2',count=n_SARIN_RW) Waveform_20Hz['Phase_diff'][r,b,:] = np.fromfile(fid,dtype='>i4',count=n_SARIN_RW) #-- Bind all the bits of the l1b_mds together into a single dictionary CS_l1b_mds = {} CS_l1b_mds['Location'] = Location CS_l1b_mds['Data'] = Data_20Hz CS_l1b_mds['Geometry'] = Geometry CS_l1b_mds['Waveform_1Hz'] = Waveform_1Hz CS_l1b_mds['Waveform_20Hz'] = Waveform_20Hz #-- return the output dictionary return CS_l1b_mds #-- PURPOSE: Initiate L1b MDS variables for CryoSat Baseline C def cryosat_baseline_C(fid, n_records, MODE): n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 #-- CryoSat-2 Time and Orbit Group Location = {} #-- Time: day part Location['Day'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Time: second part Location['Second'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- Time: microsecond part Location['Micsec'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- USO correction factor Location['USO_Corr'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Mode ID Location['Mode_ID'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Source sequence counter Location['SSC'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Instrument configuration Location['Inst_config'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- Record Counter Location['Rec_Count'] = np.zeros((n_records,n_blocks),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Location['Lat'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Location['Lon'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Location['Alt'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) Location['Alt_rate'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) #-- ITRF= International Terrestrial Reference Frame Location['Sat_velocity'] = np.zeros((n_records,n_blocks,3),dtype=np.int32) #-- Real beam direction vector. In CRF: packed units (micro-m/s, 1e-6 m/s) #-- CRF= CryoSat Reference Frame. Location['Real_beam'] = np.zeros((n_records,n_blocks,3),dtype=np.int32) #-- Interferometric baseline vector. In CRF: packed units (micro-m/s, 1e-6 m/s) Location['Baseline'] = np.zeros((n_records,n_blocks,3),dtype=np.int32) #-- Star Tracker ID Location['ST_ID'] = np.zeros((n_records,n_blocks),dtype=np.int16) #-- Antenna Bench Roll Angle (Derived from star trackers) #-- packed units (0.1 micro-degree, 1e-7 degrees) Location['Roll'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Antenna Bench Pitch Angle (Derived from star trackers) #-- packed units (0.1 micro-degree, 1e-7 degrees) Location['Pitch'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Antenna Bench Yaw Angle (Derived from star trackers) #-- packed units (0.1 micro-degree, 1e-7 degrees) Location['Yaw'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Measurement Confidence Data Flags #-- Generally the MCD flags indicate problems when set #-- If MCD is 0 then no problems or non-nominal conditions were detected #-- Serious errors are indicated by setting bit 31 Location['MCD'] = np.zeros((n_records,n_blocks),dtype=np.uint32) Location['Spares'] = np.zeros((n_records,n_blocks,2),dtype=np.int16) #-- CryoSat-2 Measurement Group #-- Derived from instrument measurement parameters Data_20Hz = {} #-- Window Delay reference (two-way) corrected for instrument delays Data_20Hz['TD'] = np.zeros((n_records,n_blocks),dtype=np.int64) #-- H0 Initial Height Word from telemetry Data_20Hz['H_0'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- COR2 Height Rate: on-board tracker height rate over the radar cycle Data_20Hz['COR2'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Coarse Range Word (LAI) derived from telemetry Data_20Hz['LAI'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Fine Range Word (FAI) derived from telemetry Data_20Hz['FAI'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. #-- Gain calibration corrections are applied (Sum of AGC stages 1 and 2 #-- plus the corresponding corrections) (dB/100) Data_20Hz['AGC_CH1'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. #-- Gain calibration corrections are applied (dB/100) Data_20Hz['AGC_CH2'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) Data_20Hz['TR_gain_CH1'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) Data_20Hz['TR_gain_CH2'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Transmit Power in microWatts Data_20Hz['TX_Power'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Doppler range correction: Radial component (mm) #-- computed for the component of satellite velocity in the nadir direction Data_20Hz['Doppler_range'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Range Correction: transmit-receive antenna (mm) #-- Calibration correction to range on channel 1 computed from CAL1. Data_20Hz['TR_inst_range'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Range Correction: receive-only antenna (mm) #-- Calibration correction to range on channel 2 computed from CAL1. Data_20Hz['R_inst_range'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Gain Correction: transmit-receive antenna (dB/100) #-- Calibration correction to gain on channel 1 computed from CAL1 Data_20Hz['TR_inst_gain'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Instrument Gain Correction: receive-only (dB/100) #-- Calibration correction to gain on channel 2 computed from CAL1 Data_20Hz['R_inst_gain'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Internal Phase Correction (microradians) Data_20Hz['Internal_phase'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- External Phase Correction (microradians) Data_20Hz['External_phase'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Noise Power measurement (dB/100) Data_20Hz['Noise_power'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Phase slope correction (microradians) #-- Computed from the CAL-4 packets during the azimuth impulse response #-- amplitude (SARIN only). Set from the latest available CAL-4 packet. Data_20Hz['Phase_slope'] = np.zeros((n_records,n_blocks),dtype=np.int32) Data_20Hz['Spares1'] = np.zeros((n_records,n_blocks,4),dtype=np.int8) #-- CryoSat-2 External Corrections Group Geometry = {} #-- Dry Tropospheric Correction packed units (mm, 1e-3 m) Geometry['dryTrop'] = np.zeros((n_records),dtype=np.int32) #-- Wet Tropospheric Correction packed units (mm, 1e-3 m) Geometry['wetTrop'] = np.zeros((n_records),dtype=np.int32) #-- Inverse Barometric Correction packed units (mm, 1e-3 m) Geometry['InvBar'] = np.zeros((n_records),dtype=np.int32) #-- Delta Inverse Barometric Correction packed units (mm, 1e-3 m) Geometry['DAC'] = np.zeros((n_records),dtype=np.int32) #-- GIM Ionospheric Correction packed units (mm, 1e-3 m) Geometry['Iono_GIM'] = np.zeros((n_records),dtype=np.int32) #-- Model Ionospheric Correction packed units (mm, 1e-3 m) Geometry['Iono_model'] = np.zeros((n_records),dtype=np.int32) #-- Ocean tide Correction packed units (mm, 1e-3 m) Geometry['ocTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) Geometry['lpeTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Ocean loading tide Correction packed units (mm, 1e-3 m) Geometry['olTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Solid Earth tide Correction packed units (mm, 1e-3 m) Geometry['seTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Geocentric Polar tide Correction packed units (mm, 1e-3 m) Geometry['gpTideElv'] = np.zeros((n_records),dtype=np.int32) #-- Surface Type: enumerated key to classify surface at nadir #-- 0 = Open Ocean #-- 1 = Closed Sea #-- 2 = Continental Ice #-- 3 = Land Geometry['Surf_type'] = np.zeros((n_records),dtype=np.uint32) Geometry['Spare1'] = np.zeros((n_records,4),dtype=np.int8) #-- Corrections Status Flag Geometry['Corr_status'] = np.zeros((n_records),dtype=np.uint32) #-- Correction Error Flag Geometry['Corr_error'] = np.zeros((n_records),dtype=np.uint32) Geometry['Spare2'] = np.zeros((n_records,4),dtype=np.int8) #-- CryoSat-2 Average Waveforms Groups Waveform_1Hz = {} if (MODE == 'LRM'): #-- Low-Resolution Mode #-- Data Record Time (MDSR Time Stamp) Waveform_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) Waveform_1Hz['Second'] = np.zeros((n_records),dtype=np.uint32) Waveform_1Hz['Micsec'] = np.zeros((n_records),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lat'] = np.zeros((n_records),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lon'] = np.zeros((n_records),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Waveform_1Hz['Alt'] = np.zeros((n_records),dtype=np.int32) #-- Window Delay (two-way) corrected for instrument delays Waveform_1Hz['TD'] = np.zeros((n_records),dtype=np.int64) #-- 1 Hz Averaged Power Echo Waveform Waveform_1Hz['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_1Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Echo Scale Power (a power of 2 to scale echo to Watts) Waveform_1Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Number of echoes averaged Waveform_1Hz['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) Waveform_1Hz['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (MODE == 'SAR'): #-- SAR Mode #-- Data Record Time (MDSR Time Stamp) Waveform_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) Waveform_1Hz['Second'] = np.zeros((n_records),dtype=np.uint32) Waveform_1Hz['Micsec'] = np.zeros((n_records),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lat'] = np.zeros((n_records),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lon'] = np.zeros((n_records),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Waveform_1Hz['Alt'] = np.zeros((n_records),dtype=np.int32) #-- Window Delay (two-way) corrected for instrument delays Waveform_1Hz['TD'] = np.zeros((n_records),dtype=np.int64) #-- 1 Hz Averaged Power Echo Waveform Waveform_1Hz['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_1Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Echo Scale Power (a power of 2 to scale echo to Watts) Waveform_1Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Number of echoes averaged Waveform_1Hz['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) Waveform_1Hz['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (MODE == 'SIN'): #-- SARIN Mode #-- Same as the LRM/SAR groups but the waveform array is 512 bins instead of #-- 128 and the number of echoes averaged is different. #-- Data Record Time (MDSR Time Stamp) Waveform_1Hz['Day'] = np.zeros((n_records),dtype=np.int32) Waveform_1Hz['Second'] = np.zeros((n_records),dtype=np.uint32) Waveform_1Hz['Micsec'] = np.zeros((n_records),dtype=np.uint32) #-- Lat: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lat'] = np.zeros((n_records),dtype=np.int32) #-- Lon: packed units (0.1 micro-degree, 1e-7 degrees) Waveform_1Hz['Lon'] = np.zeros((n_records),dtype=np.int32) #-- Alt: packed units (mm, 1e-3 m) #-- Altitude of COG above reference ellipsoid (interpolated value) Waveform_1Hz['Alt'] = np.zeros((n_records),dtype=np.int32) #-- Window Delay (two-way) corrected for instrument delays Waveform_1Hz['TD'] = np.zeros((n_records),dtype=np.int64) #-- 1 Hz Averaged Power Echo Waveform Waveform_1Hz['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_1Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Echo Scale Power (a power of 2 to scale echo to Watts) Waveform_1Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) #-- Number of echoes averaged Waveform_1Hz['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) Waveform_1Hz['Flags'] = np.zeros((n_records),dtype=np.uint16) #-- CryoSat-2 Waveforms Groups #-- Beam Behavior Parameters Beam_Behavior = {} #-- Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- 3rd moment: providing the degree of asymmetry of the range integrated #-- stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) #-- 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) #-- Standard deviation as a function of boresight angle (microradians) Beam_Behavior['SD_boresight_angle'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Stack Center angle as a function of boresight angle (microradians) Beam_Behavior['Center_boresight_angle'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-7),dtype=np.int16) #-- CryoSat-2 mode specific waveform variables Waveform_20Hz = {} if (MODE == 'LRM'): #-- Low-Resolution Mode #-- Averaged Power Echo Waveform [128] Waveform_20Hz['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_20Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Echo Scale Power (a power of 2) Waveform_20Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Number of echoes averaged Waveform_20Hz['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) Waveform_20Hz['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (MODE == 'SAR'): #-- SAR Mode #-- Averaged Power Echo Waveform [256] Waveform_20Hz['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_BC_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_20Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Echo Scale Power (a power of 2) Waveform_20Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Number of echoes averaged Waveform_20Hz['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) Waveform_20Hz['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Beam behaviour parameters Waveform_20Hz['Beam'] = Beam_Behavior elif (MODE == 'SIN'): #-- SARIN Mode #-- Averaged Power Echo Waveform [1024] Waveform_20Hz['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.uint16) #-- Echo Scale Factor (to scale echo to watts) Waveform_20Hz['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Echo Scale Power (a power of 2) Waveform_20Hz['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) #-- Number of echoes averaged Waveform_20Hz['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) Waveform_20Hz['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) #-- Beam behaviour parameters Waveform_20Hz['Beam'] = Beam_Behavior #-- Coherence [1024]: packed units (1/1000) Waveform_20Hz['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.int16) #-- Phase Difference [1024]: packed units (microradians) Waveform_20Hz['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_BC_RW),dtype=np.int32) #-- for each record in the CryoSat file for r in range(n_records): #-- CryoSat-2 Time and Orbit Group for b in range(n_blocks): Location['Day'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Location['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Location['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) Location['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) Location['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) Location['ST_ID'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Location['Roll'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Pitch'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['Yaw'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Location['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) Location['Spares'][r,b,:] = np.fromfile(fid,dtype='>i2',count=2) #-- CryoSat-2 Measurement Group #-- Derived from instrument measurement parameters for b in range(n_blocks): Data_20Hz['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) Data_20Hz['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Data_20Hz['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) #-- CryoSat-2 External Corrections Group Geometry['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) Geometry['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) Geometry['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) Geometry['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) Geometry['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) Geometry['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) #-- CryoSat-2 Average Waveforms Groups if (MODE == 'LRM'): #-- Low-Resolution Mode Waveform_1Hz['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) Waveform_1Hz['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) Waveform_1Hz['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) Waveform_1Hz['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (MODE == 'SAR'): #-- SAR Mode Waveform_1Hz['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) Waveform_1Hz['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_RW) Waveform_1Hz['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) Waveform_1Hz['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) elif (MODE == 'SIN'): #-- SARIN Mode Waveform_1Hz['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) Waveform_1Hz['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Alt'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['TD'][r] = np.fromfile(fid,dtype='>i8',count=1) Waveform_1Hz['Waveform'][r,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_RW) Waveform_1Hz['Linear_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['Power2_Wfm_Multiplier'][r] = np.fromfile(fid,dtype='>i4',count=1) Waveform_1Hz['N_avg_echoes'][r] = np.fromfile(fid,dtype='>u2',count=1) Waveform_1Hz['Flags'][r] = np.fromfile(fid,dtype='>u2',count=1) #-- CryoSat-2 Waveforms Groups if (MODE == 'LRM'): #-- Low-Resolution Mode for b in range(n_blocks): Waveform_20Hz['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_LRM_RW) Waveform_20Hz['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) elif (MODE == 'SAR'): #-- SAR Mode for b in range(n_blocks): Waveform_20Hz['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SAR_BC_RW) Waveform_20Hz['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['SD_boresight_angle'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Center_boresight_angle'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-7)) elif (MODE == 'SIN'): #-- SARIN Mode for b in range(n_blocks): Waveform_20Hz['Waveform'][r,b,:] = np.fromfile(fid,dtype='>u2',count=n_SARIN_BC_RW) Waveform_20Hz['Linear_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['Power2_Wfm_Multiplier'][r,b] = np.fromfile(fid,dtype='>i4',count=1) Waveform_20Hz['N_avg_echoes'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Flags'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['SD'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Center'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Amplitude'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Skewness'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Kurtosis'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['SD_boresight_angle'][r,b] = np.fromfile(fid,dtype='>u2',count=1) Waveform_20Hz['Beam']['Center_boresight_angle'][r,b] = np.fromfile(fid,dtype='>i2',count=1) Waveform_20Hz['Beam']['Spare'][r,b,:] = np.fromfile(fid,dtype='>i2',count=(n_BeamBehaviourParams-7)) Waveform_20Hz['Coherence'][r,b,:] = np.fromfile(fid,dtype='>i2',count=n_SARIN_BC_RW) Waveform_20Hz['Phase_diff'][r,b,:] = np.fromfile(fid,dtype='>i4',count=n_SARIN_BC_RW) #-- Bind all the bits of the l1b_mds together into a single dictionary CS_l1b_mds = {} CS_l1b_mds['Location'] = Location CS_l1b_mds['Data'] = Data_20Hz CS_l1b_mds['Geometry'] = Geometry CS_l1b_mds['Waveform_1Hz'] = Waveform_1Hz CS_l1b_mds['Waveform_20Hz'] = Waveform_20Hz #-- return the output dictionary return CS_l1b_mds #-- PURPOSE: Initiate L1b MDS variables for CryoSat Baseline D (netCDF4) def cryosat_baseline_D(full_filename, MODE, UNPACK=False): #-- open netCDF4 file for reading fid = netCDF4.Dataset(os.path.expanduser(full_filename),'r') #-- use original unscaled units unless UNPACK=True fid.set_auto_scale(UNPACK) #-- get dimensions ind_first_meas_20hz_01 = fid.variables['ind_first_meas_20hz_01'][:].copy() ind_meas_1hz_20_ku = fid.variables['ind_meas_1hz_20_ku'][:].copy() n_records = len(ind_first_meas_20hz_01) n_SARIN_D_RW = 1024 n_SARIN_RW = 512 n_SAR_D_RW = 256 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 #-- CryoSat-2 Time and Orbit Group Location = {} #-- MDS Time Location['Time'] = np.ma.zeros((n_records,n_blocks)) Location['Time'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) time_20_ku = fid.variables['time_20_ku'][:].copy() #-- Time: day part Location['Day'] = np.ma.zeros((n_records,n_blocks)) Location['Day'].mask = np.zeros((n_records,n_blocks),dtype=np.bool) #-- Time: second part Location['Second'] =
np.ma.zeros((n_records,n_blocks))
numpy.ma.zeros
# -*- coding: utf-8 -*- """ This module is a work in progress, as such concepts are subject to change. MAIN IDEA: `MultiTaskSamples` serves as a structure to contain and manipulate a set of samples with potentially many different types of labels and features. """ import logging import utool as ut import ubelt as ub import numpy as np from wbia import dtool as dt import pandas as pd import sklearn import sklearn.metrics import sklearn.ensemble import sklearn.impute import sklearn.pipeline import sklearn.neural_network from wbia.algo.verif import sklearn_utils print, rrr, profile = ut.inject2(__name__) logger = logging.getLogger('wbia') class XValConfig(dt.Config): _param_info_list = [ # ut.ParamInfo('type', 'StratifiedKFold'), ut.ParamInfo('type', 'StratifiedGroupKFold'), ut.ParamInfo('n_splits', 3), ut.ParamInfo( 'shuffle', True, hideif=lambda cfg: cfg['type'] == 'StratifiedGroupKFold' ), ut.ParamInfo( 'random_state', 3953056901, hideif=lambda cfg: cfg['type'] == 'StratifiedGroupKFold', ), ] @ut.reloadable_class class ClfProblem(ut.NiceRepr): def __init__(pblm): pblm.deploy_task_clfs = None pblm.eval_task_clfs = None pblm.xval_kw = XValConfig() pblm.eval_task_clfs = None pblm.task_combo_res = None pblm.verbose = True def set_pandas_options(pblm): # pd.options.display.max_rows = 10 pd.options.display.max_rows = 20 pd.options.display.max_columns = 40 pd.options.display.width = 160 pd.options.display.float_format = lambda x: '%.4f' % (x,) def set_pandas_options_low(pblm): # pd.options.display.max_rows = 10 pd.options.display.max_rows = 5 pd.options.display.max_columns = 40 pd.options.display.width = 160 pd.options.display.float_format = lambda x: '%.4f' % (x,) def set_pandas_options_normal(pblm): # pd.options.display.max_rows = 10 pd.options.display.max_rows = 20 pd.options.display.max_columns = 40 pd.options.display.width = 160 pd.options.display.float_format = lambda x: '%.4f' % (x,) def learn_evaluation_classifiers(pblm, task_keys=None, clf_keys=None, data_keys=None): """ Evaluates by learning classifiers using cross validation. Do not use this to learn production classifiers. python -m wbia.algo.verif.vsone evaluate_classifiers --db PZ_PB_RF_TRAIN --show Example: CommandLine: python -m clf_helpers learn_evaluation_classifiers Example: >>> # ENABLE_DOCTEST >>> from wbia.algo.verif.clf_helpers import * # NOQA >>> pblm = IrisProblem() >>> pblm.setup() >>> pblm.verbose = True >>> pblm.eval_clf_keys = ['Logit', 'RF'] >>> pblm.eval_task_keys = ['iris'] >>> pblm.eval_data_keys = ['learn(all)'] >>> result = pblm.learn_evaluation_classifiers() >>> res = pblm.task_combo_res['iris']['Logit']['learn(all)'] >>> res.print_report() >>> res = pblm.task_combo_res['iris']['RF']['learn(all)'] >>> res.print_report() >>> print(result) """ pblm.eval_task_clfs = ut.AutoVivification() pblm.task_combo_res = ut.AutoVivification() if task_keys is None: task_keys = pblm.eval_task_keys if data_keys is None: data_keys = pblm.eval_data_keys if clf_keys is None: clf_keys = pblm.eval_clf_keys if task_keys is None: task_keys = [pblm.primary_task_key] if data_keys is None: data_keys = [pblm.default_data_key] if clf_keys is None: clf_keys = [pblm.default_clf_key] if pblm.verbose: ut.cprint('[pblm] learn_evaluation_classifiers', color='blue') ut.cprint('[pblm] task_keys = {}'.format(task_keys)) ut.cprint('[pblm] data_keys = {}'.format(data_keys)) ut.cprint('[pblm] clf_keys = {}'.format(clf_keys)) Prog = ut.ProgPartial(freq=1, adjust=False, prehack='%s') task_prog = Prog(task_keys, label='Task') for task_key in task_prog: dataset_prog = Prog(data_keys, label='Data') for data_key in dataset_prog: clf_prog = Prog(clf_keys, label='CLF') for clf_key in clf_prog: pblm._ensure_evaluation_clf(task_key, data_key, clf_key) def _ensure_evaluation_clf(pblm, task_key, data_key, clf_key, use_cache=True): """ Learns and caches an evaluation (cross-validated) classifier and tests and caches the results. data_key = 'learn(sum,glob)' clf_key = 'RF' """ # TODO: add in params used to construct features into the cfgstr if hasattr(pblm.samples, 'sample_hashid'): ibs = pblm.infr.ibs sample_hashid = pblm.samples.sample_hashid() feat_dims = pblm.samples.X_dict[data_key].columns.values.tolist() # cfg_prefix = sample_hashid + pblm.qreq_.get_cfgstr() + feat_cfgstr est_kw1, est_kw2 = pblm._estimator_params(clf_key) param_id = ut.get_dict_hashid(est_kw1) xval_id = pblm.xval_kw.get_cfgstr() cfgstr = '_'.join( [ sample_hashid, param_id, xval_id, task_key, data_key, clf_key, ut.hashid_arr(feat_dims, 'feats'), ] ) fname = 'eval_clfres_' + ibs.dbname else: fname = 'foo' feat_dims = None cfgstr = 'bar' use_cache = False # TODO: ABI class should not be caching cacher_kw = dict(appname='vsone_rf_train', enabled=use_cache, verbose=1) cacher_clf = ub.Cacher(fname, cfgstr=cfgstr, meta=[feat_dims], **cacher_kw) data = cacher_clf.tryload() if not data: data = pblm._train_evaluation_clf(task_key, data_key, clf_key) cacher_clf.save(data) clf_list, res_list = data labels = pblm.samples.subtasks[task_key] combo_res = ClfResult.combine_results(res_list, labels) pblm.eval_task_clfs[task_key][clf_key][data_key] = clf_list pblm.task_combo_res[task_key][clf_key][data_key] = combo_res def _train_evaluation_clf(pblm, task_key, data_key, clf_key, feat_dims=None): """ Learns a cross-validated classifier on the dataset Ignore: >>> from wbia.algo.verif.vsone import * # NOQA >>> pblm = OneVsOneProblem() >>> pblm.load_features() >>> pblm.load_samples() >>> data_key = 'learn(all)' >>> task_key = 'photobomb_state' >>> clf_key = 'RF-OVR' >>> task_key = 'match_state' >>> data_key = pblm.default_data_key >>> clf_key = pblm.default_clf_key """ X_df = pblm.samples.X_dict[data_key] labels = pblm.samples.subtasks[task_key] assert np.all(labels.encoded_df.index == X_df.index) clf_partial = pblm._get_estimator(clf_key) xval_kw = pblm.xval_kw.asdict() clf_list = [] res_list = [] skf_list = pblm.samples.stratified_kfold_indices(**xval_kw) skf_prog = ut.ProgIter(skf_list, label='skf-train-eval') for train_idx, test_idx in skf_prog: X_df_train = X_df.iloc[train_idx] assert X_df_train.index.tolist() == ut.take(pblm.samples.index, train_idx) # train_uv = X_df.iloc[train_idx].index # X_train = X_df.loc[train_uv] # y_train = labels.encoded_df.loc[train_uv] if feat_dims is not None: X_df_train = X_df_train[feat_dims] X_train = X_df_train.values y_train = labels.encoded_df.iloc[train_idx].values.ravel() clf = clf_partial() clf.fit(X_train, y_train) # Note: There is a corner case where one fold doesn't get any # labels of a certain class. Because y_train is an encoded integer, # the clf.classes_ attribute will cause predictions to agree with # other classifiers trained on the same labels. # Evaluate results res = ClfResult.make_single( clf, X_df, test_idx, labels, data_key, feat_dims=feat_dims ) clf_list.append(clf) res_list.append(res) return clf_list, res_list def _external_classifier_result( pblm, clf, task_key, data_key, feat_dims=None, test_idx=None ): """ Given an external classifier (ensure its trained on disjoint data) evaluate all data on it. Args: test_idx (list): subset of this classifier to test on (defaults to all if None) """ X_df = pblm.samples.X_dict[data_key] if test_idx is None: test_idx = np.arange(len(X_df)) labels = pblm.samples.subtasks[task_key] res = ClfResult.make_single( clf, X_df, test_idx, labels, data_key, feat_dims=feat_dims ) return res def learn_deploy_classifiers(pblm, task_keys=None, clf_key=None, data_key=None): """ Learns on data without any train/validation split """ if pblm.verbose > 0: ut.cprint('[pblm] learn_deploy_classifiers', color='blue') if clf_key is None: clf_key = pblm.default_clf_key if data_key is None: data_key = pblm.default_data_key if task_keys is None: task_keys = list(pblm.samples.supported_tasks()) if pblm.deploy_task_clfs is None: pblm.deploy_task_clfs = ut.AutoVivification() Prog = ut.ProgPartial(freq=1, adjust=False, prehack='%s') task_prog = Prog(task_keys, label='Task') task_clfs = {} for task_key in task_prog: clf = pblm._train_deploy_clf(task_key, data_key, clf_key) task_clfs[task_key] = clf pblm.deploy_task_clfs[task_key][clf_key][data_key] = clf return task_clfs def _estimator_params(pblm, clf_key): est_type = clf_key.split('-')[0] if est_type in {'RF', 'RandomForest'}: est_kw1 = { # 'max_depth': 4, 'bootstrap': True, 'class_weight': None, 'criterion': 'entropy', 'max_features': 'sqrt', # 'max_features': None, 'min_samples_leaf': 5, 'min_samples_split': 2, # 'n_estimators': 64, 'n_estimators': 256, } # Hack to only use missing values if we have the right sklearn if 'missing_values' in ut.get_func_kwargs( sklearn.ensemble.RandomForestClassifier.__init__ ): est_kw1['missing_values'] = np.nan est_kw2 = { 'random_state': 3915904814, 'verbose': 0, 'n_jobs': -1, } elif est_type in {'SVC', 'SVM'}: est_kw1 = dict(kernel='linear') est_kw2 = {} elif est_type in {'Logit', 'LogisticRegression'}: est_kw1 = {} est_kw2 = {} elif est_type in {'MLP'}: est_kw1 = dict( activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(10, 10), learning_rate='constant', learning_rate_init=0.001, max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=3915904814, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, warm_start=False, ) est_kw2 = dict(verbose=False) else: raise KeyError('Unknown Estimator') return est_kw1, est_kw2 def _get_estimator(pblm, clf_key): """ Returns sklearn classifier """ tup = clf_key.split('-') wrap_type = None if len(tup) == 1 else tup[1] est_type = tup[0] multiclass_wrapper = { None: ut.identity, 'OVR': sklearn.multiclass.OneVsRestClassifier, 'OVO': sklearn.multiclass.OneVsOneClassifier, }[wrap_type] est_class = { 'RF': sklearn.ensemble.RandomForestClassifier, 'SVC': sklearn.svm.SVC, 'Logit': sklearn.linear_model.LogisticRegression, 'MLP': sklearn.neural_network.MLPClassifier, }[est_type] est_kw1, est_kw2 = pblm._estimator_params(est_type) est_params = ut.merge_dicts(est_kw1, est_kw2) # steps = [] # steps.append((est_type, est_class(**est_params))) # if wrap_type is not None: # steps.append((wrap_type, multiclass_wrapper)) if est_type == 'MLP': def clf_partial(): pipe = sklearn.pipeline.Pipeline( [ ('inputer', sklearn.impute.SimpleImputer(strategy='mean')), # ('scale', sklearn.preprocessing.StandardScaler), ('est', est_class(**est_params)), ] ) return multiclass_wrapper(pipe) elif est_type == 'Logit': def clf_partial(): pipe = sklearn.pipeline.Pipeline( [ ('inputer', sklearn.impute.SimpleImputer(strategy='mean')), ('est', est_class(**est_params)), ] ) return multiclass_wrapper(pipe) else: def clf_partial(): return multiclass_wrapper(est_class(**est_params)) return clf_partial def _train_deploy_clf(pblm, task_key, data_key, clf_key): X_df = pblm.samples.X_dict[data_key] labels = pblm.samples.subtasks[task_key] assert np.all(labels.encoded_df.index == X_df.index) clf_partial = pblm._get_estimator(clf_key) logger.info( 'Training deployment {} classifier on {} for {}'.format( clf_key, data_key, task_key ) ) clf = clf_partial() index = X_df.index X = X_df.loc[index].values y = labels.encoded_df.loc[index].values.ravel() clf.fit(X, y) return clf def _optimize_rf_hyperparams(pblm, data_key=None, task_key=None): """ helper script I've only run interactively Example: >>> # DISABLE_DOCTEST >>> from wbia.algo.verif.vsone import * # NOQA >>> pblm = OneVsOneProblem.from_empty('PZ_PB_RF_TRAIN') #>>> pblm = OneVsOneProblem.from_empty('GZ_Master1') >>> pblm.load_samples() >>> pblm.load_features() >>> pblm.build_feature_subsets() >>> data_key=None >>> task_key=None """ from sklearn.model_selection import RandomizedSearchCV # NOQA from sklearn.model_selection import GridSearchCV # NOQA from sklearn.ensemble import RandomForestClassifier from wbia.algo.verif import sklearn_utils if data_key is None: data_key = pblm.default_data_key if task_key is None: task_key = pblm.primary_task_key # Load data X = pblm.samples.X_dict[data_key].values y = pblm.samples.subtasks[task_key].y_enc groups = pblm.samples.group_ids # Define estimator and parameter search space grid = { 'bootstrap': [True, False], 'class_weight': [None, 'balanced'], 'criterion': ['entropy', 'gini'], # 'max_features': ['sqrt', 'log2'], 'max_features': ['sqrt'], 'min_samples_leaf': list(range(2, 11)), 'min_samples_split': list(range(2, 11)), 'n_estimators': [8, 64, 128, 256, 512, 1024], } est = RandomForestClassifier(missing_values=np.nan) if False: # debug params = ut.util_dict.all_dict_combinations(grid)[0] est.set_params(verbose=10, n_jobs=1, **params) est.fit(X=X, y=y) cv = sklearn_utils.StratifiedGroupKFold(n_splits=3) if True: n_iter = 25 SearchCV = ut.partial(RandomizedSearchCV, n_iter=n_iter) else: n_iter = ut.prod(map(len, grid.values())) SearchCV = GridSearchCV search = SearchCV(est, grid, cv=cv, verbose=10) n_cpus = ut.num_cpus() thresh = n_cpus * 1.5 n_jobs_est = 1 n_jobs_ser = min(n_cpus, n_iter) if n_iter < thresh: n_jobs_est = int(max(1, thresh / n_iter)) est.set_params(n_jobs=n_jobs_est) search.set_params(n_jobs=n_jobs_ser) search.fit(X=X, y=y, groups=groups) res = search.cv_results_.copy() alias = ut.odict( [ ('rank_test_score', 'rank'), ('mean_test_score', 'μ-test'), ('std_test_score', 'σ-test'), ('mean_train_score', 'μ-train'), ('std_train_score', 'σ-train'), ('mean_fit_time', 'fit_time'), ('params', 'params'), ] ) res = ut.dict_subset(res, alias.keys()) cvresult_df = pd.DataFrame(res).rename(columns=alias) cvresult_df = cvresult_df.sort_values('rank').reset_index(drop=True) params = pd.DataFrame.from_dict(cvresult_df['params'].values.tolist()) logger.info('Varied params:') logger.info(ut.repr4(ut.map_vals(set, params.to_dict('list')))) logger.info('Ranked Params') logger.info(params) logger.info('Ranked scores on development set:') logger.info(cvresult_df) logger.info('Best parameters set found on hyperparam set:') logger.info('best_params_ = %s' % (ut.repr4(search.best_params_),)) logger.info('Fastest params') cvresult_df.loc[cvresult_df['fit_time'].idxmin()]['params'] def _dev_calib(pblm): """ interactive script only """ from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.calibration import calibration_curve from sklearn.metrics import log_loss, brier_score_loss # Load data data_key = pblm.default_data_key task_key = pblm.primary_task_key X = pblm.samples.X_dict[data_key].values y = pblm.samples.subtasks[task_key].y_enc groups = pblm.samples.group_ids # Split into test/train/valid cv = sklearn_utils.StratifiedGroupKFold(n_splits=2) test_idx, train_idx = next(cv.split(X, y, groups)) # valid_idx = train_idx[0::2] # train_idx = train_idx[1::2] # train_valid_idx = np.hstack([train_idx, valid_idx]) # Train Uncalibrated RF est_kw = pblm._estimator_params('RF')[0] uncal_clf = RandomForestClassifier(**est_kw) uncal_clf.fit(X[train_idx], y[train_idx]) uncal_probs = uncal_clf.predict_proba(X[test_idx]).T[1] uncal_score = log_loss(y[test_idx] == 1, uncal_probs) uncal_brier = brier_score_loss(y[test_idx] == 1, uncal_probs) # Train Calibrated RF method = 'isotonic' if len(test_idx) > 2000 else 'sigmoid' precal_clf = RandomForestClassifier(**est_kw) # cv = sklearn_utils.StratifiedGroupKFold(n_splits=3) cal_clf = CalibratedClassifierCV(precal_clf, cv=2, method=method) cal_clf.fit(X[train_idx], y[train_idx]) cal_probs = cal_clf.predict_proba(X[test_idx]).T[1] cal_score = log_loss(y[test_idx] == 1, cal_probs) cal_brier = brier_score_loss(y[test_idx] == 1, cal_probs) logger.info('cal_brier = %r' % (cal_brier,)) logger.info('uncal_brier = %r' % (uncal_brier,)) logger.info('uncal_score = %r' % (uncal_score,)) logger.info('cal_score = %r' % (cal_score,)) import wbia.plottool as pt ut.qtensure() pt.figure() ax = pt.gca() y_test = y[test_idx] == 1 fraction_of_positives, mean_predicted_value = calibration_curve( y_test, uncal_probs, n_bins=10 ) ax.plot([0, 1], [0, 1], 'k:', label='Perfectly calibrated') ax.plot( mean_predicted_value, fraction_of_positives, 's-', label='%s (%1.3f)' % ('uncal-RF', uncal_brier), ) fraction_of_positives, mean_predicted_value = calibration_curve( y_test, cal_probs, n_bins=10 ) ax.plot( mean_predicted_value, fraction_of_positives, 's-', label='%s (%1.3f)' % ('cal-RF', cal_brier), ) pt.legend() @ut.reloadable_class class ClfResult(ut.NiceRepr): r""" Handles evaluation statistics for a multiclass classifier trained on a specific dataset with specific labels. """ # Attributes that identify the task and data the classifier is evaluated on _key_attrs = ['task_key', 'data_key', 'class_names'] # Attributes about results and labels of individual samples _datafame_attrs = ['probs_df', 'probhats_df', 'target_bin_df', 'target_enc_df'] def __init__(res): pass def __nice__(res): return '{}, {}, {}'.format(res.task_key, res.data_key, len(res.index)) @property def index(res): return res.probs_df.index @classmethod def make_single(ClfResult, clf, X_df, test_idx, labels, data_key, feat_dims=None): """ Make a result for a single