prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
from __future__ import print_function import sys import os import numpy as np import time import regreg.api as rr from selection.reduced_optimization.initial_soln import selection from selection.tests.instance import logistic_instance, gaussian_instance #from selection.reduced_optimization.random_lasso_reduced import selection_probability_random_lasso, sel_inf_random_lasso from selection.reduced_optimization.par_random_lasso_reduced import selection_probability_random_lasso, sel_inf_random_lasso from selection.reduced_optimization.estimator import M_estimator_approx def randomized_lasso_trial(X, y, beta, sigma, lam, loss ='gaussian', randomizer='gaussian', estimation='parametric'): from selection.api import randomization n, p = X.shape if loss == "gaussian": loss = rr.glm.gaussian(X, y) elif loss == "logistic": loss = rr.glm.logistic(X, y) epsilon = 1. / np.sqrt(n) W = np.ones(p) * lam penalty = rr.group_lasso(np.arange(p),weights=dict(zip(np.arange(p), W)), lagrange=1.) randomization = randomization.isotropic_gaussian((p,), scale=1.) M_est = M_estimator_approx(loss, epsilon, penalty, randomization, randomizer, estimation) M_est.solve_approx() active = M_est._overall active_set = np.asarray([i for i in range(p) if active[i]]) nactive = np.sum(active) prior_variance = 10000. noise_variance = sigma ** 2 projection_active = X[:, active].dot(np.linalg.inv(X[:, active].T.dot(X[:, active]))) M_1 = prior_variance * (X.dot(X.T)) + noise_variance *
np.identity(n)
numpy.identity
# -*- coding: utf-8 -*- """ Created on Tue Nov 3 15:07:16 2017 @author: <NAME> """ from __future__ import division, print_function, unicode_literals, absolute_import import unittest import os import sys import h5py import numpy as np import dask.array as da import matplotlib as mpl # Attempting to get things to work for all versions of python on Travis mpl.use('Agg') from sidpy.hdf.hdf_utils import get_attr sys.path.append("../../pyUSID/") from pyUSID.io import USIDataset from pyUSID.io.hdf_utils.model import reshape_to_n_dims, get_dimensionality from pyUSID.io.write_utils import Dimension from . import data_utils skip_viz_tests = True if sys.version_info.major == 3: unicode = str if sys.version_info.minor > 4: skip_viz_tests = False test_h5_file_path = data_utils.std_beps_path class TestBEPS(unittest.TestCase): def setUp(self): data_utils.make_beps_file() self.orig_labels_order = ['X', 'Y', 'Cycle', 'Bias'] self.h5_file = h5py.File(data_utils.std_beps_path, mode='r') h5_grp = self.h5_file['/Raw_Measurement/'] self.source_nd_s2f = h5_grp['n_dim_form'][()] self.source_nd_f2s = self.source_nd_s2f.transpose(1, 0, 3, 2) self.h5_source = USIDataset(h5_grp['source_main']) self.pos_dims=[] self.spec_dims=[] for dim_name, dim_units in zip(self.h5_source.pos_dim_labels, get_attr(self.h5_source.h5_pos_inds, 'units')): self.pos_dims.append( Dimension(dim_name, dim_units, h5_grp[dim_name][()])) for dim_name, dim_units in zip(self.h5_source.spec_dim_labels, get_attr(self.h5_source.h5_spec_inds, 'units')): self.spec_dims.append( Dimension(dim_name, dim_units, h5_grp[dim_name][()])) res_grp_0 = h5_grp['source_main-Fitter_000'] self.results_0_nd_s2f = res_grp_0['n_dim_form'][()] self.results_0_nd_f2s = self.results_0_nd_s2f.transpose(1, 0, 3, 2) self.h5_compound = USIDataset(res_grp_0['results_main']) res_grp_1 = h5_grp['source_main-Fitter_001'] self.results_1_nd_s2f = res_grp_1['n_dim_form'][()] self.results_1_nd_f2s = self.results_1_nd_s2f.transpose(1, 0, 3, 2) self.h5_complex = USIDataset(res_grp_1['results_main']) def tearDown(self): self.h5_file.close() os.remove(data_utils.std_beps_path) class TestUSIDatasetReal(unittest.TestCase): def setUp(self): self.rev_spec = False data_utils.make_beps_file(rev_spec=self.rev_spec) self.orig_labels_order = ['X', 'Y', 'Cycle', 'Bias'] if self.rev_spec else ['X', 'Y', 'Bias', 'Cycle'] def tearDown(self): os.remove(test_h5_file_path) def get_expected_n_dim(self, h5_f): nd_slow_to_fast = h5_f['/Raw_Measurement/n_dim_form'][()] nd_fast_to_slow = nd_slow_to_fast.transpose(1, 0, 3, 2) if self.rev_spec: nd_fast_to_slow = nd_fast_to_slow.transpose(0, 1, 3, 2) return nd_slow_to_fast, nd_fast_to_slow class TestStringRepr(TestBEPS): def test_string_representation(self): usi_dset = self.h5_source h5_main = self.h5_file[usi_dset.name] actual = usi_dset.__repr__() actual = [line.strip() for line in actual.split("\n")] actual = [actual[line_ind] for line_ind in [0, 2, 4, 7, 8, 10, 11]] expected = list() expected.append(h5_main.__repr__()) expected.append(h5_main.name) expected.append(get_attr(h5_main, "quantity") + " (" + get_attr(h5_main, "units") + ")") for h5_inds in [usi_dset.h5_pos_inds, usi_dset.h5_spec_inds]: for dim_name, dim_size in zip(get_attr(h5_inds, "labels"), get_dimensionality(h5_inds)): expected.append(dim_name + ' - size: ' + str(dim_size)) self.assertTrue(np.all([x == y for x, y in zip(actual, expected)])) class TestEquality(TestBEPS): def test_correct_USIDataset(self): expected = USIDataset(self.h5_source) self.assertTrue(expected == expected) def test_correct_h5_dataset(self): h5_main = self.h5_file[self.h5_source.name] expected = USIDataset(h5_main) self.assertTrue(expected == h5_main) def test_incorrect_USIDataset(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = USIDataset(h5_f['/Raw_Measurement/source_main-Fitter_000/results_main']) self.assertFalse(expected == incorrect) def test_incorrect_h5_dataset(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = h5_f['/Raw_Measurement/source_main-Fitter_000/Spectroscopic_Indices'] self.assertFalse(expected == incorrect) def test_incorrect_object(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: h5_main = h5_f['/Raw_Measurement/source_main'] expected = USIDataset(h5_main) incorrect = np.zeros(shape=(1, 2, 3, 4)) self.assertFalse(expected == incorrect) class TestGetNDimFormExistsReal(TestUSIDatasetReal): def test_sorted_and_unsorted(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_dset = USIDataset(h5_f['/Raw_Measurement/source_main']) nd_slow_to_fast, nd_fast_to_slow = self.get_expected_n_dim(h5_f) actual_f2s = usi_dset.get_n_dim_form(lazy=False) self.assertTrue(np.allclose(nd_fast_to_slow, actual_f2s)) nd_form, success = reshape_to_n_dims(usi_dset, sort_dims=True) print(nd_form.shape) usi_dset.toggle_sorting() actual_s2f = usi_dset.get_n_dim_form(lazy=False) self.assertTrue(np.allclose(nd_slow_to_fast, actual_s2f)) class TestPosSpecSlicesReal(TestUSIDatasetReal): def test_empty_dict(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({}) self.assertTrue(np.allclose(np.expand_dims(np.arange(14), axis=1), actual_spec)) self.assertTrue(np.allclose(np.expand_dims(np.arange(15), axis=1), actual_pos)) def test_non_existent_dim(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(KeyError): _ = usi_main._get_pos_spec_slices({'blah': 4, 'X': 3, 'Y': 1}) def test_incorrect_type(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(TypeError): _ = usi_main._get_pos_spec_slices({'X': 'fdfd', 'Y': 1}) def test_negative_index(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(ValueError): _ = usi_main._get_pos_spec_slices({'X': -4, 'Y': 1}) def test_out_of_bounds(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) with self.assertRaises(IndexError): _ = usi_main._get_pos_spec_slices({'X': 15, 'Y': 1}) def test_one_pos_dim_removed(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) # orig_pos = np.vstack([np.tile(np.arange(5), 3), np.repeat(np.arange(3), 5)]).T # orig_spec = np.vstack([np.tile(np.arange(7), 2), np.repeat(np.arange(2), 7)]) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': 3}) # we want every fifth position starting from 3 expected_pos = np.expand_dims(np.arange(3, 15, 5), axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_one_pos_dim_sliced(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': slice(1, 5, 2)}) # we want every fifth position starting from 3 positions = [] for row_ind in range(3): for col_ind in range(1, 5, 2): positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(np.arange(14), axis=1) self.assertTrue(np.allclose(expected_spec, actual_spec)) self.assertTrue(np.allclose(expected_pos, actual_pos)) def test_two_pos_dim_sliced(self): with h5py.File(test_h5_file_path, mode='r') as h5_f: usi_main = USIDataset(h5_f['/Raw_Measurement/source_main']) actual_pos, actual_spec = usi_main._get_pos_spec_slices({'X': slice(1, 5, 2), 'Y': 1}) # we want every fifth position starting from 3 positions = [] for row_ind in range(1, 2): for col_ind in range(1, 5, 2): positions.append(5 * row_ind + col_ind) expected_pos = np.expand_dims(positions, axis=1) expected_spec = np.expand_dims(
np.arange(14)
numpy.arange
import matplotlib matplotlib.use('Agg') # use a non-interactive backend import CoolProp import os.path web_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) tar_fil = os.path.join(web_dir, '_static', 'CoolPropLogo.png') tar_fil_long = os.path.join(web_dir, '_static', 'CoolPropLogoLong.png') tar_fil_long_large = os.path.join(web_dir, '_static', 'CoolPropLogoLongLarge.png') import matplotlib import numpy as np import CoolProp as CP import matplotlib.pyplot as plt import scipy.interpolate # Prepare the constants Water = CP.AbstractState("HEOS", "Water") pc = Water.keyed_output(CP.iP_critical) Tc = Water.keyed_output(CP.iT_critical) T_min = 200 T_max = 1000 p_max = Water.keyed_output(CP.iP_max) p_triple = 611.657 T_triple = 273.16 # Prepare the data for the melting line steps = 2000 TT = [] PP = list(np.logspace(np.log10(p_triple), np.log10(p_max), steps)) for p in PP: TT.append(Water.melting_line(CP.iT, CP.iP, p)) # Zone VI for T in np.linspace(max(TT), 355, int(steps / 10)): TT.append(T) theta = T / 273.31 pi = 1 - 1.07476 * (1 - theta**4.6) p = pi * 632.4e6 PP.append(p) # Zone VII for T in np.linspace(355, 715, int(steps / 10)): TT.append(T) theta = T / 355 lnpi = 0.173683e1 * (1 - 1 / theta) - 0.544606e-1 * (1 - theta**5) + 0.806106e-7 * (1 - theta**22) p = np.exp(lnpi) * 2216e6 PP.append(p) # Changes number of points steps = int(steps / 10.0) p_melt = np.logspace(np.log10(np.min(PP)), np.log10(np.max(PP)), steps) T_melt_f = scipy.interpolate.interp1d(np.log10(PP), TT) #T_melt_f = scipy.interpolate.spline(np.log10(PP),TT,np.log10(p_melt)) T_melt = T_melt_f(np.log10(p_melt)) #T_melt = np.array(TT) #p_melt = np.array(PP) # # Prepare the data for the saturation line T_sat = np.linspace(T_triple, Tc, len(T_melt)) p_sat = CP.CoolProp.PropsSI('P', 'T', T_sat, 'Q', [0] * len(T_sat), 'Water') # # Prepare density data TT, DD, PP = [], [], [] for T in np.linspace(T_min, T_max, steps): for p in np.logspace(np.log10(np.min(p_melt)), np.log10(np.max(p_melt)), steps): Tm = scipy.interpolate.interp1d(p_melt, T_melt)(p) if T < Tm: continue if p > p_max: pin = p_max else: pin = p D = CP.CoolProp.PropsSI('D', 'T', T, 'P', pin, 'Water') TT.append(T) DD.append(np.log10(D)) PP.append(p) #tt = np.linspace(T_min, T_max, steps) #pp = np.logspace(np.log10(p_triple), np.log10(p_max), steps) #tt, pp = np.meshgrid(tt, pp) #dd = np.empty(tt.shape) #dd[:][:] = np.NAN #nr,nc = tt.shape # for i in range(nr): # for j in range(nc): #Tm = T_melt_f(np.log10(pp[i][j])) # if tt[i][j] < Tm: continue #D = CP.CoolProp.PropsSI('D','T',tt[i][j],'P',pp[i][j],'Water') #dd[i][j] = np.log10(D) # # Define colours etc lw = 3 melt_args = dict(color='orange', lw=lw, solid_capstyle='round') sat_args = melt_args.copy() nm = matplotlib.colors.Normalize(min(DD), max(DD)) rho_args = dict(cmap=plt.cm.get_cmap('Blues'), norm=nm) fig = plt.figure(figsize=(1.0, 1.0)) ax = fig.add_axes((0.0, 0.0, 1.0, 1.0)) plt.plot(T_melt, p_melt, **melt_args) plt.plot(T_sat, p_sat, **sat_args) plt.scatter(TT, PP, c=DD, edgecolor='none', s=6, **rho_args) #plt.contourf(tt, pp, dd, steps, **rho_args ) delta_x =
np.min(T_melt)
numpy.min
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import time import ctypes import argparse import numpy as np import tensorrt as trt import pycuda.driver as cuda import pycuda.autoinit import json TRT_LOGGER = trt.Logger(trt.Logger.INFO) def parse_args(): """ Parse command line arguments """ parser = argparse.ArgumentParser(description='BERT QA Inference') parser.add_argument('-e', '--yolo_engine', dest='yolo_engine', default='/mnt/data/yu.huang/github.com/wang-xinyu/tensorrtx/yolov5/yolov5s.wts', help='Path to yolo TensorRT engine') # parser.add_argument('-p', '--passage', nargs='*', # help='Text for paragraph/passage for BERT QA', # default='') # parser.add_argument('-pf', '--passage-file', # help='File containing input passage', # default='') # parser.add_argument('-q', '--question', nargs='*', # help='Text for query/question for BERT QA', # default='') # parser.add_argument('-qf', '--question-file', # help='File containiner input question', # default='') # parser.add_argument('-v', '--vocab-file', # help='Path to file containing entire understandable vocab', # default='./pre-trained_model/uncased_L-24_H-1024_A-16/vocab.txt') # parser.add_argument('-s', '--sequence-length', # help='The sequence length to use. Defaults to 128', # default=128, type=int) args, _ = parser.parse_known_args() return args import glob import math import os import random import shutil import time from pathlib import Path from threading import Thread import cv2 import numpy as np import torch from PIL import Image, ExifTags img_formats = ['.bmp', '.jpg', '.jpeg', '.png', '.tif', '.dng'] vid_formats = ['.mov', '.avi', '.mp4'] def letterbox(img, new_shape=(416, 416), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True): # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232 shape = img.shape[:2] # current shape [height, width] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) # Scale ratio (new / old) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scaleup: # only scale down, do not scale up (for better test mAP) r = min(r, 1.0) # Compute padding ratio = r, r # width, height ratios new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding if auto: # minimum rectangle dw, dh = np.mod(dw, 64),
np.mod(dh, 64)
numpy.mod
import sys import math import struct import threading import logging import multiprocessing from contextlib import contextmanager import lmdb import cv2 import numpy as np import time import tensorflow as tf from tensorpack import imgaug from tensorpack.dataflow.image import MapDataComponent, AugmentImageComponent from tensorpack.dataflow.common import BatchData, MapData, TestDataSpeed from tensorpack.dataflow.prefetch import PrefetchData from tensorpack.dataflow.base import RNGDataFlow, DataFlowTerminated from datum_pb2 import Datum from pose_augment import pose_flip, pose_rotation, pose_to_img, pose_crop_random, \ pose_resize_shortestedge_random, pose_resize_shortestedge_fixed, pose_crop_center, pose_random_scale import matplotlib as mpl logging.basicConfig(level=logging.DEBUG, format='[lmdb_dataset] %(asctime)s %(levelname)s %(message)s') class CocoMetadata: # __coco_parts = 57 __coco_parts = 19 __coco_vecs = list(zip( [2, 9, 10, 2, 12, 13, 2, 3, 4, 3, 2, 6, 7, 6, 2, 1, 1, 15, 16], [9, 10, 11, 12, 13, 14, 3, 4, 5, 17, 6, 7, 8, 18, 1, 15, 16, 17, 18] )) @staticmethod def parse_float(four_np): assert len(four_np) == 4 return struct.unpack('<f', bytes(four_np))[0] @staticmethod def parse_floats(four_nps, adjust=0): assert len(four_nps) % 4 == 0 return [(CocoMetadata.parse_float(four_nps[x*4:x*4+4]) + adjust) for x in range(len(four_nps) // 4)] def __init__(self, idx, img, meta, sigma): self.idx = idx self.img = img self.sigma = sigma self.height = int(CocoMetadata.parse_float(meta[1][:4])) self.width = int(CocoMetadata.parse_float(meta[1][4:8])) self.num_other_people = meta[2][1] self.people_index = meta[2][2] # self.objpos_x = CocoMetadata.parse_float(meta[3][:4]) - 1 # self.objpos_y = CocoMetadata.parse_float(meta[3][4:8]) - 1 # self.objpos = [(self.objpos_x, self.objpos_y)] joint_list = [] joint_x = CocoMetadata.parse_floats(meta[5][:CocoMetadata.__coco_parts*4], adjust=-1) joint_y = CocoMetadata.parse_floats(meta[6][:CocoMetadata.__coco_parts*4], adjust=-1) joint_list.append(list(zip(joint_x, joint_y))) for person_idx in range(self.num_other_people): # objpos_x = CocoMetadata.parse_float(meta[8+person_idx][:4]) - 1 # objpos_y = CocoMetadata.parse_float(meta[8+person_idx][4:8]) - 1 # self.objpos.append((objpos_x, objpos_y)) joint_x = CocoMetadata.parse_floats(meta[9+self.num_other_people+3*person_idx][:CocoMetadata.__coco_parts*4], adjust=-1) joint_y = CocoMetadata.parse_floats(meta[9+self.num_other_people+3*person_idx+1][:CocoMetadata.__coco_parts*4], adjust=-1) joint_x = [val for val in joint_x if val >= 0 or -1000] joint_y = [val for val in joint_y if val >= 0 or -1000] joint_list.append(list(zip(joint_x, joint_y))) self.joint_list = [] transform = list(zip( [1, 6, 7, 9, 11, 6, 8, 10, 13, 15, 17, 12, 14, 16, 3, 2, 5, 4], [1, 7, 7, 9, 11, 6, 8, 10, 13, 15, 17, 12, 14, 16, 3, 2, 5, 4] )) for prev_joint in joint_list: new_joint = [] for idx1, idx2 in transform: j1 = prev_joint[idx1-1] j2 = prev_joint[idx2-1] if j1[0] <= 0 or j1[1] <= 0 or j2[0] <= 0 or j2[1] <= 0: new_joint.append((-1000, -1000)) else: new_joint.append(((j1[0] + j2[0]) / 2, (j1[1] + j2[1]) / 2)) new_joint.append((-1000, -1000)) self.joint_list.append(new_joint) logging.debug('joint size=%d' % len(self.joint_list)) def get_heatmap(self, target_size): heatmap = np.zeros((CocoMetadata.__coco_parts, self.height, self.width)) for joints in self.joint_list: for idx, point in enumerate(joints): if point[0] < 0 or point[1] < 0: continue CocoMetadata.put_heatmap(heatmap, idx, point, self.sigma) heatmap = heatmap.transpose((1, 2, 0)) # background heatmap[:, :, -1] = np.clip(1 - np.amax(heatmap, axis=2), 0.0, 1.0) if target_size: heatmap = cv2.resize(heatmap, target_size, interpolation=cv2.INTER_AREA) return heatmap @staticmethod def put_heatmap(heatmap, plane_idx, center, sigma): center_x, center_y = center _, height, width = heatmap.shape[:3] th = 4.6052 delta = math.sqrt(th * 2) x0 = int(max(0, center_x - delta * sigma)) y0 = int(max(0, center_y - delta * sigma)) x1 = int(min(width, center_x + delta * sigma)) y1 = int(min(height, center_y + delta * sigma)) for y in range(y0, y1): for x in range(x0, x1): d = (x - center_x) ** 2 + (y - center_y) ** 2 exp = d / 2.0 / sigma / sigma if exp > th: continue heatmap[plane_idx][y][x] = max(heatmap[plane_idx][y][x], math.exp(-exp)) heatmap[plane_idx][y][x] = min(heatmap[plane_idx][y][x], 1.0) def get_vectormap(self, target_size): vectormap = np.zeros((CocoMetadata.__coco_parts*2, self.height, self.width)) countmap = np.zeros((CocoMetadata.__coco_parts, self.height, self.width)) for joints in self.joint_list: for plane_idx, (j_idx1, j_idx2) in enumerate(CocoMetadata.__coco_vecs): j_idx1 -= 1 j_idx2 -= 1 center_from = joints[j_idx1] center_to = joints[j_idx2] if center_from[0] < -100 or center_from[1] < -100 or center_to[0] < -100 or center_to[1] < -100: continue CocoMetadata.put_vectormap(vectormap, countmap, plane_idx, center_from, center_to) vectormap = vectormap.transpose((1, 2, 0)) nonzeros = np.nonzero(countmap) for p, y, x in zip(nonzeros[0], nonzeros[1], nonzeros[2]): if countmap[p][y][x] <= 0: continue vectormap[y][x][p*2+0] /= countmap[p][y][x] vectormap[y][x][p*2+1] /= countmap[p][y][x] if target_size: vectormap = cv2.resize(vectormap, target_size, interpolation=cv2.INTER_AREA) return vectormap @staticmethod def put_vectormap(vectormap, countmap, plane_idx, center_from, center_to, threshold=8): _, height, width = vectormap.shape[:3] vec_x = center_to[0] - center_from[0] vec_y = center_to[1] - center_from[1] min_x = max(0, int(min(center_from[0], center_to[0]) - threshold)) min_y = max(0, int(min(center_from[1], center_to[1]) - threshold)) max_x = min(width, int(max(center_from[0], center_to[0]) + threshold)) max_y = min(height, int(max(center_from[1], center_to[1]) + threshold)) norm = math.sqrt(vec_x ** 2 + vec_y ** 2) if norm == 0: return vec_x /= norm vec_y /= norm for y in range(min_y, max_y): for x in range(min_x, max_x): bec_x = x - center_from[0] bec_y = y - center_from[1] dist = abs(bec_x * vec_y - bec_y * vec_x) if dist > threshold: continue countmap[plane_idx][y][x] += 1 vectormap[plane_idx*2+0][y][x] = vec_x vectormap[plane_idx*2+1][y][x] = vec_y class CocoPoseLMDB(RNGDataFlow): __valid_i = 2745 __max_key = 121745 @staticmethod def display_image(inp, heatmap, vectmap, as_numpy=False): if as_numpy: mpl.use('Agg') import matplotlib.pyplot as plt fig = plt.figure() a = fig.add_subplot(2, 2, 1) a.set_title('Image') plt.imshow(CocoPoseLMDB.get_bgimg(inp)) a = fig.add_subplot(2, 2, 2) a.set_title('Heatmap') plt.imshow(CocoPoseLMDB.get_bgimg(inp, target_size=(heatmap.shape[1], heatmap.shape[0])), alpha=0.5) tmp = np.amax(heatmap, axis=2) plt.imshow(tmp, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() tmp2 = vectmap.transpose((2, 0, 1)) tmp2_odd = np.amax(np.absolute(tmp2[::2, :, :]), axis=0) tmp2_even = np.amax(np.absolute(tmp2[1::2, :, :]), axis=0) a = fig.add_subplot(2, 2, 3) a.set_title('Vectormap-x') plt.imshow(CocoPoseLMDB.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_odd, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() a = fig.add_subplot(2, 2, 4) a.set_title('Vectormap-y') plt.imshow(CocoPoseLMDB.get_bgimg(inp, target_size=(vectmap.shape[1], vectmap.shape[0])), alpha=0.5) plt.imshow(tmp2_even, cmap=plt.cm.gray, alpha=0.5) plt.colorbar() if not as_numpy: plt.show() else: fig.canvas.draw() data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='') data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) fig.clear() plt.close() return data @staticmethod def get_bgimg(inp, target_size=None): if target_size: inp = cv2.resize(inp, target_size, interpolation=cv2.INTER_AREA) inp = cv2.cvtColor(((inp + 1.0) * (255.0 / 2.0)).astype(np.uint8), cv2.COLOR_BGR2RGB) return inp def __init__(self, path, is_train=True, decode_img=True, only_idx=-1): self.is_train = is_train self.decode_img = decode_img self.only_idx = only_idx self.env = lmdb.open(path, map_size=int(1e12), readonly=True) self.txn = self.env.begin(buffers=True) pass def size(self): if self.is_train: return CocoPoseLMDB.__max_key - CocoPoseLMDB.__valid_i else: return CocoPoseLMDB.__valid_i def get_data(self): idxs = np.arange(self.size()) if self.is_train: idxs += CocoPoseLMDB.__valid_i self.rng.shuffle(idxs) else: pass for idx in idxs: datum = Datum() if self.only_idx < 0: s = self.txn.get(('%07d' % idx).encode('utf-8')) else: s = self.txn.get(('%07d' % self.only_idx).encode('utf-8')) datum.ParseFromString(s) if isinstance(datum.data, bytes): data =
np.fromstring(datum.data, dtype=np.uint8)
numpy.fromstring
""" Author: <NAME> Classes and functions for linearized DSGEs. """ import warnings import pandas as pd from tqdm import tqdm from sympy import simplify, Matrix from scipy.linalg import qz from scipy.stats import beta, gamma, invgamma, norm, uniform import matplotlib.pyplot as plt from pykalman import KalmanFilter from numpy.linalg import svd, inv, eig from tables import PerformanceWarning from scipy.optimize import minimize, basinhopping from numpy.random import multivariate_normal, rand, seed from numpy import diagonal, vstack, array, eye, where, diag, sqrt, hstack, zeros, \ arange, exp, log, inf, nan, isnan, isinf, set_printoptions, matrix, linspace pd.set_option('display.max_columns', 20) set_printoptions(precision=4, suppress=True, linewidth=150) warnings.filterwarnings('ignore', category=RuntimeWarning) warnings.filterwarnings('ignore', category=PerformanceWarning) class DSGE(object): """ This is the main class which holds a DSGE model with all its attributes and methods. """ chains = None prior_info = None has_solution = False posterior_table = None def __init__(self, endog, endogl, exog, expec, state_equations, obs_equations=None, estimate_params=None, calib_dict=None, prior_dict=None, obs_data=None, verbose=False): """ Model declaration requires passing SymPy symbols as variables and parameters. Some arguments can be left empty if you are working with simulations of calibrated models. :param endog: SymPy matrix of symbols containing the endogenous variables. :param endogl: SymPy matrix of symbols containing the lagged endogenous variables. :param exog: SymPy matrix of symbols containing the exogenous shocks. :param expec: SymPy matrix of symbols containing the expectational errors. :param state_equations: SymPy matrix of symbolic expressions representing the model's equilibrium conditions, with zeros on the right-hand side of the equality. :param obs_equations: SymPy matrix of symbolic expressions representing the model's observation equations, with observable variables on the left-hand side of the equation. This is only required if the model is going to be estimated. You do not need to provide observation equations to run simulations on a calibrated model. :param estimate_params: SymPy matrix of symbols containing the parameters that are free to be estimated. :param calib_dict: dict. Keys are the symbols of parameters that are going to be calibrated, and values are their calibrated value. :param prior_dict: dict. Entries must have symbols of parameters that are going to be estimated. Values are dictionaries containing the following entries: - 'dist': prior distribution. 'normal', 'beta', 'gamma' or 'invgamma'. - 'mean': mean of the prior distribution. - 'std': standard deviation of the prior distribution. - 'label': str with name/representation of the estimated parameter. This argument accepts LaTeX representations. :param obs_data: pandas DataFrame with the observable variables. Columns must be in the same order as the 'obs_equations' declarations. :param verbose: <not implemented yet> """ self.verbose = verbose self.endog = endog self.endogl = endogl self.exog = exog self.expec = expec self.params = estimate_params self.state_equations = state_equations self.obs_equations = obs_equations self.prior_dict = prior_dict self.data = obs_data self.n_state = len(endog) self.n_obs = len(endog) if obs_equations is None else len(obs_equations) self.n_param = None if estimate_params is None else len(estimate_params) # TODO aqui pode vir um check the obs data e obs equations if (obs_equations is None) and (obs_data is None): generate_obs = True else: generate_obs = False self._get_jacobians(generate_obs=generate_obs) if estimate_params is None: # If no parameters are going to be estimated, calibrate the whole model self.Gamma0, self.Gamma1, self.Psi, self.Pi, self.C_in, self.obs_matrix, self.obs_offset = \ self._eval_matrix(calib_dict, to_array=True) self.G1, self.C_out, self.impact, self.fmat, self.fwt, self.ywt, self.gev, self.eu, self.loose = \ gensys(self.Gamma0, self.Gamma1, self.C_in, self.Psi, self.Pi) # TODO assert that there are no symbols left self.has_solution = True else: # Otherwise, calibrate only the required parameters self.Gamma0, self.Gamma1, self.Psi, self.Pi, self.C_in, self.obs_matrix, self.obs_offset = \ self._eval_matrix(calib_dict, to_array=False) self.prior_info = self._get_prior_info() def simulate(self, n_obs=100, random_seed=None): """ Given a calibrate or estimated model, simulates values of the endogenous variables based on random samples of the exogenous shocks. :param n_obs: number of observation in the time dimension. :param random_seed: random seed for the simulation. :return: pandas DataFrame. 'df_obs' contains the simualtions for the observable variables. 'df_state' contains the simulations for the state/endogenous variables. """ # TODO se não tiver equações de observações, retornar None para o 'df_obs' assert self.has_solution, "No solution was generated yet" if not (random_seed is None): seed(random_seed) kf = KalmanFilter(self.G1, self.obs_matrix, self.impact @ self.impact.T, None, self.C_out.reshape(self.n_state), self.obs_offset.reshape(self.n_obs)) simul_data = kf.sample(n_obs) state_names = [str(s) for s in list(self.endog)] obs_names = [f'obs {i+1}' for i in range(self.obs_matrix.shape[0])] df_obs = pd.DataFrame(data=simul_data[1], columns=obs_names) df_states = pd.DataFrame(data=simul_data[0], columns=state_names) return df_obs, df_states def estimate(self, file_path, nsim=1000, ck=0.2): """ Run the MCMC estimation. :param file_path: str. Save path where the MCMC chains are saved. The file format is HDF5 (.h5). This file format gets very heavy but has very fast read/write speed. If the file already exists, the estimation will resume from these previously simulated chains. :param nsim: Length of the MCMC chains to be generated. If the chains are already stable, this is the number of draws from the posterior distribution. :param ck: float. Scaling factor of the hessian matrix of the mode of the posterior distribution, which is used as the covariance matrix for the MCMC algorithm. Bayesian literature says this value needs to be calibrated in order to achieve your desired acceptance rate from the posterior draws. :return: the 'chains' attribute of this DSGE instance is generated. """ try: df_chains = pd.read_hdf(file_path, key='chains') sigmak = pd.read_hdf(file_path, key='sigmak') start = df_chains.index[-1] except FileNotFoundError: def obj_func(theta_irr): theta_irr = {k: v for k, v in zip(self.params, theta_irr)} theta_res = self._irr2res(theta_irr) return -1 * self._calc_posterior(theta_res) theta_res0 = {k: v for k, v in zip(self.params, self.prior_info['mean'].values)} theta_irr0 = self._res2irr(theta_res0) theta_irr0 = array(list(theta_irr0.values())) # Optimization - SciPy minimize res = minimize(obj_func, theta_irr0, options={'disp': True}, method='BFGS') theta_mode_irr = {k: v for k, v in zip(self.params, res.x)} theta_mode_res = self._irr2res(theta_mode_irr) sigmak = ck * res.hess_inv if self.verbose: print('===== Posterior Mode =====') print(theta_mode_res, '\n') print('===== MH jump covariance =====') print(sigmak, '\n') print('===== Eigenvalues of MH jump convariance =====') print(eig(sigmak)[0], '\n') # Optimization - Basinhoping # res = basinhopping(obj_func, theta_irr0) # theta_mode_irr = {k: v for k, v in zip(self.params, res.x)} # theta_mode_res = self._irr2res(theta_mode_irr) # sigmak = ck * res.hess_inv # Overrides the result of the optimization # theta_mode_res = self.prior_info['mean'] # sigmak = ck * eye(self.n_param) df_chains = pd.DataFrame(columns=[str(p) for p in list(self.params)], index=range(nsim)) df_chains.loc[0] = list(theta_mode_res.values()) start = 0 # Metropolis-Hastings muk = zeros(self.n_param) accepted = 0 for ii in tqdm(range(start + 1, start+nsim), 'Metropolis-Hastings'): theta1 = {k: v for k, v in zip(self.params, df_chains.loc[ii - 1].values)} pos1 = self._calc_posterior(theta1) omega1 = self._res2irr(theta1) omega2 = array(list(omega1.values())) + multivariate_normal(muk, sigmak) omega2 = {k: v for k, v in zip(self.params, omega2)} theta2 = self._irr2res(omega2) pos2 = self._calc_posterior(theta2) ratio = exp(pos2 - pos1) if ratio > rand(1)[0]: accepted += 1 df_chains.loc[ii] = list(theta2.values()) else: df_chains.loc[ii] = df_chains.loc[ii - 1] if ii % 100 == 0: store = pd.HDFStore(file_path) store['chains'] = df_chains store['sigmak'] = pd.DataFrame(data=sigmak) store.close() store = pd.HDFStore(file_path) store['chains'] = df_chains store['sigmak'] = pd.DataFrame(data=sigmak) store.close() self.chains = df_chains.astype(float) if self.verbose: print('Acceptance rate:', 100 * (accepted / nsim), 'percent') def eval_chains(self, burnin=0.3, load_chain=None, show_charts=False): """ :param burnin: int or float. Number of observations on the begging of the chain that are going to be dropped to compute posterior statistics. :param load_chain: str. Save pathe of the HDF5 file with the chains. Only required if the chains were not loaded in the estimation step. :param show_charts: bool. If True, prior-posterior chart is shown. Red line are the theoretical prior densities, blues bars are the empirical posterior densities. :return: the 'posterior_table' attribute of this DSGE instance is generated. """ # TODO Output a model calibrated with posteriors if not (load_chain is None): try: self.chains = pd.read_hdf(load_chain, key='chains').astype(float) except FileNotFoundError: raise FileNotFoundError('Chain file not found') assert not (self.chains is None), 'There are no loaded chains' chain_size = self.chains.shape[0] if type(burnin) is float and 0 <= burnin < 1: df_chains = self.chains.iloc[int(chain_size * burnin):] elif type(burnin) is int and burnin < chain_size: df_chains = self.chains.iloc[burnin + 1:] else: raise ValueError("'burnin' must be either an int smaller than the chain size or a float between 0 and 1") self._plot_chains(chains=df_chains, show_charts=show_charts) self._plot_prior_posterior(chains=df_chains, show_charts=show_charts) self.posterior_table = self._posterior_table(chains=df_chains) def _get_jacobians(self, generate_obs): # State Equations self.Gamma0 = self.state_equations.jacobian(self.endog) self.Gamma1 = -self.state_equations.jacobian(self.endogl) self.Psi = -self.state_equations.jacobian(self.exog) self.Pi = -self.state_equations.jacobian(self.expec) self.C_in = simplify(self.state_equations - self.Gamma0 @ self.endog + self.Gamma1 @ self.endogl + self.Psi @ self.exog + self.Pi @ self.expec) # Obs Equation if generate_obs: self.obs_matrix = Matrix(eye(self.n_obs)) self.obs_offset = Matrix(zeros(self.n_obs)) else: self.obs_matrix = self.obs_equations.jacobian(self.endog) self.obs_offset = self.obs_equations - self.obs_matrix @ self.endog def _calc_posterior(self, theta): P = self._calc_prior(theta) L = self._log_likelihood(theta) f = P + L return f*1000 # x1000 is here to increase precison of the posterior mode-finding algorithm. def _calc_prior(self, theta): prior_dict = self.prior_dict df_prior = self.prior_info.copy() df_prior['pdf'] = nan for param in prior_dict.keys(): mu = df_prior.loc[str(param)]['mean'] sigma = df_prior.loc[str(param)]['std'] dist = df_prior.loc[str(param)]['distribution'].lower() theta_i = theta[param] # since we are goig to take logs, the density function only needs the terms that depend on # theta_i, this will help speed up the code a little and will not affect optimization output. if dist == 'beta': a = ((mu ** 2) * (1 - mu)) / (sigma ** 2) - mu b = a * mu / (1 - mu) pdf_i = (theta_i**(a - 1)) * ((1 - theta_i)**(b - 1)) elif dist == 'gamma': a = (mu/sigma)**2 b = mu/a pdf_i = theta_i**(a - 1) * exp(-theta_i/b) elif dist == 'invgamma': a = (mu/sigma)**2 + 2 b = mu * (a - 1) pdf_i = (theta_i**(- a - 1)) * exp(-b/theta_i) elif dist == 'uniform': a = mu - sqrt(3) * sigma b = 2 * mu - a pdf_i = 1/(b - a) else: # Normal pdf_i = exp(-((theta_i - mu)**2)/(2 * (sigma**2))) df_prior.loc[str(param), 'pdf'] = pdf_i df_prior['log pdf'] = log(df_prior['pdf'].astype(float)) P = df_prior['log pdf'].sum() return P def _log_likelihood(self, theta): Gamma0, Gamma1, Psi, Pi, C_in, obs_matrix, obs_offset = self._eval_matrix(theta, to_array=True) for mat in [Gamma0, Gamma1, Psi, Pi, C_in]: if isnan(mat).any() or isinf(mat).any(): return -inf G1, C_out, impact, fmat, fwt, ywt, gev, eu, loose = gensys(Gamma0, Gamma1, C_in, Psi, Pi) if eu[0] == 1 and eu[1] == 1: # TODO add observation covariance to allow for measurment errors kf = KalmanFilter(G1, obs_matrix, impact @ impact.T, None, C_out.reshape(self.n_state), obs_offset.reshape(self.n_obs)) L = kf.loglikelihood(self.data) else: L = - inf return L def _eval_matrix(self, theta, to_array): if to_array: # state matrices Gamma0 = array(self.Gamma0.subs(theta)).astype(float) Gamma1 = array(self.Gamma1.subs(theta)).astype(float) Psi = array(self.Psi.subs(theta)).astype(float) Pi = array(self.Pi.subs(theta)).astype(float) C_in = array(self.C_in.subs(theta)).astype(float) # observation matrices obs_matrix = array(self.obs_matrix.subs(theta)).astype(float) obs_offset = array(self.obs_offset.subs(theta)).astype(float) else: # state matrices Gamma0 = self.Gamma0.subs(theta) Gamma1 = self.Gamma1.subs(theta) Psi = self.Psi.subs(theta) Pi = self.Pi.subs(theta) C_in = self.C_in.subs(theta) # observation matrices obs_matrix = self.obs_matrix.subs(theta) obs_offset = self.obs_offset.subs(theta) return Gamma0, Gamma1, Psi, Pi, C_in, obs_matrix, obs_offset def _get_prior_info(self): prior_info = self.prior_dict param_names = [str(s) for s in list(self.params)] df_prior = pd.DataFrame(columns=['distribution', 'mean', 'std', 'param a', 'param b'], index=param_names) for param in prior_info.keys(): mu = prior_info[param]['mean'] sigma = prior_info[param]['std'] dist = prior_info[param]['dist'].lower() if dist == 'beta': a = ((mu ** 2) * (1 - mu)) / (sigma ** 2) - mu b = a * mu / (1 - mu) elif dist == 'gamma': a = (mu / sigma) ** 2 b = mu / a elif dist == 'invgamma': a = (mu / sigma) ** 2 + 2 b = mu * (a - 1) elif dist == 'uniform': a = mu - sqrt(3) * sigma b = 2 * mu - a else: # Normal a = mu b = sigma df_prior.loc[str(param)] = [dist, mu, sigma, a, b] return df_prior def _res2irr(self, theta_res): prior_info = self.prior_info theta_irr = theta_res.copy() for param in theta_res.keys(): a = prior_info.loc[str(param)]['param a'] b = prior_info.loc[str(param)]['param b'] dist = prior_info.loc[str(param)]['distribution'].lower() theta_i = theta_res[param] if dist == 'beta': theta_irr[param] = log(theta_i / (1 - theta_i)) elif dist == 'gamma' or dist == 'invgamma': theta_irr[param] = log(theta_i) elif dist == 'uniform': theta_irr[param] = log((theta_i - a) / (b - theta_i)) else: # Normal theta_irr[param] = theta_i return theta_irr def _irr2res(self, theta_irr): prior_info = self.prior_info theta_res = theta_irr.copy() for param in theta_irr.keys(): a = prior_info.loc[str(param)]['param a'] b = prior_info.loc[str(param)]['param b'] dist = prior_info.loc[str(param)]['distribution'].lower() lambda_i = theta_irr[param] if dist == 'beta': theta_res[param] = exp(lambda_i) / (1 + exp(lambda_i)) elif dist == 'gamma': theta_res[param] = exp(lambda_i) elif dist == 'invgamma': theta_res[param] = exp(lambda_i) elif dist == 'uniform': theta_res[param] = (a + b * exp(lambda_i)) / (1 + exp(lambda_i)) else: # Normal theta_res[param] = lambda_i return theta_res def _plot_chains(self, chains, show_charts): n_cols = int(self.n_param ** 0.5) n_rows = n_cols + 1 if self.n_param > n_cols ** 2 else n_cols subplot_shape = (n_rows, n_cols) plt.figure(figsize=(7*1.61, 7)) for count, param in enumerate(list(self.params)): ax = plt.subplot2grid(subplot_shape, (count // n_cols, count % n_cols)) ax.plot(chains[str(param)], linewidth=0.5, color='darkblue') ax.set_title(self.prior_dict[param]['label']) plt.tight_layout() if show_charts: plt.show() def _plot_prior_posterior(self, chains, show_charts): n_bins = int(
sqrt(chains.shape[0])
numpy.sqrt
# coding=utf-8 # Copyright 2021 The Ravens Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing # permissions and # limitations under the License. """Kitting Tasks.""" import os import numpy as np from ravens.tasks.task import Task from ravens.utils import utils class AssemblingKits(Task): """Kitting Tasks base class.""" def __init__(self): super().__init__() self.max_steps = 4 self.rot_eps = np.deg2rad(30) # CHANGE THIS WHEN YOU ADD MORE OBJS self.train_set = [0,2,3,4,5,7,8,9,10] self.test_set = [3,7] self.homogeneous = False def reset(self, env): super().reset(env) # Add kit. kit_size = (0.39, 0.3, 0.0005) kit_urdf = 'kitting/kit.urdf' kit_pose = self.get_pose(env, kit_size) env.add_object(kit_urdf, kit_pose, 'fixed') if self.mode == 'train': n_objects = 3 obj_shapes = np.random.choice(self.train_set, n_objects) else: if self.homogeneous: n_objects = 2 obj_shapes = [np.random.choice(self.test_set)] * n_objects else: n_objects = 2 obj_shapes = np.random.choice(self.test_set, n_objects) colors = [ utils.COLORS['purple'], utils.COLORS['blue'], utils.COLORS['green'], utils.COLORS['yellow'], utils.COLORS['red'] ] symmetry = [ 2 * np.pi, 2 * np.pi, 2 * np.pi / 3, np.pi / 2, np.pi / 2, 2 * np.pi, np.pi, 2 * np.pi / 5, np.pi, np.pi / 2, 2 * np.pi / 5, 0, 2 * np.pi, 2 * np.pi, 2 * np.pi, 2 * np.pi, 0, 2 * np.pi / 6, 2 * np.pi, 2 * np.pi ] # Build kit. targets = [] if self.mode == 'test': targ_pos = [[0, -0.05, -0.001], [0, 0.05, -0.001]] else: targ_pos = [[-0.125, 0.12, -0.001], [0.072, 0.07, -0.001], [0.125, -0.13, -0.001]] template = 'kitting/object-template.urdf' for i in range(n_objects): shape = os.path.join(self.assets_root, 'kitting', f'{obj_shapes[i]:02d}.obj') if obj_shapes[i] == 7: scale = [0.006, 0.006, 0.0007] else: scale = [0.006, 0.006, 0.002] # .0005 pos = utils.apply(kit_pose, targ_pos[i]) if self.mode == 'train': theta =
np.random.rand()
numpy.random.rand
"""This module contains Model implementations that utilize the MPNN model as their underlying model""" from functools import partial import json import logging from pathlib import Path from typing import Iterable, List, NoReturn, Optional, Sequence, Tuple import warnings import numpy as np import pytorch_lightning as pl from pytorch_lightning.callbacks.early_stopping import EarlyStopping import ray from ray.util.sgd.v2 import Trainer import torch from tqdm import tqdm from molpal.models.chemprop.data.data import MoleculeDatapoint, MoleculeDataset, MoleculeDataLoader from molpal.models.chemprop.data.scaler import StandardScaler from molpal.models.chemprop.data.utils import split_data from molpal.models.base import Model from molpal.models import mpnn from molpal.utils import batches logging.getLogger("lightning").setLevel(logging.FATAL) warnings.filterwarnings( "ignore", ".*Trying to infer the `batch_size` from an ambiguous collection.*" ) class MPNN: """A message-passing neural network base class This class serves as a wrapper for the Chemprop MoleculeModel, providing convenience and modularity in addition to uncertainty quantification methods as originally implemented in the Chemprop confidence branch Attributes ---------- ncpu : int the number of cores over which to parallelize input batch preparation ddp : bool whether to train the model over a distributed setup. Only works with CUDA >= 11.0 precision : int the precision with which to train the model represented in the number of bits model : MoleculeModel the underlying chemprop model on which to train and make predictions uncertainty : Optional[str], default=None the uncertainty quantification method the model uses. None if it does not use any uncertainty quantification loss_func : Callable the loss function used in model training batch_size : int the size of each minibatch during training epochs : int the number of epochs over which to train dataset_type : str the type of dataset. Choices: ('regression') TODO: add support for classification num_tasks : int the number of training tasks use_gpu : bool whether the GPU will be used. NOTE: If a GPU is detected, it will be used. If this is undesired, set the CUDA_VISIBLE_DEVICES environment variable to be empty num_workers : int the number of workers to distribute model training over. Equal to the number of GPUs detected, or if none are available, the ratio of total CPUs on detected on the ray cluster over the number of CPUs to dedicate to each dataloader train_config : Dict a dictionary containing the configuration of training variables: learning rates, maximum epochs, validation metric, etc. scaler : StandardScaler a scaler to normalize target data before training and validation and to reverse transform prediction outputs """ def __init__( self, batch_size: int = 50, uncertainty: Optional[str] = None, dataset_type: str = "regression", num_tasks: int = 1, atom_messages: bool = False, hidden_size: int = 300, bias: bool = False, depth: int = 3, dropout: float = 0.0, undirected: bool = False, activation: str = "ReLU", ffn_hidden_size: Optional[int] = None, ffn_num_layers: int = 2, metric: str = "rmse", epochs: int = 50, warmup_epochs: float = 2.0, init_lr: float = 1e-4, max_lr: float = 1e-3, final_lr: float = 1e-4, ncpu: int = 1, ddp: bool = False, precision: int = 32, model_seed: Optional[int] = None, ): self.ncpu = ncpu self.ddp = ddp if precision not in (16, 32): raise ValueError(f'arg: "precision" can only be (16, 32)! got: {precision}') self.precision = precision self.model = mpnn.MoleculeModel( uncertainty=uncertainty, dataset_type=dataset_type, num_tasks=num_tasks, atom_messages=atom_messages, hidden_size=hidden_size, bias=bias, depth=depth, dropout=dropout, undirected=undirected, activation=activation, ffn_hidden_size=ffn_hidden_size, ffn_num_layers=ffn_num_layers, ) self.uncertainty = uncertainty self.dataset_type = dataset_type self.num_tasks = num_tasks self.epochs = epochs self.batch_size = batch_size self.scaler = None ngpu = int(ray.cluster_resources().get("GPU", 0)) if ngpu > 0: self.use_gpu = True self._predict = ray.remote(num_cpus=ncpu, num_gpus=1)(mpnn.predict) self.num_workers = ngpu else: self.use_gpu = False self._predict = ray.remote(num_cpus=ncpu)(mpnn.predict) self.num_workers = int(ray.cluster_resources()["CPU"] // self.ncpu) self.seed = model_seed if model_seed is not None: torch.manual_seed(model_seed) self.train_config = { "model": self.model, "uncertainty": self.uncertainty, "dataset_type": dataset_type, "batch_size": self.batch_size, "warmup_epochs": warmup_epochs, "max_epochs": self.epochs, "init_lr": init_lr, "max_lr": max_lr, "final_lr": final_lr, "metric": metric, } def train(self, smis: Iterable[str], targets: Sequence[float]) -> bool: """Train the model on the inputs SMILES with the given targets""" train_data, val_data = self.make_datasets(smis, targets) if self.ddp: self.train_config["train_data"] = train_data self.train_config["val_data"] = val_data trainer = Trainer("torch", self.num_workers, self.use_gpu, {"CPU": self.ncpu}) trainer.start() results = trainer.run(mpnn.sgd.train_func, self.train_config) trainer.shutdown() self.model = results[0] return True train_dataloader = MoleculeDataLoader( dataset=train_data, batch_size=self.batch_size, num_workers=self.ncpu, pin_memory=False ) val_dataloader = MoleculeDataLoader( dataset=val_data, batch_size=self.batch_size, num_workers=self.ncpu, pin_memory=False ) lit_model = mpnn.LitMPNN(self.train_config) callbacks = [ EarlyStopping("val_loss", patience=10, mode="min"), mpnn.EpochAndStepProgressBar(), ] trainer = pl.Trainer( logger=False, max_epochs=self.epochs, callbacks=callbacks, gpus=1 if self.use_gpu else 0, precision=self.precision, enable_model_summary=False, # log_every_n_steps=len(train_dataloader) ) trainer.fit(lit_model, train_dataloader, val_dataloader) return True def make_datasets( self, xs: Iterable[str], ys: np.ndarray ) -> Tuple[MoleculeDataset, MoleculeDataset]: """Split xs and ys into train and validation datasets""" if len(ys.shape) == 1: data = MoleculeDataset( [MoleculeDatapoint(smiles=[x], targets=[y]) for x, y in zip(xs, ys)] ) else: data = MoleculeDataset( [MoleculeDatapoint(smiles=[x], targets=y) for x, y in zip(xs, ys)] ) train_data, val_data, _ = split_data(data, sizes=(0.8, 0.2, 0.0), seed=self.seed) self.scaler = train_data.normalize_targets() val_data.scale_targets(self.scaler) return train_data, val_data def predict(self, smis: Iterable[str]) -> np.ndarray: """Generate predictions for the inputs xs Parameters ---------- smis : Iterable[str] the SMILES strings for which to generate predictions Returns ------- np.ndarray the array of predictions with shape NxO, where N is the number of inputs and O is the number of tasks.""" model = ray.put(self.model) scaler = ray.put(self.scaler) refs = [ self._predict.remote( model, smis, self.batch_size, self.ncpu, self.uncertainty, scaler, self.use_gpu, True, ) for smis in batches(smis, 20000) ] preds_chunks = [ray.get(r) for r in tqdm(refs, "Prediction", unit="chunk", leave=False)] return np.concatenate(preds_chunks) def save(self, path) -> str: path = Path(path) path.mkdir(parents=True, exist_ok=True) model_path = f"{path}/model.pt" torch.save(self.model.state_dict(), model_path) state_path = f"{path}/state.json" try: state = { "model_path": model_path, "means": self.scaler.means.tolist(), "stds": self.scaler.stds.tolist(), } except AttributeError: state = {"model_path": model_path} json.dump(state, open(state_path, "w"), indent=4) return state_path def load(self, path): state = json.load(open(path, "r")) self.model.load_state_dict(torch.load(state["model_path"])) try: self.scaler = StandardScaler(state["means"], state["stds"]) except KeyError: pass class MPNModel(Model): """Message-passing model that learns feature representations of inputs and passes these inputs to a feed-forward neural network to predict means""" def __init__( self, test_batch_size: Optional[int] = 1000000, ncpu: int = 1, ddp: bool = False, precision: int = 32, model_seed: Optional[int] = None, **kwargs, ): test_batch_size = test_batch_size or 1000000 self.build_model = partial( MPNN, ncpu=ncpu, ddp=ddp, precision=precision, model_seed=model_seed ) self.model = self.build_model() super().__init__(test_batch_size, **kwargs) @property def provides(self): return {"means"} @property def type_(self): return "mpn" def train( self, xs: Iterable[str], ys: Sequence[float], *, retrain: bool = False, **kwargs ) -> bool: if retrain: self.model = self.build_model() return self.model.train(xs, ys) def get_means(self, xs: Sequence[str]) -> np.ndarray: preds = self.model.predict(xs) return preds[:, 0] # assume single-task def get_means_and_vars(self, xs: List) -> NoReturn: raise TypeError("MPNModel cannot predict variance!") def save(self, path) -> str: return self.model.save(path) def load(self, path): self.model.load(path) class MPNDropoutModel(Model): """Message-passing network model that predicts means and variances through stochastic dropout during model inference""" def __init__( self, test_batch_size: Optional[int] = 1000000, dropout: float = 0.2, dropout_size: int = 10, ncpu: int = 1, ddp: bool = False, precision: int = 32, model_seed: Optional[int] = None, **kwargs, ): test_batch_size = test_batch_size or 1000000 self.build_model = partial( MPNN, uncertainty="dropout", dropout=dropout, ncpu=ncpu, ddp=ddp, precision=precision, model_seed=model_seed, ) self.model = self.build_model() self.dropout_size = dropout_size super().__init__(test_batch_size, **kwargs) @property def type_(self): return "mpn" @property def provides(self): return {"means", "vars", "stochastic"} def train( self, xs: Iterable[str], ys: Sequence[float], *, retrain: bool = False, **kwargs ) -> bool: if retrain: self.model = self.build_model() return self.model.train(xs, ys) def get_means(self, xs: Sequence[str]) -> np.ndarray: predss = self._get_predictions(xs) return