cross validiation subset """ X_df_test = X_df.iloc[test_idx] if feat_dims is not None: X_df_test = X_df_test[feat_dims] index = X_df_test.index # clf_probs = clf.predict_proba(X_df_test) # index = pd.Series(test_idx, name='test_idx') # Ensure shape corresponds with all classes def align_cols(arr, arr_cols, target_cols): import utool as ut alignx = ut.list_alignment(arr_cols, target_cols, missing=True) aligned_arrT = ut.none_take(arr.T, alignx) aligned_arrT = ut.replace_nones(aligned_arrT, np.zeros(len(arr))) aligned_arr = np.vstack(aligned_arrT).T return aligned_arr res = ClfResult() res.task_key = labels.task_name res.data_key = data_key res.class_names = ut.lmap(str, labels.class_names) res.feat_dims = feat_dims res.probs_df = sklearn_utils.predict_proba_df(clf, X_df_test, res.class_names) res.target_bin_df = labels.indicator_df.iloc[test_idx] res.target_enc_df = labels.encoded_df.iloc[test_idx] if hasattr(clf, 'estimators_') and labels.n_classes > 2: # The n-th estimator in the OVR classifier predicts the prob of the # n-th class (as label 1). probs_hat = np.hstack( [est.predict_proba(X_df_test)[:, 1:2] for est in clf.estimators_] ) res.probhats_df = pd.DataFrame( align_cols(probs_hat, clf.classes_, labels.classes_), index=index, columns=res.class_names, ) # In the OVR-case, ideally things will sum to 1, but when they # don't normalization happens. An Z-value of more than 1 means # overconfidence, and under 0 means underconfidence. res.confidence_ratio = res.probhats_df.sum(axis=1) else: res.probhats_df = None return res def compress(res, flags): res2 = ClfResult() res2.task_key = res.task_key res2.data_key = res.data_key res2.class_names = res.class_names res2.probs_df = res.probs_df[flags] res2.target_bin_df = res.target_bin_df[flags] res2.target_enc_df = res.target_enc_df[flags] if res.probhats_df is None: res2.probhats_df = None else: res2.probhats_df = res.probhats_df[flags] # res2.confidence_ratio = res.confidence_ratio[flags] return res2 @classmethod def combine_results(ClfResult, res_list, labels=None): """ Combine results from cross validation runs into a single result representing the performance of the entire dataset """ # Ensure that res_lists are not overlapping for r1, r2 in ut.combinations(res_list, 2): assert ( len(r1.index.intersection(r2.index)) == 0 ), 'ClfResult dataframes must be disjoint' # sanity check for r in res_list: assert np.all(r.index == r.probs_df.index) assert np.all(r.index == r.target_bin_df.index) assert np.all(r.index == r.target_enc_df.index) # Combine them with pandas res = ClfResult() res0 = res_list[0] # Transfer single attributes (which should all be the same) for attr in ClfResult._key_attrs: val = getattr(res0, attr) setattr(res, attr, val) assert all( [getattr(r, attr) == val for r in res_list] ), 'ClfResult with different key attributes are incompatible' # Combine dataframe properties (which should all have disjoint indices) for attr in ClfResult._datafame_attrs: if getattr(res0, attr) is not None: combo_attr = pd.concat([getattr(r, attr) for r in res_list]) setattr(res, attr, combo_attr) else: setattr(res, attr, None) for attr in ClfResult._datafame_attrs: val = getattr(res, attr) if val is not None: assert np.all(res.index == val.index), 'index got weird' return res def hardness_analysis(res, samples, infr=None, method='argmax'): """ samples = pblm.samples # TODO MWE with sklearn data # ClfResult.make_single(ClfResult, clf, X_df, test_idx, labels, # data_key, feat_dims=None): import sklearn.datasets iris = sklearn.datasets.load_iris() # TODO: make this setup simpler pblm = ClfProblem() task_key, clf_key, data_key = 'iris', 'RF', 'learn(all)' X_df = pd.DataFrame(iris.data, columns=iris.feature_names) samples = MultiTaskSamples(X_df.index) samples.apply_indicators({'iris': {name: iris.target == idx for idx, name in enumerate(iris.target_names)}}) samples.X_dict = {'learn(all)': X_df} pblm.samples = samples pblm.xval_kw['type'] = 'StratifiedKFold' clf_list, res_list = pblm._train_evaluation_clf( task_key, data_key, clf_key) labels = pblm.samples.subtasks[task_key] res = ClfResult.combine_results(res_list, labels) res.get_thresholds('mcc', 'maximize') predict_method = 'argmax' """ meta = {} easiness = ut.ziptake(res.probs_df.values, res.target_enc_df.values) # pred = sklearn_utils.predict_from_probs(res.probs_df, predict_method) if method == 'max-mcc': method = res.get_thresholds('mcc', 'maximize') pred = sklearn_utils.predict_from_probs(res.probs_df, method, force=True) meta['easiness'] = np.array(easiness).ravel() meta['hardness'] = 1 - meta['easiness'] meta['aid1'] = res.probs_df.index.get_level_values(0) meta['aid2'] = res.probs_df.index.get_level_values(1) # meta['aid1'] = samples.aid_pairs.T[0].take(res.probs_df.index.values) # meta['aid2'] = samples.aid_pairs.T[1].take(res.probs_df.index.values) # meta['pred'] = res.probs_df.values.argmax(axis=1) meta['pred'] = pred.values meta['real'] = res.target_enc_df.values.ravel() meta['failed'] = meta['pred'] != meta['real'] meta = pd.DataFrame(meta) meta = meta.set_index(['aid1', 'aid2'], drop=False) if infr is not None: ibs = infr.ibs edges = list(meta.index.tolist()) conf_dict = infr.get_edge_attrs( 'confidence', edges, on_missing='filter', default=ibs.const.CONFIDENCE.CODE.UNKNOWN, ) conf_df = pd.DataFrame.from_dict(conf_dict, orient='index') conf_df = conf_df[0].map(ibs.const.CONFIDENCE.CODE_TO_INT) meta = meta.assign(real_conf=conf_df) meta['real_conf'] = np.nan_to_num(meta['real_conf']).astype(np.int) meta = meta.sort_values('hardness', ascending=False) res.meta = meta return res.meta def missing_classes(res): # Find classes that were never predicted unique_predictions = np.unique(res.probs_df.values.argmax(axis=1)) n_classes = len(res.class_names) missing_classes = ut.index_complement(unique_predictions, n_classes) return missing_classes def augment_if_needed(res): """ Adds in dummy values for missing classes """ missing_classes = res.missing_classes() n_classes = len(res.class_names) y_test_enc_aug = res.target_enc_df.values y_test_bin_aug = res.target_bin_df.values clf_probs_aug = res.probs_df.values sample_weight = np.ones(len(y_test_enc_aug)) n_missing = len(missing_classes) if res.probhats_df is not None: clf_probhats_aug = res.probhats_df.values else: clf_probhats_aug = None # Check if augmentation is necessary if n_missing > 0: missing_bin = np.zeros((n_missing, n_classes)) missing_bin[(np.arange(n_missing), missing_classes)] = 1.0 missing_enc = np.array(missing_classes)[:, None] y_test_enc_aug = np.vstack([y_test_enc_aug, missing_enc]) y_test_bin_aug = np.vstack([y_test_bin_aug, missing_bin]) clf_probs_aug = np.vstack([clf_probs_aug, missing_bin]) # make sample weights where dummies have no weight sample_weight = np.hstack([sample_weight, np.full(n_missing, 0)]) if res.probhats_df is not None: clf_probhats_aug = np.vstack([clf_probhats_aug, missing_bin]) res.clf_probs = clf_probs_aug res.clf_probhats = clf_probhats_aug res.y_test_enc = y_test_enc_aug res.y_test_bin = y_test_bin_aug res.sample_weight = sample_weight def extended_clf_report(res, verbose=True): res.augment_if_needed() pred_enc = res.clf_probs.argmax(axis=1) y_pred = pred_enc y_true = res.y_test_enc sample_weight = res.sample_weight target_names = res.class_names report = sklearn_utils.classification_report2( y_true, y_pred, target_names=target_names, sample_weight=sample_weight, verbose=verbose, ) return report def print_report(res): res.augment_if_needed() pred_enc = res.clf_probs.argmax(axis=1) res.extended_clf_report() report = sklearn.metrics.classification_report( y_true=res.y_test_enc, y_pred=pred_enc, target_names=res.class_names, sample_weight=res.sample_weight, ) logger.info('Precision/Recall Report:') logger.info(report) def get_thresholds(res, metric='mcc', value='maximize'): """ get_metric = 'thresholds' at_metric = metric = 'mcc' at_value = value = 'maximize' a = [] b = [] for x in np.linspace(0, 1, 1000): a += [cfms.get_metric_at_metric('thresholds', 'fpr', x, subindex=True)] b += [cfms.get_thresh_at_metric('fpr', x)] a = np.array(a) b = np.array(b) d = (a - b) logger.info((d.min(), d.max())) """ threshes = {} for class_name in res.class_names: cfms = res.confusions(class_name) thresh = cfms.get_metric_at_metric('thresh', metric, value) threshes[class_name] = thresh return threshes @profile def get_pos_threshes( res, metric='fpr', value=1e-4, maximize=False, warmup=200, priors=None, min_thresh=0.5, ): """ Finds a threshold that achieves the desired `value` for the desired metric, while maximizing or minimizing the threshold. For positive classification you want to minimize the threshold. Priors can be passed in to augment probabilities depending on support. By default a class prior is 1 for threshold minimization and 0 for maximization. """ pos_threshes = {} if priors is None: priors = {name: float(not maximize) for name in res.class_names} for class_name in res.class_names: cfms = res.confusions(class_name) learned_thresh = cfms.get_metric_at_metric('thresh', metric, value) # learned_thresh = cfms.get_thresh_at_metric( # metric, value, maximize=maximize) prior_thresh = priors[class_name] n_support = cfms.n_pos if warmup is not None: """ python -m wbia.plottool.draw_func2 plot_func --show --range=0,1 \ --func="lambda x: np.maximum(0, (x - .6) / (1 - .6))" """ # If n_support < warmup: then interpolate to learned thresh nmax = warmup if isinstance(warmup, int) else warmup[class_name] # alpha varies from 0 to 1 alpha = min(nmax, n_support) / nmax # transform alpha through nonlinear function (similar to ReLU) p = 0.6 # transition point alpha = max(0, (alpha - p) / (1 - p)) thresh = prior_thresh * (1 - alpha) + learned_thresh * (alpha) else: thresh = learned_thresh pos_threshes[class_name] = max(min_thresh, thresh) return pos_threshes def report_thresholds(res, warmup=200): # import vtool as vt ut.cprint('Threshold Report', 'yellow') y_test_bin = res.target_bin_df.values # y_test_enc = y_test_bin.argmax(axis=1) # clf_probs = res.probs_df.values # The maximum allowed false positive rate # We expect that we will make 1 error every 1,000 decisions # thresh_df['foo'] = [1, 2, 3] # thresh_df['foo'][res.class_names[k]] = 1 # for k in [2, 0, 1]: choice_mv = ut.odict( [ ('@fpr=.01', ('fpr', 0.01)), ('@fpr=.001', ('fpr', 0.001)), ('@fpr=.0001', ('fpr', 1e-4)), ('@fpr=.0000', ('fpr', 0)), ('@max(mcc)', ('mcc', 'max')), # (class_name + '@max(acc)', ('acc', 'max')), # (class_name + '@max(mk)', ('mk', 'max')), # (class_name + '@max(bm)', ('bm', 'max')), ] ) for k in range(y_test_bin.shape[1]): thresh_dict = ut.odict() class_name = res.class_names[k] cfms = res.confusions(class_name) # probs, labels = clf_probs.T[k], y_test_bin.T[k] # cfms = vt.ConfusionMetrics().fit(probs, labels) for k, mv in choice_mv.items(): metric, value = mv idx = cfms.get_index_at_metric(metric, value) key = class_name + k thresh_dict[key] = ut.odict() for metric in ['thresh', 'fpr', 'tpr', 'tpa', 'bm', 'mk', 'mcc']: thresh_dict[key][metric] = cfms.get_metric_at_index(metric, idx) thresh_df = pd.DataFrame.from_dict(thresh_dict, orient='index') thresh_df = thresh_df.loc[list(thresh_dict.keys())] if cfms.n_pos > 0 and cfms.n_neg > 0: logger.info('Raw 1vR {} Thresholds'.format(class_name)) logger.info(ut.indent(thresh_df.to_string(float_format='{:.4f}'.format))) # chosen_type = class_name + '@fpr=0' # pos_threshes[class_name] = thresh_df.loc[chosen_type]['thresh'] for choice_k, choice_mv in iter(choice_mv.items()): metric, value = choice_mv pos_threshes = res.get_pos_threshes(metric, value, warmup=warmup) logger.info('Choosing threshold based on %s' % (choice_k,)) res.report_auto_thresholds(pos_threshes) def report_auto_thresholds(res, threshes, verbose=True): report_lines = [] print_ = report_lines.append print_( 'Chosen thresholds = %s' % (ut.repr2(threshes, nl=1, precision=4, align=True),) ) res.augment_if_needed() target_names = res.class_names sample_weight = res.sample_weight y_true = res.y_test_enc.ravel() y_pred, can_autodecide = sklearn_utils.predict_from_probs( res.clf_probs, threshes, res.class_names, force=False, multi=False, return_flags=True, ) can_autodecide[res.sample_weight == 0] = False auto_pred = y_pred[can_autodecide].astype(np.int) auto_true = y_true[can_autodecide].ravel() auto_probs = res.clf_probs[can_autodecide] total_cases = int(sample_weight.sum()) print_('Will autodecide for %r/%r cases' % (can_autodecide.sum(), (total_cases))) def frac_str(a, b): return '{:}/{:} = {:.2f}%'.format(int(a), int(b), a / b) y_test_bin = res.target_bin_df.values supported_class_idxs = [k for k, y in enumerate(y_test_bin.T) if y.sum() > 0] print_(' * Auto-Decide Per-Class Summary') for k in supported_class_idxs: # Look at fail/succs in threshold name = res.class_names[k] # number of times this class appears overall n_total_k = (y_test_bin.T[k]).sum() # get the cases where this class was predicted auto_true_k = auto_true == k auto_pred_k = auto_pred == k # number of cases auto predicted n_pred_k = auto_pred_k.sum() # number of times auto was right n_tp = (auto_true_k & auto_pred_k).sum() # number of times auto was wrong n_fp = (~auto_true_k & auto_pred_k).sum() fail_str = frac_str(n_fp, n_pred_k) pass_str = frac_str(n_tp, n_total_k) fmtstr = '\n'.join( [ '{name}:', ' {n_total_k} samples existed, and did {n_pred_k} auto predictions', ' got {pass_str} right', ' made {fail_str} errors', ] ) print_(ut.indent(fmtstr.format(**locals()))) report = sklearn_utils.classification_report2( y_true, y_pred, target_names=target_names, sample_weight=can_autodecide.astype(np.float), verbose=False, ) print_(' * Auto-Decide Confusion') print_(ut.indent(str(report['confusion']))) print_(' * Auto-Decide Metrics') print_(ut.indent(str(report['metrics']))) if 'mcc' in report: print_(ut.indent(str(report['mcc']))) try: auto_truth_bin = res.y_test_bin[can_autodecide] for k in supported_class_idxs: auto_truth_k = auto_truth_bin.T[k] auto_probs_k = auto_probs.T[k] if auto_probs_k.sum(): auc = sklearn.metrics.roc_auc_score(auto_truth_k, auto_probs_k) print_( ' * Auto AUC(Macro): {:.4f} for class={}'.format( auc, res.class_names[k] ) ) except ValueError: pass report = '\n'.join(report_lines) if verbose: logger.info(report) return report def confusions(res, class_name): import vtool as vt y_test_bin = res.target_bin_df.values clf_probs = res.probs_df.values k = res.class_names.index(class_name) probs, labels = clf_probs.T[k], y_test_bin.T[k] confusions = vt.ConfusionMetrics().fit(probs, labels) return confusions def ishow_roc(res): import vtool as vt import wbia.plottool as pt ut.qtensure() y_test_bin = res.target_bin_df.values # The maximum allowed false positive rate # We expect that we will make 1 error every 1,000 decisions # thresh_df['foo'] = [1, 2, 3] # thresh_df['foo'][res.class_names[k]] = 1 # for k in [2, 0, 1]: for k in range(y_test_bin.shape[1]): if y_test_bin.shape[1] == 2 and k == 0: # only show one in the binary case continue class_name = res.class_names[k] confusions = res.confusions(class_name) ROCInteraction = vt.interact_roc_factory( confusions, show_operating_point=True ) fnum = pt.ensure_fnum(k) # ROCInteraction.static_plot(fnum, None, name=class_name) inter = ROCInteraction(fnum=fnum, pnum=None, name=class_name) inter.start() # if False: # X = probs # y = labels # encoder = vt.ScoreNormalizer() # encoder.fit(probs, labels) # learn_thresh = encoder.learn_threshold2() # encoder.inverse_normalize(learn_thresh) # encoder.visualize(fnum=k) pass def show_roc(res, class_name, **kwargs): import vtool as vt labels = res.target_bin_df[class_name].values probs = res.probs_df[class_name].values confusions = vt.ConfusionMetrics().fit(probs, labels) confusions.draw_roc_curve(**kwargs) def roc_scores_ovr_hat(res): res.augment_if_needed() for k in range(len(res.class_names)): class_k_truth = res.y_test_bin.T[k] class_k_probs = res.probhats_df.values.T[k] auc = sklearn.metrics.roc_auc_score(class_k_truth, class_k_probs) yield auc def roc_scores_ovr(res): res.augment_if_needed() for k in range(res.y_test_bin.shape[1]): class_k_truth = res.y_test_bin.T[k] class_k_probs = res.clf_probs.T[k] auc = sklearn.metrics.roc_auc_score(class_k_truth, class_k_probs) yield auc def confusions_ovr(res): # one_vs_rest confusions import vtool as vt res.augment_if_needed() for k in range(res.y_test_bin.shape[1]): class_k_truth = res.y_test_bin.T[k] class_k_probs = res.clf_probs.T[k] cfms = vt.ConfusionMetrics().fit(class_k_probs, class_k_truth) # auc = sklearn.metrics.roc_auc_score(class_k_truth, class_k_probs) yield res.class_names[k], cfms def roc_score(res): res.augment_if_needed() auc_learn = sklearn.metrics.roc_auc_score(res.y_test_bin, res.clf_probs) return auc_learn @ut.reloadable_class class MultiTaskSamples(ut.NiceRepr): """ Handles samples (i.e. feature-label pairs) with a combination of non-mutually exclusive subclassification labels CommandLine: python -m wbia.algo.verif.clf_helpers MultiTaskSamples Example: >>> # ENABLE_DOCTEST >>> from wbia.algo.verif.clf_helpers import * # NOQA >>> samples = MultiTaskSamples([0, 1, 2, 3]) >>> tasks_to_indicators = ut.odict([ >>> ('task1', ut.odict([ >>> ('state1', [0, 0, 0, 1]), >>> ('state2', [0, 0, 1, 0]), >>> ('state3', [1, 1, 0, 0]), >>> ])), >>> ('task2', ut.odict([ >>> ('state4', [0, 0, 0, 1]), >>> ('state5', [1, 1, 1, 0]), >>> ])) >>> ]) >>> samples.apply_indicators(tasks_to_indicators) """ def __init__(samples, index): samples.index = index samples.subtasks = ut.odict() # def set_simple_scores(samples, simple_scores): # if simple_scores is not None: # edges = ut.emap(tuple, samples.aid_pairs.tolist()) # assert (edges == simple_scores.index.tolist()) # samples.simple_scores = simple_scores # def set_feats(samples, X_dict): # if X_dict is not None: # edges = ut.emap(tuple, samples.aid_pairs.tolist()) # for X in X_dict.values(): # assert np.all(edges == X.index.tolist()) # samples.X_dict = X_dict def supported_tasks(samples): for task_key, labels in samples.subtasks.items(): labels = samples.subtasks[task_key] if labels.has_support(): yield task_key def apply_indicators(samples, tasks_to_indicators): """ Adds labels for a specific task Args: tasks_to_indicators (dict): takes the form: { `my_task_name1' { 'class1': [list of bools indicating class membership] ... 'classN': [list of bools indicating class membership] } ... `my_task_nameN': ... } """ n_samples = None samples.n_tasks = len(tasks_to_indicators) for task_name, indicator in tasks_to_indicators.items(): labels = MultiClassLabels.from_indicators( indicator, task_name=task_name, index=samples.index ) samples.subtasks[task_name] = labels if n_samples is None: n_samples = labels.n_samples elif n_samples != labels.n_samples: raise ValueError('numer of samples is different') samples.n_samples = n_samples def apply_encoded_labels(samples, y_enc, class_names, task_name): """ Adds labels for a specific task. Alternative to `apply_indicators` Args: y_enc (list): integer label indicating the class for each sample class_names (list): list of strings indicating the class-domain task_name (str): key for denoting this specific task """ # convert to indicator structure and use that tasks_to_indicators = ut.odict( [ ( task_name, ut.odict( [ (name, np.array(y_enc) == i) for i, name in enumerate(class_names) ] ), ) ] ) samples.apply_indicators(tasks_to_indicators) # @ut.memoize def encoded_2d(samples): encoded_2d = pd.concat([v.encoded_df for k, v in samples.items()], axis=1) return encoded_2d def class_name_basis(samples): """corresponds with indexes returned from encoded1d""" class_name_basis = [ t[::-1] for t in ut.product(*[v.class_names for k, v in samples.items()][::-1]) ] # class_name_basis = [(b, a) for a, b in ut.product(*[ # v.class_names for k, v in samples.items()][::-1])] return class_name_basis def class_idx_basis_2d(samples): """2d-index version of class_name_basis""" class_idx_basis_2d = [ (b, a) for a, b in ut.product( *[range(v.n_classes) for k, v in samples.items()][::-1] ) ] return class_idx_basis_2d def class_idx_basis_1d(samples): """1d-index version of class_name_basis""" n_states = np.prod([v.n_classes for k, v in samples.items()]) class_idx_basis_1d = np.arange(n_states, dtype=np.int) return class_idx_basis_1d # @ut.memoize def encoded_1d(samples): """Returns a unique label for each combination of samples""" # from sklearn.preprocessing import MultiLabelBinarizer encoded_2d = samples.encoded_2d() class_space = [v.n_classes for k, v in samples.items()] offsets = np.array([1] + np.cumprod(class_space).tolist()[:-1])[None, :] encoded_1d = (offsets * encoded_2d).sum(axis=1) # e = MultiLabelBinarizer() # bin_coeff = e.fit_transform(encoded_2d) # bin_basis = (2 ** np.arange(bin_coeff.shape[1]))[None, :] # # encoded_1d = (bin_coeff * bin_basis).sum(axis=1) # encoded_1d = (bin_coeff * bin_basis[::-1]).sum(axis=1) # # vt.unique_rows(sklearn.preprocessing.MultiLabelBinarizer().fit_transform(encoded_2d)) # [v.encoded_df.values for k, v in samples.items()] # encoded_df_1d = pd.concat([v.encoded_df for k, v in samples.items()], axis=1) return encoded_1d def __nice__(samples): return 'nS=%r, nT=%r' % (len(samples), samples.n_tasks) def __getitem__(samples, task_key): return samples.subtasks[task_key] def __len__(samples): return samples.n_samples def print_info(samples): for task_name, labels in samples.items(): labels.print_info() logger.info('hist(all) = %s' % (ut.repr4(samples.make_histogram()))) logger.info('len(all) = %s' % (len(samples))) def make_histogram(samples): """label histogram""" class_name_basis = samples.class_name_basis() class_idx_basis_1d = samples.class_idx_basis_1d() # logger.info('class_idx_basis_1d = %r' % (class_idx_basis_1d,)) # logger.info(samples.encoded_1d()) multi_task_idx_hist = ut.dict_hist( samples.encoded_1d().values, labels=class_idx_basis_1d ) multi_task_hist = ut.map_keys(lambda k: class_name_basis[k], multi_task_idx_hist) return multi_task_hist def items(samples): for task_name, labels in samples.subtasks.items(): yield task_name, labels # def take(samples, idxs): # mask = ut.index_to_boolmask(idxs, len(samples)) # return samples.compress(mask) @property def group_ids(samples): return None def stratified_kfold_indices(samples, **xval_kw): """ TODO: check xval label frequency """ from sklearn import model_selection X = np.empty((len(samples), 0)) y = samples.encoded_1d().values groups = samples.group_ids type_ = xval_kw.pop('type', 'StratifiedGroupKFold') if type_ == 'StratifiedGroupKFold': assert groups is not None # FIXME: The StratifiedGroupKFold could be implemented better. splitter = sklearn_utils.StratifiedGroupKFold(**xval_kw) skf_list = list(splitter.split(X=X, y=y, groups=groups)) elif type_ == 'StratifiedKFold': splitter = model_selection.StratifiedKFold(**xval_kw) skf_list = list(splitter.split(X=X, y=y)) return skf_list def subsplit_indices(samples, subset_idx, **xval_kw): """split an existing set""" from sklearn import model_selection X = np.empty((len(subset_idx), 0)) y = samples.encoded_1d().values[subset_idx] groups = samples.group_ids[subset_idx] xval_kw_ = xval_kw.copy() if 'n_splits' not in xval_kw_: xval_kw_['n_splits'] = 3 type_ = xval_kw_.pop('type', 'StratifiedGroupKFold') if type_ == 'StratifiedGroupKFold': assert groups is not None # FIXME: The StratifiedGroupKFold could be implemented better. splitter = sklearn_utils.StratifiedGroupKFold(**xval_kw_) rel_skf_list = list(splitter.split(X=X, y=y, groups=groups)) elif type_ == 'StratifiedKFold': splitter = model_selection.StratifiedKFold(**xval_kw_) rel_skf_list = list(splitter.split(X=X, y=y)) # map back into original coords skf_list = [ (subset_idx[rel_idx1], subset_idx[rel_idx2]) for rel_idx1, rel_idx2 in rel_skf_list ] for idx1, idx2 in skf_list: assert len(np.intersect1d(subset_idx, idx1)) == len(idx1) assert len(np.intersect1d(subset_idx, idx2)) == len(idx2) # assert return skf_list @ut.reloadable_class class MultiClassLabels(ut.NiceRepr): """ Used by samples to encode a single set of mutually exclusive labels. These can either be binary or multiclass. import pandas as pd pd.options.display.max_rows = 10 # pd.options.display.max_rows = 20 pd.options.display.max_columns = 40 pd.options.display.width = 160 """ def __init__(labels): # Helper Info labels.task_name = None labels.n_samples = None labels.n_classes = None labels.class_names = None labels.classes_ = None # Core data labels.indicator_df = None labels.encoded_df = None labels.default_class = None def has_support(labels): return len(labels.make_histogram()) > 1 def lookup_class_idx(labels, class_name): return ut.dzip(labels.class_names, labels.classes_)[class_name] @classmethod def from_indicators(MultiClassLabels, indicator, index=None, task_name=None): labels = MultiClassLabels() n_samples = len(next(iter(indicator.values()))) # if index is None: # index = pd.Series(np.arange(n_samples), name='index') indicator_df = pd.DataFrame(indicator, index=index) assert np.all( indicator_df.sum(axis=1).values ), 'states in the same task must be mutually exclusive' labels.indicator_df = indicator_df labels.class_names = indicator_df.columns.values labels.encoded_df = pd.DataFrame( indicator_df.values.argmax(axis=1), columns=[task_name], index=index ) labels.task_name = task_name labels.n_samples = n_samples labels.n_classes = len(labels.class_names) if labels.n_classes == 1: labels.n_classes = 2 # 1 column means binary case labels.classes_ =
np.arange(labels.n_classes)
numpy.arange
#!/usr/bin/env python3 import argparse import os from cProfile import label import matplotlib.pyplot as plt import numpy as np import requests import tensorflow as tf import tensorflow_probability as tfp from matplotlib.gridspec import GridSpec from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_recall_fscore_support as prfs from sklearn.metrics import roc_auc_score from sklearn.utils import Bunch, check_random_state from tensorflow import keras from tensorflow.keras.callbacks import EarlyStopping from influence.influence.influence_model import InfluenceModel from negsup.datasets import * from negsup.fisher import * from negsup.models import * from negsup.negotiation import * from negsup.utils import * FEW = 100 ecefunc = tfp.stats.expected_calibration_error_quantiles tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) def prf(p, phat): """Computes precision, recall, F1.""" y, yhat = np.argmax(p, axis=1), np.argmax(phat, axis=1) pr, rc, f1, _ = prfs(y, yhat, average='weighted') # expected_calibration_error log_pred = tf.math.log(np.max(phat, axis=1)) label = tf.cast(y == yhat, dtype=tf.bool) (ece, _, _, _, _, _,) = ecefunc(label, log_pred, num_buckets=3) return pr, rc, f1, ece.numpy() # =========================================================================== def sample_counterexamples2(args, if_config): """Sample counter-examples using kNN, IF, and RIF.""" rng = np.random.RandomState(args.seed) # Build a subsampled noisy dataset dataset = DATASETS[args.dataset]() subsample_train(dataset, args.p_known + args.max_iters, rng=rng) noisy_dataset, noisy, kn, indices = gen_run_data(dataset, args, rng=rng)[0] print(f'{len(kn + indices)} examples, {len(noisy)} are noisy') # Train model (or load model trained) on noisy dataset model = make_model(args.model, noisy_dataset, from_logits=args.from_logits) model.fit(noisy_dataset.X_tr[kn], noisy_dataset.y_tr[kn], epochs=args.n_epochs) y = np.argmax(dataset.y_tr, axis=1) y_noisy = np.argmax(noisy_dataset.y_tr, axis=1) X = tf.convert_to_tensor(dataset.X_tr) # XXX work-around for memory leak phat = model.predict(X, batch_size=args.batch_size) yhat = np.argmax(phat, axis=1) rows = np.arange(len(y)) margins = phat[rows, yhat] - phat[rows, y_noisy] # Ordina l'indice delle immagini del training set (immagini più incerte prima), ultime 25 temp = 10000 uncertain_mistakes = [ i for i in np.argsort(margins) if y_noisy[i] != yhat[i] and i not in kn ][:temp] # Ordina l'indice delle immagini del training set (immagini meno incerte prima) certain_mistakes = [ i for i in np.argsort(margins) if y_noisy[i] != yhat[i] and i not in kn ][-temp:] selected = uncertain_mistakes + certain_mistakes for t, i in enumerate(selected): fig, axes = plt.subplots(1, 4, figsize=(3.2 * 4, 2.4)) fig1, axes1 = plt.subplots(1, 4, figsize=(3.2 * 4, 2.4)) labeli, labelhati = dataset.class_names[y[i]], dataset.class_names[yhat[i]] print(f'EX {i}, "{labeli}" predicted as "{labelhati}" ({margins[i]})') img_name = f'{labeli}{dataset.class_names[y_noisy[i]]}{labelhati}' correct = bool(labeli == labelhati) imgs = [] labels = [] axes[0].imshow(dataset.X_tr[i], cmap=plt.get_cmap('gray')) axes[0].set_title(f'The machine \nthinks it\'s a "{labelhati}".', fontsize=15, pad=15) axes[0].axis('off') axes1[0].imshow(dataset.X_tr[i], cmap=plt.get_cmap('gray')) #ax1.imshow(dataset.X_tr[i], cmap=plt.get_cmap('gray')) axes1[0].set_title(f'True label "{labeli}"\n' f'Annotated as "{dataset.class_names[y_noisy[i]]}"\n' f'Predicted as "{labelhati}"', fontsize=20, pad=15) axes1[0].axis('off') negotiators = ['top_fisher', 'nearest', 'if'] names = ['CINCER', '1-NN', 'IF'] for n, (negotiator, name) in enumerate(zip(negotiators, names)): print(f'{t}/{len(selected)} : running {negotiator}') j, _, _ = find_counterexample(model, noisy_dataset, kn, i, negotiator, if_config, rng=rng) assert j in kn and j != i labelj, labeltildej = dataset.class_names[y[j]], dataset.class_names[ y_noisy[j]] print( f'{t}/{len(selected)} : EX {i}, {negotiator} picked {j}, annotatated "{labeltildej}" (actually "{labelj}")') imgs.append(dataset.X_tr[j]) labels.append(name[0]+labelj+labeltildej) axes[n + 1].tick_params(axis='both', which='both', bottom=False, left=False, right=False, top=False, labelleft=False, labelbottom=False) axes1[n + 1].imshow(dataset.X_tr[j], cmap=plt.get_cmap('gray')) axes1[n + 1].set_title(f'True label "{labelj}"\n' f'Annotated as "{labeltildej}"', fontsize=20, pad=15) axes1[n + 1].set_xlabel(name, fontsize=20, labelpad=15) axes1[n + 1].tick_params(axis='both', which='both', bottom=False, left=False, right=False, top=False, labelleft=False, labelbottom=False) axes[2].set_title(f'Supporting examples for machine\'s prediction', fontsize=20, pad=25) line = plt.Line2D((.31, .31),(.0, 1), color="k", linewidth=3) fig.add_artist(line) save_image(fig, axes, fig1, correct, i, t, imgs, labels, img_name) plt.close(fig) plt.close(fig1) def save_image(fig, axes,fig1, corr, i, t, imgs, labels, img_name): if(corr == True): path = 'images/correct' else: path = 'images/incorrect' path = path + f'/{i}__{t}' if(not os.path.exists(path)): os.makedirs(path) print("New directory created: "+ path) axes[1].set_xlabel(f'#1', fontsize=20, labelpad=15) axes[2].set_xlabel(f'#2', fontsize=20, labelpad=15) axes[3].set_xlabel(f'#3', fontsize=20, labelpad=15) fig1.savefig(os.path.join(path, f'{img_name}_main.png'), bbox_inches='tight',pad_inches=0.3) for i in range(3) : for j in range(3) : if(j!=i): for k in range(3) : if(k!=i and k!=j): axes[1].imshow(imgs[i], cmap=plt.get_cmap('gray')) axes[2].imshow(imgs[j], cmap=plt.get_cmap('gray')) axes[3].imshow(imgs[k], cmap=plt.get_cmap('gray')) fig.savefig(os.path.join(path, f'{img_name}_{labels[i]}_{labels[j]}_{labels[k]}.png'), bbox_inches='tight', pad_inches=0.3) def sample_counterexamples(args, if_config): """Sample counter-examples using kNN, IF, and RIF.""" rng = np.random.RandomState(args.seed) # Build a subsampled noisy dataset dataset = DATASETS[args.dataset]() subsample_train(dataset, args.p_known + args.max_iters, rng=rng) noisy_dataset, noisy, kn, indices = gen_run_data(dataset, args, rng=rng)[0] # noisy_dataset, clean, noisy = inject_noise(args, dataset, rng=rng) print(f'{len(kn + indices)} examples, {len(noisy)} are noisy') # model_path = os.path.join('model-cache', basename) # model = make_or_load_model(model_path, # args.model, # noisy_dataset, # n_epochs=args.n_epochs, # from_logits=args.from_logits, # no_cache=args.no_cache) model = make_model(args.model, noisy_dataset, from_logits=args.from_logits) model.fit(noisy_dataset.X_tr[kn], noisy_dataset.y_tr[kn], epochs=args.n_epochs) y = np.argmax(dataset.y_tr, axis=1) y_noisy = np.argmax(noisy_dataset.y_tr, axis=1) X = tf.convert_to_tensor(dataset.X_tr) # XXX work-around for memory leak phat = model.predict(X, batch_size=args.batch_size) yhat = np.argmax(phat, axis=1) rows = np.arange(len(y)) margins = phat[rows, yhat] - phat[rows, y_noisy] # Ordina l'indice delle immagini del training set (immagini più incerte prima), ultime 25 temp = 10000 uncertain_mistakes = [ i for i in np.argsort(margins) if y_noisy[i] != yhat[i] and i not in kn ][:temp] # Ordina l'indice delle immagini del training set (immagini meno incerte prima) certain_mistakes = [ i for i in np.argsort(margins) if y_noisy[i] != yhat[i] and i not in kn ][-temp:] selected = uncertain_mistakes + certain_mistakes # Dump the images and their counter-examples using kNN, IF, IF+kNN for t, i in enumerate(selected): fig, axes = plt.subplots(1, 4, figsize=(3.2 * 4, 2.4)) labeli, labelhati = dataset.class_names[y[i]], dataset.class_names[yhat[i]] print(f'EX {i}, "{labeli}" predicted as "{labelhati}" ({margins[i]})') axes[0].imshow(dataset.X_tr[i], cmap=plt.get_cmap('gray')) #ax1.imshow(dataset.X_tr[i], cmap=plt.get_cmap('gray')) axes[0].set_title(f'True label "{labeli}"\n' f'Annotated as "{dataset.class_names[y_noisy[i]]}"\n' f'Predicted as "{labelhati}"', fontsize=20, pad=15) axes[0].axis('off') #ax1.axis('off') #negotiators = ['top_fisher', 'nearest', 'if'] #names = ['CINCER', '1-NN', 'IF'] negotiators = ['nearest', 'if'] names = ['1-NN', 'IF'] for n, (negotiator, name) in enumerate(zip(negotiators, names)): print(f'{t}/{len(selected)} : running {negotiator}') j, _, _ = find_counterexample(model, noisy_dataset, kn, i, negotiator, if_config, rng=rng) assert j in kn and j != i labelj, labeltildej = dataset.class_names[y[j]], dataset.class_names[ y_noisy[j]] print( f'{t}/{len(selected)} : EX {i}, {negotiator} picked {j}, annotatated "{labeltildej}" (actually "{labelj}")') axes[n + 1].imshow(dataset.X_tr[j], cmap=plt.get_cmap('gray')) axes[n + 1].set_title(f'True label "{labelj}"\n' f'Annotated as "{labeltildej}"', fontsize=20, pad=15) axes[n + 1].set_xlabel(name, fontsize=20, labelpad=15) axes[n + 1].tick_params(axis='both', which='both', bottom=False, left=False, right=False, top=False, labelleft=False, labelbottom=False) fig.savefig(os.path.join('images', f'{i}__{t}.png'), bbox_inches='tight', pad_inches=0.3) plt.close(fig) # =========================================================================== def _get_suspiciousness_aucs(args, if_config, rng=None): """Check whether margin and IFs spot noisy train examples.""" rng = check_random_state(rng) # Build a subsampled noisy dataset dataset = DATASETS[args.dataset]() subsample_train(dataset, args.p_known, rng=rng) noisy_dataset, clean, noisy = inject_noise(args, dataset, rng=rng) kn = list(range(len(dataset.y_tr))) print(f'q1: {len(kn)} examples, {len(noisy)} are noisy') # Train model (or load model trained) on noisy dataset basename = _get_basename(args, model_only=True) model_path = os.path.join('model-cache', basename) model = make_or_load_model(model_path, args.model, noisy_dataset, n_epochs=args.n_epochs, from_logits=args.from_logits, no_cache=args.no_cache) # Pick a subset of clean + noisy examples, up to $FEW each n_samples = min(len(clean), len(noisy), FEW) selected = np.concatenate([ rng.permutation(clean)[:n_samples], rng.permutation(noisy)[:n_samples], ]).astype(int) is_mistake = np.concatenate([ 0 * np.ones(n_samples), # clean 1 * np.ones(n_samples), # noisy ]) assert len(selected) == len(is_mistake) assert len(selected) > 0 n_labels = len(dataset.class_names) # Compute suspiciousness of selected examples & their AUC print(f'computing margin of {len(selected)} examples') margins = [ get_margin(model, noisy_dataset.X_tr, noisy_dataset.y_tr, i) for i in selected ] # print(f'computing exp. gradient len of {len(selected)} examples') # expgradlens = [ # get_expected_gradient_len(model, # noisy_dataset.X_tr, # noisy_dataset.y_tr, # i, # n_labels, # **if_config) # for i in selected # ] print(f'computing Fisher kernel of {len(selected)} examples') fishervalues = [ fisher_kernel(i, i, model, noisy_dataset.X_tr, noisy_dataset.y_tr) for i in selected ] print(f'computing influence of {len(selected)} examples') influences = [ get_influence_on_params(model, noisy_dataset.X_tr, noisy_dataset.y_tr, kn, i, **if_config) for i in selected ] m_auc = roc_auc_score(is_mistake, margins) g_auc = roc_auc_score(is_mistake, fishervalues) i_auc = None # roc_auc_score(is_mistake, influences) return m_auc, g_auc, i_auc def eval_identification(args, if_config): m_aucs, g_aucs, i_aucs = [], [], [] for repeat in range(args.n_repeats): rng = np.random.RandomState(args.seed + repeat) m_auc, g_auc, i_auc = _get_suspiciousness_aucs(args, if_config, rng=rng) print(f'REP {repeat} AUCs: m={m_auc} g={g_auc} i={i_auc}') m_aucs.append(m_auc) g_aucs.append(g_auc) i_aucs.append(i_auc) i_aucs = np.array(i_aucs) g_aucs = np.array(g_aucs) m_aucs = np.array(m_aucs) print(f'AVG : ' \ f'margin AUC={m_aucs.mean()}±{m_aucs.std()}, ' \ f'fisher value AUC={g_aucs.mean()}±{g_aucs.std()}, ' \ # f'IF AUC={i_aucs.mean()}±{i_aucs.std()}' ) # =========================================================================== def _negotiate(model, initial_weights, dataset, noisy_dataset, noisy, kn, indices, threshold, if_config, args, return_suspiciousnesses=False, rng=None): """Run the negotiation loop and record various stats.""" rng = check_random_state(rng) # ===== validate dataset ==== noisy_in_experiment = sum(int(el in noisy) for el in kn + indices) if args.noise_type != 'random' and noisy_in_experiment == 0: raise RuntimeError("p_noise = 0.0 (for computing upper bound) for" "no-random noise is not support," "because rng is called a different number of times respect to" "other baselines.") expected_n_noisy_ex = args.p_noise * len(kn) if args.ce_precision \ else args.p_noise * len(kn + indices) print(noisy_in_experiment, expected_n_noisy_ex) lim = 25 if args.dataset == '20ng' else 10 assert expected_n_noisy_ex - lim < noisy_in_experiment < expected_n_noisy_ex + lim if args.inspector == 'margin' and not 0 < threshold < 1: raise RuntimeError('threshold is not between 0 and 1') if args.inspector == 'fisher' and not threshold > 1: raise RuntimeError('threshold is not above 1') # =========== print(f'NEGOTIATING: {noisy_in_experiment} ' f'noisy, {len(kn)} kn, {len(indices)} iters ' f' -- negotiator "{args.negotiator}" ' f'noise_type "{args.noise_type}" ' f'dataset "{args.dataset}"') # Evaluate model learned on initial known set X_ts = tf.convert_to_tensor(dataset.X_ts) # XXX work-around for memory leak model.set_weights(initial_weights) baseline = 0.7 if args.model == 'logreg' else 0.9 callback = EarlyStopping(monitor='acc', baseline=baseline, patience=5) model.fit(noisy_dataset.X_tr[kn], noisy_dataset.y_tr[kn], epochs=args.n_epochs, callbacks=[callback], verbose=0) radius = None if args.negotiator == 'nearest_fisher': path_dist = 'data/dist_examples_' + args.dataset + '.pickle' path_max_dist = 'data/max_dist_examples_' + args.dataset + '.pickle' if os.path.exists(path_max_dist): print('nearest-fisher: load example max dist') max_dist = load(path_max_dist)['max_dist'] else: print('nearest-fisher: computing max dist') dist = pdist( noisy_dataset.X_tr.ravel().reshape(noisy_dataset.X_tr.shape[0], -1)) max_dist = np.max(dist) dump(path_dist, {'dist': dist}) dump(path_max_dist, {'max_dist': max_dist}) assert 0 < args.nfisher_radius < 1 radius = max_dist * args.nfisher_radius print(f'max distance {max_dist}, radius {radius}') # phat_ts = model.predict(X_ts, batch_size=args.batch_size) pr, rc, f1, ece = prf(noisy_dataset.y_ts, model.predict(noisy_dataset.X_ts)) # Negotiate trace = pd.DataFrame() stat = Bunch(n_queried=0, n_mistakes_seen=0, n_cleaned=0, n_cleaned_ce=0, n_cleaned_ex=0, precision=pr, recall=rc, f1=f1, ece=ece, zs_value=0, noisy_ce=0, suspiciousnesses=0, case1=0, case2=0, case3=0, case4=0, case5=0, case6=0, case7=0, case8=0, case9=0, case10=0, case11=0, case12=0, case13=0, case14=0, ce_pr_at_5=np.nan, ce_pr_at_10=np.nan, ce_pr_at_25=np.nan) trace = trace.append(stat, ignore_index=True) for t, i in enumerate(indices): kn.append(i) if args.inspector == 'random': suspiciousness = None suspicious = rng.binomial(1, args.threshold) else: suspiciousness = get_suspiciousness(model, noisy_dataset.X_tr, noisy_dataset.y_tr, kn, i, len(noisy_dataset.class_names), args.inspector, **if_config) suspicious = suspiciousness > threshold stat.suspiciousnesses = suspiciousness print(f'{t:3d}/{len(indices):3d} : EX {i} ' f'noisy={i in noisy} ' f'suspicious={suspicious} ({suspiciousness} > {threshold})') stat.n_mistakes_seen += int(i in noisy) stat.ce_pr_at_5 = np.nan stat.ce_pr_at_10 = np.nan stat.ce_pr_at_25 = np.nan stat.noisy_ce, stat.zs_value = 0, 0 if suspicious: in_shape = (1,) + dataset.X_tr.shape[1:] xi = dataset.X_tr[i].reshape(in_shape) phati = model.predict(xi) yhati = np.argmax(phati, axis=1)[0] candidates = [] # Identify examples to be cleaned if args.no_ce or return_suspiciousnesses: if yhati != np.argmax(noisy_dataset.y_tr[i]): stat.n_queried += int(suspicious) candidates = [i] else: # user and machine don't agree, query the user if yhati != np.argmax(noisy_dataset.y_tr[i]): stat.n_queried += int(suspicious) print('ce start') j, stat.zs_value, ordered_candidates = find_counterexample( model, noisy_dataset, kn, i, args.negotiator, if_config, radius, rng=rng) assert j in kn and j != i if 'ce_removal' == args.negotiator: candidates = [i] if i not in noisy: kn.remove(j) else: candidates = [i, j] stat = _compute_stat(args, dataset, i, j, noisy, ordered_candidates, stat, t, yhati) # if args.dataset == 'synthetic': # plot_synthetic_dataset(noisy_dataset.X_tr, noisy_dataset.y_tr, kn, i, j, t) mistakes = [c for c in candidates if c in noisy] print(f' : EX/CE {candidates}, noisy{mistakes}') # Clean any mistakes on i and j for c in mistakes: assert (dataset.y_tr[c] != noisy_dataset.y_tr[c]).any() noisy_dataset.y_tr[c] = dataset.y_tr[c] noisy.remove(c) stat.n_cleaned += 1 print('cleaned!') # Update the model if not args.ce_precision: if not args.no_reload: model.set_weights(initial_weights) model.fit(noisy_dataset.X_tr[kn], noisy_dataset.y_tr[kn], epochs=args.n_epochs, callbacks=[callback], verbose=0) phat_ts = model.predict(X_ts, batch_size=args.batch_size) stat.precision, stat.recall, stat.f1, stat.ece = prf(noisy_dataset.y_ts, phat_ts) trace = trace.append(stat, ignore_index=True) if return_suspiciousnesses: return trace.suspiciousnesses.to_list() return trace def _compute_stat(args, dataset, i, j, noisy, ordered_candidates, stat, t, yhati): if args.ce_precision: precisions = [] for lim in [5, 10, 25]: prec = sum([int(ce in noisy) for ce in ordered_candidates[:lim]]) / lim precisions.append(prec) stat.ce_pr_at_5, stat.ce_pr_at_10, stat.ce_pr_at_25 = precisions stat.n_cleaned_ce += int(j in noisy) stat.n_cleaned_ex += int(i in noisy) user_correct = i not in noisy machine_corret = yhati == np.argmax(dataset.y_tr[i]) ce_corret = j not in noisy stat.noisy_ce = t if not ce_corret else 0 stat.case1 += int( not user_correct and not machine_corret and ce_corret) stat.case2 += int(not user_correct and machine_corret and ce_corret) stat.case3 += int(user_correct and not machine_corret and ce_corret) stat.case4 += int( not user_correct and not machine_corret and not ce_corret) stat.case5 += int( not user_correct and machine_corret and not ce_corret) stat.case6 += int( user_correct and not machine_corret and not ce_corret) stat.case7 += int(not machine_corret and not ce_corret) stat.case8 += int(not user_correct and not ce_corret) stat.case9 += int(machine_corret and not ce_corret) stat.case10 += int(user_correct and not ce_corret) stat.case11 += int(not machine_corret and ce_corret) stat.case12 += int(not user_correct and ce_corret) stat.case13 += int(machine_corret and ce_corret) stat.case14 += int(user_correct and ce_corret) return stat def _plot_synthetic_dataset(X_tr, y_tr, kn, i, j, iteration): plt.figure() color = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728'] c = np.array([color[x] for x in np.argmax(y_tr, axis=1)]) plt.scatter(X_tr[kn, 0], X_tr[kn, 1], marker='x', c=c[kn]) plt.scatter(X_tr[j, 0], X_tr[j, 1], label='ce', marker='o', c=c[j], s=60, edgecolors='red') plt.scatter(X_tr[i, 0], X_tr[i, 1], label='i', marker='s', c=c[i], s=60, edgecolors='red') plt.legend() plt.savefig(f'gif/{iteration}_gif.png') def gen_run_data(dataset, args, rng=None): """Generate several noisy datasets and example sequences.""" n_known = get_n_known(dataset, args.p_known) n_non_test = len(dataset.y_tr) run_data = [] for _ in range(args.n_repeats): noisy_dataset, clean, noisy = inject_noise(args, dataset, rng=rng) if args.noise_type == 'outlier': n_non_test = len(noisy_dataset.y_tr) kn = list(sorted(rng.permutation(n_non_test)[:n_known])) tr = list(sorted(set(range(n_non_test)) - set(kn))) n_iters = min(args.max_iters, len(tr)) indices = list(rng.permutation(tr)[:n_iters]) if args.ce_precision: noisy_dataset.X_tr[indices] = dataset.X_tr[indices] noisy_dataset.y_tr[indices] = dataset.y_tr[indices] noisy = list(set(noisy) - set(indices)) run_data.append((noisy_dataset, noisy, kn, indices)) return run_data def eval_negotiation(args, if_config): """Measures the impact of negotiation on learning.""" rng = np.random.RandomState(args.seed) # Builds noisy datasets and example sequence for all the reruns print('builds datasets') dataset = DATASETS[args.dataset]() if args.noise_type == 'outlier': # reduce size of dataset to speed up computation n_ex = int(args.p_known + args.max_iters + 50) indices = list(rng.permutation(list(set(range(dataset.X_tr.shape[0]))))[:n_ex]) dataset.X_tr, dataset.y_tr = dataset.X_tr[indices], dataset.y_tr[indices] run_data = gen_run_data(dataset, args, rng=rng) # Build and save the untrained model model = make_model(args.model, dataset) initial_weights = model.get_weights() # df = pd.DataFrame() # for iteration, (_, _, _, indices) in enumerate(run_data): # df[str(iteration)] = indices # df.to_csv(f'results/indices{_get_basename(args)}.csv') print('Start runs') traces = [ _negotiate(model, initial_weights, dataset, noisy_dataset, noisy, kn, indices, args.threshold, if_config, args, rng=rng) for noisy_dataset, noisy, kn, indices in run_data ] dump(os.path.join('results', _get_basename(args) + '.pickle'), {'args': args, 'traces': traces}) def find_threshold(args, if_config): """Finds a threshold that makes the inspector.""" rng = np.random.RandomState(args.seed) # Load clean dataset dataset = DATASETS[args.dataset]() run_data = gen_run_data(dataset, args, rng=rng) # Build and save the untrained model model = make_model(args.model, dataset) initial_weights = model.get_weights() # Compute suspiciousnesses values = np.concatenate([ _negotiate(model, initial_weights, dataset, noisy_dataset, noisy, kn, indices, args.threshold, if_config, args, return_suspiciousnesses=True, rng=rng) for noisy_dataset, noisy, kn, indices in run_data ]) # Look for a threshold that catches ~half the # of mislabeled examples n_noisy = int(len(values) * args.p_noise) ideal_n_of_queries = n_noisy // 2 best_loss, best_value = np.inf, None for value in sorted(values): n_suspicious = len([v for v in values if v > value]) loss = np.abs(ideal_n_of_queries - n_suspicious) if loss < best_loss: best_loss, best_value = loss, value print(f'threshold {best_value} ({best_loss})') # =========================================================================== def get_logreg_params(dataset, kn): """Fits logistic regression to a local optimum, helps with Hessian.""" C = 1 / (len(kn) * 1) lr = LogisticRegression(penalty='l2', tol=1e-8, C=C, solver='lbfgs', max_iter=1000, fit_intercept=False, multi_class='auto', # none for binary, multinomial otherwise warm_start=False, verbose=1) lr.fit(dataset.X_tr[kn].reshape(len(kn), -1), np.argmax(dataset.y_tr[kn], axis=1)) w, b = lr.coef_, lr.intercept_ if w.shape[0] == 1: # binary classification w = np.concatenate([-w, w], axis=0) b = np.concatenate([-b, b], axis=0) return w.T, b def eval_fisher_and_influence(args, if_config): """Measures the correlation between IF and parameter/output changes and between fisher kernel and output changes.""" rng = np.random.RandomState(args.seed) # Build a subsampled noisy dataset dataset = DATASETS[args.dataset]() subsample_train(dataset, args.p_known, rng=rng) noisy_dataset, clean, noisy = inject_noise(args, dataset, rng=rng) kn = list(range(len(dataset.y_tr))) print(f'{len(kn)} examples, {len(noisy)} are noisy') # Build and train model model = make_model(args.model, dataset) model.fit(noisy_dataset.X_tr[kn], noisy_dataset.y_tr[kn], epochs=args.n_epochs, verbose=0) if args.model == 'logreg': w, b = get_logreg_params(noisy_dataset, kn) model.get_layer('hack').set_weights([w, b]) # Measure difference between removing a point and IF at i_test y_hat = model.predict(dataset.X_ts) ee = np.where(np.argmax(y_hat, axis=1) != np.argmax(dataset.y_ts, axis=1)) i_test = ee[0][0] print(i_test) # i_test = 0 loss = model.loss(model(noisy_dataset.X_ts[None, i_test]), noisy_dataset.y_ts[None, i_test]) coords_inf = [] coords_fisher = [] corrds_fisher_mistake = [] try: e = 0 for i in rng.permutation(kn): if np.argmax(noisy_dataset.y_tr[i]) != np.argmax(y_hat[i_test]): continue if e == FEW: break print(e, FEW) e += 1 # Compute loss at i_test after retraining kn_minus_i = list(sorted(set(kn) - {i})) model_minus_i = make_model(args.model, dataset) model_minus_i.fit(noisy_dataset.X_tr[kn_minus_i], noisy_dataset.y_tr[kn_minus_i], epochs=args.n_epochs, verbose=0) if args.model == 'logreg': w, b = get_logreg_params(noisy_dataset, kn_minus_i) model_minus_i.get_layer('hack').set_weights([w, b]) loss_i = model.loss(model_minus_i(noisy_dataset.X_ts[None, i_test]), noisy_dataset.y_ts[None, i_test]) # Approximate loss at i_test using IF if_model = InfluenceModel(model, noisy_dataset.X_tr, noisy_dataset.y_tr, noisy_dataset.X_ts, noisy_dataset.y_ts, model.loss, **if_config) if_loss = if_model.get_influence_on_loss(i, i_test, known=kn) coords_inf.append((loss_i - loss, if_loss)) fisher = get_fisher_kernel_on_test_point(model, i, i_test, kn, noisy_dataset.X_tr, noisy_dataset.y_tr, noisy_dataset.X_ts, noisy_dataset.y_ts, dataset.n_classes, args.negotiator, rng) if np.argmax(dataset.y_tr[i]) == np.argmax(noisy_dataset.y_tr[i]): coords_fisher.append((loss_i - loss, fisher)) else: corrds_fisher_mistake.append((loss_i - loss, fisher)) except KeyboardInterrupt: print('exit') pass coords_inf =
np.array(coords_inf)
numpy.array
# -*- coding: utf-8 -*- from abc import ABC, abstractmethod import numpy as np import cvxpy as cp from sklearn_lvq import GlvqModel, GmlvqModel from tree import get_leafs_from_tree class HighDensityEllipsoids: def __init__(self, X, X_densities, cluster_probs, means, covariances, density_threshold=None): self.X = X self.X_densities = X_densities self.density_threshold = density_threshold if density_threshold is not None else float("-inf") self.cluster_probs = cluster_probs self.means = means self.covariances = covariances self.t = 0.9 self.epsilon = 0 def compute_ellipsoids(self): return self.build_solve_opt() def _solve(self, prob): prob.solve(solver=cp.MOSEK, verbose=False) def build_solve_opt(self): n_ellipsoids = self.cluster_probs.shape[1] n_samples = self.X.shape[0] # Variables r = cp.Variable(n_ellipsoids, pos=True) # Construct constraints constraints = [] for i in range(n_ellipsoids): mu_i = self.means[i] cov_i = np.linalg.inv(self.covariances[i]) for j in range(n_samples): if self.X_densities[j][i] <= self.density_threshold: # At least as good as a requested NLL x_j = self.X[j,:] a = (x_j - mu_i) b = np.dot(a, np.dot(cov_i, a)) constraints.append(b <= r[i]) # Build the final program f = cp.Minimize(cp.sum(r)) prob = cp.Problem(f, constraints) # Solve it! self._solve(prob) return r.value class Ellipsoids: def __init__(self, means, covariances, r, density_estimator): self.means = means self.covariances = [np.linalg.inv(cov) for cov in covariances] self.r = r self.n_ellipsoids = self.r.shape[0] self.density_estimator = density_estimator def score_samples(self, X): print(X.shape) pred = [] pred = self.density_estimator.score_samples(X) >= -10 return np.array(pred).astype(np.int) class FeasibleCounterfactualSoftmax: def __init__(self, w, b, X, ellipsoids_r, gmm_weights, gmm_means, gmm_covariances, projection_matrix=None, projection_mean_sub=None, density_threshold=-85): self.w = w self.b = b self.kernel_var = 0.2#0.5 # Kernel density estimator self.X = X self.gmm_weights = gmm_weights self.gmm_means = gmm_means self.gmm_covariances = gmm_covariances self.ellipsoids_r = ellipsoids_r self.projection_matrix = np.eye(self.X.shape[1]) if projection_matrix is None else projection_matrix self.projection_mean_sub = np.zeros(self.X.shape[1]) if projection_mean_sub is None else projection_mean_sub self.density_constraint = False self.gmm_cluster_index = 0 self.min_density = density_threshold self.epsilon = 1e-1 def _build_constraints(self, var_x, y): constraints = [] if self.w.shape[0] > 1: for i in range(self.w.shape[0]): if i != y: constraints += [(self.projection_matrix @ (var_x - self.projection_mean_sub)).T @ (self.w[i,:] - self.w[y,:]) + (self.b[i] - self.b[y]) + self.epsilon <= 0] else: if y == 0: return [(self.projection_matrix @ (var_x - self.projection_mean_sub)).T @ self.w.reshape(-1, 1) + self.b + self.epsilon <= 0] else: return [(self.projection_matrix @ (var_x - self.projection_mean_sub)).T @ self.w.reshape(-1, 1) + self.b - self.epsilon >= 0] return constraints def compute_counterfactual(self, x, y_target, regularizer="l1", use_density_constraints=False): self.density_constraint = use_density_constraints mad = None if regularizer == "l1": mad = np.ones(x.shape[0]) xcf = None s = float("inf") for i in range(self.gmm_weights.shape[0]): try: self.gmm_cluster_index = i xcf_ = self.build_solve_opt(x, y_target, mad) if xcf_ is None: continue s_ = None if regularizer == "l1": s_ = np.sum(np.abs(xcf_ - x)) else: s_ = np.linalg.norm(xcf_ - x, ord=2) if s_ <= s: s = s_ xcf = xcf_ except Exception as ex: print(ex) return xcf def _solve(self, prob): prob.solve(solver=cp.MOSEK, verbose=False) def build_solve_opt(self, x_orig, y, mad=None): dim = x_orig.shape[0] n_samples = self.X.shape[0] # Variables x = cp.Variable(dim) beta = cp.Variable(dim) t = cp.Variable() # Constants c = np.ones(dim) z = np.zeros(dim) I = np.eye(dim) C = 1 C_diag = C * np.eye(dim) # Construct constraints constraints = self._build_constraints(x, y) if self.density_constraint is True: i = self.gmm_cluster_index x_i = self.gmm_means[i] w_i = self.gmm_weights[i] cov = self.gmm_covariances[i] cov = np.linalg.inv(cov) constraints += [cp.quad_form(self.projection_matrix @ (x - self.projection_mean_sub) - x_i, cov) - self.ellipsoids_r[i] + self.epsilon <= 0] # Numerically much more stable than the explicit density omponent constraint # If necessary, construct the weight matrix for the weighted Manhattan distance Upsilon = None if mad is not None: alpha = 1. / mad Upsilon = np.diag(alpha) # Build the final program f = None if mad is not None: f = cp.Minimize(c.T @ beta) # Minimize (weighted) Manhattan distance constraints += [Upsilon @ (x - x_orig) <= beta, (-1. * Upsilon) @ (x - x_orig) <= beta, I @ beta >= z] else: f = cp.Minimize((1/2)*cp.quad_form(x, I) - x_orig.T@x) # Minimize L2 distance prob = cp.Problem(f, constraints) # Solve it! self._solve(prob) return x.value class FeasibleCounterfactualOfDecisionTree: def __init__(self, model, X, ellipsoids_r, gmm_weights, gmm_means, gmm_covariances, projection_matrix=None, projection_mean_sub=None, density_threshold=-85): self.model = model self.kernel_var = 0.2 # Kernel density estimator self.X = X self.gmm_weights = gmm_weights self.gmm_means = gmm_means self.gmm_covariances = gmm_covariances self.ellipsoids_r = ellipsoids_r self.projection_matrix = np.eye(self.X.shape[1]) if projection_matrix is None else projection_matrix self.projection_mean_sub = np.zeros(self.X.shape[1]) if projection_mean_sub is None else projection_mean_sub self.density_constraint = False self.gmm_cluster_index = 0 self.min_density = density_threshold self.epsilon = 0 self.epsilon_plausibility = 1e-5 def _solve(self, prob): prob.solve(solver=cp.MOSEK, verbose=False) def _build_constraints(self, var_x, y_target, path_to_leaf): constraints = [] for j in range(0, len(path_to_leaf) - 1): feature_id = path_to_leaf[j][1] threshold = path_to_leaf[j][2] direction = path_to_leaf[j][3] if direction == "<": constraints.append((self.projection_matrix @ var_x)[feature_id] + self.epsilon <= threshold) elif direction == ">": constraints.append((self.projection_matrix @ var_x)[feature_id] - self.epsilon >= threshold) return constraints def build_solve_opt(self, x_orig, y, path_to_leaf, mad=None): dim = x_orig.shape[0] n_samples = self.X.shape[0] # Variables x = cp.Variable(dim) beta = cp.Variable(dim) t = cp.Variable() # Constants c = np.ones(dim) z =
np.zeros(dim)
numpy.zeros
#!/usr/bin/env python2.7 import sys from os.path import dirname sys.path.append(dirname("/home/hello-robot/stretch_ros/stretch_funmap")) from tkinter import N import firebase_admin from firebase_admin import credentials, db from math import cos, sin import rospy import actionlib from sensor_msgs.msg import JointState from geometry_msgs.msg import Transform, TransformStamped, PoseWithCovarianceStamped, PoseStamped, Pose, PointStamped from nav_msgs.msg import Odometry from move_base_msgs.msg import MoveBaseAction, MoveBaseResult, MoveBaseFeedback from nav_msgs.srv import GetPlan from nav_msgs.msg import Path from sensor_msgs.msg import PointCloud2 from visualization_msgs.msg import Marker, MarkerArray from std_srvs.srv import Trigger, TriggerResponse, TriggerRequest from tf.transformations import euler_from_quaternion from tf2_geometry_msgs import do_transform_pose import numpy as np import scipy.ndimage as nd import cv2 import math import time import threading import sys import os import copy import tf_conversions import ros_numpy import tf2_ros import argparse as ap import hello_helpers.hello_misc as hm import hello_helpers.hello_ros_viz as hr import stretch_funmap.merge_maps as mm import stretch_funmap.navigate as nv import stretch_funmap.mapping as ma import stretch_funmap.segment_max_height_image as sm import stretch_funmap.navigation_planning as na import stretch_funmap.manipulation_planning as mp import touri_planner def create_map_to_odom_transform(t_mat): t = TransformStamped() t.header.stamp = rospy.Time.now() t.header.frame_id = 'map' t.child_frame_id = 'odom' t.transform = ros_numpy.msgify(Transform, t_mat) return t def print_divider(): print("\n#######################################################\n") def divided_print(input_val): print("\n#######################################################") print(input_val) print("#######################################################\n") class ManipulationNode(hm.HelloNode): def __init__(self): hm.HelloNode.__init__(self) self.debug_directory = None def actuate(self, lift, extend, yaw = 0, grip = 0.05, base_linear = 0, base_rotation = 0): assert lift >= 0.2 pose = { 'joint_lift': lift, 'wrist_extension': extend, # 'joint_wrist_yaw': yaw, # 'translate_mobile_base': base_linear, 'rotate_mobile_base': base_rotation, # 'joint_gripper_finger_left' : grip, } self.move_to_pose(pose) ######################################################################################################################## def dance(self): self.actuate(lift=0.3, extend=0, yaw=0.5, grip=0.05, base_linear=5, base_rotation=3) self.actuate(lift=0.4, extend=0.3, yaw=0, grip=0.05, base_linear=5, base_rotation=3) self.actuate(lift=0.45, extend=0, yaw=0.5, grip=0.05, base_linear=5, base_rotation=3) self.actuate(lift=0.5, extend=0.3, yaw=0, grip=0.05, base_linear=5, base_rotation=3) self.actuate(lift=0.55, extend=0, yaw=0.5, grip=0.05, base_linear=5, base_rotation=3) self.actuate(lift=0.6, extend=0.2, yaw=0, grip=0.05, base_linear=5, base_rotation=3) ######################################################################################################################## def correct_robot_pose(self, original_robot_map_pose_xya, corrected_robot_map_pose_xya): # Compute and broadcast the corrected transformation from # the map frame to the odom frame. print('original_robot_map_pose_xya =', original_robot_map_pose_xya) print('corrected_robot_map_pose_xya =', corrected_robot_map_pose_xya) x_delta = corrected_robot_map_pose_xya[0] - original_robot_map_pose_xya[0] y_delta = corrected_robot_map_pose_xya[1] - original_robot_map_pose_xya[1] ang_rad_correction = hm.angle_diff_rad(corrected_robot_map_pose_xya[2], original_robot_map_pose_xya[2]) c = np.cos(ang_rad_correction) s = np.sin(ang_rad_correction) rot_mat = np.array([[c, -s], [s, c]]) x_old, y_old, a_old = original_robot_map_pose_xya xy_old = np.array([x_old, y_old]) tx, ty = np.matmul(rot_mat, -xy_old) + np.array([x_delta, y_delta]) + xy_old t =
np.identity(4)
numpy.identity
# Author: <NAME> <<EMAIL>> from itertools import cycle import numpy as np from sklearn.utils import check_random_state from .utils.optimization import global_optimization class BayesianOptimizer(object): """Bayesian optimization for global black-box optimization Bayesian optimization models the landscape of the function to be optimized internally by a surrogate model (typically a Gaussian process) and evaluates always those parameters which are considered as global optimum of an acquisition function defined over this surrogate model. Different acquisition functions and optimizers can be used internally. Bayesian optimization aims at reducing the number of evaluations of the actual function, which is assumed to be costly. To achieve this, a large computational budget is allocated at modelling the true function and finding potentially optimal positions based on this model. .. seealso:: Brochu, Cora, de Freitas "A tutorial on Bayesian optimization of expensive cost functions, with application to active user modelling and hierarchical reinforcement learning" Parameters ---------- model : surrogate model object The surrogate model which is used to model the objective function. It needs to provide a methods fit(X, y) for training the model and predictive_distribution(X) for determining the predictive distribution (mean, std-dev) at query point X. acquisition_function : acquisition function object When called, this function returns the acquisitability of a query point i.e., how favourable it is to perform an evaluation at the query point. For this, internally the trade-off between exploration and exploitation is handled. optimizer: string, default: "direct" The optimizer used to identify the maximum of the acquisition function. The optimizer is specified by a string which may be any of "direct", "direct+lbfgs", "random", "random+lbfgs", "cmaes", or "cmaes+lbfgs". maxf: int, default: 1000 The maximum number of evaluations of the acquisition function by the optimizer. initial_random_samples: int, default: 5 The number of initial sample, in which random query points are selected without using the acquisition function. Setting this to values larger than 0 might be required if the surrogate model needs to be trained on datapoints before evaluating it. random_state : RandomState or int (default: None) Seed for the random number generator. """ def __init__(self, model, acquisition_function, optimizer="direct", maxf=1000, initial_random_samples=5, random_state=0, *args, **kwargs): self.model = model self.acquisition_function = acquisition_function self.optimizer = optimizer self.maxf = maxf self.initial_random_samples = initial_random_samples self.rng = check_random_state(random_state) self.X_ = [] self.y_ = [] def select_query_point(self, boundaries, incumbent_fct=lambda y: np.max(y)): """ Select the next query point in boundaries based on acq. function. Parameters ---------- boundaries : ndarray-like, shape: [n_dims, 2] Box constraint on allowed query points. First axis corresponds to dimensions of the search space and second axis to minimum and maximum allowed value in the respective dimensions. incumbent_fct: function, default: returns maximum observed value A function which is used to determine the incumbent for the acquisition function. Defaults to the maximum observed value. """ boundaries =
np.asarray(boundaries)
numpy.asarray
# -*- coding: utf-8 -*- # Copyright 2020 The PsiZ Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Module for preprocessing observations. Functions: identify_catch_trials: Identify catch trials. grade_catch_trials: Identify and grade catch trials. quality_control: Remove observations belonging to agents that do not meet quality control standards. remove_catch_trials: Remove catch trials. """ from pathlib import Path import numpy as np import pandas as pd def identify_catch_trials(obs): """Identify catch trials. Catch trials are assumed to be any trial where at least one of the references is the same stimulus as the query. Arguments: obs: A psiz.trials.RankObservations object. Returns: is_catch: Boolean array indicating catch trial locations. shape = (n_trial,) """ n_trial = obs.n_trial is_catch = np.zeros([n_trial], dtype=bool) for i_trial in range(n_trial): # Determine which references are identical to the query. is_identical = np.equal( obs.stimulus_set[i_trial, 0], obs.stimulus_set[i_trial, 1:] ) if
np.sum(is_identical)
numpy.sum
import os import re from operator import itemgetter import numpy as np from deoplete.source.base import Base class Source(Base): def __init__(self, vim): super().__init__(vim) self.name = 'totolot' self.filetypes = ['ruby'] self.mark = '[ruby-dictionary3]' rubymatch = [r'\.[a-zA-Z0-9_?!]*|[a-zA-Z]\w*::\w*'] regexmatch = [r'[<a-zA-Z(?: .+?)?>.*?<\/a-zA-Z>]'] self.input_pattern = '|'.join(rubymatch + regexmatch) self.rank = 500 def get_complete_position(self, context): m = re.search('[a-zA-Z0-9_?!]*$', context['input']) return m.start() if m else -1 def gather_candidates(self, context): try: rel_path = "repos/github.com/takkii/ruby-dictionary3/" paths = [os.path.expanduser(os.path.join(p, rel_path)) for p in [ "~/.cache/dein/", "~/.local/share/dein/", "~/.config/nvim/.cache/dein/", "~/.config/nvim/", "~/.vim/bundles" ]] path = next(p for p in paths if os.path.exists(p)) ruby_method = open(os.path.join(path, "autoload/source/ruby_method_deoplete")) rubymotion_method = open(os.path.join(path, "autoload/source/rubymotion_method")) rurima_list = open(os.path.join(path, "autoload/source/rurima_list")) index_ruby = list(ruby_method.readlines()) + list(rubymotion_method.readlines()) + list( rurima_list.readlines()) sort_ruby =
np.array(index_ruby)
numpy.array
import typing import numpy as np import scipy.special from fourier_accountant.plds import PrivacyLossDistribution, PrivacyException, DiscretePrivacyLossDistribution __all__ = ['get_delta_upper_bound', 'get_delta_lower_bound', 'get_epsilon_upper_bound', 'get_epsilon_lower_bound'] def _get_ps_and_Lxs( pld: PrivacyLossDistribution, omegas: np.ndarray, omega_Lxs: np.ndarray ) -> typing.Tuple[np.ndarray, np.ndarray]: """ Get the best representation of privacy loss probability mass for computing error term. For computation of the delta error term, these are not required to be discretised to regular intervals, so more efficient representations are possible. Args: - pld: Privacy loss distribution instance. - omegas: Discretized privacy loss probability masses. - omega_Lxs: Probability loss values corresponding to positions in `omegas`. Returns: - ps: Probability mass function for privacy loss values. - Lxs: The corresponding privacy loss values. """ # todo(lumip): This should ideally be bundled in the error computation, # but that would make that function's interface quite bloated, which indicates # it should be part of PLD classes. However, that would in turn strongly # couple those with the accountant computations - tricky... if isinstance(pld, DiscretePrivacyLossDistribution): # if pld is a DiscretePrivacyLossDistribution we can get # privacy loss values and corresponding probabilities directly for # the error computation and don't need to rely on the discretisation. # these will typically be smaller arrays and thus faster to compute on. Lxs = pld.privacy_loss_values ps = pld.privacy_loss_probabilities else: ps = omegas Lxs = omega_Lxs return ps, Lxs def _get_delta_error_term( Lxs: typing.Sequence[float], ps: typing.Sequence[float], num_compositions: int = 500, L: float = 20.0, lambd: typing.Optional[float] = None ) -> float: """ Computes the total error term for δ computed by the Fourier accountant for repeated application of a privacy mechanism. The computation follows Theorem 7 in Koskela & Honkela, "Computing Differential Privacy for Heterogeneous Compositions Using FFT", 2021, arXiv preprint, https://arxiv.org/abs/2102.12412 . Args: - Lxs: Sequence of privacy loss values. - ps: Sequence of privacy loss probability masses. - num_compositions: The number of compositions (=applications) of the privacy mechanism. - L: The truncation threshold (in privacy loss space) used by the accountant. - lambd: The parameter λ for error estimation. """ if lambd is None: lambd = .5 * L assert np.size(ps) == np.size(Lxs) nonzero_probability_filter = ~np.isclose(ps, 0) ps = ps[nonzero_probability_filter] Lxs = Lxs[nonzero_probability_filter] assert np.all(ps > 0) # Compute the lambda-divergence \alpha^+ alpha_plus = scipy.special.logsumexp(np.log(ps) + lambd * Lxs) # Compute the lambda-divergence \alpha^- alpha_minus = scipy.special.logsumexp(np.log(ps) - lambd * Lxs) k = num_compositions common_factor_log = -(L * lambd + np.log1p(-np.exp(-2 * L * lambd))) T1_log = k * alpha_plus + common_factor_log T2_log = k * alpha_minus + common_factor_log T_max_log = np.maximum(T1_log, T2_log) error_term = np.exp(T_max_log) * (np.exp(T1_log - T_max_log) + np.exp(T2_log - T_max_log)) return error_term def _delta_fft_computations(omegas: np.ndarray, num_compositions: int) -> np.ndarray: """ Core computation of privacy loss distribution convolutions using FFT. Args: - omegas: Numpy array of probability masses omega for discrete bins of privacy loss values for a single invocation of a privacy mechanism. - num_compositions: The number of sequential invocations of the privacy mechanism. Returns: - Numpy array of probability masses for the discrete bins of privacy loss values after `num_compositions` sequential invocations of the privacy mechanisms characterized by `omegas`. """ # Flip omegas, i.e. fx <- D(omega_y), the matrix D = [0 I;I 0] nx = len(omegas) assert nx % 2 == 0 half = nx // 2 fx = np.concatenate((omegas[half:], omegas[:half])) assert np.size(fx) == np.size(omegas) # Compute the DFT FF1 = np.fft.rfft(fx) # Take elementwise powers and compute the inverse DFT cfx = np.real(np.fft.irfft((FF1 ** num_compositions))) # Flip again, i.e. cfx <- D(cfx), D = [0 I;I 0] cfx = np.concatenate((cfx[half:], cfx[:half])) return cfx # todo(lumip): there are sometimes values < 0, all quite small, probably should be 0 but numerical precision strikes... problem? def _compute_delta( convolved_omegas: np.ndarray, target_eps: float, L: float, compute_derivative: bool=False ) -> typing.Union[float, typing.Tuple[float, float]]: """ Compute delta from privacy loss probability masses. Args: - convolved_omegas: Numpy array of probability masses after convolving all privacy mechanism invocations. - target_eps: The targeted epsilon to compute delta for. - L: The bound for the discretisation interval. - compute_derivative: If True, additionally return the derivative of delta with respect to epsilon. Returns: - delta: The computed delta. - ddelta (Optional, if `compute_derivative = True`): The derivative of delta wrt epsilon. """ nx = len(convolved_omegas) # Evaluate \delta(target_eps) x = np.linspace(-L, L, nx, endpoint=False) # grid for the numerical integration integral_mask = x > target_eps x = x[integral_mask] convolved_omegas = convolved_omegas[integral_mask] dexp_e = -np.exp(target_eps - x) exp_e = 1 + dexp_e assert np.all(exp_e > 0) integrand = exp_e * convolved_omegas assert np.all(~(integrand < 0 ) | np.isclose(integrand, 0)), "encountered negative values in pld after composition" delta = np.sum(integrand) if not compute_derivative: return delta dintegrand = dexp_e * convolved_omegas ddelta = np.sum(dintegrand) return delta, ddelta def get_delta_upper_bound( pld: PrivacyLossDistribution, target_eps: float, num_compositions: int, num_discretisation_bins_half: int = int(1E6), L: float = 20.0 ): """ Computes the upper bound for privacy parameter δ for repeated application of a privacy mechanism. The computation follows the Fourier accountant method described in Koskela et al., "Tight Differential Privacy for Discrete-Valued Mechanisms and for the Subsampled Gaussian Mechanism Using FFT", Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, PMLR 130:3358-3366, 2021. Args: - pld: The privacy loss distribution of a single application of the privacy mechanism. - target_eps: The privacy parameter ε for which to compute δ. - num_compositions: The number of compositions (=applications) of the privacy mechanism. - num_discretisation_bins_half: The number of discretisation bins used by the accountant, divided by 2. - L: The truncation threshold (in privacy loss space) used by the accountant. """ # obtain discretized privacy loss densities _, omega_y, Lxs = pld.discretize_privacy_loss_distribution(-L, L, num_discretisation_bins_half) # compute delta convolved_omegas = _delta_fft_computations(omega_y, num_compositions) delta = _compute_delta(convolved_omegas, target_eps, L) ps, Lxs = _get_ps_and_Lxs(pld, omega_y, Lxs) error_term = _get_delta_error_term(Lxs, ps, num_compositions, L) delta += error_term return
np.clip(delta, 0., 1.)