np.mean(predss, axis=1)
numpy.mean
from flask import Flask from flask import request from datetime import datetime import os import shutil from PIL import Image import numpy as np class ImgServ(): def __init__(self, handler, host = '0.0.0.0', port_number = 12222, save_loc = '.', incoming_fname = 'image.jpg', image_prefix = 'img_', image_format = '.jpg', datetime_delimiter = '_'): self.handler = handler self.host = host self.port_number = port_number self.app = Flask(__name__) self.save_loc = save_loc self.incoming_fname = incoming_fname self.image_prefix = image_prefix self.image_format = image_format self.datetime_delimiter = datetime_delimiter def imgToNp(imgPath, dtype='int32'): image = Image.open(imgPath) image.load() npArr =
np.asarray(image, dtype=dtype)
numpy.asarray
import numpy as np from ray.rllib.utils.framework import try_import_tf, try_import_torch tf1, tf, tfv = try_import_tf() torch, _ = try_import_torch() SMALL_NUMBER = 1e-6 # Some large int number. May be increased here, if needed. LARGE_INTEGER = 100000000 # Min and Max outputs (clipped) from an NN-output layer interpreted as the # log(x) of some x (e.g. a stddev of a normal # distribution). MIN_LOG_NN_OUTPUT = -20 MAX_LOG_NN_OUTPUT = 2 def huber_loss(x, delta=1.0): """Reference: https://en.wikipedia.org/wiki/Huber_loss""" return np.where( np.abs(x) < delta,
np.power(x, 2.0)
numpy.power
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Mar 31 17:14:28 2021 *V5- @author: akel controi modelo e malha MT3D(input,opt='string') input --> dicionário contendo informações da simulação,modelo geologico e meshgrid. veja a função loadmigeo para maiores informações. opt ---> Variavel string que define o tipo de malha usada 'tensor' ou 'octree' se não declarado opt o código roda com a malha tensor. def utilizadas easymodelbox Cria uma estrutura 3D com uma condutividade definida easymodellayer Cria camadas planas layermesh Realiza mesh nas camadas boxmesh Realiza mesh nas estruturas do tipo box runMT Realiza mesh nas estruturas do tipo box *V2- versão 2 adaptada para rodar com simpeg2020.Sem mesh do tipo octree ! *V3- em processo. adatação para rodar octree *V4- Adaptações/correções/aperfeicoamentos do mesh octree em camadas *V5- Inclusão Simulador MT(freq) **V5.5- Incluir Opt offset MT **V6- Inclusão topografia """ #import SimPEG as simpeg import numpy as np import time import discretize from SimPEG import utils from SimPEG.electromagnetics import natural_source as NSEM from discretize.utils import mkvc, refine_tree_xyz from discretize.utils import sdiag from scipy.constants import mu_0, epsilon_0 as eps_0 from scipy.interpolate import griddata as gd t = time.time() print('start NMT3D : ', time.ctime()) def modelmesh(input_var,**kwargs): op=kwargs.get('opt') #tensor lv=kwargs.get('level') #grau de refinemanto if lv==None: lv=1 pass dx=input_var['dxdydz'][0] dy=input_var['dxdydz'][1] dz=input_var['dxdydz'][2] x_length = input_var['x'] # tamanho do dominio em x y_length = input_var['y'] # tamanho do dominio em y z_length = input_var['z'] # tamanho do dominio em z #Definções de mesh # # Compute number of base mesh cells required in x and y nbcx = 2**int(np.round(np.log(x_length/dx)/np.log(2.))) nbcy = 2**int(np.round(np.log(y_length/dy)/np.log(2.))) nbcz = 2**int(np.round(np.log(z_length/dz)/np.log(2.))) hx = [(dx, nbcx)] hy = [(dy, nbcy)] hz = [(dz, nbcz)] if op == None : M = discretize.TreeMesh([hx, hy, hz], x0='CCC') layermesh(M,input_var['layer'],lv,opt='S') if 'box' in input_var: boxmesh(M,input_var['box'],lv) pass M.finalize() if op == 'tensor': #M=discretize.TensorMesh([hx, hy,hz], x0=['C', 'C','C']) hx = [(200, 8, -1.5), (500.0, 40), (200, 8, 1.5)] hy = [(100, 10, -1.5), (500.0, 80), (100, 10, 1.5)] hz = [(200, 10, -1.6), (2500.0, 22), (500, 10,1.4)] M = discretize.TensorMesh([ hx, hy, hz,],x0=["C", "C",-120000]) pass ##"Contrução" do modelo (add a condutividade ) sig=np.zeros(M.nC) + 1.0e-18 # define # inclusão de camadas, se for o caso if 'layer' in input_var: print('Add layers') M,sigBG,sigBG1d=easymodellayer(M,sig,input_var['layer'],input_var['cond'],opt='S') pass if 'topofile' in input_var: print('Building topography') M=discretize.TreeMesh([hx, hy, hz], x0='CCC') M,xyz,Zo=loadtopo(M,input_var['topofile'],dx) if 'box' in input_var: boxmesh(M,input_var['box'],2) pass M.finalize() sigBG=np.zeros(M.nC) + input_var['cond'][1] #geology # print('k-->',M.nC) actv = utils.surface2ind_topo(M, xyz) print('surface2ind_topo',time.ctime()) actv_ocean=np.invert(actv) print('np.invert',time.ctime()) index_ocean=np.where(actv_ocean) print('np.where',time.ctime()) sigBG[index_ocean]=input_var['cond'][0] #ocean sigBG[(M.gridCC[:,2] > 0) ] =1.0e-18 #atm # MESH 1D (para modelo de background) #teste mesh1d = discretize.TensorMesh([M.hz], np.array([M.x0[2]])) sigBG1d = np.zeros(mesh1d.nC) + 0 sigBG1d[mesh1d.gridCC > 0] = 1e-18 #atm sigBG1d[mesh1d.gridCC < 0] = input_var['cond'][0] #ocean sigBG1d[mesh1d.gridCC < Zo] = 1.0e-1 #final layer print('endtopfile',time.ctime()) pass #===== #incluir aqui sigBG1d e add ao return abaixo #================== # inclusão de estruturas , se for o caso if 'box' in input_var: print('Add geologic body') M,sig=easymodelbox(M,sigBG,input_var['box']) pass return M,sig,sigBG,sigBG1d #add sigBG1d ?? def easymodelbox(M,S,B): print('Build Blocks') modelBG=S n_box=len(B)/7 for i in range(0,int(n_box),1): x=B[0+int(i*7)] Lx=B[1+int(i*7)] y=B[2+int(i*7)] Ly=B[3+int(i*7)] z=B[4+int(i*7)] Lz=B[5+int(i*7)] aim_cond=B[6+int(i*7)] modelBG = utils.model_builder.addBlock( M.gridCC, modelBG, [x, y, z], [x+Lx, y+Ly, z+Lz],aim_cond) S= utils.mkvc(modelBG) return M,S #função para criar as camadas def easymodellayer(M,S,camada,cond,**kwargs): op=kwargs.get('opt') if op=='B': print('Model do tipo box') S[M.gridCC[:, 2] >= 0] = 1.0e-18 # cond. ar c=0 for i in range(0,len(camada),1): c=0+c S[(M.gridCC[:,2] < -c) & (M.gridCC[:,2] >= -camada[i])]=cond[i] c=camada[i] S[(M.gridCC[:,2] < -c) ]=cond[i+1] pass if op=='S': print('Building Layers') print('Model do tipo surface') M1d = discretize.TensorMesh([M.hz], np.array([M.x0[2]])) sigBG1d = np.zeros(M1d.nC) sigBG1d[M1d.gridCC > 0] = 1.0e-18 #cond.ar X=M.gridCC[:,0]; Z=np.zeros(len(X)) S[(M.gridCC[:,2] < Z) ] = 1.0e-18 #cond. ar c=0 for i in range(0,len(camada),1): c=0+c S[(M.gridCC[:,2] < -c) & (M.gridCC[:,2] >= -camada[i])]=cond[i] sigBG1d[(M1d.gridCC < -c) & (M1d.gridCC >= -camada[i])]=cond[i] c=camada[i] S[(M.gridCC[:,2] < -c) ]=cond[i+1] sigBG1d[(M1d.gridCC < -c) ]=cond[i+1] print('E. conductivity',c,cond[i+1]) pass return M,S,sigBG1d def layermesh(M,camada,lv,**kwargs): lv=2 # camadasfixasdas com level->2 comentar p/ level igual dos boxs op=kwargs.get('opt') if op=='B': print('Mesh do tipo box') #z=0 xp, yp, zp = np.meshgrid( [-np.sum(M.h[0])/2, np.sum(M.h[0])/2], [-np.sum(M.h[1])/2,np.sum(M.h[1])/2], [-0-1*M.h[2][0],-0+1*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False) #add camadas for i in range(0,len(camada),1): xp, yp, zp = np.meshgrid( [-np.sum(M.h[0])/2, np.sum(M.h[0])/2], [-np.sum(M.h[1])/2,np.sum(M.h[1])/2], [-camada[i]-1*M.h[2][0], -camada[i]+1*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] M = refine_tree_xyz(M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False) pass if op=='S': print('Mesh do tipo surface!!') dc=3 # reduz o tamanho da linha de refinamento da camada xx = np.arange(-np.sum(M.h[0])/dc,np.sum(M.h[0])/dc,M.h[0][0]) #np.sum(Msurf.hxh2) ou dg --> dá as bordas yy = np.arange(-np.sum(M.h[0])/dc,np.sum(M.h[0])/dc,M.h[0][0]) xx, yy = np.meshgrid(xx, yy) zz=np.zeros([len(xx),len(xx)])-0 #função de superficie xyz = np.c_[mkvc(xx), mkvc(yy),mkvc(zz)] M = refine_tree_xyz(M, xyz, octree_levels=[lv,lv,lv], method='surface', finalize=False) # add camadas for i in range(0,len(camada),1): zz=np.zeros([len(xx),len(xx)])-camada[i] xyz = np.c_[mkvc(xx), mkvc(yy),mkvc(zz)] M = refine_tree_xyz(M, xyz, octree_levels=[lv,lv,lv], method='surface', finalize=False) pass return def boxmesh(M,box,lv): # lv=2 n_box=len(box)/7 fb=4 #fator de discretização ao redor for i in range(0,int(n_box),1): x1=box[0+int(i*7)] x2=x1+box[1+int(i*7)] y1=box[2+int(i*7)] y2=y1+box[3+int(i*7)] z1=box[4+int(i*7)] z2=z1+box[5+int(i*7)] #plano1 XY-zbotton xp, yp, zp = np.meshgrid( [x1, x2],[y1,y2], [z1-fb*M.h[2][0],z1+fb*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False ) #plano2 XY-ztop xp, yp, zp = np.meshgrid( [x1,x2],[y1,y2], [z2-fb*M.h[2][0],z2+fb*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False ) #plano3 XZ-yleft xp, yp, zp = np.meshgrid( [x1-fb*M.h[0][0],x1+fb*M.h[0][0]],[y1-fb*np.sqrt(3)*M.h[1][0],y2+fb*np.sqrt(3)*M.h[1][0]], [z2+fb*np.sqrt(3)*M.h[2][0],z1-fb*np.sqrt(3)*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False ) #plano4 XZ-yrigth xp, yp, zp = np.meshgrid( [x2-fb*M.h[0][0],x2+fb*M.h[0][0]],[y1-fb*np.sqrt(3)*M.h[1][0],y2+fb*np.sqrt(3)*M.h[1][0]], [z2+fb*np.sqrt(3)*M.h[2][0],z1-fb*np.sqrt(3)*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] # mkvc creates vectors M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False ) #plano5 YZ-Xleft xp, yp, zp = np.meshgrid( [x1,x2],[y1-fb*M.h[1][0],y1+fb*M.h[1][0]], [z2+fb*np.sqrt(3)*M.h[2][0],z1-fb*np.sqrt(3)*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] # mkvc creates vectors M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False ) #plano6 YZ-Xrigth xp, yp, zp = np.meshgrid( [x1,x2],[y2-fb*M.h[1][0],y2+fb*M.h[1][0]], [z2+fb*np.sqrt(3)*M.h[2][0],z1-fb*np.sqrt(3)*M.h[2][0]]) xyz = np.c_[mkvc(xp), mkvc(yp),mkvc(zp)] # mkvc creates vectors M = refine_tree_xyz( M, xyz, octree_levels=[lv,lv,lv], method='box', finalize=False ) return def pyvista_view(input_var,ftr): import pyvista as pv dx=input_var['dxdydz'][0] dy=input_var['dxdydz'][1] dz=input_var['dxdydz'][2] x_length = input_var['x'] # tamanho do dominio em x y_length = input_var['y'] # tamanho do dominio em y z_length = input_var['z'] # tamanho do dominio em z #Definções de mesh # Compute number of base mesh cells required in x and y nbcx = 2**int(np.round(np.log(x_length/dx)/np.log(2.))) nbcy = 2**int(np.round(np.log(y_length/dy)/np.log(2.))) nbcz = 2**int(np.round(np.log(z_length/dz)/np.log(2.))) hx = [(dx, nbcx)] hy = [(dy, nbcy)] hz = [(dz, nbcz/2)] M=discretize.TensorMesh([hx, hy,hz], x0=['C', 'C', -dz*nbcz/2]) sig=np.zeros(M.nC) + 1e-18 # define #inclusão de camadas, se for o caso if 'layer' in input_var: easymodellayer(M,sig,input_var['layer'],input_var['cond'],opt='S') pass sigBG = sig #inclusão de estruturas , se for o caso if 'box' in input_var: easymodelbox(M,sigBG,input_var['box']) pass models = {'res':np.log10(sig)} dataset = M.toVTK(models) p = pv.Plotter(notebook=0) p.show_grid(location='outer') # # p.add_mesh(dataset.slice('x'), opacity=0.75, name='x-slice') p.add_mesh(dataset.slice('y'), opacity=0.75, name='y-slice') p.add_mesh(dataset.slice('z'), opacity=0.75, name='z-slice') # p.add_mesh(threshed, name='vol') p.add_mesh(dataset.threshold([np.log10(ftr)-0.1,np.log10(ftr)]), name='vol') p.show() # return def runMT(M,S,Sbg,Sbg1d,fq): try: from pymatsolver import Pardiso as Solver except: from SimPEG import Solver nFreq = len(fq) rx_x = np.array([0.]) rx_y = np.array([0.]) rx_loc = np.hstack((utils.mkvc(rx_x, 2), utils.mkvc(rx_y, 2), np.zeros((np.prod(rx_x.shape), 1)))) # Receivers rxList = [] for rx_orientation in ['xx', 'xy', 'yx', 'yy']: rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation, 'real')) rxList.append(NSEM.Rx.Point_impedance3D(rx_loc, rx_orientation, 'imag')) for rx_orientation in ['zx', 'zy']: rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'real')) rxList.append(NSEM.Rx.Point_tipper3D(rx_loc, rx_orientation, 'imag')) # Source list, srcList = [] for freq in fq: srcList.append(NSEM.Src.Planewave_xy_1Dprimary(rxList, freq, Sbg1d, Sbg)) # Make the survey survey = NSEM.Survey(srcList) # Set the problem problem = NSEM.Problem3D_ePrimSec(M, sigma=S, sigmaPrimary=Sbg) problem.pair(survey) problem.Solver = Solver # Calculate the data fields = problem.fields() # Calculate the data fields = problem.fields() # returns secondary field rec_x = np.array([-200]) #M.getTensor('Ex')[0] rec_y = np.zeros(np.prod(rec_x.shape)) rec_z = np.zeros(np.prod(rec_x.shape)) pos_rx = np.hstack((utils.mkvc(rec_x,2),utils.mkvc(rec_y,2),utils.mkvc(rec_z,2))) grid_field_px = np.empty((M.nE,nFreq),dtype=complex) grid_field_py = np.empty((M.nE,nFreq),dtype=complex) for i in range(nFreq): grid_field_px[:,i] = np.transpose(fields._getField('e_pxSolution', i)) grid_field_py[:,i] = np.transpose(fields._getField('e_pySolution', i)) # campos E e H calculado em todas as arestas d malha e_px_full = fields._e_px(grid_field_px, srcList) e_py_full = fields._e_py(grid_field_py, srcList) h_px_full = fields._b_px(grid_field_px, srcList)/mu_0 h_py_full = fields._b_py(grid_field_py, srcList)/mu_0 # Interpolando campos nos locais do receptor Pex = M.getInterpolationMat(pos_rx,'Ex') ex_px = Pex*e_px_full ex_py = Pex*e_py_full Pey = M.getInterpolationMat(pos_rx,'Ex') ey_px = Pey*e_px_full ey_py = Pey*e_py_full Pbx = M.getInterpolationMat(pos_rx,'Fx') hx_px = Pbx*h_px_full hx_py = Pbx*h_py_full Pby = M.getInterpolationMat(pos_rx,'Fy') hy_px = Pby*h_px_full hy_py = Pby*h_py_full hd = sdiag(mkvc(1.0/ (sdiag(mkvc(hx_px,2)) * mkvc(hy_py,2) - sdiag(mkvc(hx_py,2)) * mkvc(hy_px,2)),2)) orientation = 'xy' if "xx" in orientation: Zij = ex_px * hy_py - ex_py * hy_px elif "xy" in orientation: Zij = -ex_px * hx_py + ex_py * hx_px elif "yx" in orientation: Zij = ey_px * hy_py - ey_py * hy_px elif "yy" in orientation: Zij = -ey_px * hx_py + ey_py * hx_px # Calculate the complex value Imped = hd * mkvc(Zij,2) rho_app = np.empty((nFreq),dtype=float) phs = np.empty((nFreq),dtype=float) for i in range(nFreq): print("freq:", fq[i]) rho_app[i] = 1/(2*np.pi*fq[i]*mu_0) * abs(Imped[i])**2 phs[i] = np.arctan2(Imped[i].imag, Imped[i].real)*(180./np.pi) return fq,rho_app,phs def loadtopo(M,filename,delta): tp=np.loadtxt(filename); lv=2 X=tp[:,0]; Y=tp[:,1]; Z=tp[:,2]; LX=max(X)-(min(X)) LY=max(Y)-(min(Y)) dxi=delta dyi=delta nxi=LX/dxi #número de celulas em x nyi=LY/dyi #numero de celulas em y xi = np.linspace(min(X), max(X), int(nxi)) yi = np.linspace(min(Y), max(Y), int(nyi)) xi, yi =
np.meshgrid(xi, yi)
numpy.meshgrid
import logging logging.disable(logging.CRITICAL) import numpy as np import copy import time as timer import torch import torch.nn as nn from torch.autograd import Variable # samplers import mjrl.samplers.trajectory_sampler as trajectory_sampler import mjrl.samplers.batch_sampler as batch_sampler # utility functions import mjrl.utils.process_samples as process_samples from mjrl.utils.logger import DataLog import pickle import os class BatchREINFORCEFTW: def __init__(self, all_env, policy, all_baseline, learn_rate=0.01, seed=None, save_logs=False, new_col_mode='regularize'): self.all_env = all_env self.policy = policy self.all_baseline = all_baseline self.theta = learn_rate self.seed = seed self.save_logs = save_logs self.running_score = {} self.save_logs = save_logs if save_logs: self.logger = {} self.d = policy.model.L.shape[0] self.A = np.zeros(( self.d * self.policy.k, self.d * self.policy.k)) self.B = np.zeros((self.d * self.policy.k, 1)) self.theta = {} self.grad = {} self.hess = {} self.new_col_mode = new_col_mode def set_task(self, task_id): self.env = self.all_env[task_id] self.policy.set_task(task_id) self.baseline = self.all_baseline[task_id] if task_id not in self.observed_tasks: if self.save_logs: self.logger[task_id] = DataLog() self.observed_tasks.add(task_id) def CPI_surrogate(self, observations, actions, advantages): adv_var = Variable(torch.from_numpy(advantages).float(), requires_grad=False) old_dist_info = self.policy.old_dist_info(observations, actions) new_dist_info = self.policy.new_dist_info(observations, actions) LR = self.policy.likelihood_ratio(new_dist_info, old_dist_info) surr = torch.mean(LR*adv_var) return surr def kl_old_new(self, observations, actions): old_dist_info = self.policy.old_dist_info(observations, actions) new_dist_info = self.policy.new_dist_info(observations, actions) mean_kl = self.policy.mean_kl(new_dist_info, old_dist_info) return mean_kl def flat_vpg(self, observations, actions, advantages): A = Variable(torch.from_numpy(self.A).float(), requires_grad=False) B = Variable(torch.from_numpy(self.B).float(), requires_grad=False) vecLT = self.policy.model.L.reshape((-1,1)) # because of the way torch orders upon reshape, this is equivalent to vec(L^\top) cpi_surr = self.CPI_surrogate(observations, actions, advantages) if self.policy.model.T > self.policy.k: # regularize S objective = cpi_surr - 1e-5*torch.norm(self.policy.trainable_params[1], 1) else: # regularize nothing (equivalent to training STL) objective = cpi_surr vpg_grad = torch.autograd.grad(objective, self.policy.trainable_params)#, retain_graph=True) vpg_grad = np.concatenate([g.contiguous().view(-1).data.numpy() for g in vpg_grad]) return vpg_grad def grad_and_hess(self, observations, actions, advantages, theta): cpi_surr = self.CPI_surrogate(observations, actions, advantages) objective = cpi_surr vpg_grad = torch.autograd.grad(objective, [theta], create_graph=True)[0] log_std = self.policy.log_std adv_var = Variable(torch.from_numpy(advantages).float(), requires_grad=False).reshape(-1,1) obs_var = Variable(torch.from_numpy(observations).float(), requires_grad=False) obs_var = torch.cat([obs_var, torch.ones(obs_var.shape[0],1)], dim=1) vpg_grad = vpg_grad.data.numpy() # delete this adv_var = adv_var - adv_var.max() hess_tmp = torch.mm(torch.t(obs_var * adv_var), obs_var).data.numpy() / adv_var.numel() log_std = log_std.data.numpy() hess_tmp = np.kron(np.diag(1/np.exp(log_std)), hess_tmp) vpg_hess = hess_tmp vpg_hess = (vpg_hess + vpg_hess.T) / 2 return vpg_grad, vpg_hess # ---------------------------------------------------------- def train_step(self, N, sample_mode='trajectories', env_name=None, T=1e6, gamma=0.995, gae_lambda=0.98, num_cpu='max', task_id=0): # Clean up input arguments if env_name is None: env_name = self.env.env_id if sample_mode != 'trajectories' and sample_mode != 'samples': print("sample_mode in NPG must be either 'trajectories' or 'samples'") quit() ts = timer.time() if sample_mode == 'trajectories': policy_copy = self.copy_policy_for_detach() paths = trajectory_sampler.sample_paths_parallel(N, policy_copy, T, env_name, self.seed, num_cpu) elif sample_mode == 'samples': paths = batch_sampler.sample_paths(N, self.policy, T, env_name=env_name, pegasus_seed=self.seed, num_cpu=num_cpu) if self.save_logs: self.logger[task_id].log_kv('time_sampling', timer.time() - ts) self.seed = self.seed + N if self.seed is not None else self.seed # compute returns process_samples.compute_returns(paths, gamma) # compute advantages process_samples.compute_advantages(paths, self.baseline, gamma, gae_lambda) # train from paths eval_statistics = self.train_from_paths(paths, task_id) eval_statistics.append(N) # fit baseline if self.save_logs: ts = timer.time() error_before, error_after = self.baseline.fit(paths, return_errors=True) self.logger[task_id].log_kv('time_VF', timer.time()-ts) self.logger[task_id].log_kv('VF_error_before', error_before) self.logger[task_id].log_kv('VF_error_after', error_after) else: self.baseline.fit(paths) return eval_statistics # ---------------------------------------------------------- def train_from_paths(self, paths, task_id): # Concatenate from all the trajectories observations = np.concatenate([path["observations"] for path in paths]) actions = np.concatenate([path["actions"] for path in paths]) advantages = np.concatenate([path["advantages"] for path in paths]) # Advantage whitening advantages = (advantages - np.mean(advantages)) / (np.std(advantages) + 1e-6) # cache return distributions for the paths path_returns = [sum(p["rewards"]) for p in paths] mean_return = np.mean(path_returns) std_return = np.std(path_returns) min_return = np.amin(path_returns) max_return = np.amax(path_returns) base_stats = [mean_return, std_return, min_return, max_return] if task_id in self.running_score: self.running_score[task_id] = 0.9*self.running_score[task_id] + 0.1*mean_return else: self.running_score[task_id] = mean_return if self.save_logs: self.log_rollout_statistics(paths, task_id) # Keep track of times for various computations t_gLL = 0.0 # Optimization algorithm # -------------------------- surr_before = self.CPI_surrogate(observations, actions, advantages).data.numpy().ravel()[0] # VPG ts = timer.time() vpg_grad = self.flat_vpg(observations, actions, advantages) t_gLL += timer.time() - ts # Policy update # -------------------------- curr_params = self.policy.get_param_values(task_id) new_params = curr_params + self.theta * vpg_grad self.policy.set_param_values(new_params, task_id, set_new=True, set_old=False) surr_after = self.CPI_surrogate(observations, actions, advantages).data.numpy().ravel()[0] kl_dist = self.kl_old_new(observations, actions).data.numpy().ravel()[0] self.policy.set_param_values(new_params, task_id, set_new=True, set_old=True) # Log information if self.save_logs: self.logger[task_id].log_kv('alpha_{}'.format(task_id), self.theta) self.logger[task_id].log_kv('time_vpg_{}'.format(task_id), t_gLL) self.logger[task_id].log_kv('kl_dist_{}'.format(task_id), kl_dist) self.logger[task_id].log_kv('surr_improvement_{}'.format(task_id), surr_after - surr_before) self.logger[task_id].log_kv('running_score_{}'.format(task_id), self.running_score[task_id]) return base_stats def test_tasks(self, task_ids=None, test_rollouts=10, num_cpu=1, update_s=False): if task_ids is None: task_ids = list(self.observed_tasks) mean_pol_perf = {} for task_id in task_ids: self.set_task(task_id) policy_copy = self.copy_policy_for_detach() eval_paths = trajectory_sampler.sample_paths_parallel(N=test_rollouts, policy=policy_copy, num_cpu=num_cpu, env_name=self.env.env_id, mode='evaluation', pegasus_seed=self.seed) mean_pol_perf[task_id] = np.mean([np.sum(path['rewards']) for path in eval_paths]) self.seed = self.seed + test_rollouts if self.seed is not None else self.seed return mean_pol_perf def data_for_grad(self, N, sample_mode='trajectories', env_name=None, T=1e6, gamma=0.995, gae_lambda=0.98, num_cpu='max', task_id=0, returns=False): # Clean up input arguments if env_name is None: env_name = self.env.env_id if sample_mode != 'trajectories' and sample_mode != 'samples': print("sample_mode in NPG must be either 'trajectories' or 'samples'") quit() ts = timer.time() if sample_mode == 'trajectories': policy_copy = self.copy_policy_for_detach() paths = trajectory_sampler.sample_paths_parallel(N, policy_copy, T, env_name, self.seed, num_cpu) elif sample_mode == 'samples': paths = batch_sampler.sample_paths(N, self.policy, T, env_name=env_name, pegasus_seed=self.seed, num_cpu=num_cpu) if self.save_logs: self.logger[task_id].log_kv('time_sampling_hess', timer.time() - ts) self.seed = self.seed + N if self.seed is not None else self.seed # compute returns process_samples.compute_returns(paths, gamma) # compute advantages process_samples.compute_advantages(paths, self.baseline, gamma, gae_lambda) # Concatenate from all the trajectories observations = np.concatenate([path["observations"] for path in paths]) actions = np.concatenate([path["actions"] for path in paths]) advantages = np.concatenate([path["advantages"] for path in paths]) # Advantage whitening advantages = (advantages - np.mean(advantages)) / (np.std(advantages) + 1e-6) # cache return distributions for the paths path_returns = [sum(p["rewards"]) for p in paths] mean_return = np.mean(path_returns) std_return = np.std(path_returns) min_return =
np.amin(path_returns)
numpy.amin
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import treecorr import os import coord import fitsio from test_helper import get_script_name, do_pickle, assert_raises, CaptureLog, timer from test_helper import is_ccw, is_ccw_3d @timer def test_log_binning(): import math # Test some basic properties of the base class def check_arrays(nnn): np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.ubin_size * nnn.nubins, nnn.max_u-nnn.min_u) np.testing.assert_almost_equal(nnn.vbin_size * nnn.nvbins, nnn.max_v-nnn.min_v) #print('logr = ',nnn.logr1d) np.testing.assert_equal(nnn.logr1d.shape, (nnn.nbins,) ) np.testing.assert_almost_equal(nnn.logr1d[0], math.log(nnn.min_sep) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr1d[-1], math.log(nnn.max_sep) - 0.5*nnn.bin_size) np.testing.assert_equal(nnn.logr.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.logr[:,0,0], nnn.logr1d) np.testing.assert_almost_equal(nnn.logr[:,-1,-1], nnn.logr1d) assert len(nnn.logr) == nnn.nbins #print('u = ',nnn.u1d) np.testing.assert_equal(nnn.u1d.shape, (nnn.nubins,) ) np.testing.assert_almost_equal(nnn.u1d[0], nnn.min_u + 0.5*nnn.ubin_size) np.testing.assert_almost_equal(nnn.u1d[-1], nnn.max_u - 0.5*nnn.ubin_size) np.testing.assert_equal(nnn.u.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.u[0,:,0], nnn.u1d) np.testing.assert_almost_equal(nnn.u[-1,:,-1], nnn.u1d) #print('v = ',nnn.v1d) np.testing.assert_equal(nnn.v1d.shape, (2*nnn.nvbins,) ) np.testing.assert_almost_equal(nnn.v1d[0], -nnn.max_v + 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[-1], nnn.max_v - 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[nnn.nvbins], nnn.min_v + 0.5*nnn.vbin_size) np.testing.assert_almost_equal(nnn.v1d[nnn.nvbins-1], -nnn.min_v - 0.5*nnn.vbin_size) np.testing.assert_equal(nnn.v.shape, (nnn.nbins, nnn.nubins, 2*nnn.nvbins) ) np.testing.assert_almost_equal(nnn.v[0,0,:], nnn.v1d) np.testing.assert_almost_equal(nnn.v[-1,-1,:], nnn.v1d) def check_defaultuv(nnn): assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == np.ceil(1./nnn.ubin_size) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == np.ceil(1./nnn.vbin_size) # Check the different ways to set up the binning: # Omit bin_size nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, bin_type='LogRUV') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, n for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, min_u=0.2, max_u=0.9, nubins=12, min_v=0., max_v=0.2, nvbins=2) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 12 assert nnn.min_v == 0. assert nnn.max_v == 0.2 assert nnn.nvbins == 2 check_arrays(nnn) # Omit min_sep nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify max, n, bs for u,v too. nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1, max_u=0.9, nubins=3, ubin_size=0.05, max_v=0.4, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 assert np.isclose(nnn.ubin_size, 0.05) assert np.isclose(nnn.min_u, 0.75) assert nnn.max_u == 0.9 assert nnn.nubins == 3 assert np.isclose(nnn.vbin_size, 0.05) assert np.isclose(nnn.min_v, 0.2) assert nnn.max_v == 0.4 assert nnn.nvbins == 4 check_arrays(nnn) # Omit max_sep nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.min_sep == 5. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, n, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1, min_u=0.7, nubins=4, ubin_size=0.05, min_v=0.2, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.bin_size == 0.1 assert nnn.nbins == 20 assert nnn.min_u == 0.7 assert np.isclose(nnn.ubin_size, 0.05) assert nnn.nubins == 4 assert nnn.min_v == 0.2 assert nnn.max_v == 0.4 assert np.isclose(nnn.vbin_size, 0.05) assert nnn.nvbins == 4 check_arrays(nnn) # Omit nbins nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=0.1, max_v=0.3, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.bin_size <= 0.1 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 24 assert np.isclose(nnn.ubin_size, 0.7/24) assert nnn.min_v == 0.1 assert nnn.max_v == 0.3 assert nnn.nvbins == 3 assert np.isclose(nnn.vbin_size, 0.2/3) check_arrays(nnn) # If only one of min/max v are set, respect that nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, ubin_size=0.03, min_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_u == 0.2 assert nnn.max_u == 1. assert nnn.nubins == 27 assert np.isclose(nnn.ubin_size, 0.8/27) assert nnn.min_v == 0.2 assert nnn.max_v == 1. assert nnn.nvbins == 12 assert np.isclose(nnn.vbin_size, 0.8/12) check_arrays(nnn) nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, max_u=0.2, ubin_size=0.03, max_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_u == 0. assert nnn.max_u == 0.2 assert nnn.nubins == 7 assert np.isclose(nnn.ubin_size, 0.2/7) assert nnn.min_v == 0. assert nnn.max_v == 0.2 assert nnn.nvbins == 3 assert np.isclose(nnn.vbin_size, 0.2/3) check_arrays(nnn) # If only vbin_size is set for v, automatically figure out others. # (And if necessary adjust the bin_size down a bit.) nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, ubin_size=0.3, vbin_size=0.3) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == 4 assert np.isclose(nnn.ubin_size, 0.25) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == 4 assert np.isclose(nnn.vbin_size, 0.25) check_arrays(nnn) # If only nvbins is set for v, automatically figure out others. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, nubins=5, nvbins=5) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == 5 assert np.isclose(nnn.ubin_size,0.2) assert nnn.min_v == 0. assert nnn.max_v == 1. assert nnn.nvbins == 5 assert np.isclose(nnn.vbin_size,0.2) check_arrays(nnn) # If both nvbins and vbin_size are set, set min/max automatically nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, ubin_size=0.1, nubins=5, vbin_size=0.1, nvbins=5) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size <= 0.1 assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.ubin_size == 0.1 assert nnn.nubins == 5 assert nnn.max_u == 1. assert np.isclose(nnn.min_u,0.5) assert nnn.vbin_size == 0.1 assert nnn.nvbins == 5 assert nnn.min_v == 0. assert np.isclose(nnn.max_v,0.5) check_arrays(nnn) assert_raises(TypeError, treecorr.NNNCorrelation) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5) assert_raises(TypeError, treecorr.NNNCorrelation, max_sep=20) assert_raises(TypeError, treecorr.NNNCorrelation, bin_size=0.1) assert_raises(TypeError, treecorr.NNNCorrelation, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, bin_size=0.1) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, max_sep=20, bin_size=0.1) assert_raises(TypeError, treecorr.NNNCorrelation, max_sep=20, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, bin_size=0.1, nbins=20) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, nbins=20) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, bin_size=0.1) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='Log') assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='Linear') assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='TwoD') assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, bin_type='Invalid') assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=0.3, max_u=0.9, ubin_size=0.1, nubins=6) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=0.9, max_u=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=-0.1, max_u=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_u=0.1, max_u=1.3) assert_raises(TypeError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=0.1, max_v=0.9, vbin_size=0.1, nvbins=9) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=0.9, max_v=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=-0.1, max_v=0.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=5, max_sep=20, bin_size=0.1, min_v=0.1, max_v=1.3) assert_raises(ValueError, treecorr.NNNCorrelation, min_sep=20, max_sep=5, nbins=20, split_method='invalid') # Check the use of sep_units # radians nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='radians') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5.) np.testing.assert_almost_equal(nnn._max_sep, 20.) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # arcsec nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='arcsec') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180/3600) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180/3600) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) # Note that logr is in the separation units, not radians. np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # arcmin nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='arcmin') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180/60) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180/60) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # degrees nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='degrees') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # hours nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='hours') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) np.testing.assert_almost_equal(nnn.min_sep, 5.) np.testing.assert_almost_equal(nnn.max_sep, 20.) np.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/12) np.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/12) assert nnn.nbins == 20 np.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) np.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) np.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # Check bin_slop # Start with default behavior nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.1) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) # Explicitly set bin_slop=1.0 does the same thing. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=1.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.1) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) # Use a smaller bin_slop nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=0.2, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 0.2 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.02) np.testing.assert_almost_equal(nnn.bu, 0.006) np.testing.assert_almost_equal(nnn.bv, 0.014) # Use bin_slop == 0 nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=0.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 0.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.0) np.testing.assert_almost_equal(nnn.bu, 0.0) np.testing.assert_almost_equal(nnn.bv, 0.0) # Bigger bin_slop nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.1, bin_slop=2.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07, verbose=0) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 2.0 assert nnn.bin_size == 0.1 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.2) np.testing.assert_almost_equal(nnn.bu, 0.06) np.testing.assert_almost_equal(nnn.bv, 0.14) # With bin_size > 0.1, explicit bin_slop=1.0 is accepted. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.4, bin_slop=1.0, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07, verbose=0) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.4 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.4) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) # But implicit bin_slop is reduced so that b = 0.1 nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.4, min_u=0., max_u=0.9, ubin_size=0.03, min_v=0., max_v=0.21, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_size == 0.4 assert np.isclose(nnn.ubin_size, 0.03) assert np.isclose(nnn.vbin_size, 0.07) np.testing.assert_almost_equal(nnn.b, 0.1) np.testing.assert_almost_equal(nnn.bu, 0.03) np.testing.assert_almost_equal(nnn.bv, 0.07) np.testing.assert_almost_equal(nnn.bin_slop, 0.25) # Separately for each of the three parameters nnn = treecorr.NNNCorrelation(min_sep=5, nbins=14, bin_size=0.05, min_u=0., max_u=0.9, ubin_size=0.3, min_v=0., max_v=0.17, vbin_size=0.17) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_size == 0.05 assert np.isclose(nnn.ubin_size, 0.3) assert np.isclose(nnn.vbin_size, 0.17) np.testing.assert_almost_equal(nnn.b, 0.05) np.testing.assert_almost_equal(nnn.bu, 0.1) np.testing.assert_almost_equal(nnn.bv, 0.1) np.testing.assert_almost_equal(nnn.bin_slop, 1.0) # The stored bin_slop is just for lnr @timer def test_direct_count_auto(): # If the catalogs are small enough, we can do a direct count of the number of triangles # to see if comes out right. This should exactly match the treecorr code if bin_slop=0. ngal = 50 s = 10. rng = np.random.RandomState(8675309) x = rng.normal(0,s, (ngal,) ) y = rng.normal(0,s, (ngal,) ) cat = treecorr.Catalog(x=x, y=y) min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = 0.13 max_v = 0.59 nvbins = 10 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=1) ddd.process(cat) log_min_sep = np.log(min_sep) log_max_sep = np.log(max_sep) true_ntri = np.zeros( (nbins, nubins, 2*nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(i+1,ngal): for k in range(j+1,ngal): dij = np.sqrt((x[i]-x[j])**2 + (y[i]-y[j])**2) dik = np.sqrt((x[i]-x[k])**2 + (y[i]-y[k])**2) djk = np.sqrt((x[j]-x[k])**2 + (y[j]-y[k])**2) if dij == 0.: continue if dik == 0.: continue if djk == 0.: continue if dij < dik: if dik < djk: d3 = dij; d2 = dik; d1 = djk ccw = is_ccw(x[i],y[i],x[j],y[j],x[k],y[k]) elif dij < djk: d3 = dij; d2 = djk; d1 = dik ccw = is_ccw(x[j],y[j],x[i],y[i],x[k],y[k]) else: d3 = djk; d2 = dij; d1 = dik ccw = is_ccw(x[j],y[j],x[k],y[k],x[i],y[i]) else: if dij < djk: d3 = dik; d2 = dij; d1 = djk ccw = is_ccw(x[i],y[i],x[k],y[k],x[j],y[j]) elif dik < djk: d3 = dik; d2 = djk; d1 = dij ccw = is_ccw(x[k],y[k],x[i],y[i],x[j],y[j]) else: d3 = djk; d2 = dik; d1 = dij ccw = is_ccw(x[k],y[k],x[j],y[j],x[i],y[i]) r = d2 u = d3/d2 v = (d1-d2)/d3 if r < min_sep or r >= max_sep: continue if u < min_u or u >= max_u: continue if v < min_v or v >= max_v: continue if not ccw: v = -v kr = int(np.floor( (np.log(r)-log_min_sep) / bin_size )) ku = int(np.floor( (u-min_u) / ubin_size )) if v > 0: kv = int(np.floor( (v-min_v) / vbin_size )) + nvbins else: kv = int(np.floor( (v-(-max_v)) / vbin_size )) assert 0 <= kr < nbins assert 0 <= ku < nubins assert 0 <= kv < 2*nvbins true_ntri[kr,ku,kv] += 1 nz = np.where((ddd.ntri > 0) | (true_ntri > 0)) print('non-zero at:') print(nz) print('d1 = ',ddd.meand1[nz]) print('d2 = ',ddd.meand2[nz]) print('d3 = ',ddd.meand3[nz]) print('rnom = ',ddd.rnom[nz]) print('u = ',ddd.u[nz]) print('v = ',ddd.v[nz]) print('ddd.ntri = ',ddd.ntri[nz]) print('true_ntri = ',true_ntri[nz]) print('diff = ',ddd.ntri[nz] - true_ntri[nz]) np.testing.assert_array_equal(ddd.ntri, true_ntri) # Check that running via the corr3 script works correctly. file_name = os.path.join('data','nnn_direct_data.dat') with open(file_name, 'w') as fid: for i in range(ngal): fid.write(('%.20f %.20f\n')%(x[i],y[i])) L = 10*s nrand = ngal rx = (rng.random_sample(nrand)-0.5) * L ry = (rng.random_sample(nrand)-0.5) * L rcat = treecorr.Catalog(x=rx, y=ry) rand_file_name = os.path.join('data','nnn_direct_rand.dat') with open(rand_file_name, 'w') as fid: for i in range(nrand): fid.write(('%.20f %.20f\n')%(rx[i],ry[i])) rrr = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=0, rng=rng) rrr.process(rcat) zeta, varzeta = ddd.calculateZeta(rrr) # Semi-gratuitous check of BinnedCorr3.rng access. assert rrr.rng is rng assert ddd.rng is not rng # First do this via the corr3 function. config = treecorr.config.read_config('configs/nnn_direct.yaml') logger = treecorr.config.setup_logger(0) treecorr.corr3(config, logger) corr3_output = np.genfromtxt(os.path.join('output','nnn_direct.out'), names=True, skip_header=1) print('corr3_output = ',corr3_output) print('corr3_output.dtype = ',corr3_output.dtype) print('rnom = ',ddd.rnom.flatten()) print(' ',corr3_output['r_nom']) np.testing.assert_allclose(corr3_output['r_nom'], ddd.rnom.flatten(), rtol=1.e-3) print('unom = ',ddd.u.flatten()) print(' ',corr3_output['u_nom']) np.testing.assert_allclose(corr3_output['u_nom'], ddd.u.flatten(), rtol=1.e-3) print('vnom = ',ddd.v.flatten()) print(' ',corr3_output['v_nom']) np.testing.assert_allclose(corr3_output['v_nom'], ddd.v.flatten(), rtol=1.e-3) print('DDD = ',ddd.ntri.flatten()) print(' ',corr3_output['DDD']) np.testing.assert_allclose(corr3_output['DDD'], ddd.ntri.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['ntri'], ddd.ntri.flatten(), rtol=1.e-3) print('RRR = ',rrr.ntri.flatten()) print(' ',corr3_output['RRR']) np.testing.assert_allclose(corr3_output['RRR'], rrr.ntri.flatten(), rtol=1.e-3) print('zeta = ',zeta.flatten()) print('from corr3 output = ',corr3_output['zeta']) print('diff = ',corr3_output['zeta']-zeta.flatten()) diff_index = np.where(np.abs(corr3_output['zeta']-zeta.flatten()) > 1.e-5)[0] print('different at ',diff_index) print('zeta[diffs] = ',zeta.flatten()[diff_index]) print('corr3.zeta[diffs] = ',corr3_output['zeta'][diff_index]) print('diff[diffs] = ',zeta.flatten()[diff_index] - corr3_output['zeta'][diff_index]) np.testing.assert_allclose(corr3_output['zeta'], zeta.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['sigma_zeta'], np.sqrt(varzeta).flatten(), rtol=1.e-3) # Now calling out to the external corr3 executable. # This is the only time we test the corr3 executable. All other tests use corr3 function. import subprocess corr3_exe = get_script_name('corr3') p = subprocess.Popen( [corr3_exe,"configs/nnn_direct.yaml","verbose=0"] ) p.communicate() corr3_output = np.genfromtxt(os.path.join('output','nnn_direct.out'), names=True, skip_header=1) np.testing.assert_allclose(corr3_output['zeta'], zeta.flatten(), rtol=1.e-3) # Also check compensated drr = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=0) rdd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=0) drr.process(cat, rcat) rdd.process(rcat, cat) zeta, varzeta = ddd.calculateZeta(rrr,drr,rdd) config['nnn_statistic'] = 'compensated' treecorr.corr3(config, logger) corr3_output = np.genfromtxt(os.path.join('output','nnn_direct.out'), names=True, skip_header=1) np.testing.assert_allclose(corr3_output['r_nom'], ddd.rnom.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['u_nom'], ddd.u.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['v_nom'], ddd.v.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['DDD'], ddd.ntri.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['ntri'], ddd.ntri.flatten(), rtol=1.e-3) print('rrr.tot = ',rrr.tot) print('ddd.tot = ',ddd.tot) print('drr.tot = ',drr.tot) print('rdd.tot = ',rdd.tot) rrrf = ddd.tot / rrr.tot drrf = ddd.tot / drr.tot rddf = ddd.tot / rdd.tot np.testing.assert_allclose(corr3_output['RRR'], rrr.ntri.flatten() * rrrf, rtol=1.e-3) np.testing.assert_allclose(corr3_output['DRR'], drr.ntri.flatten() * drrf, rtol=1.e-3) np.testing.assert_allclose(corr3_output['RDD'], rdd.ntri.flatten() * rddf, rtol=1.e-3) np.testing.assert_allclose(corr3_output['zeta'], zeta.flatten(), rtol=1.e-3) np.testing.assert_allclose(corr3_output['sigma_zeta'], np.sqrt(varzeta).flatten(), rtol=1.e-3) # Repeat with binslop = 0, since the code flow is different from bture=True ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(ddd.ntri, true_ntri) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1, max_top=0) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(ddd.ntri, true_ntri) # And compare to the cross correlation # Here, we get 6x as much, since each triangle is discovered 6 times. ddd.clear() ddd.process(cat,cat,cat, num_threads=2) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(ddd.ntri, 6*true_ntri) # With the real CrossCorrelation class, each of the 6 correlations should end up being # the same thing (without the extra factor of 6). dddc = treecorr.NNNCrossCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1, max_top=0) dddc.process(cat,cat,cat, num_threads=2) # All 6 correlations are equal. for d in [dddc.n1n2n3, dddc.n1n3n2, dddc.n2n1n3, dddc.n2n3n1, dddc.n3n1n2, dddc.n3n2n1]: #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) np.testing.assert_array_equal(d.ntri, true_ntri) # Or with 2 argument version, finds each triangle 3 times. ddd.process(cat,cat, num_threads=2) np.testing.assert_array_equal(ddd.ntri, 3*true_ntri) # Again, NNNCrossCorrelation gets it right in each permutation. dddc.process(cat,cat, num_threads=2) for d in [dddc.n1n2n3, dddc.n1n3n2, dddc.n2n1n3, dddc.n2n3n1, dddc.n3n1n2, dddc.n3n2n1]: np.testing.assert_array_equal(d.ntri, true_ntri) # Invalid to omit file_name config['verbose'] = 0 del config['file_name'] with assert_raises(TypeError): treecorr.corr3(config) config['file_name'] = 'data/nnn_direct_data.dat' # OK to not have rand_file_name # Also, check the automatic setting of output_dots=True when verbose=2. # It's not too annoying if we also set max_top = 0. del config['rand_file_name'] config['verbose'] = 2 config['max_top'] = 0 treecorr.corr3(config) data = np.genfromtxt(config['nnn_file_name'], names=True, skip_header=1) np.testing.assert_array_equal(data['ntri'], true_ntri.flatten()) assert 'zeta' not in data.dtype.names # Check a few basic operations with a NNNCorrelation object. do_pickle(ddd) ddd2 = ddd.copy() ddd2 += ddd np.testing.assert_allclose(ddd2.ntri, 2*ddd.ntri) np.testing.assert_allclose(ddd2.weight, 2*ddd.weight) np.testing.assert_allclose(ddd2.meand1, 2*ddd.meand1) np.testing.assert_allclose(ddd2.meand2, 2*ddd.meand2) np.testing.assert_allclose(ddd2.meand3, 2*ddd.meand3) np.testing.assert_allclose(ddd2.meanlogd1, 2*ddd.meanlogd1) np.testing.assert_allclose(ddd2.meanlogd2, 2*ddd.meanlogd2) np.testing.assert_allclose(ddd2.meanlogd3, 2*ddd.meanlogd3) np.testing.assert_allclose(ddd2.meanu, 2*ddd.meanu) np.testing.assert_allclose(ddd2.meanv, 2*ddd.meanv) ddd2.clear() ddd2 += ddd np.testing.assert_allclose(ddd2.ntri, ddd.ntri) np.testing.assert_allclose(ddd2.weight, ddd.weight) np.testing.assert_allclose(ddd2.meand1, ddd.meand1) np.testing.assert_allclose(ddd2.meand2, ddd.meand2) np.testing.assert_allclose(ddd2.meand3, ddd.meand3) np.testing.assert_allclose(ddd2.meanlogd1, ddd.meanlogd1) np.testing.assert_allclose(ddd2.meanlogd2, ddd.meanlogd2) np.testing.assert_allclose(ddd2.meanlogd3, ddd.meanlogd3) np.testing.assert_allclose(ddd2.meanu, ddd.meanu) np.testing.assert_allclose(ddd2.meanv, ddd.meanv) ascii_name = 'output/nnn_ascii.txt' ddd.write(ascii_name, precision=16) ddd3 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) ddd3.read(ascii_name) np.testing.assert_allclose(ddd3.ntri, ddd.ntri) np.testing.assert_allclose(ddd3.weight, ddd.weight) np.testing.assert_allclose(ddd3.meand1, ddd.meand1) np.testing.assert_allclose(ddd3.meand2, ddd.meand2) np.testing.assert_allclose(ddd3.meand3, ddd.meand3) np.testing.assert_allclose(ddd3.meanlogd1, ddd.meanlogd1) np.testing.assert_allclose(ddd3.meanlogd2, ddd.meanlogd2) np.testing.assert_allclose(ddd3.meanlogd3, ddd.meanlogd3) np.testing.assert_allclose(ddd3.meanu, ddd.meanu) np.testing.assert_allclose(ddd3.meanv, ddd.meanv) with assert_raises(TypeError): ddd2 += config ddd4 = treecorr.NNNCorrelation(min_sep=min_sep/2, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd4 ddd5 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep*2, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd5 ddd6 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins*2, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd6 ddd7 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u-0.1, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd7 ddd8 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u+0.1, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd8 ddd9 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins*2, min_v=min_v, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd9 ddd10 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v-0.1, max_v=max_v, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd10 ddd11 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v+0.1, nvbins=nvbins) with assert_raises(ValueError): ddd2 += ddd11 ddd12 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins*2) with assert_raises(ValueError): ddd2 += ddd12 # Check that adding results with different coords or metric emits a warning. cat2 = treecorr.Catalog(x=x, y=y, z=x) with CaptureLog() as cl: ddd13 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, logger=cl.logger) ddd13.process_auto(cat2) ddd13 += ddd2 print(cl.output) assert "Detected a change in catalog coordinate systems" in cl.output with CaptureLog() as cl: ddd14 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, logger=cl.logger) ddd14.process_auto(cat2, metric='Arc') ddd14 += ddd2 assert "Detected a change in metric" in cl.output fits_name = 'output/nnn_fits.fits' ddd.write(fits_name) ddd15 = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins) ddd15.read(fits_name) np.testing.assert_allclose(ddd15.ntri, ddd.ntri) np.testing.assert_allclose(ddd15.weight, ddd.weight) np.testing.assert_allclose(ddd15.meand1, ddd.meand1) np.testing.assert_allclose(ddd15.meand2, ddd.meand2) np.testing.assert_allclose(ddd15.meand3, ddd.meand3) np.testing.assert_allclose(ddd15.meanlogd1, ddd.meanlogd1) np.testing.assert_allclose(ddd15.meanlogd2, ddd.meanlogd2) np.testing.assert_allclose(ddd15.meanlogd3, ddd.meanlogd3) np.testing.assert_allclose(ddd15.meanu, ddd.meanu) np.testing.assert_allclose(ddd15.meanv, ddd.meanv) @timer def test_direct_count_cross(): # If the catalogs are small enough, we can do a direct count of the number of triangles # to see if comes out right. This should exactly match the treecorr code if brute=True ngal = 50 s = 10. rng = np.random.RandomState(8675309) x1 = rng.normal(0,s, (ngal,) ) y1 = rng.normal(0,s, (ngal,) ) cat1 = treecorr.Catalog(x=x1, y=y1) x2 = rng.normal(0,s, (ngal,) ) y2 = rng.normal(0,s, (ngal,) ) cat2 = treecorr.Catalog(x=x2, y=y2) x3 = rng.normal(0,s, (ngal,) ) y3 = rng.normal(0,s, (ngal,) ) cat3 = treecorr.Catalog(x=x3, y=y3) min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = 0.13 max_v = 0.59 nvbins = 10 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=1) ddd.process(cat1, cat2, cat3) #print('ddd.ntri = ',ddd.ntri) log_min_sep = np.log(min_sep) log_max_sep = np.log(max_sep) true_ntri_123 = np.zeros( (nbins, nubins, 2*nvbins) ) true_ntri_132 = np.zeros( (nbins, nubins, 2*nvbins) ) true_ntri_213 = np.zeros( (nbins, nubins, 2*nvbins) ) true_ntri_231 = np.zeros( (nbins, nubins, 2*nvbins) ) true_ntri_312 = np.zeros( (nbins, nubins, 2*nvbins) ) true_ntri_321 = np.zeros( (nbins, nubins, 2*nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(ngal): for k in range(ngal): dij = np.sqrt((x1[i]-x2[j])**2 + (y1[i]-y2[j])**2) dik = np.sqrt((x1[i]-x3[k])**2 + (y1[i]-y3[k])**2) djk = np.sqrt((x2[j]-x3[k])**2 + (y2[j]-y3[k])**2) if dij == 0.: continue if dik == 0.: continue if djk == 0.: continue if dij < dik: if dik < djk: d3 = dij; d2 = dik; d1 = djk ccw = is_ccw(x1[i],y1[i],x2[j],y2[j],x3[k],y3[k]) true_ntri = true_ntri_123 elif dij < djk: d3 = dij; d2 = djk; d1 = dik ccw = is_ccw(x2[j],y2[j],x1[i],y1[i],x3[k],y3[k]) true_ntri = true_ntri_213 else: d3 = djk; d2 = dij; d1 = dik ccw = is_ccw(x2[j],y2[j],x3[k],y3[k],x1[i],y1[i]) true_ntri = true_ntri_231 else: if dij < djk: d3 = dik; d2 = dij; d1 = djk ccw = is_ccw(x1[i],y1[i],x3[k],y3[k],x2[j],y2[j]) true_ntri = true_ntri_132 elif dik < djk: d3 = dik; d2 = djk; d1 = dij ccw = is_ccw(x3[k],y3[k],x1[i],y1[i],x2[j],y2[j]) true_ntri = true_ntri_312 else: d3 = djk; d2 = dik; d1 = dij ccw = is_ccw(x3[k],y3[k],x2[j],y2[j],x1[i],y1[i]) true_ntri = true_ntri_321 r = d2 u = d3/d2 v = (d1-d2)/d3 if r < min_sep or r >= max_sep: continue if u < min_u or u >= max_u: continue if v < min_v or v >= max_v: continue if not ccw: v = -v kr = int(np.floor( (np.log(r)-log_min_sep) / bin_size )) ku = int(np.floor( (u-min_u) / ubin_size )) if v > 0: kv = int(np.floor( (v-min_v) / vbin_size )) + nvbins else: kv = int(np.floor( (v-(-max_v)) / vbin_size )) assert 0 <= kr < nbins assert 0 <= ku < nubins assert 0 <= kv < 2*nvbins true_ntri[kr,ku,kv] += 1 # With the regular NNNCorrelation class, we end up with the sum of all permutations. true_ntri_sum = true_ntri_123 + true_ntri_132 + true_ntri_213 + true_ntri_231 +\ true_ntri_312 + true_ntri_321 #print('true_ntri = ',true_ntri_sum) #print('diff = ',ddd.ntri - true_ntri_sum) np.testing.assert_array_equal(ddd.ntri, true_ntri_sum) # Now repeat with the full CrossCorrelation class, which distinguishes the permutations. dddc = treecorr.NNNCrossCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, brute=True, verbose=1) dddc.process(cat1, cat2, cat3) #print('true_ntri_123 = ',true_ntri_123) #print('diff = ',dddc.n1n2n3.ntri - true_ntri_123) np.testing.assert_array_equal(dddc.n1n2n3.ntri, true_ntri_123) np.testing.assert_array_equal(dddc.n1n3n2.ntri, true_ntri_132) np.testing.assert_array_equal(dddc.n2n1n3.ntri, true_ntri_213) np.testing.assert_array_equal(dddc.n2n3n1.ntri, true_ntri_231) np.testing.assert_array_equal(dddc.n3n1n2.ntri, true_ntri_312) np.testing.assert_array_equal(dddc.n3n2n1.ntri, true_ntri_321) # Repeat with binslop = 0 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1) ddd.process(cat1, cat2, cat3) #print('binslop > 0: ddd.ntri = ',ddd.ntri) #print('diff = ',ddd.ntri - true_ntri_sum) np.testing.assert_array_equal(ddd.ntri, true_ntri_sum) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0, verbose=1, max_top=0) ddd.process(cat1, cat2, cat3) #print('max_top = 0: ddd.ntri = ',ddd.ntri) #print('true_ntri = ',true_ntri_sum) #print('diff = ',ddd.ntri - true_ntri_sum) np.testing.assert_array_equal(ddd.ntri, true_ntri_sum) # Error to have cat3, but not cat2 with assert_raises(ValueError): ddd.process(cat1, cat3=cat3) # Check a few basic operations with a NNCrossCorrelation object. do_pickle(dddc) dddc2 = dddc.copy() dddc2 += dddc for perm in ['n1n2n3', 'n1n3n2', 'n2n1n3', 'n2n3n1', 'n3n1n2', 'n3n2n1']: d2 = getattr(dddc2, perm) d1 = getattr(dddc, perm) np.testing.assert_allclose(d2.ntri, 2*d1.ntri) np.testing.assert_allclose(d2.ntri, 2*d1.ntri) np.testing.assert_allclose(d2.ntri, 2*d1.ntri) np.testing.assert_allclose(d2.ntri, 2*d1.ntri) np.testing.assert_allclose(d2.ntri, 2*d1.ntri) np.testing.assert_allclose(d2.ntri, 2*d1.ntri) np.testing.assert_allclose(d2.meand1, 2*d1.meand1) np.testing.assert_allclose(d2.meand2, 2*d1.meand2) np.testing.assert_allclose(d2.meand3, 2*d1.meand3)