numpy.clip
import numpy as np import random import keras import matplotlib.pyplot as plt from keras.datasets import mnist from keras.models import Sequential, Model from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import RMSprop from keras.utils import np_utils (X_train, y_train), (X_test, y_test) = mnist.load_data() print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) X_train = X_train.reshape(X_train.shape[0], -1) # 等价于X_train = X_train.reshape(60000,784) X_test = X_test.reshape(X_test.shape[0], -1) # 等价于X_test = X_test.reshape(10000,784) X_train = X_train.astype("float32") X_test = X_test.astype("float32") X_train /= 255 X_test /= 255 y_train = np_utils.to_categorical(y_train, num_classes=10) y_test = np_utils.to_categorical(y_test, num_classes=10) model = Sequential() model.add(Dense(512, input_shape=(784,))) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(512)) model.add(Activation('relu')) model.add(Dropout(0.2)) model.add(Dense(10)) model.add(Activation('softmax')) model.summary() model.compile(loss = 'categorical_crossentropy', optimizer = 'rmsprop', #RMSprop() metrics=['accuracy']) rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0) # metrics means you want to get more results during the training process model.compile(optimizer=rmsprop, loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=10, batch_size=128, verbose = 1, validation_data=[X_test, y_test]) history.params score = model.evaluate(X_test, y_test, verbose = 0) print('Test score:', score[0]) print('Test accuracy:', score[1]) X_test_0 = X_test[0,:].reshape(1,784) y_test_0 = y_test[0,:] plt.imshow(X_test_0.reshape([28,28])) pred = model.predict(X_test_0[:]) print('Label of testing sample', np.argmax(y_test_0)) print('Output of the softmax layer', pred[0]) print('Network prediction:',
np.argmax([pred[0]])
numpy.argmax
import numpy as np import tensorflow as tf from tensorflow import keras import nltk nltk.download('wordnet') import json from nltk.stem import WordNetLemmatizer import random import pickle lemm=WordNetLemmatizer() def load_chatbot(path): model = keras.models.load_model(path) return model def input_bag(sen,words): bag=[0]*len(words) wrds=nltk.word_tokenize(sen) wrds=[lemm.lemmatize(w.lower()) for w in wrds] for s in wrds: for i,j in enumerate(words): if j==s: bag[i]=1 return (
np.array(bag)
numpy.array
# -*- coding: utf-8 -*- """ Created on Fri May 30 16:22:29 2014 Author: <NAME> License: BSD-3 """ from io import StringIO import numpy as np from numpy.testing import assert_allclose, assert_equal, assert_ import pandas as pd import patsy import pytest from statsmodels.discrete.discrete_model import Poisson from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families from statsmodels.base._constraints import fit_constrained from statsmodels.tools.tools import add_constant from statsmodels import datasets from .results import results_poisson_constrained as results from .results import results_glm_logit_constrained as reslogit spector_data = datasets.spector.load(as_pandas=False) spector_data.exog = add_constant(spector_data.exog, prepend=False) DEBUG = False ss = '''\ agecat smokes deaths pyears 1 1 32 52407 2 1 104 43248 3 1 206 28612 4 1 186 12663 5 1 102 5317 1 0 2 18790 2 0 12 10673 3 0 28 5710 4 0 28 2585 5 0 31 1462''' data = pd.read_csv(StringIO(ss), delimiter='\t') data = data.astype(int) data['logpyears'] = np.log(data['pyears']) class CheckPoissonConstrainedMixin(object): def test_basic(self): res1 = self.res1 res2 = self.res2 assert_allclose(res1[0], res2.params[self.idx], rtol=1e-6) # see below Stata has nan, we have zero bse1 = np.sqrt(np.diag(res1[1])) mask = (bse1 == 0) & np.isnan(res2.bse[self.idx]) assert_allclose(bse1[~mask], res2.bse[self.idx][~mask], rtol=1e-6) def test_basic_method(self): if hasattr(self, 'res1m'): res1 = (self.res1m if not hasattr(self.res1m, '_results') else self.res1m._results) res2 = self.res2 assert_allclose(res1.params, res2.params[self.idx], rtol=1e-6) # when a parameter is fixed, the Stata has bse=nan, we have bse=0 mask = (res1.bse == 0) & np.isnan(res2.bse[self.idx]) assert_allclose(res1.bse[~mask], res2.bse[self.idx][~mask], rtol=1e-6) tvalues = res2.params_table[self.idx, 2] # when a parameter is fixed, the Stata has tvalue=nan, # we have tvalue=inf mask = np.isinf(res1.tvalues) & np.isnan(tvalues) assert_allclose(res1.tvalues[~mask], tvalues[~mask], rtol=1e-6) pvalues = res2.params_table[self.idx, 3] # note most pvalues are very small # examples so far agree at 8 or more decimal, but rtol is stricter # see above mask = (res1.pvalues == 0) & np.isnan(pvalues) assert_allclose(res1.pvalues[~mask], pvalues[~mask], rtol=5e-5) ci_low = res2.params_table[self.idx, 4] ci_upp = res2.params_table[self.idx, 5] ci = np.column_stack((ci_low, ci_upp)) # note most pvalues are very small # examples so far agree at 8 or more decimal, but rtol is stricter # see above: nan versus value assert_allclose(res1.conf_int()[~np.isnan(ci)], ci[~np.isnan(ci)], rtol=5e-5) # other assert_allclose(res1.llf, res2.ll, rtol=1e-6) assert_equal(res1.df_model, res2.df_m) # Stata does not have df_resid df_r = res2.N - res2.df_m - 1 assert_equal(res1.df_resid, df_r) else: pytest.skip("not available yet") def test_other(self): # some results may not be valid or available for all models if hasattr(self, 'res1m'): res1 = self.res1m res2 = self.res2 if hasattr(res2, 'll_0'): assert_allclose(res1.llnull, res2.ll_0, rtol=1e-6) else: if DEBUG: import warnings message = ('test: ll_0 not available, llnull=%6.4F' % res1.llnull) warnings.warn(message) else: pytest.skip("not available yet") class TestPoissonConstrained1a(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_noexposure_constraint # 2 is dropped baseline for categorical cls.idx = [7, 3, 4, 5, 6, 0, 1] # example without offset formula = 'deaths ~ logpyears + smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data) # get start_params, example fails to converge on one py TravisCI k_vars = len(mod.exog_names) start_params = np.zeros(k_vars) start_params[0] = np.log(mod.endog.mean()) # if we need it, this is desired params # p = np.array([-3.93478643, 1.37276214, 2.33077032, 2.71338891, # 2.71338891, 0.57966535, 0.97254074]) constr = 'C(agecat)[T.4] = C(agecat)[T.5]' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, start_params=start_params, fit_kwds={'method': 'bfgs', 'disp': 0}) # TODO: Newton fails # test method of Poisson, not monkey patched cls.res1m = mod.fit_constrained(constr, start_params=start_params, method='bfgs', disp=0) @pytest.mark.smoke def test_summary(self): # trailing text in summary, assumes it's the first extra string # NOTE: see comment about convergence in llnull for self.res1m summ = self.res1m.summary() assert_('linear equality constraints' in summ.extra_txt) @pytest.mark.smoke def test_summary2(self): # trailing text in summary, assumes it's the first extra string # NOTE: see comment about convergence in llnull for self.res1m summ = self.res1m.summary2() assert_('linear equality constraints' in summ.extra_txt[0]) class TestPoissonConstrained1b(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_exposure_constraint cls.idx = [6, 2, 3, 4, 5, 0] # 2 is dropped baseline for categorical # example without offset formula = 'deaths ~ smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data, exposure=data['pyears'].values) constr = 'C(agecat)[T.4] = C(agecat)[T.5]' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, fit_kwds={'method': 'newton', 'disp': 0}) cls.constraints = lc # TODO: bfgs fails # test method of Poisson, not monkey patched cls.res1m = mod.fit_constrained(constr, method='newton', disp=0) class TestPoissonConstrained1c(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_exposure_constraint cls.idx = [6, 2, 3, 4, 5, 0] # 2 is dropped baseline for categorical # example without offset formula = 'deaths ~ smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data, offset=np.log(data['pyears'].values)) constr = 'C(agecat)[T.4] = C(agecat)[T.5]' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, fit_kwds={'method': 'newton', 'disp': 0}) cls.constraints = lc # TODO: bfgs fails # test method of Poisson, not monkey patched cls.res1m = mod.fit_constrained(constr, method='newton', disp=0) class TestPoissonNoConstrained(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_exposure_noconstraint cls.idx = [6, 2, 3, 4, 5, 0] # 1 is dropped baseline for categorical # example without offset formula = 'deaths ~ smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data, offset=np.log(data['pyears'].values)) res1 = mod.fit(disp=0)._results # res1 is duplicate check, so we can follow the same pattern cls.res1 = (res1.params, res1.cov_params()) cls.res1m = res1 class TestPoissonConstrained2a(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_noexposure_constraint2 # 2 is dropped baseline for categorical cls.idx = [7, 3, 4, 5, 6, 0, 1] # example without offset formula = 'deaths ~ logpyears + smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data) # get start_params, example fails to converge on one py TravisCI k_vars = len(mod.exog_names) start_params = np.zeros(k_vars) start_params[0] = np.log(mod.endog.mean()) # if we need it, this is desired params # p = np.array([-9.43762015, 1.52762442, 2.74155711, 3.58730007, # 4.08730007, 1.15987869, 0.12111539]) constr = 'C(agecat)[T.5] - C(agecat)[T.4] = 0.5' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, start_params=start_params, fit_kwds={'method': 'bfgs', 'disp': 0}) # TODO: Newton fails # test method of Poisson, not monkey patched cls.res1m = mod.fit_constrained(constr, start_params=start_params, method='bfgs', disp=0) class TestPoissonConstrained2b(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_exposure_constraint2 cls.idx = [6, 2, 3, 4, 5, 0] # 2 is dropped baseline for categorical # example without offset formula = 'deaths ~ smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data, exposure=data['pyears'].values) constr = 'C(agecat)[T.5] - C(agecat)[T.4] = 0.5' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, fit_kwds={'method': 'newton', 'disp': 0}) cls.constraints = lc # TODO: bfgs fails to converge. overflow somewhere? # test method of Poisson, not monkey patched cls.res1m = mod.fit_constrained(constr, method='bfgs', disp=0, start_params=cls.res1[0]) class TestPoissonConstrained2c(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): cls.res2 = results.results_exposure_constraint2 cls.idx = [6, 2, 3, 4, 5, 0] # 2 is dropped baseline for categorical # example without offset formula = 'deaths ~ smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data, offset=np.log(data['pyears'].values)) constr = 'C(agecat)[T.5] - C(agecat)[T.4] = 0.5' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, fit_kwds={'method': 'newton', 'disp': 0}) cls.constraints = lc # TODO: bfgs fails # test method of Poisson, not monkey patched cls.res1m = mod.fit_constrained(constr, method='bfgs', disp=0, start_params=cls.res1[0]) class TestGLMPoissonConstrained1a(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): from statsmodels.base._constraints import fit_constrained cls.res2 = results.results_noexposure_constraint # 2 is dropped baseline for categorical cls.idx = [7, 3, 4, 5, 6, 0, 1] # example without offset formula = 'deaths ~ logpyears + smokes + C(agecat)' mod = GLM.from_formula(formula, data=data, family=families.Poisson()) constr = 'C(agecat)[T.4] = C(agecat)[T.5]' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, fit_kwds={'atol': 1e-10}) cls.constraints = lc cls.res1m = mod.fit_constrained(constr, atol=1e-10) class TestGLMPoissonConstrained1b(CheckPoissonConstrainedMixin): @classmethod def setup_class(cls): from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families from statsmodels.base._constraints import fit_constrained cls.res2 = results.results_exposure_constraint cls.idx = [6, 2, 3, 4, 5, 0] # 2 is dropped baseline for categorical # example with offset formula = 'deaths ~ smokes + C(agecat)' mod = GLM.from_formula(formula, data=data, family=families.Poisson(), offset=np.log(data['pyears'].values)) constr = 'C(agecat)[T.4] = C(agecat)[T.5]' lc = patsy.DesignInfo(mod.exog_names).linear_constraint(constr) cls.res1 = fit_constrained(mod, lc.coefs, lc.constants, fit_kwds={'atol': 1e-10}) cls.constraints = lc cls.res1m = mod.fit_constrained(constr, atol=1e-10)._results def test_compare_glm_poisson(self): res1 = self.res1m res2 = self.res2 formula = 'deaths ~ smokes + C(agecat)' mod = Poisson.from_formula(formula, data=data, exposure=data['pyears'].values) constr = 'C(agecat)[T.4] = C(agecat)[T.5]' res2 = mod.fit_constrained(constr, start_params=self.res1m.params, method='newton', warn_convergence=False, disp=0) # we get high precision because we use the params as start_params # basic, just as check that we have the same model assert_allclose(res1.params, res2.params, rtol=1e-12) assert_allclose(res1.bse, res2.bse, rtol=1e-11) # check predict, fitted, ... predicted = res1.predict() assert_allclose(predicted, res2.predict(), rtol=1e-10) assert_allclose(res1.mu, predicted, rtol=1e-10) assert_allclose(res1.fittedvalues, predicted, rtol=1e-10) assert_allclose(res2.predict(linear=True), res2.predict(linear=True), rtol=1e-10) class CheckGLMConstrainedMixin(CheckPoissonConstrainedMixin): # add tests for some GLM specific attributes def test_glm(self): res2 = self.res2 # reference results res1 = self.res1m # FIXME: dont leave commented-out # assert_allclose(res1.aic, res2.aic, rtol=1e-10) # far away # Stata aic in ereturn and in estat ic are very different # we have the same as estat ic # see issue GH#1733 assert_allclose(res1.aic, res2.infocrit[4], rtol=1e-10) assert_allclose(res1.bic, res2.bic, rtol=1e-10) # bic is deviance based # FIXME: dont leave commented-out # assert_allclose(res1.bic, res2.infocrit[5], rtol=1e-10) assert_allclose(res1.deviance, res2.deviance, rtol=1e-10) # FIXME: dont leave commented-out # TODO: which chi2 are these # assert_allclose(res1.pearson_chi2, res2.chi2, rtol=1e-10) class TestGLMLogitConstrained1(CheckGLMConstrainedMixin): @classmethod def setup_class(cls): cls.idx = slice(None) # params sequence same as Stata, but Stata reports param = nan # and we have param = value = 0 cls.res2 = reslogit.results_constraint1 mod1 = GLM(spector_data.endog, spector_data.exog, family=families.Binomial()) constr = 'x1 = 2.8' cls.res1m = mod1.fit_constrained(constr) R, q = cls.res1m.constraints.coefs, cls.res1m.constraints.constants cls.res1 = fit_constrained(mod1, R, q) class TestGLMLogitConstrained2(CheckGLMConstrainedMixin): @classmethod def setup_class(cls): cls.idx = slice(None) # params sequence same as Stata cls.res2 = reslogit.results_constraint2 mod1 = GLM(spector_data.endog, spector_data.exog, family=families.Binomial()) constr = 'x1 - x3 = 0' cls.res1m = mod1.fit_constrained(constr, atol=1e-10) R, q = cls.res1m.constraints.coefs, cls.res1m.constraints.constants cls.res1 = fit_constrained(mod1, R, q, fit_kwds={'atol': 1e-10}) cls.constraints_rq = (R, q) def test_predict(self): # results only available for this case res2 = self.res2 # reference results res1 = self.res1m predicted = res1.predict() assert_allclose(predicted, res2.predict_mu, atol=1e-7) assert_allclose(res1.mu, predicted, rtol=1e-10) assert_allclose(res1.fittedvalues, predicted, rtol=1e-10) @pytest.mark.smoke def test_summary(self): # trailing text in summary, assumes it's the first extra string summ = self.res1m.summary()
assert_('linear equality constraints' in summ.extra_txt)
numpy.testing.assert_
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...parsers.sdf import create_sdf_element import os import collections import itertools import re import rospkg import numpy as np from visualization_msgs.msg import Marker from .mesh import Mesh from .footprint import Footprint from ...log import PCG_ROOT_LOGGER class Geometry(object): _GEO_TYPES = ['box', 'cylinder', 'sphere', 'plane', 'mesh'] def __init__(self, geo_type=None, **kwargs): self._sdf = None self._mesh = None self._mesh_pkg_name = None self._mesh_resource = None self._geo_type = geo_type if geo_type is not None: assert geo_type in self._GEO_TYPES, \ 'Invalid geometry type, options={}'.format(self._GEO_TYPES) if geo_type == 'mesh': self.set_mesh(**kwargs) else: self._sdf = create_sdf_element(geo_type) if len(kwargs): for tag in kwargs: self.set_param(tag, kwargs[tag]) if geo_type == 'box': self._mesh = Mesh.create_box( size=self.get_param('size')) elif geo_type == 'cylinder': self._mesh = Mesh.create_cylinder( radius=self.get_param('radius'), height=self.get_param('length')) elif geo_type == 'sphere': self._mesh = Mesh.create_sphere( radius=self.get_param('radius')) elif geo_type == 'plane': self._mesh = Mesh.create_box( size=self.get_param('size') + [0.001]) def get_samples(self): pnts = None if self.get_type() == 'sphere': n = 10 radius = self.get_param('radius') for theta in np.linspace(0, 2 * np.pi, n / 2): for psi in np.linspace(0, 2 * np.pi, n / 2): pnt = np.array([ radius * np.sin(theta) * np.cos(psi), radius * np.sin(theta) * np.sin(psi), radius * np.cos(theta)]) if pnts is None: pnts = pnt else: pnts = np.vstack((pnts, pnt)) elif self.get_type() == 'plane': size = self.get_param('size') for i in [-size[0] / 2, size[0] / 2]: for j in [-size[1] / 2, size[1] / 2]: if pnts is None: pnts =
np.array([i, j])
numpy.array
from __future__ import division import glob import numpy as NP from functools import reduce import numpy.ma as MA import progressbar as PGB import h5py import healpy as HP import warnings import copy import astropy.cosmology as CP from astropy.time import Time, TimeDelta from astropy.io import fits from astropy import units as U from astropy import constants as FCNST from scipy import interpolate from astroutils import DSP_modules as DSP from astroutils import constants as CNST from astroutils import nonmathops as NMO from astroutils import mathops as OPS from astroutils import lookup_operations as LKP import prisim from prisim import interferometry as RI from prisim import primary_beams as PB from prisim import delay_spectrum as DS try: from pyuvdata import UVBeam except ImportError: uvbeam_module_found = False else: uvbeam_module_found = True prisim_path = prisim.__path__[0]+'/' cosmoPlanck15 = CP.Planck15 # Planck 2015 cosmology cosmo100 = cosmoPlanck15.clone(name='Modified Planck 2015 cosmology with h=1.0', H0=100.0) # Modified Planck 2015 cosmology with h=1.0, H= 100 km/s/Mpc ################################################################################ def write_PRISim_bispectrum_phase_to_npz(infile_prefix, outfile_prefix, triads=None, bltriplet=None, hdf5file_prefix=None, infmt='npz', datakey='noisy', blltol=0.1): """ ---------------------------------------------------------------------------- Write closure phases computed in a PRISim simulation to a NPZ file with appropriate format for further analysis. Inputs: infile_prefix [string] HDF5 file or NPZ file created by a PRISim simulation or its replication respectively. If infmt is specified as 'hdf5', then hdf5file_prefix will be ignored and all the observing info will be read from here. If infmt is specified as 'npz', then hdf5file_prefix needs to be specified in order to read the observing parameters. triads [list or numpy array or None] Antenna triads given as a list of 3-element lists or a ntriads x 3 array. Each element in the inner list is an antenna label. They will be converted to strings internally. If set to None, then all triads determined by bltriplet will be used. If specified, then inputs in blltol and bltriplet will be ignored. bltriplet [numpy array or None] 3x3 numpy array containing the 3 baseline vectors. The first axis denotes the three baselines, the second axis denotes the East, North, Up coordinates of the baseline vector. Units are in m. Will be used only if triads is set to None. outfile_prefix [string] Prefix of the NPZ file. It will be appended by '_noiseless', '_noisy', and '_noise' and further by extension '.npz' infmt [string] Format of the input file containing visibilities. Accepted values are 'npz' (default), and 'hdf5'. If infmt is specified as 'npz', then hdf5file_prefix also needs to be specified for reading the observing parameters datakey [string] Specifies which -- 'noiseless', 'noisy' (default), or 'noise' -- visibilities are to be written to the output. If set to None, and infmt is 'hdf5', then all three sets of visibilities are written. The datakey string will also be added as a suffix in the output file. blltol [scalar] Baseline length tolerance (in m) for matching baseline vectors in triads. It must be a scalar. Default = 0.1 m. Will be used only if triads is set to None and bltriplet is to be used. ---------------------------------------------------------------------------- """ if not isinstance(infile_prefix, str): raise TypeError('Input infile_prefix must be a string') if not isinstance(outfile_prefix, str): raise TypeError('Input outfile_prefix must be a string') if (triads is None) and (bltriplet is None): raise ValueError('One of triads or bltriplet must be set') if triads is None: if not isinstance(bltriplet, NP.ndarray): raise TypeError('Input bltriplet must be a numpy array') if not isinstance(blltol, (int,float)): raise TypeError('Input blltol must be a scalar') if bltriplet.ndim != 2: raise ValueError('Input bltriplet must be a 2D numpy array') if bltriplet.shape[0] != 3: raise ValueError('Input bltriplet must contain three baseline vectors') if bltriplet.shape[1] != 3: raise ValueError('Input bltriplet must contain baseline vectors along three corrdinates in the ENU frame') else: if not isinstance(triads, (list, NP.ndarray)): raise TypeError('Input triads must be a list or numpy array') triads = NP.asarray(triads).astype(str) if not isinstance(infmt, str): raise TypeError('Input infmt must be a string') if infmt.lower() not in ['npz', 'hdf5']: raise ValueError('Input file format must be npz or hdf5') if infmt.lower() == 'npz': if not isinstance(hdf5file_prefix, str): raise TypeError('If infmt is npz, then hdf5file_prefix needs to be specified for observing parameters information') if datakey is None: datakey = ['noisy'] if isinstance(datakey, str): datakey = [datakey] elif not isinstance(datakey, list): raise TypeError('Input datakey must be a list') for dkey in datakey: if dkey.lower() not in ['noiseless', 'noisy', 'noise']: raise ValueError('Invalid input found in datakey') if infmt.lower() == 'hdf5': fullfnames_with_extension = glob.glob(infile_prefix + '*' + infmt.lower()) fullfnames_without_extension = [fname.split('.hdf5')[0] for fname in fullfnames_with_extension] else: fullfnames_without_extension = [infile_prefix] if len(fullfnames_without_extension) == 0: raise IOError('No input files found with pattern {0}'.format(infile_prefix)) try: if infmt.lower() == 'hdf5': simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[0]) else: simvis = RI.InterferometerArray(None, None, None, init_file=hdf5file_prefix) except: raise IOError('Input PRISim file does not contain a valid PRISim output') latitude = simvis.latitude longitude = simvis.longitude location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) last = simvis.lst / 15.0 / 24.0 # from degrees to fraction of day last = last.reshape(-1,1) daydata = NP.asarray(simvis.timestamp[0]).ravel() if infmt.lower() == 'npz': simvisinfo = NP.load(fullfnames_without_extension[0]+'.'+infmt.lower()) skyvis = simvisinfo['noiseless'][0,...] vis = simvisinfo['noisy'] noise = simvisinfo['noise'] n_realize = vis.shape[0] else: n_realize = len(fullfnames_without_extension) cpdata = {} outfile = {} for fileind in range(n_realize): if infmt.lower() == 'npz': simvis.vis_freq = vis[fileind,...] simvis.vis_noise_freq = noise[fileind,...] else: simvis = RI.InterferometerArray(None, None, None, init_file=fullfnames_without_extension[fileind]) if fileind == 0: if triads is None: triads, bltriplets = simvis.getThreePointCombinations(unique=False) # triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # bltriplets = NP.asarray(prisim_BSP_info['baseline_triplets']) triads = NP.asarray(triads).reshape(-1,3) bltriplets = NP.asarray(bltriplets) blinds = [] matchinfo = LKP.find_NN(bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol) revind = [] for blnum in NP.arange(bltriplet.shape[0]): if len(matchinfo[0][blnum]) == 0: revind += [blnum] if len(revind) > 0: flip_factor = NP.ones(3, dtype=NP.float) flip_factor[NP.array(revind)] = -1 rev_bltriplet = bltriplet * flip_factor.reshape(-1,1) matchinfo = LKP.find_NN(rev_bltriplet, bltriplets.reshape(-1,3), distance_ULIM=blltol) for blnum in NP.arange(bltriplet.shape[0]): if len(matchinfo[0][blnum]) == 0: raise ValueError('Some baselines in the triplet are not found in the model triads') triadinds = [] for blnum in NP.arange(bltriplet.shape[0]): triadind, blind = NP.unravel_index(NP.asarray(matchinfo[0][blnum]), (bltriplets.shape[0], bltriplets.shape[1])) triadinds += [triadind] triadind_intersection = NP.intersect1d(triadinds[0], NP.intersect1d(triadinds[1], triadinds[2])) if triadind_intersection.size == 0: raise ValueError('Specified triad not found in the PRISim model. Try other permutations of the baseline vectors and/or reverse individual baseline vectors in the triad before giving up.') triads = triads[triadind_intersection,:] selected_bltriplets = bltriplets[triadind_intersection,:,:].reshape(-1,3,3) prisim_BSP_info = simvis.getClosurePhase(antenna_triplets=triads.tolist(), delay_filter_info=None, specsmooth_info=None, spectral_window_info=None, unique=False) if fileind == 0: triads = NP.asarray(prisim_BSP_info['antenna_triplets']).reshape(-1,3) # Re-establish the triads returned after the first iteration (to accunt for any order flips) for outkey in datakey: if fileind == 0: outfile[outkey] = outfile_prefix + '_{0}.npz'.format(outkey) if outkey == 'noiseless': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...] cpdata[outkey] = prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_skyvis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_skyvis'][NP.newaxis,...]), axis=0) if outkey == 'noisy': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...] cpdata[outkey] = prisim_BSP_info['closure_phase_vis'][NP.newaxis,...] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_vis'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_vis'][NP.newaxis,...]), axis=0) if outkey == 'noise': if fileind == 0: # cpdata = prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:] cpdata[outkey] = prisim_BSP_info['closure_phase_noise'][NP.newaxis,:,:] else: # cpdata = NP.concatenate((cpdata, prisim_BSP_info['closure_phase_noise'][triadind_intersection,:,:][NP.newaxis,...]), axis=0) cpdata[outkey] = NP.concatenate((cpdata[outkey], prisim_BSP_info['closure_phase_noise'][NP.newaxis,...]), axis=0) for outkey in datakey: cpdata[outkey] = NP.rollaxis(cpdata[outkey], 3, start=0) flagsdata = NP.zeros(cpdata[outkey].shape, dtype=NP.bool) NP.savez_compressed(outfile[outkey], closures=cpdata[outkey], flags=flagsdata, triads=triads, last=last+NP.zeros((1,n_realize)), days=daydata+NP.arange(n_realize)) ################################################################################ def loadnpz(npzfile, longitude=0.0, latitude=0.0, lst_format='fracday'): """ ---------------------------------------------------------------------------- Read an input NPZ file containing closure phase data output from CASA and return a dictionary Inputs: npzfile [string] Input NPZ file including full path containing closure phase data. It must have the following files/keys inside: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units which is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) latitude [scalar int or float] Latitude of site (in degrees). Default=0.0 deg. longitude [scalar int or float] Longitude of site (in degrees). Default=0.0 deg. lst_format [string] Specifies the format/units in which the 'last' key is to be interpreted. If set to 'hourangle', the LST is in units of hour angle. If set to 'fracday', the fractional portion of the 'last' value is the LST in units of days. Output: cpinfo [dictionary] Contains one top level keys, namely, 'raw' Under key 'raw' which holds a dictionary, the subkeys include 'cphase' (nlst,ndays,ntriads,nchan), 'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags' (nlst,ndays,ntriads,nchan), and some other optional keys ---------------------------------------------------------------------------- """ npzdata = NP.load(npzfile) cpdata = npzdata['closures'] triadsdata = npzdata['triads'] flagsdata = npzdata['flags'] location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location) # lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD if lst_format.lower() == 'hourangle': lstHA = npzdata['last'] lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s) elif lst_format.lower() == 'fracday': lstfrac, lstint = NP.modf(npzdata['last']) lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD lstHA = lstfrac * 24.0 # in hours else: raise ValueError('Input lst_format invalid') cp = cpdata.astype(NP.float64) flags = flagsdata.astype(NP.bool) cpinfo = {} datapool = ['raw'] for dpool in datapool: cpinfo[dpool] = {} if dpool == 'raw': qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst'] for qty in qtys: if qty == 'cphase': cpinfo[dpool][qty] = NP.copy(cp) elif qty == 'triads': cpinfo[dpool][qty] = NP.copy(triadsdata) elif qty == 'flags': cpinfo[dpool][qty] = NP.copy(flags) elif qty == 'lst': cpinfo[dpool][qty] = NP.copy(lstHA) elif qty == 'lst-day': cpinfo[dpool][qty] = NP.copy(lstday.jd) elif qty == 'days': cpinfo[dpool][qty] = NP.copy(daydata.jd) elif qty == 'dayavg': if 'averaged_closures' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_dayavg) elif qty == 'std_triads': if 'std_dev_triad' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_std_triads) elif qty == 'std_lst': if 'std_dev_lst' in npzdata: cpinfo[dpool][qty] = NP.copy(cp_std_lst) return cpinfo ################################################################################ def npz2hdf5(npzfile, hdf5file, longitude=0.0, latitude=0.0, lst_format='fracday'): """ ---------------------------------------------------------------------------- Read an input NPZ file containing closure phase data output from CASA and save it to HDF5 format Inputs: npzfile [string] Input NPZ file including full path containing closure phase data. It must have the following files/keys inside: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units ehich is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) hdf5file [string] Output HDF5 file including full path. latitude [scalar int or float] Latitude of site (in degrees). Default=0.0 deg. longitude [scalar int or float] Longitude of site (in degrees). Default=0.0 deg. lst_format [string] Specifies the format/units in which the 'last' key is to be interpreted. If set to 'hourangle', the LST is in units of hour angle. If set to 'fracday', the fractional portion of the 'last' value is the LST in units of days. ---------------------------------------------------------------------------- """ npzdata = NP.load(npzfile) cpdata = npzdata['closures'] triadsdata = npzdata['triads'] flagsdata = npzdata['flags'] location = ('{0:.5f}d'.format(longitude), '{0:.5f}d'.format(latitude)) daydata = Time(npzdata['days'].astype(NP.float64), scale='utc', format='jd', location=location) # lstdata = Time(npzdata['last'].astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=('+21.4278d', '-30.7224d')).sidereal_time('apparent') # Subtract 6713 based on CASA convention to obtain MJD if lst_format.lower() == 'hourangle': lstHA = npzdata['last'] lstday = daydata.reshape(1,-1) + TimeDelta(NP.zeros(lstHA.shape[0]).reshape(-1,1)*U.s) elif lst_format.lower() == 'fracday': lstfrac, lstint = NP.modf(npzdata['last']) lstday = Time(lstint.astype(NP.float64) - 6713.0, scale='utc', format='mjd', location=location) # Subtract 6713 based on CASA convention to obtain MJD lstHA = lstfrac * 24.0 # in hours else: raise ValueError('Input lst_format invalid') cp = cpdata.astype(NP.float64) flags = flagsdata.astype(NP.bool) if 'averaged_closures' in npzdata: day_avg_cpdata = npzdata['averaged_closures'] cp_dayavg = day_avg_cpdata.astype(NP.float64) if 'std_dev_triad' in npzdata: std_triads_cpdata = npzdata['std_dev_triad'] cp_std_triads = std_triads_cpdata.astype(NP.float64) if 'std_dev_lst' in npzdata: std_lst_cpdata = npzdata['std_dev_lst'] cp_std_lst = std_lst_cpdata.astype(NP.float64) with h5py.File(hdf5file, 'w') as fobj: datapool = ['raw'] for dpool in datapool: if dpool == 'raw': qtys = ['cphase', 'triads', 'flags', 'lst', 'lst-day', 'days', 'dayavg', 'std_triads', 'std_lst'] for qty in qtys: data = None if qty == 'cphase': data = NP.copy(cp) elif qty == 'triads': data = NP.copy(triadsdata) elif qty == 'flags': data = NP.copy(flags) elif qty == 'lst': data = NP.copy(lstHA) elif qty == 'lst-day': data = NP.copy(lstday.jd) elif qty == 'days': data = NP.copy(daydata.jd) elif qty == 'dayavg': if 'averaged_closures' in npzdata: data = NP.copy(cp_dayavg) elif qty == 'std_triads': if 'std_dev_triad' in npzdata: data = NP.copy(cp_std_triads) elif qty == 'std_lst': if 'std_dev_lst' in npzdata: data = NP.copy(cp_std_lst) if data is not None: dset = fobj.create_dataset('{0}/{1}'.format(dpool, qty), data=data, compression='gzip', compression_opts=9) ################################################################################ def save_CPhase_cross_power_spectrum(xcpdps, outfile): """ ---------------------------------------------------------------------------- Save cross-power spectrum information in a dictionary to a HDF5 file Inputs: xcpdps [dictionary] This dictionary is essentially an output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains one or more of the following keys named 'whole', 'submodel', 'residual', and 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum outfile [string] Full path to the external HDF5 file where the cross- power spectrum information provided in xcpdps will be saved ---------------------------------------------------------------------------- """ if not isinstance(xcpdps, dict): raise TypeError('Input xcpdps must be a dictionary') with h5py.File(outfile, 'w') as fileobj: hdrgrp = fileobj.create_group('header') hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in hdrkeys: dset = hdrgrp.create_dataset(key, data=xcpdps[key]) sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in xcpdps: smplgrp = fileobj.create_group(smplng) for key in sampling_keys: dset = smplgrp.create_dataset(key, data=xcpdps[smplng][key]) for dpool in dpool_keys: if dpool in xcpdps[smplng]: dpoolgrp = smplgrp.create_group(dpool) keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh'] for key in keys: if key in xcpdps[smplng][dpool]: if isinstance(xcpdps[smplng][dpool][key], dict): subgrp = dpoolgrp.create_group(key) for subkey in xcpdps[smplng][dpool][key]: dset = subgrp.create_dataset(str(subkey), data=xcpdps[smplng][dpool][key][subkey]) else: dset = dpoolgrp.create_dataset(key, data=xcpdps[smplng][dpool][key]) for stat in ['mean', 'median']: if stat in xcpdps[smplng][dpool]: if isinstance(xcpdps[smplng][dpool][stat], list): for ii in range(len(xcpdps[smplng][dpool][stat])): dset = dpoolgrp.create_dataset(stat+'/diagcomb_{0}'.format(ii), data=xcpdps[smplng][dpool][stat][ii].si.value) dset.attrs['units'] = str(xcpdps[smplng][dpool][stat][ii].si.unit) else: dset = dpoolgrp.create_dataset(stat, data=xcpdps[smplng][dpool][stat].si.value) dset.attrs['units'] = str(xcpdps[smplng][dpool][stat].si.unit) ################################################################################ def read_CPhase_cross_power_spectrum(infile): """ ---------------------------------------------------------------------------- Read information about cross power spectrum from an external HDF5 file into a dictionary. This is the counterpart to save_CPhase_corss_power_spectrum() Input: infile [string] Full path to the external HDF5 file that contains info about cross-power spectrum. Output: xcpdps [dictionary] This dictionary has structure the same as output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains one or more of the following keys named 'whole', 'submodel', 'residual', and 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum outfile [string] Full path to the external HDF5 file where the cross- power spectrum information provided in xcpdps will be saved ---------------------------------------------------------------------------- """ if not isinstance(infile, str): raise TypeError('Input infile must be a string') xcpdps = {} with h5py.File(infile, 'r') as fileobj: hdrgrp = fileobj['header'] hdrkeys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in hdrkeys: xcpdps[key] = hdrgrp[key].value sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'kprll', 'lags', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in fileobj: smplgrp = fileobj[smplng] xcpdps[smplng] = {} for key in sampling_keys: xcpdps[smplng][key] = smplgrp[key].value for dpool in dpool_keys: if dpool in smplgrp: xcpdps[smplng][dpool] = {} dpoolgrp = smplgrp[dpool] keys = ['diagoffsets', 'diagweights', 'axesmap', 'nsamples_incoh', 'nsamples_coh'] for key in keys: if key in dpoolgrp: if isinstance(dpoolgrp[key], h5py.Group): xcpdps[smplng][dpool][key] = {} for subkey in dpoolgrp[key]: xcpdps[smplng][dpool][key][int(subkey)] = dpoolgrp[key][subkey].value elif isinstance(dpoolgrp[key], h5py.Dataset): xcpdps[smplng][dpool][key] = dpoolgrp[key].value else: raise TypeError('Invalid h5py data type encountered') for stat in ['mean', 'median']: if stat in dpoolgrp: if isinstance(dpoolgrp[stat], h5py.Dataset): valunits = dpoolgrp[stat].attrs['units'] xcpdps[smplng][dpool][stat] = dpoolgrp[stat].value * U.Unit(valunits) elif isinstance(dpoolgrp[stat], h5py.Group): xcpdps[smplng][dpool][stat] = [] for diagcomb_ind in range(len(dpoolgrp[stat].keys())): if 'diagcomb_{0}'.format(diagcomb_ind) in dpoolgrp[stat]: valunits = dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].attrs['units'] xcpdps[smplng][dpool][stat] += [dpoolgrp[stat]['diagcomb_{0}'.format(diagcomb_ind)].value * U.Unit(valunits)] return xcpdps ################################################################################ def incoherent_cross_power_spectrum_average(xcpdps, excpdps=None, diagoffsets=None): """ ---------------------------------------------------------------------------- Perform incoherent averaging of cross power spectrum along specified axes Inputs: xcpdps [dictionary or list of dictionaries] If provided as a list of dictionaries, each dictionary consists of cross power spectral information coming possible from different sources, and they will be averaged be averaged incoherently. If a single dictionary is provided instead of a list of dictionaries, the said averaging does not take place. Each dictionary is essentially an output of the member function compute_power_spectrum() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum excpdps [dictionary or list of dictionaries] If provided as a list of dictionaries, each dictionary consists of cross power spectral information of subsample differences coming possible from different sources, and they will be averaged be averaged incoherently. This is optional. If not set (default=None), no incoherent averaging happens. If a single dictionary is provided instead of a list of dictionaries, the said averaging does not take place. Each dictionary is essentially an output of the member function compute_power_spectrum_uncertainty() of class ClosurePhaseDelaySpectrum. It has the following key-value structure: 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndaycomb,) array), 'day_ind' ((ndaycomb,) array), 'dday' ((ndaycomb,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,) 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains a key named 'errinfo' which is a dictionary. It contains information about power spectrum uncertainties obtained from subsample differences. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum uncertainties incoherently estimated over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum uncertainties incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['errinfo']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum diagoffsets [NoneType or dictionary or list of dictionaries] This info is used for incoherent averaging along specified diagonals along specified axes. This incoherent averaging is performed after incoherently averaging multiple cross-power spectra (if any). If set to None, this incoherent averaging is not performed. Many combinations of axes and diagonals can be specified as individual dictionaries in a list. If only one dictionary is specified, then it assumed that only one combination of axes and diagonals is requested. If a list of dictionaries is given, each dictionary in the list specifies a different combination for incoherent averaging. Each dictionary should have the following key-value pairs. The key is the axis number (allowed values are 1, 2, 3) that denote the axis type (1=LST, 2=Days, 3=Triads to be averaged), and the value under they keys is a list or numpy array of diagonals to be averaged incoherently. These axes-diagonal combinations apply to both the inputs xcpdps and excpdps, except axis=2 does not apply to excpdps (since it is made of subsample differences already) and will be skipped. Outputs: A tuple consisting of two dictionaries. The first dictionary contains the incoherent averaging of xcpdps as specified by the inputs, while the second consists of incoherent of excpdps as specified by the inputs. The structure of these dictionaries are practically the same as the dictionary inputs xcpdps and excpdps respectively. The only differences in dictionary structure are: * Under key ['oversampled'/'resampled']['whole'/'submodel'/'residual' /'effinfo']['mean'/'median'] is a list of numpy arrays, where each array in the list corresponds to the dictionary in the list in input diagoffsets that defines the axes-diagonal combination. ---------------------------------------------------------------------------- """ if isinstance(xcpdps, dict): xcpdps = [xcpdps] if not isinstance(xcpdps, list): raise TypeError('Invalid data type provided for input xcpdps') if excpdps is not None: if isinstance(excpdps, dict): excpdps = [excpdps] if not isinstance(excpdps, list): raise TypeError('Invalid data type provided for input excpdps') if len(xcpdps) != len(excpdps): raise ValueError('Inputs xcpdps and excpdps found to have unequal number of values') out_xcpdps = {'triads': xcpdps[0]['triads'], 'triads_ind': xcpdps[0]['triads_ind'], 'lst': xcpdps[0]['lst'], 'lst_ind': xcpdps[0]['lst_ind'], 'dlst': xcpdps[0]['dlst'], 'days': xcpdps[0]['days'], 'day_ind': xcpdps[0]['day_ind'], 'dday': xcpdps[0]['dday']} out_excpdps = None if excpdps is not None: out_excpdps = {'triads': excpdps[0]['triads'], 'triads_ind': excpdps[0]['triads_ind'], 'lst': excpdps[0]['lst'], 'lst_ind': excpdps[0]['lst_ind'], 'dlst': excpdps[0]['dlst'], 'days': excpdps[0]['days'], 'day_ind': excpdps[0]['day_ind'], 'dday': excpdps[0]['dday']} for smplng in ['oversampled', 'resampled']: if smplng in xcpdps[0]: out_xcpdps[smplng] = {'z': xcpdps[0][smplng]['z'], 'kprll': xcpdps[0][smplng]['kprll'], 'lags': xcpdps[0][smplng]['lags'], 'freq_center': xcpdps[0][smplng]['freq_center'], 'bw_eff': xcpdps[0][smplng]['bw_eff'], 'shape': xcpdps[0][smplng]['shape'], 'freq_wts': xcpdps[0][smplng]['freq_wts'], 'lag_corr_length': xcpdps[0][smplng]['lag_corr_length']} if excpdps is not None: out_excpdps[smplng] = {'z': excpdps[0][smplng]['z'], 'kprll': excpdps[0][smplng]['kprll'], 'lags': excpdps[0][smplng]['lags'], 'freq_center': excpdps[0][smplng]['freq_center'], 'bw_eff': excpdps[0][smplng]['bw_eff'], 'shape': excpdps[0][smplng]['shape'], 'freq_wts': excpdps[0][smplng]['freq_wts'], 'lag_corr_length': excpdps[0][smplng]['lag_corr_length']} for dpool in ['whole', 'submodel', 'residual']: if dpool in xcpdps[0][smplng]: out_xcpdps[smplng][dpool] = {'diagoffsets': xcpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': xcpdps[0][smplng][dpool]['axesmap']} for stat in ['mean', 'median']: if stat in xcpdps[0][smplng][dpool]: out_xcpdps[smplng][dpool][stat] = {} arr = [] diagweights = [] for i in range(len(xcpdps)): arr += [xcpdps[i][smplng][dpool][stat].si.value] arr_units = xcpdps[i][smplng][dpool][stat].si.unit if isinstance(xcpdps[i][smplng][dpool]['diagweights'], dict): diagwts = 1.0 diagwts_shape = NP.ones(xcpdps[i][smplng][dpool][stat].ndim, dtype=NP.int) for ax in xcpdps[i][smplng][dpool]['diagweights']: tmp_shape = NP.copy(diagwts_shape) tmp_shape[xcpdps[i][smplng][dpool]['axesmap'][ax]] = xcpdps[i][smplng][dpool]['diagweights'][ax].size diagwts = diagwts * xcpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape)) elif isinstance(xcpdps[i][smplng][dpool]['diagweights'], NP.ndarray): diagwts = NP.copy(xcpdps[i][smplng][dpool]['diagweights']) else: raise TypeError('Diagonal weights in input must be a dictionary or a numpy array') diagweights += [diagwts] diagweights = NP.asarray(diagweights) arr = NP.asarray(arr) arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units diagweights = NP.nansum(diagweights, axis=0) out_xcpdps[smplng][dpool][stat] = arr out_xcpdps[smplng][dpool]['diagweights'] = diagweights for dpool in ['errinfo']: if dpool in excpdps[0][smplng]: out_excpdps[smplng][dpool] = {'diagoffsets': excpdps[0][smplng][dpool]['diagoffsets'], 'axesmap': excpdps[0][smplng][dpool]['axesmap']} for stat in ['mean', 'median']: if stat in excpdps[0][smplng][dpool]: out_excpdps[smplng][dpool][stat] = {} arr = [] diagweights = [] for i in range(len(excpdps)): arr += [excpdps[i][smplng][dpool][stat].si.value] arr_units = excpdps[i][smplng][dpool][stat].si.unit if isinstance(excpdps[i][smplng][dpool]['diagweights'], dict): diagwts = 1.0 diagwts_shape = NP.ones(excpdps[i][smplng][dpool][stat].ndim, dtype=NP.int) for ax in excpdps[i][smplng][dpool]['diagweights']: tmp_shape = NP.copy(diagwts_shape) tmp_shape[excpdps[i][smplng][dpool]['axesmap'][ax]] = excpdps[i][smplng][dpool]['diagweights'][ax].size diagwts = diagwts * excpdps[i][smplng][dpool]['diagweights'][ax].reshape(tuple(tmp_shape)) elif isinstance(excpdps[i][smplng][dpool]['diagweights'], NP.ndarray): diagwts = NP.copy(excpdps[i][smplng][dpool]['diagweights']) else: raise TypeError('Diagonal weights in input must be a dictionary or a numpy array') diagweights += [diagwts] diagweights = NP.asarray(diagweights) arr = NP.asarray(arr) arr = NP.nansum(arr * diagweights, axis=0) / NP.nansum(diagweights, axis=0) * arr_units diagweights = NP.nansum(diagweights, axis=0) out_excpdps[smplng][dpool][stat] = arr out_excpdps[smplng][dpool]['diagweights'] = diagweights if diagoffsets is not None: if isinstance(diagoffsets, dict): diagoffsets = [diagoffsets] if not isinstance(diagoffsets, list): raise TypeError('Input diagoffsets must be a list of dictionaries') for ind in range(len(diagoffsets)): for ax in diagoffsets[ind]: if not isinstance(diagoffsets[ind][ax], (list, NP.ndarray)): raise TypeError('Values in input dictionary diagoffsets must be a list or numpy array') diagoffsets[ind][ax] = NP.asarray(diagoffsets[ind][ax]) for smplng in ['oversampled', 'resampled']: if smplng in out_xcpdps: for dpool in ['whole', 'submodel', 'residual']: if dpool in out_xcpdps[smplng]: masks = [] for ind in range(len(diagoffsets)): mask_ones = NP.ones(out_xcpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool) mask_agg = None for ax in diagoffsets[ind]: mltdim_slice = [slice(None)] * mask_ones.ndim mltdim_slice[out_xcpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_xcpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0] mask_tmp = NP.copy(mask_ones) mask_tmp[tuple(mltdim_slice)] = False if mask_agg is None: mask_agg = NP.copy(mask_tmp) else: mask_agg = NP.logical_or(mask_agg, mask_tmp) masks += [NP.copy(mask_agg)] diagwts = NP.copy(out_xcpdps[smplng][dpool]['diagweights']) out_xcpdps[smplng][dpool]['diagweights'] = [] for stat in ['mean', 'median']: if stat in out_xcpdps[smplng][dpool]: arr = NP.copy(out_xcpdps[smplng][dpool][stat].si.value) arr_units = out_xcpdps[smplng][dpool][stat].si.unit out_xcpdps[smplng][dpool][stat] = [] for ind in range(len(diagoffsets)): masked_diagwts = MA.array(diagwts, mask=masks[ind]) axes_to_avg = tuple([out_xcpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind]]) out_xcpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units] if len(out_xcpdps[smplng][dpool]['diagweights']) < len(diagoffsets): out_xcpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)] if excpdps is not None: for smplng in ['oversampled', 'resampled']: if smplng in out_excpdps: for dpool in ['errinfo']: if dpool in out_excpdps[smplng]: masks = [] for ind in range(len(diagoffsets)): mask_ones = NP.ones(out_excpdps[smplng][dpool]['diagweights'].shape, dtype=NP.bool) mask_agg = None for ax in diagoffsets[ind]: if ax != 2: mltdim_slice = [slice(None)] * mask_ones.ndim mltdim_slice[out_excpdps[smplng][dpool]['axesmap'][ax].squeeze()] = NP.where(NP.isin(out_excpdps[smplng][dpool]['diagoffsets'][ax], diagoffsets[ind][ax]))[0] mask_tmp = NP.copy(mask_ones) mask_tmp[tuple(mltdim_slice)] = False if mask_agg is None: mask_agg = NP.copy(mask_tmp) else: mask_agg = NP.logical_or(mask_agg, mask_tmp) masks += [NP.copy(mask_agg)] diagwts = NP.copy(out_excpdps[smplng][dpool]['diagweights']) out_excpdps[smplng][dpool]['diagweights'] = [] for stat in ['mean', 'median']: if stat in out_excpdps[smplng][dpool]: arr = NP.copy(out_excpdps[smplng][dpool][stat].si.value) arr_units = out_excpdps[smplng][dpool][stat].si.unit out_excpdps[smplng][dpool][stat] = [] for ind in range(len(diagoffsets)): masked_diagwts = MA.array(diagwts, mask=masks[ind]) axes_to_avg = tuple([out_excpdps[smplng][dpool]['axesmap'][ax][0] for ax in diagoffsets[ind] if ax!