np.testing.assert_allclose(d2.meanlogd1, 2*d1.meanlogd1)
numpy.testing.assert_allclose
# Copyright (c) 2021-2022, NVIDIA CORPORATION & AFFILIATES # # SPDX-License-Identifier: BSD-3-Clause import copy import os import tempfile try: import cffi except ImportError: cffi = None import cupy from cupy import testing import numpy import pytest import cuquantum from cuquantum import ComputeType, cudaDataType from cuquantum import custatevec as cusv ################################################################### # # As of beta 2, the test suite for Python bindings is kept minimal. # The sole goal is to ensure the Python arguments are properly # passed to the C level. We do not ensure coverage nor correctness. # This decision will be revisited in the future. # ################################################################### dtype_to_data_type = { numpy.dtype(numpy.complex64): cudaDataType.CUDA_C_32F, numpy.dtype(numpy.complex128): cudaDataType.CUDA_C_64F, } dtype_to_compute_type = { numpy.dtype(numpy.complex64): ComputeType.COMPUTE_32F, numpy.dtype(numpy.complex128): ComputeType.COMPUTE_64F, } @pytest.fixture() def handle(): h = cusv.create() yield h cusv.destroy(h) @testing.parameterize(*testing.product({ 'n_qubits': (3,), 'dtype': (numpy.complex64, numpy.complex128), })) class TestSV: # Base class for all statevector tests def get_sv(self): arr = cupy.zeros((2**self.n_qubits,), dtype=self.dtype) arr[0] = 1 # initialize in |000...00> return arr # TODO: make this a static method def _return_data(self, data, name, dtype, return_value): if return_value == 'int': if len(data) == 0: # empty, give it a NULL return 0, 0 else: # return int as void* data = numpy.asarray(data, dtype=dtype) setattr(self, name, data) # keep data alive return data.ctypes.data, data.size elif return_value == 'seq': # data itself is already a flat sequence return data, len(data) else: assert False @pytest.fixture() def multi_gpu_handles(): # TODO: consider making this class more flexible # (ex: arbitrary number of qubits and/or devices, etc) n_devices = 2 # should be power of 2 handles = [] for dev in range(n_devices): with cupy.cuda.Device(dev): h = cusv.create() handles.append(h) yield handles for dev in range(n_devices): with cupy.cuda.Device(dev): h = handles.pop(0) cusv.destroy(h) def get_exponent(n): assert (n % 2) == 0 exponent = 1 while True: out = n >> exponent if out != 1: exponent += 1 else: break return exponent @testing.parameterize(*testing.product({ 'n_qubits': (4,), 'dtype': (numpy.complex64, numpy.complex128), })) class TestMultiGpuSV: # TODO: consider making this class more flexible # (ex: arbitrary number of qubits and/or devices, etc) n_devices = 2 # should be power of 2 def get_sv(self): self.n_global_bits = get_exponent(self.n_devices) self.n_local_bits = self.n_qubits - self.n_global_bits self.sub_sv = [] for dev in range(self.n_devices): with cupy.cuda.Device(dev): self.sub_sv.append(cupy.zeros( 2**self.n_local_bits, dtype=self.dtype)) self.sub_sv[0][0] = 1 # initialize in |000...00> return self.sub_sv # TODO: make this a static method def _return_data(self, data, name, dtype, return_value): if return_value == 'int': if len(data) == 0: # empty, give it a NULL return 0, 0 else: # return int as void* data = numpy.asarray(data, dtype=dtype) setattr(self, name, data) # keep data alive return data.ctypes.data, data.size elif return_value == 'seq': # data itself is already a flat sequence return data, len(data) else: assert False class TestLibHelper: def test_get_version(self): ver = cusv.get_version() assert ver == (cusv.MAJOR_VER * 1000 + cusv.MINOR_VER * 100 + cusv.PATCH_VER) assert ver == cusv.VERSION def test_get_property(self): assert cusv.MAJOR_VER == cusv.get_property( cuquantum.libraryPropertyType.MAJOR_VERSION) assert cusv.MINOR_VER == cusv.get_property( cuquantum.libraryPropertyType.MINOR_VERSION) assert cusv.PATCH_VER == cusv.get_property( cuquantum.libraryPropertyType.PATCH_LEVEL) # we don't wanna recompile for every test case... _cffi_mod1 = None _cffi_mod2 = None def _can_use_cffi(): if cffi is None or os.environ.get('CUDA_PATH') is None: return False else: return True class MemoryResourceFactory: def __init__(self, source, name=None): self.source = source self.name = source if name is None else name def get_dev_mem_handler(self): if self.source == "py-callable": return (*self._get_cuda_callable(), self.name) elif self.source == "cffi": # ctx is not needed, so set to NULL return (0, *self._get_functor_address(), self.name) elif self.source == "cffi_struct": return self._get_handler_address() # TODO: add more different memory sources else: raise NotImplementedError def _get_cuda_callable(self): def alloc(size, stream): return cupy.cuda.runtime.mallocAsync(size, stream) def free(ptr, size, stream): cupy.cuda.runtime.freeAsync(ptr, stream) return alloc, free def _get_functor_address(self): if not _can_use_cffi(): raise RuntimeError global _cffi_mod1 if _cffi_mod1 is None: import importlib mod_name = f"cusv_test_{self.source}" ffi = cffi.FFI() ffi.set_source(mod_name, """ #include <cuda_runtime.h> // cffi limitation: we can't use the actual type cudaStream_t because // it's considered an "incomplete" type and we can't get the functor // address by doing so... int my_alloc(void* ctx, void** ptr, size_t size, void* stream) { return (int)cudaMallocAsync(ptr, size, stream); } int my_free(void* ctx, void* ptr, size_t size, void* stream) { return (int)cudaFreeAsync(ptr, stream); } """, include_dirs=[os.environ['CUDA_PATH']+'/include'], library_dirs=[os.environ['CUDA_PATH']+'/lib64'], libraries=['cudart'], ) ffi.cdef(""" int my_alloc(void* ctx, void** ptr, size_t size, void* stream); int my_free(void* ctx, void* ptr, size_t size, void* stream); """) ffi.compile(verbose=True) self.ffi = ffi _cffi_mod1 = importlib.import_module(mod_name) self.ffi_mod = _cffi_mod1 alloc_addr = self._get_address("my_alloc") free_addr = self._get_address("my_free") return alloc_addr, free_addr def _get_handler_address(self): if not _can_use_cffi(): raise RuntimeError global _cffi_mod2 if _cffi_mod2 is None: import importlib mod_name = f"cusv_test_{self.source}" ffi = cffi.FFI() ffi.set_source(mod_name, """ #include <cuda_runtime.h> // cffi limitation: we can't use the actual type cudaStream_t because // it's considered an "incomplete" type and we can't get the functor // address by doing so... int my_alloc(void* ctx, void** ptr, size_t size, void* stream) { return (int)cudaMallocAsync(ptr, size, stream); } int my_free(void* ctx, void* ptr, size_t size, void* stream) { return (int)cudaFreeAsync(ptr, stream); } typedef struct { void* ctx; int (*device_alloc)(void* ctx, void** ptr, size_t size, void* stream); int (*device_free)(void* ctx, void* ptr, size_t size, void* stream); char name[64]; } myHandler; myHandler* init_myHandler(myHandler* h, const char* name) { h->ctx = NULL; h->device_alloc = my_alloc; h->device_free = my_free; memcpy(h->name, name, 64); return h; } """, include_dirs=[os.environ['CUDA_PATH']+'/include'], library_dirs=[os.environ['CUDA_PATH']+'/lib64'], libraries=['cudart'], ) ffi.cdef(""" typedef struct { ...; } myHandler; myHandler* init_myHandler(myHandler* h, const char* name); """) ffi.compile(verbose=True) self.ffi = ffi _cffi_mod2 = importlib.import_module(mod_name) self.ffi_mod = _cffi_mod2 h = self.handler = self.ffi_mod.ffi.new("myHandler*") self.ffi_mod.lib.init_myHandler(h, self.name.encode()) return self._get_address(h) def _get_address(self, func_name_or_ptr): if isinstance(func_name_or_ptr, str): func_name = func_name_or_ptr data = str(self.ffi_mod.ffi.addressof(self.ffi_mod.lib, func_name)) else: ptr = func_name_or_ptr # ptr to struct data = str(self.ffi_mod.ffi.addressof(ptr[0])) # data has this format: "<cdata 'int(*)(void *, void * *, size_t, void *)' 0x7f6c5da37300>" return int(data.split()[-1][:-1], base=16) class TestHandle: def test_handle_create_destroy(self, handle): # simple rount-trip test pass def test_workspace(self, handle): default_workspace_size = cusv.get_default_workspace_size(handle) # this is about 18MB as of cuQuantum beta 1 assert default_workspace_size > 0 # cuStateVec does not like a smaller workspace... size = 24*1024**2 assert size > default_workspace_size memptr = cupy.cuda.alloc(size) cusv.set_workspace(handle, memptr.ptr, size) # should not fail def test_stream(self, handle): # default is on the null stream assert 0 == cusv.get_stream(handle) # simple set/get round-trip stream = cupy.cuda.Stream() cusv.set_stream(handle, stream.ptr) assert stream.ptr == cusv.get_stream(handle) class TestAbs2Sum(TestSV): @pytest.mark.parametrize( 'input_form', ( {'basis_bits': (numpy.int32, 'int'),}, {'basis_bits': (numpy.int32, 'seq'),}, ) ) def test_abs2sum_on_z_basis(self, handle, input_form): sv = self.get_sv() basis_bits = list(range(self.n_qubits)) basis_bits, basis_bits_len = self._return_data( basis_bits, 'basis_bits', *input_form['basis_bits']) data_type = dtype_to_data_type[sv.dtype] # case 1: both are computed sum0, sum1 = cusv.abs2sum_on_z_basis( handle, sv.data.ptr, data_type, self.n_qubits, True, True, basis_bits, basis_bits_len) assert
numpy.allclose(sum0+sum1, 1)
numpy.allclose
import numpy as np class Matrices: _NAMES = ["I", "H", "X", "Y", "Z", "CNOT", "CZ", "SWAP", "TOFFOLI"] def __init__(self, backend): self.backend = backend self._I = None self._H = None self._X = None self._Y = None self._Z = None self._CNOT = None self._CZ = None self._SWAP = None self._TOFFOLI = None self.allocate_matrices() def allocate_matrices(self): for name in self._NAMES: getattr(self, f"_set{name}")() @property def dtype(self): return self.backend._dtypes.get('DTYPECPX') @property def I(self): return self._I @property def H(self): return self._H @property def X(self): return self._X @property def Y(self): return self._Y @property def Z(self): return self._Z @property def CNOT(self): return self._CNOT @property def CZ(self): return self._CZ @property def SWAP(self): return self._SWAP @property def TOFFOLI(self): return self._TOFFOLI def _setI(self): self._I = self.backend.cast(np.eye(2, dtype=self.dtype)) def _setH(self): m =
np.ones((2, 2), dtype=self.dtype)
numpy.ones
import numpy as np import starry import matplotlib.pyplot as plt from scipy.interpolate import interp1d from tqdm import tqdm from mpl_toolkits.axes_grid1.inset_locator import inset_axes import pytest @pytest.mark.parametrize( "xs,ys,zs,ro", [ [1.0, 2.0, -1.0, 0.6], [1.0, 2.0, -1.0, 5.0], [1.0, 2.0, -1.0, 5.0], [1.0, 2.0, -1.0, 50.0], [0.0, 2.0, -1.0, 0.4], [0.0, -1.0, -1.0, 0.4], [0.0, -1.0, -1.0, 0.4], [1.0, 0.0, -1.0, 0.4], [1.0, 0.0, -1.0, 0.1], [1.0, 0.0, -1.0, 0.8], [1.0, 0.0, 0.0, 0.8], ], ) def test_edges( xs, ys, zs, ro, y=[1, 1, 1], ns=100, nb=50, res=999, atol=1e-2, plot=False ): # Instantiate ydeg = np.sqrt(len(y) + 1) - 1 map = starry.Map(ydeg=ydeg, reflected=True) map[1:, :] = y # bo - ro singularities singularities = [ro - 1, 0, ro, 1, 1 - ro, 1 + ro] labels = [ "$b_o = r_o - 1$", "$b_o = 0$", "$b_o = r_o$", "$b_o = 1$", "$b_o = 1 - r_o$", "$b_o = 1 + r_o$", "grazing", "grazing", ] # Find where the occultor grazes the terminator rs = np.sqrt(xs ** 2 + ys ** 2 + zs ** 2) b = -zs / rs theta = -np.arctan2(xs, ys) tol = 1e-15 nx = 10 c =
np.cos(theta)
numpy.cos
''' Question 2 Skeleton Code Here you should implement and evaluate the Conditional Gaussian classifier. ''' import data import numpy as np # Import pyplot - plt.imshow is useful! import matplotlib.pyplot as plt from scipy.special import logsumexp def compute_mean_mles(train_data, train_labels): ''' Compute the mean estimate for each digit class Should return a numpy array of size (10,64) The ith row will correspond to the mean estimate for digit class i ''' means = np.zeros((10, 64)) # Compute means for k in range(10): X = data.get_digits_by_label(train_data, train_labels, k) means[k] = np.sum(X, axis=0) / X.shape[0] return means def compute_sigma_mles(train_data, train_labels): ''' Compute the covariance estimate for each digit class Should return a three dimensional numpy array of shape (10, 64, 64) consisting of a covariance matrix for each digit class ''' covariances = np.zeros((10, 64, 64)) # Compute covariances means = compute_mean_mles(train_data, train_labels) for k in range(10): X = data.get_digits_by_label(train_data, train_labels, k) covariances[k] = ((X - means[k]).T @ (X - means[k])) / X.shape[0] + 0.01 * np.identity(64) return covariances def generative_likelihood(digits, means, covariances): ''' Compute the generative log-likelihood: log p(x|y,mu,Sigma) Should return an n x 10 numpy array ''' res = np.zeros((digits.shape[0], 10)) for k in range(10): temp = ((2 * np.pi) ** (-digits.shape[1] / 2)) * (np.linalg.det(covariances[k]) ** (-1/2)) * \ np.exp(-0.5 * np.diag((digits - means[k]) @ np.linalg.inv(covariances[k]) @ (digits - means[k]).T)) res[:, k] = np.log(temp) return res def conditional_likelihood(digits, means, covariances): ''' Compute the conditional likelihood: log p(y|x, mu, Sigma) This should be a numpy array of shape (n, 10) Where n is the number of datapoints and 10 corresponds to each digit class ''' numerator = generative_likelihood(digits, means, covariances) + np.log(0.1) denominator = logsumexp(numerator, axis=1).reshape(-1, 1) return numerator - denominator def avg_conditional_likelihood(digits, labels, means, covariances): ''' Compute the average conditional likelihood over the true class labels AVG( log p(y_i|x_i, mu, Sigma) ) i.e. the average log likelihood that the model assigns to the correct class label ''' cond_likelihood = conditional_likelihood(digits, means, covariances) counter = 0 for i in range(digits.shape[0]): counter += cond_likelihood[i][int(labels[i])] # Compute as described above and return return counter / digits.shape[0] def classify_data(digits, means, covariances): ''' Classify new points by taking the most likely posterior class ''' cond_likelihood = conditional_likelihood(digits, means, covariances) # Compute and return the most likely class return np.argmax(cond_likelihood, axis=1) def main(): train_data, train_labels, test_data, test_labels = data.load_all_data('data') # Fit the model means = compute_mean_mles(train_data, train_labels) covariances = compute_sigma_mles(train_data, train_labels) # Evaluation # Question 1, report avg cond loglikelihood print('avg cond loglikelihood on training set = {}.'.format(avg_conditional_likelihood(train_data, train_labels, means, covariances))) print('avg cond loglikelihood on test set = {}.'.format(avg_conditional_likelihood(test_data, test_labels, means, covariances))) # Question 2, predict train_pred = classify_data(train_data, means, covariances) train_accuracy = np.sum(np.equal(train_pred, train_labels)) / train_labels.shape[0] print('Training accuracy = {}.'.format(train_accuracy)) test_pred = classify_data(test_data, means, covariances) test_accuracy = np.sum(
np.equal(test_pred, test_labels)
numpy.equal
from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import os from collections import namedtuple import random import numpy as np import pandas as pd import tensorflow as tf import dltk.core.modules as modules from dualstream_fcn_v2 import DualStreamFCN_v2 from dltk.core import metrics as metrics #from dltk.core.io.sliding_window import SlidingWindow from utils_dualstream import sliding_window_segmentation_inference import SimpleITK as sitk import reader as reader # Training parameters training_params = namedtuple('training_params', 'max_steps, batch_size, save_summary_sec, save_model_sec, steps_eval') training_params.__new__.__defaults__ = (2e5, 16, 10, 600, 100) #TODO: 16 BS for sorbus, 40 for monal04 1e6 tps = training_params() num_classes = 5 num_channels = 1 label_ids = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 19, 20, 21, 28] def resize_sitk(inp, reference): resampleSliceFilter = sitk.ResampleImageFilter() resampled = resampleSliceFilter.Execute(inp, reference.GetSize(), sitk.Transform(), sitk.sitkNearestNeighbor, inp.GetOrigin(), reference.GetSpacing(), inp.GetDirection(), 0, inp.GetPixelIDValue()) return resampled def validate(ops, session, supervisor, name, v_all=True): """ Run an inference on a validation dataset Parameters ---------- ops : dict a dictionary containing all validation ops session : tf.session object supervisor : tf.Supervisor object Returns ------- """ # Pick num_validation_examples datasets to validate on if v_all: num_validation_examples = len(ops['filenames']) else: num_validation_examples = 4 val_idx = range(num_validation_examples) # Track loss and Dice similarity coefficients as validation metrics val_loss = [] val_dscs = [] # Iterate through the datasets and perform a sliding window inference for f in ops['filenames'][val_idx]: # Read a validation image and label of arbitrary dimensions val_x, val_y = ops['read_func']([f]) pid = 'Subj.' + f[0].split('p/')[1][:2] y_prob = sliding_window_segmentation_inference(session, [ops['y_prob']], {ops['x']: val_x}, {ops['streamid']: 0}, batch_size=1)[0] y_ =
np.argmax(y_prob, axis=-1)
numpy.argmax
import matplotlib.pyplot as plt import tensorflow as tf import numpy as np import csv, os import math from PIL import Image from keras.models import load_model from tensorflow.python.keras.models import load_model from tensorflow.python.keras.models import Sequential from tensorflow.python.keras.layers import InputLayer, Input from tensorflow.python.keras.layers import Reshape, MaxPooling2D from tensorflow.python.keras.layers import Conv2D, Dense, Flatten, Dropout from keras.utils.np_utils import to_categorical from keras.callbacks import Callback from tensorflow.python.keras.optimizers import Adam img_size = 512 img_size_flat = img_size * img_size * 3 # Tuple with height, width and depth used to reshape arrays. # This is used for reshaping in Keras. img_shape_full = (img_size, img_size, 3) class_name = "neck_design_labels" model_file = "Xception0.9/neck_design_labels_model.h5" weight_file = "Xception0.9/weights.hdf5" model = load_model(os.path.join("models", class_name, model_file)) model.load_weights(os.path.join("models", class_name, weight_file)) tests = [] rows = [] index = 0 with open('rank/Tests/question.csv', 'r') as csvfile: reader = csv.reader(csvfile) for row in reader: if row[1] != class_name: continue image = Image.open("rank/" + row[0]) img_array = np.asarray(image) if img_array.shape != img_shape_full: image = image.resize((img_size, img_size), Image.ANTIALIAS) img_array =
np.asarray(image)
numpy.asarray
# -*- coding: utf-8 -*- # vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 # Also if needed: retab ''' TEST equimap ''' from __future__ import (unicode_literals, absolute_import, \ print_function, division) import matplotlib.pyplot as plt import numpy as np import os import sys import time #import warnings if __name__ == '__main__': #print('path 1 =', sys.path) sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) #print('path 2 =', sys.path) # Local modules import imas import equimap #import imas_west #import pywed as pw shot = 53221 tol_val = 1E-10 # For 2D plots interp_points = 60 # FIRST POINT B_NORM # ------------------ time_in =
np.linspace(36, 37, 10)
numpy.linspace
""" Functions that operate on lists of spaCy documents. """ import operator import string from collections import Counter, OrderedDict from functools import partial import numpy as np import spacy from spacy.tokens import Doc from spacy.vocab import Vocab from ._common import DEFAULT_LANGUAGE_MODELS, load_stopwords, simplified_pos from ._tokenfuncs import ( require_tokendocs, token_match, token_match_subsequent, token_glue_subsequent, make_index_window_around_matches, expand_compound_token ) from ..utils import require_listlike, require_types, flatten_list, empty_chararray, widen_chararray from ..bow.dtm import create_sparse_dtm from .._pd_dt_compat import pd_dt_frame, pd_dt_concat, pd_dt_sort #%% global spaCy nlp instance #: Global spaCy nlp instance which must be initiated via :func:`tmtoolkit.preprocess.init_for_language` when using #: the functional preprocess API nlp = None #%% initialization and tokenization def init_for_language(language=None, language_model=None, **spacy_opts): """ Initialize the functional API for a given language code `language` or a spaCy language model `language_model`. The spaCy nlp instance will be returned and will also be used by default in all subsequent preprocess API calls. :param language: two-letter ISO 639-1 language code (lowercase) :param language_model: spaCy language model `language_model` :param spacy_opts: additional keyword arguments passed to ``spacy.load()`` :return: spaCy nlp instance """ if language is None and language_model is None: raise ValueError('either `language` or `language_model` must be given') if language_model is None: if not isinstance(language, str) or len(language) != 2: raise ValueError('`language` must be a two-letter ISO 639-1 language code') if language not in DEFAULT_LANGUAGE_MODELS: raise ValueError('language "%s" is not supported' % language) language_model = DEFAULT_LANGUAGE_MODELS[language] + '_sm' spacy_kwargs = dict(disable=['parser', 'ner']) spacy_kwargs.update(spacy_opts) global nlp nlp = spacy.load(language_model, **spacy_kwargs) return nlp def tokenize(docs, as_spacy_docs=True, doc_labels=None, doc_labels_fmt='doc-{i1}', enable_vectors=False, nlp_instance=None): """ Tokenize a list or dict of documents `docs`, where each element contains the raw text of the document as string. Requires that :func:`~tmtoolkit.preprocess.init_for_language` is called before or `nlp_instance` is passed. :param docs: list or dict of documents with raw text strings; if dict, use dict keys as document labels :param as_spacy_docs: if True, return list of spaCy ``Doc`` objects, otherwise return list of string tokens :param doc_labels: if not None and `docs` is a list, use strings in this list as document labels :param doc_labels_fmt: if `docs` is a list and `doc_labels` is None, generate document labels according to this format, where ``{i0}`` or ``{i1}`` are replaced by the respective zero- or one-indexed document numbers :param enable_vectors: if True, generate word vectors (aka word embeddings) during tokenization; this will be more computationally expensive :param nlp_instance: spaCy nlp instance :return: list of spaCy ``Doc`` documents if `as_spacy_docs` is True (default) or list of string token documents """ dictlike = hasattr(docs, 'keys') and hasattr(docs, 'values') if not isinstance(docs, (list, tuple)) and not dictlike: raise ValueError('`docs` must be a list, tuple or dict-like object') if not isinstance(doc_labels_fmt, str): raise ValueError('`doc_labels_fmt` must be a string') _nlp = _current_nlp(nlp_instance) if doc_labels is None: if dictlike: doc_labels = docs.keys() docs = docs.values() elif as_spacy_docs: doc_labels = [doc_labels_fmt.format(i0=i, i1=i+1) for i in range(len(docs))] elif len(doc_labels) != len(docs): raise ValueError('`doc_labels` must have same length as `docs`') if enable_vectors: tokenized_docs = [_nlp(d) for d in docs] else: tokenized_docs = [_nlp.make_doc(d) for d in docs] del docs if as_spacy_docs: for dl, doc in zip(doc_labels, tokenized_docs): doc._.label = dl _init_doc(doc) return tokenized_docs else: return [[t.text for t in doc] for doc in tokenized_docs] #%% functions that operate on lists of string tokens *or* spacy documents def doc_tokens(docs, to_lists=False): """ If `docs` is a list of spaCy documents, return the (potentially filtered) tokens from these documents as list of string tokens, otherwise return the input list as-is. :param docs: list of string tokens or spaCy documents :param to_lists: if `docs` is list of spaCy documents or list of NumPy arrays, convert result to lists :return: list of string tokens as NumPy arrays (default) or lists (if `to_lists` is True) """ require_spacydocs_or_tokens(docs) if to_lists: fn = partial(_filtered_doc_tokens, as_list=True) else: fn = _filtered_doc_tokens return list(map(fn, docs)) def tokendocs2spacydocs(docs, vocab=None, doc_labels=None, return_vocab=False): """ Create new spaCy documents from token lists in `docs`. .. note:: spaCy doesn't handle empty tokens (`""`), hence these tokens will not appear in the resulting spaCy documents if they exist in the input documents. :param docs: list of document tokens :param vocab: provide vocabulary to be used when generating spaCy documents; if no vocabulary is given, it will be generated from `docs` :param doc_labels: optional list of document labels; if given, must be of same length as `docs` :param return_vocab: if True, additionally return generated vocabulary as spaCy `Vocab` object :return: list of spaCy documents or tuple with additional generated vocabulary if `return_vocab` is True """ require_tokendocs(docs) if doc_labels is not None and len(doc_labels) != len(docs): raise ValueError('`doc_labels` must have the same length as `docs`') if vocab is None: vocab = Vocab(strings=list(vocabulary(docs) - {''})) else: vocab = Vocab(strings=vocab.tolist() if isinstance(vocab, np.ndarray) else list(vocab)) spacydocs = [] for i, tokdoc in enumerate(docs): spacydocs.append(spacydoc_from_tokens(tokdoc, vocab=vocab, label='' if doc_labels is None else doc_labels[i])) if return_vocab: return spacydocs, vocab else: return spacydocs def doc_lengths(docs): """ Return document length (number of tokens in doc.) for each document. :param docs: list of string tokens or spaCy documents :return: list of document lengths """ require_spacydocs_or_tokens(docs) return list(map(len, doc_tokens(docs))) def vocabulary(docs, sort=False): """ Return vocabulary, i.e. set of all tokens that occur at least once in at least one of the documents in `docs`. :param docs: list of string tokens or spaCy documents :param sort: return as sorted list :return: either set of token strings or sorted list if `sort` is True """ require_spacydocs_or_tokens(docs) v = set(flatten_list(doc_tokens(docs, to_lists=True))) if sort: return sorted(v) else: return v def vocabulary_counts(docs): """ Return :class:`collections.Counter()` instance of vocabulary containing counts of occurrences of tokens across all documents. :param docs: list of string tokens or spaCy documents :return: :class:`collections.Counter()` instance of vocabulary containing counts of occurrences of tokens across all documents """ require_spacydocs_or_tokens(docs) return Counter(flatten_list(doc_tokens(docs))) def doc_frequencies(docs, proportions=False): """ Document frequency per vocabulary token as dict with token to document frequency mapping. Document frequency is the measure of how often a token occurs *at least once* in a document. Example with absolute document frequencies: .. code-block:: text doc tokens --- ------ A z, z, w, x B y, z, y C z, z, y, z document frequency df(z) = 3 (occurs in all 3 documents) df(x) = df(w) = 1 (occur only in A) df(y) = 2 (occurs in B and C) ... :param docs: list of string tokens or spaCy documents :param proportions: if True, normalize by number of documents to obtain proportions :return: dict mapping token to document frequency """ require_spacydocs_or_tokens(docs) doc_freqs = Counter() for dtok in docs: for t in set(_filtered_doc_tokens(dtok, as_list=True)): doc_freqs[t] += 1 if proportions: n_docs = len(docs) return {w: n/n_docs for w, n in doc_freqs.items()} else: return doc_freqs def ngrams(docs, n, join=True, join_str=' '): """ Generate and return n-grams of length `n`. :param docs: list of string tokens or spaCy documents :param n: length of n-grams, must be >= 2 :param join: if True, join generated n-grams by string `join_str` :param join_str: string used for joining :return: list of n-grams; if `join` is True, the list contains strings of joined n-grams, otherwise the list contains lists of size `n` in turn containing the strings that make up the n-gram """ require_spacydocs_or_tokens(docs) return [_ngrams_from_tokens(_filtered_doc_tokens(dtok, as_list=True), n=n, join=join, join_str=join_str) for dtok in docs] def sparse_dtm(docs, vocab=None): """ Create a sparse document-term-matrix (DTM) from a list of tokenized documents `docs`. If `vocab` is None, determine the vocabulary (unique terms) from `docs`, otherwise take `vocab` which must be a *sorted* list or NumPy array. If `vocab` is None, the generated sorted vocabulary list is returned as second value, else only a single value is returned -- the DTM. :param docs: list of string tokens or spaCy documents :param vocab: optional *sorted* list / NumPy array of vocabulary (unique terms) in `docs` :return: either a single value (sparse document-term-matrix) or a tuple with sparse DTM and sorted vocabulary if none was passed """ require_spacydocs_or_tokens(docs) if vocab is None: vocab = vocabulary(docs, sort=True) return_vocab = True else: return_vocab = False tokens = doc_tokens(docs) alloc_size = sum(len(set(dtok)) for dtok in tokens) # sum of *unique* tokens in each document dtm = create_sparse_dtm(vocab, tokens, alloc_size, vocab_is_sorted=True) if return_vocab: return dtm, vocab else: return dtm def kwic(docs, search_tokens, context_size=2, match_type='exact', ignore_case=False, glob_method='match', inverse=False, with_metadata=False, as_dict=False, as_datatable=False, non_empty=False, glue=None, highlight_keyword=None): """ Perform keyword-in-context (kwic) search for search pattern(s) `search_tokens`. Returns result as list of KWIC windows or datatable / dataframe. If you want to filter with KWIC, use :func:`~tmtoolkit.preprocess.filter_tokens_with_kwic`, which returns results as list of tokenized documents (same structure as `docs`). Uses similar search parameters as :func:`~tmtoolkit.preprocess.filter_tokens`. :param docs: list of string tokens or spaCy documents :param search_tokens: single string or list of strings that specify the search pattern(s) :param context_size: either scalar int or tuple (left, right) -- number of surrounding words in keyword context. if scalar, then it is a symmetric surrounding, otherwise can be asymmetric. :param match_type: the type of matching that is performed: ``'exact'`` does exact string matching (optionally ignoring character case if ``ignore_case=True`` is set); ``'regex'`` treats ``search_tokens`` as regular expressions to match the tokens against; ``'glob'`` uses "glob patterns" like ``"politic*"`` which matches for example "politic", "politics" or ""politician" (see `globre package <https://pypi.org/project/globre/>`_) :param ignore_case: ignore character case (applies to all three match types) :param glob_method: if `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`) :param inverse: inverse the match results for filtering (i.e. *remove* all tokens that match the search criteria) :param with_metadata: also return metadata (like POS) along with each token :param as_dict: if True, return result as dict with document labels mapping to KWIC results :param as_datatable: return result as data frame with indices "doc" (document label) and "context" (context ID per document) and optionally "position" (original token position in the document) if tokens are not glued via `glue` parameter :param non_empty: if True, only return non-empty result documents :param glue: if not None, this must be a string which is used to combine all tokens per match to a single string :param highlight_keyword: if not None, this must be a string which is used to indicate the start and end of the matched keyword :return: return either as: (1) list with KWIC results per document, (2) as dict with document labels mapping to KWIC results when `as_dict` is True or (3) dataframe / datatable when `as_datatable` is True """ if as_dict or as_datatable: require_spacydocs(docs) # because we need the document labels later else: require_spacydocs_or_tokens(docs) if isinstance(context_size, int): context_size = (context_size, context_size) else: require_listlike(context_size) if highlight_keyword is not None and not isinstance(highlight_keyword, str): raise ValueError('if `highlight_keyword` is given, it must be of type str') if glue: if with_metadata or as_datatable: raise ValueError('when `glue` is set to True, `with_metadata` and `as_datatable` must be False') if not isinstance(glue, str): raise ValueError('if `glue` is given, it must be of type str') kwic_raw = _build_kwic(docs, search_tokens, highlight_keyword=highlight_keyword, with_metadata=with_metadata, with_window_indices=as_datatable, context_size=context_size, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method, inverse=inverse) if as_dict or as_datatable: kwic_raw = dict(zip(doc_labels(docs), kwic_raw)) return _finalize_kwic_results(kwic_raw, non_empty=non_empty, glue=glue, as_datatable=as_datatable, with_metadata=with_metadata) def kwic_table(docs, search_tokens, context_size=2, match_type='exact', ignore_case=False, glob_method='match', inverse=False, glue=' ', highlight_keyword='*'): """ Shortcut for :func:`~tmtoolkit.preprocess.kwic()` to directly return a data frame table with highlighted keywords in context. :param docs: list of string tokens or spaCy documents :param search_tokens: single string or list of strings that specify the search pattern(s) :param context_size: either scalar int or tuple (left, right) -- number of surrounding words in keyword context. if scalar, then it is a symmetric surrounding, otherwise can be asymmetric. :param match_type: One of: 'exact', 'regex', 'glob'. If 'regex', `search_token` must be RE pattern. If `glob`, `search_token` must be a "glob" pattern like "hello w*" (see https://github.com/metagriffin/globre). :param ignore_case: If True, ignore case for matching. :param glob_method: If `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`). :param inverse: Invert the matching results. :param glue: If not None, this must be a string which is used to combine all tokens per match to a single string :param highlight_keyword: If not None, this must be a string which is used to indicate the start and end of the matched keyword. :return: datatable or pandas DataFrame with columns "doc" (document label), "context" (context ID per document) and "kwic" containing strings with highlighted keywords in context. """ kwic_raw = kwic(docs, search_tokens, context_size=context_size, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method, inverse=inverse, with_metadata=False, as_dict=True, as_datatable=False, non_empty=True, glue=glue, highlight_keyword=highlight_keyword) return _datatable_from_kwic_results(kwic_raw) def glue_tokens(docs, patterns, glue='_', match_type='exact', ignore_case=False, glob_method='match', inverse=False, return_glued_tokens=False): """ Match N *subsequent* tokens to the N patterns in `patterns` using match options like in :func:`~tmtoolkit.preprocess.filter_tokens`. Join the matched tokens by glue string `glue`. Replace these tokens in the documents. If there is metadata, the respective entries for the joint tokens are set to None. .. note:: If `docs` is a list of spaCy documents, this modifies the documents in `docs` in place. :param docs: list of string tokens or spaCy documents :param patterns: a sequence of search patterns as excepted by :func:`~tmtoolkit.preprocess.filter_tokens` :param glue: string for joining the subsequent matches :param match_type: one of: 'exact', 'regex', 'glob'; if 'regex', `search_token` must be RE pattern; if `glob`, `search_token` must be a "glob" pattern like "hello w*" (see https://github.com/metagriffin/globre) :param ignore_case: if True, ignore case for matching :param glob_method: if `match_type` is 'glob', use this glob method; must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`) :param inverse: invert the matching results :param return_glued_tokens: if True, additionally return a set of tokens that were glued :return: updated documents `docs` if `docs` is a list of spaCy documents or otherwise a list of string token documents; if `return_glued_tokens` is True, return 2-tuple with additional set of tokens that were glued """ is_spacydocs = require_spacydocs_or_tokens(docs) glued_tokens = set() if is_spacydocs is not None: match_opts = {'match_type': match_type, 'ignore_case': ignore_case, 'glob_method': glob_method} # all documents must be compact before applying "token_glue_subsequent" if is_spacydocs: docs = compact_documents(docs) res = [] for doc in docs: # no need to use _filtered_doc_tokens() here because tokens are compact already matches = token_match_subsequent(patterns, _filtered_doc_tokens(doc), **match_opts) if inverse: matches = [~m for m in matches] if is_spacydocs: new_doc, glued = doc_glue_subsequent(doc, matches, glue=glue, return_glued=True) else: new_doc, glued = token_glue_subsequent(doc, matches, glue=glue, return_glued=True) res.append(new_doc) glued_tokens.update(glued) else: res = [] if return_glued_tokens: return res, glued_tokens else: return res def expand_compounds(docs, split_chars=('-',), split_on_len=2, split_on_casechange=False): """ Expand all compound tokens in documents `docs`, e.g. splitting token "US-Student" into two tokens "US" and "Student". :param docs: list of string tokens or spaCy documents :param split_chars: characters to split on :param split_on_len: minimum length of a result token when considering splitting (e.g. when ``split_on_len=2`` "e-mail" would not be split into "e" and "mail") :param split_on_casechange: use case change to split tokens, e.g. "CamelCase" would become "Camel", "Case" :return: list of string tokens or spaCy documents, depending on `docs` """ is_spacydocs = require_spacydocs_or_tokens(docs) if is_spacydocs is None: return [] exp_comp = partial(expand_compound_token, split_chars=split_chars, split_on_len=split_on_len, split_on_casechange=split_on_casechange) list_creator = list if is_spacydocs else flatten_list exptoks = [list_creator(map(exp_comp, _filtered_doc_tokens(doc))) for doc in docs] assert len(exptoks) == len(docs) if not is_spacydocs: if isinstance(next(iter(docs)), np.ndarray): return [np.array(d) if d else empty_chararray() for d in exptoks] else: return exptoks new_docs = [] for doc_exptok, doc in zip(exptoks, docs): words = [] tokens = [] spaces = [] lemmata = [] for exptok, t, oldtok in zip(doc_exptok, doc, _filtered_doc_tokens(doc)): n_exptok = len(exptok) spaces.extend([''] * (n_exptok-1) + [t.whitespace_]) if n_exptok > 1: lemmata.extend(exptok) words.extend(exptok) tokens.extend(exptok) else: lemmata.append(t.lemma_) words.append(t.text) tokens.append(oldtok) new_doc = Doc(doc.vocab, words=words, spaces=spaces) new_doc._.label = doc._.label assert len(new_doc) == len(lemmata) _init_doc(new_doc, tokens) for t, lem in zip(new_doc, lemmata): t.lemma_ = lem new_docs.append(new_doc) return new_docs def transform(docs, func, **kwargs): """ Apply `func` to each token in each document of `docs` and return the result. :param docs: list of string tokens or spaCy documents :param func: function to apply to each token; should accept a string as first arg. and optional `kwargs` :param kwargs: keyword arguments passed to `func` :return: list of string tokens or spaCy documents, depending on `docs` """ if not callable(func): raise ValueError('`func` must be callable') is_spacydocs = require_spacydocs_or_tokens(docs) if is_spacydocs is None: return [] is_arrays = not is_spacydocs and isinstance(next(iter(docs)), np.ndarray) if kwargs: func_wrapper = lambda t: func(t, **kwargs) else: func_wrapper = func if is_spacydocs: labels = doc_labels(docs) docs = doc_tokens(docs) res = [list(map(func_wrapper, dtok)) for dtok in docs] if is_spacydocs: return tokendocs2spacydocs(res, doc_labels=labels) elif is_arrays: return [np.array(d) if d else empty_chararray() for d in res] else: return res def to_lowercase(docs): """ Apply lowercase transformation to each document. :param docs: list of string tokens or spaCy documents :return: list of string tokens or spaCy documents, depending on `docs` """ return transform(docs, str.lower) def remove_chars(docs, chars): """ Remove all characters listed in `chars` from all tokens. :param docs: list of string tokens or spaCy documents :param chars: list of characters to remove :return: list of string tokens or spaCy documents, depending on `docs` """ if not chars: raise ValueError('`chars` must be a non-empty sequence') is_spacydocs = require_spacydocs_or_tokens(docs) if is_spacydocs is None: return [] is_arrays = not is_spacydocs and isinstance(next(iter(docs)), np.ndarray) if is_spacydocs: labels = doc_labels(docs) docs = doc_tokens(docs) del_chars = str.maketrans('', '', ''.join(chars)) res = [[t.translate(del_chars) for t in dtok] for dtok in docs] if is_spacydocs: return tokendocs2spacydocs(res, doc_labels=labels) elif is_arrays: return [np.array(d) if d else empty_chararray() for d in res] else: return res def clean_tokens(docs, remove_punct=True, remove_stopwords=True, remove_empty=True, remove_shorter_than=None, remove_longer_than=None, remove_numbers=False, nlp_instance=None, language=None): """ Apply several token cleaning steps to documents `docs` and optionally documents metadata `docs_meta`, depending on the given parameters. :param docs: list of string tokens or spaCy documents :param remove_punct: if True, remove all tokens marked as ``is_punct`` by spaCy if `docs` are spaCy documents, otherwise remove tokens that match the characters listed in ``string.punctuation``; if arg is a list, tuple or set, remove all tokens listed in this arg from the documents; if False do not apply punctuation token removal :param remove_stopwords: if True, remove stop words for the given `language` as loaded via `~tmtoolkit.preprocess.load_stopwords` ; if arg is a list, tuple or set, remove all tokens listed in this arg from the documents; if False do not apply stop word token removal :param remove_empty: if True, remove empty strings ``""`` from documents :param remove_shorter_than: if given a positive number, remove tokens that are shorter than this number :param remove_longer_than: if given a positive number, remove tokens that are longer than this number :param remove_numbers: if True, remove all tokens that are deemed numeric by :func:`np.char.isnumeric` :param nlp_instance: spaCy nlp instance :param language: language for stop word removal :return: list of string tokens or spaCy documents, depending on `docs` """ if remove_shorter_than is not None and remove_shorter_than < 0: raise ValueError('`remove_shorter_than` must be >= 0') if remove_longer_than is not None and remove_longer_than < 0: raise ValueError('`remove_longer_than` must be >= 0') is_spacydocs = require_spacydocs_or_tokens(docs) if is_spacydocs is None: return [] is_arrays = not is_spacydocs and isinstance(next(iter(docs)), np.ndarray) # add empty token to list of tokens to remove tokens_to_remove = [''] if remove_empty else [] # add punctuation characters to list of tokens to remove if isinstance(remove_punct, (tuple, list, set)): tokens_to_remove.extend(remove_punct) # add stopwords to list of tokens to remove if remove_stopwords is True: # default stopword list tokens_to_remove.extend(load_stopwords(language or _current_nlp(nlp_instance).lang)) elif isinstance(remove_stopwords, (tuple, list, set)): tokens_to_remove.extend(remove_stopwords) # the "remove masks" list holds a binary array for each document where `True` signals a token to be removed docs_as_tokens = doc_tokens(docs) remove_masks = [np.repeat(False, len(doc)) for doc in docs_as_tokens] # update remove mask for punctuation if remove_punct is True: if is_spacydocs: remove_masks = [mask | doc.to_array('is_punct')[doc.user_data['mask']].astype(np.bool_) for mask, doc in zip(remove_masks, docs)] else: tokens_to_remove.extend(list(string.punctuation)) # update remove mask for tokens shorter/longer than a certain number of characters if remove_shorter_than is not None or remove_longer_than is not None: token_lengths = [np.fromiter(map(len, doc), np.int, len(doc)) for doc in docs_as_tokens] if remove_shorter_than is not None: remove_masks = [mask | (n < remove_shorter_than) for mask, n in zip(remove_masks, token_lengths)] if remove_longer_than is not None: remove_masks = [mask | (n > remove_longer_than) for mask, n in zip(remove_masks, token_lengths)] # update remove mask for numeric tokens if remove_numbers: if is_spacydocs: remove_masks = [mask | doc.to_array('like_num')[doc.user_data['mask']].astype(np.bool_) for mask, doc in zip(remove_masks, docs)] elif is_arrays: remove_masks = [mask | np.char.isnumeric(doc) for mask, doc in zip(remove_masks, docs_as_tokens)] else: remove_masks = [mask | np.array([t.isnumeric() for t in doc], dtype=np.bool_) for mask, doc in zip(remove_masks, docs_as_tokens)] # update remove mask for general list of tokens to be removed if tokens_to_remove: tokens_to_remove = set(tokens_to_remove) # this is actually much faster than using np.isin: remove_masks = [mask | np.array([t in tokens_to_remove for t in doc], dtype=bool) for mask, doc in zip(remove_masks, docs_as_tokens)] # apply the mask return _apply_matches_array(docs, remove_masks, invert=True) def filter_tokens_by_mask(docs, mask, inverse=False): """ Filter tokens in `docs` according to a binary mask specified by `mask`. :param docs: list of string tokens or spaCy documents :param mask: a list containing a mask list for each document in `docs`; each mask list contains boolean values for each token in that document, where `True` means keeping that token and `False` means removing it; :param inverse: inverse the mask for filtering, i.e. keep all tokens with a mask set to `False` and remove