=2]) out_excpdps[smplng][dpool][stat] += [MA.sum(arr * masked_diagwts, axis=axes_to_avg, keepdims=True) / MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True) * arr_units] if len(out_excpdps[smplng][dpool]['diagweights']) < len(diagoffsets): out_excpdps[smplng][dpool]['diagweights'] += [MA.sum(masked_diagwts, axis=axes_to_avg, keepdims=True)] return (out_xcpdps, out_excpdps) ################################################################################ def incoherent_kbin_averaging(xcpdps, kbins=None, num_kbins=None, kbintype='log'): """ ---------------------------------------------------------------------------- Averages the power spectrum incoherently by binning in bins of k. Returns the power spectrum in units of both standard power spectrum and \Delta^2 Inputs: xcpdps [dictionary] A dictionary that contains the incoherent averaged power spectrum along LST and/or triads axes. This dictionary is essentially the one(s) returned as the output of the function incoherent_cross_power_spectrum_average() kbins [NoneType, list or numpy array] Bins in k. If set to None (default), it will be determined automatically based on the inputs in num_kbins, and kbintype. If num_kbins is None and kbintype='linear', the negative and positive values of k are folded into a one-sided power spectrum. In this case, the bins will approximately have the same resolution as the k-values in the input power spectrum for all the spectral windows. num_kbins [NoneType or integer] Number of k-bins. Used only if kbins is set to None. If kbintype is set to 'linear', the negative and positive values of k are folded into a one-sided power spectrum. In this case, the bins will approximately have the same resolution as the k-values in the input power spectrum for all the spectral windows. kbintype [string] Specifies the type of binning, used only if kbins is set to None. Accepted values are 'linear' and 'log' for linear and logarithmic bins respectively. Outputs: Dictionary containing the power spectrum information. At the top level, it contains keys specifying the sampling to be 'oversampled' or 'resampled'. Under each of these keys is another dictionary containing the following keys: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' or one key named 'errinfo' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. 'errinfo' contains power spectrum information about the subsample differences. There is also another dictionary under key 'kbininfo' that contains information about k-bins. These dictionaries contain the following keys and values: 'whole'/'submodel'/'residual'/'errinfo' [dictionary] It contains the following keys and values: 'mean' [dictionary] Delay power spectrum information under the 'mean' statistic incoherently obtained by averaging the input power spectrum in bins of k. It contains output power spectrum expressed as two quantities each of which is a dictionary with the following key-value pairs: 'PS' [list of numpy arrays] Standard power spectrum in units of 'K2 Mpc3'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'Del2' [list of numpy arrays] power spectrum in Delta^2 units of 'K2'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'median' [dictionary] Delay power spectrum information under the 'median' statistic incoherently obtained by averaging the input power spectrum in bins of k. It contains output power spectrum expressed as two quantities each of which is a dictionary with the following key-value pairs: 'PS' [list of numpy arrays] Standard power spectrum in units of 'K2 Mpc3'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'Del2' [list of numpy arrays] power spectrum in Delta^2 units of 'K2'. Each numpy array in the list maps to a specific combination of axes and axis diagonals chosen for incoherent averaging in earlier processing such as in the function incoherent_cross_power_spectrum_average(). The numpy array has a shape similar to the input power spectrum, but that last axis (k-axis) will have a different size that depends on the k-bins that were used in the incoherent averaging along that axis. 'kbininfo' [dictionary] Contains the k-bin information. It contains the following key-value pairs: 'counts' [list] List of numpy arrays where each numpy array in the stores the counts in the determined k-bins. Each numpy array in the list corresponds to a spectral window (redshift subband). The shape of each numpy array is (nkbins,) 'kbin_edges' [list] List of numpy arrays where each numpy array contains the k-bin edges. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nkbins+1,). 'kbinnum' [list] List of numpy arrays containing the bin number under which the k value falls. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nlags,). 'ri' [list] List of numpy arrays containing the reverse indices for each k-bin. Each array in the list corresponds to a spectral window (redshift subband). The shape of each array is (nlags+nkbins+1,). 'whole'/'submodel'/'residual' or 'errinfo' [dictionary] k-bin info estimated for the different datapools under different stats and PS definitions. It has the keys 'mean' and 'median' for the mean and median statistic respectively. Each of them contain a dictionary with the following key-value pairs: 'PS' [list] List of numpy arrays where each numpy array contains a standard power spectrum typically in units of 'K2 Mpc3'. Its shape is the same as input power spectrum except the k-axis which now has nkbins number of elements. 'Del2' [list] List of numpy arrays where each numpy array contains a Delta^2 power spectrum typically in units of 'K2'. Its shape is the same as input power spectrum except the k-axis which now has nkbins number of elements. ---------------------------------------------------------------------------- """ if not isinstance(xcpdps, dict): raise TypeError('Input xcpdps must be a dictionary') if kbins is not None: if not isinstance(kbins, (list,NP.ndarray)): raise TypeError('Input kbins must be a list or numpy array') else: if not isinstance(kbintype, str): raise TypeError('Input kbintype must be a string') if kbintype.lower() not in ['linear', 'log']: raise ValueError('Input kbintype must be set to "linear" or "log"') if kbintype.lower() == 'log': if num_kbins is None: num_kbins = 10 psinfo = {} keys = ['triads', 'triads_ind', 'lst', 'lst_ind', 'dlst', 'days', 'day_ind', 'dday'] for key in keys: psinfo[key] = xcpdps[key] sampling = ['oversampled', 'resampled'] sampling_keys = ['z', 'freq_center', 'bw_eff', 'shape', 'freq_wts', 'lag_corr_length'] dpool_keys = ['whole', 'submodel', 'residual', 'errinfo'] for smplng in sampling: if smplng in xcpdps: psinfo[smplng] = {} for key in sampling_keys: psinfo[smplng][key] = xcpdps[smplng][key] kprll = xcpdps[smplng]['kprll'] lags = xcpdps[smplng]['lags'] eps = 1e-10 if kbins is None: dkprll = NP.max(NP.mean(NP.diff(kprll, axis=-1), axis=-1)) if kbintype.lower() == 'linear': bins_kprll = NP.linspace(eps, NP.abs(kprll).max()+eps, num=kprll.shape[1]/2+1, endpoint=True) else: bins_kprll = NP.geomspace(eps, NP.abs(kprll).max()+eps, num=num_kbins+1, endpoint=True) bins_kprll = NP.insert(bins_kprll, 0, -eps) else: bins_kprll = NP.asarray(kbins) num_kbins = bins_kprll.size - 1 psinfo[smplng]['kbininfo'] = {'counts': [], 'kbin_edges': [], 'kbinnum': [], 'ri': []} for spw in range(kprll.shape[0]): counts, kbin_edges, kbinnum, ri = OPS.binned_statistic(NP.abs(kprll[spw,:]), statistic='count', bins=bins_kprll) counts = counts.astype(NP.int) psinfo[smplng]['kbininfo']['counts'] += [NP.copy(counts)] psinfo[smplng]['kbininfo']['kbin_edges'] += [kbin_edges / U.Mpc] psinfo[smplng]['kbininfo']['kbinnum'] += [NP.copy(kbinnum)] psinfo[smplng]['kbininfo']['ri'] += [NP.copy(ri)] for dpool in dpool_keys: if dpool in xcpdps[smplng]: psinfo[smplng][dpool] = {} psinfo[smplng]['kbininfo'][dpool] = {} keys = ['diagoffsets', 'diagweights', 'axesmap'] for key in keys: psinfo[smplng][dpool][key] = xcpdps[smplng][dpool][key] for stat in ['mean', 'median']: if stat in xcpdps[smplng][dpool]: psinfo[smplng][dpool][stat] = {'PS': [], 'Del2': []} psinfo[smplng]['kbininfo'][dpool][stat] = [] for combi in range(len(xcpdps[smplng][dpool][stat])): outshape = NP.asarray(xcpdps[smplng][dpool][stat][combi].shape) outshape[-1] = num_kbins tmp_dps = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit) tmp_Del2 = NP.full(tuple(outshape), NP.nan, dtype=NP.complex) * U.Unit(xcpdps[smplng][dpool][stat][combi].unit / U.Mpc**3) tmp_kprll = NP.full(tuple(outshape), NP.nan, dtype=NP.float) / U.Mpc for spw in range(kprll.shape[0]): counts = NP.copy(psinfo[smplng]['kbininfo']['counts'][spw]) ri = NP.copy(psinfo[smplng]['kbininfo']['ri'][spw]) print('Processing datapool={0}, stat={1}, LST-Day-Triad combination={2:0d}, spw={3:0d}...'.format(dpool, stat, combi, spw)) progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(marker='-', left=' |', right='| '), PGB.Counter(), '/{0:0d} k-bins '.format(num_kbins), PGB.ETA()], maxval=num_kbins).start() for binnum in range(num_kbins): if counts[binnum] > 0: ind_kbin = ri[ri[binnum]:ri[binnum+1]] tmp_dps[spw,...,binnum] = NP.nanmean(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) k_shape = NP.ones(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1).ndim, dtype=NP.int) k_shape[-1] = -1 tmp_Del2[spw,...,binnum] = NP.nanmean(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc)**3 * NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1), axis=-1) / (2*NP.pi**2) tmp_kprll[spw,...,binnum] = NP.nansum(NP.abs(kprll[spw,ind_kbin].reshape(tuple(k_shape))/U.Mpc) * NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) / NP.nansum(NP.abs(NP.take(xcpdps[smplng][dpool][stat][combi][spw], ind_kbin, axis=-1)), axis=-1) progress.update(binnum+1) progress.finish() psinfo[smplng][dpool][stat]['PS'] += [copy.deepcopy(tmp_dps)] psinfo[smplng][dpool][stat]['Del2'] += [copy.deepcopy(tmp_Del2)] psinfo[smplng]['kbininfo'][dpool][stat] += [copy.deepcopy(tmp_kprll)] return psinfo ################################################################################ class ClosurePhase(object): """ ---------------------------------------------------------------------------- Class to hold and operate on Closure Phase information. It has the following attributes and member functions. Attributes: extfile [string] Full path to external file containing information of ClosurePhase instance. The file is in HDF5 format cpinfo [dictionary] Contains the following top level keys, namely, 'raw', 'processed', and 'errinfo' Under key 'raw' which holds a dictionary, the subkeys include 'cphase' (nlst,ndays,ntriads,nchan), 'triads' (ntriads,3), 'lst' (nlst,ndays), and 'flags' (nlst,ndays,ntriads,nchan). Under the 'processed' key are more subkeys, namely, 'native', 'prelim', and optionally 'submodel' and 'residual' each holding a dictionary. Under 'native' dictionary, the subsubkeys for further dictionaries are 'cphase' (masked array: (nlst,ndays,ntriads,nchan)), 'eicp' (complex masked array: (nlst,ndays,ntriads,nchan)), and 'wts' (masked array: (nlst,ndays,ntriads,nchan)). Under 'prelim' dictionary, the subsubkeys for further dictionaries are 'tbins' (numpy array of tbin centers after smoothing), 'dtbins' (numpy array of tbin intervals), 'wts' (masked array: (ntbins,ndays,ntriads,nchan)), 'eicp' and 'cphase'. The dictionaries under 'eicp' are indexed by keys 'mean' (complex masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (complex masked array: (ntbins,ndays,ntriads,nchan)). The dictionaries under 'cphase' are indexed by keys 'mean' (masked array: (ntbins,ndays,ntriads,nchan)), 'median' (masked array: (ntbins,ndays,ntriads,nchan)), 'rms' (masked array: (ntbins,ndays,ntriads,nchan)), and 'mad' (masked array: (ntbins,ndays,ntriads,nchan)). The last one denotes Median Absolute Deviation. Under 'submodel' dictionary, the subsubkeys for further dictionaries are 'cphase' (masked array: (nlst,ndays,ntriads,nchan)), and 'eicp' (complex masked array: (nlst,ndays,ntriads,nchan)). Under 'residual' dictionary, the subsubkeys for further dictionaries are 'cphase' and 'eicp'. These are dictionaries too. The dictionaries under 'eicp' are indexed by keys 'mean' (complex masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (complex masked array: (ntbins,ndays,ntriads,nchan)). The dictionaries under 'cphase' are indexed by keys 'mean' (masked array: (ntbins,ndays,ntriads,nchan)), and 'median' (masked array: (ntbins,ndays,ntriads,nchan)). Under key 'errinfo', it contains the following keys and values: 'list_of_pair_of_pairs' List of pair of pairs for which differences of complex exponentials have been computed, where the elements are bins of days. The number of elements in the list is ncomb. And each element is a smaller (4-element) list of pair of pairs 'eicp_diff' Difference of complex exponentials between pairs of day bins. This will be used in evaluating noise properties in power spectrum. It is a dictionary with two keys '0' and '1' where each contains the difference from a pair of subsamples. Each of these keys contains a numpy array of shape (nlstbins,ncomb,2,ntriads,nchan) 'wts' Weights in difference of complex exponentials obtained by sum of squares of weights that are associated with the pair that was used in the differencing. It is a dictionary with two keys '0' and '1' where each contains the weights associated It is of shape (nlstbins,ncomb,2,ntriads,nchan) Member functions: __init__() Initialize an instance of class ClosurePhase expicp() Compute and return complex exponential of the closure phase as a masked array smooth_in_tbins() Smooth the complex exponentials of closure phases in LST bins. Both mean and median smoothing is produced. subtract() Subtract complex exponential of the bispectrum phase from the current instance and updates the cpinfo attribute subsample_differencing() Create subsamples and differences between subsamples to evaluate noise properties from the data set. save() Save contents of attribute cpinfo in external HDF5 file ---------------------------------------------------------------------------- """ def __init__(self, infile, freqs, infmt='npz'): """ ------------------------------------------------------------------------ Initialize an instance of class ClosurePhase Inputs: infile [string] Input file including full path. It could be a NPZ with raw data, or a HDF5 file that could contain raw or processed data. The input file format is specified in the input infmt. If it is a NPZ file, it must contain the following keys/files: 'closures' [numpy array] Closure phase (radians). It is of shape (nlst,ndays,ntriads,nchan) 'triads' [numpy array] Array of triad tuples, of shape (ntriads,3) 'flags' [numpy array] Array of flags (boolean), of shape (nlst,ndays,ntriads,nchan) 'last' [numpy array] Array of LST for each day (CASA units which is MJD+6713). Shape is (nlst,ndays) 'days' [numpy array] Array of days, shape is (ndays,) 'averaged_closures' [numpy array] optional array of closure phases averaged across days. Shape is (nlst,ntriads,nchan) 'std_dev_lst' [numpy array] optional array of standard deviation of closure phases across days. Shape is (nlst,ntriads,nchan) 'std_dev_triads' [numpy array] optional array of standard deviation of closure phases across triads. Shape is (nlst,ndays,nchan) freqs [numpy array] Frequencies (in Hz) in the input. Size is nchan. infmt [string] Input file format. Accepted values are 'npz' (default) and 'hdf5'. ------------------------------------------------------------------------ """ if not isinstance(infile, str): raise TypeError('Input infile must be a string') if not isinstance(freqs, NP.ndarray): raise TypeError('Input freqs must be a numpy array') freqs = freqs.ravel() if not isinstance(infmt, str): raise TypeError('Input infmt must be a string') if infmt.lower() not in ['npz', 'hdf5']: raise ValueError('Input infmt must be "npz" or "hdf5"') if infmt.lower() == 'npz': infilesplit = infile.split('.npz') infile_noext = infilesplit[0] self.cpinfo = loadnpz(infile) # npz2hdf5(infile, infile_noext+'.hdf5') self.extfile = infile_noext + '.hdf5' else: # if not isinstance(infile, h5py.File): # raise TypeError('Input infile is not a valid HDF5 file') self.extfile = infile self.cpinfo = NMO.load_dict_from_hdf5(self.extfile) if freqs.size != self.cpinfo['raw']['cphase'].shape[-1]: raise ValueError('Input frequencies do not match with dimensions of the closure phase data') self.f = freqs self.df = freqs[1] - freqs[0] force_expicp = False if 'processed' not in self.cpinfo: force_expicp = True else: if 'native' not in self.cpinfo['processed']: force_expicp = True self.expicp(force_action=force_expicp) if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['errinfo'] = {} ############################################################################ def expicp(self, force_action=False): """ ------------------------------------------------------------------------ Compute the complex exponential of the closure phase as a masked array Inputs: force_action [boolean] If set to False (default), the complex exponential is computed only if it has not been done so already. Otherwise the computation is forced. ------------------------------------------------------------------------ """ if 'processed' not in self.cpinfo: self.cpinfo['processed'] = {} force_action = True if 'native' not in self.cpinfo['processed']: self.cpinfo['processed']['native'] = {} force_action = True if 'cphase' not in self.cpinfo['processed']['native']: self.cpinfo['processed']['native']['cphase'] = MA.array(self.cpinfo['raw']['cphase'].astype(NP.float64), mask=self.cpinfo['raw']['flags']) force_action = True if not force_action: if 'eicp' not in self.cpinfo['processed']['native']: self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase']) self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags']) else: self.cpinfo['processed']['native']['eicp'] = NP.exp(1j * self.cpinfo['processed']['native']['cphase']) self.cpinfo['processed']['native']['wts'] = MA.array(NP.logical_not(self.cpinfo['raw']['flags']).astype(NP.float), mask=self.cpinfo['raw']['flags']) ############################################################################ def smooth_in_tbins(self, daybinsize=None, ndaybins=None, lstbinsize=None): """ ------------------------------------------------------------------------ Smooth the complex exponentials of closure phases in time bins. Both mean and median smoothing is produced. Inputs: daybinsize [Nonetype or scalar] Day bin size (in days) over which mean and median are estimated across different days for a fixed LST bin. If set to None, it will look for value in input ndaybins. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. ndaybins [NoneType or integer] Number of bins along day axis. Only if daybinsize is set to None. It produces bins that roughly consist of equal number of days in each bin regardless of how much the days in each bin are separated from each other. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. lstbinsize [NoneType or scalar] LST bin size (in seconds) over which mean and median are estimated across the LST. If set to None, no smoothing is performed ------------------------------------------------------------------------ """ if (ndaybins is not None) and (daybinsize is not None): raise ValueError('Only one of daybinsize or ndaybins should be set') if (daybinsize is not None) or (ndaybins is not None): if daybinsize is not None: if not isinstance(daybinsize, (int,float)): raise TypeError('Input daybinsize must be a scalar') dres = NP.diff(self.cpinfo['raw']['days']).min() # in days dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days if daybinsize > dres: daybinsize = NP.clip(daybinsize, dres, dextent) eps = 1e-10 daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize) ndaybins = daybins.size daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps])) if ndaybins > 1: daybinintervals = daybins[1:] - daybins[:-1] daybincenters = daybins[:-1] + 0.5 * daybinintervals else: daybinintervals = NP.asarray(daybinsize).reshape(-1) daybincenters = daybins[0] + 0.5 * daybinintervals counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins) counts = counts.astype(NP.int) # if 'prelim' not in self.cpinfo['processed']: # self.cpinfo['processed']['prelim'] = {} # self.cpinfo['processed']['prelim']['eicp'] = {} # self.cpinfo['processed']['prelim']['cphase'] = {} # self.cpinfo['processed']['prelim']['daybins'] = daybincenters # self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) for binnum in xrange(counts.size): ind_daybin = ri[ri[binnum]:ri[binnum+1]] wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1) eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1))) eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1))) cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data # mask = wts_daybins <= 0.0 # self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask) # self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask) # self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask) # self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask) # self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask) # self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask) # self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask) else: if not isinstance(ndaybins, int): raise TypeError('Input ndaybins must be an integer') if ndaybins <= 0: raise ValueError('Input ndaybins must be positive') days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins) daybincenters = NP.asarray([NP.mean(days) for days in days_split]) daybinintervals = NP.asarray([days.max()-days.min() for days in days_split]) counts = NP.asarray([days.size for days in days_split]) wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1) # mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1) wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1) eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1) eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean)) eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian)) eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1) cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['processed']['prelim']['eicp'] = {} self.cpinfo['processed']['prelim']['cphase'] = {} self.cpinfo['processed']['prelim']['daybins'] = daybincenters self.cpinfo['processed']['prelim']['diff_dbins'] = daybinintervals mask = wts_daybins <= 0.0 self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_daybins, mask=mask) self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_dmean, mask=mask) self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_dmedian, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_dmean), mask=mask) self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_dmedian), mask=mask) self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_drms, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_dmad, mask=mask) rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities if NP.any(rawlst > 24.0): rawlst -= 24.0 if rawlst.shape[0] > 1: # LST bin only if there are multiple LST if lstbinsize is not None: if not isinstance(lstbinsize, (int,float)): raise TypeError('Input lstbinsize must be a scalar') lstbinsize = lstbinsize / 3.6e3 # in hours tres = NP.diff(rawlst[:,0]).min() # in hours textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours eps = 1e-10 if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} no_change_in_lstbins = False if lstbinsize > tres: lstbinsize = NP.clip(lstbinsize, tres, textent) lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize) nlstbins = lstbins.size lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps])) if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) lstbincenters = lstbins[0] + 0.5 * lstbinintervals self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals no_change_in_lstbins = False else: # Perform no binning and keep the current LST resolution, data and weights warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') lstbinsize = tres lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) nlstbins = lstbins.size - 1 if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals self.cpinfo['processed']['prelim']['lstbins'] = lstbins[:-1] # Ensure that the LST bins are inside the min/max envelope to # error-free interpolation later self.cpinfo['processed']['prelim']['lstbins'][0] += eps self.cpinfo['processed']['prelim']['lstbins'][-1] -= eps no_change_in_lstbins = True counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins) counts = counts.astype(NP.int) if 'wts' not in self.cpinfo['processed']['prelim']: outshape = (counts.size, self.cpinfo['processed']['native']['eicp'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) else: outshape = (counts.size, self.cpinfo['processed']['prelim']['wts'].shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) wts_lstbins = NP.zeros(outshape) eicp_tmean = NP.zeros(outshape, dtype=NP.complex128) eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128) cp_trms = NP.zeros(outshape) cp_tmad = NP.zeros(outshape) for binnum in xrange(counts.size): if no_change_in_lstbins: ind_lstbin = [binnum] else: ind_lstbin = ri[ri[binnum]:ri[binnum+1]] if 'wts' not in self.cpinfo['processed']['prelim']: indict = self.cpinfo['processed']['native'] else: indict = self.cpinfo['processed']['prelim'] wts_lstbins[binnum,:,:,:] = NP.sum(indict['wts'][ind_lstbin,:,:,:].data, axis=0) if 'wts' not in self.cpinfo['processed']['prelim']: eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(indict['eicp'][ind_lstbin,:,:,:], axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(indict['eicp'][ind_lstbin,:,:,:].real, axis=0) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][ind_lstbin,:,:,:].imag, axis=0))) cp_trms[binnum,:,:,:] = MA.std(indict['cphase'][ind_lstbin,:,:,:], axis=0).data cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data else: eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*indict['cphase']['mean'][ind_lstbin,:,:,:]), axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(indict['cphase']['median'][ind_lstbin,:,:,:]), axis=0))) cp_trms[binnum,:,:,:] = MA.std(indict['cphase']['mean'][ind_lstbin,:,:,:], axis=0).data cp_tmad[binnum,:,:,:] = MA.median(NP.abs(indict['cphase']['median'][ind_lstbin,:,:,:] - NP.angle(eicp_tmedian[binnum,:,:,:][NP.newaxis,:,:,:])), axis=0).data mask = wts_lstbins <= 0.0 self.cpinfo['processed']['prelim']['wts'] = MA.array(wts_lstbins, mask=mask) if 'eicp' not in self.cpinfo['processed']['prelim']: self.cpinfo['processed']['prelim']['eicp'] = {} if 'cphase' not in self.cpinfo['processed']['prelim']: self.cpinfo['processed']['prelim']['cphase'] = {} self.cpinfo['processed']['prelim']['eicp']['mean'] = MA.array(eicp_tmean, mask=mask) self.cpinfo['processed']['prelim']['eicp']['median'] = MA.array(eicp_tmedian, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mean'] = MA.array(NP.angle(eicp_tmean), mask=mask) self.cpinfo['processed']['prelim']['cphase']['median'] = MA.array(NP.angle(eicp_tmedian), mask=mask) self.cpinfo['processed']['prelim']['cphase']['rms'] = MA.array(cp_trms, mask=mask) self.cpinfo['processed']['prelim']['cphase']['mad'] = MA.array(cp_tmad, mask=mask) # else: # # Perform no binning and keep the current LST resolution, data and weights # warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') # lstbinsize = tres # lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) # nlstbins = lstbins.size - 1 # if nlstbins > 1: # lstbinintervals = lstbins[1:] - lstbins[:-1] # lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals # else: # lstbinintervals = NP.asarray(lstbinsize).reshape(-1) # lstbincenters = lstbins[0] + 0.5 * lstbinintervals # if 'prelim' not in self.cpinfo['processed']: # self.cpinfo['processed']['prelim'] = {} # self.cpinfo['processed']['prelim']['lstbins'] = lstbincenters # self.cpinfo['processed']['prelim']['dlstbins'] = lstbinintervals if (rawlst.shape[0] <= 1) or (lstbinsize is None): nlstbins = rawlst.shape[0] lstbins = NP.mean(rawlst, axis=1) if 'prelim' not in self.cpinfo['processed']: self.cpinfo['processed']['prelim'] = {} self.cpinfo['processed']['prelim']['lstbins'] = lstbins if lstbinsize is not None: self.cpinfo['processed']['prelim']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1) else: self.cpinfo['processed']['prelim']['dlstbins'] = NP.zeros(1) ############################################################################ def subtract(self, cphase): """ ------------------------------------------------------------------------ Subtract complex exponential of the bispectrum phase from the current instance and updates the cpinfo attribute Inputs: cphase [masked array] Bispectrum phase array as a maked array. It must be of same size as freqs along the axis specified in input axis. Action: Updates 'submodel' and 'residual' keys under attribute cpinfo under key 'processed' ------------------------------------------------------------------------ """ if not isinstance(cphase, NP.ndarray): raise TypeError('Input cphase must be a numpy array') if not isinstance(cphase, MA.MaskedArray): cphase = MA.array(cphase, mask=NP.isnan(cphase)) if not OPS.is_broadcastable(cphase.shape, self.cpinfo['processed']['prelim']['cphase']['median'].shape): raise ValueError('Input cphase has shape incompatible with that in instance attribute') else: minshape = tuple(NP.ones(self.cpinfo['processed']['prelim']['cphase']['median'].ndim - cphase.ndim, dtype=NP.int)) + cphase.shape cphase = cphase.reshape(minshape) # cphase = NP.broadcast_to(cphase, minshape) eicp = NP.exp(1j*cphase) self.cpinfo['processed']['submodel'] = {} self.cpinfo['processed']['submodel']['cphase'] = cphase self.cpinfo['processed']['submodel']['eicp'] = eicp self.cpinfo['processed']['residual'] = {'eicp': {}, 'cphase': {}} for key in ['mean', 'median']: eicpdiff = self.cpinfo['processed']['prelim']['eicp'][key] - eicp eicpratio = self.cpinfo['processed']['prelim']['eicp'][key] / eicp self.cpinfo['processed']['residual']['eicp'][key] = eicpdiff self.cpinfo['processed']['residual']['cphase'][key] = MA.array(NP.angle(eicpratio.data), mask=self.cpinfo['processed']['residual']['eicp'][key].mask) ############################################################################ def subsample_differencing(self, daybinsize=None, ndaybins=4, lstbinsize=None): """ ------------------------------------------------------------------------ Create subsamples and differences between subsamples to evaluate noise properties from the data set. Inputs: daybinsize [Nonetype or scalar] Day bin size (in days) over which mean and median are estimated across different days for a fixed LST bin. If set to None, it will look for value in input ndaybins. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. Must yield greater than or equal to 4 bins ndaybins [NoneType or integer] Number of bins along day axis. Only if daybinsize is set to None. It produces bins that roughly consist of equal number of days in each bin regardless of how much the days in each bin are separated from each other. If both are None, no smoothing is performed. Only one of daybinsize or ndaybins must be set to non-None value. If set, it must be set to greater than or equal to 4 lstbinsize [NoneType or scalar] LST bin size (in seconds) over which mean and median are estimated across the LST. If set to None, no smoothing is performed ------------------------------------------------------------------------ """ if (ndaybins is not None) and (daybinsize is not None): raise ValueError('Only one of daybinsize or ndaybins should be set') if (daybinsize is not None) or (ndaybins is not None): if daybinsize is not None: if not isinstance(daybinsize, (int,float)): raise TypeError('Input daybinsize must be a scalar') dres = NP.diff(self.cpinfo['raw']['days']).min() # in days dextent = self.cpinfo['raw']['days'].max() - self.cpinfo['raw']['days'].min() + dres # in days if daybinsize > dres: daybinsize = NP.clip(daybinsize, dres, dextent) eps = 1e-10 daybins = NP.arange(self.cpinfo['raw']['days'].min(), self.cpinfo['raw']['days'].max() + dres + eps, daybinsize) ndaybins = daybins.size daybins = NP.concatenate((daybins, [daybins[-1]+daybinsize+eps])) if ndaybins >= 4: daybinintervals = daybins[1:] - daybins[:-1] daybincenters = daybins[:-1] + 0.5 * daybinintervals else: raise ValueError('Could not find at least 4 bins along repeating days. Adjust binning interval.') counts, daybin_edges, daybinnum, ri = OPS.binned_statistic(self.cpinfo['raw']['days'], statistic='count', bins=daybins) counts = counts.astype(NP.int) wts_daybins = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) eicp_dmean = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) eicp_dmedian = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]), dtype=NP.complex128) cp_drms = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) cp_dmad = NP.zeros((self.cpinfo['processed']['native']['eicp'].shape[0], counts.size, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3])) for binnum in xrange(counts.size): ind_daybin = ri[ri[binnum]:ri[binnum+1]] wts_daybins[:,binnum,:,:] = NP.sum(self.cpinfo['processed']['native']['wts'][:,ind_daybin,:,:].data, axis=1) eicp_dmean[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.mean(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:], axis=1))) eicp_dmedian[:,binnum,:,:] = NP.exp(1j*NP.angle(MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].real, axis=1) + 1j * MA.median(self.cpinfo['processed']['native']['eicp'][:,ind_daybin,:,:].imag, axis=1))) cp_drms[:,binnum,:,:] = MA.std(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:], axis=1).data cp_dmad[:,binnum,:,:] = MA.median(NP.abs(self.cpinfo['processed']['native']['cphase'][:,ind_daybin,:,:] - NP.angle(eicp_dmedian[:,binnum,:,:][:,NP.newaxis,:,:])), axis=1).data else: if not isinstance(ndaybins, int): raise TypeError('Input ndaybins must be an integer') if ndaybins < 4: raise ValueError('Input ndaybins must be greater than or equal to 4') days_split = NP.array_split(self.cpinfo['raw']['days'], ndaybins) daybincenters = NP.asarray([NP.mean(days) for days in days_split]) daybinintervals = NP.asarray([days.max()-days.min() for days in days_split]) counts = NP.asarray([days.size for days in days_split]) wts_split = NP.array_split(self.cpinfo['processed']['native']['wts'].data, ndaybins, axis=1) # mask_split = NP.array_split(self.cpinfo['processed']['native']['wts'].mask, ndaybins, axis=1) wts_daybins = NP.asarray([NP.sum(wtsitem, axis=1) for wtsitem in wts_split]) # ndaybins x nlst x ntriads x nchan wts_daybins = NP.moveaxis(wts_daybins, 0, 1) # nlst x ndaybins x ntriads x nchan mask_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].mask, ndaybins, axis=1) eicp_split = NP.array_split(self.cpinfo['processed']['native']['eicp'].data, ndaybins, axis=1) eicp_dmean = MA.array([MA.mean(MA.array(eicp_split[i], mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmean = NP.exp(1j * NP.angle(eicp_dmean)) eicp_dmean = NP.moveaxis(eicp_dmean, 0, 1) # nlst x ndaybins x ntriads x nchan eicp_dmedian = MA.array([MA.median(MA.array(eicp_split[i].real, mask=mask_split[i]), axis=1) + 1j * MA.median(MA.array(eicp_split[i].imag, mask=mask_split[i]), axis=1) for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan eicp_dmedian = NP.exp(1j * NP.angle(eicp_dmedian)) eicp_dmedian = NP.moveaxis(eicp_dmedian, 0, 1) # nlst x ndaybins x ntriads x nchan cp_split = NP.array_split(self.cpinfo['processed']['native']['cphase'].data, ndaybins, axis=1) cp_drms = NP.array([MA.std(MA.array(cp_split[i], mask=mask_split[i]), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_drms = NP.moveaxis(cp_drms, 0, 1) # nlst x ndaybins x ntriads x nchan cp_dmad = NP.array([MA.median(NP.abs(cp_split[i] - NP.angle(eicp_dmedian[:,[i],:,:])), axis=1).data for i in range(daybincenters.size)]) # ndaybins x nlst x ntriads x nchan cp_dmad = NP.moveaxis(cp_dmad, 0, 1) # nlst x ndaybins x ntriads x nchan mask = wts_daybins <= 0.0 wts_daybins = MA.array(wts_daybins, mask=mask) cp_dmean = MA.array(NP.angle(eicp_dmean), mask=mask) cp_dmedian = MA.array(NP.angle(eicp_dmedian), mask=mask) self.cpinfo['errinfo']['daybins'] = daybincenters self.cpinfo['errinfo']['diff_dbins'] = daybinintervals self.cpinfo['errinfo']['wts'] = {'{0}'.format(ind): None for ind in range(2)} self.cpinfo['errinfo']['eicp_diff'] = {'{0}'.format(ind): {} for ind in range(2)} rawlst = NP.degrees(NP.unwrap(NP.radians(self.cpinfo['raw']['lst'] * 15.0), discont=NP.pi, axis=0)) / 15.0 # in hours but unwrapped to have no discontinuities if NP.any(rawlst > 24.0): rawlst -= 24.0 if rawlst.shape[0] > 1: # LST bin only if there are multiple LST if lstbinsize is not None: if not isinstance(lstbinsize, (int,float)): raise TypeError('Input lstbinsize must be a scalar') lstbinsize = lstbinsize / 3.6e3 # in hours tres = NP.diff(rawlst[:,0]).min() # in hours textent = rawlst[:,0].max() - rawlst[:,0].min() + tres # in hours eps = 1e-10 no_change_in_lstbins = False if lstbinsize > tres: lstbinsize = NP.clip(lstbinsize, tres, textent) lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + tres + eps, lstbinsize) nlstbins = lstbins.size lstbins = NP.concatenate((lstbins, [lstbins[-1]+lstbinsize+eps])) if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] lstbincenters = lstbins[:-1] + 0.5 * lstbinintervals else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) lstbincenters = lstbins[0] + 0.5 * lstbinintervals self.cpinfo['errinfo']['lstbins'] = lstbincenters self.cpinfo['errinfo']['dlstbins'] = lstbinintervals no_change_in_lstbins = False else: # Perform no binning and keep the current LST resolution warnings.warn('LST bin size found to be smaller than the LST resolution in the data. No LST binning/averaging will be performed.') lstbinsize = tres lstbins = NP.arange(rawlst[:,0].min(), rawlst[:,0].max() + lstbinsize + eps, lstbinsize) nlstbins = lstbins.size - 1 if nlstbins > 1: lstbinintervals = lstbins[1:] - lstbins[:-1] else: lstbinintervals = NP.asarray(lstbinsize).reshape(-1) self.cpinfo['errinfo']['dlstbins'] = lstbinintervals self.cpinfo['errinfo']['lstbins'] = lstbins[:-1] # Ensure that the LST bins are inside the min/max envelope to # error-free interpolation later self.cpinfo['errinfo']['lstbins'][0] += eps self.cpinfo['errinfo']['lstbins'][-1] -= eps no_change_in_lstbins = True counts, lstbin_edges, lstbinnum, ri = OPS.binned_statistic(rawlst[:,0], statistic='count', bins=lstbins) counts = counts.astype(NP.int) outshape = (counts.size, wts_daybins.shape[1], self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) wts_lstbins = NP.zeros(outshape) eicp_tmean = NP.zeros(outshape, dtype=NP.complex128) eicp_tmedian = NP.zeros(outshape, dtype=NP.complex128) cp_trms = NP.zeros(outshape) cp_tmad = NP.zeros(outshape) for binnum in xrange(counts.size): if no_change_in_lstbins: ind_lstbin = [binnum] else: ind_lstbin = ri[ri[binnum]:ri[binnum+1]] wts_lstbins[binnum,:,:,:] = NP.sum(wts_daybins[ind_lstbin,:,:,:].data, axis=0) eicp_tmean[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.mean(NP.exp(1j*cp_dmean[ind_lstbin,:,:,:]), axis=0))) eicp_tmedian[binnum,:,:,:] = NP.exp(1j*NP.angle(MA.median(NP.cos(cp_dmedian[ind_lstbin,:,:,:]), axis=0) + 1j * MA.median(NP.sin(cp_dmedian[ind_lstbin,:,:,:]), axis=0))) mask = wts_lstbins <= 0.0 wts_lstbins = MA.array(wts_lstbins, mask=mask) eicp_tmean = MA.array(eicp_tmean, mask=mask) eicp_tmedian = MA.array(eicp_tmedian, mask=mask) else: wts_lstbins = MA.copy(wts_daybins) mask = wts_lstbins.mask eicp_tmean = MA.array(NP.exp(1j*NP.angle(NP.exp(1j*cp_dmean))), mask=mask) eicp_tmedian = MA.array(NP.exp(1j*NP.angle(NP.cos(cp_dmedian) + 1j * NP.sin(cp_dmedian))), mask=mask) if (rawlst.shape[0] <= 1) or (lstbinsize is None): nlstbins = rawlst.shape[0] lstbins = NP.mean(rawlst, axis=1) self.cpinfo['errinfo']['lstbins'] = lstbins if lstbinsize is not None: self.cpinfo['errinfo']['dlstbins'] = NP.asarray(lstbinsize).reshape(-1) else: self.cpinfo['errinfo']['dlstbins'] = NP.zeros(1) ncomb = NP.sum(NP.asarray([(ndaybins-i-1)*(ndaybins-i-2)*(ndaybins-i-3)/2 for i in range(ndaybins-3)])).astype(int) diff_outshape = (nlstbins, ncomb, self.cpinfo['processed']['native']['eicp'].shape[2], self.cpinfo['processed']['native']['eicp'].shape[3]) for diffind in range(2): self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['mean'] = MA.empty(diff_outshape, dtype=NP.complex) self.cpinfo['errinfo']['eicp_diff']['{0}'.format(diffind)]['median'] = MA.empty(diff_outshape, dtype=NP.complex) self.cpinfo['errinfo']['wts']['{0}'.format(diffind)] = MA.empty(diff_outshape, dtype=NP.float) ind = -1 self.cpinfo['errinfo']['list_of_pair_of_pairs'] = [] list_of_pair_of_pairs = [] for i in range(ndaybins-1): for j in range(i+1,ndaybins): for k in range(ndaybins-1): if (k != i) and (k != j): for m in range(k+1,ndaybins): if (m != i) and (m != j): pair_of_pairs = [set([i,j]), set([k,m])] if (pair_of_pairs not in list_of_pair_of_pairs) and (pair_of_pairs[::-1] not in list_of_pair_of_pairs): ind += 1 list_of_pair_of_pairs += [copy.deepcopy(pair_of_pairs)] self.cpinfo['errinfo']['list_of_pair_of_pairs'] += [[i,j,k,m]] for