all those with `True` :return: list of string tokens or spaCy documents, depending on `docs` """ require_spacydocs_or_tokens(docs) if len(mask) > 0 and not isinstance(mask[0], np.ndarray): mask = list(map(lambda x: np.array(x, dtype=np.bool), mask)) return _apply_matches_array(docs, mask, invert=inverse) def remove_tokens_by_mask(docs, mask): """ Same as :func:`~tmtoolkit.preprocess.filter_tokens_by_mask` but with ``inverse=True``. .. seealso:: :func:`~tmtoolkit.preprocess.filter_tokens_by_mask` """ return filter_tokens_by_mask(docs, mask, inverse=True) def filter_tokens(docs, search_tokens, by_meta=None, match_type='exact', ignore_case=False, glob_method='match', inverse=False): """ Filter tokens in `docs` according to search pattern(s) `search_tokens` and several matching options. Only those tokens are retained that match the search criteria unless you set ``inverse=True``, which will *remove* all tokens that match the search criteria (which is the same as calling :func:`~tmtoolkit.preprocess.remove_tokens`). .. seealso:: :func:`~tmtoolkit.preprocess.remove_tokens` and :func:`~tmtoolkit.preprocess.token_match` :param docs: list of string tokens or spaCy documents :param search_tokens: typically a single string or non-empty list of strings that specify the search pattern(s); when matching against meta data via `by_meta`, may also be of any other type :param by_meta: if not None, this should be a string of a token meta data attribute; this meta data will then be used for matching instead of the tokens in `docs` :param match_type: the type of matching that is performed: ``'exact'`` does exact string matching (optionally ignoring character case if ``ignore_case=True`` is set); ``'regex'`` treats ``search_tokens`` as regular expressions to match the tokens against; ``'glob'`` uses "glob patterns" like ``"politic*"`` which matches for example "politic", "politics" or ""politician" (see `globre package <https://pypi.org/project/globre/>`_) :param ignore_case: ignore character case (applies to all three match types) :param glob_method: if `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`) :param inverse: inverse the match results for filtering (i.e. *remove* all tokens that match the search criteria) :return: list of string tokens or spaCy documents, depending on `docs` """ require_spacydocs_or_tokens(docs) matches = _token_pattern_matches(_match_against(docs, by_meta), search_tokens, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method) return filter_tokens_by_mask(docs, matches, inverse=inverse) def remove_tokens(docs, search_tokens, by_meta=None, match_type='exact', ignore_case=False, glob_method='match'): """ Same as :func:`~tmtoolkit.preprocess.filter_tokens` but with ``inverse=True``. .. seealso:: :func:`~tmtoolkit.preprocess.filter_tokens` and :func:`~tmtoolkit.preprocess.token_match`. """ return filter_tokens(docs, search_tokens=search_tokens, by_meta=by_meta, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method, inverse=True) def filter_tokens_with_kwic(docs, search_tokens, context_size=2, match_type='exact', ignore_case=False, glob_method='match', inverse=False): """ Filter tokens in `docs` according to Keywords-in-Context (KWIC) context window of size `context_size` around `search_tokens`. Works similar to :func:`~tmtoolkit.preprocess.kwic`, but returns result as list of tokenized documents, i.e. in the same structure as `docs` whereas :func:`~tmtoolkit.preprocess.kwic` returns result as list of *KWIC windows* into `docs`. .. seealso:: :func:`~tmtoolkit.preprocess.kwic` :param docs: list of string tokens or spaCy documents :param search_tokens: typically a single string or non-empty list of strings that specify the search pattern(s); when matching against meta data via `by_meta`, may also be of any other type :param context_size: either scalar int or tuple (left, right) -- number of surrounding words in keyword context. if scalar, then it is a symmetric surrounding, otherwise can be asymmetric. :param match_type: the type of matching that is performed: ``'exact'`` does exact string matching (optionally ignoring character case if ``ignore_case=True`` is set); ``'regex'`` treats ``search_tokens`` as regular expressions to match the tokens against; ``'glob'`` uses "glob patterns" like ``"politic*"`` which matches for example "politic", "politics" or ""politician" (see `globre package <https://pypi.org/project/globre/>`_) :param ignore_case: ignore character case (applies to all three match types) :param glob_method: if `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`) :param inverse: inverse the match results for filtering (i.e. *remove* all tokens that match the search criteria) :return: list of string tokens or spaCy documents, depending on `docs` """ require_spacydocs_or_tokens(docs) if isinstance(context_size, int): context_size = (context_size, context_size) else: require_listlike(context_size) matches = _build_kwic(docs, search_tokens, context_size=context_size, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method, inverse=inverse, only_token_masks=True) return filter_tokens_by_mask(docs, matches) def remove_tokens_by_doc_frequency(docs, which, df_threshold, absolute=False, return_blacklist=False, return_mask=False): """ Remove tokens according to their document frequency. :param docs: list of string tokens or spaCy documents :param which: which threshold comparison to use: either ``'common'``, ``'>'``, ``'>='`` which means that tokens with higher document freq. than (or equal to) `df_threshold` will be removed; or ``'uncommon'``, ``'<'``, ``'<='`` which means that tokens with lower document freq. than (or equal to) `df_threshold` will be removed :param df_threshold: document frequency threshold value :param docs_meta: list of meta data for each document in `docs`; each element at index ``i`` is a dict containing the meta data for document ``i``; POS tags must exist for all documents in `docs_meta` (``"meta_pos"`` key) :param return_blacklist: if True return a list of tokens that should be removed instead of the filtered tokens :param return_mask: if True return a list of token masks where each occurrence of True signals a token to be removed :return: list of string tokens or spaCy documents, depending on `docs` """ require_spacydocs_or_tokens(docs) which_opts = {'common', '>', '>=', 'uncommon', '<', '<='} if which not in which_opts: raise ValueError('`which` must be one of: %s' % ', '.join(which_opts)) n_docs = len(docs) if absolute: if not 0 <= df_threshold <= n_docs: raise ValueError('`df_threshold` must be in range [0, %d]' % n_docs) else: if not 0 <= df_threshold <= 1: raise ValueError('`df_threshold` must be in range [0, 1]') if which in ('common', '>='): comp = operator.ge elif which == '>': comp = operator.gt elif which == '<': comp = operator.lt else: comp = operator.le toks = doc_tokens(docs, to_lists=True) doc_freqs = doc_frequencies(toks, proportions=not absolute) mask = [[comp(doc_freqs[t], df_threshold) for t in dtok] for dtok in toks] if return_blacklist: blacklist = set(t for t, f in doc_freqs.items() if comp(f, df_threshold)) if return_mask: return blacklist, mask if return_mask: return mask return remove_tokens_by_mask(docs, mask) def remove_common_tokens(docs, df_threshold=0.95, absolute=False): """ Shortcut for :func:`~tmtoolkit.preprocess.remove_tokens_by_doc_frequency` for removing tokens *above* a certain document frequency. :param docs: list of string tokens or spaCy documents :param df_threshold: document frequency threshold value :param absolute: if True, use absolute document frequency (i.e. number of times token X occurs at least once in a document), otherwise use relative document frequency (normalized by number of documents) :return: list of string tokens or spaCy documents, depending on `docs` """ return remove_tokens_by_doc_frequency(docs, 'common', df_threshold=df_threshold, absolute=absolute) def remove_uncommon_tokens(docs, df_threshold=0.05, absolute=False): """ Shortcut for :func:`~tmtoolkit.preprocess.remove_tokens_by_doc_frequency` for removing tokens *below* a certain document frequency. :param docs: list of string tokens or spaCy documents :param df_threshold: document frequency threshold value :param absolute: if True, use absolute document frequency (i.e. number of times token X occurs at least once in a document), otherwise use relative document frequency (normalized by number of documents) :return: list of string tokens or spaCy documents, depending on `docs` """ return remove_tokens_by_doc_frequency(docs, 'uncommon', df_threshold=df_threshold, absolute=absolute) def filter_documents(docs, search_tokens, by_meta=None, matches_threshold=1, match_type='exact', ignore_case=False, glob_method='match', inverse_result=False, inverse_matches=False): """ This function is similar to :func:`~tmtoolkit.preprocess.filter_tokens` but applies at document level. For each document, the number of matches is counted. If it is at least `matches_threshold` the document is retained, otherwise removed. If `inverse_result` is True, then documents that meet the threshold are *removed*. .. seealso:: :func:`~tmtoolkit.preprocess.remove_documents` :param docs: list of string tokens or spaCy documents :param search_tokens: typically a single string or non-empty list of strings that specify the search pattern(s); when matching against meta data via `by_meta`, may also be of any other type :param by_meta: if not None, this should be a string of a token meta data attribute; this meta data will then be used for matching instead of the tokens in `docs` :param matches_threshold: the minimum number of matches required per document :param match_type: the type of matching that is performed: ``'exact'`` does exact string matching (optionally ignoring character case if ``ignore_case=True`` is set); ``'regex'`` treats ``search_tokens`` as regular expressions to match the tokens against; ``'glob'`` uses "glob patterns" like ``"politic*"`` which matches for example "politic", "politics" or ""politician" (see `globre package <https://pypi.org/project/globre/>`_) :param ignore_case: ignore character case (applies to all three match types) :param glob_method: if `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`) :param inverse_result: inverse the threshold comparison result :param inverse_matches: inverse the match results for filtering :return: list of string tokens or spaCy documents, depending on `docs` """ require_spacydocs_or_tokens(docs) matches = _token_pattern_matches(_match_against(docs, by_meta), search_tokens, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method) if inverse_matches: matches = [~m for m in matches] new_docs = [] for i, (doc, n_matches) in enumerate(zip(docs, map(np.sum, matches))): thresh_met = n_matches >= matches_threshold if inverse_result: thresh_met = not thresh_met if thresh_met: new_docs.append(doc) return new_docs def remove_documents(docs, search_tokens, by_meta=None, matches_threshold=1, match_type='exact', ignore_case=False, glob_method='match', inverse_matches=False): """ Same as :func:`~tmtoolkit.preprocess.filter_documents` but with ``inverse=True``. .. seealso:: :func:`~tmtoolkit.preprocess.filter_documents` """ return filter_documents(docs, search_tokens, by_meta=by_meta, matches_threshold=matches_threshold, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method, inverse_matches=inverse_matches, inverse_result=True) def filter_documents_by_name(docs, name_patterns, labels=None, match_type='exact', ignore_case=False, glob_method='match', inverse=False): """ Filter documents by their name (i.e. document label). Keep all documents whose name matches `name_pattern` according to additional matching options. If `inverse` is True, drop all those documents whose name matches, which is the same as calling :func:`~tmtoolkit.preprocess.remove_documents_by_name`. :param docs: list of string tokens or spaCy documents :param search_tokens: typically a single string or non-empty list of strings that specify the search pattern(s); when matching against meta data via `by_meta`, may also be of any other type :param labels: if `docs` is not a list of spaCy documents, you must pass the document labels as list of strings :param match_type: the type of matching that is performed: ``'exact'`` does exact string matching (optionally ignoring character case if ``ignore_case=True`` is set); ``'regex'`` treats ``search_tokens`` as regular expressions to match the tokens against; ``'glob'`` uses "glob patterns" like ``"politic*"`` which matches for example "politic", "politics" or ""politician" (see `globre package <https://pypi.org/project/globre/>`_) :param ignore_case: ignore character case (applies to all three match types) :param glob_method: if `match_type` is 'glob', use this glob method. Must be 'match' or 'search' (similar behavior as Python's :func:`re.match` or :func:`re.search`) :param inverse: invert the matching results :return: list of string tokens or spaCy documents, depending on `docs` """ is_spacydocs = require_spacydocs_or_tokens(docs) if is_spacydocs is None: return [] if isinstance(name_patterns, str): name_patterns = [name_patterns] else: require_listlike(name_patterns) if not name_patterns: raise ValueError('`name_patterns` must not be empty') if is_spacydocs and labels is None: labels = doc_labels(docs) elif not is_spacydocs and labels is None: raise ValueError('if not passing a list of spaCy documents as `docs`, you must pass document labels via ' '`labels`') if len(labels) != len(docs): raise ValueError('number of document labels must match number of documents') matches = None for pat in name_patterns: pat_match = token_match(pat, labels, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method) if matches is None: matches = pat_match else: matches |= pat_match assert matches is not None assert len(labels) == len(matches) if inverse: matches = ~matches return [doc for doc, m in zip(docs, matches) if m] def remove_documents_by_name(docs, name_patterns, labels=None, match_type='exact', ignore_case=False, glob_method='match'): """ Same as :func:`~tmtoolkit.preprocess.filter_documents_by_name` but with ``inverse=True``. .. seealso:: :func:`~tmtoolkit.preprocess.filter_documents_by_name` """ return filter_documents_by_name(docs, name_patterns, labels=labels, match_type=match_type, ignore_case=ignore_case, glob_method=glob_method, inverse=True) #%% functions that operate *only* on lists of spacy documents def doc_labels(docs): """ Return list of document labels that are assigned to spaCy documents `docs`. :param docs: list of spaCy documents :return: list of document labels """ require_spacydocs(docs) return [d._.label for d in docs] def compact_documents(docs): """ Compact documents `docs` by recreating new documents using the previously applied filters. :param docs: list of spaCy documents :return: list with compact spaCy documents """ require_spacydocs(docs) return _apply_matches_array(docs, compact=True) def pos_tag(docs, tagger=None, nlp_instance=None): """ Apply Part-of-Speech (POS) tagging to all documents. The meanings of the POS tags are described in the `spaCy documentation <https://spacy.io/api/annotation#pos-tagging>`_. .. note:: This function only applies POS tagging to the documents but doesn't retrieve the tags. If you want to retrieve the tags, you may use :func:`~tmtoolkit.preprocess.pos_tags`. .. note:: This function modifies the documents in `docs` in place and adds/modifies a `pos_` attribute in each token. :param docs: list of spaCy documents :param tagger: POS tagger instance to use; by default, use the tagger for the currently loaded spaCy nlp instance :param nlp_instance: spaCy nlp instance :return: input spaCy documents `docs` with in-place modified documents """ require_spacydocs(docs) tagger = tagger or _current_nlp(nlp_instance, pipeline_component='tagger') for doc in docs: # this will be done for all tokens in the document, also for masked tokens # unless "compact" is called before tagger(doc) return docs def pos_tags(docs, tag_attrib='pos_', tagger=None, nlp_instance=None): """ Return Part-of-Speech (POS) tags of `docs`. If POS tagging was not applied to `docs` yet, this function runs :func:`~tmtoolkit.preprocess.pos_tag` first. :param docs: list of spaCy documents :param tag_attrib: spaCy document tag attribute to fetch the POS tag; ``"pos_"`` and ``"pos"`` give coarse POS tags as string or integer tags respectively, ``"tag_"`` and ``"tag"`` give fine grained POS tags as string or integer tags :param tagger: POS tagger instance to use; by default, use the tagger for the currently loaded spaCy nlp instance :param nlp_instance: spaCy nlp instance :return: POS tags of `docs` as list of strings or integers depending on `tag_attrib` """ require_spacydocs(docs) if tag_attrib not in {'pos', 'pos_', 'tag', 'tag_'}: raise ValueError("`tag_attrib` must be 'pos', 'pos_', 'tag' or 'tag_'") if not docs: return [] first_doc = next(iter(docs)) if not getattr(first_doc, tag_attrib, False): pos_tag(docs, tagger=tagger, nlp_instance=nlp_instance) return _get_docs_tokenattrs(docs, tag_attrib, custom_attr=False) def filter_for_pos(docs, required_pos, simplify_pos=True, pos_attrib='pos_', tagset='ud', inverse=False): """ Filter tokens for a specific POS tag (if `required_pos` is a string) or several POS tags (if `required_pos` is a list/tuple/set of strings). The POS tag depends on the tagset used during tagging. See https://spacy.io/api/annotation#pos-tagging for a general overview on POS tags in SpaCy and refer to the documentation of your language model for specific tags. If `simplify_pos` is True, then the tags are matched to the following simplified forms: * ``'N'`` for nouns * ``'V'`` for verbs * ``'ADJ'`` for adjectives * ``'ADV'`` for adverbs * ``None`` for all other :param docs: list of spaCy documents :param required_pos: single string or list of strings with POS tag(s) used for filtering :param simplify_pos: before matching simplify POS tags in documents to forms shown above :param pos_attrib: token attribute name for POS tags :param tagset: POS tagset used while tagging; necessary for simplifying POS tags when `simplify_pos` is True :param inverse: inverse the matching results, i.e. *remove* tokens that match the POS tag :return: filtered list of spaCy documents """ require_spacydocs(docs) docs_pos = _get_docs_tokenattrs(docs, pos_attrib, custom_attr=False) if required_pos is None or not isinstance(required_pos, (tuple, list)): required_pos = [required_pos] if simplify_pos: simplify_fn = np.vectorize(lambda x: simplified_pos(x, tagset=tagset)) else: simplify_fn = np.vectorize(lambda x: x) # identity function matches = [np.isin(simplify_fn(dpos), required_pos) if len(dpos) > 0 else np.array([], dtype=bool) for dpos in docs_pos] return _apply_matches_array(docs, matches, invert=inverse) def lemmatize(docs, lemma_attrib='lemma_'): """ Lemmatize documents according to `language` or use a custom lemmatizer function `lemmatizer_fn`. :param docs: list of spaCy documents :param tag_attrib: spaCy document tag attribute to fetch the lemmata; ``"lemma_"`` gives lemmata as strings, ``"lemma"`` gives lemmata as integer token IDs :return: list of string lists with lemmata for each document """ require_spacydocs(docs) docs_lemmata = _get_docs_tokenattrs(docs, lemma_attrib, custom_attr=False) # SpaCy lemmata sometimes contain special markers like -PRON- instead of the lemma; # fix this here by resorting to the original token toks = doc_tokens(docs, to_lists=True) new_docs_lemmata = [] assert len(docs_lemmata) == len(toks) for doc_tok, doc_lem in zip(toks, docs_lemmata): assert len(doc_tok) == len(doc_lem) new_docs_lemmata.append([t if l.startswith('-') and l.endswith('-') else l for t, l in zip(doc_tok, doc_lem)]) return new_docs_lemmata def tokens2ids(docs): """ Convert a list of spaCy documents `docs` to a list of numeric token ID arrays. The IDs correspond to the current spaCy vocabulary. .. seealso:: :func:`~tmtoolkit.preprocess.ids2tokens` which reverses this operation. :param docs: list of spaCy documents :return: list of token ID arrays """ require_spacydocs(docs) return [d.to_array('ORTH') for d in docs] def ids2tokens(vocab, tokids): """ Convert list of numeric token ID arrays `tokids` to a character token array with the help of the spaCy vocabulary `vocab`. Returns result as list of spaCy documents. .. seealso:: :func:`~tmtoolkit.preprocess.tokens2ids` which reverses this operation. :param vocab: spaCy vocabulary :param tokids: list of numeric token ID arrays as from :func:`~tmtoolkit.preprocess.tokens2ids` :return: list of spaCy documents """ return [Doc(vocab, words=[vocab[t].orth_ for t in ids]) for ids in tokids] #%% functions that operate on a single spacy document def spacydoc_from_tokens(tokens, vocab=None, spaces=None, lemmata=None, label=None): """ Create a new spaCy ``Doc`` document with tokens `tokens`. :param tokens: list, tuple or NumPy array of string tokens :param vocab: list, tuple, set, NumPy array or spaCy ``Vocab`` object with vocabulary; if None, vocabulary will be generated from `tokens` :param spaces: list, tuple or NumPy array of whitespace for each token :param lemmata: list, tuple or NumPy array of string lemmata for each token :param label: document label :return: spaCy ``Doc`` document """ require_types(tokens, (tuple, list, np.ndarray), error_msg='the argument must be a list, tuple or NumPy array') tokens = [t for t in (tokens.tolist() if isinstance(tokens, np.ndarray) else tokens) if t] # spaCy doesn't accept empty tokens and also no NumPy "np.str_" type tokens if vocab is None: vocab = Vocab(strings=list(vocabulary([tokens]))) elif not isinstance(vocab, Vocab): vocab = Vocab(strings=vocab.tolist() if isinstance(vocab, np.ndarray) else list(vocab)) if lemmata is not None and len(lemmata) != len(tokens): raise ValueError('`lemmata` must have the same length as `tokens`') new_doc = Doc(vocab, words=tokens, spaces=spaces) assert len(new_doc) == len(tokens) if label is not None: new_doc._.label = label _init_doc(new_doc, tokens) if lemmata is not None: lemmata = lemmata.tolist() if isinstance(lemmata, np.ndarray) else lemmata for t, lem in zip(new_doc, lemmata): t.lemma_ = lem return new_doc def doc_glue_subsequent(doc, matches, glue='_', return_glued=False): """ Select subsequent tokens in `doc` as defined by list of indices `matches` (e.g. output of :func:`~tmtoolkit.preprocess.token_match_subsequent`) and join those by string `glue`. Return `doc` again. .. note:: This function modifies `doc` in place. All token attributes will be reset to default values besides ``"lemma_"`` which are set to the joint token string. .. warning:: Only works correctly when matches contains indices of *subsequent* tokens. Example:: # doc is a SpaCy document with tokens ['a', 'b', 'c', 'd', 'd', 'a', 'b', 'c'] token_glue_subsequent(doc, [np.array([1, 2]), np.array([6, 7])]) # doc now contains tokens ['a', 'b_c', 'd', 'd', 'a', 'b_c'] .. seealso:: :func:`~tmtoolkit.preprocess.token_match_subsequent` :param doc: a SpaCy document which must be compact (i.e. no filter mask set) :param matches: list of NumPy arrays with *subsequent* indices into `tokens` (e.g. output of :func:`~tmtoolkit.preprocess.token_match_subsequent`) :param glue: string for joining the subsequent matches or None if no joint tokens but an empty string should be set as token value and lemma :param return_glued: if yes, return also a list of joint tokens :return: either two-tuple or input `doc`; if `return_glued` is True, return a two-tuple with 1) `doc` and 2) a list of joint tokens; if `return_glued` is True only return 1) """ require_listlike(matches) if return_glued and glue is None: raise ValueError('if `glue` is None, `return_glued` must be False') if not doc.user_data['mask'].all(): raise ValueError('`doc` must be compact, i.e. no filter mask should be set (all elements in ' '`doc.user_data["mask"]` must be True)') n_tok = len(doc) if n_tok == 0: if return_glued: return doc, [] else: return doc # map span start index to end index glued = [] # within this context, `doc` doesn't change (i.e. we can use the same indices into `doc` throughout the for loop # even when we merge tokens del_tokens_indices = [] with doc.retokenize() as retok: # we will need to update doc.user_data['tokens'], which is a NumPy character array; # a NumPy char array has a maximum element size and we will need to update that to the # maximum string length in `chararray_updates` by using `widen_chararray()` below chararray_updates = {} for m in matches: assert len(m) >= 2 begin, end = m[0], m[-1] span = doc[begin:end+1] merged = '' if glue is None else glue.join(doc.user_data['tokens'][begin:end+1]) assert begin not in chararray_updates.keys() chararray_updates[begin] = merged del_tokens_indices.extend(list(range(begin+1, end+1))) attrs = { 'LEMMA': merged, 'WHITESPACE': doc[end].whitespace_ } retok.merge(span, attrs=attrs) if return_glued: glued.append(merged) if chararray_updates: new_maxsize = max(map(len, chararray_updates.values())) doc.user_data['tokens'] = widen_chararray(doc.user_data['tokens'], new_maxsize) for begin, merged in chararray_updates.items(): doc.user_data['tokens'][begin] = merged doc.user_data['tokens'] =
np.delete(doc.user_data['tokens'], del_tokens_indices)
numpy.delete
""" Copyright (C) 2020 Piek Solutions LLC Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import pyvisa as visa import time import sys, traceback import re as regex import numpy as np class VisaInstrument: def __init__(self, ip, gpib_address): """ initialize visa instrument resource :param ip: (str) ip address of Papaya :param gpib_address: (str) GPIB address of instrument """ resource_name = "TCPIP0::%s::inst%s::INSTR" % (ip, gpib_address) print(resource_name) rm = visa.ResourceManager() self.instr = rm.open_resource(resource_name) self.instr.timeout = 10000 def close(self): self.instr.close() def cls(self): try: self.instr.write('*CLS') except ValueError: print('*CLS fails to clear') def _set_ESE(self, x): try: cmd = '*ESE ' + str(x) self.instr.write(cmd) except ValueError: print ('*ESE write fails') def _get_ESE(self, x): try: resp = self.instr.query('*ESE?') self._output = float(resp) except ValueError: print('*ESE query fails') return self._output ESE = property(_get_ESE, _set_ESE, "ESE property") def _set_SRE(self, x): try: cmd = '*SRE ' + str(x) self.instr.write(cmd) except ValueError: print ('*SRE write fails') def _get_SRE(self, x): try: resp = self.instr.query('*SRE?') self._output = float(resp) except ValueError: print('*SRE query fails') return self._output SRE = property(_get_SRE, _set_SRE, "SRE property") def queryIDN(self): try: data = self.instr.query('*IDN?') return data except ValueError: print('*IDN query fails') class Keysight_N9030B(VisaInstrument): def getTrace(self, tra='TRACE1'): count = 0 try: self.instr.write('trac:data? %s' %tra) resp = self.instr.read() flag = '\n' in resp while not flag: tmp = self.instr.read() resp += tmp flag = '\n' in tmp count += 1 except visa.VisaIOError: print('error getting trace') print(tmp) traceback.print_exc() sys.exit(3) ary = resp.split(',') dd = np.array([float(c) for c in ary]) return dd def getTraceXY(self, tra='san1'): count = 0 try: self.instr.write('fetch:%s?' %tra) resp = self.instr.read() flag = '\n' in resp while not flag: tmp = self.instr.read() resp += tmp flag = '\n' in tmp count += 1 except visa.VisaIOError: print('error getting xy trace') print(tmp) traceback.print_exc() sys.exit(3) ary = resp.split(',') dd = np.array([float(c) for c in ary]) return dd class Anritsu_M4647A(VisaInstrument): def sweepOnce(self): self.instr.write('TRS;WFS;HLD') time.sleep(11) def readSXX(self, fmt='OS11C'): try: self.instr.write(fmt) # C here refers to calibrated resp = self.instr.read() s = regex.findall(r'^#\d+', resp)[0] # get the first elm in string instead of list pos = int(s[1]) + 3 _num = int(s[2:len(s)]) # total number of bytes to read resp = resp[pos:len(resp)] # remove the header cnt = len(resp) while cnt < _num: tmp = self.instr.read() cnt += len(tmp) resp += tmp except visa.VisaIOError: traceback.print_exc() sys.exit(3) # make them into real numbers y = resp.split('\n') y = y[0:len(y)-1] # last element is \n real = np.zeros(len(y), dtype=float) imag = np.zeros(len(y), dtype=float) for i_ in range(0, len(y)): valstr = y[i_].split(',') # split into real and imag real[i_] = float(valstr[0]) imag[i_] = float(valstr[1]) c = real + 1.j*imag return c def freq(self): try: self.instr.write(':sens1:freq:data?') resp = self.instr.read() s = regex.findall(r'^#\d+', resp)[0] # get the first elm in string instead of list pos = int(s[1]) + 3 _num = int(s[2:len(s)]) # total number of bytes to read resp = resp[pos:len(resp)] # remove the header cnt = len(resp) while cnt < _num: tmp = self.instr.read() cnt += len(tmp) resp += tmp except visa.VisaIOError: traceback.print_exc() sys.exit(3) y = resp.split('\n') y = y[0:len(y)-1] # last element is \n val = np.array([float(c) for c in y]) return val class Keithley_2400(VisaInstrument): def sourcetype(self, type): if type == 'voltage': self.instr.write(':SOUR:FUNC VOLT') self.instr.write(':SENS:FUNC "CURR"') elif type == 'current': self.instr.write(':SOUR:FUNC CURR') self.instr.write(':SENS:FUNC "VOLT"') def setvoltage(self, vb, curlimit=0.05): self.instr.write(':SENS:CURR:PROT %f' % curlimit) self.instr.write(':SOUR:VOLT:LEV %f' % vb) def querycurrent(self): try: self.instr.write(':FORM:ELEM CURR') cur = self.instr.query('READ?') c = float(cur) except ValueError: print('Keithley 2400 warning: current reading error...') print(cur) c = -1000 return float(c) def setcurrent(self, cur, vlimit=2): self.instr.write(':SENS:VOLT:PROT %f' % vlimit) self.instr.write(':SOUR:CURR:LEV %s' % cur) def _get_output(self): try: resp = self.instr.query(':OUTPUT?') self._output = float(resp) except ValueError: print('Keithley 2400 query fails') return self._output def _set_output(self, x): try: cmd = ':OUTPUT ' + str(x) self.instr.write(cmd) except ValueError: print('Keithley 2400 write fails') self._output = x output = property(_get_output, _set_output, "output property") class Agilent_E3631(VisaInstrument): def _get_outPutOnOff(self): try: resp = self.instr.query(':outp?') self._outputOnOff = resp except ValueError: print('Agilent E3631 query outp fails') return self._outputOnOff def _set_outPutOnOff(self, x): try: cmd = 'outp ' + str(x) self.instr.write(cmd) except ValueError: print('Agilent E3631 write outp fails') self._outputOnOff = x outputOnOff = property(_get_outPutOnOff, _set_outPutOnOff, "outputOnOff property") def queryCurrent(self): try: resp=self.instr.query(':meas:curr:dc?') except ValueError: print('Agilent E3631 query current fails') return float(resp) def queryVoltage(self): try: resp=self.instr.query(':meas:volt:dc?') except ValueError: print('Agilent E3631 query voltage fails') return float(resp) def selectPowerSupply(self, x): """ select power supply instrument, :param x: (int) 1 is P6V, 2 is P25V and 3 is N25V :return: none """ try: cmd = 'INST:NSEL ' + str(x) self.instr.write(cmd) except ValueError: print('Agilent E3631 select power supply fails') def setP6VSupply(self, x): try: # P6V is 1 self.instr.write('INST:NSEL 1') cmd = 'volt ' + str(x) self.instr.write(cmd) except ValueError: print('Agilent E3631 set P6V fails') def queryP6VSetVoltage(self): try: # P6V is 1 self.instr.write('INST:NSEL 1') val = self.instr.query('volt?') except ValueError: print('Agilent E3631 query P6V fails') return float(val) def setP25VSupply(self,x): try: # P25V is 2 self.instr.write('INST:NSEL 2') cmd = 'volt ' + str(x) self.instr.write(cmd) except ValueError: print('Agilent E3631 set P25V fails') def queryP25VSetVoltage(self): try: # P25V is 2 self.instr.write('INST:NSEL 2') val = self.instr.query('volt?') except ValueError: print('Agilent E3631 query P25V fails') return float(val) def setN25VSupply(self, x): # N25V is 3 try: self.instr.write('INST:NSEL 3') cmd = 'volt ' + str(x) self.instr.write(cmd) except ValueError: print('Agilent E3631 set N25V fails') def queryN25VSetVoltage(self): # N25V is 3 try: self.instr.write('INST:NSEL 3') val = self.instr.query('volt?') except ValueError: print('Agilent E3631 query N25V fails') return float(val) class Keysight_E3649A(VisaInstrument): def _get_outputOnOff(self): """ query output state :return: 0(OFF) or 1(ON) """ try: resp = self.instr.query('OUTP?') self._outputOnOff = resp.rstrip() except ValueError: print('Agilent E3649A query outp on/off fails') return self._outputOnOff def _set_outputOnOff(self, x): """ turn output on or off :param x: either ON or OFF :return: None """ try: self.instr.write('OUTP ' + str(x)) except ValueError: print('Agilent E3649A write outp on/off fails') self._outputOnOff = x outputOnOff = property(_get_outputOnOff, _set_outputOnOff, "outputOnOff property") def queryCurrent(self, output_num=None): """ query current of selected output :param output_num: (int) the output to query (None|1|2); default value None uses the output previously set. :return: (float) current """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) resp = self.instr.query('MEAS:CURR:DC?') return float(resp) except visa.VisaIOError or ValueError: print('Agilent E3649A query current fails') def setCurrent(self, curr, output_num=None): """ query current of selected output :param curr: (float) the desired current level :param output_num: (int) the output to query (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write('CURR ' + str(curr)) except visa.VisaIOError or ValueError: print('Agilent E3649A query current fails') def queryVoltage(self, output_num=None): """ query voltage of selected output :param output_num: (int) the output to read (None|1|2); default value None uses the output previously set. :return: (float) voltage """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) resp = self.instr.query('MEAS:VOLT:DC?') return float(resp) except visa.VisaIOError or ValueError: print('Agilent E3649A query voltage fails') def setVoltage(self, volt, output_num=None): """ set voltage of selected output :param volt: (float) the desired voltage level :param output_num: (int) the output to set (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write('VOLT ' + str(volt)) except visa.VisaIOError or ValueError: print('Agilent E3649A set voltage fails') def selectOutput(self, output_num): """ select which output to modify :param output_num: (int) the output to modify (1|2) :return: None """ try: self.instr.write('INST:NSEL ' + str(output_num)) except visa.VisaIOError: print('Agilent E3649A select output fails') def queryOutputRange(self, output_num=None): """ query range setting of selected output :param output_num: (int) the output to read (None|1|2); default value None uses the output previously set. :return: (str) P35V or P60V """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) resp = self.instr.query(':VOLT:RANG?') return resp.rstrip() except visa.VisaIOError: print('Agilent E3649A query output range fails') def setOutputRange(self, volt_range, output_num=None): """ set voltage range of selected output :param volt_range: the voltage range to set output to (P35V|LOW|P60V|HIGH) :param output_num: (int) the output to modify (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write(':VOLT:RANG ' + str(volt_range)) except visa.VisaIOError: print('Agilent E3649A set output voltage fails') def setOutputLow(self, output_num=None): """ set voltage range of selected output to 35V :param output_num: (int) the output to modify (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write(':VOLT:RANG LOW') except visa.VisaIOError: print('Agilent E3649A set output voltage LOW fails') def setOutputHigh(self, output_num=None): """ set voltage range of output to 60V :param output_num: (int) the output to modify (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write(':VOLT:RANG HIGH') except visa.VisaIOError: print('Agilent E3649A set output voltage HIGH fails') def enableVoltageProtection(self, enable=1, output_num=None): """ enable or disable the overvoltage protection function. :param enable: (0|1|OFF|ON) :param output_num: output_num: (int) the output to modify (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write(':VOLT:PROT:STAT ' + str(enable)) except visa.VisaIOError: print('Agilent E3649A enable voltage protection fails') def setVoltageProtection(self, volt, output_num=None): """ set the voltage level at which the overvoltage protection (OVP) circuit will trip. :param volt: voltage level, 'MIN', or 'MAX' :param output_num: (int) the output to modify (None|1|2); default value None uses the output previously set. :return: None """ try: if output_num: self.instr.write('INST:NSEL ' + str(output_num)) self.instr.write(':VOLT:PROT ' + str(volt)) except visa.VisaIOError: print('Agilent E3649A set output voltage protection fails') def queryVoltageProtection(self, output_num=None): """ query the protection state and voltage level at which the overvoltage protection (OVP) circuit will trip. :param output_num: (int) the output to modify (None|1|2); default value None uses the output previously set. :return: tuple (int, str) consisting of enable 0 (OFF) or 1 (ON) and the voltage trip level. """ try: ena = self.instr.query('VOLT:PROT:STAT?') level = self.instr.query('VOLT:PROT?') return ena.rstrip(), level.rstrip() except visa.VisaIOError: print('Agilent E3649A query output voltage protection fails') class Agilent_33401(VisaInstrument): def acVoltage(self): try: self.instr.write(':meas:volt:ac?') resp = self.instr.read() return float(resp) except ValueError: print('Agilent 33401 query ac volt fails') def acCurrent(self): try: self.instr.write(':meas:curr:ac?') resp = self.instr.read() return float(resp) except ValueError: print('Agilent 33401 query ac curr fails') def dcVoltage(self): try: self.instr.write(':meas:volt:dc?') resp = self.instr.read() return float(resp) except ValueError: print('Agilent 33401 query dc volt fails') def dcCurrent(self): try: self.instr.write(':meas:curr:dc?') resp = self.instr.read() return float(resp) except ValueError: print('Agilent 33401 query dc curr fails') class Keithley_2510(VisaInstrument): def querytemp(self): try: self.instr.write(':MEAS:TEMP?') temp = self.instr.read() t = float(temp) except ValueError: print('Keithley 2510 warning: temp read error...') print(temp) t = -1000 return float(t) def settemp(self, setT='25'): self.instr.write(':SOUR:TEMP %f' % setT) def _get_output(self): try: resp = self.instr.query(':OUTPUT?') self._output = float(resp) except ValueError: print('Keithley 2510 query outp fails') return self._output def _set_output(self, x): try: cmd = ':OUTPUT ' + str(x) self.instr.write(cmd) except ValueError: print('Keithley 2510 write outp fails') self._output = x output = property(_get_output, _set_output, "output property") class Newport_3150(VisaInstrument): def querytemp(self): temp = self.instr.query(':TEC:T?') try: t = float(temp) except ValueError: print('Newport 3150 warning: temp read error...') print(temp) t = -1000 return float(t) def settemp(self, setT='25'): self.instr.write(':TEC:T %f' % setT) class Agilent_8163(VisaInstrument): def queryIDN(self): try: resp = self.instr.query('*IDN?') except ValueError: print('Agilent 8163 fails query') return resp def querypower(self): try: opt = self.instr.query('READ:POW?') except ValueError: print('Agilent 8163 fails query') return float(opt) class Keysight_Dca(VisaInstrument): def initialize(self): # initiallize for PAM4 measurement pass def get_er(self, source='1', ch='2A'): cmd = ':MEASure:EYE:OER:SOURce'+source+' CHAN'+ch self.instr.write(cmd) try: er = self.instr.query(':MEASure:EYE:OER?') return float(er) except ValueError: print('Keysight dca error') def getOMA(self, source='1', ch='2A'): cmd = ':MEASure:EYE:OOMA:SOURce'+source+' CHAN'+ch self.instr.write(cmd) try: oma = self.instr.query(':MEASure:EYE:OOMA?') return float(oma) except ValueError: print('Keysight dca error') def getRLM(self, source='1', ch='2A'): cmd = ':MEASure:EYE:PAM:LINearity:SOURce'+source+' CHAN'+ch self.instr.write(cmd) try: rlm = self.instr.query(':MEASure:EYE:PAM:LINearity?') return float(rlm) except ValueError: print('Keysight dca error') def autoscale(self): self.instr.write(':SYSTem:AUToscale') try: self.instr.query('*OPC?') except ValueError: print('Keysight dca error') def clear(self): self.instr.write(':ACQuire:CDISplay') try: self.instr.query('*OPC?') except ValueError: print('Keysight dca error') def run(self): self.instr.write(':ACQuire:RUN') class Agilent_86142(VisaInstrument): def _get_startWavelength(self): try: resp = self.instr.query(':sens:wav:star?') self._startWavelength = float(resp) except ValueError: print('Agilent 86142 query fails') return self._startWavelength def _set_startWavelength(self, x): try: cmd = ':sens:wav:star ' + str(x) self.instr.write(cmd) self._startWavelength = x except visa.VisaIOError: print('Agilent 86142 write fails') startWavelength = property(_get_startWavelength, _set_startWavelength, "startWavelength property") def _get_stopWavelength(self): try: resp = self.instr.query(':sens:wav:stop?') self._startWavelength = float(resp) except ValueError: print('Agilent 86142 query fails') return self._startWavelength def _set_stopWavelength(self, x): try: cmd = ':sens:wav:stop ' + str(x) self.instr.write(cmd) self._stopWavelength = x except visa.VisaIOError: print('Agilent 86142 write fails') stopWavelength = property(_get_stopWavelength, _set_stopWavelength, "stopWavelength property") def _get_traceLength(self): try: resp = self.instr.query(':SENS:SWE:POIN?') self._traceLength = float(resp) except ValueError: print('Agilent 86142 query fails') return self._traceLength def _set_traceLength(self, x): try: cmd = ':SENS:SWE:POIN ' + str(x) self.instr.write(cmd) self._traceLength = x except ValueError: print('Agilent 86142 write fails') traceLength = property(_get_traceLength, _set_traceLength, "traceLength property") def getTrace(self): tmp = '' try: self.instr.write('form ascii') self.instr.write('trac? tra') resp = self.instr.read() flag = '\n' in resp count = 0 while not flag: tmp = self.instr.read() resp += tmp flag = '\n' in tmp count += 1 except visa.VisaIOError: print('error') print(tmp) traceback.print_exc() sys.exit(3) return resp def getTrace1(self, pts): tmp = '' elmcount = [] count = 0 itr=0 try: self.instr.write('form ascii') self.instr.write('trac? tra') resp = self.instr.read() count += len(resp.split(',')) while count < pts: tmp = self.instr.read() count += len(tmp.split(',')) elmcount.append(count) resp += tmp itr += 1 except visa.VisaIOError: print('error') print(tmp) traceback.print_exc() sys.exit(3) return resp def getTraceBin(self): try: self.instr.write('form real32') self.instr.write('trac? tra') resp = self.instr.read() return resp except ValueError: print('Agilent 86142 write fails') class JDSU_HA9(VisaInstrument): _attenuation = 0 _beamIsBlocked = 0 def _get_attenuation(self): try: resp = self.instr.query('att?') self._attenuation = float(resp) except ValueError: print('JDSU HA9 query fails') return self._attenuation def _set_attenuation(self, x): try: cmd = 'att ' + str(x) self.instr.write(cmd) self._attenuation = x except ValueError: print('JDSU HA9 write fails') attenuation = property(_get_attenuation, _set_attenuation, "attenuation property") def _get_beamIsBlocked(self): try: resp = self.instr.query('D?') self._beamIsBlocked = int(resp) except ValueError: print('JDSU HA9 query fails') return self._beamIsBlocked def _set_beamIsBlocked(self, x): try: cmd = 'D ' + str(int(x)) self.instr.write(cmd) self._beamIsBlocked = int(x) except ValueError: print('JDSU HA9 write fails') beamIsBlocked = property(_get_beamIsBlocked, _set_beamIsBlocked, "beamIsBlock property") class N9020A_SpectrumAnalyzer(VisaInstrument): _inputCoupling = 'DC' # default _bandwidthResolution_MHz = 0.5 _bandwidthVideo_MHz = 10 _sweepPoints = 1001 _startFreqMHz = 10e-3 _stopFreqMHz = 1350 _traceAve = 1 _contSweep = 0 def _set_contSweep(self, x=1): try: cmd = ':INIT:CONT ' + str(x) self.instr.write(cmd) self._contSweep = str(x) except ValueError: print('N9020A fails to set cont sweep config') def _get_contSweep(self): try: resp = self.instr.query(':INIT:CONT?') self._contSweep=resp except ValueError: print('N9020A fails to get cont sweep config') return self._contSweep contSweep = property(_get_contSweep, _set_contSweep, 'input coupling property') def _set_inputCoupling(self, x='DC'): try: cmd = 'INPut:COUPling ' + str(x) self.instr.write(cmd) self._inputCoupling = str(x) except ValueError: print('N9020A fails to set input coupling') def _get_inputCoupling(self): try: resp = self.instr.query('INP:COUP?') self._inputCoupling = resp except ValueError: print('N9020A fails to get input coupling') return self._inputCoupling inputCoupling = property(_get_inputCoupling, _set_inputCoupling, 'input coupling property') def _set_bandwidthResolution_MHz(self,x=0.5): try: cmd = 'BANDWIDTH:RESOLUTION ' + str(x) + ' MHZ' self.instr.write(cmd) self._bandwidthResolution_MHz = float(x) except ValueError: print('N9020A fails to set bandwidth resolution') def _get_bandwidthResolution_MHz(self): try: resp = self.instr.query('BANDWIDTH:RESOLUTION?') self._bandwidthResolution_MHz = float(resp)/1e6 # in MHz except ValueError: print('N9020A fails to get bandwidth resolution') return self._bandwidthResolution_MHz resolutionBW_MHz = property(_get_bandwidthResolution_MHz, _set_bandwidthResolution_MHz, 'bandwidth resolution property') def _set_bandwidthVideo_MHz(self, x=0.5): try: cmd = 'BANDWIDTH:VIDEO ' + str(x) + ' MHZ' self.instr.write(cmd) self._bandwidthResolution_MHz = float(x) except ValueError: print('N9020A fails to set video bandwidth') def _get_bandwidthVideo_MHz(self): try: resp = self.instr.query('BANDWIDTH:VIDEO?') self._bandwidthResolution_MHz = float(resp)/1e6 # in MHz except ValueError: print('N9020A fails to get video bandwidth') return self._bandwidthResolution_MHz videoBW_MHz = property(_get_bandwidthVideo_MHz, _set_bandwidthVideo_MHz, 'video bandwidth property') def _set_sweepPoints(self,x=1001): try: cmd = 'SWEEP:POINTS ' + str(x) self.instr.write(cmd) self._sweepPoints = int(x) except ValueError: print('N9020A fails to set sweep points') def _get_sweepPoints(self): try: resp = self.instr.query('SWEEP:POINTS?') self._sweepPoints = int(resp) # in MHz except ValueError: print('N9020A fails to get sweep points') return self._sweepPoints sweepPoints = property(_get_sweepPoints, _set_sweepPoints, 'sweep points') def _set_startFreqMHz(self,x=10e-3): try: cmd = 'FREQUENCY:START ' + str(x) + ' MHZ' self.instr.write(cmd) self._startFreqMHz = float(x) except ValueError: print('N9020A fails to set start frequency') def _get_startFreqMHz(self): try: resp = self.instr.query('FREQUENCY:START?') self._startFreqMHz = float(resp)/1e6 # in MHz except ValueError: print('N9020A fails to get stop frequency') return self._startFreqMHz startFreqMHz = property(_get_startFreqMHz, _set_startFreqMHz,'start frequency property') def _set_stopFreqMHz(self, x=13.5e3): try: cmd = 'FREQUENCY:STOP ' + str(x) + ' MHZ' self.instr.write(cmd) self._stopFreqMHz = float(x) except ValueError: print('N9020A fails to set start frequency') def _get_stopFreqMHz(self): try: resp = self.instr.query('FREQUENCY:STOP?') self._stopFreqMHz = float(resp)/1e6 # in MHz except ValueError: print('N9020A fails to get stop frequency') return self._stopFreqMHz stopFreqMHz = property(_get_stopFreqMHz, _set_stopFreqMHz, 'start frequency property') def _set_traceAve(self, x=1): try: if x >= 1: cmd = 'ACP:AVER:COUN ' + str(x) self.instr.write(cmd) if x == 0: self.instr.write('ACPower:AVERage OFF') self._traceAve = int(x) except ValueError: print('N9020A fails to set trace average') def _get_traceAve(self): try: resp = self.instr.query('ACPower:AVERage:COUNt?') self._traceAve = int(resp) except ValueError: print('N9020A fails to get stop frequency') return self._traceAve traceAve = property(_get_traceAve, _set_traceAve, 'trace average') def getTrace(self): _points = self._get_sweepPoints() _stopf = self._get_stopFreqMHz() _startf = self._get_startFreqMHz() _freq = np.linspace(_startf, _stopf, _points) tmp = '' try: self.instr.write('FORMAT:TRACE:DATA ASCII') self.instr.write('TRAC? TRACE1') resp = self.instr.read() flag = '\n' in resp count = 0 while not flag: tmp = self.instr.read() resp += (tmp) flag = '\n' in tmp count += 1 except visa.VisaIOError: print('N9020A get trace error') print(tmp) resp = tmp traceback.print_exc() sys.exit(3) resp = resp.split(',') y = [float(d) for d in resp] y = np.array(y) return _freq, y def setMarkerPos(self,pos=0): _points = self._get_sweepPoints() cmd = 'calc:mark1:X:pos:cent ' + str(pos) try: if pos < _points: self.instr.write(cmd) except visa.VisaIOError: print('N9020A write error: ' + cmd) def getMarkerNoise(self, pos=0): # cmd = 'CALC:MARK:FUNCNOIS' try: # self.instr.write(cmd) self.setMarkerPos(pos) val = self.instr.query('CALC:MARK:Y?') return float(val) except visa.VisaIOError: print('N9020A getMarkerNoise error') def getMarkerNoiceTrace(self): _points = self._get_sweepPoints() _stopf = self._get_stopFreqMHz() _startf = self._get_startFreqMHz() _freq =
np.linspace(_startf, _stopf, _points)
numpy.linspace
# -*- coding: utf-8 -*- """ @brief test log(time=21s) """ import unittest import warnings from logging import getLogger from typing import Any import numpy from sklearn.preprocessing import FunctionTransformer from pyquickhelper.pycode import ExtTestCase, ignore_warnings from mlprodict.onnx_conv import register_rewritten_operators, to_onnx from mlprodict.onnxrt import OnnxInference from mlprodict.npy import onnxnumpy_default, onnxnumpy_np, NDArray import mlprodict.npy.numpy_onnx_impl as nxnp def custom_fft_abs_py(x): "onnx fft + abs python" # see https://jakevdp.github.io/blog/ # 2013/08/28/understanding-the-fft/ dim = x.shape[1] n = numpy.arange(dim) k = n.reshape((-1, 1)).astype(numpy.float64) kn = k * n * (-numpy.pi * 2 / dim) kn_cos = numpy.cos(kn) kn_sin = numpy.sin(kn) ekn = numpy.empty((2,) + kn.shape, dtype=x.dtype) ekn[0, :, :] = kn_cos ekn[1, :, :] = kn_sin res = numpy.dot(ekn, x.T) tr = res ** 2 mod = tr[0, :, :] + tr[1, :, :] return numpy.sqrt(mod).T def _custom_fft_abs(x): dim = x.shape[1] n = nxnp.arange(0, dim).astype(numpy.float32) k = n.reshape((-1, 1)) kn = (k * (n *
numpy.float32(-numpy.pi * 2)