stat in ['mean', 'median']: if stat == 'mean': self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,j,:,:].data - eicp_tmean[:,i,:,:].data), mask=NP.logical_or(eicp_tmean[:,j,:,:].mask, eicp_tmean[:,i,:,:].mask)) self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmean[:,m,:,:].data - eicp_tmean[:,k,:,:].data), mask=NP.logical_or(eicp_tmean[:,m,:,:].mask, eicp_tmean[:,k,:,:].mask)) self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,j,:,:].data**2 + wts_lstbins[:,i,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,j,:,:].mask, wts_lstbins[:,i,:,:].mask)) self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = MA.array(NP.sqrt(wts_lstbins[:,m,:,:].data**2 + wts_lstbins[:,k,:,:].data**2), mask=NP.logical_or(wts_lstbins[:,m,:,:].mask, wts_lstbins[:,k,:,:].mask)) # self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,j,:,:] - eicp_tmean[:,i,:,:]) # self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmean[:,m,:,:] - eicp_tmean[:,k,:,:]) # self.cpinfo['errinfo']['wts']['0'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,j,:,:]**2 + wts_lstbins[:,i,:,:]**2) # self.cpinfo['errinfo']['wts']['1'][:,ind,:,:] = NP.sqrt(wts_lstbins[:,m,:,:]**2 + wts_lstbins[:,k,:,:]**2) else: self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,j,:,:].data - eicp_tmedian[:,i,:,:].data), mask=NP.logical_or(eicp_tmedian[:,j,:,:].mask, eicp_tmedian[:,i,:,:].mask)) self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = MA.array(0.5 * (eicp_tmedian[:,m,:,:].data - eicp_tmedian[:,k,:,:].data), mask=NP.logical_or(eicp_tmedian[:,m,:,:].mask, eicp_tmedian[:,k,:,:].mask)) # self.cpinfo['errinfo']['eicp_diff']['0'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,j,:,:] - eicp_tmedian[:,i,:,:]) # self.cpinfo['errinfo']['eicp_diff']['1'][stat][:,ind,:,:] = 0.5 * (eicp_tmedian[:,m,:,:] - eicp_tmedian[:,k,:,:]) mask0 = self.cpinfo['errinfo']['wts']['0'] <= 0.0 mask1 = self.cpinfo['errinfo']['wts']['1'] <= 0.0 self.cpinfo['errinfo']['eicp_diff']['0'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['0'][stat], mask=mask0) self.cpinfo['errinfo']['eicp_diff']['1'][stat] = MA.array(self.cpinfo['errinfo']['eicp_diff']['1'][stat], mask=mask1) self.cpinfo['errinfo']['wts']['0'] = MA.array(self.cpinfo['errinfo']['wts']['0'], mask=mask0) self.cpinfo['errinfo']['wts']['1'] = MA.array(self.cpinfo['errinfo']['wts']['1'], mask=mask1) ############################################################################ def save(self, outfile=None): """ ------------------------------------------------------------------------ Save contents of attribute cpinfo in external HDF5 file Inputs: outfile [NoneType or string] Output file (HDF5) to save contents to. If set to None (default), it will be saved in the file pointed to by the extfile attribute of class ClosurePhase ------------------------------------------------------------------------ """ if outfile is None: outfile = self.extfile NMO.save_dict_to_hdf5(self.cpinfo, outfile, compressinfo={'compress_fmt': 'gzip', 'compress_opts': 9}) ################################################################################ class ClosurePhaseDelaySpectrum(object): """ ---------------------------------------------------------------------------- Class to hold and operate on Closure Phase information. It has the following attributes and member functions. Attributes: cPhase [instance of class ClosurePhase] Instance of class ClosurePhase f [numpy array] Frequencies (in Hz) in closure phase spectra df [float] Frequency resolution (in Hz) in closure phase spectra cPhaseDS [dictionary] Possibly oversampled Closure Phase Delay Spectrum information. cPhaseDS_resampled [dictionary] Resampled Closure Phase Delay Spectrum information. Member functions: __init__() Initialize instance of class ClosurePhaseDelaySpectrum FT() Fourier transform of complex closure phase spectra mapping from frequency axis to delay axis. subset() Return triad and time indices to select a subset of processed data compute_power_spectrum() Compute power spectrum of closure phase data. It is in units of Mpc/h. rescale_power_spectrum() Rescale power spectrum to dimensional quantity by converting the ratio given visibility amplitude information average_rescaled_power_spectrum() Average the rescaled power spectrum with physical units along certain axes with inverse variance or regular averaging beam3Dvol() Compute three-dimensional volume of the antenna power pattern along two transverse axes and one LOS axis. ---------------------------------------------------------------------------- """ def __init__(self, cPhase): """ ------------------------------------------------------------------------ Initialize instance of class ClosurePhaseDelaySpectrum Inputs: cPhase [class ClosurePhase] Instance of class ClosurePhase ------------------------------------------------------------------------ """ if not isinstance(cPhase, ClosurePhase): raise TypeError('Input cPhase must be an instance of class ClosurePhase') self.cPhase = cPhase self.f = self.cPhase.f self.df = self.cPhase.df self.cPhaseDS = None self.cPhaseDS_resampled = None ############################################################################ def FT(self, bw_eff, freq_center=None, shape=None, fftpow=None, pad=None, datapool='prelim', visscaleinfo=None, method='fft', resample=True, apply_flags=True): """ ------------------------------------------------------------------------ Fourier transform of complex closure phase spectra mapping from frequency axis to delay axis. Inputs: bw_eff [scalar or numpy array] effective bandwidths (in Hz) on the selected frequency windows for subband delay transform of closure phases. If a scalar value is provided, the same will be applied to all frequency windows freq_center [scalar, list or numpy array] frequency centers (in Hz) of the selected frequency windows for subband delay transform of closure phases. The value can be a scalar, list or numpy array. If a scalar is provided, the same will be applied to all frequency windows. Default=None uses the center frequency from the class attribute named channels shape [string] frequency window shape for subband delay transform of closure phases. Accepted values for the string are 'rect' or 'RECT' (for rectangular), 'bnw' and 'BNW' (for Blackman-Nuttall), and 'bhw' or 'BHW' (for Blackman-Harris). Default=None sets it to 'rect' (rectangular window) fftpow [scalar] the power to which the FFT of the window will be raised. The value must be a positive scalar. Default = 1.0 pad [scalar] padding fraction relative to the number of frequency channels for closure phases. Value must be a non-negative scalar. For e.g., a pad of 1.0 pads the frequency axis with zeros of the same width as the number of channels. After the delay transform, the transformed closure phases are downsampled by a factor of 1+pad. If a negative value is specified, delay transform will be performed with no padding. Default=None sets to padding factor to 1.0 datapool [string] Specifies which data set is to be Fourier transformed visscaleinfo [dictionary] Dictionary containing reference visibilities based on which the closure phases will be scaled to units of visibilities. It contains the following keys and values: 'vis' [numpy array or instance of class InterferometerArray] Reference visibilities from the baselines that form the triad. It can be an instance of class RI.InterferometerArray or a numpy array. If an instance of class InterferometerArray, the baseline triplet must be set in key 'bltriplet' and value in key 'lst' will be ignored. If the value under this key 'vis' is set to a numpy array, it must be of shape (nbl=3, nlst_vis, nchan). In this case the value under key 'bltriplet' will be ignored. The nearest LST will be looked up and applied after smoothing along LST based on the smoothing parameter 'smooth' 'bltriplet' [Numpy array] Will be used in searching for matches to these three baseline vectors if the value under key 'vis' is set to an instance of class InterferometerArray. However, if value under key 'vis' is a numpy array, this key 'bltriplet' will be ignored. 'lst' [numpy array] Reference LST (in hours). It is of shape (nlst_vis,). It will be used only if value under key 'vis' is a numpy array, otherwise it will be ignored and read from the instance of class InterferometerArray passed under key 'vis'. If the specified LST range does not cover the data LST range, those LST will contain NaN in the delay spectrum 'smoothinfo' [dictionary] Dictionary specifying smoothing and/or interpolation parameters. It has the following keys and values: 'op_type' [string] Specifies the interpolating operation. Must be specified (no default). Accepted values are 'interp1d' (scipy.interpolate), 'median' (skimage.filters), 'tophat' (astropy.convolution) and 'gaussian' (astropy.convolution) 'interp_kind' [string (optional)] Specifies the interpolation kind (if 'op_type' is set to 'interp1d'). For accepted values, see scipy.interpolate.interp1d() 'window_size' [integer (optional)] Specifies the size of the interpolating/smoothing kernel. Only applies when 'op_type' is set to 'median', 'tophat' or 'gaussian' The kernel is a tophat function when 'op_type' is set to 'median' or 'tophat'. If refers to FWHM when 'op_type' is set to 'gaussian' resample [boolean] If set to True (default), resample the delay spectrum axis to independent samples along delay axis. If set to False, return the results as is even if they may be be oversampled and not all samples may be independent method [string] Specifies the Fourier transform method to be used. Accepted values are 'fft' (default) for FFT and 'nufft' for non-uniform FFT apply_flags [boolean] If set to True (default), weights determined from flags will be applied. If False, no weights from flagging will be applied, and thus even flagged data will be included Outputs: A dictionary that contains the oversampled (if resample=False) or resampled (if resample=True) delay spectrum information. It has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags=nchan+npad if resample=True, where npad is the number of frequency channels padded specified under the key 'npad'. If resample=False, nlags = number of delays after resampling only independent delays. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_win x nlst x ndays x ntriads x nlags. nlags=nchan+npad if resample=True, where npad is the number of frequency channels padded specified under the key 'npad'. If resample=False, nlags = number of delays after resampling only independent delays. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'whole' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'prelim' key of attribute cpinfo. Contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(nlst,ndays,ntriads,nchan) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'submodel' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'submodel' key of attribute cpinfo. Contains the following keys and values: 'dspec' [numpy array] Delay spectrum of closure phases Shape=(nspw,nlst,ndays,ntriads,nlags) 'residual' [dictionary] Delay spectrum results corresponding to bispectrum phase in 'residual' key of attribute cpinfo after subtracting 'submodel' bispectrum phase from that of 'prelim'. It contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(nlst,ndays,ntriads,nchan) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,nlst,ndays,ntriads,nlags) 'errinfo' [dictionary] It has two keys 'dspec0' and 'dspec1' each of which are dictionaries with the following keys and values: 'twts' [numpy array] Weights for the subsample difference. It is of shape (nlst, ndays, ntriads, nchan) 'mean' [numpy array] Delay spectrum of the subsample difference obtained by using the mean statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) 'median' [numpy array] Delay spectrum of the subsample difference obtained by using the median statistic. It is of shape (nspw, nlst, ndays, ntriads, nlags) ------------------------------------------------------------------------ """ try: bw_eff except NameError: raise NameError('Effective bandwidth must be specified') else: if not isinstance(bw_eff, (int, float, list, NP.ndarray)): raise TypeError('Value of effective bandwidth must be a scalar, list or numpy array') bw_eff = NP.asarray(bw_eff).reshape(-1) if NP.any(bw_eff <= 0.0): raise ValueError('All values in effective bandwidth must be strictly positive') if freq_center is None: freq_center = NP.asarray(self.f[self.f.size/2]).reshape(-1) elif isinstance(freq_center, (int, float, list, NP.ndarray)): freq_center = NP.asarray(freq_center).reshape(-1) if NP.any((freq_center <= self.f.min()) | (freq_center >= self.f.max())): raise ValueError('Value(s) of frequency center(s) must lie strictly inside the observing band') else: raise TypeError('Values(s) of frequency center must be scalar, list or numpy array') if (bw_eff.size == 1) and (freq_center.size > 1): bw_eff = NP.repeat(bw_eff, freq_center.size) elif (bw_eff.size > 1) and (freq_center.size == 1): freq_center = NP.repeat(freq_center, bw_eff.size) elif bw_eff.size != freq_center.size: raise ValueError('Effective bandwidth(s) and frequency center(s) must have same number of elements') if shape is not None: if not isinstance(shape, str): raise TypeError('Window shape must be a string') if shape not in ['rect', 'bhw', 'bnw', 'RECT', 'BHW', 'BNW']: raise ValueError('Invalid value for window shape specified.') else: shape = 'rect' if fftpow is None: fftpow = 1.0 else: if not isinstance(fftpow, (int, float)): raise TypeError('Power to raise window FFT by must be a scalar value.') if fftpow < 0.0: raise ValueError('Power for raising FFT of window by must be positive.') if pad is None: pad = 1.0 else: if not isinstance(pad, (int, float)): raise TypeError('pad fraction must be a scalar value.') if pad < 0.0: pad = 0.0 if verbose: print('\tPad fraction found to be negative. Resetting to 0.0 (no padding will be applied).') if not isinstance(datapool, str): raise TypeError('Input datapool must be a string') if datapool.lower() not in ['prelim']: raise ValueError('Specified datapool not supported') if visscaleinfo is not None: if not isinstance(visscaleinfo, dict): raise TypeError('Input visscaleinfo must be a dictionary') if 'vis' not in visscaleinfo: raise KeyError('Input visscaleinfo does not contain key "vis"') if not isinstance(visscaleinfo['vis'], RI.InterferometerArray): if 'lst' not in visscaleinfo: raise KeyError('Input visscaleinfo does not contain key "lst"') lst_vis = visscaleinfo['lst'] * 15.0 if not isinstance(visscaleinfo['vis'], (NP.ndarray,MA.MaskedArray)): raise TypeError('Input visibilities must be a numpy or a masked array') if not isinstance(visscaleinfo['vis'], MA.MaskedArray): visscaleinfo['vis'] = MA.array(visscaleinfo['vis'], mask=NP.isnan(visscaleinfo['vis'])) vistriad = MA.copy(visscaleinfo['vis']) else: if 'bltriplet' not in visscaleinfo: raise KeyError('Input dictionary visscaleinfo does not contain key "bltriplet"') blind, blrefind, dbl = LKP.find_1NN(visscaleinfo['vis'].baselines, visscaleinfo['bltriplet'], distance_ULIM=0.2, remove_oob=True) if blrefind.size != 3: blind_missing = NP.setdiff1d(NP.arange(3), blind, assume_unique=True) blind_next, blrefind_next, dbl_next = LKP.find_1NN(visscaleinfo['vis'].baselines, -1*visscaleinfo['bltriplet'][blind_missing,:], distance_ULIM=0.2, remove_oob=True) if blind_next.size + blind.size != 3: raise ValueError('Exactly three baselines were not found in the reference baselines') else: blind = NP.append(blind, blind_missing[blind_next]) blrefind = NP.append(blrefind, blrefind_next) else: blind_missing = [] vistriad = NP.transpose(visscaleinfo['vis'].skyvis_freq[blrefind,:,:], (0,2,1)) if len(blind_missing) > 0: vistriad[-blrefind_next.size:,:,:] = vistriad[-blrefind_next.size:,:,:].conj() vistriad = MA.array(vistriad, mask=NP.isnan(vistriad)) lst_vis = visscaleinfo['vis'].lst viswts = MA.array(NP.ones_like(vistriad.data), mask=vistriad.mask, dtype=NP.float) lst_out = self.cPhase.cpinfo['processed']['prelim']['lstbins'] * 15.0 if lst_vis.size == 1: # Apply the visibility scaling from one reference LST to all LST vis_ref = vistriad * NP.ones(lst_out.size).reshape(1,-1,1) wts_ref = viswts * NP.ones(lst_out.size).reshape(1,-1,1) else: vis_ref, wts_ref = OPS.interpolate_masked_array_1D(vistriad, viswts, 1, visscaleinfo['smoothinfo'], inploc=lst_vis, outloc=lst_out) if not isinstance(method, str): raise TypeError('Input method must be a string') if method.lower() not in ['fft', 'nufft']: raise ValueError('Specified FFT method not supported') if not isinstance(apply_flags, bool): raise TypeError('Input apply_flags must be boolean') flagwts = 1.0 visscale = 1.0 if datapool.lower() == 'prelim': if method.lower() == 'fft': freq_wts = NP.empty((bw_eff.size, self.f.size), dtype=NP.float_) # nspw x nchan frac_width = DSP.window_N2width(n_window=None, shape=shape, fftpow=fftpow, area_normalize=False, power_normalize=True) window_loss_factor = 1 / frac_width n_window = NP.round(window_loss_factor * bw_eff / self.df).astype(NP.int) ind_freq_center, ind_channels, dfrequency = LKP.find_1NN(self.f.reshape(-1,1), freq_center.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True) sortind = NP.argsort(ind_channels) ind_freq_center = ind_freq_center[sortind] ind_channels = ind_channels[sortind] dfrequency = dfrequency[sortind] n_window = n_window[sortind] for i,ind_chan in enumerate(ind_channels): window = NP.sqrt(frac_width * n_window[i]) * DSP.window_fftpow(n_window[i], shape=shape, fftpow=fftpow, centering=True, peak=None, area_normalize=False, power_normalize=True) window_chans = self.f[ind_chan] + self.df * (NP.arange(n_window[i]) - int(n_window[i]/2)) ind_window_chans, ind_chans, dfreq = LKP.find_1NN(self.f.reshape(-1,1), window_chans.reshape(-1,1), distance_ULIM=0.51*self.df, remove_oob=True) sind = NP.argsort(ind_window_chans) ind_window_chans = ind_window_chans[sind] ind_chans = ind_chans[sind] dfreq = dfreq[sind] window = window[ind_window_chans] window = NP.pad(window, ((ind_chans.min(), self.f.size-1-ind_chans.max())), mode='constant', constant_values=((0.0,0.0))) freq_wts[i,:] = window npad = int(self.f.size * pad) lags = DSP.spectral_axis(self.f.size + npad, delx=self.df, use_real=False, shift=True) result = {'freq_center': freq_center, 'shape': shape, 'freq_wts': freq_wts, 'bw_eff': bw_eff, 'fftpow': fftpow, 'npad': npad, 'lags': lags, 'lag_corr_length': self.f.size / NP.sum(freq_wts, axis=-1), 'whole': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'residual': {'dspec': {'twts': self.cPhase.cpinfo['processed'][datapool]['wts']}}, 'errinfo': {'dspec0': {'twts': self.cPhase.cpinfo['errinfo']['wts']['0']}, 'dspec1': {'twts': self.cPhase.cpinfo['errinfo']['wts']['1']}}, 'submodel': {}} if visscaleinfo is not None: visscale = NP.nansum(NP.transpose(vis_ref[NP.newaxis,NP.newaxis,:,:,:], axes=(0,3,1,2,4)) * freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) / NP.nansum(freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], axis=-1, keepdims=True) # nspw x nlst x (ndays=1) x (nbl=3) x (nchan=1) visscale = NP.sqrt(1.0/NP.nansum(1/NP.abs(visscale)**2, axis=-2, keepdims=True)) # nspw x nlst x (ndays=1) x (ntriads=1) x (nchan=1) for dpool in ['errinfo', 'prelim', 'submodel', 'residual']: if dpool.lower() == 'errinfo': for diffind in range(2): if apply_flags: flagwts = NP.copy(self.cPhase.cpinfo['errinfo']['wts']['{0}'.format(diffind)].data) flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan for stat in self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)]: eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].data) # Minimum shape as stored # eicp = NP.copy(self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].filled(0.0)) # Minimum shape as stored eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo[dpool]['eicp_diff']['{0}'.format(diffind)][stat].shape) # Broadcast to final shape eicp = eicp[NP.newaxis,...] # nlst x ndayscomb x ntriads x nchan --> (nspw=1) x nlst x ndayscomb x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] result[dpool]['dspec{0}'.format(diffind)][stat] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: if dpool in self.cPhase.cpinfo['processed']: if apply_flags: flagwts = NP.copy(self.cPhase.cpinfo['processed'][datapool]['wts'].data) flagwts = flagwts[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan flagwts = 1.0 * flagwts / NP.mean(flagwts, axis=-1, keepdims=True) # (nspw=1) x nlst x ndays x ntriads x nchan if dpool == 'submodel': eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].data) # Minimum shape as stored # eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'].filled(1.0)) # Minimum shape as stored eicp = NP.broadcast_to(eicp, self.cPhase.cpinfo['processed'][datapool]['eicp']['mean'].shape) # Broadcast to final shape eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] result[dpool]['dspec'] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: for key in self.cPhase.cpinfo['processed'][dpool]['eicp']: eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].data) # eicp = NP.copy(self.cPhase.cpinfo['processed'][dpool]['eicp'][key].filled(1.0)) eicp = eicp[NP.newaxis,...] # nlst x ndays x ntriads x nchan --> (nspw=1) x nlst x ndays x ntriads x nchan ndim_padtuple = [(0,0)]*(eicp.ndim-1) + [(0,npad)] # [(0,0), (0,0), (0,0), (0,0), (0,npad)] if dpool == 'prelim': result['whole']['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df else: result[dpool]['dspec'][key] = DSP.FT1D(NP.pad(eicp*flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:]*visscale.filled(NP.nan), ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df result['lag_kernel'] = DSP.FT1D(NP.pad(flagwts*freq_wts[:,NP.newaxis,NP.newaxis,NP.newaxis,:], ndim_padtuple, mode='constant'), ax=-1, inverse=True, use_real=False, shift=True) * (npad + self.f.size) * self.df self.cPhaseDS = result if resample: result_resampled = copy.deepcopy(result) downsample_factor = NP.min((self.f.size + npad) * self.df / bw_eff) result_resampled['lags'] = DSP.downsampler(result_resampled['lags'], downsample_factor, axis=-1, method='interp', kind='linear') result_resampled['lag_kernel'] = DSP.downsampler(result_resampled['lag_kernel'], downsample_factor, axis=-1, method='interp', kind='linear') for dpool in ['errinfo', 'prelim', 'submodel', 'residual']: if dpool.lower() == 'errinfo': for diffind in self.cPhase.cpinfo[dpool]['eicp_diff']: for key in self.cPhase.cpinfo[dpool]['eicp_diff'][diffind]: result_resampled[dpool]['dspec'+diffind][key] = DSP.downsampler(result_resampled[dpool]['dspec'+diffind][key], downsample_factor, axis=-1, method='FFT') if dpool in self.cPhase.cpinfo['processed']: if dpool == 'submodel': result_resampled[dpool]['dspec'] = DSP.downsampler(result_resampled[dpool]['dspec'], downsample_factor, axis=-1, method='FFT') else: for key in self.cPhase.cpinfo['processed'][datapool]['eicp']: if dpool == 'prelim': result_resampled['whole']['dspec'][key] = DSP.downsampler(result_resampled['whole']['dspec'][key], downsample_factor, axis=-1, method='FFT') else: result_resampled[dpool]['dspec'][key] = DSP.downsampler(result_resampled[dpool]['dspec'][key], downsample_factor, axis=-1, method='FFT') self.cPhaseDS_resampled = result_resampled return result_resampled else: return result ############################################################################ def subset(self, selection=None): """ ------------------------------------------------------------------------ Return triad and time indices to select a subset of processed data Inputs: selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. Outputs: Tuple (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) containing the triad, LST, day, and day-pair (for subsample differences) indices, each as a numpy array ------------------------------------------------------------------------ """ if selection is None: selsection = {} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') triads = map(tuple, self.cPhase.cpinfo['raw']['triads']) if 'triads' not in selection: selection['triads'] = triads if selection['triads'] is None: selection['triads'] = triads triad_ind = [triads.index(triad) for triad in selection['triads']] triad_ind = NP.asarray(triad_ind) lst_ind = None if 'lst' not in selection: if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0]) else: if selection['lst'] is None: if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0]) elif isinstance(selection['lst'], (list,NP.ndarray)): if 'prelim' in self.cPhase.cpinfo['processed']: lst_ind = selection['lst'] if NP.any(NP.logical_or(lst_ind < 0, lst_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[0])): raise ValueError('Input processed lst indices out of bounds') else: raise TypeError('Wrong type for processed lst indices') if lst_ind is None: raise ValueError('LST index selection could not be performed') day_ind = None day_ind_eicpdiff = None if 'days' not in selection: if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1]) if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs'])) else: if selection['days'] is None: if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = NP.arange(self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1]) if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = NP.arange(len(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs'])) elif isinstance(selection['days'], (list,NP.ndarray)): if 'prelim' in self.cPhase.cpinfo['processed']: day_ind = selection['days'] if NP.any(NP.logical_or(day_ind < 0, day_ind >= self.cPhase.cpinfo['processed']['prelim']['wts'].shape[1])): raise ValueError('Input processed day indices out of bounds') if 'errinfo' in self.cPhase.cpinfo: day_ind_eicpdiff = [i for i,item in enumerate(self.cPhase.cpinfo['errinfo']['list_of_pair_of_pairs']) if len(set(item)-set(selection['days']))==0] else: raise TypeError('Wrong type for processed day indices') if day_ind is None: raise ValueError('Day index selection could not be performed') return (triad_ind, lst_ind, day_ind, day_ind_eicpdiff) ############################################################################ def compute_power_spectrum(self, cpds=None, selection=None, autoinfo=None, xinfo=None, cosmo=cosmo100, units='K', beamparms=None): """ ------------------------------------------------------------------------ Compute power spectrum of closure phase data. It is in units of Mpc/h Inputs: cpds [dictionary] A dictionary that contains the 'oversampled' (if resample=False) and/or 'resampled' (if resample=True) delay spectrum information. If it is not specified the attributes cPhaseDS['processed'] and cPhaseDS_resampled['processed'] are used. Under each of these keys, it holds a dictionary that has the following keys and values: 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the window function applied. Accepted values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'npad' [scalar] Numbber of zero-padded channels before performing the subband delay transform. 'lags' [numpy array] lags of the subband delay spectra after padding in frequency during the transform. It is of size nlags. The lags roughly correspond to k_parallel. 'lag_kernel' [numpy array] delay transform of the frequency weights under the key 'freq_wts'. It is of size n_bl x n_win x nlags x n_t. 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff 'processed' [dictionary] Contains the following keys and values: 'dspec' [dictionary] Contains the following keys and values: 'twts' [numpy array] Weights from time-based flags that went into time-averaging. Shape=(ntriads,npol,nchan,nt) 'mean' [numpy array] Delay spectrum of closure phases based on their mean across time intervals. Shape=(nspw,npol,nt,ntriads,nlags) 'median' [numpy array] Delay spectrum of closure phases based on their median across time intervals. Shape=(nspw,npol,nt,ntriads,nlags) selection [NoneType or dictionary] Selection parameters based on which triad, LST, and day indices will be returned. If set to None (default), all triad, LST, and day indices will be returned. Otherwise it must be a dictionary with the following keys and values: 'triads' [NoneType or list of 3-element tuples] If set to None (default), indices of all triads are returned. Otherwise, the specific triads must be specified such as [(1,2,3), (1,2,4), ...] and their indices will be returned 'lst' [NoneType, list or numpy array] If set to None (default), indices of all LST are returned. Otherwise must be a list or numpy array containing indices to LST. 'days' [NoneType, list or numpy array] If set to None (default), indices of all days are returned. Otherwise must be a list or numpy array containing indices to days. autoinfo [NoneType or dictionary] Specifies parameters for processing before power spectrum in auto or cross modes. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes that will be averaged coherently before squaring (for auto) or cross-multiplying (for cross) power spectrum. If set to None (default), no axes are averaged coherently. If set to int, list, tuple or numpy array, those axes will be averaged coherently after applying the weights specified under key 'wts' along those axes. 1=lst, 2=days, 3=triads. 'wts' [NoneType/list/numpy array] If not provided (equivalent to setting it to None) or set to None (default), it is set to a one element list which is a one element numpy array of unity. Otherwise, it must be a list of same number of elements as in key 'axes' and each of these must be a numpy broadcast compatible array corresponding to each of the axis specified in 'axes' xinfo [NoneType or dictionary] Specifies parameters for processing cross power spectrum. If set to None, a dictionary will be created with the default values as described below. The dictionary must have the following keys and values: 'axes' [NoneType/int/list/tuple/numpy array] Axes over which power spectrum will be computed incoherently by cross- multiplication. If set to None (default), no cross- power spectrum is computed. If set to int, list, tuple or numpy array, cross-power over those axes will be computed incoherently by cross-multiplication. The cross-spectrum over these axes will be computed after applying the pre- and post- cross-multiplication weights specified in key 'wts'. 1=lst, 2=days, 3=triads. 'collapse_axes' [list] The axes that will be collpased after the cross-power matrix is produced by cross-multiplication. If this key is not set, it will be initialized to an empty list (default), in which case none of the axes is collapsed and the full cross-power matrix will be output. it must be a subset of values under key 'axes'. This will reduce it from a square matrix along that axis to collapsed values along each of the leading diagonals. 1=lst, 2=days, 3=triads. 'dlst' [scalar] LST interval (in mins) or difference between LST pairs which will be determined and used for cross-power spectrum. Will only apply if values under 'axes' contains the LST axis(=1). 'dlst_range' [scalar, numpy array, or NoneType] Specifies the LST difference(s) in minutes that are to be used in the computation of cross-power spectra. If a scalar, only the diagonal consisting of pairs with that LST difference will be computed. If a numpy array, those diagonals consisting of pairs with that LST difference will be computed. If set to None (default), the main diagonal (LST difference of 0) and the first off-main diagonal (LST difference of 1 unit) corresponding to pairs with 0 and 1 unit LST difference are computed. Applies only if key 'axes' contains LST axis (=1). 'avgcov' [boolean] It specifies if the collapse of square covariance matrix is to be collapsed further to a single number after applying 'postX' weights. If not set or set to False (default), this late stage collapse will not be performed. Otherwise, it will be averaged in a weighted average sense where the 'postX' weights would have already been applied during the collapsing operation 'wts' [NoneType or Dictionary] If not set, a default dictionary (see default values below) will be created. It must have the follwoing keys and values: 'preX' [list of numpy arrays] It contains pre-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postX' [list of numpy arrays] It contains post-cross- multiplication weights. It is a list where each element in the list is a numpy array, and the number of elements in the list must match the number of entries in key 'axes'. If 'axes' is set None, 'preX' may be set to a list with one element which is a numpy array of ones. The number of elements in each of the numpy arrays must be numpy broadcastable into the number of elements along that axis in the delay spectrum. 'preXnorm' [boolean] If False (default), no normalization is done after the application of 'preX' weights. If set to True, the delay spectrum will be normalized by the sum of the weights. 'postXnorm' [boolean] If False (default), no normalization is done after the application of postX weights. If set to True, the delay cross power spectrum will be normalized by the sum of the weights. cosmo [instance of cosmology class from astropy] An instance of class FLRW or default_cosmology of astropy cosmology module. Default uses Planck 2015 cosmology, with H0=100 h km/s/Mpc units [string] Specifies the units of output power spectum. Accepted values are 'Jy' and 'K' (default)) and the power spectrum will be in corresponding squared units. Output: Dictionary with the keys 'triads' ((ntriads,3) array), 'triads_ind', ((ntriads,) array), 'lstXoffsets' ((ndlst_range,) array), 'lst' ((nlst,) array), 'dlst' ((nlst,) array), 'lst_ind' ((nlst,) array), 'days' ((ndays,) array), 'day_ind' ((ndays,) array), 'dday' ((ndays,) array), 'oversampled' and 'resampled' corresponding to whether resample was set to False or True in call to member function FT(). Values under keys 'triads_ind' and 'lst_ind' are numpy array corresponding to triad and time indices used in selecting the data. Values under keys 'oversampled' and 'resampled' each contain a dictionary with the following keys and values: 'z' [numpy array] Redshifts corresponding to the band centers in 'freq_center'. It has shape=(nspw,) 'lags' [numpy array] Delays (in seconds). It has shape=(nlags,). 'kprll' [numpy array] k_parallel modes (in h/Mpc) corresponding to 'lags'. It has shape=(nspw,nlags) 'freq_center' [numpy array] contains the center frequencies (in Hz) of the frequency subbands of the subband delay spectra. It is of size n_win. It is roughly equivalent to redshift(s) 'freq_wts' [numpy array] Contains frequency weights applied on each frequency sub-band during the subband delay transform. It is of size n_win x nchan. 'bw_eff' [numpy array] contains the effective bandwidths (in Hz) of the subbands being delay transformed. It is of size n_win. It is roughly equivalent to width in redshift or along line-of-sight 'shape' [string] shape of the frequency window function applied. Usual values are 'rect' (rectangular), 'bhw' (Blackman-Harris), 'bnw' (Blackman-Nuttall). 'fftpow' [scalar] the power to which the FFT of the window was raised. The value is be a positive scalar with default = 1.0 'lag_corr_length' [numpy array] It is the correlation timescale (in pixels) of the subband delay spectra. It is proportional to inverse of effective bandwidth. It is of size n_win. The unit size of a pixel is determined by the difference between adjacent pixels in lags under key 'lags' which in turn is effectively inverse of the effective bandwidth of the subband specified in bw_eff It further contains 3 keys named 'whole', 'submodel', and 'residual' each of which is a dictionary. 'whole' contains power spectrum info about the input closure phases. 'submodel' contains power spectrum info about the model that will have been subtracted (as closure phase) from the 'whole' model. 'residual' contains power spectrum info about the closure phases obtained as a difference between 'whole' and 'submodel'. It contains the following keys and values: 'mean' [numpy array] Delay power spectrum incoherently estiamted over the axes specified in xinfo['axes'] using the 'mean' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided but avgcov is False, those axes will be of shape 2*Naxis-1. 'median' [numpy array] Delay power spectrum incoherently averaged over the axes specified in incohax using the 'median' key in input cpds or attribute cPhaseDS['processed']['dspec']. It has shape that depends on the combination of input parameters. See examples below. If both collapse_axes and avgcov are not set, those axes will be replaced with square covariance matrices. If collapse_axes is provided bu avgcov is False, those axes will be of shape 2*Naxis-1. 'diagoffsets' [dictionary] Same keys corresponding to keys under 'collapse_axes' in input containing the diagonal offsets for those axes. If 'avgcov' was set, those entries will be removed from 'diagoffsets' since all the leading diagonal elements have been collapsed (averaged) further. Value under each key is a numpy array where each element in the array corresponds to the index of that leading diagonal. This should match the size of the output along that axis in 'mean' or 'median' above. 'diagweights' [dictionary] Each key is an axis specified in collapse_axes and the value is a numpy array of weights corresponding to the diagonal offsets in that axis. 'axesmap' [dictionary] If covariance in cross-power is calculated but is not collapsed, the number of dimensions in the output will have changed. This parameter tracks where the original axis is now placed. The keys are the original axes that are involved in incoherent cross-power, and the values are the new locations of those original axes in the output. 'nsamples_incoh' [integer] Number of incoherent samples in producing the power spectrum 'nsamples_coh' [integer] Number of coherent samples in producing the power spectrum Examples: (1) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': None, 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}} Output delay power spectrum has shape (Nspw, Nlst, 1, Ntriads, Nlags) (2) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [], 'wts':{'preX': None, 'preXnorm': False, 'postX': None, 'postXnorm': False}, 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, 1, Ntriads, Ntriads, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4,5]} (3) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': 2, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [3], 'dlst_range': [0.0, 1.0, 2.0]} Output delay power spectrum has shape (Nspw, 3, Nlst, 1, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1,2], 3: [4]} (4) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': False, 'collapse_axes': [1,3], 'dlst_range': [1.0, 2.0, 3.0, 4.0]} Output delay power spectrum has shape (Nspw, 4, Ndays, 2*Ntriads-1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range), 3: NP.arange(-Ntriads,Ntriads)}, axesmap = {1: [1], 3: [3]} (5) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': [3], 'dlst_range': None} Output delay power spectrum has shape (Nspw, 2, Nlst, Ndays, 1, Nlags) diagoffsets = {1: NP.arange(n_dlst_range)}, axesmap = {1: [1,2], 3: [4]} (6) Input delay spectrum of shape (Nspw, Nlst, Ndays, Ntriads, Nlags) autoinfo = {'axes': None, 'wts': None} xinfo = {'axes': [1,3], 'avgcov': True, 'collapse_axes': []} Output delay power spectrum has shape (Nspw, 1, Ndays, 1, Nlags) diagoffsets = {}, axesmap = {1: [1], 3: [3]} ------------------------------------------------------------------------ """ if not isinstance(units,str): raise TypeError('Input parameter units must be a string') if units.lower() == 'k': if not isinstance(beamparms, dict): raise TypeError('Input beamparms must be a dictionary') if 'freqs' not in beamparms: beamparms['freqs'] = self.f beamparms_orig = copy.deepcopy(beamparms) if autoinfo is None: autoinfo = {'axes': None, 'wts': [NP.ones(1, dtpye=NP.float)]} elif not isinstance(autoinfo, dict): raise TypeError('Input autoinfo must be a dictionary') if 'axes' not in autoinfo: autoinfo['axes'] = None else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input autoinfo must be an integer, list, tuple or numpy array') else: autoinfo['axes'] = NP.asarray(autoinfo['axes']).reshape(-1) if 'wts' not in autoinfo: if autoinfo['axes'] is not None: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] * len(autoinfo['axes']) else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] else: if autoinfo['axes'] is not None: if not isinstance(autoinfo['wts'], list): raise TypeError('wts in input autoinfo must be a list of numpy arrays') else: if len(autoinfo['wts']) != len(autoinfo['axes']): raise ValueError('Input list of wts must be same as length of autoinfo axes') else: autoinfo['wts'] = [NP.ones(1, dtype=NP.float)] if xinfo is None: xinfo = {'axes': None, 'wts': {'preX': [NP.ones(1, dtpye=NP.float)], 'postX': [NP.ones(1, dtpye=NP.float)], 'preXnorm': False, 'postXnorm': False}} elif not isinstance(xinfo, dict): raise TypeError('Input xinfo must be a dictionary') if 'axes' not in xinfo: xinfo['axes'] = None else: if not isinstance(xinfo['axes'], (list,tuple,NP.ndarray,int)): raise TypeError('Value under key axes in input xinfo must be an integer, list, tuple or numpy array') else: xinfo['axes'] = NP.asarray(xinfo['axes']).reshape(-1) if 'wts' not in xinfo: xinfo['wts'] = {} for xkey in ['preX', 'postX']: if xinfo['axes'] is not None: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] * len(xinfo['axes']) else: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] xinfo['wts']['preXnorm'] = False xinfo['wts']['postXnorm'] = False else: if xinfo['axes'] is not None: if not isinstance(xinfo['wts'], dict): raise TypeError('wts in input xinfo must be a dictionary') for xkey in ['preX', 'postX']: if not isinstance(xinfo['wts'][xkey], list): raise TypeError('{0} wts in input xinfo must be a list of numpy arrays'.format(xkey)) else: if len(xinfo['wts'][xkey]) != len(xinfo['axes']): raise ValueError('Input list of {0} wts must be same as length of xinfo axes'.format(xkey)) else: for xkey in ['preX', 'postX']: xinfo['wts'][xkey] = [NP.ones(1, dtype=NP.float)] if 'preXnorm' not in xinfo['wts']: xinfo['wts']['preXnorm'] = False if 'postXnorm' not in xinfo['wts']: xinfo['wts']['postXnorm'] = False if not isinstance(xinfo['wts']['preXnorm'], NP.bool): raise TypeError('preXnorm in input xinfo must be a boolean') if not isinstance(xinfo['wts']['postXnorm'], NP.bool): raise TypeError('postXnorm in input xinfo must be a boolean') if 'avgcov' not in xinfo: xinfo['avgcov'] = False if not isinstance(xinfo['avgcov'], NP.bool): raise TypeError('avgcov under input xinfo must be boolean') if 'collapse_axes' not in xinfo: xinfo['collapse_axes'] = [] if not isinstance(xinfo['collapse_axes'], (int,list,tuple,NP.ndarray)): raise TypeError('collapse_axes under input xinfo must be an integer, tuple, list or numpy array') else: xinfo['collapse_axes'] = NP.asarray(xinfo['collapse_axes']).reshape(-1) if (autoinfo['axes'] is not None) and (xinfo['axes'] is not None): if NP.intersect1d(autoinfo['axes'], xinfo['axes']).size > 0: raise ValueError("Inputs autoinfo['axes'] and xinfo['axes'] must have no intersection") cohax = autoinfo['axes'] if cohax is None: cohax = [] incohax = xinfo['axes'] if incohax is None: incohax = [] if selection is None: selection = {'triads': None, 'lst': None, 'days': None} else: if not isinstance(selection, dict): raise TypeError('Input selection must be a dictionary') if cpds is None: cpds = {} sampling = ['oversampled', 'resampled'] for smplng in sampling: if smplng == 'oversampled': cpds[smplng] = copy.deepcopy(self.cPhaseDS) else: cpds[smplng] = copy.deepcopy(self.cPhaseDS_resampled) triad_ind, lst_ind, day_ind, day_ind_eicpdiff = self.subset(selection=selection) result = {'triads': self.cPhase.cpinfo['raw']['triads'][triad_ind], 'triads_ind': triad_ind, 'lst': self.cPhase.cpinfo['processed']['prelim']['lstbins'][lst_ind], 'lst_ind': lst_ind, 'dlst': self.cPhase.cpinfo['processed']['prelim']['dlstbins'][lst_ind], 'days': self.cPhase.cpinfo['processed']['prelim']['daybins'][day_ind], 'day_ind': day_ind, 'dday': self.cPhase.cpinfo['processed']['prelim']['diff_dbins'][day_ind]} dlstbin = NP.mean(self.cPhase.cpinfo['processed']['prelim']['dlstbins']) if 'dlst_range' in xinfo: if xinfo['dlst_range'] is None: dlst_range = None lstshifts = NP.arange(2) # LST index offsets of 0 and 1 are only estimated else: dlst_range =
NP.asarray(xinfo['dlst_range'])
numpy.asarray