numpy.float32
import copy import operator import numpy as np import numpy.random as npr from matplotlib import pyplot as plt from mimo.distributions import Dirichlet from mimo.distributions import CategoricalWithDirichlet from mimo.distributions import NormalWishart from mimo.distributions import GaussianWithNormalWishart from mimo.mixtures import BayesianMixtureOfGaussians npr.seed(1337) nb_samples = 2500 data = np.zeros((nb_samples, 2)) step = 14. * np.pi / nb_samples for i in range(data.shape[0]): x = i * step - 6. data[i, 0] = x + npr.normal(0, 0.1) data[i, 1] = 3. * (
np.sin(x)
numpy.sin
"""The main lagrangian-filtering module. This module contains the crucial datastructure for lagrangian-filtering, `LagrangeFilter`. See project documentation for examples on how to construct a filtering workflow using this library. """ import dask.array as da import numpy as np from datetime import timedelta, datetime from glob import iglob import parcels from scipy import signal import netCDF4 import xarray as xr import netCDF4 as nc import sys from .file import LagrangeParticleFile import multiprocessing as mp from functools import partial import pathos.pools as pp class LagrangeFilter(object): """The main class for a Lagrangian filtering workflow. The workflow is set up using the input files and the filtering parameters. Filtering can be performed all at once, or on individual time levels. Data must contain horizontal velocity components `U` and `V` to perform the Lagrangian frame transformation. Any variables that should be filtered must be specified in the `sample_variables` list (this includes velocity). Note: We use the OceanParcels convention for variable names. This means that ``U``, ``V``, ``lon``, ``lat``, ``time`` and ``depth`` are canonical names for properties required for particle advection. The mapping from the actual variable name in your data files to these canonical names is contained in the `variables` and `dimensions` dictionaries. When specifying `filenames` or `sample_variables`, the canonical names must be used, however any other variables may use whatever name you would like. Once the `LagrangeFilter` has been constructed, you may call it as a function to perform the filtering workflow. See :func:`~filter` for documentation. Example: A straightforward filtering workflow:: f = LagrangeFilter( name, filenames, variables, dimensions, sample_variables, ) f() Would result in a new file with the given `name` and an appropriate extension containing the filtered data for each of the `sample_variables`. Args: name (str): The name of the workflow filenames (Dict[str, str]): A mapping from data variable names to the files containing the data. Filenames can contain globs if the data is spread across multiple files. variables_or_data (Union[Dict[str, str], xarray.Dataset]): Either a mapping from canonical variable names to the variable names in your data files, or an xarray Dataset containing the input data. dimensions (Dict[str, str]): A mapping from canonical dimension names to the dimension names in your data files. sample_variables ([str]): A list of variable names that should be sampled into the Lagrangian frame of reference and filtered. mesh (:obj:`str`, optional): The OceanParcels mesh type, either "flat" or "spherical". "flat" meshes are expected to have dimensions in metres, and "spherical" meshes in degrees. c_grid (:obj:`bool`, optional): Whether to interpolate velocity components on an Arakawa C grid (defaults to no). indices (:obj:`Dict[str, [int]]`, optional): An optional dictionary specifying the indices to which a certain dimension should be restricted. uneven_window (:obj:`bool`, optional): Whether to allow different lengths for the forward and backward advection phases. window_size (:obj:`float`, optional): The nominal length of the both the forward and backward advection windows, in seconds. A longer window may better capture the low-frequency signal to be removed. highpass_frequency (:obj:`float`, optional): The 3dB cutoff frequency for filtering, below which spectral components will be attenuated. This should be an angular frequency, in [rad/s]. advection_dt (:obj:`datetime.timedelta`, optional): The timestep to use for advection. May need to be adjusted depending on the resolution/frequency of your data. """ def __init__( self, name, filenames_or_dataset, variables, dimensions, sample_variables, mesh="flat", c_grid=False, indices={}, uneven_window=False, window_size=None, highpass_frequency=5e-5, advection_dt=timedelta(minutes=5), ): # The name of this filter self.name = name # Width of window over which our filter computes a meaningful result # in seconds. Default to 3.5 days on either side if window_size is None: self.window_size = timedelta(days=3.5).total_seconds() else: self.window_size = window_size # Whether we're permitted to use uneven windows on either side self.uneven_window = uneven_window # copy input file dictionaries so we can construct the output file # filenames dictionary is modified to expand globs when # the fieldset is constructed self._filenames = filenames_or_dataset self._variables = variables self._dimensions = dimensions self._indices = indices # sample variables without the "var_" prefix self._sample_variables = sample_variables # choose the fieldset constructor depending on the format # of the input data if isinstance(filenames_or_dataset, xr.Dataset): fieldset_constructor = parcels.FieldSet.from_xarray_dataset else: fieldset_constructor = parcels.FieldSet.from_netcdf # for C-grid data, we have to change the interpolation method fieldset_kwargs = {} if c_grid: interp_method = {} for v in variables: if v in ["U", "V", "W"]: interp_method[v] = "cgrid_velocity" else: interp_method[v] = "cgrid_tracer" fieldset_kwargs["interp_method"] = interp_method # construct the OceanParcels FieldSet to use for particle advection self.fieldset = fieldset_constructor( filenames_or_dataset, variables, dimensions, indices=indices, mesh=mesh, **fieldset_kwargs, ) # save the lon/lat on which to seed particles # this is saved here because if the grid is later made periodic, the # underlying grids will be modified, and we'll seed particles in the halos if self.fieldset.gridset.grids[0].gtype in [ parcels.GridCode.CurvilinearZGrid, parcels.GridCode.CurvilinearSGrid, ]: self._curvilinear = True self._grid_lon = self.fieldset.gridset.grids[0].lon self._grid_lat = self.fieldset.gridset.grids[0].lat else: self._curvilinear = False self._grid_lon, self._grid_lat = np.meshgrid( self.fieldset.gridset.grids[0].lon, self.fieldset.gridset.grids[0].lat ) # starts off non-periodic self._is_zonally_periodic = False self._is_meridionally_periodic = False # guess the output timestep times = self.fieldset.gridset.grids[0].time self.output_dt = times[1] - times[0] print('timestep =',self.output_dt,'seconds') # create the filter - use a 4th order Butterworth for the moment # make sure to convert angular frequency back to linear for passing to the # filter constructor fs = 1.0 / self.output_dt self.inertial_filter = signal.butter( 4, highpass_frequency / (2 * np.pi), "lowpass", fs=fs ) # timestep for advection self.advection_dt = advection_dt # the sample variable attribute has 'var_' prepended to map to # variables on particles self.sample_variables = ["var_" + v for v in sample_variables] # create the particle class and kernel for sampling # map sampled variables to fields self.particleclass = ParticleFactory(sample_variables) self._create_sample_kernel(sample_variables) self.kernel = parcels.AdvectionRK4 + self.sample_kernel # compile kernels self._compile(self.sample_kernel) self._compile(self.kernel) def _create_sample_kernel(self, sample_variables): """Create the parcels kernel for sampling fields during advection.""" # make sure the fieldset has C code names assigned, etc. self.fieldset.check_complete() # string for the kernel itself f_str = "def sample_kernel(particle, fieldset, time):\n" for v in sample_variables: f_str += f"\tparticle.var_{v} = fieldset.{v}[time, particle.depth, particle.lat, particle.lon]\n" else: f_str += "\tpass" # create the kernel self.sample_kernel = parcels.Kernel( self.fieldset, self.particleclass.getPType(), funcname="sample_kernel", funcvars=["particle", "fieldset", "time"], funccode=f_str, ) def _compile(self, kernel): """Compile a kernel and tell it to load the resulting shared library.""" kernel.compile(compiler=parcels.compiler.GNUCompiler()) kernel.load_lib() def make_zonally_periodic(self, width=None): """Mark the domain as zonally periodic. This will add a halo to the eastern and western edges of the domain, so that they may cross over during advection without being marked out of bounds. If a particle ends up within the halo after advection, it is reset to the valid portion of the domain. If the domain has already been marked as zonally periodic, nothing happens. Due to the method of resetting particles that end up in the halo, this is incompatible with curvilinear grids. Args: width (:obj:`int`, optional): The width of the halo, defaults to 5 (per parcels). This needs to be less than half the number of points in the grid in the x direction. This may need to be adjusted for small domains, or if particles are still escaping the halo. Note: This causes the kernel to be recompiled to add another stage which resets particles that end up in the halo to the main domain. If the kernel has already been recompiled for meridional periodicity, it is again reset to include periodicity in both directions. """ # the method of resetting particles won't work on a curvilinear grid if self._curvilinear: raise Exception("curvilinear grids can not be periodic") # make sure we can't do this twice if self._is_zonally_periodic: return # add constants that are accessible within the kernel denoting the # edges of the halo region self.fieldset.add_constant("halo_west", self.fieldset.gridset.grids[0].lon[0]) self.fieldset.add_constant("halo_east", self.fieldset.gridset.grids[0].lon[-1]) if width is None: self.fieldset.add_periodic_halo(zonal=True) else: self.fieldset.add_periodic_halo(zonal=True, halosize=width) # unload the advection-only kernel, and add the periodic-reset kernel self.kernel.remove_lib() if self._is_meridionally_periodic: k = _doubly_periodic_BC else: k = _zonally_periodic_BC periodic_kernel = parcels.Kernel( self.fieldset, self.particleclass.getPType(), k ) self.kernel = parcels.AdvectionRK4 + periodic_kernel + self.sample_kernel self._compile(self.kernel) self._is_zonally_periodic = True def make_meridionally_periodic(self, width=None): """Mark the domain as meridionally periodic. This will add a halo to the northern and southern edges of the domain, so that they may cross over during advection without being marked out of bounds. If a particle ends up within the halo after advection, it is reset to the valid portion of the domain. If the domain has already been marked as meridionally periodic, nothing happens. Due to the method of resetting particles that end up in the halo, this is incompatible with curvilinear grids. Args: width (:obj:`int`, optional): The width of the halo, defaults to 5 (per parcels). This needs to be less than half the number of points in the grid in the y direction. This may need to be adjusted for small domains, or if particles are still escaping the halo. Note: This causes the kernel to be recompiled to add another stage which resets particles that end up in the halo to the main domain. If the kernel has already been recompiled for zonal periodicity, it is again reset to include periodicity in both directions. """ # the method of resetting particles won't work on a curvilinear grid if self._curvilinear: raise Exception("curvilinear grids can not be periodic") # make sure we can't do this twice if self._is_meridionally_periodic: return # add constants that are accessible within the kernel denoting the # edges of the halo region self.fieldset.add_constant("halo_north", self.fieldset.gridset.grids[0].lat[-1]) self.fieldset.add_constant("halo_south", self.fieldset.gridset.grids[0].lat[0]) if width is None: self.fieldset.add_periodic_halo(meridional=True) else: self.fieldset.add_periodic_halo(meridional=True, halosize=width) # unload the previous kernel, and add the meridionally-periodic kernel self.kernel.remove_lib() if self._is_zonally_periodic: k = _doubly_periodic_BC else: k = _meridionally_periodic_BC periodic_kernel = parcels.Kernel( self.fieldset, self.particleclass.getPType(), k ) self.kernel = parcels.AdvectionRK4 + periodic_kernel + self.sample_kernel self._compile(self.kernel) self._is_meridionally_periodic = True def particleset(self, time): """Create a ParticleSet initialised at the given time. Args: time (float): The origin time for forward and backward advection on this ParticleSet. Returns: parcels.ParticleSet: A new ParticleSet containing a single particle at every gridpoint, initialised at the specified time. """ # reset the global particle ID counter so we can rely on particle IDs making sense parcels.particle.lastID = 0 return parcels.ParticleSet( self.fieldset, pclass=self.particleclass, lon=self._grid_lon, lat=self._grid_lat, time=time, ) def advection_step(self, time, output_time=False): """Perform forward-backward advection at a single point in time. This routine is responsible for creating a new ParticleSet at the given time, and performing the forward and backward advection steps in the Lagrangian transformation. Args: time (float): The point in time at which to calculate filtered data. output_time (:obj:`bool`, optional): Whether to include "time" as a numpy array in the output dictionary, for doing manual analysis. Note: If ``output_time`` is True, the output object will not be compatible with the default filtering workflow, :func:`~filter_step`! Returns: Dict[str, (int, dask.array)]: A dictionary of the advection data, mapping variable names to a pair. The first element is the index of the sampled timestep in the data, and the second element is a lazy dask array concatenating the forward and backward advection data. """ # seed all particles at gridpoints ps = self.particleset(time) # execute the sample-only kernel to efficiently grab the initial condition ps.kernel = self.sample_kernel ps.execute(self.sample_kernel, runtime=0, dt=self.advection_dt) # set up the temporary output file for the initial condition and # forward advection outfile = LagrangeParticleFile(ps, self.output_dt, self.sample_variables) # now the forward advection kernel can run outfile.set_group("forward") ps.kernel = self.kernel ps.execute( self.kernel, runtime=self.window_size, dt=self.advection_dt, output_file=outfile, ) # reseed particles back on the grid, then advect backwards # we don't need any initial condition sampling since we've already done it outfile.set_group("backward") ps = self.particleset(time) ps.kernel = self.kernel ps.execute( self.kernel, runtime=self.window_size, dt=-self.advection_dt, output_file=outfile, ) # stitch together and filter all sample variables from the temporary # output data da_out = {} for v in self.sample_variables: # load data lazily as dask arrays, for forward and backward segments var_array_forward = da.from_array( outfile.data("forward")[v], chunks=(None, "auto") )[:-1, :] var_array_backward = da.from_array( outfile.data("backward")[v], chunks=(None, "auto") )[:-1, :] # get an index into the middle of the array time_index_data = var_array_backward.shape[0] - 1 # construct proper sequence by concatenating data and flipping the backward segment # for var_array_forward, skip the initial output for both the sample-only and # sample-advection kernels, which have meaningless data var_array = da.concatenate( (da.flip(var_array_backward[1:, :], axis=0), var_array_forward) ) da_out[v] = (time_index_data, var_array) if output_time: da_out["time"] = np.concatenate( ( outfile.data("backward").attrs["time"][1:-1][::-1], outfile.data("forward").attrs["time"][:-1], ) ) return da_out def filter_step(self, advection_data): """Perform filtering of a single step of advection data. The Lagrangian-transformed data from :func:`~advection_step` is high-pass filtered in time, leaving only the signal at the origin point (i.e. the filtered forward and backward advection data is discarded). Args: advection_data (Dict[str, (int, dask.array)]): A dictionary of particle advection data from a single timestep, returned from :func:`~advection_step`. Returns: Dict[str, dask.array]: A dictionary mapping sampled variable names to a 1D dask array containing the filtered data at the specified time. This data is not lazy, as it has already been computed out of the temporary advection data. """ da_out = {} for v, a in advection_data.items(): time_index_data, var_array = a def filter_select(x): return signal.filtfilt(*self.inertial_filter, x)[..., time_index_data] # apply scipy filter as a ufunc # mapping an array to scalar over the first axis, automatically vectorize execution # and allow rechunking (since we have a chunk boundary across the first axis) filtered = da.apply_gufunc( filter_select, "(i)->()", var_array, axis=0, output_dtypes=var_array.dtype, allow_rechunk=True, ) da_out[v] = filtered.compute() return da_out def filter(self, *args, **kwargs): """Run the filtering process on this experiment. Note: Instead of `f.filter(...)`, you can call `f(...)` directly. This is main method of the filtering workflow. The timesteps to filter may either be specified manually, or determined from the window size and the timesteps within the input files. In this latter case, only timesteps that have the full window size on either side are selected. Note: If `absolute` is True, the times must be the same datatype as those the input data. For dates with a calendar, this is likely :obj:`np.datetime64` or :obj:`cftime.datetime`. For abstract times, this may simply be a number. Args: times (:obj:`[float]`, optional): A list of timesteps at which to run the filtering. If this is omitted, all timesteps that are fully covered by the filtering window are selected. clobber (:obj:`bool`, optional): Whether to overwrite any existing output file with the same name as this experiment. Default behaviour will not clobber an existing output file. absolute (:obj:`bool`, optional): If `times` is provided, this argument determines whether to interpret them as relative to the first timestep in the input dataset (False, default), or as absolute, following the actual time dimension in the dataset (True). """ self(*args, **kwargs) def create_out(self, clobber=False, date=None): """Create a netCDF dataset to hold filtered output. Here we create a new ``netCDF4.Dataset`` for filtered output. For each sampled variable in the input files, a corresponding variable in created in the output file, with the same dimensions. Returns: netCDF4.Dataset: A single dataset that will hold all filtered output. """ # the output dataset we're creating filename = self.name if date is not None: date_str = str(date)[:13] filename += '_' + date_str filename += ".nc" print(filename) ds = netCDF4.Dataset(filename, "w", clobber=clobber) # helper function to create the dimensions in the ouput file def create_dimension(dims, dim, var): # translate from parcels -> file convention # and check whether we've already created this dimension # (e.g. for a previous variable) file_dim = dims[dim] if file_dim in ds.variables: return ds.variables[file_dim].dimensions[ 1 if len(ds.variables[file_dim].dimensions) > 1 and dim == "lon" else 0 ] # get the file containing the dimension data v_orig = self._variables.get(var, var) if isinstance(self._filenames, xr.Dataset): ds_orig = self._filenames[file_dim] else: if isinstance(self._filenames[var], dict): filename = self._filenames[var][dim] else: filename = self._filenames[var] if isinstance(filename, list): filename = filename[0] ds_orig = xr.open_dataset(next(iglob(filename)))[file_dim] # create dimensions if needed for d in ds_orig.dims: if d not in ds.dimensions: ds.createDimension(d, ds_orig[d].size) # create the dimension variable ds.createVariable(file_dim, ds_orig.dtype, dimensions=ds_orig.dims) ds.variables[file_dim][:] = ds_orig # curvilinear grid case return ds_orig.dims[1 if len(ds_orig.dims) > 1 and dim == "lon" else 0] # create a time dimension if dimensions are uniform across all variables if "time" in self._dimensions: dim_time = self._dimensions["time"] ds.createDimension(dim_time) # Add by FlG if date is not None: ds.createVariable( "time", "float32", dimensions=(dim_time,), ) calendar = 'standard' units = 'seconds since 1900-01-01 00:00' ts = (date -
np.datetime64('1970-01-01T00:00:00Z')
numpy.datetime64
# -*- coding: utf-8 -*- import numpy as np def multi_vertical_crop(img, pieces=3): """按列对图片进行切割。首先找出目标片段所在的列,这个需要按需调整筛选条件。 然后,筛选出边界点,即cutpoints。因为边界点的下一点即是新的片段的起始点, 所以有了pieces个边界点后,就可以进行切割了。 Args: img: PIL.Image object pieces: number of pieces Returns: list of PIL.Image object """ width, height = img.size data = np.array(img) # 以黑点(<140)的数目大于2作为分界条件 points = [i for i in range(width) if np.sum(data[:, i] < 140) > 0] # 找出边界点 cutpoints = [i for i in range(len(points)-1) if points[i]+1 != points[i+1]] if len(cutpoints) != pieces: print("image has something unfit") return None i, j, k = cutpoints # 边界点的下一点即是新片段的起始点 cutpoints = ((points[0], points[i]), (points[i+1], points[j]), (points[j+1], points[k]), (points[k+1], points[-1])) imagelist = [] for start, end in cutpoints: # end+1是因为crop不包含边界,需要+1包含 imagelist.append(img.crop((start, 0, end+1, height))) return imagelist def horizon_crop(img): """按行切割,规则按需设置""" width, height = img.size data = np.array(img) # 这里设置的规则是一行中黑点(<140)不小于2个 points = [i for i in range(height) if np.sum(data[i, :] < 140) >= 1] start, end = points[0], points[-1] # +1 保留最后一行 img_ = img.crop((0, start, width, end+1)) return img_ def vertical_crop(img): """按列剪切,简版,详细文档见multi_vertical_crop""" width, height = img.size data =
np.array(img)
numpy.array
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Linear Gaussian State Space Model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow as tf import tensorflow_probability as tfp from tensorflow_probability.python.distributions.linear_gaussian_ssm import _augment_sample_shape from tensorflow_probability.python.distributions.linear_gaussian_ssm import build_kalman_cov_step from tensorflow_probability.python.distributions.linear_gaussian_ssm import build_kalman_filter_step from tensorflow_probability.python.distributions.linear_gaussian_ssm import build_kalman_mean_step from tensorflow_probability.python.distributions.linear_gaussian_ssm import kalman_transition from tensorflow_probability.python.distributions.linear_gaussian_ssm import KalmanFilterState from tensorflow_probability.python.distributions.linear_gaussian_ssm import linear_gaussian_update from tensorflow.python.framework import test_util from tensorflow.python.platform import test tfl = tf.linalg tfd = tfp.distributions @test_util.run_all_in_graph_and_eager_modes class IIDNormalTest(test.TestCase): def setUp(self): pass def _build_iid_normal_model(self, num_timesteps, latent_size, observation_size, transition_variance, obs_variance): """Build a model whose outputs are IID normal by construction.""" # Use orthogonal matrices to project a (potentially # high-dimensional) latent space of IID normal variables into a # low-dimensional observation that is still IID normal. random_orthogonal_matrix = lambda: np.linalg.qr( np.random.randn(latent_size, latent_size))[0][:observation_size, :] obs_matrix = tf.convert_to_tensor(random_orthogonal_matrix(), dtype=tf.float32) model = tfd.LinearGaussianStateSpaceModel( num_timesteps=num_timesteps, transition_matrix=tf.zeros((latent_size, latent_size)), transition_noise=tfd.MultivariateNormalDiag( scale_diag=tf.sqrt(transition_variance)*tf.ones((latent_size))), observation_matrix=obs_matrix, observation_noise=tfd.MultivariateNormalDiag( scale_diag=tf.sqrt(obs_variance)*tf.ones((observation_size))), initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.sqrt(transition_variance)*tf.ones((latent_size))), validate_args=True) return model def test_iid_normal_sample(self): num_timesteps = 10 latent_size = 3 observation_size = 2 num_samples = 10000 for transition_variance_val in [.3, 100.]: for obs_variance_val in [.6, 40.]: iid_latents = self._build_iid_normal_model( num_timesteps=num_timesteps, latent_size=latent_size, observation_size=observation_size, transition_variance=transition_variance_val, obs_variance=obs_variance_val) x = iid_latents.sample(num_samples) x_val = self.evaluate(x) result_shape = [num_timesteps, observation_size] marginal_variance = transition_variance_val + obs_variance_val stderr_mean = np.sqrt(num_samples * marginal_variance) stderr_variance = marginal_variance * np.sqrt(2./(num_samples-1)) self.assertAllClose(np.mean(x_val, axis=0), np.zeros(result_shape), atol=5*stderr_mean) self.assertAllClose(np.var(x_val, axis=0), np.ones(result_shape) * marginal_variance, rtol=5*stderr_variance) def test_iid_normal_logprob(self): # In the case where the latent states are iid normal (achieved by # setting the transition matrix to zero, so there's no dependence # between timesteps), and observations are also independent # (achieved by using an orthogonal matrix as the observation model), # we can verify log_prob as a simple iid Gaussian log density. delta = 1e-4 for transition_variance_val in [1., 1e-8]: for obs_variance_val in [1., 1e-8]: iid_latents = self._build_iid_normal_model( num_timesteps=10, latent_size=4, observation_size=2, transition_variance=transition_variance_val, obs_variance=obs_variance_val) x = iid_latents.sample([5, 3]) lp_kalman = iid_latents.log_prob(x) marginal_variance = transition_variance_val + obs_variance_val lp_iid = tf.reduce_sum( tfd.Normal(0., tf.sqrt(marginal_variance)).log_prob(x), axis=(-2, -1)) lp_kalman_val, lp_iid_val = self.evaluate((lp_kalman, lp_iid)) self.assertAllClose(lp_kalman_val, lp_iid_val, rtol=delta, atol=0.) @test_util.run_all_in_graph_and_eager_modes class BatchTest(test.TestCase): """Test that methods broadcast batch dimensions for each parameter.""" def setUp(self): pass def _build_random_model(self, num_timesteps, latent_size, observation_size, prior_batch_shape=None, transition_matrix_batch_shape=None, transition_noise_batch_shape=None, observation_matrix_batch_shape=None, observation_noise_batch_shape=None): """Builds a LGSSM with random normal ops of specified shape.""" prior_batch_shape = ( [] if prior_batch_shape is None else prior_batch_shape) transition_matrix_batch_shape = ([] if transition_matrix_batch_shape is None else transition_matrix_batch_shape) transition_noise_batch_shape = ([] if transition_noise_batch_shape is None else transition_noise_batch_shape) observation_matrix_batch_shape = ([] if observation_matrix_batch_shape is None else observation_matrix_batch_shape) observation_noise_batch_shape = ([] if observation_noise_batch_shape is None else observation_noise_batch_shape) return tfd.LinearGaussianStateSpaceModel( num_timesteps=num_timesteps, transition_matrix=tf.random_normal( transition_matrix_batch_shape + [latent_size, latent_size]), transition_noise=tfd.MultivariateNormalDiag( scale_diag=tf.nn.softplus(tf.random_normal( transition_noise_batch_shape + [latent_size]))), observation_matrix=tf.random_normal( observation_matrix_batch_shape + [observation_size, latent_size]), observation_noise=tfd.MultivariateNormalDiag( scale_diag=tf.nn.softplus(tf.random_normal( observation_noise_batch_shape + [observation_size]))), initial_state_prior=tfd.MultivariateNormalDiag( scale_diag=tf.nn.softplus(tf.random_normal( prior_batch_shape + [latent_size]))), validate_args=True) def _sanity_check_shapes(self, model, batch_shape, event_shape, sample_shape=(2, 1)): # Lists can't be default arguments, but we'll want sample_shape to # be a list so we can concatenate with other shapes passed as # lists. sample_shape = list(sample_shape) self.assertEqual(model.event_shape.as_list(), event_shape) self.assertEqual(model.batch_shape.as_list(), batch_shape) y = model.sample(sample_shape) self.assertEqual(y.shape.as_list(), sample_shape + batch_shape + event_shape) lp = model.log_prob(y) self.assertEqual(lp.shape.as_list(), sample_shape + batch_shape) # Try an argument with no batch shape to ensure we broadcast # correctly. unbatched_y = tf.random_normal(event_shape) lp = model.log_prob(unbatched_y) self.assertEqual(lp.shape.as_list(), batch_shape) self.assertEqual(model.mean().shape.as_list(), batch_shape + event_shape) self.assertEqual(model.variance().shape.as_list(), batch_shape + event_shape) def test_constant_batch_shape(self): """Simple case where all components have the same batch shape.""" num_timesteps = 5 latent_size = 3 observation_size = 2 batch_shape = [3, 4] event_shape = [num_timesteps, observation_size] model = self._build_random_model(num_timesteps, latent_size, observation_size, prior_batch_shape=batch_shape, transition_matrix_batch_shape=batch_shape, transition_noise_batch_shape=batch_shape, observation_matrix_batch_shape=batch_shape, observation_noise_batch_shape=batch_shape) # check that we get the basic shapes right self.assertEqual(model.latent_size, latent_size) self.assertEqual(model.observation_size, observation_size) self._sanity_check_shapes(model, batch_shape, event_shape) def test_broadcast_batch_shape(self): """Broadcasting when only one component has batch shape.""" num_timesteps = 5 latent_size = 3 observation_size = 2 batch_shape = [3, 4] event_shape = [num_timesteps, observation_size] # Test batching only over the prior model = self._build_random_model(num_timesteps, latent_size, observation_size, prior_batch_shape=batch_shape) self._sanity_check_shapes(model, batch_shape, event_shape) # Test batching only over the transition op model = self._build_random_model(num_timesteps, latent_size, observation_size, transition_matrix_batch_shape=batch_shape) self._sanity_check_shapes(model, batch_shape, event_shape) # Test batching only over the transition noise model = self._build_random_model(num_timesteps, latent_size, observation_size, transition_noise_batch_shape=batch_shape) self._sanity_check_shapes(model, batch_shape, event_shape) # Test batching only over the observation op model = self._build_random_model(num_timesteps, latent_size, observation_size, observation_matrix_batch_shape=batch_shape) self._sanity_check_shapes(model, batch_shape, event_shape) # Test batching only over the observation noise model = self._build_random_model(num_timesteps, latent_size, observation_size, observation_noise_batch_shape=batch_shape) self._sanity_check_shapes(model, batch_shape, event_shape) def test_batch_shape_error(self): # build a dist where components have incompatible batch # shapes. this should cause a problem somehow. pass class _KalmanStepsTest(object): def setUp(self): # Define a simple model with 2D latents and 1D observations. self.transition_matrix =
np.asarray([[1., .5], [-.2, .3]], dtype=np.float32)
numpy.asarray
#!/usr/bin/env python """ Audio Feature Extractors A set of algorithms for analyzing audio files. Most of the features are built using building blocks from the Essentia audio and music analysis toolkit: https://essentia.upf.edu/index.html <NAME> - <EMAIL> University of Victoria """ from abc import ABC, abstractmethod import math import numpy as np from scipy.stats import norm, linregress import essentia import essentia.standard as es import uvic_music_extractor.utils as utils class ExtractorBase(ABC): """ Base class for audio feature extractors :param sample_rate (int): rate to run extraction at :param pooling (bool): indicates whether results of this extractor are summarized over time using pooling. :param stats (list): stats to run during pooling aggregation (if used). """ def __init__(self, sample_rate: float, pooling: bool = False, stats: list = None): self.sample_rate = sample_rate self.pooling = pooling self.feature_names = [] if stats is None: self.stats = ["mean", "stdev"] @abstractmethod def __call__(self, audio: np.ndarray): """ Abstract method -- must be implemented in inheriting classes :param audio (np.ndarray): input audio to run feature extraction on :return: """ pass def get_headers(self, join="."): """ Get a list of the features combined with aggregation :return: list """ if not self.pooling: return self.feature_names headers = [] for feature in self.feature_names: for stat in self.stats: headers.append("{}{}{}".format(feature, join, stat)) return headers class Spectral(ExtractorBase): """ Spectral audio feature extraction. :param sample_rate (int): rate to run extraction at :param frame_size (int): size of frame to use for spectral processing :param stats (list): stats to run during pooling aggregation (time summarization of spectral results) """ def __init__( self, sample_rate: float, frame_size: float = 2048, stats: list = None ): super().__init__(sample_rate, pooling=True, stats=stats) self.frame_size = frame_size self.feature_names = [ "spectral_centroid", "spectral_spread", "spectral_skewness", "spectral_kurtosis", "spectral_flatness", "spectral_entropy", "rolloff_85", "rolloff_95", "harsh", "energy_lf", "dissonance", "inharmonicity" ] def __call__(self, audio: np.ndarray): """ Run audio :param audio (np.ndarray): input audio :return: feature matrix """ # Pooling for summarizing results over time pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) window = es.Windowing(type="hann", size=self.frame_size) spectrum = es.Spectrum() # Spectral feature extractors centroid = es.Centroid(range=self.sample_rate/2) central_moments = es.CentralMoments(range=self.sample_rate/2) dist_shape = es.DistributionShape() flatness = es.Flatness() entropy = es.Entropy() energy_band_harsh = es.EnergyBandRatio(sampleRate=self.sample_rate, startFrequency=2000, stopFrequency=5000) energy_band_low = es.EnergyBandRatio(sampleRate=self.sample_rate, startFrequency=20, stopFrequency=80) rolloff_85 = es.RollOff(cutoff=0.85, sampleRate=self.sample_rate) rolloff_95 = es.RollOff(cutoff=0.95, sampleRate=self.sample_rate) # Extractors for calculating dissonance and inharmonicity peaks = es.SpectralPeaks() dissonance = es.Dissonance() pitch_yin = es.PitchYinFFT(frameSize=self.frame_size, sampleRate=self.sample_rate) harmonic_peaks = es.HarmonicPeaks() inharmonicity = es.Inharmonicity() # Frame-by-frame computation for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size // 2): # Window frame and compute spectrum win = window(frame) spec = spectrum(win) # Spectral feature extraction sc = centroid(spec) moments = central_moments(spec) spread, skewness, kurtosis = dist_shape(moments) spectral_flatness = flatness(spec) spectral_entropy = entropy(spec) harsh = energy_band_harsh(spec) energy_lf = energy_band_low(spec) roll85 = rolloff_85(spec) roll95 = rolloff_95(spec) # Spectral Peaks peak_freqs, peak_mags = peaks(spec) # Remove DC bin peak if it is present if peak_freqs[0] == 0: peak_freqs = peak_freqs[1:] peak_mags = peak_mags[1:] # Calculate dissonance and inharmonicity from peaks dissonance_val = dissonance(peak_freqs, peak_mags) pitch, _ = pitch_yin(spec) harm_freqs, harm_mags = harmonic_peaks(peak_freqs, peak_mags, pitch) inharm = inharmonicity(harm_freqs, harm_mags) # Add to pool for summarization keys = self.feature_names pool.add(keys[0], sc) pool.add(keys[1], spread) pool.add(keys[2], skewness) pool.add(keys[3], kurtosis) pool.add(keys[4], spectral_flatness) pool.add(keys[5], spectral_entropy) pool.add(keys[6], roll85) pool.add(keys[7], roll95) pool.add(keys[8], harsh) pool.add(keys[9], energy_lf) pool.add(keys[10], dissonance_val) pool.add(keys[11], inharm) stats = pool_agg(pool) results = [stats[feature] for feature in self.get_headers()] return results class CrestFactor(ExtractorBase): """ Crest Factor Extractor Peak-to-average ratio where peak is the the maximum amplitude level and average is the RMS value. https://en.wikipedia.org/wiki/Crest_factor :param sample_rate (int): rate to run extraction at :param frame_size (int): size of frame to use :param stats (list): stats to run during pooling aggregation (time summarization) """ def __init__( self, sample_rate: float, frame_size: float = None, stats: list = None ): super().__init__(sample_rate, pooling=frame_size is not None, stats=stats) self.frame_size = frame_size self.feature_names = ["crest_factor"] def __call__(self, audio: np.ndarray): """ Run crest factor audio feature extraction :param audio: Input audio samples :return: feature matrix """ rms = es.RMS() minimum = es.MinMax(type='min') maximum = es.MinMax(type='max') if self.frame_size: pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size): frame_rms = rms(frame) frame_peak_min = minimum(frame)[0] frame_peak_max = maximum(frame)[0] frame_peak = max(abs(frame_peak_min), abs(frame_peak_max)) frame_crest = frame_peak / frame_rms pool.add('crest_factor', frame_crest) stats = pool_agg(pool) crest_factor = [stats['crest_factor.{}'.format(stat)] for stat in self.stats] else: full_rms = rms(audio) full_peak_min = minimum(audio)[0] full_peak_max = maximum(audio)[0] full_peak = max(abs(full_peak_min), abs(full_peak_max)) crest_factor = [full_peak / full_rms] return crest_factor class Loudness(ExtractorBase): """ Loudness Features Loudness Range -------------- Loudness range is computed from short-term loudness values. It is defined as the difference between the estimates of the 10th and 95th percentiles of the distribution of the loudness values with applied gating. See Essentia documentation for more information: https://essentia.upf.edu/reference/std_LoudnessEBUR128.html EBU Tech Doc 3342-2011. "Loudness Range: A measure to supplement loudness normalisation in accordance with EBU R 128" LDR_95, LDR_max, peak-to-loudness -------------------------------- LDR is a measurement of microdynamics. It is computed by taking the difference between loudness measurements using a fast integration time and a slow integration time, then computing the maximum or 95 percentile value from those results. Peak-to-loudness is computed by taking the ratio between the true peak amplitude and the overall loudness. <NAME>. "Measures of microdynamics." Audio Engineering Society Convention 137. Audio Engineering Society, 2014. top1db ------ Ratio of audio samples in the range [-1dB, 0dB] <NAME>, et al. "Production effect: audio features for recording techniques description and decade prediction." 2011. :param sample_rate (int): rate to run extraction at """ def __init__(self, sample_rate: float): super().__init__(sample_rate, pooling=False, stats=None) self.feature_names = [ "loudness_range", "microdynamics_95%", "microdynamics_100%", "peak_to_loudness", "top1db" ] def __call__(self, audio: np.ndarray): """ Run loudness / dynamics feature extraction :param audio: Input audio samples :return: feature matrix """ loudness = es.LoudnessEBUR128(startAtZero=True, sampleRate=self.sample_rate) loudness_stats = loudness(audio) loudness_range = loudness_stats[3] # Micro dynamics (LDR) micro_dynamics = loudness_stats[0] - loudness_stats[1] ldr_95 = np.percentile(micro_dynamics, 95.0) ldr_max = micro_dynamics.max() # True peak detection for peak to loudness calculation true_peak_detector = es.TruePeakDetector(sampleRate=self.sample_rate) true_peak_audio_l = true_peak_detector(audio[:, 0])[1] true_peak_l = 20 * math.log10(true_peak_audio_l.max()) true_peak_audio_r = true_peak_detector(audio[:, 1])[1] true_peak_r = 20 * math.log10(true_peak_audio_r.max()) # True peak to loudness true_peak = max(true_peak_l, true_peak_r) peak_to_loudness = true_peak / loudness_stats[2] # Top 1 dB (ratio of samples in the top 1dB) top_1db_gain = math.pow(10, -1.0 / 20.0) top_1db_l = (true_peak_audio_l > top_1db_gain).sum() top_1db_r = (true_peak_audio_l > top_1db_gain).sum() top1db = (top_1db_l + top_1db_r) / (len(true_peak_audio_l) + len(true_peak_audio_r)) return [loudness_range, ldr_95, ldr_max, peak_to_loudness, top1db] class DynamicSpread(ExtractorBase): """ Dynamic Spread Feature Extractor. Measure of the loudness spread across the audio file. The difference between the loudness (using Vickers algorithm) for each frame compared to the average loudness of the entire track is computed. Then, the average of that is computed. <NAME>. "Automatic long-term loudness and dynamics matching." Audio Engineering Society Convention 111. Audio Engineering Society, 2001. :param sample_rate (int): rate to run extraction at :param frame_size (int): size of frame to use. Defaults to 2048. """ def __init__( self, sample_rate: float, frame_size: float = 2048, ): super().__init__(sample_rate, pooling=False, stats=None) self.frame_size = frame_size self.feature_names = ["dynamic_spread"] def __call__(self, audio: np.ndarray): """ Run loudness feature extraction :param audio: Input audio samples :return: feature matrix """ vickers_loudness = es.LoudnessVickers() pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=['mean']) # Calculate the Vickers loudness frame by frame for frame in es.FrameGenerator(audio, self.frame_size, self.frame_size): frame_loudness = vickers_loudness(frame) pool.add('vdb', frame_loudness) # Compute the average loudness across frames stats = pool_agg(pool) vickers_mean = stats['vdb.mean'] # Compute the difference between loudness at each frame and the mean loudness dynamic_spread = 0.0 for vdb in pool['vdb']: dynamic_spread += abs(vdb - vickers_mean) dynamic_spread /= len(pool['vdb']) return [dynamic_spread] class Distortion(ExtractorBase): """ Set of distortion features -- computes a probability density function on audio samples using a histogram with 1001 bins. Several statistics are computed on the resulting pdf including the centroid, spread, skewness, kurtosis, flatness, and the 'gauss' feature. 'Gauss' is a measurement of the gaussian fit of the the pdf. Wilson, Alex, and <NAME>. "Characterisation of distortion profiles in relation to audio quality." Proc. of the 17th Int. Conference on Digital Audio Effects (DAFx-14). 2014. <NAME>., and <NAME>. "Perception & evaluation of audio quality in music production." Proc. of the 16th Int. Conference on Digital Audio Effects (DAFx-13). 2013. :param sample_rate (int): rate to run extraction at """ def __init__(self, sample_rate: float): super().__init__(sample_rate, pooling=False, stats=None) self.feature_names = [ "pmf_centroid", "pmf_spread", "pmf_skewness", "pmf_kurtosis", "pmf_flatness", "pmf_gauss" ] def __call__(self, audio: np.ndarray): """ Run distortion feature extraction :param audio: Input audio samples :return: feature matrix """ # Compute PDF of audio sample amplitudes hist, edges = np.histogram(audio, bins=1001, range=(-1.0, 1.0), density=True) hist = np.array(hist, dtype=np.float32) # Analysis of PDF shape centroid_calc = es.Centroid() centroid = centroid_calc(hist) central_moments = es.CentralMoments() shape = es.DistributionShape() cm = central_moments(hist) spread, skewness, kurtosis = shape(cm) flatness_calc = es.Flatness() flatness = flatness_calc(hist) # Compute r squared value of guassian fit mu, std = norm.fit(audio) gauss = norm.pdf(np.linspace(-1.0, 1.0, 1001), mu, std) _, _, rvalue, _, _ = linregress(gauss, hist) r_squared = rvalue ** 2 return [centroid, spread, skewness, kurtosis, flatness, r_squared] class StereoFeatures(ExtractorBase): """ Stereo Feature Extractor: Sides-to-mid ratio and left-right imbalance <NAME>., et al. "An analysis and evaluation of audio features for multitrack music mixtures." (2014). :param sample_rate (int): rate to run extraction at """ def __init__(self, sample_rate: float): super().__init__(sample_rate, pooling=False, stats=None) self.feature_names = ["side_mid_ratio", "lr_imbalance"] def __call__(self, audio: np.ndarray): """ Run stereo feature extraction :param audio: Input audio samples :return: feature matrix """ sides = (audio[:, 0] - audio[:, 1]) ** 2 mids = (audio[:, 0] + audio[:, 1]) ** 2 sides_mid_ratio = sides.mean() / mids.mean() left_power = (audio[:, 0] ** 2).mean() right_power = (audio[:, 1] ** 2).mean() lr_imbalance = (right_power - left_power) / (right_power + left_power) return sides_mid_ratio, lr_imbalance class PhaseCorrelation(ExtractorBase): """ Phase Correlation feature extraction. Calculates the correlation coefficient between the left and right channel. If a frame_size of None is based in then the calculation is performed on the entire audio signal. Otherwise, frame-by-frame processing is computed using the frame_size number of samples and the results are summarized using the passed in stats. :param sample_rate (float): rate to run extraction at :param frame_size (int): number of samples per frame for frame-by-frame processing. If None then computation is performed over the entire input. Defaults to None. :param stats (list): a list of strings indicating the stats to use during time summarization. Only applied if frame-by-frame processing is computed. """ def __init__( self, sample_rate: float, frame_size: int = None, stats: list = None ): super().__init__(sample_rate, pooling=frame_size is not None, stats=stats) self.frame_size = frame_size self.feature_names = ["phase_correlation"] def __call__(self, audio: np.ndarray): """ Run phase correlation feature extraction. :param audio: Input audio samples :return: feature matrix """ if self.frame_size: max_sample = audio.shape[0] slice_indices = list(range(0, max_sample, self.frame_size)) slice_indices.append(max_sample) pool = essentia.Pool() for i in range(len(slice_indices) - 1): x1 = slice_indices[i] x2 = slice_indices[i + 1] correlation_matrix = np.corrcoef(audio[x1:x2, 0], audio[x1:x2, 1]) phase_correlation = correlation_matrix[0, 1] pool.add(self.feature_names[0], phase_correlation) pool_agg = es.PoolAggregator(defaultStats=self.stats) stats = pool_agg(pool) phase_correlation = [stats["{}.{}".format(self.feature_names[0], stat)] for stat in self.stats] else: correlation_matrix = np.corrcoef(audio[:, 0], audio[:, 1]) phase_correlation = [correlation_matrix[0, 1]] return phase_correlation class StereoSpectrum(ExtractorBase): """ Stereo Spectrum Features. Panning features computed using spectrums from the left and right audio channels. Returns features from the entire spectrum as well as three subbands which include 0-250Hz, 250-2800Hz, and 2800+ Hz. Tzanetakis, George, <NAME>, and <NAME>. "Stereo Panning Features for Classifying Recording Production Style." ISMIR. 2007. """ def __init__( self, sample_rate: float, frame_size: int = 2048, hop_size: int = 1024, stats: list = None ): super().__init__(sample_rate, pooling=True, stats=stats) self.frame_size = frame_size self.hop_size = hop_size self.low = 250 self.high = 2800 self.feature_names = ["sps_full", "sps_low", "sps_mid", "sps_high"] def __call__(self, audio: np.ndarray): """ Run stereo spectrum feature extraction :param audio: Input audio samples :return: feature matrix """ # Must be stereo audio assert audio.shape[1] == 2 # Hanning window window = np.hanning(self.frame_size) pool = essentia.Pool() pool_agg = es.PoolAggregator(defaultStats=self.stats) # Bin numbers for each filter bank low_bin = int((self.low / self.sample_rate) * self.frame_size) assert low_bin <= int(self.frame_size / 2) high_bin = int((self.high / self.sample_rate) * self.frame_size) assert high_bin <= int(self.frame_size / 2) for i in range(0, len(audio), self.hop_size): # Get the windowed frame for each channel samples = audio[i:i+self.frame_size, :] frame_left = np.zeros(self.frame_size) frame_left[:len(samples)] = samples[:, 0] frame_right = np.zeros(self.frame_size) frame_right[:len(samples)] = samples[:, 1] # Apply window frame_left *= window frame_right *= window X_left = np.fft.rfft(frame_left) X_right = np.fft.rfft(frame_right) stereo_spectrum = StereoSpectrum.compute_stereo_spectrum(X_left, X_right) # Features full = utils.rms(stereo_spectrum) low = utils.rms(stereo_spectrum[:low_bin]) mid = utils.rms(stereo_spectrum[low_bin:high_bin]) high = utils.rms(stereo_spectrum[high_bin:]) pool.add(self.feature_names[0], full) pool.add(self.feature_names[1], low) pool.add(self.feature_names[2], mid) pool.add(self.feature_names[3], high) stats = pool_agg(pool) results = [stats[feature] for feature in self.get_headers()] return results @staticmethod def compute_stereo_spectrum(spectrum_left, spectrum_right): """ Computes the stereo panning features using left and right channel spectrums :param spectrum_left: magnitude spectrum from the left channel :param spectrum_right: magnitude spectrum from the right channel :return: stereo spectrum features """ np.zeros_like(spectrum_left) # Update the DC and Nyquist Bins spectrum_left[0] = np.real(spectrum_left[0]) + 0j spectrum_left[-1] = np.real(spectrum_left[-1]) + 0j spectrum_right[0] = np.real(spectrum_right[0]) + 0j spectrum_right[-1] = np.real(spectrum_right[-1]) + 0j real_left = np.real(spectrum_left) imag_left = np.imag(spectrum_left) real_right =
np.real(spectrum_right)
numpy.real