from pathlib import Path import cv2 import numpy as np import torch import torchvision from PIL import Image from torch.utils.data import Dataset from scipy.spatial.transform import Rotation from utils import map_fn class TUMMonoVOMultiDataset(Dataset): def __init__(self, dataset_dirs, **kwargs): if isinstance(dataset_dirs, list): self.datasets = [TUMMonoVODataset(dataset_dir, **kwargs) for dataset_dir in dataset_dirs] else: self.datasets = [TUMMonoVODataset(dataset_dirs, **kwargs)] def __getitem__(self, index): for dataset in self.datasets: l = len(dataset) if index >= l: index -= l else: return dataset.__getitem__(index) return None def __len__(self): sum = 0 for dataset in self.datasets: sum += len(dataset) return sum class TUMMonoVODataset(Dataset): def __init__(self, dataset_dir, frame_count=2, target_image_size=(480, 640), max_length=None, dilation=1, only_keyframes=False, color_augmentation=True, scale_factor=1): """ Dataset implementation for TUMMonoVO. Requires the images to be rectified first. Support for depth maps is WIP. :param dataset_dir: Folder of a single sequence (e.g. .../tummonovo/sequence_50). This folder should contain images/. :param frame_count: Number of frames used per sample (excluding the keyframe). (Default=2) :param target_image_size: Desired image size. (Default=(480, 640)) :param max_length: Crop dataset to given length. (Default=None) :param dilation: Spacing between the different frames. (Default=1) :param only_keyframes: Only use frames that were used as keyframes in DSO. Relies on depth maps -> WIP. (Default=False) :param color_augmentation: Use color jitter augmentation. (Default=False) :param scale_factor: Scale poses for the sequence. Useful for DSO, which does not necessarily detect the correct world-scale. (Default=1) """ self.dataset_dir = Path(dataset_dir) self.frame_count = frame_count self.only_keyframes = only_keyframes self.dilation = dilation self.target_image_size = target_image_size self.color_augmentation = color_augmentation self.scale_factor = scale_factor self._result = np.loadtxt(self.dataset_dir / "result.txt") self._times = np.loadtxt(self.dataset_dir / "times.txt") self._pcalib = self.invert_pcalib(np.loadtxt(self.dataset_dir / "pcalib.txt")) self._image_index = self.build_image_index() if self.only_keyframes: self._keyframe_index = self.build_keyframe_index() self.length = self._keyframe_index.shape[0] else: self.length = self._result.shape[0] - frame_count * dilation if max_length is not None: self.length = min(self.length, max_length) self._offset = (frame_count // 2) * self.dilation self._intrinsics, self._crop_box = self.compute_target_intrinsics() self._intrinsics = format_intrinsics(self._intrinsics, self.target_image_size) self._poses = self.build_poses() self._depth = torch.zeros((1, target_image_size[0], target_image_size[1]), dtype=torch.float32) if self.color_augmentation: self.color_augmentation_transform = ColorJitterMulti(brightness=.2, contrast=.2, saturation=.2, hue=.1) def preprocess_image(self, img: Image.Image, crop_box=None): img = img.convert('RGB') if crop_box: img = img.crop(crop_box) if self.target_image_size: img = img.resize((self.target_image_size[1], self.target_image_size[0]), resample=Image.BILINEAR) if self.color_augmentation: img = self.color_augmentation_transform(img) image_tensor = torch.tensor(np.array(img)).to(dtype=torch.float32) image_tensor = self._pcalib[image_tensor.to(dtype=torch.long)] image_tensor = image_tensor / 255 - .5 if len(image_tensor.shape) == 2: image_tensor = torch.stack((image_tensor, image_tensor, image_tensor)) else: image_tensor = image_tensor.permute(2, 0, 1) del img return image_tensor def preprocess_depth(self, depth: Image.Image, crop_box=None): if crop_box: depth = depth.crop(crop_box) if self.target_image_size: if self.target_image_size[0] * 2 == depth.size[1]: depth_tensor = torch.tensor(np.array(depth).astype(np.float32)) depth_tensor = torch.nn.functional.max_pool2d(depth_tensor.unsqueeze(0), kernel_size=2) else: depth = depth.resize((self.target_image_size[1], self.target_image_size[0]), resample=Image.BILINEAR) depth_tensor = torch.tensor(np.array(depth).astype(np.float32)).unsqueeze(0) depth_tensor[depth_tensor < 0] = 0 return depth_tensor def __getitem__(self, index: int): frame_count = self.frame_count offset = self._offset if self.color_augmentation: self.color_augmentation_transform.fix_transform() if self.only_keyframes: index = self._keyframe_index[index] - offset keyframe_intrinsics = self._intrinsics keyframe = self.preprocess_image(self.open_image(index + offset), self._crop_box) keyframe_pose = self._poses[index + offset] keyframe_depth = self.open_depth(index + offset) if keyframe_depth is None: keyframe_depth = self._depth else: keyframe_depth = self.preprocess_depth(keyframe_depth, self._crop_box) frames = [self.preprocess_image(self.open_image(index + i), self._crop_box) for i in range(0, (frame_count + 1) * self.dilation, self.dilation) if i != offset] intrinsics = [self._intrinsics for _ in range(frame_count)] poses = [self._poses[index + i] for i in range(0, (frame_count + 1) * self.dilation, self.dilation) if i != offset] data = { "keyframe": keyframe, "keyframe_pose": keyframe_pose, "keyframe_intrinsics": keyframe_intrinsics, "frames": frames, "poses": poses, "intrinsics": intrinsics, "sequence": torch.tensor([0]), "image_id": torch.tensor([index + offset]) } return data, keyframe_depth def __len__(self) -> int: return self.length def build_image_index(self): eps = 1e-5 current_index = 0 image_index = np.zeros((self._result.shape[0]), dtype=np.int) for i in range(self._result.shape[0]): timestamp = self._result[i, 0] while not timestamp <= self._times[current_index, 1] + eps: current_index += 1 image_index[i] = current_index return image_index def build_keyframe_index(self): keyframe_index = [] image_index_pos = 0 for p in sorted((self.dataset_dir / "images_depth").glob("*.exr")): index = int(p.stem[:5]) while self._image_index[image_index_pos] < index: image_index_pos += 1 index = image_index_pos if not (index >= len(self._image_index) - (self.frame_count // 2 + 1) * self.dilation or index < (self.frame_count // 2) * self.dilation): keyframe_index.append(index) return np.array(keyframe_index) def load_orig_intrinsics(self): camera_file = self.dataset_dir / "camera.txt" with open(camera_file) as f: intrinsics_use_first_col = ord("0") <= ord(f.readline()[0]) <= ord("9") if intrinsics_use_first_col: intrinsics_v = np.loadtxt(camera_file, usecols=list(range(4)), max_rows=1) else: intrinsics_v =
np.loadtxt(camera_file, usecols=[1, 2, 3, 4], max_rows=1)
numpy.loadtxt
import os os.environ['DGLBACKEND']='pytorch' from multiprocessing import Process import argparse, time, math import numpy as np from functools import wraps import tqdm import sklearn.linear_model as lm import sklearn.metrics as skm import dgl from dgl import DGLGraph from dgl.data import register_data_args, load_data from dgl.data.utils import load_graphs import dgl.function as fn import dgl.nn.pytorch as dglnn import torch as th import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.multiprocessing as mp from dgl.distributed import DistDataLoader from train_dist_unsupervised import SAGE, NeighborSampler, PosNeighborSampler, CrossEntropyLoss, compute_acc from train_dist_transductive import DistEmb, load_embs def generate_emb(standalone, model, emb_layer, g, batch_size, device): """ Generate embeddings for each node emb_layer : Embedding layer g : The entire graph. inputs : The features of all the nodes. batch_size : Number of nodes to compute at the same time. device : The GPU device to evaluate on. """ model.eval() emb_layer.eval() with th.no_grad(): inputs = load_embs(standalone, emb_layer, g) pred = model.inference(g, inputs, batch_size, device) g.barrier() return pred def run(args, device, data): # Unpack data train_eids, train_nids, g, global_train_nid, global_valid_nid, global_test_nid, labels = data # Create sampler sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')], train_nids, dgl.distributed.sample_neighbors, args.num_negs, args.remove_edge) # Create PyTorch DataLoader for constructing blocks dataloader = dgl.distributed.DistDataLoader( dataset=train_eids.numpy(), batch_size=args.batch_size, collate_fn=sampler.sample_blocks, shuffle=True, drop_last=False) # Define model and optimizer emb_layer = DistEmb(g.num_nodes(), args.num_hidden, dgl_sparse_emb=args.dgl_sparse, dev_id=device) model = SAGE(args.num_hidden, args.num_hidden, args.num_hidden, args.num_layers, F.relu, args.dropout) model = model.to(device) if not args.standalone: if args.num_gpus == -1: model = th.nn.parallel.DistributedDataParallel(model) else: dev_id = g.rank() % args.num_gpus model = th.nn.parallel.DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id) if not args.dgl_sparse: emb_layer = th.nn.parallel.DistributedDataParallel(emb_layer) loss_fcn = CrossEntropyLoss() loss_fcn = loss_fcn.to(device) optimizer = optim.Adam(model.parameters(), lr=args.lr) if args.dgl_sparse: emb_optimizer = dgl.distributed.optim.SparseAdam([emb_layer.sparse_emb], lr=args.sparse_lr) print('optimize DGL sparse embedding:', emb_layer.sparse_emb) elif args.standalone: emb_optimizer = th.optim.SparseAdam(list(emb_layer.sparse_emb.parameters()), lr=args.sparse_lr) print('optimize Pytorch sparse embedding:', emb_layer.sparse_emb) else: emb_optimizer = th.optim.SparseAdam(list(emb_layer.module.sparse_emb.parameters()), lr=args.sparse_lr) print('optimize Pytorch sparse embedding:', emb_layer.module.sparse_emb) # Training loop epoch = 0 for epoch in range(args.num_epochs): sample_time = 0 copy_time = 0 forward_time = 0 backward_time = 0 update_time = 0 num_seeds = 0 num_inputs = 0 step_time = [] iter_t = [] sample_t = [] feat_copy_t = [] forward_t = [] backward_t = [] update_t = [] iter_tput = [] start = time.time() # Loop over the dataloader to sample the computation dependency graph as a list of # blocks. for step, (pos_graph, neg_graph, blocks) in enumerate(dataloader): tic_step = time.time() sample_t.append(tic_step - start) pos_graph = pos_graph.to(device) neg_graph = neg_graph.to(device) blocks = [block.to(device) for block in blocks] # The nodes for input lies at the LHS side of the first block. # The nodes for output lies at the RHS side of the last block. # Load the input features as well as output labels batch_inputs = blocks[0].srcdata[dgl.NID] copy_time = time.time() feat_copy_t.append(copy_time - tic_step) # Compute loss and prediction batch_inputs = emb_layer(batch_inputs) batch_pred = model(blocks, batch_inputs) loss = loss_fcn(batch_pred, pos_graph, neg_graph) forward_end = time.time() emb_optimizer.zero_grad() optimizer.zero_grad() loss.backward() compute_end = time.time() forward_t.append(forward_end - copy_time) backward_t.append(compute_end - forward_end) # Aggregate gradients in multiple nodes. emb_optimizer.step() optimizer.step() update_t.append(time.time() - compute_end) pos_edges = pos_graph.number_of_edges() neg_edges = neg_graph.number_of_edges() step_t = time.time() - start step_time.append(step_t) iter_tput.append(pos_edges / step_t) num_seeds += pos_edges if step % args.log_every == 0: print('[{}] Epoch {:05d} | Step {:05d} | Loss {:.4f} | Speed (samples/sec) {:.4f} | time {:.3f} s' \ '| sample {:.3f} | copy {:.3f} | forward {:.3f} | backward {:.3f} | update {:.3f}'.format( g.rank(), epoch, step, loss.item(), np.mean(iter_tput[3:]), np.sum(step_time[-args.log_every:]), np.sum(sample_t[-args.log_every:]), np.sum(feat_copy_t[-args.log_every:]), np.sum(forward_t[-args.log_every:]),
np.sum(backward_t[-args.log_every:])
numpy.sum
import numpy as np from warnings import warn from typing import List, Callable from desdeo_emo.selection.SelectionBase import SelectionBase from desdeo_emo.population.Population import Population from desdeo_emo.utilities.ReferenceVectors import ReferenceVectors class APD_Select(SelectionBase): """The selection operator for the RVEA algorithm. Read the following paper for more details. <NAME>, <NAME>, <NAME> and <NAME>, A Reference Vector Guided Evolutionary Algorithm for Many-objective Optimization, IEEE Transactions on Evolutionary Computation, 2016 Parameters ---------- pop : Population The population instance time_penalty_function : Callable A function that returns the time component in the penalty function. alpha : float, optional The RVEA alpha parameter, by default 2 """ def __init__( self, pop: Population, time_penalty_function: Callable, alpha: float = 2 ): self.time_penalty_function = time_penalty_function self.alpha = alpha self.n_of_objectives = pop.problem.n_of_objectives def do(self, pop: Population, vectors: ReferenceVectors) -> List[int]: """Select individuals for mating on basis of Angle penalized distance. Parameters ---------- pop : Population The current population. vectors : ReferenceVectors Class instance containing reference vectors. Returns ------- List[int] List of indices of the selected individuals """ partial_penalty_factor = self._partial_penalty_factor() refV = vectors.neighbouring_angles_current # Normalization - There may be problems here if pop.ideal_fitness_val is not None: fmin = pop.ideal_fitness_val else: fmin = np.amin(pop.fitness, axis=0) translated_fitness = pop.fitness - fmin fitness_norm = np.linalg.norm(translated_fitness, axis=1) # TODO check if you need the next line fitness_norm = np.repeat(fitness_norm, len(translated_fitness[0, :])).reshape( len(pop.fitness), len(pop.fitness[0, :]) ) # Convert zeros to eps to avoid divide by zero. # Has to be checked! fitness_norm[fitness_norm == 0] = np.finfo(float).eps normalized_fitness = np.divide( translated_fitness, fitness_norm ) # Checked, works. cosine = np.dot(normalized_fitness, np.transpose(vectors.values)) if cosine[np.where(cosine > 1)].size: warn("RVEA.py line 60 cosine larger than 1 decreased to 1") cosine[np.where(cosine > 1)] = 1 if cosine[np.where(cosine < 0)].size: warn("RVEA.py line 64 cosine smaller than 0 increased to 0") cosine[
np.where(cosine < 0)
numpy.where
# -*- coding: utf-8 -*- """ ### NOI_DFT.py ############################################################ Darstellung von Signal und Quantisierungsrauschen mit DFT Korrekte Skalierung von Signal und Breitbandrauschen # <NAME>, 27-5-2015 ########################################################################### """ from __future__ import division, print_function, unicode_literals import numpy as np from numpy import sin, cos, pi, array, arange, log10, zeros, tan, sqrt import matplotlib.pyplot as plt import sys sys.path.append('..') import dsp_fpga_fix_lib as fx print(plt.style.available) plt.style.use('seaborn-poster') # sucht in stylelib Directories #plt.style.use('../presentation.mplstyle') # sucht im Pfad # Definiere Anzahl Samples, FFT - Länge, Samplingfrequenz etc. N_FFT = 2048 # Anzahl Datenpunkte für FFT TWIN_AX = False # Drucke zweite Achse für Rauschleistung PRINT_AVG = True PRINT_SNR = False # Drucke SNR und ENOB PRINT_NOISE = False # Drucke Rauschleistung DITHER = True f_S = 2048 # Abtastfrequenz (eigentlich beliebig, ergibt Skalierungsfaktor) f_S_Print = 50 # Abtastfrequenz für Plot unit = "" Ts = 1 / f_S # Abtastperiode t = arange(N_FFT) * Ts # Zeitvektor 0 ... (Nx-1) Ts #f = [0:1:L-1] / N_FFT * f_S # Frequenzvektor 0 ... f_S in N_FFT Schritten #f = f_S/2*np.linspace(0,1,N_FFT/2) # Frequenzvektor 0 ... f_S/2 in N_FFT/2 Schritten Hmin = -150 # Min. y-Wert (dB) für Anzeige und Ersetzen von -infinity Werten Hmax = 2 # Max. y-Wert (dB) für Anzeige ######################################################################### # Vorbelegen der Vektoren mit Nullen zur Initialisierung und Beschleunigung x = zeros(N_FFT) # Eingangssignal xq = zeros(N_FFT) # " (quantisiert durch ADC) ######################################################################### # Definiere Testsignal für eine kohärente DFT ohne Leckeffekt N_per = 53 # Anzahl der Perioden des Signals im DFT-Rechteckfenster # N_per muss kleiner als N_FFT / 2 sein (sonst gibt's Aliasing!) # und am besten eine Primzahl, z.B. 63, 131, 251, 509, 1021, ... # N_per entspricht außerdem der Signalfrequenz! a_sig = 1 # Signalamplitude fsig = f_S * N_per / N_FFT x = a_sig * sin(2*pi*t*fsig+1)# + 2^-18 #Testsignal mit Startphase #x = a_sig * sin(2*pi*t*fsig+1) + 0.001*sin(2*pi*t*251) #Two-Tone Testsignal ######################################################################### # Definiere Quantizer-Objekte: # q_adc = {'QI':1, 'QF':15, 'quant':'round', 'ovfl': 'sat'} fx_adc = fx.Fixed(q_adc) # instanstiiere Quantizer ################################################################## ### Input Quantization (ADC, q_adc) if DITHER: ### add uniform dithering noise, -1/4 LSB < eps_N < 1/4 LSB x += 2**(-q_adc['QF']-2)*np.random.rand(len(x)) xq = fx_adc.fix(x) # quantisiere if fx_adc.N_over: print('Anzahl der Überläufe = ', fx_adc.N_over) ################################################################# # # FFT über N_FFT Datenpunkte skaliert mit 1/N_FFT über Freq. von 0 ... f_S # # Um korrekte Amplituden bei einseitiger Darstellung (0 ... f_S/2 anstatt # -f_S/2 ... f_S/2) zu erhalten, werden die Spektralwerte verdoppelt: Yq = 2 * abs(np.fft.fft(xq[0:N_FFT], N_FFT))/ N_FFT # Amplituden Yq_eff = Yq / sqrt(2) # Effektivwerte f = np.fft.fftfreq(N_FFT, d = 1./f_S)[0:N_FFT//2] # DFT Frequenzen 0 ... f_S/2 k = np.arange(N_FFT/2) # DFT Index #------------------------------------------------------------------ # Yq_sig = Yq_eff[N_per] # Eff.Wert des quantisierten Testsignals PSigQ = Yq_sig ** 2 # Leistung des quantisierten Testsignals Yq_sig_dB = 10 * log10(PSigQ) # " in dB PSig = a_sig ** 2 / 2 # Leistung des Testsignals PSig_dB = 10*log10(PSig) # Yq_dc = Yq[0]/2. # DC-Wert des Ausgangssignals (für Debugging) Yq_dc_dB = 20 * log10(Yq_dc) # " in dB # Überspringe Signalamplitude bei Berechnung der mittleren Rauschleistung / bin Pq_avg = (np.sum(Yq_eff[0:N_per] ** 2) + np.sum(Yq_eff[N_per+1:N_FFT//2] ** 2)) / (N_FFT//2-1) Pq_avg_dB = 10 * log10(Pq_avg) Yq_eff[N_per] =
np.sqrt(Pq_avg)
numpy.sqrt
import numpy as np from numba import jit, int32, float32, double, cfunc from numba.experimental import jitclass spec = [ ('x', double[:]), ('dq', double[:]), ('u', double[:]), ('m', double), ('Iz', double), ('lf', double), ('lr', double), ('Bf', double), ('Cf', double), ('Df', double), ('Br', double), ('Cr', double), ('Dr', double), ('Cr0', double), ('Cr2', double), ('Cm1', double), ('Cm2', double), ('iterNum', int32), ('sim_dt', double), ('control_dt', double), ('car_shape', double[:,:]), ] @jitclass(spec) class VehicleSimModel(object): def __init__(self, m=0.041, Iz=27.8E-6, lf=0.029, lr=0.033, Bf=2.579, Cf=1.2, Df=0.192, Br=3.3852, Cr=1.2691, Dr=0.1737, Cm1=0.287, Cm2=0.0545, Cr0= 0.0518, Cr2=0.00035, scale=1.0, control_dt = 10.0, sim_dt=1.0): self.x = np.asfortranarray(np.zeros(3, dtype=np.float64)) self.dq = np.zeros(3, dtype=np.float64) self.u = np.zeros(2, dtype=np.float64) self.m = m self.Iz= Iz self.lf = lf self.lr = lr self.Bf = Bf self.Cf = Cf self.Df = Df self.Br = Br self.Cr = Cr self.Dr = Dr self.Cr0 = Cr0 self.Cr2 = Cr2 self.Cm1 = Cm1 self.Cm2 = Cm2 car_l = (lf + lr)/2 * scale car_w = car_l/2 self.car_shape = np.asfortranarray(np.array([ [ car_l, car_w, 1.], [ car_l,-car_w, 1.], [-car_l,-car_w, 1.], [-car_l, car_w, 1.], [ car_l, car_w, 1.]], dtype=np.float64)) self.sim_dt = sim_dt self.control_dt = control_dt self.iterNum = int(self.control_dt/self.sim_dt) @property def shape(self): shape = np.dot(self.car_shape, np.asfortranarray(np.array([ [ np.cos(self.x[2]), np.sin(self.x[2]), 0.], [-np.sin(self.x[2]),
np.cos(self.x[2])
numpy.cos
from __future__ import print_function, absolute_import, division import contextlib import sys import numpy as np import random import threading import gc from numba import unittest_support as unittest from numba.errors import TypingError from numba import config from numba import njit from numba import types from numba import utils from numba.numpy_support import version as numpy_version from .support import MemoryLeakMixin, TestCase, tag nrtjit = njit(_nrt=True, nogil=True) def np_concatenate1(a, b, c): return np.concatenate((a, b, c)) def np_concatenate2(a, b, c, axis): return np.concatenate((a, b, c), axis=axis) def np_stack1(a, b, c): return np.stack((a, b, c)) def np_stack2(a, b, c, axis): return np.stack((a, b, c), axis=axis) def np_hstack(a, b, c): return np.hstack((a, b, c)) def np_vstack(a, b, c): return np.vstack((a, b, c)) def np_dstack(a, b, c): return np.dstack((a, b, c)) def np_column_stack(a, b, c): return np.column_stack((a, b, c)) class BaseTest(TestCase): def check_outputs(self, pyfunc, argslist, exact=True): cfunc = nrtjit(pyfunc) for args in argslist: expected = pyfunc(*args) ret = cfunc(*args) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.dtype, expected.dtype) self.assertStridesEqual(ret, expected) if exact: np.testing.assert_equal(expected, ret) else: np.testing.assert_allclose(expected, ret) class NrtRefCtTest(MemoryLeakMixin): def assert_array_nrt_refct(self, arr, expect): self.assertEqual(arr.base.refcount, expect) class TestDynArray(NrtRefCtTest, TestCase): def test_empty_0d(self): @nrtjit def foo(): arr = np.empty(()) arr[()] = 42 return arr arr = foo() self.assert_array_nrt_refct(arr, 1) np.testing.assert_equal(42, arr) self.assertEqual(arr.size, 1) self.assertEqual(arr.shape, ()) self.assertEqual(arr.dtype, np.dtype(np.float64)) self.assertEqual(arr.strides, ()) arr.fill(123) # test writability np.testing.assert_equal(123, arr) del arr def test_empty_1d(self): @nrtjit def foo(n): arr = np.empty(n) for i in range(n): arr[i] = i return arr n = 3 arr = foo(n) self.assert_array_nrt_refct(arr, 1) np.testing.assert_equal(np.arange(n), arr) self.assertEqual(arr.size, n) self.assertEqual(arr.shape, (n,)) self.assertEqual(arr.dtype, np.dtype(np.float64)) self.assertEqual(arr.strides, (np.dtype(np.float64).itemsize,)) arr.fill(123) # test writability np.testing.assert_equal(123, arr) del arr def test_empty_2d(self): def pyfunc(m, n): arr = np.empty((m, n), np.int32) for i in range(m): for j in range(n): arr[i, j] = i + j return arr cfunc = nrtjit(pyfunc) m = 4 n = 3 expected_arr = pyfunc(m, n) got_arr = cfunc(m, n) self.assert_array_nrt_refct(got_arr, 1) np.testing.assert_equal(expected_arr, got_arr) self.assertEqual(expected_arr.size, got_arr.size) self.assertEqual(expected_arr.shape, got_arr.shape) self.assertEqual(expected_arr.strides, got_arr.strides) del got_arr @tag('important') def test_empty_3d(self): def pyfunc(m, n, p): arr = np.empty((m, n, p), np.int32) for i in range(m): for j in range(n): for k in range(p): arr[i, j, k] = i + j + k return arr cfunc = nrtjit(pyfunc) m = 4 n = 3 p = 2 expected_arr = pyfunc(m, n, p) got_arr = cfunc(m, n, p) self.assert_array_nrt_refct(got_arr, 1) np.testing.assert_equal(expected_arr, got_arr) self.assertEqual(expected_arr.size, got_arr.size) self.assertEqual(expected_arr.shape, got_arr.shape) self.assertEqual(expected_arr.strides, got_arr.strides) del got_arr @tag('important') def test_empty_2d_sliced(self): def pyfunc(m, n, p): arr = np.empty((m, n), np.int32) for i in range(m): for j in range(n): arr[i, j] = i + j return arr[p] cfunc = nrtjit(pyfunc) m = 4 n = 3 p = 2 expected_arr = pyfunc(m, n, p) got_arr = cfunc(m, n, p) self.assert_array_nrt_refct(got_arr, 1) np.testing.assert_equal(expected_arr, got_arr) self.assertEqual(expected_arr.size, got_arr.size) self.assertEqual(expected_arr.shape, got_arr.shape) self.assertEqual(expected_arr.strides, got_arr.strides) del got_arr @tag('important') def test_return_global_array(self): y = np.ones(4, dtype=np.float32) initrefct = sys.getrefcount(y) def return_external_array(): return y cfunc = nrtjit(return_external_array) out = cfunc() # out reference by cfunc self.assertEqual(initrefct + 1, sys.getrefcount(y)) np.testing.assert_equal(y, out) np.testing.assert_equal(y, np.ones(4, dtype=np.float32)) np.testing.assert_equal(out, np.ones(4, dtype=np.float32)) del out gc.collect() # out is only referenced by cfunc self.assertEqual(initrefct + 1, sys.getrefcount(y)) del cfunc gc.collect() # y is no longer referenced by cfunc self.assertEqual(initrefct, sys.getrefcount(y)) @tag('important') def test_return_global_array_sliced(self): y = np.ones(4, dtype=np.float32) def return_external_array(): return y[2:] cfunc = nrtjit(return_external_array) out = cfunc() self.assertIsNone(out.base) yy = y[2:] np.testing.assert_equal(yy, out) np.testing.assert_equal(yy, np.ones(2, dtype=np.float32)) np.testing.assert_equal(out, np.ones(2, dtype=np.float32)) def test_array_pass_through(self): def pyfunc(y): return y arr = np.ones(4, dtype=np.float32) cfunc = nrtjit(pyfunc) expected = cfunc(arr) got = pyfunc(arr) np.testing.assert_equal(expected, arr) np.testing.assert_equal(expected, got) self.assertIs(expected, arr) self.assertIs(expected, got) @tag('important') def test_array_pass_through_sliced(self): def pyfunc(y): return y[y.size // 2:] arr = np.ones(4, dtype=np.float32) initrefct = sys.getrefcount(arr) cfunc = nrtjit(pyfunc) got = cfunc(arr) self.assertEqual(initrefct + 1, sys.getrefcount(arr)) expected = pyfunc(arr) self.assertEqual(initrefct + 2, sys.getrefcount(arr)) np.testing.assert_equal(expected, arr[arr.size // 2]) np.testing.assert_equal(expected, got) del expected self.assertEqual(initrefct + 1, sys.getrefcount(arr)) del got self.assertEqual(initrefct, sys.getrefcount(arr)) def test_ufunc_with_allocated_output(self): def pyfunc(a, b): out = np.empty(a.shape) np.add(a, b, out) return out cfunc = nrtjit(pyfunc) # 1D case arr_a = np.random.random(10) arr_b = np.random.random(10) np.testing.assert_equal(pyfunc(arr_a, arr_b), cfunc(arr_a, arr_b)) self.assert_array_nrt_refct(cfunc(arr_a, arr_b), 1) # 2D case arr_a = np.random.random(10).reshape(2, 5) arr_b = np.random.random(10).reshape(2, 5) np.testing.assert_equal(pyfunc(arr_a, arr_b), cfunc(arr_a, arr_b)) self.assert_array_nrt_refct(cfunc(arr_a, arr_b), 1) # 3D case arr_a = np.random.random(70).reshape(2, 5, 7) arr_b = np.random.random(70).reshape(2, 5, 7) np.testing.assert_equal(pyfunc(arr_a, arr_b), cfunc(arr_a, arr_b)) self.assert_array_nrt_refct(cfunc(arr_a, arr_b), 1) def test_allocation_mt(self): """ This test exercises the array allocation in multithreaded usecase. This stress the freelist inside NRT. """ def pyfunc(inp): out = np.empty(inp.size) # Zero fill for i in range(out.size): out[i] = 0 for i in range(inp[0]): # Allocate inside a loop tmp = np.empty(inp.size) # Write to tmp for j in range(tmp.size): tmp[j] = inp[j] # out = tmp + i for j in range(tmp.size): out[j] += tmp[j] + i return out cfunc = nrtjit(pyfunc) size = 10 # small array size so that the computation is short arr = np.random.randint(1, 10, size) frozen_arr = arr.copy() np.testing.assert_equal(pyfunc(arr), cfunc(arr)) # Ensure we did not modify the input np.testing.assert_equal(frozen_arr, arr) workers = [] inputs = [] outputs = [] # Make wrapper to store the output def wrapped(inp, out): out[:] = cfunc(inp) # Create a lot of worker threads to create contention for i in range(100): arr = np.random.randint(1, 10, size) out = np.empty_like(arr) thread = threading.Thread(target=wrapped, args=(arr, out), name="worker{0}".format(i)) workers.append(thread) inputs.append(arr) outputs.append(out) # Launch worker threads for thread in workers: thread.start() # Join worker threads for thread in workers: thread.join() # Check result for inp, out in zip(inputs, outputs): np.testing.assert_equal(pyfunc(inp), out) def test_refct_mt(self): """ This test exercises the refct in multithreaded code """ def pyfunc(n, inp): out = np.empty(inp.size) for i in range(out.size): out[i] = inp[i] + 1 # Use swap to trigger many refct ops for i in range(n): out, inp = inp, out return out cfunc = nrtjit(pyfunc) size = 10 input = np.arange(size, dtype=np.float) expected_refct = sys.getrefcount(input) swapct = random.randrange(1000) expected = pyfunc(swapct, input) np.testing.assert_equal(expected, cfunc(swapct, input)) # The following checks can discover a reference count error del expected self.assertEqual(expected_refct, sys.getrefcount(input)) workers = [] outputs = [] swapcts = [] # Make wrapper to store the output def wrapped(n, input, out): out[:] = cfunc(n, input) # Create worker threads for i in range(100): out = np.empty(size) # All thread shares the same input swapct = random.randrange(1000) thread = threading.Thread(target=wrapped, args=(swapct, input, out), name="worker{0}".format(i)) workers.append(thread) outputs.append(out) swapcts.append(swapct) # Launch worker threads for thread in workers: thread.start() # Join worker threads for thread in workers: thread.join() # Check result for swapct, out in zip(swapcts, outputs): np.testing.assert_equal(pyfunc(swapct, input), out) del outputs, workers # The following checks can discover a reference count error self.assertEqual(expected_refct, sys.getrefcount(input)) def test_swap(self): def pyfunc(x, y, t): """Swap array x and y for t number of times """ for i in range(t): x, y = y, x return x, y cfunc = nrtjit(pyfunc) x = np.random.random(100) y = np.random.random(100) t = 100 initrefct = sys.getrefcount(x), sys.getrefcount(y) expect, got = pyfunc(x, y, t), cfunc(x, y, t) self.assertIsNone(got[0].base) self.assertIsNone(got[1].base) np.testing.assert_equal(expect, got) del expect, got self.assertEqual(initrefct, (sys.getrefcount(x), sys.getrefcount(y))) def test_return_tuple_of_array(self): def pyfunc(x): y = np.empty(x.size) for i in range(y.size): y[i] = x[i] + 1 return x, y cfunc = nrtjit(pyfunc) x = np.random.random(5) initrefct = sys.getrefcount(x) expected_x, expected_y = pyfunc(x) got_x, got_y = cfunc(x) self.assertIs(x, expected_x) self.assertIs(x, got_x) np.testing.assert_equal(expected_x, got_x) np.testing.assert_equal(expected_y, got_y) del expected_x, got_x self.assertEqual(initrefct, sys.getrefcount(x)) self.assertEqual(sys.getrefcount(expected_y), sys.getrefcount(got_y)) def test_return_tuple_of_array_created(self): def pyfunc(x): y = np.empty(x.size) for i in range(y.size): y[i] = x[i] + 1 out = y, y return out cfunc = nrtjit(pyfunc) x = np.random.random(5) expected_x, expected_y = pyfunc(x) got_x, got_y = cfunc(x) np.testing.assert_equal(expected_x, got_x) np.testing.assert_equal(expected_y, got_y) # getrefcount owns 1, got_y owns 1 self.assertEqual(2, sys.getrefcount(got_y)) # getrefcount owns 1, got_y owns 1 self.assertEqual(2, sys.getrefcount(got_y)) def test_issue_with_return_leak(self): """ Dispatcher returns a new reference. It need to workaround it for now. """ @nrtjit def inner(out): return out def pyfunc(x): return inner(x) cfunc = nrtjit(pyfunc) arr = np.arange(10) old_refct = sys.getrefcount(arr) self.assertEqual(old_refct, sys.getrefcount(pyfunc(arr))) self.assertEqual(old_refct, sys.getrefcount(cfunc(arr))) self.assertEqual(old_refct, sys.getrefcount(arr)) class ConstructorBaseTest(NrtRefCtTest): def check_0d(self, pyfunc): cfunc = nrtjit(pyfunc) expected = pyfunc() ret = cfunc() self.assert_array_nrt_refct(ret, 1) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.shape, expected.shape) self.assertEqual(ret.dtype, expected.dtype) self.assertEqual(ret.strides, expected.strides) self.check_result_value(ret, expected) # test writability expected = np.empty_like(ret) # np.full_like was not added until Numpy 1.8 expected.fill(123) ret.fill(123) np.testing.assert_equal(ret, expected) def check_1d(self, pyfunc): cfunc = nrtjit(pyfunc) n = 3 expected = pyfunc(n) ret = cfunc(n) self.assert_array_nrt_refct(ret, 1) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.shape, expected.shape) self.assertEqual(ret.dtype, expected.dtype) self.assertEqual(ret.strides, expected.strides) self.check_result_value(ret, expected) # test writability expected = np.empty_like(ret) # np.full_like was not added until Numpy 1.8 expected.fill(123) ret.fill(123) np.testing.assert_equal(ret, expected) # errors with self.assertRaises(ValueError) as cm: cfunc(-1) self.assertEqual(str(cm.exception), "negative dimensions not allowed") def check_2d(self, pyfunc): cfunc = nrtjit(pyfunc) m, n = 2, 3 expected = pyfunc(m, n) ret = cfunc(m, n) self.assert_array_nrt_refct(ret, 1) self.assertEqual(ret.size, expected.size) self.assertEqual(ret.shape, expected.shape) self.assertEqual(ret.dtype, expected.dtype) self.assertEqual(ret.strides, expected.strides) self.check_result_value(ret, expected) # test writability expected = np.empty_like(ret) # np.full_like was not added until Numpy 1.8 expected.fill(123) ret.fill(123) np.testing.assert_equal(ret, expected) # errors with self.assertRaises(ValueError) as cm: cfunc(2, -1) self.assertEqual(str(cm.exception), "negative dimensions not allowed") def check_alloc_size(self, pyfunc): """Checks that pyfunc will error, not segfaulting due to array size.""" cfunc = nrtjit(pyfunc) with self.assertRaises(ValueError) as e: cfunc() self.assertIn( "array is too big", str(e.exception) ) class TestNdZeros(ConstructorBaseTest, TestCase): def setUp(self): super(TestNdZeros, self).setUp() self.pyfunc = np.zeros def check_result_value(self, ret, expected): np.testing.assert_equal(ret, expected) def test_0d(self): pyfunc = self.pyfunc def func(): return pyfunc(()) self.check_0d(func) def test_1d(self): pyfunc = self.pyfunc def func(n): return pyfunc(n) self.check_1d(func) def test_1d_dtype(self): pyfunc = self.pyfunc def func(n): return pyfunc(n, np.int32) self.check_1d(func) def test_1d_dtype_instance(self): # dtype as numpy dtype, not as scalar class pyfunc = self.pyfunc _dtype = np.dtype('int32') def func(n): return pyfunc(n, _dtype) self.check_1d(func) def test_2d(self): pyfunc = self.pyfunc def func(m, n): return pyfunc((m, n)) self.check_2d(func) def test_2d_shape_dtypes(self): # Test for issue #4575 pyfunc = self.pyfunc def func1(m, n): return pyfunc((np.int16(m), np.int32(n))) self.check_2d(func1) # Using a 64-bit value checks that 32 bit systems will downcast to intp def func2(m, n): return pyfunc((np.int64(m), np.int8(n))) self.check_2d(func2) # Make sure an error is thrown if we can't downcast safely if config.IS_32BITS: cfunc = nrtjit(lambda m, n: pyfunc((m, n))) with self.assertRaises(ValueError): cfunc(np.int64(1 << (32 - 1)), 1) @tag('important') def test_2d_dtype_kwarg(self): pyfunc = self.pyfunc def func(m, n): return pyfunc((m, n), dtype=np.complex64) self.check_2d(func) def test_alloc_size(self): pyfunc = self.pyfunc width = types.intp.bitwidth def gen_func(shape, dtype): return lambda : pyfunc(shape, dtype) # Under these values numba will segfault, but thats another issue self.check_alloc_size(gen_func(1 << width - 2, np.intp)) self.check_alloc_size(gen_func((1 << width - 8, 64), np.intp)) class TestNdOnes(TestNdZeros): def setUp(self): super(TestNdOnes, self).setUp() self.pyfunc = np.ones @unittest.skipIf(numpy_version < (1, 8), "test requires Numpy 1.8 or later") class TestNdFull(ConstructorBaseTest, TestCase): def check_result_value(self, ret, expected): np.testing.assert_equal(ret, expected) def test_0d(self): def func(): return np.full((), 4.5) self.check_0d(func) def test_1d(self): def func(n): return np.full(n, 4.5) self.check_1d(func) def test_1d_dtype(self): def func(n): return np.full(n, 4.5, np.bool_) self.check_1d(func) def test_1d_dtype_instance(self): dtype = np.dtype('bool') def func(n): return np.full(n, 4.5, dtype) self.check_1d(func) def test_2d(self): def func(m, n): return np.full((m, n), 4.5) self.check_2d(func) def test_2d_dtype_kwarg(self): def func(m, n): return np.full((m, n), 1 + 4.5j, dtype=np.complex64) self.check_2d(func) def test_2d_dtype_from_type(self): # tests issue #2862 def func(m, n): return np.full((m, n), np.int32(1)) self.check_2d(func) # tests meta issues from #2862, that np < 1.12 always # returns float64. Complex uses `.real`, imaginary part dropped def func(m, n): return np.full((m, n), np.complex128(1)) self.check_2d(func) # and that if a dtype is specified, this influences the return type def func(m, n): return np.full((m, n), 1, dtype=np.int8) self.check_2d(func) def test_2d_shape_dtypes(self): # Test for issue #4575 def func1(m, n): return np.full((
np.int16(m)
numpy.int16
# Lint as: python3 # Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for bond_curve.""" import math from absl.testing import parameterized import numpy as np import tensorflow.compat.v2 as tf from tensorflow.python.framework import test_util # pylint: disable=g-direct-tensorflow-import from tf_quant_finance.rates.hagan_west import bond_curve from tf_quant_finance.rates.hagan_west import monotone_convex @test_util.run_all_in_graph_and_eager_modes class BondCurveTest(tf.test.TestCase, parameterized.TestCase): @parameterized.named_parameters( ('single_precision', np.float32), ('double_precision', np.float64), ) def test_cashflow_times_cashflow_before_settelment_error(self, dtype): with self.assertRaises(tf.errors.InvalidArgumentError): self.evaluate( bond_curve.bond_curve( bond_cashflows=[ np.array([12.5, 12.5, 12.5, 1012.5], dtype=dtype), np.array([30.0, 30.0, 30.0, 1030.0], dtype=dtype) ], bond_cashflow_times=[ np.array([0.25, 0.5, 0.75, 1.0], dtype=dtype), np.array([0.5, 1.0, 1.5, 2.0], dtype=dtype) ], present_values=np.array([999.0, 1022.0], dtype=dtype), present_values_settlement_times=np.array([0.25, 0.25], dtype=dtype), validate_args=True, dtype=dtype)) @parameterized.named_parameters( ('single_precision', np.float32), ('double_precision', np.float64), ) def test_cashflow_times_are_strongly_ordered_error(self, dtype): with self.assertRaises(tf.errors.InvalidArgumentError): self.evaluate( bond_curve.bond_curve( bond_cashflows=[ np.array([12.5, 12.5, 12.5, 1012.5], dtype=dtype), np.array([30.0, 30.0, 30.0, 1030.0], dtype=dtype) ], bond_cashflow_times=[
np.array([0.25, 0.5, 0.75, 1.0], dtype=dtype)
numpy.array
# author : <NAME> # <EMAIL> # # date : March 19, 2018 """ Plotting functions for the BSM flavor ratio analysis """ from __future__ import absolute_import, division, print_function import os import sys import socket from copy import deepcopy import warnings warnings.filterwarnings("ignore") import numpy as np import numpy.ma as ma from scipy.interpolate import splev, splprep from scipy.ndimage.filters import gaussian_filter import matplotlib import matplotlib as mpl import matplotlib.patches as patches import matplotlib.gridspec as gridspec if 'submitter' in socket.gethostname() or 'cobalt' in socket.gethostname(): mpl.use('Agg', warn=False) from matplotlib import rc from matplotlib import pyplot as plt from matplotlib.offsetbox import AnchoredText from matplotlib.lines import Line2D from matplotlib.patches import Patch from matplotlib.patches import Arrow tRed = list(np.array([226,101,95]) / 255.) tBlue = list(np.array([96,149,201]) / 255.) tGreen = list(np.array([170,196,109]) / 255.) import getdist from getdist import plots, mcsamples import logging logging.getLogger().setLevel(logging.CRITICAL) import ternary from ternary.heatmapping import polygon_generator import shapely.geometry as geometry from shapely.ops import cascaded_union, polygonize from scipy.spatial import Delaunay from golemflavor.enums import DataType, str_enum from golemflavor.enums import Likelihood, ParamTag, StatCateg, Texture from golemflavor.misc import get_units, make_dir, solve_ratio, interval from golemflavor.fr import angles_to_u, flat_angles_to_u, angles_to_fr from golemflavor.fr import SCALE_BOUNDARIES if os.path.isfile('./plot_llh/paper.mplstyle'): plt.style.use('./plot_llh/paper.mplstyle') elif os.path.isfile('./paper.mplstyle'): plt.style.use('./paper.mplstyle') elif os.environ.get('GOLEMSOURCEPATH') is not None: plt.style.use(os.environ['GOLEMSOURCEPATH']+'/GolemFit/scripts/paper/paper.mplstyle') if 'submitter' in socket.gethostname(): rc('text', usetex=False) else: rc('text', usetex=True) mpl.rcParams['text.latex.preamble'] = [ r'\usepackage{xcolor}', r'\usepackage{amsmath}', r'\usepackage{amssymb}'] if sys.version_info < (3, 0): mpl.rcParams['text.latex.unicode'] = True BAYES_K = 1. # Strong degree of belief. # BAYES_K = 3/2. # Very strong degree of belief. # BAYES_K = 2. # Decisive degree of belief LV_ATMO_90PC_LIMITS = { 3: (2E-24, 1E-1), 4: (2.7E-28, 3.16E-25), 5: (1.5E-32, 1.12E-27), 6: (9.1E-37, 2.82E-30), 7: (3.6E-41, 1.77E-32), 8: (1.4E-45, 1.00E-34) } PS = 8.203E-20 # GeV^{-1} PLANCK_SCALE = { 5: PS, 6: PS**2, 7: PS**3, 8: PS**4 } def gen_figtext(args): """Generate the figure text.""" t = r'$' if args.data is DataType.REAL: t += r'\textbf{IceCube\:Preliminary}' + '$\n$' elif args.data in [DataType.ASIMOV, DataType.REALISATION]: t += r'{\rm\bf IceCube\:Simulation}' + '$\n$' t += r'\rm{Injected\:composition}'+r'\:=\:({0})_\oplus'.format( solve_ratio(args.injected_ratio).replace('_', ':') ) + '$\n$' t += r'{\rm Source\:composition}'+r'\:=\:({0})'.format( solve_ratio(args.source_ratio).replace('_', ':') ) + r'_\text{S}' t += '$\n$' + r'{\rm Dimension}'+r' = {0}$'.format(args.dimension) return t def texture_label(x, dim): cpt = r'c' if dim % 2 == 0 else r'a' if x == Texture.OEU: # return r'$\mathcal{O}_{e\mu}$' return r'$\mathring{'+cpt+r'}_{e\mu}^{('+str(int(dim))+r')}$' elif x == Texture.OET: # return r'$\mathcal{O}_{e\tau}$' return r'$\mathring{'+cpt+r'}_{\tau e}^{('+str(int(dim))+r')}$' elif x == Texture.OUT: # return r'$\mathcal{O}_{\mu\tau}$' return r'$\mathring{'+cpt+r'}_{\mu\tau}^{('+str(int(dim))+r')}$' else: raise AssertionError def cmap_discretize(cmap, N): colors_i = np.concatenate((np.linspace(0, 1., N), (0.,0.,0.,0.))) colors_rgba = cmap(colors_i) indices = np.linspace(0, 1., N+1) cdict = {} for ki,key in enumerate(('red','green','blue')): cdict[key] = [ (indices[i], colors_rgba[i-1,ki], colors_rgba[i,ki]) for i in range(N+1) ] # Return colormap object. return mpl.colors.LinearSegmentedColormap(cmap.name + "_%d"%N, cdict, 1024) def get_limit(scales, statistic, args, mask_initial=False, return_interp=False): max_st = np.max(statistic) print('scales, stat', zip(scales, statistic)) if args.stat_method is StatCateg.BAYESIAN: if (statistic[0] - max_st) > np.log(10**(BAYES_K)): raise AssertionError('Discovered LV!') else: raise NotImplementedError try: tck, u = splprep([scales, statistic], s=0) except: print('Failed to spline') # return None raise sc, st = splev(np.linspace(0, 1, 1000), tck) if mask_initial: scales_rm = sc[sc >= scales[1]] statistic_rm = st[sc >= scales[1]] else: scales_rm = sc statistic_rm = st min_idx = np.argmin(scales) null = statistic[min_idx] # if np.abs(statistic_rm[0] - null) > 0.8: # print('Warning, null incompatible with smallest scanned scale! For ' \ # 'DIM {0} [{1}, {2}, {3}]!'.format( # args.dimension, *args.source_ratio # )) # null = statistic_rm[0] if args.stat_method is StatCateg.BAYESIAN: reduced_ev = -(statistic_rm - null) print('[reduced_ev > np.log(10**(BAYES_K))]', np.sum([reduced_ev > np.log(10**(BAYES_K))])) al = scales_rm[reduced_ev > np.log(10**(BAYES_K))] else: assert 0 if len(al) == 0: print('No points for DIM {0} [{1}, {2}, {3}]!'.format( args.dimension, *args.source_ratio )) return None re = -(statistic-null)[scales > al[0]] if np.sum(re <
np.log(10**(BAYES_K))
numpy.log
# UTIL.MATH: small math functions __author__ = 'vlad' import numpy as np from numpy import dot from scipy.stats import entropy from scipy.linalg import norm class dist: @staticmethod def cosine(x_, y_): return dot(x_, y_) / (norm(x_)*norm(y_)) @staticmethod def euclid(x_, y_): return norm(x_, y_) @staticmethod def kl(x_, y_): # Kullback-Leibler return 0.5*(entropy(x_, y_) + entropy(y_, x_)) @staticmethod def js(x_, y_): # Jensen-Shannon return 0.5*(entropy(x_, 0.5*(x_+y_))+entropy(y_,0.5*(x_+y_))) @staticmethod def bhattacharyya(x_, y_): # Bhattacharyya distance between histograms return -np.log(np.sum(np.sqrt(x_*y_))) @staticmethod def matusita(x_, y_): # Matusita distance between histograms return np.sqrt(np.sum((np.sqrt(x_)-
np.sqrt(y_)
numpy.sqrt
import numpy as np from cvxpy import * from cvxopt import matrix, solvers from mosek import iparam solvers.options['mosek'] = {iparam.log: 0} import time class SolverFailedException(Exception): def __init__(self, message): self.message = message class CuttingPlaneModel: def __init__(self, dim, bounds, x0, memory=None, LP_solver="mosek", QP_solver="mosek"): self.dim = dim self.bounds = bounds self.coefficients = np.empty((0,dim+1)) self.x0 = x0 self.LP_solver = LP_solver self.QP_solver = QP_solver self.memory = memory self.memory_index = 0 self.times = { "LP": [], "QP": [] } if memory is not None and memory < dim: print(f"Warning: Memory is smaller than input dimension dim={dim}, memory={memory}") assert dim == len(x0) def __call__(self, x):#REMOVE y = [np.sum(np.multiply(coefficients_i, np.hstack((1,x)))) for coefficients_i in self.coefficients] return np.max(y), 0 def add_plane(self, f, g, x): c = f - np.sum(np.multiply(g,x)) new_plane = np.append(c,g) # Implements cutting plane memory if self.memory is not None and self.coefficients.shape[0] >= self.memory: self.coefficients[self.memory_index] = new_plane self.memory_index = (self.memory_index + 1) % self.memory else: self.coefficients = np.append(self.coefficients, [new_plane], axis=0) def get_LP_constraints(self): A = np.asarray([[c[i] for i in range(1, len(c))] + [-1] for c in self.coefficients]) A_ub = np.hstack((np.eye(self.dim),np.zeros((self.dim,1)))) A_lb = -np.hstack((np.eye(self.dim),np.zeros((self.dim,1)))) A = np.vstack((A, A_ub, A_lb)) b = np.asarray([-c[0] for c in self.coefficients]) b_ub = self.x0 + self.bounds b_lb = -self.x0 + self.bounds b = np.concatenate((b, b_ub, b_lb)) return A, b def get_QP_constraints(self, level): A = np.asarray([[c[i] for i in range(1, len(c))] for c in self.coefficients]) A_ub = np.eye(self.dim) A_lb = -np.eye(self.dim) A = np.vstack((A, A_ub, A_lb)) b = np.asarray([-c[0] + level for c in self.coefficients]) b_ub = self.x0 + self.bounds b_lb = -self.x0 + self.bounds b = np.concatenate((b, b_ub, b_lb)) return A, b def solve(self): # Builds the LP A, b = self.get_LP_constraints() c = np.zeros(self.dim + 1) c[-1] = 1 c = matrix(c) A = matrix(A) b = matrix(b) try: t0 = time.time() sol = solvers.lp(c, A, b, solver=self.LP_solver) self.times["LP"].append(time.time() - t0) except Exception as e: print(e) raise SolverFailedException("LP failed") return
np.array(sol['x'][:-1])
numpy.array