""" GRUD.py utilities for GRU-D on MIMIC-III """ # import dependecies import pandas as pd import numpy as np import os import glob import copy import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import torch.utils.data as utils from torch.autograd import Variable from torch.nn.parameter import Parameter import torch.nn.functional as F import math import time class FilterLinear(nn.Module): """ As seen in https://github.com/zhiyongc/GRU-D/ """ def __init__(self, in_features, out_features, filter_square_matrix, bias=True): ''' filter_square_matrix : filter square matrix, whose each elements is 0 or 1. ''' super(FilterLinear, self).__init__() self.in_features = in_features self.out_features = out_features use_gpu = torch.cuda.is_available() self.filter_square_matrix = None if use_gpu: self.filter_square_matrix = Variable(filter_square_matrix.cuda(), requires_grad=False) else: self.filter_square_matrix = Variable(filter_square_matrix, requires_grad=False) self.weight = Parameter(torch.Tensor(out_features, in_features)) if bias: self.bias = Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) # print(self.weight.data) # print(self.bias.data) def forward(self, input): # print(self.filter_square_matrix.mul(self.weight)) return F.linear(input, self.filter_square_matrix.mul(self.weight), self.bias) def __repr__(self): return self.__class__.__name__ + '(' \ + 'in_features=' + str(self.in_features) \ + ', out_features=' + str(self.out_features) \ + ', bias=' + str(self.bias is not None) + ')' class GRUD(nn.Module): def __init__(self, input_size, cell_size, hidden_size, X_mean, device, output_last = False, fp16=False): """ With minor modifications from https://github.com/zhiyongc/GRU-D/ Recurrent Neural Networks for Multivariate Times Series with Missing Values GRU-D: GRU exploit two representations of informative missingness patterns, i.e., masking and time interval. cell_size is the size of cell_state. Implemented based on the paper: @article{che2018recurrent, title={Recurrent neural networks for multivariate time series with missing values}, author={<NAME> and <NAME> <NAME> <NAME>}, journal={Scientific reports}, volume={8}, number={1}, pages={6085}, year={2018}, publisher={Nature Publishing Group} } GRU-D: input_size: variable dimension of each time hidden_size: dimension of hidden_state mask_size: dimension of masking vector X_mean: the mean of the historical input data """ super(GRUD, self).__init__() self.hidden_size = hidden_size self.delta_size = input_size self.mask_size = input_size # use_gpu = torch.cuda.is_available() # if use_gpu: # self.identity = torch.eye(input_size).cuda() # self.zeros = Variable(torch.zeros(input_size).cuda()) # self.zeros_h = Variable(torch.zeros(self.hidden_size).cuda()) # self.X_mean = Variable(torch.Tensor(X_mean).cuda()) # else: self.identity = torch.eye(input_size).to(device) self.zeros = Variable(torch.zeros(input_size)).to(device) self.zeros_h = Variable(torch.zeros(self.hidden_size)).to(device) self.X_mean = Variable(torch.Tensor(X_mean)).to(device) if fp16=='True': self.identity.half() self.zeros.half() self.zeros_h.half() self.X_mean = self.X_mean.half() self.zl = nn.Linear(input_size + hidden_size + self.mask_size, hidden_size) # Wz, Uz are part of the same network. the bias is bz self.rl = nn.Linear(input_size + hidden_size + self.mask_size, hidden_size) # Wr, Ur are part of the same network. the bias is br self.hl = nn.Linear(input_size + hidden_size + self.mask_size, hidden_size) # W, U are part of the same network. the bias is b self.gamma_x_l = FilterLinear(self.delta_size, self.delta_size, self.identity) self.gamma_h_l = nn.Linear(self.delta_size, self.hidden_size) # this was wrong in available version. remember to raise the issue self.output_last = output_last self.fc = nn.Linear(self.hidden_size, 2) def step(self, x, x_last_obsv, x_mean, h, mask, delta): """ Inputs: x: input tensor x_last_obsv: input tensor with forward fill applied x_mean: the mean of each feature h: the hidden state of the network mask: the mask of whether or not the current value is observed delta: the tensor indicating the number of steps since the last time a feature was observed. Returns: h: the updated hidden state of the network """ batch_size = x.shape[0] dim_size = x.shape[1] # print(self.zeros.dtype, delta.dtype) # print(self.gamma_x_l(delta).dtype) delta_x = torch.exp(-torch.max(self.zeros, self.gamma_x_l(delta))) #exponentiated negative rectifier delta_h = torch.exp(-torch.max(self.zeros_h, self.gamma_h_l(delta))) #self.zeros became self.zeros_h to accomodate hidden size != input size # print(x.shape) # 1, 533 # print(x_mean.shape) # print(delta_x.shape) # print(x_last_obsv.shape) x = mask * x + (1 - mask) * (delta_x * x_last_obsv + (1 - delta_x) * x_mean) h = delta_h * h # print(x.shape) #534, 533 # print(h.shape) # 1,67 # print(mask.shape) # 1,533 combined = torch.cat((x, h, mask), 1) z = torch.sigmoid(self.zl(combined)) #sigmoid(W_z*x_t + U_z*h_{t-1} + V_z*m_t + bz) r = torch.sigmoid(self.rl(combined)) #sigmoid(W_r*x_t + U_r*h_{t-1} + V_r*m_t + br) # print(x.shape, (r*h).shape, mask.shape) new_combined=torch.cat((x, r*h, mask), 1) h_tilde = torch.tanh(self.hl(new_combined)) #tanh(W*x_t +U(r_t*h_{t-1}) + V*m_t) + b # h_tilde = torch.tanh(self.hl(combined)) #tanh(W*x_t +U(r_t*h_{t-1}) + V*m_t) + b h = (1 - z) * h + z * h_tilde return h def forward(self, X, X_last_obsv, Mask, Delta, pad_mask=None, return_hidden=False): batch_size = X.size(0) # type_size = input.size(1) step_size = X.size(1) # num timepoints spatial_size = X.size(2) # num features Hidden_State = self.initHidden(batch_size) # X = torch.squeeze(input[:,0,:,:]) # X_last_obsv = torch.squeeze(input[:,1,:,:]) # Mask = torch.squeeze(input[:,2,:,:]) # Delta = torch.squeeze(input[:,3,:,:]) if pad_mask is not None: pass outputs = None for i in range(step_size): Hidden_State = self.step(torch.squeeze(X[:,i:i+1,:], 1)\ , torch.squeeze(X_last_obsv[:,i:i+1,:], 1)\ , torch.unsqueeze(self.X_mean, 0)\ , Hidden_State\ , torch.squeeze(Mask[:,i:i+1,:], 1)\ , torch.squeeze(Delta[:,i:i+1,:], 1)) if outputs is None: outputs = Hidden_State.unsqueeze(1) else: # # this makes the sequence reversed # outputs = torch.cat((Hidden_State.unsqueeze(1), outputs), 1) #this preserves the order outputs = torch.cat((outputs, Hidden_State.unsqueeze(1)), 1) # print(outputs.shape) if True: #binary outcomes for all states if return_hidden: # print(self.fc(torch.squeeze(outputs, 0)).shape) return self.fc(torch.squeeze(outputs, 0)), outputs else: # print(self.fc(torch.squeeze(outputs, 0)).shape) return self.fc(torch.squeeze(outputs, 0)) # we want to predict a binary outcome else: # binary outcome for last state return self.fc(Hidden_State) # if self.output_last: # return outputs[:,-1,:] # else: # return outputs def initHidden(self, batch_size): use_gpu = torch.cuda.is_available() if use_gpu: Hidden_State = Parameter(Variable(torch.zeros(batch_size, self.hidden_size).cuda())) return Hidden_State else: Hidden_State = Parameter(Variable(torch.zeros(batch_size, self.hidden_size))) return Hidden_State class next_measurement(nn.Module): """ predict the next value """ def __init__(self, feat_dim, hidden_dim): super(next_measurement, self).__init__() #predict next outputs self.fc1=nn.Linear(hidden_dim, 2048) self.fc2=nn.Linear(2048, 2048) self.fc3=nn.Linear(2048, feat_dim) self.drop=nn.Dropout(p=0.1) self.rl=nn.ReLU() def forward(self, x): x=self.drop(x) x=self.rl(self.fc1(x)) x=self.rl(self.fc2(x)) x=self.rl(self.fc3(x)) return x class icd10_head(nn.Module): """ Prediction head for ICD10 """ def __init__(self, icd10_dim, hidden_dim): super(icd10_head, self).__init__() #predict next outputs self.fc1=nn.Linear(hidden_dim, 2048) self.fc2=nn.Linear(2048, 2048) self.fc3=nn.Linear(2048, icd10_dim) self.drop=nn.Dropout(p=0.1) self.rl=nn.ReLU() def forward(self, x): x=self.drop(x) x=self.rl(self.fc1(x)) x=self.rl(self.fc2(x)) x=self.rl(self.fc3(x)) return x def train_GRUD(model, train_dataloader, val_dataloader, num_epochs = 300, patience = 3, min_delta = 0.00001, weight=None, multitask=False, multitask_weights=None,): """ """ from tqdm import tqdm from sklearn.metrics import roc_auc_score print('Model Structure: ', model) print('Start Training ... ') device = torch.device("cuda" if torch.cuda.is_available() and not False else "cpu") n_gpu = torch.cuda.device_count() if multitask: _, _, _, _, _, icd10, sepsis, resp=next(iter(train_dataloader)) try: hidden_dim=model.hidden_size except: hidden_dim=model.module.hidden_size icd_code_head=icd10_head(icd10.shape[-1], hidden_dim) icd_code_head.to(device) if n_gpu>1: icd_code_head = torch.nn.DataParallel(icd_code_head) sepsis_head=icd10_head(2, hidden_dim) sepsis_head.to(device) if n_gpu>1: sepsis_head = torch.nn.DataParallel(sepsis_head) resp_head=icd10_head(2, hidden_dim) resp_head.to(device) if n_gpu>1: resp_head = torch.nn.DataParallel(resp_head) # soft=nn.Sigmoid() # if (type(model) == nn.modules.container.Sequential): # output_last = model[-1].output_last # print('Output type dermined by the last layer') # else: # output_last = model.output_last # print('Output type dermined by the model') try: output_last = model.output_last except: #data parallel output_last = model.module.output_last if weight is not None: weight=weight.float().to(device) # loss_MSE = torch.nn.MSELoss() # loss_nll=torch.nn.NLLLoss() loss_CEL=torch.nn.CrossEntropyLoss(reduction='mean', weight=weight) if multitask: loss_icd=torch.nn.MultiLabelSoftMarginLoss(reduction ='mean', weight=multitask_weights[0]) loss_sepsis=torch.nn.CrossEntropyLoss(reduction='mean', weight=multitask_weights[1]) loss_resp=torch.nn.CrossEntropyLoss(reduction='mean', weight=multitask_weights[2]) # loss_L1 = torch.nn.L1Loss() learning_rate = 0.0001 optimizer = torch.optim.RMSprop(model.parameters(), lr = learning_rate, alpha=0.99) if multitask: optimizer = torch.optim.RMSprop(list(model.parameters())+list(icd_code_head.parameters())+list(sepsis_head.parameters())+list(resp_head.parameters()), lr = learning_rate, alpha=0.99) # base_params=[] # for name, param in model.named_parameters(): # if param.requires_grad & ('fc' not in name): # #not the fully connected head # base_params.append(param) # multitask_optimizer = torch.optim.RMSprop(base_params+list(icd_code_head.parameters()), lr = learning_rate, alpha=0.99) use_gpu = torch.cuda.is_available() interval = 100 cur_time = time.time() pre_time = time.time() proba_projection=torch.nn.Softmax(dim=1) # Variables for Early Stopping is_best_model = 0 patient_epoch = 0 for epoch in range(num_epochs): losses_epoch_train = [] losses_epoch_valid = [] ### TRAIN --------------------------------------------------------- model.train() if multitask: icd_code_head.train() sepsis_head.train() resp_head.train() batches=tqdm(train_dataloader, desc='step', total=len(train_dataloader)) for batch in batches: batch = tuple(t.to(device) for t in batch) measurement, measurement_last_obsv, mask, time_, labels, icd10, sepsis_labels, resp_labels = batch for item in batch: if np.sum(np.sum(np.sum(np.isnan(item.cpu().data.numpy()))))>0: print("Nans") optimizer.zero_grad() # if multitask: # multitask_optimizer.zero_grad() prediction, hidden_states=model(measurement.float(), measurement_last_obsv.float(), mask.float(), time_.float(), return_hidden=True) # get hidden_state for additional losses if multitask: icd10_prediction=icd_code_head(hidden_states) sepsis_prediction=sepsis_head(hidden_states) resp_prediction=resp_head(hidden_states) # add next sequence prediction # add next measurement prediction if output_last: loss_main = loss_CEL(prediction.view(measurement.shape[1],2), labels.long().squeeze(0)) loss_train = loss_main else: full_labels = torch.cat((inputs[:,1:,:], labels.long()), dim = 1) loss_train = loss_MSE(outputs, full_labels) if multitask: # print('icd10_prediction: ', icd10_prediction.shape, icd10.shape) # print('icd10_prediction queezed: ', torch.squeeze(icd10_prediction, 0).shape, torch.unsqueeze(torch.squeeze(icd10), 0).expand_as(torch.squeeze(icd10_prediction, 0)).float().shape) loss_from_icd=loss_icd(torch.squeeze(icd10_prediction, 0), torch.unsqueeze(torch.squeeze(icd10), 0).expand_as(torch.squeeze(icd10_prediction, 0)).float()) loss_train+=loss_from_icd loss_from_sepsis=loss_sepsis(sepsis_prediction.view(measurement.shape[1],2), torch.squeeze(sepsis_labels.long(), 0)) loss_train+=loss_from_sepsis loss_from_resp=loss_resp(resp_prediction.view(measurement.shape[1],2), torch.squeeze(resp_labels.long(), 0)) loss_train+=loss_from_resp # loss_train.backward(retain_graph=True) # loss_train_multitask.backward() else: pass loss_train.backward() optimizer.step() # if multitask: # multitask_optimizer.step() losses_epoch_train.append((loss_main.cpu().data.numpy(), loss_from_icd.cpu().data.numpy(), loss_from_sepsis.cpu().data.numpy(), loss_from_resp.cpu().data.numpy())) batches.set_description("{:02f}".format(loss_train.cpu().data.numpy())) ### VALIDATION --------------------------------------------------------- model.eval() icd_code_head.eval() sepsis_head.eval() resp_head.eval() # batches=tqdm(enumerate(val_dataloader), desc='step', total=len(val_dataloader)) labels=[] scores=[] for i, batch in enumerate(val_dataloader): batch = tuple(t.to(device) for t in batch) measurement_val, measurement_last_obsv_val, mask_val, time_val, labels_val, icd10, sepsis_labels, resp_labels = batch # print(measurement_val.shape, measurement_last_obsv_val.shape, mask_val.shape, time_val.shape) # print(measurement.shape, measurement_last_obsv.shape, mask.shape, time_.shape) with torch.no_grad(): prediction_val, hidden_states = model(measurement_val.float(), measurement_last_obsv_val.float(), mask_val.float(), time_val.float(), return_hidden=True) scores.append(proba_projection(prediction_val).detach().cpu().numpy()) # I just learned how to spell detach labels.append(labels_val.detach().cpu().numpy()) if output_last: loss_valid =loss_CEL(prediction_val.view(measurement_val.shape[1],2), labels_val.long().squeeze(0)) else: full_labels_val = torch.cat((inputs_val[:,1:,:], labels_val.long()), dim = 1) loss_valid = loss_MSE(outputs_val, full_labels_val.long()) if multitask: icd10_prediction=icd_code_head(hidden_states) sepsis_prediction=sepsis_head(hidden_states) resp_prediction=resp_head(hidden_states) loss_from_icd=loss_icd(torch.squeeze(icd10_prediction, 0), torch.unsqueeze(torch.squeeze(icd10), 0).expand_as(torch.squeeze(icd10_prediction, 0)).float()) loss_valid+=loss_from_icd loss_from_sepsis=loss_sepsis(sepsis_prediction.view(measurement_val.shape[1],2), torch.squeeze(sepsis_labels.long(), 0)) loss_valid+=loss_from_sepsis loss_from_resp=loss_resp(resp_prediction.view(measurement_val.shape[1],2), torch.squeeze(resp_labels.long(), 0)) loss_valid+=loss_from_resp losses_epoch_valid.append((loss_main.cpu().data.numpy(), loss_from_icd.cpu().data.numpy(), loss_from_sepsis.cpu().data.numpy(), loss_from_resp.cpu().data.numpy())) else: losses_epoch_valid.append(loss_valid.cpu().data.numpy()) # # compute the loss # labels.append(label.view(-1,).squeeze().cpu().data.numpy()) # scores.append(m(classfication).view(-1).squeeze().cpu().data.numpy()) # print(sklearn.metrics.roc_auc_score(labels_val.detach().cpu().numpy(), prediction_val.detach().cpu().numpy()[:,1])) try: # print("garbage") # print(np.asarray(losses_epoch_valid).shape) # print("success") avg_losses_epoch_valid=np.mean(
np.asarray(losses_epoch_valid)
numpy.asarray
# -*- coding: utf-8 -*- """ Created on Tue Jun 16 12:04:18 2015 @author: fcaldas """ import numpy as np import io; import numpy as np; import matplotlib as pl; from scipy import io from sklearn import metrics; import matplotlib.pyplot as plt import bisect; from numba import jit def generate_pairs(label, n_pairs, positive_ratio, random_state=41): """Generate a set of pair indices Parameters ---------- X : array, shape (n_samples, n_features) Data matrix label : array, shape (n_samples, 1) Label vector n_pairs : int Number of pairs to generate positive_ratio : float Positive to negative ratio for pairs random_state : int Random seed for reproducibility Output ------ pairs_idx : array, shape (n_pairs, 2) The indices for the set of pairs label_pairs : array, shape (n_pairs, 1) The pair labels (+1 or -1) """ rng = np.random.RandomState(random_state) n_samples = label.shape[0] pairs_idx = np.zeros((n_pairs, 2), dtype=int) pairs_idx[:, 0] = np.random.randint(0, n_samples, n_pairs) rand_vec = rng.rand(n_pairs) for i in range(n_pairs): if rand_vec[i] <= positive_ratio: idx_same = np.where(label == label[pairs_idx[i, 0]])[0] while idx_same.shape[0] == 1: pairs_idx[i, 0] = rng.randint(0,n_samples) idx_same = np.where(label == label[pairs_idx[i, 0]])[0] idx2 = rng.randint(idx_same.shape[0]) pairs_idx[i, 1] = idx_same[idx2] while pairs_idx[i, 1] == pairs_idx[i, 0]: idx2 = rng.randint(idx_same.shape[0]) pairs_idx[i, 1] = idx_same[idx2] else: idx_diff = np.where(label != label[pairs_idx[i, 0]])[0] idx2 = rng.randint(idx_diff.shape[0]) pairs_idx[i, 1] = idx_diff[idx2] pairs_label = 2.0 * (label[pairs_idx[:, 0]] == label[pairs_idx[:, 1]]) - 1.0 return pairs_idx, pairs_label @jit def update(X_i, X_j, A, y, u, l, gamma): diff = X_i - X_j d = np.dot(diff, np.dot(A , diff)) if (d >u and y == 1) or (d < l and y == -1): target = u * (y == 1) + l * (y == -1) _y = ( (gamma * d * target - 1) + np.sqrt((gamma * d * target - 1) ** 2 + 4 * gamma * d * d) )/(2 * gamma * d) return A - ((gamma * (_y - target)) / (1 + gamma * (_y - target) * d)) * np.outer(np.dot(A, diff), np.dot(A, diff)) else : return A @jit def A_dist_pairs(X , A, pairs): n_pairs = pairs.shape[0] dist = np.ones((n_pairs,), dtype=np.dtype("float32")) for i in range(n_pairs): diff = X[pairs[i, 0], :] - X[pairs[i, 1], :] dist[i] = np.dot(diff , np.dot(A , diff)) return
np.sqrt(dist)
numpy.sqrt
import numpy as np import Alice class Network(object): def __init__(self,sizes,eta=0.01): self.eta = eta self.num_layers = len(sizes) self.sizes = sizes self.weights = [np.random.randn(x,y) for x,y in zip(sizes[:-1], sizes[1:])] self.biases = [np.random.randn(1,x) for x in sizes[1:]] ############################################################################ ############# NETWORK ###################################################### # funcao para calcular o erro da rede # y = minha saida # o = output esperado def __loss(self,y,o): return Alice.mse(y,o) def __d_loss(self,y,o): return Alice.mse_derivate(y,o) # funcao para selecionar a saida do neuronio def __selector(self,z): return Alice.softmax(z) def __d_selector(self,z,alpha): return Alice.softmax_derivate(z,alpha) # funcao para ativar cada neuronio def __activation(self,z): return Alice.sigmoid2(z) def __d_activation(self,z,alpha): return Alice.sigmoid2_derivate(z,alpha) # funcao que realiza a entrada de toda camada anterior def __layer(self,x,w,b): return Alice.dotMatrix(x,w,b) def __d_layer(self,x,w,alpha): return Alice.dotMatrix_derivate(x,w,alpha) def __feedForward(self,x): for w, b in zip(self.weights,self.biases): x = self.__layer(self.__activation(x),w,b) #x = self.__activation(self.__layer(x,w,b)) return self.__selector(x) def __backPropagation(self,x,target): # feedForward z = [x] # save all Zs activations = [] # save all activations for w, b in zip(self.weights,self.biases): x = self.__layer(x,w,b) activations.append(x) x = self.__activation(x) z.append(x) y = self.__selector(x) derror = self.__d_loss(y,target) derror = self.__d_selector(z[self.num_layers - 1],derror) for l in range(1, self.num_layers): w = self.weights[-l] b = self.biases[-l] derror = self.__d_activation(activations[-l],derror) nabla_w = z[-l-1].transpose().dot(derror) # error for each wij nabla_b = derror # error for each bias derror = self.__d_layer(z[-l-1],w,derror) self.weights[-l] = self.weights[-l] - (self.eta * nabla_w) self.biases[-l] = self.biases[-l] - (self.eta * nabla_b) def send(self, l): x = self.__activation(np.array([l])) return self.__feedForward(x)[0] def learn(self,x,y): x = self.__activation(np.array([x])) y =
np.array([y])
numpy.array
# -*- coding: utf-8 -*- # Это упрощенная версия бэктеста, который используется на сервере https://bcsquants.com # Разработчик <NAME> <<EMAIL>> from __future__ import print_function from datetime import datetime as dt import numpy as np import csv import pandas as pd import matplotlib.pyplot as plt import matplotlib.ticker as plotticker orderList = [] orderEvent = False tickSizeToSeconds = {'s1': 1, 's5': 5, 'm1': 60, 'm5': 300} dataKeys = ['time', 'open', 'high', 'low', 'close', 'volume', 'count'] tickKeys = ['direct', 'takeProfit', 'stopLoss', 'holdPeriod', 'datetime'] FEE = 0.0002 # комиссия allTickers = ['ALRS', 'SNGS', 'MGNT', 'ROSN', 'MOEX', 'VTBR', 'LKOH', 'GAZP', 'SBERP', 'SBER', # акции 'USD000UTSTOM', # валюта 'RTSI', 'MICEXINDEXCF', # индексы 'GZX', 'SIX', 'BRX'] # фъючерсы _tickSize = 'm5' def showBacktestResult(result): return pd.DataFrame(result, index=[x['ticker'] for x in result], columns=['sumProcent', 'maxDrawdown', 'std', 'minV', 'numDeals', 'sumTakeProfit', 'sumHoldPeriod', 'sumStopLoss']) def getBacktestResult(init, tick, tickers=allTickers, skipMessage=False, progressBar=True): result = [] if not isinstance(tickers, list): tickers = [tickers] for ticker in tickers: orderList, orderEvent = [], False _tickSize, orderList, data = runTick(init, tick, ticker) res = runOrder(ticker, _tickSize, orderList, data) res['ticker'] = ticker res['_tickSize'] = _tickSize result.append(res) if progressBar: print(ticker, end='\n' if ticker == tickers[-1] else ', ') if not skipMessage: print('Не забудьте вы можете посмотреть тики и заявки в соответствующих файлах') print('tickFile = data/order/TICKER_{0}_tick.csv'.format(_tickSize)) print('orderFile = data/order/TICKER_{0}_order.csv'.format(_tickSize)) return result def order(direct, takeProfit, stopLoss, holdPeriod): global orderList, orderEvent, tickSizeToSeconds, _tickSize if not isinstance(holdPeriod, int): raise Exception('Hold period must be int type. If you use division with operator /, ' + 'remember in python3 this operation converts result to float type, ' + 'use // instead or convert to int directly') if holdPeriod * tickSizeToSeconds[_tickSize] < 300: raise Exception('Hold period must be not less than 300 seconds') if takeProfit < 0.0004: raise Exception('Take profit must be not less than 0.0004') if stopLoss < 0.0004: raise Exception('Stop loss must be not less than 0.0004') orderList.append([direct, takeProfit, stopLoss, holdPeriod]) orderEvent = True def runTick(init, tick, ticker): global orderList, orderEvent, _tickSize orderList, orderEvent = [], False class Empty: pass self = Empty() init(self) _tickSize = getattr(self, '_tickSize', 'm5') _window = getattr(self, '_window', None) if _window is not None: _window = int(_window) data = {key: np.load('data/{0}/{1}/{2}.npy'.format(ticker, _tickSize, key), encoding='bytes') for key in dataKeys } for ind in range(1, len(data['time'])): if _window: if ind < _window: continue else: tick(self, { key: data[key][ind - _window:ind] for key in dataKeys }) else: tick(self, { key: data[key][:ind] for key in dataKeys }) if orderEvent: for jnd in range(len(orderList) - 1, -1, -1): # [len(orderList) - 1, ..., 0] if len(orderList[jnd]) == 4: orderList[jnd].append(data['time'][ind]) else: break orderEvent = False with open('data/order/{0}_{1}_tick.csv'.format(ticker, _tickSize), 'w') as file: file.write(';'.join(tickKeys) + '\n') for order in orderList: file.write(';'.join([str(elem) for elem in order]) + '\n') return _tickSize, orderList, data def runOrder(ticker, _tickSize, orderList, dataNpy): measure = {'deals': [], 'sumProcent': 0.0, 'sumTakeProfit': 0, 'sumStopLoss': 0, 'sumHoldPeriod': 0, 'numDeals': 0} currentDataNum, firstTime, preLastCandle = -1, True, False for order in orderList: if preLastCandle: break order = dict(zip(tickKeys, order)) mode = 'findOrder' if firstTime or data['time'] <= order['datetime']: while (not preLastCandle) and mode != 'Exit': currentDataNum += 1 if currentDataNum >= len(dataNpy['time']) - 2: preLastCandle = True data = {key: dataNpy[key][currentDataNum] for key in dataKeys} if mode == 'findOrder': if data['time'] >= order['datetime']: priceEnter = data['close'] numEnter = currentDataNum datetimeEnter = data['time'] mode = 'doOrder' elif mode == 'doOrder': currentDatetime = data['time'] procentUp = data['high'] / priceEnter - 1. procentDown = data['low'] / priceEnter - 1. holdPeriod = order['holdPeriod'] isHoldPeriod = preLastCandle or (currentDataNum - numEnter + 1 > holdPeriod) if order['direct'] == 'buy': takeProfit = (procentUp >= order['takeProfit']) stopLoss = (procentDown <= -order['stopLoss']) else: # order['direct'] == 'sell takeProfit = (procentDown <= -order['takeProfit']) stopLoss = (procentUp >= order['stopLoss']) if takeProfit or stopLoss or isHoldPeriod: event = 'holdPeriod' nextDatetime = dataNpy['time'][currentDataNum + 1] nextClose = dataNpy['close'][currentDataNum + 1] direct = {'buy': 1, 'sell': -1}[order['direct']] procent = (nextClose / priceEnter - 1.) * direct - 2 * FEE if takeProfit: event = 'takeProfit' if stopLoss: event = 'stopLoss' measure['deals'].append({ 'procent': procent, 'event': event, 'direct': order['direct'], 'datetimeEnter': datetimeEnter, 'datetimeExit': nextDatetime, 'priceEnter': priceEnter, 'priceExit': nextClose, 'datetimeEnterInd': numEnter, 'datetimeExitInd': currentDataNum + 1, }) mode = 'Exit' firstTime = False mapEventDirect = {'takeProfit': 'sumTakeProfit', 'holdPeriod': 'sumHoldPeriod', 'stopLoss': 'sumStopLoss'} portfolio = [] for deal in measure['deals']: portfolio.append(deal['procent']) measure[mapEventDirect[deal['event']]] += deal['procent'] def calcMeasures(deals): def maxDrawdown(array): i = np.argmax(np.maximum.accumulate(array) - array) # end of the period if i == 0: return 0 j = np.argmax(array[:i]) # start of period return array[j] - array[i] res = {}; pnl = np.cumsum(deals) res['std'] = np.std(pnl) res['minV'] = min(np.min(pnl), 0) res['maxDrawdown'] = maxDrawdown(pnl) res['sumProcent'] = pnl[-1] res['numDeals'] = len(portfolio) return res measure['sumProcent'] = measure['minV'] = measure['maxDrawdown'] = 0 measure['std'] = measure['numDeals'] = 0 if portfolio: measureTest = calcMeasures(portfolio) measure.update(measureTest) toCSV = [deal for deal in measure['deals']] fieldnames = ['datetimeEnter', 'direct', 'priceEnter', 'procent', 'event', 'datetimeExit', 'priceExit'] with open('data/order/{0}_{1}_order.csv'.format(ticker, _tickSize), 'w') as output_file: dict_writer = csv.DictWriter(output_file, fieldnames=fieldnames, delimiter=';', extrasaction='ignore') dict_writer.writeheader() dict_writer.writerows(toCSV) return measure def plotChart(result, ticker): for res in result: if res['ticker'] == ticker: break _tickSize = res['_tickSize'] data = {key: np.load('data/{0}/{1}/{2}.npy'.format(ticker, _tickSize, key), encoding='bytes') for key in dataKeys } N = len(data['time']) ind =
np.arange(N)
numpy.arange
# SpectralTools.py # Collection of useful tools for dealing with spectra: from __future__ import division import time import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import interp1d def BERVcorr(wl, Berv): """Barycentric Earth Radial Velocity correction from tapas. A wavelength W0 of the original spectrum is seen at wavelength W1 in the spectrometer stretched by Doppler effect: W1 / W0 = (1+ Vr/c) =(1- Berv/c) Therefore, if there is a BERV correction in the pipeline of the spectrometer to recover W0, the measure wavelength W1 has be transformed in W0 with the formula: W0 = W1 (1+ Berv/c) Inputs: W1 - the spctrum in spectrograph frame. Berv - The Barycentric Earth Radial Velocity value for this observation in km/s Output: W0. - BERV corrected wavelength values Note: pyasl.dopplerShift is much smoother than this function so use that instead. """ c = 299792.458 # km/s return wl * (1 + Berv / c) def inverse_BERV(w1, Berv): """Obtain un-BERV corrected wavelengths.""" c = 299792.458 # km/s return w1 * (1 - Berv / c) # def dopplershift(): # standard doppler correction # return None def air2vac(air): """Conversion of air wavelenghts to vacuum wavelenghts. Adapted from wcal from Pat Hall's IRAF tasks for displaying SDSS spectra Input: Air wavelengths in nm Output: Vacuum wavelengths in nm """ print("Probably best to use pyastronomy versions !!!!!!!!!!!!!!!!!!!!!!!!") air_in_angstroms = air * 10 sigma2 = (10**8) / air**2 n = 1 + 0.000064328 + 0.0294981 / (146 - sigma2) + 0.0002554 / (41 - sigma2) vacuum_in_angstroms = air * n if (min(air_in_angstroms) < 1600): print("# WARNING! formula intended for use only at >1600 Ang!") return vacuum_in_angstroms / 10 def vac2air(vac): """Conversion of vacuum wavelenghts to air wavelenghts. From http://classic.sdss.org/dr7/products/spectra/vacwavelength.html AIR = VAC / (1.0 + 2.735182E-4 + 131.4182 / VAC^2 + 2.76249E8 / VAC^4) given in Morton (1991, ApJS, 77, 119) Better correction for infrared may be found in http://adsabs.harvard.edu/abs/1966Metro...2...71E and http://adsabs.harvard.edu/abs/1972JOSA...62..958P """ print("Probably best to use pyastronomy versions !!!!!!!!!!!!!!!!!!!!!!!!") vac_in_angstroms = vac * 10 air_in_angstroms = vac_in_angstroms / (1.0 + 2.735182E-4 + 131.4182 / vac_in_angstroms**2 + 2.76249E8 / vac_in_angstroms**4) # Need to look at these for nir compatbile formular return air_in_angstroms / 10 def wav_selector(wav, flux, wav_min, wav_max, verbose=False): """Fast Wavelength selector between wav_min and wav_max values. If passed lists it will return lists. If passed np arrays it will return arrays """ if isinstance(wav, list): # If passed lists wav_sel = [wav_val for wav_val in wav if (wav_min < wav_val < wav_max)] flux_sel = [flux_val for wav_val, flux_val in zip(wav, flux) if (wav_min < wav_val < wav_max)] elif isinstance(wav, np.ndarray): # Super Fast masking with numpy mask = (wav > wav_min) & (wav < wav_max) wav_sel = wav[mask] flux_sel = flux[mask] if verbose: print("mask=", mask) print("len(mask)", len(mask)) print("wav", wav) print("flux", flux) else: raise TypeError("Unsupported input wav type") return [wav_sel, flux_sel] # Wavelength Interplation from telluric correct def wl_interpolation(wl, spec, ref_wl, method="scipy", kind="linear", verbose=False): """Interpolate Wavelengths of spectra to common WL. Most likely convert telluric to observed spectra wl after wl mapping performed """ v_print = print if verbose else lambda *a, **k: None starttime = time.time() if method == "scipy": v_print(kind + " scipy interpolation") linear_interp = interp1d(wl, spec, kind=kind) new_spec = linear_interp(ref_wl) elif method == "numpy": if kind.lower() is not "linear": v_print("Warning: Cannot do " + kind + " interpolation with numpy, switching to linear") v_print("Linear numpy interpolation") new_spec = np.interp(ref_wl, wl, spec) # 1-d peicewise linear interpolat else: v_print("Method was given as " + method) raise("Interpolation method not correct") v_print("Interpolation Time = " + str(time.time() - starttime) + " seconds") return new_spec # test inperpolations ################################################################### # Convolution ################################################################### def unitary_Gauss(x, center, FWHM): """Gaussian_function of area=1. p[0] = A p[1] = mean p[2] = FWHM """ sigma = np.abs(FWHM) / (2 * np.sqrt(2 * np.log(2))) amp = 1.0 / (sigma * np.sqrt(2 * np.pi)) tau = -((x - center)**2) / (2 * (sigma**2)) result = amp * np.exp(tau) return result def fast_convolve(wav_val, R, wav_extended, flux_extended, fwhm_lim): """IP convolution multiplication step for a single wavelength value.""" FWHM = wav_val / R index_mask = (wav_extended > (wav_val - fwhm_lim * FWHM)) & (wav_extended < (wav_val + fwhm_lim * FWHM)) flux_2convolve = flux_extended[index_mask] IP = unitary_Gauss(wav_extended[index_mask], wav_val, FWHM) sum_val = np.sum(IP * flux_2convolve) unitary_val = np.sum(IP * np.ones_like(flux_2convolve)) # Effect of convolution onUnitary. return sum_val / unitary_val def instrument_convolution(wav, flux, chip_limits, R, fwhm_lim=5.0, plot=True, verbose=True): """Convolution code adapted from pedros code and speed up with np mask logic.""" # CRIRES HDR vals for chip limits don't match well with calibrated values (get interpolation out of range error) # So will use limits from the obs data instead # wav_chip, flux_chip = chip_selector(wav, flux, chip) wav_chip, flux_chip = wav_selector(wav, flux, chip_limits[0], chip_limits[1]) # we need to calculate the FWHM at this value in order to set the starting point for the convolution FWHM_min = wav_chip[0] / R # FWHM at the extremes of vector FWHM_max = wav_chip[-1] / R # wide wavelength bin for the resolution_convolution wav_extended, flux_extended = wav_selector(wav, flux, wav_chip[0] - fwhm_lim * FWHM_min, wav_chip[-1] + fwhm_lim * FWHM_max, verbose=False) # isinstance check is ~100 * faster then arraying the array again. if not isinstance(wav_extended, np.ndarray): wav_extended =
np.array(wav_extended, dtype="float64")
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed May 3 09:57:52 2017 @author: Lab41: Github: Circulo/circulo/algorithms/rolx.py #### https://github.com/Lab41/Circulo/blob/master/circulo/algorithms/rolx.py Set of functions to compute the RolX featurization """ import sys import math import igraph import numpy as np from numpy.linalg import lstsq from numpy import dot from scipy.cluster.vq import kmeans2, vq from scipy.linalg import norm from scipy.optimize import minimize from sklearn.decomposition import NMF import networkx as nx import numpy as np from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans import matplotlib.pyplot as plt import sklearn as sk import pandas as pd import torch from utils.utils import read_real_datasets, NodeClassificationDataset, MLP, DataSplit def extract_rolx_roles(G, roles=2): """ Top-level function. Extracts node-role matrix and sensemaking role-feature matrix as necessary. """ print("Creating Vertex Features matrix") V = vertex_features(G) #print("V is a %s by %s matrix." % V.shape) basis, coef = get_factorization(V, roles) H = basis #print("Node-role matrix is of dimensions %s by %s" % H.shape) #print(H) K = make_sense(G, H) #print("Role-feature matrix is of dimensions %s by %s" % K.shape) #print(K) return H, K def extract_rolx_roles_bis(G,V, roles=2): """ Top-level function. Extracts node-role matrix and sensemaking role-feature matrix as necessary. Inputs a matrux """ basis, coef = get_factorization(V, roles) H = basis print("Node-role matrix is of dimensions %s by %s" % H.shape) #print(H) K = make_sense(G, H) print("Role-feature matrix is of dimensions %s by %s" % K.shape) #print(K) return H, K def recursive_feature(G, f, n): """ G: iGraph graph with annotations func: string containing function name n: int, recursion level Computes the given function recursively on each vertex Current precondition: already have run the computation for G, func, n-1. """ return np.matrix(recursive_feature_array(G,f,n)) def recursive_feature_array(G, func, n): """ Computes recursive features of the graph G for the provided function of G, returning the matrix representing the nth level of the recursion. """ attr_name = "_rolx_" + func.__name__ + "_" + str(n) if attr_name in G.vs.attributes(): result = np.array(G.vs[attr_name]) return result if n==0: stats = func(G) result = np.array([[x] for x in stats]) result = result * 1.0 G.vs[attr_name] = result return result prev_stats = recursive_feature_array(G, func, n-1) all_neighbor_stats = [] for v in G.vs: neighbors = G.neighbors(v) degree = len(neighbors) if degree == 0: neighbor_avgs = neighbor_sums = np.zeros(prev_stats[0].size) else: prev_neighbor_stats = [prev_stats[x] for x in neighbors] neighbor_sums_vec = sum(prev_neighbor_stats) neighbor_avgs_vec = neighbor_sums_vec / degree v_stats = np.concatenate((neighbor_sums_vec, neighbor_avgs_vec), axis=0) all_neighbor_stats.append(v_stats) G.vs[attr_name] = all_neighbor_stats return all_neighbor_stats def approx_linear_solution(w, A, threshold=1e-15): ''' Checks if w is linearly dependent on the columns of A, this is done by solving the least squares problem (LSP) min || w - Ax ||_2^2 x and checking if || w - Ax_star || <= threshold, where x_star is the arg_minimizer of the LSP w: column vector A: matrix threshold: int ''' x0 = np.zeros(A.shape[1]) x_star, residuals, rank, s = lstsq(A, w) norm_residual = norm(residuals) result = True if norm_residual <= threshold else False return (result, norm_residual, x_star) def degree(G): """ Auxiliary function to calculate the degree of each element of G. """ return G.degree() def vertex_egonet(G, v): """ Computes the number of edges in the ego network of the vertex v. """ ego_network = G.induced_subgraph(G.neighborhood(v)) ego_edges = ego_network.ecount() return ego_edges def egonet(G): """ Computes the ego network for all vertices v in G. """ return [vertex_egonet(G, v) for v in G.vs] def vertex_egonet_out(G, v): """ Computes the outgoing edges from the ego network of the vertex v in G. """ neighbors = G.neighborhood(v) ego_network = G.induced_subgraph(neighbors) ego_edges = ego_network.ecount() degree_sum = sum([G.degree(v) for v in neighbors]) out_edges = degree_sum - 2*ego_edges #Summing over degree will doublecount every edge within the ego network return out_edges def egonet_out(G): """ Computes the number of outgoing ego network edges for every vertex in G. """ return [vertex_egonet_out(G, v) for v in G.vs] def vertex_features(g): """ Constructs a vertex feature matrix using recursive feature generation, then uses least-squares solving to eliminate those exhibiting approximate linear dependence. """ G = g.copy() num_rows = G.vcount() features = [degree, egonet, egonet_out] V = np.matrix(np.zeros((num_rows, 16*len(features)))) next_feature_col = 0 for feature in features: base = recursive_feature(G, feature, 0) base = base/norm(base) V = add_col(V, base, next_feature_col) next_feature_col += 1 level = 1 accepted_features = True while accepted_features: accepted_features = False feature_matrix = recursive_feature(G, feature, level) rows, cols = feature_matrix.shape for i in range(cols): b = feature_matrix[:,i] b = b/norm(b) mat = V[:,:next_feature_col] threshold = 10.0**(-15+level) (is_approx_soln, _, _) = approx_linear_solution(b, mat, threshold) if not is_approx_soln: V = add_col(V, b, next_feature_col) next_feature_col += 1 accepted_features = True level += 1 return V[:, :next_feature_col] def add_col(V, b, insert_col): """ Add the given column b to the matrix V, enlarging the matrix if necessary. """ rows, cols = V.shape if insert_col == cols: # need to resize V zeros = np.matrix(np.zeros((rows, 1))) V = np.concatenate((V, zeros), axis=1) V[:, insert_col] = b return V def kmeans_quantize(M, bits): """ Performs k-means quantization on the given matrix. Returns the encoded matrix and the number of bits needed for encoding it. """ k = 2**bits obs = np.asarray(M).reshape(-1) centroid, label = kmeans2(obs, k) enc_M = [centroid[v] for v in label] enc_M = np.matrix(enc_M).reshape(M.shape) return enc_M, (bits * enc_M.size) def kl_divergence(A,B): """ Computes the Kullback-Leibler divergence of the two matrices A and B. """ a = np.asarray(A, dtype=np.float) b = np.asarray(B, dtype=np.float) return np.sum(np.where(a != 0, a * np.log(a / b), 0)) def description_length(V, fctr_res, bits=10): """ Computes the length necessary to describe the given model with the given number of bits. """ W = fctr_res[0] H = fctr_res[1] enc_W, enc_W_cost = kmeans_quantize(W, bits) enc_H, enc_H_cost = kmeans_quantize(H, bits) enc_cost = enc_W_cost + enc_H_cost err_cost = kl_divergence(V, enc_W*enc_H) return enc_W, enc_H, enc_cost, err_cost def standardize_rows(M): """ Distribute the rows of the cost matrix normally to allow for accurate comparisons of error and description cost. """ rv = np.matrix(M) for i in range(rv.shape[0]): mean = np.mean(M[i, :]) stdev = np.std(M[i, :]) rv[i, :]= (M[i, :]- mean)/stdev return rv # def standardize(M): # m_flat = np.asarray(M).reshape(-1) # mean = np.mean(m_flat) # stdev = np.std(m_flat) # m_flat = (m_flat - mean)/stdev # # return m_flat.reshape(M.shape) def get_factorization(V, num_roles): """ Obtains a nonnegative matrix factorization of the matrix V with num_roles intermediate roles. """ model = NMF(n_components=num_roles, init='random', random_state=0) model.fit(V) node_roles = model.transform(V) role_features = model.components_ return torch.from_numpy(node_roles), torch.from_numpy(role_features) def get_optimal_factorization(V, min_roles=2, max_roles=6, min_bits=1, max_bits=10): """ Uses grid search to find the optimal parameter number and encoding of the given matrix factorization. """ max_roles = min(max_roles, V.shape[1]) # Can't have more possible roles than features num_role_options = max_roles - min_roles num_bit_options = max_bits - min_bits mat_enc_cost = np.zeros((num_role_options, num_bit_options)) mat_err_cost = np.zeros((num_role_options, num_bit_options)) mat_fctr_res = [[0] * num_bit_options] * num_role_options # Setup and run the factorization problem for i in range(num_role_options): rank = min_roles + i fctr_res = get_factorization(V, rank) for j in range(num_bit_options): bits = min_bits + j enc_W, enc_H, enc_cost, err_cost = description_length(V, fctr_res, bits) mat_enc_cost[i,j] = enc_cost mat_err_cost[i,j] = err_cost mat_fctr_res[i][j] = (enc_W, enc_H) mat_std_enc_cost = standardize_rows(mat_enc_cost) mat_std_err_cost = standardize_rows(mat_err_cost) mat_total_cost = mat_enc_cost + mat_err_cost mat_total_std_cost = mat_std_enc_cost + mat_std_err_cost # print mat_total_cost print('min cost @', idx, ' or at ', min_coord) print("rank, bits, enc_cost, err_cost, total_cost, std_enc_cost, std_err_cost, std_total_cost") for i in range(num_role_options): for j in range(num_bit_options): rank = min_roles + i bits = min_bits + j enc_cost = mat_enc_cost[i,j] err_cost = mat_err_cost[i,j] std_enc_cost = mat_std_enc_cost[i,j] std_err_cost = mat_std_err_cost[i,j] total_cost = mat_total_cost[i,j] total_std_cost = mat_total_std_cost[i,j] print("%s, %s, (%s, %s, %s), (%s, %s, %s)" % (rank, bits, enc_cost, err_cost, total_cost, std_enc_cost, std_err_cost, total_std_cost)) min_idx = mat_total_std_cost.argmin() min_coord = np.unravel_index(min_idx, mat_total_std_cost.shape) min_role_index, min_bit_index = min_coord min_role_value = min_role_index + min_roles min_bit_value = min_bit_index + min_bits min_std_enc_cost = mat_std_enc_cost[min_coord] min_std_err_cost = mat_std_err_cost[min_coord] min_total_std_cost = mat_total_std_cost[min_coord] print("%s, %s, (%s, %s, %s)" % (min_role_value, min_bit_value, min_std_enc_cost, min_std_err_cost, min_total_std_cost)) return mat_fctr_res[min_role_index][min_bit_index] def make_sense(G, H): """ Given graph G and node-role matrix H, returns a role-feature matrix K for sensemaking analyses of roles. """ features = [ 'betweenness', 'closeness', 'degree', 'diversity', 'eccentricity', 'pagerank', 'personalized_pagerank', 'strength' ] feature_fns = [ getattr(G, f) for f in features ] feature_matrix = [ func() for func in feature_fns ] feature_matrix = np.matrix(feature_matrix).transpose() #print(feature_matrix) M = feature_matrix for i in range(M.shape[1]): M[:,i] = M[:,i] / norm(M[:,i]) K = complete_factor(H, M, h_on_left=True) #print(K) return K def sense_residual_left_factor(W, H, M): W = np.matrix(W).reshape((M.shape[0], H.shape[0])) return norm(M - W*H) def sense_residual_right_factor(K, H, M): K = np.matrix(K).reshape((H.shape[1], M.shape[1])) # print(M.shape,H.shape,K.shape) return norm(M - H*K) def complete_factor(H, M, h_on_left=True): """Given nonnegative matrix M and a nonnegative factor H of M, finds the other (nonnegative) factor of M. H: known factor of matrix M. M: product matrix. h_on_left: boolean, true if H is the left factor of M, false if H is the right factor. If H is left factor, find the matrix K such that HK=M. If H is the right factor, finds W such that WH=M Result is an appropriately-sized matrix. """ if h_on_left: shape = (H.shape[1], M.shape[1]) residual = sense_residual_right_factor else: shape = (M.shape[0], H.shape[0]) residual = sense_residual_left_factor size = shape[0] * shape[1] guess =
np.random.rand(size)
numpy.random.rand
#!/usr/bin/env python # Started: Jan 2015 (KDG) # Revised to read in all the data from files: Mar 2016 (KDG) # observed data defines the wavelength grids to fit on """ ObsData class observed data that will be used to constrain the dust model """ from __future__ import print_function import numpy as np from astropy.table import Table from astropy.io import fits __all__ = ["ObsData"] # Object for the observed dust data class ObsData(): """ ObsData Class Parameters ---------- ext_filenames: list of 'string' filenames with the observed extincction curve avnhi_filenames: list of 'string' filename with the observed A(V)/N(HI) value + unc abund_filename: 'string' filename with the observed atomic abundances ir_emis_filename: 'string' filename with the observed infrared dust emission dust_scat_filename: 'string' filename with the observed dust scattering (a, g) parameters [currently not used - hard coded for MW diffuse - need to change] ext_tags : list of 'string' list of tags identifying the origin of the dust extinction curve segments Attributes ---------- alnhi : float A(lamda)/N(HI) value for extinction curve alnhi_unc : float uncertainty in A(lamda)/N(HI) value for extinction curve ext_waves : 'numpy.ndarray' wavelengths for the extinction curve ext_alav : 'numpy.ndarray' extinction curve in A(lambda)/A(V) units ext_alav_unc : 'numpy.ndarray' extinction curve uncertainties in A(lambda)/A(V) units ext_alnhi : 'numpy.ndarray' extinction curve in A(lambda)/N(HI) units ext_alnhi_unc : 'numpy.ndarray' extinction curve uncertainties in A(lambda)/N(HI) units ext_tags : 'numpy.ndarray' string tags identifying the origin of the extinction curve measurement """ # read in the data from files def __init__(self, ext_filenames, avnhi_filename, abund_filename, ir_emis_filename, dust_scat_filename, ext_tags=None, scat_path="./"): # extinction curve self.fit_extinction = True self.ext_waves = np.empty((0)) self.ext_alav = np.empty((0)) self.ext_alav_unc = np.empty((0)) self.ext_tags = [] if isinstance(ext_filenames, (list, tuple)): for i, filename in enumerate(ext_filenames): t = Table.read(filename, format='ascii.commented_header') self.ext_waves = np.concatenate([self.ext_waves, 1.0/t['wave']]) self.ext_alav = np.concatenate([self.ext_alav, t['A(l)/A(V)']]) self.ext_alav_unc = np.concatenate([self.ext_alav_unc, t['unc']]) if ext_tags is not None: cur_tag = ext_tags[i] else: cur_tag = 'Tag' + str(i+1) self.ext_tags = self.ext_tags + len(t['wave'])*[cur_tag] else: # assume it is a FITS file (need to add checks) hdulist = fits.open(ext_filenames) for i in range(1, len(hdulist)): t = hdulist[i].data # hack to get AzV 215 to work # need to get a better file format for FITS extinction curves # units, etc. trv = 3.65 ext = (t['EXT']/trv) + 1 ext_unc = t['UNC']/trv # only keep positive measurements gindxs, = np.where(ext > 0.0) self.ext_waves = np.concatenate([self.ext_waves, t['WAVELENGTH'][gindxs]]) self.ext_alav = np.concatenate([self.ext_alav, ext[gindxs]]) self.ext_alav_unc = np.concatenate([self.ext_alav_unc, ext_unc[gindxs]]) self.ext_tags = self.ext_tags + \ len(t['WAVELENGTH'])*[hdulist[i].header['EXTNAME']] hdulist.close() # sort sindxs = np.argsort(self.ext_waves) self.ext_waves = self.ext_waves[sindxs] self.ext_alav = self.ext_alav[sindxs] self.ext_alav_unc = self.ext_alav_unc[sindxs] self.ext_tags = np.array(self.ext_tags)[sindxs] # normalization from A(V) to N(HI) t = Table.read(avnhi_filename, format='ascii.commented_header', header_start=-1) self.avnhi = t['Av_to_NHI'][0] self.avnhi_unc = t['unc'][0] # change the extinction normalization from A(V) to N(HI) self.ext_alnhi = self.ext_alav*self.avnhi self.ext_alnhi_unc = (np.square(self.ext_alav_unc/self.ext_alav) + np.square(self.avnhi_unc/self.avnhi)) self.ext_alnhi_unc = self.ext_alnhi*np.sqrt(self.ext_alnhi_unc) # dust abundances self.fit_abundance = False if abund_filename is not None: self.fit_abundance = True t = Table.read(abund_filename, format='ascii.commented_header') self.abundance = {} self.total_abundance = {} for i in range(len(t)): self.abundance[t['atom'][i]] = (t['abund'][i], t['abund_unc'][i]) self.total_abundance[t['atom'][i]] = (t['total_abund'][i], t['total_abund_unc'][i]) # diffuse IR emission spectrum self.fit_ir_emission = False if ir_emis_filename is not None: self.fit_ir_emission = True t = Table.read(ir_emis_filename, format='ascii.commented_header') self.ir_emission_waves = np.array(t['WAVE']) self.ir_emission = np.array(t['SPEC'])/1e20 self.ir_emission_unc = np.array(t['ERROR'])/1e20 # check if any uncs are zero gindxs, = np.where(self.ir_emission_unc == 0.0) if len(gindxs) > 0: self.ir_emission_unc[gindxs] = 0.1*self.ir_emission[gindxs] # sort sindxs = np.argsort(self.ir_emission_waves) self.ir_emission_waves = self.ir_emission_waves[sindxs] self.ir_emission = self.ir_emission[sindxs] self.ir_emission_unc = self.ir_emission_unc[sindxs] # dust albedo (Gordon et al. AoD proceedings) self.fit_scat_a = False self.fit_scat_g = False if dust_scat_filename is not None: self.fit_scat_a = True self.fit_scat_g = True files_dgl = ["mathis73", "morgan76", "lillie76", "toller81", "murthy93", "murthy95", "petersohn97", "witt97", "schiminovich01", "shalima04", "sujatha05", "sujatha07", "sujatha10"] scat_waves = [] scat_albedo = [] scat_albedo_unc = [] scat_g = [] scat_g_unc = [] scat_ref = [] for sfile in files_dgl: f = open(scat_path + sfile + '.dat', 'r') ref = f.readline().rstrip() f.close() t = Table.read(scat_path+sfile+'.dat', format='ascii', header_start=1) for k in range(len(t)): scat_waves.append(t['wave,'][k]) scat_albedo.append(t['albedo,'][k]) scat_albedo_unc.append(t['delta,'][k]) scat_g.append(t['g,'][k]) scat_g_unc.append(t['delta'][k]) scat_ref.append(ref) # remove all the measurements with zero uncertainty gindxs, = np.where(
np.array(scat_albedo_unc)
numpy.array