#!/usr/bin/python from __future__ import division import numpy as np import math from scipy.special import * from numpy.matlib import repmat from scipy.signal import lfilter from scikits.audiolab import Sndfile, Format import argparse import sys np.seterr('ignore') def MMSESTSA(signal, fs, IS=0.25, W=1024, NoiseMargin=3, saved_params=None): SP = 0.4 wnd = np.hamming(W) y = segment(signal, W, SP, wnd) Y = np.fft.fft(y, axis=0) YPhase = np.angle(Y[0:int(np.fix(len(Y)/2))+1,:]) Y = np.abs(Y[0:int(np.fix(len(Y)/2))+1,:]) numberOfFrames = Y.shape[1] NoiseLength = 9 NoiseCounter = 0 alpha = 0.99 NIS = int(np.fix(((IS * fs - W) / (SP * W) + 1))) N = np.mean(Y[:,0:NIS].T).T LambdaD = np.mean((Y[:,0:NIS].T) ** 2).T if saved_params != None: NIS = 0 N = saved_params['N'] LambdaD = saved_params['LambdaD'] NoiseCounter = saved_params['NoiseCounter'] G = np.ones(N.shape) Gamma = G Gamma1p5 = math.gamma(1.5) X =
np.zeros(Y.shape)
numpy.zeros
from skimage import transform import cv2 import numpy as np import sys import warnings warnings.filterwarnings('ignore') #忽略掉一堆警告 sys.path.append(r'./') #添加模块路径为后面引入本路径下的模块做准备 #print(sys.path) import back_project #加入自编反投影模块 image = cv2.imread(r"data\shepp_logan.jpg", cv2.IMREAD_GRAYSCALE) cv2.imshow("test", image) #显示shepp logan原图 tmp = transform.radon(image).astype('float64') img_radon = np.rint(tmp / np.max(tmp) * 254).astype('uint8') #标准化radon变换 cv2.imshow("radon", img_radon) #显示雷登变换后的图片 #cv2.imwrite(r"result\radon.png", img_radon) #print(img_radon) result = back_project.bp_star(img_radon) bp_img = np.rint(result /
np.max(result)
numpy.max
# Cite from https://github.com/metrofun/E3D-LSTM from functools import reduce import copy import operator import torch import torch.nn as nn import torch.nn.functional as F from .rnn_cell import E3DLSTMCell, ConvDeconv3d from .utils import window from tqdm import tqdm import numpy as np class E3DLSTM_Module(nn.Module): def __init__(self, input_shape, hidden_size, num_layers, kernel_size, tau): super().__init__() self._tau = tau self._cells = [] input_shape = list(input_shape) for i in range(num_layers): cell = E3DLSTMCell(input_shape, hidden_size, kernel_size) # NOTE hidden state becomes input to the next cell input_shape[0] = hidden_size self._cells.append(cell) # Hook to register submodule setattr(self, "cell{}".format(i), cell) def forward(self, input): # NOTE (seq_len, batch, input_shape) batch_size = input.size(1) c_history_states = [] h_states = [] outputs = [] for step, x in enumerate(input): for cell_idx, cell in enumerate(self._cells): if step == 0: c_history, m, h = self._cells[cell_idx].init_hidden( batch_size, self._tau, input.device ) c_history_states.append(c_history) h_states.append(h) # NOTE c_history and h are coming from the previous time stamp, but we iterate over cells c_history, m, h = cell( x, c_history_states[cell_idx], m, h_states[cell_idx] ) c_history_states[cell_idx] = c_history h_states[cell_idx] = h # NOTE hidden state of previous LSTM is passed as input to the next one x = h outputs.append(h) # NOTE Concat along the channels return torch.cat(outputs, dim=1) class E3DLSTM_Model(nn.Module): def __init__(self, params): super().__init__() self.encoder = E3DLSTM_Module(params.input_shape, params.hidden_size, params.lstm_layers, params.kernel, params.tau) # self.decoder = nn.Conv3d(params.hidden_size * params.time_steps, params.output_shape[0], params.kernel, padding=(0, 2, 2)) self.decoder = nn.Conv3d(64, 1, kernel_size=(1, 5, 5), stride=(1, 1, 1), padding=(0, 2, 2)) def forward(self, x): return self.decoder(self.encoder(x)) from .basic_algo import Basic_algo class E3DLSTM(Basic_algo): def __init__(self, params): config = params.__dict__ config.update({ 'input_shape': (3, 4, 128, 128), 'output_shape': (3, 4, 128, 128), 'hidden_size': 64, 'lstm_layers': 4, 'kernel': (2, 5, 5), 'tau': 2, 'temporal_frames': 4, 'temporal_stride': 1, 'input_time_window': 4, 'output_time_horizon': 1, 'time_steps': 1, 'lr': 0.001, 'device': torch.device('cuda:0') }) model = E3DLSTM_Model(params).to(params.device) Basic_algo.__init__(self, model) self.device = params.device self.params = params self.optimizer = torch.optim.Adam(self.model.parameters(), lr=params.lr) self.criterion = torch.nn.MSELoss() def _iter_batch(self, x, y): pred = self.model(x) loss = self.criterion(pred, y) return pred, loss def train(self, train_loader, epoch): ''' Train the model with train_loader. Input params: train_loader: dataloader of train. Output params: mse_loss: mean square loss between predictions and ground truth. ''' self.model.train() train_pbar = tqdm(train_loader) mse_loss = [] for i, (batch_x, batch_y, _) in enumerate(train_pbar): batch_x, batch_y = batch_x.to(self.device), batch_y.to(self.device) batch_x = batch_x.permute(0, 2, 1, 3, 4) batch_y = batch_y.permute(0, 2, 1, 3, 4) # train model self.optimizer.zero_grad() frames_seq = [] for indices in window(range(self.params.input_time_window), \ self.params.temporal_frames, self.params.temporal_stride): frames_seq.append(batch_x[:, :, indices[0] : indices[-1] + 1]) batch_x = torch.stack(frames_seq, dim=0) pred, loss = self._iter_batch(batch_x, batch_y) loss.backward() self.optimizer.step() # trian model train_pbar.set_description('train loss: {:.4f}'.format(loss.item())) mse_loss.append(loss.item()) mse_loss = np.average(mse_loss) return mse_loss def evaluate(self, val_loader): ''' Evaluate the model with val_loader. Input params: val_loader: dataloader of validation. Output params: (mse, mae, ssim): mse, mas, ssim between predictions and ground truth. ''' self.model.eval() val_pbar = tqdm(val_loader) mse_loss, preds, trues = [], [], [] for i, (batch_x, batch_y, _) in enumerate(val_pbar): batch_x, batch_y = batch_x.to(self.device), batch_y.to(self.device) # eval model batch_x = batch_x.permute(0, 2, 1, 3, 4) batch_y = batch_y.permute(0, 2, 1, 3, 4) frames_seq = [] for indices in window(range(self.params.input_time_window), \ self.params.temporal_frames, self.params.temporal_stride): frames_seq.append(batch_x[:, :, indices[0] : indices[-1] + 1]) batch_x = torch.stack(frames_seq, dim=0) pred_y, loss = self._iter_batch(batch_x, batch_y) # eval model true, pred_y = batch_y.detach().cpu(), pred_y.detach().cpu() val_pbar.set_description('vali loss: {:.4f}'.format(loss.item())) mse_loss.append(loss.item()) preds.append(pred_y.numpy()) trues.append(true.numpy()) mse_loss =
np.average(mse_loss)
numpy.average
import numpy from sklearn.covariance import oas, ledoit_wolf, fast_mcd, empirical_covariance from matplotlib import mlab # Mapping different estimator on the sklearn toolbox def _lwf(X): """Wrapper for sklearn ledoit wolf covariance estimator""" C, _ = ledoit_wolf(X.T) return C def _oas(X): """Wrapper for sklearn oas covariance estimator""" C, _ = oas(X.T) return C def _scm(X): """Wrapper for sklearn sample covariance estimator""" return empirical_covariance(X.T) def _mcd(X): """Wrapper for sklearn mcd covariance estimator""" _, C, _, _ = fast_mcd(X.T) return C def _check_est(est): """Check if a given estimator is valid""" # Check estimator exist and return the correct function estimators = { 'cov': numpy.cov, 'scm': _scm, 'lwf': _lwf, 'oas': _oas, 'mcd': _mcd, 'corr': numpy.corrcoef } if callable(est): # All good (cross your fingers) pass elif est in estimators.keys(): # Map the corresponding estimator est = estimators[est] else: # raise an error raise ValueError( """%s is not an valid estimator ! Valid estimators are : %s or a callable function""" % (est, (' , ').join(estimators.keys()))) return est def covariances(X, estimator='cov'): """Estimation of covariance matrix.""" est = _check_est(estimator) Nt, Ne, Ns = X.shape covmats = numpy.zeros((Nt, Ne, Ne)) for i in range(Nt): covmats[i, :, :] = est(X[i, :, :]) return covmats def covariances_EP(X, P, estimator='cov'): """Special form covariance matrix.""" est = _check_est(estimator) Nt, Ne, Ns = X.shape Np, Ns = P.shape covmats = numpy.zeros((Nt, Ne + Np, Ne + Np)) for i in range(Nt): covmats[i, :, :] = est(numpy.concatenate((P, X[i, :, :]), axis=0)) return covmats def eegtocov(sig, window=128, overlapp=0.5, padding=True, estimator='cov'): """Convert EEG signal to covariance using sliding window""" est = _check_est(estimator) X = [] if padding: padd = numpy.zeros((int(window / 2), sig.shape[1])) sig = numpy.concatenate((padd, sig, padd), axis=0) Ns, Ne = sig.shape jump = int(window * overlapp) ix = 0 while (ix + window < Ns): X.append(est(sig[ix:ix + window, :].T)) ix = ix + jump return numpy.array(X) def coherence(X, window=128, overlap=0.75, fmin=None, fmax=None, fs=None): """Compute coherence.""" n_chan = X.shape[0] overlap = int(overlap * window) ij = [] if fs is None: fs = window for i in range(n_chan): for j in range(i+1, n_chan): ij.append((i, j)) Cxy, Phase, freqs = mlab.cohere_pairs(X.T, ij, NFFT=window, Fs=fs, noverlap=overlap) if fmin is None: fmin = freqs[0] if fmax is None: fmax = freqs[-1] index_f = (freqs >= fmin) & (freqs <= fmax) freqs = freqs[index_f] # reshape coherence coh = numpy.zeros((n_chan, n_chan, len(freqs))) for i in range(n_chan): coh[i, i] = 1 for j in range(i + 1, n_chan): coh[i, j] = coh[j, i] = Cxy[(i, j)][index_f] return coh def cospectrum(X, window=128, overlap=0.75, fmin=None, fmax=None, fs=None): """Compute Cospectrum.""" Ne, Ns = X.shape number_freqs = int(window / 2) step = int((1.0 - overlap) * window) step = max(1, step) number_windows = int((Ns - window) / step + 1) # pre-allocation of memory fdata = numpy.zeros((number_windows, Ne, number_freqs), dtype=complex) win = numpy.hanning(window) # Loop on all frequencies for window_ix in range(int(number_windows)): # time markers to select the data # marker of the beginning of the time window t1 = int(window_ix * step) # marker of the end of the time window t2 = int(t1 + window) # select current window and apodize it cdata = X[:, t1:t2] * win # FFT calculation fdata[window_ix, :, :] = numpy.fft.fft( cdata, n=window, axis=1)[:, 0:number_freqs] # Adjust Frequency range to specified range (in case it is a parameter) if fmin is not None: f =
numpy.arange(0, 1, 1.0 / number_freqs)
numpy.arange
from __future__ import division import mxnet as mx import numpy as np import mxnet.ndarray as nd import cv2 __all__ = ['FaceDetector', 'retinaface_r50_v1', 'retinaface_mnet025_v1', 'retinaface_mnet025_v2', 'get_retinaface'] def _whctrs(anchor): """ Return width, height, x center, and y center for an anchor (window). """ w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def _mkanchors(ws, hs, x_ctr, y_ctr): """ Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack((x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1))) return anchors def _ratio_enum(anchor, ratios): """ Enumerate a set of anchors for each aspect ratio wrt an anchor. """ w, h, x_ctr, y_ctr = _whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs =
np.round(ws * ratios)
numpy.round
# coding: utf-8 # Copyright (c) Max-Planck-Institut für Eisenforschung GmbH - Computational Materials Design (CM) Department # Distributed under the terms of "New BSD License", see the LICENSE file. from __future__ import division, print_function import ast from copy import copy from collections import OrderedDict from math import cos, sin import numpy as np from six import string_types import warnings from ase.geometry import cellpar_to_cell, complete_cell, get_distances from matplotlib.colors import rgb2hex from scipy.interpolate import interp1d from pyiron.atomistics.structure.atom import Atom from pyiron.atomistics.structure.sparse_list import SparseArray, SparseList from pyiron.atomistics.structure.periodic_table import PeriodicTable, ChemicalElement, ElementColorDictionary from pyiron.base.settings.generic import Settings from scipy.spatial import cKDTree, Voronoi try: import spglib except ImportError: try: import pyspglib as spglib except ImportError: raise ImportError("The spglib package needs to be installed") __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2019, Max-Planck-Institut für Eisenforschung GmbH - " \ "Computational Materials Design (CM) Department" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "production" __date__ = "Sep 1, 2017" s = Settings() class Atoms(object): """ The Atoms class represents all the information required to describe a structure at the atomic scale. This class is written in such a way that is compatible with the `ASE atoms class`_. Some of the functions in this module is based on the corresponding implementation in the ASE package Args: elements (list/numpy.ndarray): List of strings containing the elements or a list of atomistics.structure.periodic_table.ChemicalElement instances numbers (list/numpy.ndarray): List of atomic numbers of elements symbols (list/numpy.ndarray): List of chemical symbols positions (list/numpy.ndarray): List of positions scaled_positions (list/numpy.ndarray): List of scaled positions (relative coordinates) pbc (list/numpy.ndarray/boolean): Tells if periodic boundary conditions should be applied on the three axes cell (list/numpy.ndarray instance): A 3x3 array representing the lattice vectors of the structure Note: Only one of elements/symbols or numbers should be assigned during initialization Attributes: indices (numpy.ndarray): A list of size N which gives the species index of the structure which has N atoms .. _ASE atoms class: https://wiki.fysik.dtu.dk/ase/ase/atoms.html """ def __init__(self, symbols=None, positions=None, numbers=None, tags=None, momenta=None, masses=None, magmoms=None, charges=None, scaled_positions=None, cell=None, pbc=None, celldisp=None, constraint=None, calculator=None, info=None, indices=None, elements=None, dimension=None, species=None, **qwargs): if symbols is not None: if elements is None: elements = symbols else: raise ValueError("Only elements OR symbols should be given.") if tags is not None or momenta is not None or masses is not None or charges is not None \ or celldisp is not None or constraint is not None or calculator is not None or info is not None: s.logger.debug('Not supported parameter used!') self._store_elements = dict() self._species_to_index_dict = None self.colorLut = ElementColorDictionary().to_lut() self._is_scaled = False if cell is not None: # make it ASE compatible if np.linalg.matrix_rank(cell) == 1: cell = np.eye(len(cell)) * cell else: cell = np.array(cell) self._cell = cell self._species = list() self.positions= None self._pse = PeriodicTable() self._tag_list = SparseArray() self.indices = np.array([]) self._info = dict() self.arrays = dict() self.adsorbate_info = {} self.bonds = None self._pbc = False self.dimension = 3 # Default self.units = {"length": "A", "mass": "u"} el_index_lst = list() element_list = None if (elements is None) and (numbers is None) and (indices is None): return if numbers is not None: # for ASE compatibility if not (elements is None): raise AssertionError() elements = self.numbers_to_elements(numbers) if elements is not None: el_object_list = None if isinstance(elements, str): element_list = self.convert_formula(elements) elif isinstance(elements, (list, tuple, np.ndarray)): if not all([isinstance(el, elements[0].__class__) for el in elements]): object_list = list() for el in elements: if isinstance(el, (str, np.str, np.str_)): object_list.append(self.convert_element(el)) if isinstance(el, ChemicalElement): object_list.append(el) if isinstance(el, Atom): object_list.append(el.element) if isinstance(el, (int, np.integer)): # pse = PeriodicTable() object_list.append(self._pse.element(el)) el_object_list = object_list if len(elements) == 0: element_list = elements else: if isinstance(elements[0], (list, tuple, np.ndarray)): elements = np.array(elements).flatten() if isinstance(elements[0], string_types): element_list = elements elif isinstance(elements[0], ChemicalElement): el_object_list = elements elif isinstance(elements[0], Atom): el_object_list = [el.element for el in elements] positions = [el.position for el in elements] elif elements.dtype in [int, np.integer]: el_object_list = self.numbers_to_elements(elements) else: raise ValueError('Unknown static type for element in list: ' + str(type(elements[0]))) if el_object_list is None: el_object_list = [self.convert_element(el) for el in element_list] self.set_species(list(set(el_object_list))) # species_to_index_dict = {el: i for i, el in enumerate(self.species)} el_index_lst = [self._species_to_index_dict[el] for el in el_object_list] elif indices is not None: el_index_lst = indices self.set_species(species) if scaled_positions is not None: if positions is not None: raise ValueError("either position or scaled_positions can be given") if cell is None: raise ValueError('scaled_positions can only be used with a given cell') positions = np.dot(np.array(cell).T, np.array(scaled_positions).T).T if positions is None: self.dimension = 3 if cell is not None: positions = np.zeros((len(el_index_lst), self.dimension)) self.indices = np.array(el_index_lst) self.positions = np.array(positions).astype(np.float) self._tag_list._length = len(positions) for key, val in qwargs.items(): print('set qwargs (ASE): ', key, val) setattr(self, key, val) if len(positions) > 0: self.dimension = len(positions[0]) else: self.dimension = 3 if dimension is not None: self.dimension = dimension if cell is not None: if pbc is None: self.pbc = True # default setting else: self.pbc = pbc self.set_initial_magnetic_moments(magmoms) @property def cell(self): """ numpy.ndarray: A size 3x3 array which gives the lattice vectors of the cell as [a1, a2, a3] """ return self._cell @cell.setter def cell(self, value): if value is None: self._cell = None else: if self._is_scaled: self.set_cell(value, scale_atoms=True) else: self.set_cell(value) @property def species(self): """ list: A list of atomistics.structure.periodic_table.ChemicalElement instances """ return self._species # @species.setter def set_species(self, value): """ Setting the species list Args: value (list): A list atomistics.structure.periodic_table.ChemicalElement instances """ if value is None: return value = list(value) self._species_to_index_dict = {el: i for i, el in enumerate(value)} self._species = value[:] self._store_elements = {el.Abbreviation: el for el in value} @property def info(self): """ dict: This dictionary is merely used to be compatible with the ASE Atoms class. """ return self._info @info.setter def info(self, val): self._info = val @property def pbc(self): """ list: A list of boolean values which gives the periodic boundary consitions along the three axes. The default value is [True, True, True] """ if not isinstance(self._pbc, np.ndarray): self.set_pbc(self._pbc) return self._pbc @pbc.setter def pbc(self, val): self._pbc = val @property def elements(self): """ numpy.ndarray: A size N list of atomistics.structure.periodic_table.ChemicalElement instances according to the ordering of the atoms in the instance """ return np.array([self.species[el] for el in self.indices]) def new_array(self, name, a, dtype=None, shape=None): """ Adding a new array to the instance. This function is for the purpose of compatibility with the ASE package Args: name (str): Name of the array a (list/numpy.ndarray): The array to be added dtype (type): Data type of the array shape (list/turple): Shape of the array """ if dtype is not None: a = np.array(a, dtype, order='C') if len(a) == 0 and shape is not None: a.shape = (-1,) + shape else: if not a.flags['C_CONTIGUOUS']: a = np.ascontiguousarray(a) else: a = a.copy() if name in self.arrays: raise RuntimeError for b in self.arrays.values(): if len(a) != len(b): raise ValueError('Array has wrong length: %d != %d.' % (len(a), len(b))) break if shape is not None and a.shape[1:] != shape: raise ValueError('Array has wrong shape %s != %s.' % (a.shape, (a.shape[0:1] + shape))) self.arrays[name] = a def get_array(self, name, copy=True): """ Get an array. This function is for the purpose of compatibility with the ASE package Args: name (str): Name of the required array copy (bool): True if a copy of the array is to be returned Returns: An array of a copy of the array """ if copy: return self.arrays[name].copy() else: return self.arrays[name] def set_array(self, name, a, dtype=None, shape=None): """ Update array. This function is for the purpose of compatibility with the ASE package Args: name (str): Name of the array a (list/numpy.ndarray): The array to be added dtype (type): Data type of the array shape (list/turple): Shape of the array """ b = self.arrays.get(name) if b is None: if a is not None: self.new_array(name, a, dtype, shape) else: if a is None: del self.arrays[name] else: a = np.asarray(a) if a.shape != b.shape: raise ValueError('Array has wrong shape %s != %s.' % (a.shape, b.shape)) b[:] = a def add_tag(self, *args, **qwargs): """ Add tags to the atoms object. Examples: For selective dynamics:: >>> self.add_tag(selective_dynamics=[False, False, False]) """ self._tag_list.add_tag(*args, **qwargs) # @staticmethod def numbers_to_elements(self, numbers): """ Convert atomic numbers in element objects (needed for compatibility with ASE) Args: numbers (list): List of Element Numbers (as Integers; default in ASE) Returns: list: A list of elements as needed for pyiron """ # pse = PeriodicTable() # TODO; extend to internal PSE which can contain additional elements and tags atom_number_to_element = {} for i_el in set(numbers): i_el = int(i_el) atom_number_to_element[i_el] = self._pse.element(i_el) return [atom_number_to_element[i_el] for i_el in numbers] def copy(self): """ Returns a copy of the instance Returns: pyiron.atomistics.structure.atoms.Atoms: A copy of the instance """ return self.__copy__() def to_hdf(self, hdf, group_name="structure"): """ Save the object in a HDF5 file Args: hdf (pyiron.base.generic.hdfio.FileHDFio): HDF path to which the object is to be saved group_name (str): Group name with which the object should be stored. This same name should be used to retrieve the object """ # import time with hdf.open(group_name) as hdf_structure: # time_start = time.time() hdf_structure["TYPE"] = str(type(self)) for el in self.species: if isinstance(el.tags, dict): with hdf_structure.open("new_species") as hdf_species: el.to_hdf(hdf_species) hdf_structure['species'] = [el.Abbreviation for el in self.species] hdf_structure["indices"] = self.indices with hdf_structure.open("tags") as hdf_tags: for tag in self._tag_list.keys(): tag_value = self._tag_list[tag] if isinstance(tag_value, SparseList): tag_value.to_hdf(hdf_tags, tag) hdf_structure["units"] = self.units hdf_structure["dimension"] = self.dimension if self.cell is not None: with hdf_structure.open("cell") as hdf_cell: hdf_cell["cell"] = self.cell hdf_cell["pbc"] = self.pbc # hdf_structure["coordinates"] = self.positions # "Atomic coordinates" hdf_structure["positions"] = self.positions # "Atomic coordinates" # potentials with explicit bonds (TIP3P, harmonic, etc.) if self.bonds is not None: hdf_structure["explicit_bonds"] = self.bonds # print ('time in atoms.to_hdf: ', time.time() - time_start) def from_hdf(self, hdf, group_name="structure"): """ Retrieve the object from a HDF5 file Args: hdf (pyiron.base.generic.hdfio.FileHDFio): HDF path to which the object is to be saved group_name (str): Group name from which the Atoms object is retreived. Returns: pyiron_atomistic.structure.atoms.Atoms: The retrieved atoms class """ if "indices" in hdf[group_name].list_nodes(): with hdf.open(group_name) as hdf_atoms: if "new_species" in hdf_atoms.list_groups(): with hdf_atoms.open("new_species") as hdf_species: self._pse.from_hdf(hdf_species) el_object_list = [self.convert_element(el, self._pse) for el in hdf_atoms["species"]] self.indices = hdf_atoms["indices"] self._tag_list._length = len(self) self.set_species(el_object_list) self.bonds = None if "explicit_bonds" in hdf_atoms.list_nodes(): # print "bonds: " self.bonds = hdf_atoms["explicit_bonds"] if "tags" in hdf_atoms.list_groups(): with hdf_atoms.open("tags") as hdf_tags: tags = hdf_tags.list_nodes() for tag in tags: # tr_dict = {'0': False, '1': True} if isinstance(hdf_tags[tag], (list, np.ndarray)): my_list = hdf_tags[tag] self._tag_list[tag] = SparseList(my_list, length=len(self)) else: my_dict = hdf_tags.get_pandas(tag).to_dict() my_dict = {i: val for i, val in zip(my_dict["index"], my_dict["values"])} self._tag_list[tag] = SparseList(my_dict, length=len(self)) tr_dict = {1: True, 0: False} self.dimension = hdf_atoms["dimension"] self.units = hdf_atoms["units"] self.cell = None if "cell" in hdf_atoms.list_groups(): with hdf_atoms.open("cell") as hdf_cell: self.cell = hdf_cell["cell"] self.pbc = hdf_cell["pbc"] # Backward compatibility position_tag = "positions" if position_tag not in hdf_atoms.list_nodes(): position_tag = "coordinates" if "is_absolute" in hdf_atoms.list_nodes(): if not tr_dict[hdf_atoms["is_absolute"]]: self.set_scaled_positions(hdf_atoms[position_tag]) else: self.positions = hdf_atoms[position_tag] else: self.positions = hdf_atoms[position_tag] if "bonds" in hdf_atoms.list_nodes(): self.bonds = hdf_atoms["explicit_bonds"] return self else: return self._from_hdf_old(hdf, group_name) def _from_hdf_old(self, hdf, group_name="structure"): """ This function exits merely for the purpose of backward compatibility """ with hdf.open(group_name) as hdf_atoms: self._pse = PeriodicTable() if "species" in hdf_atoms.list_groups(): with hdf_atoms.open("species") as hdf_species: self._pse.from_hdf(hdf_species) chemical_symbols = np.array(hdf_atoms["elements"], dtype=str) el_object_list = [self.convert_element(el, self._pse) for el in chemical_symbols] self.set_species(list(set(el_object_list))) self.indices = [self._species_to_index_dict[el] for el in el_object_list] self._tag_list._length = len(self) self.bonds = None if "explicit_bonds" in hdf_atoms.list_nodes(): # print "bonds: " self.bonds = hdf_atoms["explicit_bonds"] if "tags" in hdf_atoms.list_groups(): with hdf_atoms.open("tags") as hdf_tags: tags = hdf_tags.list_nodes() for tag in tags: # tr_dict = {'0': False, '1': True} if isinstance(hdf_tags[tag], (list, np.ndarray)): my_list = hdf_tags[tag] self._tag_list[tag] = SparseList(my_list, length=len(self)) else: my_dict = hdf_tags.get_pandas(tag).to_dict() my_dict = {i: val for i, val in zip(my_dict["index"], my_dict["values"])} self._tag_list[tag] = SparseList(my_dict, length=len(self)) self.cell = None if "cell" in hdf_atoms.list_groups(): with hdf_atoms.open("cell") as hdf_cell: self.cell = hdf_cell["cell"] self.pbc = hdf_cell["pbc"] tr_dict = {1: True, 0: False} self.dimension = hdf_atoms["dimension"] if "is_absolute" in hdf_atoms and not tr_dict[hdf_atoms["is_absolute"]]: self.positions = hdf_atoms["coordinates"] else: self.set_scaled_positions(hdf_atoms["coordinates"]) self.units = hdf_atoms["units"] if "bonds" in hdf_atoms.list_nodes(): self.bonds = hdf_atoms["explicit_bonds"] return self def center(self, vacuum=None, axis=(0, 1, 2)): """ Center atoms in unit cell. Adopted from ASE code (https://wiki.fysik.dtu.dk/ase/_modules/ase/atoms.html#Atoms.center) Args: vacuum (float): If specified adjust the amount of vacuum when centering. If vacuum=10.0 there will thus be 10 Angstrom of vacuum on each side. axis (tuple/list): List or turple of integers specifying the axis along which the atoms should be centered """ # Find the orientations of the faces of the unit cell c = self.cell if c is None: c = np.identity(self.dimension) self.cell = c dirs = np.zeros_like(c) for i in range(3): dirs[i] = np.cross(c[i - 1], c[i - 2]) dirs[i] /= np.linalg.norm(dirs[i]) # normalize if np.dot(dirs[i], c[i]) < 0.0: dirs[i] *= -1 # Now, decide how much each basis vector should be made longer if isinstance(axis, int): axes = (axis,) else: axes = axis p = self.positions longer = np.zeros(3) shift = np.zeros(3) for i in axes: p0 =
np.dot(p, dirs[i])
numpy.dot
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot =
N.array([1,0,0,0,1,0,0,0,1])
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num =
N.array([1,1,1])
numpy.array
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import pytest import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.neural_network import flexible_shape_utils from coremltools.models.utils import macos_version, is_macos np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: # check if shape has 0 valued dimension if np.prod(np_preds.shape) == 0 and np.prod(coreml_preds.shape) == 0: return True return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) try: prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) finally: # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not is_macos() or macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) self.assertEquals(len(input_dim), builder._get_rank('output')) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) for output_ in output_names: self.assertEqual(len(input_dim), builder._get_rank(output_)) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_linear_activation(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected) def test_padding_constant(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) builder.add_padding(name='pad', left=1, right=0, top=2, bottom=0, value=-1, input_name='data', output_name='output') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape( np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3], [-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_padding_replication(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name='pad', left=1, top=2, input_name='data', output_name='output', padding_type='replication') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_3(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_reshape_target_shape_4(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (1, 10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (1, 10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_bias_matrix_cpu(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_linear_activation_cpu(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=True) @unittest.skipIf(not is_macos() or macos_version() < LAYERS_10_15_MACOS_VERSION, 'macOS 10.15+ required. Skipping tests.') class NewLayersSimpleTest(CorrectnessTest): def test_shape_flexibility_range(self): input_features = [('data', datatypes.Array(*(3,4)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data', lower_bounds=[1,1], upper_bounds=[-1,5]) shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)] for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration(self, rank=4): default_shape = tuple(np.random.randint(1, 15, size=rank)) input_features = [('data', datatypes.Array(*default_shape))] builder = neural_network.NeuralNetworkBuilder( input_features=input_features, output_features=[('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec shapes = [tuple(np.random.randint(1, 15, size=rank)), tuple(np.random.randint(1, 15, size=rank))] flexible_shape_utils.add_multiarray_ndshape_enumeration( spec, feature_name='data', enumerated_shapes=shapes) shapes.append(default_shape) for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration_rank3(self): self.test_shape_flexibility_enumeration(rank=3) def test_shape_flexibility_enumeration_rank2(self): self.test_shape_flexibility_enumeration(rank=2) def test_transpose_cpu(self): for rank in range(1, 6): axes = np.random.permutation(rank) axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes] input_shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_transpose(name='TransposeND', axes=axes, input_name='data', output_name='output') x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.transpose(x, axes)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_dynamic_weight_conv(self): input_dim = (1, 3, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (4, 3, 3, 3) output_dim = (1, 4, 14, 14) kernel_channels = input_dim[0] output_channels, kernel_channels, height, width = weight_dim input_features = [ ('input', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='two_input_conv_layer', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, input_name=['input', 'weight'], output_name='output') # Assigning everything to ones should cover the execution path # and engine failures, but is not a complete check on numerics. input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'input': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected, useCPUOnly=True) self._test_model(builder.spec, feed_dict, expected, useCPUOnly=False) @pytest.mark.xfail def test_dynamic_weight_deconv(self): # Expect to fail in Core ML 3 input_dim = (1, 1, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (1, 1, 3, 3) output_dim = (1, 1, 18, 18) output_channels, kernel_channels, height, width = weight_dim input_features = [ ('data', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='deconv', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, is_deconv=True, input_name=['data', 'weight'], output_name='output') input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'data': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected) def test_batched_mat_mul_cpu(self, cpu_only=True): a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4), (1, 3, 1, 2, 3), (2, 3, 1, 3, 4)] b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5), (1, 4, 3, 2), (2, 1, 2, 4, 5)] out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5), (1, 3, 4, 2, 2), (2, 3, 2, 3, 5)] for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes): input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['A', 'B'], output_name='output', transpose_a=False, transpose_b=False) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input_ = {'A': a, 'B': b} expected = {'output': np.array(np.matmul(a, b))} shape_dict = {'output': outShape} self._test_model(builder.spec, input_, expected, useCPUOnly=cpu_only, output_name_shape_dict=shape_dict) self.assertEqual(len(outShape), builder._get_rank('output')) def test_batched_mat_mul_gpu(self): self.test_batched_mat_mul_cpu(cpu_only=False) def test_batched_mat_mul_with_transposes_cpu(self, cpu_only=True): for transpose_a, transpose_b in itertools.product([True, False], [True, False]): a_shape = (3, 4) b_shape = (4, 5) a_shape = a_shape[::-1] if transpose_a else a_shape b_shape = b_shape[::-1] if transpose_b else b_shape input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_batched_mat_mul( name='BatchedMatMul', input_names=['A', 'B'], output_name='output', transpose_a=transpose_a, transpose_b=transpose_b ) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) inputs = {'A': a, 'B': b} a = a.T if transpose_a else a b = b.T if transpose_b else b expected = {'output': np.matmul(a, b)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_batched_mat_mul_with_transposes_gpu(self): self.test_batched_mat_mul_with_transposes_cpu(cpu_only=False) def test_batched_mat_mul_single_input_cpu(self, model_precision=_MLMODEL_FULL_PRECISION, cpu_only=True): X1 = 11 X2 = 23 W = np.random.rand(X1, X2) bias = np.random.rand(X2) input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1), (2, 3, 1, 5, X1)] for input_shape in input_shapes: x = np.random.rand(*input_shape) np_out = np.matmul(x, W) + bias expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['data'], output_name='output', weight_matrix_rows=X1, weight_matrix_columns=X2, W=W, bias=bias) inputs = {'data': x} self._test_model( builder.spec, inputs, expected, model_precision=model_precision, useCPUOnly=cpu_only) def test_batched_mat_mul_single_input_half_precision_cpu(self): self.test_batched_mat_mul_single_input_cpu( model_precision=_MLMODEL_HALF_PRECISION, cpu_only=True) def test_batched_mat_mul_single_input_gpu(self): self.test_batched_mat_mul_single_input_cpu(model_precision=_MLMODEL_FULL_PRECISION, cpu_only=False) def test_embedding_nd_cpu( self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True): vocab_size = 10 embedding_size = 19 W = np.random.rand(embedding_size, vocab_size) input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1), (2, 3, 1, 5, 1)] for input_shape in input_shapes: x = np.random.randint(vocab_size, size=input_shape) np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0) expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_embedding_nd(name='embedding_nd', input_name='data', output_name='output', vocab_size=vocab_size, embedding_size=embedding_size, W=W) input = {'data': x.astype(np.float32)} self._test_model( builder.spec, input, expected, model_precision=model_precision, useCPUOnly=use_cpu_only) def test_embedding_nd_half_precision_cpu(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True) def test_embedding_nd_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False) def test_embedding_nd_half_precision_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False) def test_softmax_nan_bug_cpu(self): input_shape = [2,2] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] for axis in [0,1]: builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.array([[0.5, 0.5],[1e8, 1e8]]) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_softmax_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.random.rand(*input_shape) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_softmax_nd_gpu(self): self.test_softmax_nd_cpu(cpu_only=False) def test_concat_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_inputs = np.random.choice(range(2, 5)) output_shape = np.random.randint(low=2, high=5, size=rank) output_shape[axis] = 0 input_shapes = [] input_features = [] input_names = [] for _ in range(n_inputs): input_shapes.append(np.copy(output_shape)) input_shapes[-1][axis] = np.random.choice(range(2, 8)) output_shape[axis] += input_shapes[-1][axis] for i, input_dim in enumerate(input_shapes): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append((input_name, datatypes.Array(*input_dim))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) builder.add_concat_nd(name='concat_nd', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for input_dim in input_shapes: input_tensors.append(np.random.rand(*input_dim)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.concatenate(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_concat_nd_gpu(self): self.test_concat_nd_cpu(cpu_only=False) def test_fill_like_cpu(self, cpu_only=True): for rank in range(1, 6): target_shape = np.random.randint(low=2, high=6, size=rank) value = float(np.random.rand()) input_features = [('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_like(name='fill_like', input_name='tensor', output_name='output', value=value) tensor = np.random.rand(*target_shape) input = {'tensor': tensor} expected = {'output': np.zeros(target_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_fill_like_gpu(self): self.test_fill_like_cpu(cpu_only=False) def test_fill_static_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] value = float(np.random.rand()) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_static(name='fill_static', output_name='tmp', output_shape=list(shape), value=value) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.random.rand(*shape) input = {'data': data} expected = {'output': data + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(shape), builder._get_rank('output')) def test_fill_static_gpu(self): self.test_fill_static_cpu(cpu_only=False) def test_fill_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape =
np.random.randint(low=2, high=8, size=rank)
numpy.random.randint
import sys import argparse import os from os import listdir from os.path import isfile, isdir, join import numpy as np import pandas as pd import multiprocessing import sys sys.path.insert(0, "./") import deepAccNet import torch.optim as optim import os import matplotlib.pyplot as plt import seaborn as sns from torch.utils.data import Dataset, DataLoader import torch def main(): parser = argparse.ArgumentParser(description="Error predictor network trainer", epilog="v0.0.1") parser.add_argument("folder", action="store", help="Location of folder to save checkpoints to.") parser.add_argument("--epoch", "-e", action="store", type=int, default=200, help="# of epochs (path over all proteins) to train for (Default: 200)") parser.add_argument("--bert", "-bert", action="store_true", default=False, help="Run with bert features (Default: False)") parser.add_argument("--multi_dir", "-multi_dir", action="store_true", default=False, help="Run with multiple direcotory sources (Default: False)") parser.add_argument("--num_blocks", "-numb", action="store", type=int, default=5, help="# of reidual blocks (Default: 8)") parser.add_argument("--num_filters", "-numf", action="store", type=int, default=128, help="# of base filter size in residual blocks (Default: 256)") parser.add_argument("--size_limit", "-size_limit", action="store", type=int, default=280, help="protein size limit (Default: 300)") parser.add_argument("--decay", "-d", action="store", type=float, default=0.99, help="Decay rate for learning rate (Default: 0.99)") parser.add_argument("--base", "-b", action="store", type=float, default=0.0005, help="Base learning rate (Default: 0.0005)") parser.add_argument("--debug", "-debug", action="store_true", default=False, help="Debug mode (Default: False)") parser.add_argument("--silent", "-s", action="store_true", default=False, help="Run in silent mode (Default: False)") args = parser.parse_args() script_dir = os.path.dirname(__file__) base = join(script_dir, "data/") epochs = args.epoch base_learning_rate = args.base decay = args.decay loss_weight = [1, 0.25, 10] #change if you need different loss validation = True #validation is always up name = args.folder lengthmax = args.size_limit if not args.silent: print("Loading samples") proteins = np.load(join(base, "train_proteins.npy")) if args.debug: proteins = proteins[:100] train_decoys = deepAccNet.DecoyDataset(targets = proteins, lengthmax = lengthmax, bert = args.bert, multi_dir = args.multi_dir) train_dataloader = DataLoader(train_decoys, batch_size=1, shuffle=True, num_workers=4) proteins = np.load(join(base, "valid_proteins.npy")) if args.debug: proteins = proteins[:100] valid_decoys = deepAccNet.DecoyDataset(targets = proteins, lengthmax = lengthmax, bert = args.bert, multi_dir = args.multi_dir) valid_dataloader = DataLoader(valid_decoys, batch_size=1, shuffle=True, num_workers=4) # Load the model if needed if not args.silent: print("Instantitating a model") net = deepAccNet.DeepAccNet(num_chunks = args.num_blocks, num_channel = args.num_filters, twobody_size = 49 if args.bert else 33) restoreModel = False if isdir(args.folder): if not args.silent: print("Loading a checkpoint") checkpoint = torch.load(join(name, "model.pkl")) net.load_state_dict(checkpoint["model_state_dict"]) #optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epoch = checkpoint["epoch"]+1 train_loss = checkpoint["train_loss"] valid_loss = checkpoint["valid_loss"] best_models = checkpoint["best_models"] if not args.silent: print("Restarting at epoch", epoch) assert(len(train_loss["total"]) == epoch) assert(len(valid_loss["total"]) == epoch) restoreModel = True else: if not args.silent: print("Training a new model") epoch = 0 train_loss = {"total":[], "esto":[], "mask":[], "lddt":[]} valid_loss = {"total":[], "esto":[], "mask":[], "lddt":[]} best_models = [] if not isdir(name): if not args.silent: print("Creating a new dir at", name) os.mkdir(name) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") net.to(device) optimizer = optim.Adam(net.parameters(), lr=0.0005) if restoreModel: checkpoint = torch.load(join(name, "model.pkl")) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # Loop over the dataset multiple times start_epoch = epoch for epoch in range(start_epoch, epochs): # Update the learning rate lr = base_learning_rate*np.power(decay, epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr # Loop over batches net.train(True) temp_loss = {"total":[], "esto":[], "mask":[], "lddt":[]} for i, data in enumerate(train_dataloader): # Get the data, Hardcoded transformation for whatever reasons. idx, val, f1d, f2d, esto, esto_1hot, mask = data["idx"], data["val"], data["1d"], data["2d"],\ data["estogram"], data["estogram_1hot"], data["mask"] idx = idx[0].long().to(device) val = val[0].to(device) f1d = f1d[0].to(device) f2d = f2d[0].to(device) esto_true = esto[0].to(device) esto_1hot_true = esto_1hot[0].to(device) mask_true = mask[0].to(device) # Zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize esto_pred, mask_pred, lddt_pred, (esto_logits, mask_logits) = net(idx, val, f1d, f2d) lddt_true = deepAccNet.calculate_LDDT(esto_1hot_true[0], mask_true[0]) Esto_Loss = torch.nn.CrossEntropyLoss() Mask_Loss = torch.nn.BCEWithLogitsLoss() Lddt_Loss = torch.nn.MSELoss() esto_loss = Esto_Loss(esto_logits, esto_true.long()) mask_loss = Mask_Loss(mask_logits, mask_true) lddt_loss = Lddt_Loss(lddt_pred, lddt_true.float()) loss = loss_weight[0]*esto_loss + loss_weight[1]*mask_loss + loss_weight[2]*lddt_loss loss.backward() optimizer.step() # Get training loss temp_loss["total"].append(loss.cpu().detach().numpy()) temp_loss["esto"].append(esto_loss.cpu().detach().numpy()) temp_loss["mask"].append(mask_loss.cpu().detach().numpy()) temp_loss["lddt"].append(lddt_loss.cpu().detach().numpy()) # Display training results sys.stdout.write("\rEpoch: [%2d/%2d], Batch: [%2d/%2d], loss: %.2f, esto-loss: %.2f, lddt-loss: %.2f, mask: %.2f" %(epoch, epochs, i, len(train_decoys), temp_loss["total"][-1], temp_loss["esto"][-1], temp_loss["lddt"][-1], temp_loss["mask"][-1])) train_loss["total"].append(np.array(temp_loss["total"])) train_loss["esto"].append(np.array(temp_loss["esto"])) train_loss["mask"].append(np.array(temp_loss["mask"])) train_loss["lddt"].append(
np.array(temp_loss["lddt"])
numpy.array