import cv2 import numpy as np def find_color(roi, colors, threshold=0.0): """ Generates a percentage of each jersey color in the roi. If at least one is above threshold, returns the color with the highest percentage, otherwise returns None. roi: image or region of interest within image colors: list of colors as strings in order [Team1, Team2, ref or other] threshold: minimum fraction of image containing either of the colors necessary to be detected """ color_dict = {'white': [[80, 0, 100], [180, 100, 255]], 'red': [[170, 50, 50], [180, 255, 255], [0, 50, 50], [10, 255, 255]], 'yellow': [[20, 50, 50], [30, 255, 255]], 'green': [[50, 50, 50], [80, 255, 255]], 'blue': [[81, 50, 50], [125, 255, 255]], 'light blue': [[90, 100, 50], [125, 255, 180]], 'dark blue': [[106, 50, 50], [125, 255, 255]], 'purple': [[126, 50, 50], [140, 255, 255]], 'pink': [[141, 50, 50], [169, 255, 255]], 'orange': [[8, 50, 50], [40, 255, 255]], 'black': [[0, 0, 0], [180, 40, 20]], 'grey': [[0, 0, 21], [180, 25, 160]]} roi_hsv = cv2.cvtColor(roi, cv2.COLOR_RGB2HSV) total_pixels = roi.shape[0] * roi.shape[1] highest_color = None highest_perc = 0 for color in colors: if color in color_dict.keys(): # red is on the edge of HSV range, so needs a combination of two masks if color == 'red': lower1 = np.array(color_dict[color][0]) upper1 = np.array(color_dict[color][1]) lower2 =
np.array(color_dict[color][2])
numpy.array
# 对数据集中的点云,批量执行构建树和查找,包括kdtree和octree,并评测其运行时间 import random import math import numpy as np import time import os import struct from scipy.spatial import KDTree import octree as octree import kdtree as kdtree from result_set import KNNResultSet, RadiusNNResultSet np.seterr(all='raise') def read_velodyne_bin(path): ''' :param path: :return: homography matrix of the point cloud, N*3 ''' pc_list = [] with open(path, 'rb') as f: content = f.read() pc_iter = struct.iter_unpack('ffff', content) for idx, point in enumerate(pc_iter): pc_list.append([point[0], point[1], point[2]]) return np.asarray(pc_list, dtype=np.float32) def main(): # configuration leaf_size = 32 min_extent = 0.0001 k = 8 radius = 1 # root_dir = '/Users/renqian/cloud_lesson/kitti' # 数据集路径 root_dir = './data' # 数据集路径 cat = os.listdir(root_dir) iteration_num = len(cat) print("scipy ---------------") construction_time_sum = 0 knn_time_sum = 0 radius_time_sum = 0 brute_time_sum = 0 for i in range(iteration_num): filename = os.path.join(root_dir, cat[i]) db_np = read_velodyne_bin(filename) begin_t = time.time() root = KDTree(db_np, leaf_size) construction_time_sum += time.time() - begin_t begin_t = time.time() query = db_np[0, :] result_set = KNNResultSet(capacity=k) distance, indices = root.query(x=query, k=k) output = '' for i, item in enumerate(zip(indices, distance)): output += '%d - %.2f\n' % (item[0], item[1]) # print(output) knn_time_sum += time.time() - begin_t begin_t = time.time() indices = root.query_ball_point(query, radius) output = '' for i, index in enumerate(indices): output += '%d - %.2f\n' % (index, np.linalg.norm(db_np[index] - query)) # print(output) radius_time_sum += time.time() - begin_t begin_t = time.time() diff = np.linalg.norm(np.expand_dims(query, 0) - db_np, axis=1) nn_idx = np.argsort(diff) nn_dist = diff[nn_idx] brute_time_sum += time.time() - begin_t print("Scipy: build %.3f, knn %.3f, radius %.3f, brute %.3f" % (construction_time_sum*1000/iteration_num, knn_time_sum*1000/iteration_num, radius_time_sum*1000/iteration_num, brute_time_sum*1000/iteration_num)) sci_knn = knn_time_sum sci_radius = radius_time_sum sci_brute = brute_time_sum print("octree --------------") construction_time_sum = 0 knn_time_sum = 0 radius_time_sum = 0 brute_time_sum = 0 for i in range(iteration_num): filename = os.path.join(root_dir, cat[i]) db_np = read_velodyne_bin(filename) begin_t = time.time() root = octree.octree_construction(db_np, leaf_size, min_extent) construction_time_sum += time.time() - begin_t query = db_np[0,:] begin_t = time.time() result_set = KNNResultSet(capacity=k) octree.octree_knn_search(root, db_np, result_set, query) # print(result_set) knn_time_sum += time.time() - begin_t begin_t = time.time() result_set = RadiusNNResultSet(radius=radius) octree.octree_radius_search_fast(root, db_np, result_set, query) # print(result_set) radius_time_sum += time.time() - begin_t begin_t = time.time() diff = np.linalg.norm(np.expand_dims(query, 0) - db_np, axis=1) nn_idx = np.argsort(diff) nn_dist = diff[nn_idx] brute_time_sum += time.time() - begin_t print("Octree: build %.3f, knn %.3f, radius %.3f, brute %.3f" % (construction_time_sum*1000/iteration_num, knn_time_sum*1000/iteration_num, radius_time_sum*1000/iteration_num, brute_time_sum*1000/iteration_num)) oct_knn = knn_time_sum oct_radius = radius_time_sum oct_brute = brute_time_sum print("kdtree1 --------------") construction_time_sum = 0 knn_time_sum = 0 radius_time_sum = 0 brute_time_sum = 0 for i in range(iteration_num): filename = os.path.join(root_dir, cat[i]) db_np = read_velodyne_bin(filename) begin_t = time.time() root = kdtree.kdtree_construction(db_np, leaf_size) construction_time_sum += time.time() - begin_t query = db_np[0,:] begin_t = time.time() result_set = KNNResultSet(capacity=k) kdtree.kdtree_knn_search(root, db_np, result_set, query) # print(result_set) knn_time_sum += time.time() - begin_t begin_t = time.time() result_set = RadiusNNResultSet(radius=radius) kdtree.kdtree_radius_search(root, db_np, result_set, query) # print(result_set) radius_time_sum += time.time() - begin_t begin_t = time.time() diff = np.linalg.norm(np.expand_dims(query, 0) - db_np, axis=1) nn_idx =
np.argsort(diff)
numpy.argsort
import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from scipy.spatial.transform import Rotation from tadataka.matrix import motion_matrix from tadataka.rigid_transform import (inv_transform_all, transform_all, transform_each, Transform, transform_se3) def test_transform_each(): points = np.array([ [1, 2, 5], [4, -2, 3], ]) rotations = np.array([ [[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]] ]) translations = np.array([ [1, 2, 3], [4, 5, 6] ]) expected = np.array([ [2, -3, 5], # [ 1, -5, 2] + [ 1, 2, 3] [1, 3, 10] # [ -3, -2, 4] + [ 4, 5, 6] ]) assert_array_equal( transform_each(rotations, translations, points), expected ) def test_transform_all(): points = np.array([ [1, 2, 5], [4, -2, 3], [0, 0, 6] ]) rotations = np.array([ [[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]] ]) translations = np.array([ [1, 2, 3], [4, 5, 6] ]) expected = np.array([ [[2, -3, 5], # [ 1, -5, 2] + [ 1, 2, 3] [5, -1, 1], # [ 4, -3, -2] + [ 1, 2, 3] [1, -4, 3]], # [ 0, -6, 0] + [ 1, 2, 3] [[-1, 7, 7], # [-5, 2, 1] + [ 4, 5, 6] [1, 3, 10], # [-3, -2, 4] + [ 4, 5, 6] [-2, 5, 6]] # [-6, 0, 0] + [ 4, 5, 6] ]) assert_array_equal(transform_all(rotations, translations, points), expected) def test_inv_transform_all(): points = np.array([ [1, 2, 5], [4, -2, 3], [0, 0, 6] ]) rotations = np.array([ [[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]] ]) # [R.T for R in rotations] # [[1, 0, 0], # [0, 0, 1], # [0, -1, 0]], # [[0, 0, 1], # [0, 1, 0], # [-1, 0, 0]] translations = np.array([ [1, 2, 3], [4, 5, 6] ]) # p - t # [[0, 0, 2], # [3, -4, 0], # [-1, -2, 3]], # [[-3, -3, -1], # [0, -7, -3], # [-4, -5, 0]] # np.dot(R.T, p-t) expected = np.array([ [[0, 2, 0], [3, 0, 4], [-1, 3, 2]], [[-1, -3, 3], [-3, -7, 0], [0, -5, 4]] ]) assert_array_equal(inv_transform_all(rotations, translations, points), expected) def test_transform_class(): P = np.array([ [1, 2, 5], [4, -2, 3], ]) R = np.array([ [1, 0, 0], [0, 0, -1], [0, 1, 0] ]) t = np.array([1, 2, 3]) assert_array_equal( Transform(R, t, s=1.0)(P), [[2, -3, 5], # [ 1 -5 2] + [ 1 2 3] [5, -1, 1]] # [ 4 -3 -2] + [ 1 2 3] ) assert_array_equal( Transform(R, t, s=0.1)(P), [[1.1, 1.5, 3.2], # [ 0.1 -0.5 0.2] + [ 1 2 3] [1.4, 1.7, 2.8]] # [ 0.4 -0.3 -0.2] + [ 1 2 3] ) def test_transform_se3(): R_10 =
np.random.random((3, 3))
numpy.random.random
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.stats from ..stats import mad, summary_plot from .hrv_utils import _hrv_get_rri, _hrv_sanitize_input def hrv_time(peaks, sampling_rate=1000, show=False, **kwargs): """Computes time-domain indices of Heart Rate Variability (HRV). See references for details. Parameters ---------- peaks : dict Samples at which cardiac extrema (i.e., R-peaks, systolic peaks) occur. Can be a list of indices or the output(s) of other functions such as ecg_peaks, ppg_peaks, ecg_process or bio_process. sampling_rate : int, optional Sampling rate (Hz) of the continuous cardiac signal in which the peaks occur. Should be at least twice as high as the highest frequency in vhf. By default 1000. show : bool If True, will plot the distribution of R-R intervals. Returns ------- DataFrame Contains time domain HRV metrics: - **MeanNN**: The mean of the RR intervals. - **SDNN**: The standard deviation of the RR intervals. -**SDANN1**, **SDANN2**, **SDANN5**: The standard deviation of average RR intervals extracted from n-minute segments of time series data (1, 2 and 5 by default). Note that these indices require a minimal duration of signal to be computed (3, 6 and 15 minutes respectively) and will be silently skipped if the data provided is too short. -**SDNNI1**, **SDNNI2**, **SDNNI5**: The mean of the standard deviations of RR intervals extracted from n-minute segments of time series data (1, 2 and 5 by default). Note that these indices require a minimal duration of signal to be computed (3, 6 and 15 minutes respectively) and will be silently skipped if the data provided is too short. - **RMSSD**: The square root of the mean of the sum of successive differences between adjacent RR intervals. It is equivalent (although on another scale) to SD1, and therefore it is redundant to report correlations with both (Ciccone, 2017). - **SDSD**: The standard deviation of the successive differences between RR intervals. - **CVNN**: The standard deviation of the RR intervals (SDNN) divided by the mean of the RR intervals (MeanNN). - **CVSD**: The root mean square of the sum of successive differences (RMSSD) divided by the mean of the RR intervals (MeanNN). - **MedianNN**: The median of the absolute values of the successive differences between RR intervals. - **MadNN**: The median absolute deviation of the RR intervals. - **HCVNN**: The median absolute deviation of the RR intervals (MadNN) divided by the median of the absolute differences of their successive differences (MedianNN). - **IQRNN**: The interquartile range (IQR) of the RR intervals. - **pNN50**: The proportion of RR intervals greater than 50ms, out of the total number of RR intervals. - **pNN20**: The proportion of RR intervals greater than 20ms, out of the total number of RR intervals. - **TINN**: A geometrical parameter of the HRV, or more specifically, the baseline width of the RR intervals distribution obtained by triangular interpolation, where the error of least squares determines the triangle. It is an approximation of the RR interval distribution. - **HTI**: The HRV triangular index, measuring the total number of RR intervals divded by the height of the RR intervals histogram. See Also -------- ecg_peaks, ppg_peaks, hrv_frequency, hrv_summary, hrv_nonlinear Examples -------- >>> import neurokit2 as nk >>> >>> # Download data >>> data = nk.data("bio_resting_5min_100hz") >>> >>> # Find peaks >>> peaks, info = nk.ecg_peaks(data["ECG"], sampling_rate=100) >>> >>> # Compute HRV indices >>> hrv = nk.hrv_time(peaks, sampling_rate=100, show=True) References ---------- - <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2017). Reminder: RMSSD and SD1 are identical heart rate variability metrics. Muscle & nerve, 56(4), 674-678. - <NAME>. (2002). Assessing heart rate variability from real-world Holter reports. Cardiac electrophysiology review, 6(3), 239-244. - <NAME>., & <NAME>. (2017). An overview of heart rate variability metrics and norms. Frontiers in public health, 5, 258. """ # Sanitize input peaks = _hrv_sanitize_input(peaks) if isinstance(peaks, tuple): # Detect actual sampling rate peaks, sampling_rate = peaks[0], peaks[1] # Compute R-R intervals (also referred to as NN) in milliseconds rri = _hrv_get_rri(peaks, sampling_rate=sampling_rate, interpolate=False) diff_rri = np.diff(rri) out = {} # Initialize empty container for results # Deviation-based out["MeanNN"] = np.nanmean(rri) out["SDNN"] = np.nanstd(rri, ddof=1) for i in [1, 2, 5]: out["SDANN" + str(i)] = _sdann(rri, sampling_rate, window=i) out["SDNNI" + str(i)] = _sdnni(rri, sampling_rate, window=i) # Difference-based out["RMSSD"] = np.sqrt(np.mean(diff_rri ** 2)) out["SDSD"] = np.nanstd(diff_rri, ddof=1) # Normalized out["CVNN"] = out["SDNN"] / out["MeanNN"] out["CVSD"] = out["RMSSD"] / out["MeanNN"] # Robust out["MedianNN"] = np.nanmedian(rri) out["MadNN"] = mad(rri) out["MCVNN"] = out["MadNN"] / out["MedianNN"] # Normalized out["IQRNN"] = scipy.stats.iqr(rri) # Extreme-based nn50 = np.sum(np.abs(diff_rri) > 50) nn20 = np.sum(np.abs(diff_rri) > 20) out["pNN50"] = nn50 / len(rri) * 100 out["pNN20"] = nn20 / len(rri) * 100 # Geometrical domain if "binsize" in kwargs: binsize = kwargs["binsize"] else: binsize = (1 / 128) * 1000 bins = np.arange(0, np.max(rri) + binsize, binsize) bar_y, bar_x = np.histogram(rri, bins=bins) # HRV Triangular Index out["HTI"] = len(rri) / np.max(bar_y) # Triangular Interpolation of the NN Interval Histogram out["TINN"] = _hrv_TINN(rri, bar_x, bar_y, binsize) if show: _hrv_time_show(rri, **kwargs) out = pd.DataFrame.from_dict(out, orient="index").T.add_prefix("HRV_") return out # ============================================================================= # Utilities # ============================================================================= def _hrv_time_show(rri, **kwargs): fig = summary_plot(rri, **kwargs) plt.xlabel("R-R intervals (ms)") fig.suptitle("Distribution of R-R intervals") return fig def _sdann(rri, sampling_rate, window=1): window_size = window * 60 * 1000 # Convert window in min to ms n_windows = int(np.round(np.cumsum(rri)[-1] / window_size)) if n_windows < 3: return np.nan rri_cumsum = np.cumsum(rri) avg_rri = [] for i in range(n_windows): start = i * window_size start_idx = np.where(rri_cumsum >= start)[0][0] end_idx = np.where(rri_cumsum < start + window_size)[0][-1] avg_rri.append(np.mean(rri[start_idx:end_idx])) sdann =
np.nanstd(avg_rri, ddof=1)
numpy.nanstd
import argparse import pandas as pd import os import sys import numpy as np import torch from utils import computeMetricsAlt, evalThresholdAlt from ModelShokri import DataHandler, TrainWBAttacker from torch.utils.data import DataLoader parser = argparse.ArgumentParser(description='Analyse criteria obtained from different MIAs.') parser.add_argument('--model_type', type=str, help='Model Architecture to attack.') parser.add_argument('--num_iters', type=int, default=20, help='Number of iterations for empirical estimation.') parser.add_argument('--working_dir', type=str, default='./', help='Where to collect and store data.') exp_parameters = parser.parse_args() currdir = exp_parameters.working_dir num_runs_for_random = exp_parameters.num_iters model_type = exp_parameters.model_type # Extracting intermediate outputs and gradients of the model InterOuts_Grads0 = np.load(currdir + '/RawResults/NasrTrain0_' + model_type + '.npz') InterOuts_Grads1 = np.load(currdir + '/RawResults/NasrTrain1_' + model_type + '.npz') AdditionalInfo = np.load(currdir + '/RawResults/NasrAddInfo_' + model_type + '.npz') inter_outs0 = [] inter_outs1 = [] out_size_list = AdditionalInfo['arr_0'] layer_size_list = AdditionalInfo['arr_1'] kernel_size_list = AdditionalInfo['arr_2'] n_inter_outputs = len(out_size_list) n_layer_grads = len(kernel_size_list) for i in range(n_inter_outputs): inter_outs0.append(InterOuts_Grads0['arr_' + str(i)]) inter_outs1.append(InterOuts_Grads1['arr_' + str(i)]) lossval0 = InterOuts_Grads0['arr_' + str(n_inter_outputs)] lossval1 = InterOuts_Grads1['arr_' + str(n_inter_outputs)] labels1hot0 = InterOuts_Grads0['arr_' + str(n_inter_outputs + 1)] labels1hot1 = InterOuts_Grads1['arr_' + str(n_inter_outputs + 1)] grad_vals0 = [] grad_vals1 = [] for i in range(n_inter_outputs + 2, n_inter_outputs + 2 + n_layer_grads, 1): grad_vals0.append(InterOuts_Grads0['arr_' + str(i)]) grad_vals1.append(InterOuts_Grads1['arr_' + str(i)]) # Our Analysis FPR = np.linspace(0, 1, num=1001) try: dfMetricsBalanced = pd.read_csv(currdir + '/CompleteResults/BalancedMetrics_' + model_type + '.csv') dfTPRBalanced = pd.read_csv(currdir + '/CompleteResults/BalancedROC_' + model_type + '.csv') except FileNotFoundError: dfMetricsBalanced = pd.DataFrame(columns=['Attack Strategy', 'AUROC', 'AUROC STD', 'Best Accuracy', 'Best Accuracy STD', 'FPR at TPR80', 'FPR at TPR80 STD', 'FPR at TPR85', 'FPR at TPR85 STD', 'FPR at TPR90', 'FPR at TPR90 STD', 'FPR at TPR95', 'FPR at TPR95 STD']) dfTPRBalanced = pd.DataFrame(FPR, columns=['FPR']) aux_list_metrics = [] aux_list_TPR = [] for k in range(num_runs_for_random): np.random.seed(k) indx_train0 = np.random.choice(lossval0.shape[0], size=4000, replace=False) indx_train1 = np.random.choice(lossval1.shape[0], size=4000, replace=False) indx_test0 = np.setdiff1d(np.arange(lossval0.shape[0]), indx_train0) indx_test0 = np.random.choice(indx_test0, size=6000, replace=False) indx_test1 = np.setdiff1d(np.arange(lossval1.shape[0]), indx_train1) indx_test1 = np.random.choice(indx_test1, size=6000, replace=False) trainingData = DataHandler(inter_outs0, inter_outs1, lossval0, lossval1, labels1hot0, labels1hot1, grad_vals0, grad_vals1, indx_train0, indx_train1) Max = trainingData.Max Min = trainingData.Min testingData = DataHandler(inter_outs0, inter_outs1, lossval0, lossval1, labels1hot0, labels1hot1, grad_vals0, grad_vals1, indx_test0, indx_test1, Max=Max, Min=Min) AttackerShokri = TrainWBAttacker(trainingData, testingData, out_size_list, layer_size_list, kernel_size_list) dataloaderEval = DataLoader(testingData, batch_size=100, shuffle=False) scoresEval = [] EvalY = [] with torch.no_grad(): for i, batch in enumerate(dataloaderEval): example = batch[0] target = batch[1] scoresEval.append(AttackerShokri(*example).detach()) EvalY.append(target.cpu().data.numpy()) scoresEval = torch.cat(scoresEval, axis=0) scoresEval = torch.squeeze(scoresEval) scoresEval = scoresEval.cpu().data.numpy() EvalY = np.squeeze(np.concatenate(EvalY, axis=0)) TPR_, metrics_ = computeMetricsAlt(scoresEval, EvalY, FPR) aux_list_metrics.append(metrics_) aux_list_TPR.append(TPR_) metrics = np.stack(aux_list_metrics, 1) mean_metrics = np.mean(metrics, 1) std_metrics = np.std(metrics, 1) new_row = {"Attack Strategy": 'Nasr White-Box', 'AUROC': mean_metrics[0], 'AUROC STD': std_metrics[0], 'Best Accuracy': mean_metrics[1], 'Best Accuracy STD': std_metrics[1], 'FPR at TPR80': mean_metrics[2], 'FPR at TPR80 STD': std_metrics[2], 'FPR at TPR85': mean_metrics[3], 'FPR at TPR85 STD': std_metrics[3], 'FPR at TPR90': mean_metrics[4], 'FPR at TPR90 STD': std_metrics[4], 'FPR at TPR95': mean_metrics[5], 'FPR at TPR95 STD': std_metrics[5]} dfMetricsBalanced = dfMetricsBalanced.append(new_row, ignore_index=True) TPR = np.stack(aux_list_TPR, 1) mean_TPR = np.mean(TPR, 1) std_TPR = np.std(TPR, 1) dfTPRaux = pd.DataFrame(np.stack((mean_TPR, std_TPR), axis=1), columns=['Nasr White-Box TPR', 'Nasr White-Box TPR STD']) dfTPRBalanced = dfTPRBalanced.join(dfTPRaux) # Rezaei Analysis try: dfMetricsRezaei = pd.read_csv(currdir + '/CompleteResults/RezaeiMetrics_' + model_type + '.csv') except FileNotFoundError: dfMetricsRezaei = pd.DataFrame(columns=['Attack Strategy', 'Best Accuracy', 'Best Accuracy STD', 'FPR', 'FPR STD']) aux_list_metrics = [] for k in range(num_runs_for_random): np.random.seed(k) indx_train0 = np.random.choice(lossval0.shape[0], size=8000, replace=False) indx_train1 = np.random.choice(lossval1.shape[0], size=40000, replace=False) indx_test0 = np.setdiff1d(
np.arange(lossval0.shape[0])
numpy.arange
'''Train CIFAR10 with PyTorch.''' # Cifar-10 dataset을 closed-set으로 학습을 시키고 SVHN test dataset을 openset으로 Test하는 코드입니다. # SVHN 데이터셋은 검색해보시면 어떠한 데이터셋인지 나올 겁니다. import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import torchvision.models as models import os import argparse from models import * from utils import progress_bar import numpy as np import copy from sklearn import metrics from cb_loss import CB_loss parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training') parser.add_argument('--lr', default=0.1, type=float, help='learning rate') parser.add_argument('--total_epoch', default=100, type=int, help='total epoch') parser.add_argument('--interval', default=10, type=int, help="save interval") parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint') parser.add_argument('--num_cls', default=2, type=int, help="num classes") parser.add_argument('--temperature', default=1.0, type=float, help="temperature scaling") parser.add_argument('--flood_level', default=0.0, type=float, help="flood level") parser.add_argument('--ensemble', default=1, type=int, help="ensemble test mode") args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' best_acc = 0 # best test accuracy start_epoch = 0 # start from epoch 0 or last checkpoint epoch # Data print('==> Preparing data..') transform_train = transforms.Compose([ transforms.Resize((224,224)), transforms.RandomHorizontalFlip(), transforms.RandomRotation(90), transforms.ToTensor(), #transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.Resize((224,224)), transforms.ToTensor(), #transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_crop = transforms.Compose([ transforms.RandomCrop((224,224)), transforms.ToTensor(), ]) # ----------------------------------------------------------------------------------- batch_size=128 num_classes =args.num_cls T = args.temperature flood = args.flood_level total_epoch= args.total_epoch interval = args.interval ensemble=args.ensemble trainset = torchvision.datasets.ImageFolder( root='./data/custom2/train', transform=transform_train) trainloader = torch.utils.data.DataLoader( trainset ,batch_size=256, shuffle=True,num_workers=0) testset = torchvision.datasets.ImageFolder( root='./data/custom2/test', transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=256, shuffle=False, num_workers=0) cropset = torchvision.datasets.ImageFolder( root='./data/custom2/test', transform=transform_crop) croploader = torch.utils.data.DataLoader( cropset, batch_size=256, shuffle=False, num_workers=0) # -------------------------------------------------------------------------------- # 학습 Model을 정의하는 부분입니다. Resnet18을 사용하겠습니다. print('==> Building model..') # net = VGG('VGG19') #net = ResNet18() # net = PreActResNet18() # net = GoogLeNet() # net = DenseNet121() # net = ResNeXt29_2x64d() # net = MobileNet() # net = MobileNetV2() # net = DPN92() # net = ShuffleNetG2() # net = SENet18() # net = ShuffleNetV2(1) # net = EfficientNetB0() # net = RegNetX_200MF() # net = SimpleDLA() net = models.resnet18(pretrained=True) net.fc =nn.Linear(512,num_classes) net = net.to(device) # if device == 'cuda': # net = torch.nn.DataParallel(net) # cudnn.benchmark = True # 저장된 모델을 load하는 부분입니다. # ---------------------------------------------------------------------------------- if args.resume: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!' checkpoint = torch.load('./checkpoint/ckpt.pth') net.load_state_dict(checkpoint['net']) best_acc = checkpoint['acc'] start_epoch = checkpoint['epoch'] # ---------------------------------------------------------------------------------- # loss function 및 optimizaer, learning rate scheduler를 정의하는 부분입니다. # ------------------------------------------------------------------------------------- criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=100, gamma=0.1) # -------------------------------------------------------------------------------------- def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] def get_sample_per_cls(trainloader,num_classes): train_sample_fname = trainloader.dataset.samples train_sample_fname = np.asarray([
np.asarray(i)
numpy.asarray
############################################## # -------- Import Libraries --------# ############################################# import numpy as np import matplotlib.pyplot as plt import pandas as pd from statsmodels.tsa.seasonal import STL from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.stattools import kpss import scipy.signal as signal print("#" * 100) with np.errstate(divide='ignore'): np.float64(1.0) / 0.0 ############################################## # -------- Datetime Transformer --------# ############################################# def datetime_transformer(df, datetime_vars): """ The datetime transformer Parameters ---------- df : the dataframe datetime_vars : the datetime variables Returns ---------- The dataframe where datetime_vars are transformed into the following 6 datetime types: year, month, day, hour, minute and second """ # The dictionary with key as datetime type and value as datetime type operator dict_ = {'year': lambda x: x.dt.year, 'month': lambda x: x.dt.month, 'day': lambda x: x.dt.day # , # 'hour': lambda x: x.dt.hour, # 'minute': lambda x: x.dt.minute, # 'second': lambda x: x.dt.second } # Make a copy of df df_datetime = df.copy(deep=True) # For each variable in datetime_vars for var in datetime_vars: # Cast the variable to datetime df_datetime[var] = pd.to_datetime(df_datetime[var]) # For each item (datetime_type and datetime_type_operator) in dict_ for datetime_type, datetime_type_operator in dict_.items(): # Add a new variable to df_datetime where: # the variable's name is var + '_' + datetime_type # the variable's values are the ones obtained by datetime_type_operator df_datetime[var + '_' + datetime_type] = datetime_type_operator(df_datetime[var]) # Remove datetime_vars from df_datetime # df_datetime = df_datetime.drop(columns=datetime_vars) return df_datetime ############################################## # -------- Auto Correlation Function --------# ############################################# def auto_corr_func_lags(y_tt, lags): ry = [] l = [] den = 0 y_bar = np.mean(y_tt) for i in range(len(y_tt)): den += (y_tt[i] - y_bar) ** 2 for k in range(0, lags + 1): num = 0 for j in range(k, len(y_tt)): num += (y_tt[j] - y_bar) * (y_tt[j - k] - y_bar) acf = num / den ry.append(acf) l.append(k) ryy = ry[::-1] ry_f = ryy[:-1] + ry ll = l[::-1] ll = [li * -1 for li in ll] l_f = ll[:-1] + l return ry_f, l_f ############################################## # -------- Rolling Mean and Variance --------# ############################################# def cal_rolling_mean_var(df, col, mean_or_var): lst = [] lst1 = [] for i in range(0, len(df)): mean = 0 var = 0 if i == 0: mean += df[col][i] var = 0 else: for j in range(0, i + 1): mean += df[col][j] mean = mean / (i + 1) for k in range(0, i + 1): var += (df[col][k] - mean) ** 2 var = var / i lst.append(mean) lst1.append(var) if mean_or_var == 'mean': return lst else: return lst1 ############################################## # -------- Q=Value --------# ############################################# def q_value(y_tt, lags): ry = [] den = 0 y_bar = np.mean(y_tt) for i in range(len(y_tt)): den += (y_tt[i] - y_bar) ** 2 for k in range(0, lags + 1): num = 0 for j in range(k, len(y_tt)): num += (y_tt[j] - y_bar) * (y_tt[j - k] - y_bar) acf = num / den ry.append(acf) # print(ry) ry = [number ** 2 for number in ry[1:]] q_value = np.sum(ry) * len(y_tt) return q_value ############################################## # -------- Average Forecast Method --------# ############################################# def avg_forecast_method(tr, tt): pred = [] train_err = [] test_err = [] pred_test = [] for i in range(1, len(tr)): p = 0 for j in range(0, i): p += (tr[j]) p = p / i e = tr[i] - p pred.append(p) train_err.append(e) p =
np.sum(tr)
numpy.sum
# Copyright 2022 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """main""" import argparse import os import json import cv2 import numpy as np from api.infer import SdkApi from config.config import config from tqdm import tqdm from shapely.geometry import Polygon def parser_args(): """parser_args""" parser = argparse.ArgumentParser(description="siamRPN inference") parser.add_argument("--img_path", type=str, required=False, default="../data/input/vot2015", help="image directory.") parser.add_argument( "--pipeline_path", type=str, required=False, default="../data/config/siamRPN.pipeline", help="image file path. The default is '../data/config/siamRPN.pipeline'. ") parser.add_argument( "--infer_result_dir", type=str, required=False, default="./result", help="cache dir of inference result. The default is './result'." ) arg = parser.parse_args() return arg def get_instance_image(img, bbox, size_z, size_x, context_amount, img_mean=None): cx, cy, w, h = bbox # float type wc_z = w + context_amount * (w + h) hc_z = h + context_amount * (w + h) s_z = np.sqrt(wc_z * hc_z) # the width of the crop box s_x = s_z * size_x / size_z instance_img, scale_x = crop_and_pad(img, cx, cy, size_x, s_x, img_mean) w_x = w * scale_x h_x = h * scale_x return instance_img, w_x, h_x, scale_x def get_exemplar_image(img, bbox, size_z, context_amount, img_mean=None): cx, cy, w, h = bbox wc_z = w + context_amount * (w + h) hc_z = h + context_amount * (w + h) s_z = np.sqrt(wc_z * hc_z) scale_z = size_z / s_z exemplar_img, _ = crop_and_pad(img, cx, cy, size_z, s_z, img_mean) return exemplar_img, scale_z, s_z def round_up(value): return round(value + 1e-6 + 1000) - 1000 def crop_and_pad(img, cx, cy, model_sz, original_sz, img_mean=None): """change img size :param img:rgb :param cx: center x :param cy: center y :param model_sz: changed size :param original_sz: origin size :param img_mean: mean of img :return: changed img ,scale for origin to changed """ im_h, im_w, _ = img.shape xmin = cx - (original_sz - 1) / 2 xmax = xmin + original_sz - 1 ymin = cy - (original_sz - 1) / 2 ymax = ymin + original_sz - 1 left = int(round_up(max(0., -xmin))) top = int(round_up(max(0., -ymin))) right = int(round_up(max(0., xmax - im_w + 1))) bottom = int(round_up(max(0., ymax - im_h + 1))) xmin = int(round_up(xmin + left)) xmax = int(round_up(xmax + left)) ymin = int(round_up(ymin + top)) ymax = int(round_up(ymax + top)) r, c, k = img.shape if any([top, bottom, left, right]): # 0 is better than 1 initialization te_im = np.zeros((r + top + bottom, c + left + right, k), np.uint8) te_im[top:top + r, left:left + c, :] = img if top: te_im[0:top, left:left + c, :] = img_mean if bottom: te_im[r + top:, left:left + c, :] = img_mean if left: te_im[:, 0:left, :] = img_mean if right: te_im[:, c + left:, :] = img_mean im_patch_original = te_im[int(ymin):int( ymax + 1), int(xmin):int(xmax + 1), :] else: im_patch_original = img[int(ymin):int( ymax + 1), int(xmin):int(xmax + 1), :] if not np.array_equal(model_sz, original_sz): # zzp: use cv to get a better speed im_patch = cv2.resize(im_patch_original, (model_sz, model_sz)) else: im_patch = im_patch_original scale = model_sz / im_patch_original.shape[0] return im_patch, scale def generate_anchors(total_stride, base_size, scales, ratios, score_size): """ anchor generator function""" anchor_num = len(ratios) * len(scales) anchor = np.zeros((anchor_num, 4), dtype=np.float32) size = base_size * base_size count = 0 for ratio in ratios: ws = int(np.sqrt(size / ratio)) hs = int(ws * ratio) for scale in scales: wws = ws * scale hhs = hs * scale anchor[count, 0] = 0 anchor[count, 1] = 0 anchor[count, 2] = wws anchor[count, 3] = hhs count += 1 anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4)) ori = - (score_size // 2) * total_stride xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)], [ori + total_stride * dy for dy in range(score_size)]) xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \ np.tile(yy.flatten(), (anchor_num, 1)).flatten() anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32) return anchor def box_transform_inv(anchors, offset): """invert transform box :param anchors: object :param offset: object :return: object """ anchor_xctr = anchors[:, :1] anchor_yctr = anchors[:, 1:2] anchor_w = anchors[:, 2:3] anchor_h = anchors[:, 3:] offset_x, offset_y, offset_w, offset_h = offset[:, :1], offset[:, 1:2], offset[:, 2:3], offset[:, 3:], box_cx = anchor_w * offset_x + anchor_xctr box_cy = anchor_h * offset_y + anchor_yctr box_w = anchor_w * np.exp(offset_w) box_h = anchor_h * np.exp(offset_h) box = np.hstack([box_cx, box_cy, box_w, box_h]) return box def get_axis_aligned_bbox(region): """ convert region to (cx, cy, w, h) that represent by axis aligned box """ nv = len(region) region = np.array(region) if nv == 8: x1 = min(region[0::2]) x2 = max(region[0::2]) y1 = min(region[1::2]) y2 = max(region[1::2]) A1 = np.linalg.norm(region[0:2] - region[2:4]) * \ np.linalg.norm(region[2:4] - region[4:6]) A2 = (x2 - x1) * (y2 - y1) s = np.sqrt(A1 / A2) w = s * (x2 - x1) + 1 h = s * (y2 - y1) + 1 x = x1 y = y1 else: x = region[0] y = region[1] w = region[2] h = region[3] return x, y, w, h def softmax(y): """softmax of numpy""" x = y.copy() if len(x.shape) > 1: tmp = np.max(x, axis=1) x -= tmp.reshape((x.shape[0], 1)) x = np.exp(x) tmp = np.sum(x, axis=1) x /= tmp.reshape((x.shape[0], 1)) else: tmp = np.max(x) x -= tmp x = np.exp(x) tmp = np.sum(x) x /= tmp return x def judge_failures(pred_bbox, gt_bbox, threshold=0): """" judge whether to fail or not """ if len(gt_bbox) == 4: if iou(np.array(pred_bbox).reshape(-1, 4), np.array(gt_bbox).reshape(-1, 4)) > threshold: return False else: poly_pred = Polygon(np.array([[pred_bbox[0], pred_bbox[1]], [pred_bbox[2], pred_bbox[1]], [pred_bbox[2], pred_bbox[3]], [pred_bbox[0], pred_bbox[3]] ])).convex_hull poly_gt = Polygon(np.array(gt_bbox).reshape(4, 2)).convex_hull inter_area = poly_gt.intersection(poly_pred).area overlap = inter_area / (poly_gt.area + poly_pred.area - inter_area) if overlap > threshold: return False return True def calculate_accuracy_failures(pred_trajectory, gt_trajectory, bound=None): ''' args: pred_trajectory:list of bbox gt_trajectory: list of bbox ,shape == pred_trajectory bound :w and h of img return : overlaps:list ,iou value in pred_trajectory acc : mean iou value failures: failures point in pred_trajectory num_failures: number of failres ''' overlaps = [] failures = [] for i, pred_traj in enumerate(pred_trajectory): if len(pred_traj) == 1: if pred_trajectory[i][0] == 2: failures.append(i) overlaps.append(float("nan")) else: if bound is not None: poly_img = Polygon(np.array([[0, 0], [0, bound[1]], [bound[0], bound[1]], [bound[0], 0]])).convex_hull if len(gt_trajectory[i]) == 8: poly_pred = Polygon(np.array([[pred_trajectory[i][0], pred_trajectory[i][1]], [pred_trajectory[i][2], pred_trajectory[i][1]], [pred_trajectory[i][2], pred_trajectory[i][3]], [pred_trajectory[i][0], pred_trajectory[i][3]] ])).convex_hull poly_gt = Polygon( np.array(gt_trajectory[i]).reshape(4, 2)).convex_hull if bound is not None: gt_inter_img = poly_gt.intersection(poly_img) pred_inter_img = poly_pred.intersection(poly_img) inter_area = gt_inter_img.intersection(pred_inter_img).area overlap = inter_area / \ (gt_inter_img.area + pred_inter_img.area - inter_area) else: inter_area = poly_gt.intersection(poly_pred).area overlap = inter_area / \ (poly_gt.area + poly_pred.area - inter_area) elif len(gt_trajectory[i]) == 4: overlap = iou(np.array(pred_trajectory[i]).reshape(-1, 4), np.array(gt_trajectory[i]).reshape(-1, 4)) overlaps.append(overlap) acc = 0 num_failures = len(failures) if overlaps: acc = np.nanmean(overlaps) return acc, overlaps, failures, num_failures def calculate_expected_overlap(fragments, fweights): """ compute expected iou """ max_len = fragments.shape[1] expected_overlaps = np.zeros((max_len), np.float32) expected_overlaps[0] = 1 # TODO Speed Up for i in range(1, max_len): mask = np.logical_not(np.isnan(fragments[:, i])) if np.any(mask): fragment = fragments[mask, 1:i+1] seq_mean = np.sum(fragment, 1) / fragment.shape[1] expected_overlaps[i] = np.sum(seq_mean * fweights[mask]) / np.sum(fweights[mask]) return expected_overlaps def iou(box1, box2): """ compute iou """ box1, box2 = box1.copy(), box2.copy() N = box1.shape[0] K = box2.shape[0] box1 = np.array(box1.reshape((N, 1, 4))) + \ np.zeros((1, K, 4)) # box1=[N,K,4] box2 = np.array(box2.reshape((1, K, 4))) + \ np.zeros((N, 1, 4)) # box1=[N,K,4] x_max = np.max(np.stack((box1[:, :, 0], box2[:, :, 0]), axis=-1), axis=2) x_min = np.min(np.stack((box1[:, :, 2], box2[:, :, 2]), axis=-1), axis=2) y_max = np.max(np.stack((box1[:, :, 1], box2[:, :, 1]), axis=-1), axis=2) y_min = np.min(np.stack((box1[:, :, 3], box2[:, :, 3]), axis=-1), axis=2) tb = x_min-x_max lr = y_min-y_max tb[np.where(tb < 0)] = 0 lr[np.where(lr < 0)] = 0 over_square = tb*lr all_square = (box1[:, :, 2] - box1[:, :, 0]) * (box1[:, :, 3] - box1[:, :, 1]) + (box2[:, :, 2] - \ box2[:, :, 0]) * (box2[:, :, 3] - box2[:, :, 1]) - over_square return over_square / all_square def calculate_eao(dataset_name, all_failures, all_overlaps, gt_traj_length, skipping=5): ''' input:dataset name all_failures: type is list , index of failure all_overlaps: type is list , length of list is the length of all_failures gt_traj_length: type is list , length of list is the length of all_failures skipping:number of skipping per failing ''' if dataset_name == "VOT2016": low = 108 high = 371 elif dataset_name == "VOT2015": low = 108 high = 371 fragment_num = sum([len(x)+1 for x in all_failures]) max_len = max([len(x) for x in all_overlaps]) tags = [1] * max_len seq_weight = 1 / (1 + 1e-10) # division by zero eao = {} # prepare segments fweights = np.ones(fragment_num, dtype=np.float32) * np.nan fragments = np.ones((fragment_num, max_len), dtype=np.float32) * np.nan seg_counter = 0 for traj_len, failures, overlaps in zip(gt_traj_length, all_failures, all_overlaps): if failures: points = [x+skipping for x in failures if x+skipping <= len(overlaps)] points.insert(0, 0) for i, _ in enumerate(points): if i != len(points) - 1: fragment = np.array( overlaps[points[i]:points[i+1]+1], dtype=np.float32) fragments[seg_counter, :] = 0 else: fragment = np.array(overlaps[points[i]:], dtype=np.float32) fragment[np.isnan(fragment)] = 0 fragments[seg_counter, :len(fragment)] = fragment if i != len(points) - 1: tag_value = tags[points[i]:points[i+1]+1] w = sum(tag_value) / (points[i+1] - points[i]+1) fweights[seg_counter] = seq_weight * w else: tag_value = tags[points[i]:len(overlaps)] w = sum(tag_value) / (traj_len - points[i]+1e-16) fweights[seg_counter] = seq_weight * w seg_counter += 1 else: # no failure max_idx = min(len(overlaps), max_len) fragments[seg_counter, :max_idx] = overlaps[:max_idx] tag_value = tags[0: max_idx] w = sum(tag_value) / max_idx fweights[seg_counter] = seq_weight * w seg_counter += 1 expected_overlaps = calculate_expected_overlap(fragments, fweights) print(len(expected_overlaps)) # calculate eao weight = np.zeros((len(expected_overlaps))) weight[low-1:high-1+1] = 1 expected_overlaps = np.array(expected_overlaps, dtype=np.float32) is_valid = np.logical_not(
np.isnan(expected_overlaps)
numpy.isnan
import subprocess import numpy as np import pytest class Datasets: def __init__(self, train_data, train_labels, test_data, test_labels): self.train_data = train_data self.train_labels = train_labels self.test_data = test_data self.test_labels = test_labels def test_dataset_shapes(featurize_stage): assert np.shape(featurize_stage.train_data) == (60000, 784) assert np.shape(featurize_stage.train_labels) == (60000,) assert np.shape(featurize_stage.test_data) == (10000, 784) assert np.shape(featurize_stage.test_labels) == (10000,) def test_dataset_standardized(featurize_stage): train_mean = np.mean(featurize_stage.train_data) train_std =
np.std(featurize_stage.train_data)
numpy.std
""" Solve the radial Teukolsky equation via Leaver's method. """ from __future__ import division, print_function, absolute_import from numba import njit import numpy as np from .contfrac import lentz # TODO some documentation here, better documentation throughout @njit(cache=True) def sing_pt_char_exps(omega, a, s, m): r""" Compute the three characteristic exponents of the singular points of the radial Teukolsky equation. We want ingoing at the outer horizon and outgoing at infinity. The choice of one of two possible characteristic exponents at the inner horizon doesn't affect the minimal solution in Leaver's method, so we just pick one. Thus our choices are, in the nomenclature of [1]_, :math:`(\zeta_+, \xi_-, \eta_+)`. Parameters ---------- omega: complex The complex frequency in the ansatz for the solution of the radial Teukolsky equation. a: double Spin parameter of the black hole, 0. <= a < 1 . s: int Spin weight of the field (i.e. -2 for gravitational). m: int Azimuthal number for the perturbation. Returns ------- (complex, complex, complex) :math:`(\zeta_+, \xi_-, \eta_+)` References ---------- .. [1] <NAME>, <NAME>, "Gravitational perturbations of the Kerr geometry: High-accuracy study," Phys. Rev. D 90, 124021 (2014), https://arxiv.org/abs/1410.7698 . """ root = np.sqrt(1. - a*a) r_p, r_m = 1. + root, 1. - root sigma_p = (2.*omega*r_p - m*a)/(2.*root) sigma_m = (2.*omega*r_m - m*a)/(2.*root) zeta = +1.j * omega # This is the choice \zeta_+ xi = - s - 1.j * sigma_p # This is the choice \xi_- eta = -1.j * sigma_m # This is the choice \eta_+ return zeta, xi, eta @njit(cache=True) def D_coeffs(omega, a, s, m, A): """ The D_0 through D_4 coefficients that enter into the radial infinite continued fraction, Eqs. (31) of [1]_ . Parameters ---------- omega: complex The complex frequency in the ansatz for the solution of the radial Teukolsky equation. a: double Spin parameter of the black hole, 0. <= a < 1 . s: int Spin weight of the field (i.e. -2 for gravitational). m: int Azimuthal number for the perturbation. A: complex Separation constant between angular and radial ODEs. Returns ------- array[5] of complex D_0 through D_4 . References ---------- .. [1] <NAME>, <NAME>, "Gravitational perturbations of the Kerr geometry: High-accuracy study," Phys. Rev. D 90, 124021 (2014), https://arxiv.org/abs/1410.7698 . """ zeta, xi, eta = sing_pt_char_exps(omega, a, s, m) root = np.sqrt(1. - a*a) p = root * zeta alpha = 1. + s + xi + eta - 2.*zeta + s # Because we took the root \zeta_+ gamma = 1. + s + 2.*eta delta = 1. + s + 2.*xi sigma = (A + a*a*omega*omega - 8.*omega*omega + p * (2.*alpha + gamma - delta) + (1. + s - 0.5*(gamma + delta)) * (s + 0.5*(gamma + delta))) D = [0.j] * 5 D[0] = delta D[1] = 4.*p - 2.*alpha + gamma - delta - 2. D[2] = 2.*alpha - gamma + 2. D[3] = alpha*(4.*p - delta) - sigma D[4] = alpha*(alpha - gamma + 1.) return D def leaver_cf_trunc_inversion(omega, a, s, m, A, n_inv, N=300, r_N=1.): """ Legacy function. Approximate the n_inv inversion of the infinite continued fraction for solving the radial Teukolsky equation, using N terms total for the approximation. This uses "bottom up" evaluation, and you can pass a seed value r_N to assume for the rest of the infinite fraction which has been truncated. The value returned is Eq. (44) of [1]_. Parameters ---------- omega: complex The complex frequency for evaluating the infinite continued fraction. a: float Spin parameter of the black hole, 0. <= a < 1 . s: int Spin weight of the field (i.e. -2 for gravitational). m: int Azimuthal number for the perturbation. A: complex Separation constant between angular and radial ODEs. n_inv: int Inversion number for the infinite continued fraction. Finding the nth overtone is typically most stable when n_inv = n . N: int, optional [default: 300] The depth where the infinite continued fraction is truncated. r_N: float, optional [default: 1.] Value to assume for the rest of the infinite continued fraction past the point of truncation. Returns ------- complex The nth inversion of the infinite continued fraction evaluated with these arguments. References ---------- .. [1] <NAME>, <NAME>, "Gravitational perturbations of the Kerr geometry: High-accuracy study," Phys. Rev. D 90, 124021 (2014), https://arxiv.org/abs/1410.7698 . """ n = np.arange(0, N+1) D = D_coeffs(omega, a, s, m, A) alpha = n*n + (D[0] + 1.)*n + D[0] beta = -2.*n*n + (D[1] + 2.)*n + D[3] gamma = n*n + (D[2] - 3.)*n + D[4] - D[2] + 2. conv1 = 0. for i in range(0, n_inv): # n_inv is not included conv1 = alpha[i] / (beta[i] - gamma[i] * conv1) conv2 = -r_N # Is this sign correct? for i in range(N, n_inv, -1): # n_inv is not included conv2 = gamma[i] / (beta[i] - alpha[i] * conv2) return (beta[n_inv] - gamma[n_inv] * conv1 - alpha[n_inv] * conv2) # TODO possible choices for r_N: 0., 1., approximation using (34)-(38) # Definitions for a_i, b_i for continued fraction below # In defining the below a, b sequences, I have cleared a fraction # compared to the usual way of writing the radial infinite # continued fraction. The point of doing this was that so both # terms, a(n) and b(n), tend to 1 as n goes to infinity. Further, # We can analytically divide through by n in the numerator and # denominator to make the numbers closer to 1. @njit(cache=True) def rad_a(i, n_inv, D): n = i + n_inv - 1 return -(n*n + (D[0] + 1.)*n + D[0])/(n*n + (D[2] - 3.)*n + D[4] - D[2] + 2.) @njit(cache=True) def rad_b(i, n_inv, D): if (i==0): return 0 n = i + n_inv return (-2.*n*n + (D[1] + 2.)*n + D[3])/(n*n + (D[2] - 3.)*n + D[4] - D[2] + 2.) #Note that we do not jit the following function, since lentz is not jitted. def leaver_cf_inv_lentz_old(omega, a, s, m, A, n_inv, tol=1.e-10, N_min=0, N_max=np.Inf): """ Legacy function. Same as :meth:`leaver_cf_inv_lentz` except calling :meth:`qnm.contfrac.lentz`. We do not jit this function since lentz is not jitted. It remains here for testing purposes. See documentation for :meth:`leaver_cf_inv_lentz` for parameters and return value. Examples -------- >>> from qnm.radial import leaver_cf_inv_lentz_old, leaver_cf_inv_lentz >>> print(leaver_cf_inv_lentz_old(omega=.4 - 0.2j, a=0.02, s=-2, m=2, A=4.+0.j, n_inv=0)) ((-3.5662773770495972-1.538871079338485j), 9.702532283649582e-11, 76) Compare the two versions of the function: >>> old = leaver_cf_inv_lentz_old(omega=.4 - 0.2j, a=0.02, s=-2, m=2, A=4.+0.j, n_inv=0) >>> new = leaver_cf_inv_lentz(omega=.4 - 0.2j, a=0.02, s=-2, m=2, A=4.+0.j, n_inv=0) >>> [ old[i]-new[i] for i in range(3)] [0j, 0.0, 0] """ D = D_coeffs(omega, a, s, m, A) # This is only use for the terminating fraction n = np.arange(0, n_inv+1) alpha = n*n + (D[0] + 1.)*n + D[0] beta = -2.*n*n + (D[1] + 2.)*n + D[3] gamma = n*n + (D[2] - 3.)*n + D[4] - D[2] + 2. conv1 = 0. for i in range(0, n_inv): # n_inv is not included conv1 = alpha[i] / (beta[i] - gamma[i] * conv1) conv2, cf_err, n_frac = lentz(rad_a, rad_b, args=(n_inv, D), tol=tol, N_min=N_min, N_max=N_max) return (beta[n_inv] - gamma[n_inv] * conv1 + gamma[n_inv] * conv2), cf_err, n_frac @njit(cache=True) def leaver_cf_inv_lentz(omega, a, s, m, A, n_inv, tol=1.e-10, N_min=0, N_max=np.Inf): """Compute the n_inv inversion of the infinite continued fraction for solving the radial Teukolsky equation, using modified Lentz's method. The value returned is Eq. (44) of [1]_. Same as :meth:`leaver_cf_inv_lentz_old`, but with Lentz's method inlined so that numba can speed things up. Parameters ---------- omega: complex The complex frequency for evaluating the infinite continued fraction. a: float Spin parameter of the black hole, 0. <= a < 1 . s: int Spin weight of the field (i.e. -2 for gravitational). m: int Azimuthal number for the perturbation. A: complex Separation constant between angular and radial ODEs. n_inv: int Inversion number for the infinite continued fraction. Finding the nth overtone is typically most stable when n_inv = n . tol: float, optional [default: 1.e-10] Tolerance for termination of Lentz's method. N_min: int, optional [default: 0] Minimum number of iterations through Lentz's method. N_max: int or comparable, optional [default: np.Inf] Maximum number of iterations for Lentz's method. Returns ------- (complex, float, int) The first value (complex) is the nth inversion of the infinite continued fraction evaluated with these arguments. The second value (float) is the estimated error from Lentz's method. The third value (int) is the number of iterations of Lentz's method. Examples -------- >>> from qnm.radial import leaver_cf_inv_lentz >>> print(leaver_cf_inv_lentz(omega=.4 - 0.2j, a=0.02, s=-2, m=2, A=4.+0.j, n_inv=0)) ((-3.5662773770495972-1.538871079338485j), 9.702532283649582e-11, 76) References ---------- .. [1] <NAME>, <NAME>, "Gravitational perturbations of the Kerr geometry: High-accuracy study," Phys. Rev. D 90, 124021 (2014), https://arxiv.org/abs/1410.7698 . """ D = D_coeffs(omega, a, s, m, A) # This is only use for the terminating fraction n = np.arange(0, n_inv+1) alpha = n*n + (D[0] + 1.)*n + D[0] beta = -2.*n*n + (D[1] + 2.)*n + D[3] gamma = n*n + (D[2] - 3.)*n + D[4] - D[2] + 2. conv1 = 0. for i in range(0, n_inv): # n_inv is not included conv1 = alpha[i] / (beta[i] - gamma[i] * conv1) ############################## # Beginning of Lentz's method, inlined # TODO should tiny be a parameter? tiny = 1.e-30 # This is starting with b_0 = 0 for the infinite continued # fraction. I could have started with other values (e.g. b_i # evaluated with i=0) but then I would have had to subtract that # same quantity away from the final result. I don't know if this # affects convergence. f_old = tiny C_old = f_old D_old = 0. conv = False j = 1 n = n_inv while ((not conv) and (j < N_max)): # In defining the below a, b sequences, I have cleared a fraction # compared to the usual way of writing the radial infinite # continued fraction. The point of doing this was that so both # terms, a(n) and b(n), tend to 1 as n goes to infinity. Further, # We can analytically divide through by n in the numerator and # denominator to make the numbers closer to 1. an = -(n*n + (D[0] + 1.)*n + D[0])/(n*n + (D[2] - 3.)*n + D[4] - D[2] + 2.) n = n + 1 bn = (-2.*n*n + (D[1] + 2.)*n + D[3])/(n*n + (D[2] - 3.)*n + D[4] - D[2] + 2.) D_new = bn + an * D_old if (D_new == 0): D_new = tiny C_new = bn + an / C_old if (C_new == 0): C_new = tiny D_new = 1./D_new Delta = C_new * D_new f_new = f_old * Delta if ((j > N_min) and (
np.abs(Delta - 1.)
numpy.abs
# coding: utf-8 from __future__ import division, print_function # Standard library import time # Third-party import matplotlib.pyplot as plt import numpy as np from scipy.misc import derivative from astropy.extern.six.moves import cPickle as pickle import pytest # Project from ..io import load from ..core import CompositePotential from ....units import UnitSystem, DimensionlessUnitSystem from ....dynamics import PhaseSpacePosition from ....integrate import LeapfrogIntegrator def partial_derivative(func, point, dim_ix=0, **kwargs): xyz = np.array(point, copy=True) def wraps(a): xyz[dim_ix] = a return func(xyz) return derivative(wraps, point[dim_ix], **kwargs) class PotentialTestBase(object): name = None potential = None # MUST SET THIS tol = 1E-5 show_plots = False @classmethod def setup_class(cls): if cls.name is None: cls.name = cls.__name__[4:] # remove Test print("Testing potential: {}".format(cls.name)) cls.w0 = np.array(cls.w0) cls.ndim = cls.w0.size // 2 # TODO: need to test also quantity objects and phasespacepositions! # these are arrays we will test the methods on: w0_2d = np.repeat(cls.w0[:,None], axis=1, repeats=16) w0_3d = np.repeat(w0_2d[...,None], axis=2, repeats=8) w0_list = list(cls.w0) w0_slice = w0_2d[:,:4] cls.w0s = [cls.w0, w0_2d, w0_3d, w0_list, w0_slice] cls._grad_return_shapes = [cls.w0[:cls.ndim].shape + (1,), w0_2d[:cls.ndim].shape, w0_3d[:cls.ndim].shape, cls.w0[:cls.ndim].shape + (1,), w0_slice[:cls.ndim].shape] cls._hess_return_shapes = [(cls.ndim,) + cls.w0[:cls.ndim].shape + (1,), (cls.ndim,) + w0_2d[:cls.ndim].shape, (cls.ndim,) + w0_3d[:cls.ndim].shape, (cls.ndim,) + cls.w0[:cls.ndim].shape + (1,), (cls.ndim,) + w0_slice[:cls.ndim].shape] cls._valu_return_shapes = [x[1:] for x in cls._grad_return_shapes] def test_unitsystem(self): assert isinstance(self.potential.units, UnitSystem) def test_energy(self): assert self.ndim == self.potential.ndim for arr,shp in zip(self.w0s, self._valu_return_shapes): v = self.potential.energy(arr[:self.ndim]) assert v.shape == shp g = self.potential.energy(arr[:self.ndim], t=0.1) g = self.potential.energy(arr[:self.ndim], t=0.1*self.potential.units['time']) t = np.zeros(np.array(arr).shape[1:]) + 0.1 g = self.potential.energy(arr[:self.ndim], t=t) g = self.potential.energy(arr[:self.ndim], t=t*self.potential.units['time']) def test_gradient(self): for arr,shp in zip(self.w0s, self._grad_return_shapes): g = self.potential.gradient(arr[:self.ndim]) assert g.shape == shp g = self.potential.gradient(arr[:self.ndim], t=0.1) g = self.potential.gradient(arr[:self.ndim], t=0.1*self.potential.units['time']) t = np.zeros(np.array(arr).shape[1:]) + 0.1 g = self.potential.gradient(arr[:self.ndim], t=t) g = self.potential.gradient(arr[:self.ndim], t=t*self.potential.units['time']) def test_hessian(self): for arr,shp in zip(self.w0s, self._hess_return_shapes): g = self.potential.hessian(arr[:self.ndim]) assert g.shape == shp g = self.potential.hessian(arr[:self.ndim], t=0.1) g = self.potential.hessian(arr[:self.ndim], t=0.1*self.potential.units['time']) t = np.zeros(np.array(arr).shape[1:]) + 0.1 g = self.potential.hessian(arr[:self.ndim], t=t) g = self.potential.hessian(arr[:self.ndim], t=t*self.potential.units['time']) def test_mass_enclosed(self): for arr,shp in zip(self.w0s, self._valu_return_shapes): g = self.potential.mass_enclosed(arr[:self.ndim]) assert g.shape == shp assert np.all(g > 0.) g = self.potential.mass_enclosed(arr[:self.ndim], t=0.1) g = self.potential.mass_enclosed(arr[:self.ndim], t=0.1*self.potential.units['time']) t = np.zeros(
np.array(arr)
numpy.array
import h5py import pickle import numpy as np def load_weights(): fff = h5py.File('Mybase/mask_rcnn_coco.h5','r') #打开h5文件 #print(list(f.keys())) mydict = {} mydict['global_step:0'] = 1000 ########res1######## dset = fff['conv1'] a = dset['conv1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn_conv1'] a = dset['bn_conv1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ########res2######## dset = fff['res2a_branch1'] a = dset['res2a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch1'] a = dset['bn2a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2a'] a = dset['res2a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2a'] a = dset['bn2a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2b'] a = dset['res2a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2b'] a = dset['bn2a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2c'] a = dset['res2a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2c'] a = dset['bn2a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res2b_branch2a'] a = dset['res2b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2a'] a = dset['bn2b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2b'] a = dset['res2b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2b'] a = dset['bn2b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2c'] a = dset['res2b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2c'] a = dset['bn2b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res2c_branch2a'] a = dset['res2c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2a'] a = dset['bn2c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2b'] a = dset['res2c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2b'] a = dset['bn2c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2c'] a = dset['res2c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2c'] a = dset['bn2c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res3######## dset = fff['res3a_branch1'] a = dset['res3a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch1'] a = dset['bn3a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2a'] a = dset['res3a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2a'] a = dset['bn3a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2b'] a = dset['res3a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2b'] a = dset['bn3a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2c'] a = dset['res3a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2c'] a = dset['bn3a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res3b_branch2a'] a = dset['res3b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2a'] a = dset['bn3b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2b'] a = dset['res3b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2b'] a = dset['bn3b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2c'] a = dset['res3b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2c'] a = dset['bn3b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3c_branch2a'] a = dset['res3c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2a'] a = dset['bn3c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2b'] a = dset['res3c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2b'] a = dset['bn3c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2c'] a = dset['res3c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2c'] a = dset['bn3c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3d_branch2a'] a = dset['res3d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2a'] a = dset['bn3d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2b'] a = dset['res3d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2b'] a = dset['bn3d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2c'] a = dset['res3d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2c'] a = dset['bn3d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res4######## dset = fff['res4a_branch1'] a = dset['res4a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch1'] a = dset['bn4a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2a'] a = dset['res4a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2a'] a = dset['bn4a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2b'] a = dset['res4a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2b'] a = dset['bn4a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2c'] a = dset['res4a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2c'] a = dset['bn4a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res4b_branch2a'] a = dset['res4b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2a'] a = dset['bn4b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2b'] a = dset['res4b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2b'] a = dset['bn4b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2c'] a = dset['res4b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2c'] a = dset['bn4b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4c_branch2a'] a = dset['res4c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2a'] a = dset['bn4c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2b'] a = dset['res4c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2b'] a = dset['bn4c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2c'] a = dset['res4c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2c'] a = dset['bn4c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4d_branch2a'] a = dset['res4d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2a'] a = dset['bn4d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2b'] a = dset['res4d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2b'] a = dset['bn4d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2c'] a = dset['res4d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2c'] a = dset['bn4d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4e_branch2a'] a = dset['res4e_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2a'] a = dset['bn4e_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2b'] a = dset['res4e_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2b'] a = dset['bn4e_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2c'] a = dset['res4e_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2c'] a = dset['bn4e_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4f_branch2a'] a = dset['res4f_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2a'] a = dset['bn4f_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2b'] a = dset['res4f_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2b'] a = dset['bn4f_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2c'] a = dset['res4f_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2c'] a = dset['bn4f_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4g_branch2a'] a = dset['res4g_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2a'] a = dset['bn4g_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2b'] a = dset['res4g_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2b'] a = dset['bn4g_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2c'] a = dset['res4g_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2c'] a = dset['bn4g_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4h_branch2a'] a = dset['res4h_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2a'] a = dset['bn4h_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2b'] a = dset['res4h_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2b'] a = dset['bn4h_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2c'] a = dset['res4h_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2c'] a = dset['bn4h_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4i_branch2a'] a = dset['res4i_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2a'] a = dset['bn4i_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2b'] a = dset['res4i_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2b'] a = dset['bn4i_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2c'] a = dset['res4i_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2c'] a = dset['bn4i_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4j_branch2a'] a = dset['res4j_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2a'] a = dset['bn4j_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2b'] a = dset['res4j_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2b'] a = dset['bn4j_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2c'] a = dset['res4j_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2c'] a = dset['bn4j_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4k_branch2a'] a = dset['res4k_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2a'] a = dset['bn4k_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2b'] a = dset['res4k_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2b'] a = dset['bn4k_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2c'] a = dset['res4k_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2c'] a = dset['bn4k_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4l_branch2a'] a = dset['res4l_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2a'] a = dset['bn4l_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2b'] a = dset['res4l_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2b'] a = dset['bn4l_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2c'] a = dset['res4l_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2c'] a = dset['bn4l_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4m_branch2a'] a = dset['res4m_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2a'] a = dset['bn4m_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2b'] a = dset['res4m_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2b'] a = dset['bn4m_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2c'] a = dset['res4m_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2c'] a = dset['bn4m_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4n_branch2a'] a = dset['res4n_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2a'] a = dset['bn4n_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4n_branch2b'] a = dset['res4n_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2b'] a = dset['bn4n_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4n_branch2c'] a = dset['res4n_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2c'] a = dset['bn4n_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4o_branch2a'] a = dset['res4o_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4o_branch2a'] a = dset['bn4o_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4o_branch2b'] a = dset['res4o_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4o_branch2b'] a = dset['bn4o_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4o_branch2c'] a = dset['res4o_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4o_branch2c'] a = dset['bn4o_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4p_branch2a'] a = dset['res4p_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4p_branch2a'] a = dset['bn4p_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4p_branch2b'] a = dset['res4p_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4p_branch2b'] a = dset['bn4p_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4p_branch2c'] a = dset['res4p_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4p_branch2c'] a = dset['bn4p_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4q_branch2a'] a = dset['res4q_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4q_branch2a'] a = dset['bn4q_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4q_branch2b'] a = dset['res4q_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4q_branch2b'] a = dset['bn4q_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4q_branch2c'] a = dset['res4q_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4q_branch2c'] a = dset['bn4q_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4r_branch2a'] a = dset['res4r_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4r_branch2a'] a = dset['bn4r_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4r_branch2b'] a = dset['res4r_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4r_branch2b'] a = dset['bn4r_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4r_branch2c'] a = dset['res4r_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4r_branch2c'] a = dset['bn4r_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4s_branch2a'] a = dset['res4s_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4s_branch2a'] a = dset['bn4s_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4s_branch2b'] a = dset['res4s_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4s_branch2b'] a = dset['bn4s_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4s_branch2c'] a = dset['res4s_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4s_branch2c'] a = dset['bn4s_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4t_branch2a'] a = dset['res4t_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4t_branch2a'] a = dset['bn4t_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4t_branch2b'] a = dset['res4t_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4t_branch2b'] a = dset['bn4t_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4t_branch2c'] a = dset['res4t_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4t_branch2c'] a = dset['bn4t_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4u_branch2a'] a = dset['res4u_branch2a'] b =
np.array(a['kernel:0'], dtype=np.float32)
numpy.array
import math import pandas as pd import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.compat.v1.keras import backend as K from sklearn.preprocessing import MinMaxScaler ''' Author: <NAME> This document contains code for a ConvLSTM neural network predicting SIC per pixel and per month for spatio-temporal image data. ''' # Data loading with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/convlstm/Filled Rolling Data/X_train_rolling_filled_final.npy", "rb") as f: X_train = np.load(f) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/convlstm/Filled Rolling Data/y_train_rolling_filled_final.npy", "rb") as f: y_train = np.load(f) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/convlstm/Filled Rolling Data/X_test_rolling_filled_final.npy", "rb") as f: X_test = np.load(f) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/convlstm/Filled Rolling Data/y_test_rolling_filled_final.npy", "rb") as f: y_test = np.load(f) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/modeling/y_land_mask_actual.npy", "rb") as f: y_land_mask = np.load(f) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/convlstm/y_extent_train_rolling_final.npy", "rb") as f: y_extent_train = np.load(f) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/convlstm/y_extent_test_rolling_final.npy", "rb") as f: y_extent_test = np.load(f) # reshape y_land_mask y_land_mask = y_land_mask.reshape(448, 304, 1) from sklearn.metrics import mean_squared_error # define custom mse loss, which applies land mask to each output of the network. def custom_mse(y_true, y_pred): y_pred_masked = tf.math.multiply(y_pred, y_land_mask) y_true_masked = tf.math.multiply(y_true, y_land_mask) squared_resids = tf.square(y_true_masked - y_pred_masked) loss = tf.reduce_mean(squared_resids) return loss #load per-pixel area file with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/preprocessing/area_size.npy", "rb") as f: areas = np.load(f) #calculate ice extent def calc_ice_extent(array): array = array / 100.0 # use simple extent calculation tot_ice_extent = np.sum(np.multiply(array > 15.0, areas), axis=(1,2)) / 1e6 return tot_ice_extent # define ConvLSTM model def create_convLSTM_image(): #add ConvLSTM layers inputs = keras.layers.Input(shape=X_train.shape[1:]) x = keras.layers.ConvLSTM2D(16, (5,5), padding="same", input_shape = (12, 448, 304, 11), return_sequences=False, activation="relu", data_format = 'channels_last')(inputs) x = keras.layers.MaxPooling2D((2,2), padding='same')(x) x = keras.layers.Conv2D(128, (5,5), padding="same", activation="relu")(x) x = keras.layers.MaxPooling2D((2,2), padding='same')(x) x = keras.layers.Conv2D(32, (5,5), padding="same", activation="relu")(x) x = keras.layers.Flatten()(x) x = keras.layers.Dense(256, activation="relu")(x) x = keras.layers.Dense(512, activation="relu")(x) x = keras.layers.Dense(448*304, activation="linear")(x) sic_output = keras.layers.Reshape((448, 304, 1), input_shape = (448*304,))(x) #initialize model model = keras.models.Model(inputs=inputs, outputs=sic_output, name="SIC_net") #compile model model.compile(optimizer="adamax", loss=custom_mse, metrics=[keras.metrics.RootMeanSquaredError()]) return model # define loss weights for each output sample_weight = np.ones(shape=(len(y_train),)) train_extent = calc_ice_extent(y_train) sample_weight[9::12]=1.2 print("first 5 sample weights: {}".format(sample_weight[0:5])) # define early stopping callback early_stopping = keras.callbacks.EarlyStopping(patience=100, restore_best_weights=True) # call model creation convLSTM_image = create_convLSTM_image() # print model summary print(convLSTM_image.summary()) # fit model history2 = convLSTM_image.fit(x=X_train, y=y_train, batch_size=4, epochs=1000, validation_split = .2, sample_weight=sample_weight, callbacks=[early_stopping]) # save model convLSTM_image.save("convLSTM_image") # image output # train prediction image_train_preds = convLSTM_image.predict(X_train) image_train_rmse = math.sqrt(mean_squared_error(y_train.flatten(), image_train_preds.flatten())) print("Image Concentration Train RMSE: {}".format(image_train_rmse)) print("Image Concentration Train NRMSE: {}".format(image_train_rmse / np.mean(y_train))) print("Image Concentration Train NRMSE (std. dev.): {}".format(image_train_rmse / np.std(y_train))) print("Train Prediction Shape: {}".format(image_train_preds.shape)) # test prediction image_test_preds = convLSTM_image.predict(X_test) image_test_rmse = math.sqrt(mean_squared_error(y_test.flatten(), image_test_preds.flatten())) print("Image Concentration Test RMSE: {}".format(image_test_rmse)) print("Image Concentration Test NRMSE: {}".format(image_test_rmse / np.mean(y_test))) print("Image Concentration Test NRMSE: {}".format(image_test_rmse / np.std(y_test))) print("Test Prediction Shape: {}".format(image_test_preds.shape)) # save image outputs: print(image_test_preds.shape) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/evaluation/convlstm/convlstm_image_rolling_filled_preds.npy", "wb") as f: np.save(f, image_test_preds) with open("/umbc/xfs1/cybertrn/reu2021/team1/research/GitHub/evaluation/convlstm/convlstm_image_rolling_filled_actual.npy", "wb") as f: np.save(f, y_test) # calculate predicted extent # train train_pred_extent = calc_ice_extent(image_train_preds) train_actual_extent = calc_ice_extent(y_train) train_extent_rmse = math.sqrt(mean_squared_error(train_actual_extent, train_pred_extent)) print("Last Month Predicted Extent(Train): {}".format(train_pred_extent[-1])) print("Last Month Actual Extent (Train): {}".format(train_actual_extent[-1])) print("Train Extent RMSE: {}".format(train_extent_rmse)) print("Train Extent NRMSE: {}".format(train_extent_rmse /
np.mean(train_actual_extent)
numpy.mean
import numpy as np from . import VecEnv class DummyVecEnv(VecEnv): def __init__(self, env_fns): self.envs = [fn() for fn in env_fns] env = self.envs[0] self.action_space = env.action_space self.observation_space = env.observation_space self.ts = np.zeros(len(self.envs), dtype='int') def step(self, action_n): results = [env.step(a) for (a,env) in zip(action_n, self.envs)] obs, rews, dones, infos = map(np.array, zip(*results)) self.ts += 1 for (i, done) in enumerate(dones): if done: obs[i] = self.envs[i].reset() self.ts[i] = 0 return np.array(obs),
np.array(rews)
numpy.array
import numpy as np import matplotlib.pyplot as plt import btk import matplotlib.patches as patches def get_rgb(image, min_val=None, max_val=None): """Function to normalize 3 band input image to RGB 0-255 image. Args: image (array_like): Image array to convert to RGB image with dtype uint8 [bands, height, width]. min_val (float32 or 3-d float array, default=`None`): Pixel values in image less than or equal to this are set to zero in the RGB output. max_val (float32, default=`None`): Pixel values in image greater than or equal to this are set to zero in the RGB output. Returns: uint8 array [height, width, bands] of the input image. """ if image.shape[0] != 3: raise ValueError("Must be 3 channel in dimension 1 of image" f"Found {image.shape[0]}") if min_val is None: min_val = image.min(axis=-1).min(axis=-1) if max_val is None: max_val = image.max(axis=-1).max(axis=-1) new_image = np.transpose(image, axes=(1, 2, 0)) new_image = (new_image - min_val) / (max_val - min_val) * 255 new_image[new_image < 0] = 0 new_image[new_image > 255] = 255 return new_image.astype(np.uint8) def get_rgb_image(image, normalize_with_image=None): """Returns RGB (0-255) image corresponding to the input 3 band image. If scarlet.display is imported then the normalization is performed by scarlet Asinh function. If not, a basic normalization is performed. Args: image : Image array (float32) to convert to RGB [bands, height, width]. normalize_with_image: Image array (float32) to normalize input image with [bands, height, width]. Returns: uint8 array [height, width, bands] of the input image. """ try: import scarlet.display if normalize_with_image is not None: norm = scarlet.display.Asinh(img=normalize_with_image, Q=20) else: norm = None img_rgb = scarlet.display.img_to_rgb(image, norm=norm) except ImportError: # scarlet not installed, basic normalize image to 0-255 if normalize_with_image is None: min_val = None max_val = None else: min_val = np.min(normalize_with_image, axis=1).min(axis=-1) max_val = np.max(normalize_with_image, axis=1).max(axis=-1) img_rgb = get_rgb(image, min_val=min_val, max_val=max_val) return img_rgb def plot_blends(blend_images, blend_list, detected_centers=None, limits=None, band_indices=[1, 2, 3]): """Plots blend images as RGB image, sum in all bands, and RGB image with centers of objects marked. Outputs of btk draw are plotted here. Blend_list must contain true centers of the objects. If detected_centers are input, then the centers are also shown in the third panel along with the true centers. Args: blend_images (array_like): Array of blend scene images to plot [batch, height, width, bands]. blend_list (list) : List of `astropy.table.Table` with entries of true objects. Length of list must be the batch size. detected_centers (list, default=`None`): List of `numpy.ndarray` or lists with centers of detected centers for each image in batch. Length of list must be the batch size. Each list entry must be a list or `numpy.ndarray` of dimensions [N, 2]. limits(list, default=`None`): List of start and end coordinates to display image within. Note: limits are applied to both height and width dimensions. band_indices (list, default=[1,2,3]): list of length 3 with indices of bands that are to be plotted in the RGB image. """ batch_size = len(blend_list) if len(band_indices) != 3: raise ValueError(f"band_indices must be a list with 3 entries, not \ {band_indices}") if detected_centers is None: detected_centers = [[]] * batch_size if (len(detected_centers) != batch_size or blend_images.shape[0] != batch_size): raise ValueError(f"Length of detected_centers and length of blend_list\ must be equal to first dimension of blend_images, found \ {len(detected_centers), len(blend_list), len(blend_images)}") for i in range(batch_size): num = len(blend_list[i]) images = np.transpose(blend_images[i], axes=(2, 0, 1)) blend_img_rgb = get_rgb_image(images[band_indices]) _, ax = plt.subplots(1, 3, figsize=(8, 3)) ax[0].imshow(blend_img_rgb) if limits: ax[0].set_xlim(limits) ax[0].set_ylim(limits) ax[0].set_title("gri bands") ax[0].axis('off') ax[1].imshow(np.sum(blend_images[i, :, :, :], axis=2)) ax[1].set_title("Sum") if limits: ax[1].set_xlim(limits) ax[1].set_ylim(limits) ax[1].axis('off') ax[2].imshow(blend_img_rgb) ax[2].set_title(f"{num} objects with centers") for entry in blend_list[i]: ax[2].plot(entry['dx'], entry['dy'], 'rx') if limits: ax[2].set_xlim(limits) ax[2].set_ylim(limits) for cent in detected_centers[i]: ax[2].plot(cent[0], cent[1], 'go', fillstyle='none', ms=10, mew=2) ax[2].axis('off') plt.show() def plot_with_isolated(blend_images, isolated_images, blend_list, detected_centers=None, limits=None, band_indices=[1, 2, 3]): """Plots blend images and isolated images of all objects in the blend as RGB images. Outputs of btk draw are plotted here. Blend_list must contain true centers of the objects. If detected_centers are input, then the centers are also shown in the third panel along with the true centers. Args: blend_images(array_like): Array of blend scene images to plot [batch, height, width, bands]. isolated_images (array_like): Array of isolated object images to plot [batch, max number of objects, height, width, bands]. blend_list(list) : List of `astropy.table.Table` with entries of true objects. Length of list must be the batch size. detected_centers(list, default=`None`): List of `numpy.ndarray` or lists with centers of detected centers for each image in batch. Length of list must be the batch size. Each list entry must be a list or `numpy.ndarray` of dimensions [N, 2]. limits(list, default=`None`): List of start and end coordinates to display image within. Note: limits are applied to both height and width dimensions. band_indices (list, default=[1,2,3]): list of length 3 with indices of bands that are to be plotted in the RGB image. """ b_size = len(blend_list) if len(band_indices) != 3: raise ValueError(f"band_indices must be a list with 3 entries, not \ {band_indices}") if detected_centers is None: detected_centers = [[]] * b_size if (len(detected_centers) != b_size or len(isolated_images) != b_size or blend_images.shape[0] != b_size): raise ValueError(f"Length of detected_centers and length of blend_list\ must be equal to first dimension of blend_images, found \ {len(detected_centers), len(blend_list), len(blend_images)}") for i in range(len(blend_list)): images = np.transpose(blend_images[i], axes=(2, 0, 1)) blend_img_rgb = get_rgb_image( images[band_indices], normalize_with_image=images[band_indices]) plt.figure(figsize=(2, 2)) plt.imshow(blend_img_rgb) plt.title(f"{len(blend_list[i])} objects") if limits: plt.xlim(limits) plt.ylim(limits) plt.axis('off') for cent in detected_centers[i]: plt.plot(cent[0], cent[1], 'go', fillstyle='none') plt.show() iso_blend = isolated_images[i] num = iso_blend.shape[0] plt.figure(figsize=(2 * num, 2)) for j in range(num): iso_images = np.transpose(iso_blend[j], axes=(2, 0, 1)) iso_img_rgb = get_rgb_image( iso_images[band_indices], normalize_with_image=images[band_indices]) plt.subplot(1, num, j + 1) plt.imshow(iso_img_rgb) if limits: plt.xlim(limits) plt.ylim(limits) plt.axis('off') if len(detected_centers[i]) > 0: plt.plot(detected_centers[i][j][0], detected_centers[i][j][1], 'go', fillstyle='none') plt.show() def plot_cumulative(table, column_name, ax=None, bins=40, color='red', label=None, xlabel=None): """Plot cumulative counts of input column_name in table. Args: table(`astropy.table.Table`) : Catalog with features as columns and different samples at rows. column_name(str): Name of column in input table who's cumulative counts are to be plotted. ax(`matplotlib.axes`, default=`None`): Matplotlib axis on which to draw the plot. If not provided, one is created inside. bins(int or sequence of scalars, optional, default=40): If bins is an int, it defines the number of equal-width bins in the given range (40, by default). If bins is a sequence, it defines a monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. color(str, default='red'): Color of cumulative counts curve. label(str, default=`None`): label for legend in plot. xlabel(str, default=`None`): x-axis label in plot. If not provided, then the column_name is set as x-axis label. """ if xlabel is None: xlabel = column_name det_values, det_base = np.histogram(table[column_name], bins=bins) det_cumulative = np.cumsum(det_values) if label is None: ax.plot(det_base[:-1], det_cumulative, c=color) else: ax.plot(det_base[:-1], det_cumulative, c=color, label=label) ax.set_xlabel(xlabel) ax.set_ylabel('Cumulative counts') def plot_metrics_summary(summary, num, ax=None): """Plot detection summary as a matrix of detection efficiency. Input argument num sets the maximum number of true detections for which the detection efficiency matrix is to be created for. Detection efficiency is computed for number of true objects in the range (1-num) Args: summary(`numpy.array`) : Detection summary as a table [N, 5]. num(int): Maximum number of true objects to create matrix for. Number of columns in matrix will be num-1. ax(`matplotlib.axes`, default=`None`): Matplotlib axis on which to draw the plot. If not provided, one is created inside. """ if ax is None: _, ax = plt.subplots(1, 1, figsize=(5, 5)) plt.subplots_adjust(wspace=0.7, hspace=0.3) results_table = btk.utils.get_detection_eff_matrix(summary, num) ax.imshow(results_table, origin='left', cmap=plt.cm.Blues) ax.set_xlabel("# true objects") # Don't print zero'th column ax.set_xlim([0.5, num + 0.5]) ax.set_ylabel("# correctly detected objects") ax.set_xticks(np.arange(1, num + 1, 1.0)) ax.set_yticks(np.arange(0, num + 2, 1.0)) for (j, i), label in
np.ndenumerate(results_table)
numpy.ndenumerate
import numpy as np import scipy.stats import sys def idx_to_rank_sum(idx, n): """Map from an integer idx to a value in the support of the Wilcoxon test statistic. Specifically, if S is the support of the test statistic, then this is a map from {0, ..., |S| - 1} -> S Parameters ---------- idx : integer An integer from {0, ..., |S| - 1}. n : integer The number of paired samples. Returns ------- rank_sum : integer The rank_sum corresponding to idx. Examples -------- If we have n = 3 paired samples, then the map is given by idxes = { 0 1 2 3 4 5 6 } | | | | | | | S = { -6 -4 -2 0 2 4 6 } """ support_size = int(n*(n+1)/2 + 1) if idx >= support_size: raise ValueError("Outside of support") shift = 1 if support_size % 2 == 0 else 0 middle = (support_size-1)/2 rank_sum = 2*(idx-np.floor(middle)) - shift rank_sum = int(rank_sum) return rank_sum def rank_sum_to_idx(rank_sum, n): """Map from a rank sum in the support of the Wilcoxon test statistic to an integer idx. This is the inverse mapping of idx_to_rank_sum. Specifically, if S is the support of the test statistic, then this is a map from S -> {0, ..., |S| - 1} Parameters ---------- rank_sum : integer An integer in the support of the test statistic n : integer The number of paired samples. Returns ------- idx : integer The idx in the support corresponding to rank_sum. Examples -------- If we have n = 3 paired samples, then the map is given by S = { -6 -4 -2 0 2 4 6 } | | | | | | | idxes = { 0 1 2 3 4 5 6 } """ if rank_sum < -n*(n+1)/2 or rank_sum > n*(n+1)/2: raise ValueError("Outside of support") support_size = int(n*(n+1)/2 + 1) shift = 1 if support_size % 2 == 0 else 0 middle = (support_size-1)/2 for i in range(int(support_size)): if rank_sum == 2*(i-np.floor(middle)) - shift: return i def compute_counts(n): """Recursively counts the coefficients of each term in the mgf. The mgf is given by mgf_X(t) = 1/2^n \prod_{j=1}^n (e^{-tj} + e^{tj}) = 1/2^n \sum_{j=1}^n c_j e^{tj} = \sum_{j=1}^n Pr(X = j) e^{tj} This function computes c_j for a number of paired samples n. By expanding and collecting e^{tj} for each j, we can compute the pmf of the Wilcoxon test statistic. We can do this recursively by noticing that 1/2^n \prod_{j=1}^n (e^{-tj} + e^{tj}) = 1/2^n (e^{-nt} + e^{nt}) \prod_{j=1}^{n-1} (e^{-tj} + e^{tj}) Thus, if we have the coefficients c_j for n-1, we can compute the coefficients c_j for n by expanding the bottom equation and counting e^{tj} for each j. . References ---------- [1] Hogg, <NAME>., <NAME>, and <NAME>. Introduction to Mathematical Statistics. 7th Edition. pp. 541-544. """ if n == 1: counts = np.array([1, 1]) return counts else: counts = compute_counts(n-1) support_size = int(n*(n+1)/2 + 1) new_counts = np.zeros(support_size) for i in range(counts.size): rank_sum = idx_to_rank_sum(i, n-1) new_rank_sum1 = rank_sum + n new_rank_sum2 = rank_sum - n min_rank = -n*(n+1)/2 max_rank = n*(n+1)/2 if counts[i] > 0: if new_rank_sum1 <= max_rank: new_counts[rank_sum_to_idx(new_rank_sum1, n)] += counts[i] if new_rank_sum2 >= min_rank: new_counts[rank_sum_to_idx(new_rank_sum2, n)] += counts[i] return new_counts def compute_pmf(n): """Compute the support and pmf given n paired samples. Parameters ---------- n : integer The number of paired samples Returns ------- support : numpy array An array giving the support of the pmf pmf : numpy array An array giving the probability of each integer in the support """ support_size = int(n*(n+1)/2 + 1) support = np.array([idx_to_rank_sum(i, n) for i in range(support_size)]) pmf = compute_counts(n)/np.power(2,n) assert np.abs(pmf.sum() - 1) < 1E-8, pmf.sum() return support, pmf def wilcoxon_exact(x, y=None, alternative="two-sided"): """ Calculate the Wilcoxon signed-rank test statistic and exact p-values. Given matched samples, x_i and y_i, the Wilcoxon signed-rank test tests the null that x_i - y_i is symmetric around zero. In practice, it is used to test whether x_i and y_i are from the same population with different location parameters. There are several different versions of the test statistic. The one used here is T = sign(z_1) R|z_1| + ... + sign(z_n) R|z_n| where z_i = x_i - y_i if y_i is specified z_i = x_i otherwise. The pmf has no closed form, but for small sample sizes it is possible to compute the pmf by solving for the coefficients of the moment generating function. Parameters ---------- x : array_like The first set of data values (if y is specified) or the difference between two sets of data values y : array_like optional If specified, the difference x - y is used for the test statistic alternative : {"two-sided", "greater", "less"}, optional The alternative hypothesis tested. If "two-sided", the test is x_i - y_i > 0 or x_i - y_i < 0 If "greater", the test it x_i - y_i > 0 If "less", the test is x_i - y_i < 0 Returns ------- T : float The test-statistic. p : float The p-value. Examples -------- >>> import numpy as np >>> from wilcoxon_exact import wilcoxon_exact >>> x = np.array([1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30]) >>> y = np.array([0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29]) >>> wilcoxon_exact(x, y, alternative="greater") (35.0, 0.01953125) >>> x = np.array([-6.1, 4.3, 7.2, 8.0, -2.1]) >>> wilcoxon_exact(x, alternative="two-sided") (7.0, 0.4375) """ if alternative not in ["two-sided", "less", "greater"]: raise ValueError("Alternative must be either 'two-sided'", "'greater' or 'less'") x =
np.array(x)
numpy.array
""" The pycity_scheduling framework Copyright (C) 2022, Institute for Automation of Complex Power Systems (ACS), E.ON Energy Research Center (E.ON ERC), RWTH Aachen University Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import unittest import datetime import logging import warnings import pyomo.environ as pyomo from pyomo.opt import TerminationCondition from shapely.geometry import Point from pycity_scheduling import constants, solvers from pycity_scheduling.classes import * from pycity_scheduling.util.metric import * class TestModule(unittest.TestCase): def test_filter_entities(self): e = get_env(4, 8) bd = Building(e) bes = BuildingEnergySystem(e) pv = Photovoltaic(e, 0) bes.addDevice(pv) bd.addEntity(bes) def do_test(gen): entities = list(gen) self.assertEqual(1, len(entities)) self.assertIn(pv, entities) do_test(filter_entities(bd.get_entities(), 'PV')) do_test(filter_entities(bd, 'generation_devices')) do_test(filter_entities(bd, [Photovoltaic])) do_test(filter_entities(bd, ['PV'])) do_test(filter_entities(bd, {'PV': Photovoltaic})) with self.assertRaises(ValueError): next(filter_entities(bd, 'PPV')) with self.assertRaises(ValueError): next(filter_entities(bd, [int])) with self.assertRaises(ValueError): next(filter_entities(bd, None)) return class TestBattery(unittest.TestCase): def setUp(self): e = get_env(3) self.bat = Battery(e, 10, 20, soc_init=0.875, eta=0.5) return def test_populate_model(self): model = pyomo.ConcreteModel() self.bat.populate_model(model) model.c1 = pyomo.Constraint(expr=self.bat.model.e_el_vars[2] == 10) model.c2 = pyomo.Constraint(expr=self.bat.model.e_el_vars[0] == 5) obj = pyomo.sum_product(self.bat.model.p_el_demand_vars, self.bat.model.p_el_demand_vars) model.o = pyomo.Objective(expr=obj) result = solve_model(model) # TODO stats are currently not correct due to a pyomo bug # use result as a workaround #model.compute_statistics() #stats = model.statistics #self.assertEqual(12, stats.number_of_variables) self.assertEqual(13, result.Problem[0].number_of_variables) var_sum = pyomo.value(pyomo.quicksum(self.bat.model.p_el_vars[t] for t in range(1, 3))) self.assertAlmostEqual(40, var_sum, places=5) var_sum = pyomo.value(pyomo.quicksum( self.bat.model.p_el_supply_vars[t] + self.bat.model.p_el_demand_vars[t] for t in range(1, 3) )) self.assertAlmostEqual(40, var_sum, places=5) return def test_update_model(self): model = pyomo.ConcreteModel() self.bat.populate_model(model) demand_var = self.bat.model.p_el_vars self.bat.update_model() model.c1 = pyomo.Constraint(expr=self.bat.model.e_el_vars[0] == 10) obj = pyomo.sum_product(demand_var, demand_var) model.o = pyomo.Objective(expr=obj) solve_model(model) self.assertAlmostEqual(10, pyomo.value(demand_var[0]), places=5) return def test_update_schedule(self): model = pyomo.ConcreteModel() self.bat.populate_model(model) self.bat.update_model() self.bat.model.p_el_demand_vars.setlb(3.0) self.bat.model.p_el_demand_vars.setub(3.0) self.bat.model.p_el_supply_vars.setlb(0.0) self.bat.model.p_el_supply_vars.setub(0.0) obj = pyomo.sum_product(self.bat.model.p_el_demand_vars, self.bat.model.p_el_demand_vars) model.o = pyomo.Objective(expr=obj) solve_model(model) self.bat.update_schedule() assert_equal_array(self.bat.p_el_schedule, [3] * 3) assert_equal_array(self.bat.e_el_schedule, 0.875 * 10 + np.arange(1, 4)*3*0.25*0.5) return def test_calculate_co2(self): self.bat.p_el_schedule = np.array([10]*3) self.assertEqual(0, calculate_co2(self.bat)) return def test_get_objective(self): model = pyomo.ConcreteModel() self.bat.populate_model(model) obj = self.bat.get_objective(2) vs = list(pyomo.current.identify_variables(obj)) for t in range(3): self.assertIn(self.bat.model.p_el_vars[t], vs) self.bat.model.p_el_vars[t] = t * 5 self.assertEqual(3, len(vs)) self.assertEqual(sum(2*(5*t)**2 for t in range(3)), pyomo.value(obj)) return def test_e_ini(self): expected_schedule = list(range(4, 21, 2)) e = get_env(3, 9, 2) model = pyomo.ConcreteModel() bat = Battery(e, 20, 10, soc_init=0.1, eta=0.8) bat.populate_model(model) model.o = pyomo.Objective(expr=-bat.model.e_el_vars[2]) for t in range(4): bat.update_model() solve_model(model) bat.update_schedule() e.timer.mpc_update() assert_equal_array(bat.e_el_schedule, expected_schedule[:3+t*2] + [0] * 2 * (3-t)) assert_equal_array(bat.p_el_schedule, [10] * (3 + t * 2) + [0] * 2 * (3 - t)) assert_equal_array(bat.p_el_demand_schedule, [10] * (3 + t * 2) + [0] * 2 * (3 - t)) assert_equal_array(bat.p_el_supply_schedule, [0] * 9) return def test_no_discharge(self): e = get_env(9, 9) model = pyomo.ConcreteModel() bat = Battery(e, 30, 10, p_el_max_discharge=0, soc_init=0.5, eta=1) bat.populate_model(model) bat.update_model() model.o = pyomo.Objective(expr=pyomo.sum_product(bat.model.p_el_vars)) solve_model(model) bat.update_schedule() assert_equal_array(bat.e_el_schedule, [15] * 9) assert_equal_array(bat.p_el_schedule, [0] * 9) assert_equal_array(bat.p_el_demand_schedule, [0] * 9) assert_equal_array(bat.p_el_supply_schedule, [0] * 9) return class TestBoiler(unittest.TestCase): def setUp(self): e = get_env(4, 8) self.bl = Boiler(e, 10, 0.4) return def test_calculate_co2(self): self.bl.p_th_heat_schedule = - np.array([10] * 8) self.bl.p_th_heat_ref_schedule = -
np.array([4] * 8)
numpy.array
# Imports from scipy.io import loadmat from scipy.signal import fftconvolve import numpy as np import gc as garbageCollector ######################################################################################################################## # Load signals from a specific file in the source files # Convenience function to load signals def loadSignals(recordName, dataPath, dataInDirectory): if dataInDirectory: signals = loadmat(dataPath + recordName + '/' + recordName + '.mat') else: signals = loadmat(dataPath + recordName + '.mat') signals = signals['val'] garbageCollector.collect() return signals ######################################################################################################################## # Loads and prepossesses signals from a specific record def extractWholeRecord(recordName, dataPath='PATH/', dataInDirectory=True): # Keep all channels except ECG keepChannels = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] signals = loadSignals(recordName, dataPath, dataInDirectory) signals = np.transpose(signals).astype(np.float64) # Apply antialiasing FIR filter to each channel and downsample to 50Hz filtCoeff = np.array([0.00637849379422531, 0.00543091599801427, -0.00255136650039784, -0.0123109503066702, -0.0137267267561505, -0.000943230632358082, 0.0191919895027550, 0.0287148886882440, 0.0123598773891149, -0.0256928886371578, -0.0570987715759348, -0.0446385294777459, 0.0303553522906817, 0.148402006671856, 0.257171285176269, 0.301282456398562, 0.257171285176269, 0.148402006671856, 0.0303553522906817, -0.0446385294777459, -0.0570987715759348, -0.0256928886371578, 0.0123598773891149, 0.0287148886882440, 0.0191919895027550, -0.000943230632358082, -0.0137267267561505, -0.0123109503066702, -0.00255136650039784, 0.00543091599801427, 0.00637849379422531]) for n in range(signals.shape[1]): signals[::, n] = np.convolve(signals[::, n], filtCoeff, mode='same') signals = signals[0::4, keepChannels] garbageCollector.collect() # Scale SaO2 to sit between -0.5 and 0.5, a good range for input to neural network signals[::, 11] += -32768.0 signals[::, 11] /= 65535.0 signals[::, 11] -= 0.5 # Normalize all the other channels by removing the mean and the rms in an 18 minute rolling window, using fftconvolve for computational efficiency # 18 minute window is used because because baseline breathing is established in 2 minute window according to AASM standards. # Normalizing over 18 minutes ensure a 90% overlap between the beginning and end of the baseline window kernel_size = (50*18*60)+1 # Remove DC bias and scale for FFT convolution center =
np.mean(signals, axis=0)
numpy.mean
import numpy as np from numpy import transpose as tp import scipy.signal as sig import scipy.stats as scistat import filterbanks as fb class SoundTexture(object): """ Based on <NAME>'s Matlab toolbox: http://mcdermottlab.mit.edu/Sound_Texture_Synthesis_Toolbox_v1.7.zip y = audio file fs = sample rate """ def __init__(self, y, fs): self.y = y self.fs = fs # default settings: self.desired_rms = .01 self.audio_sr = 20000 self.n_audio_channels = 30 self.low_audio_f = 20 self.hi_audio_f = 10000 self.use_more_audio_filters = 0 self.lin_or_log_filters = 1 self.env_sr = 400 self.n_mod_channels = 20 self.low_mod_f = 0.5 self.hi_mod_f = 200 self.use_more_mod_filters = 0 self.mod_filt_Q_value = 2 self.use_zp = 0 self.low_mod_f_c12 = 1 self.compression_option = 1 self.comp_exponent = .3 self.log_constant = 10 ** -12 self.match_env_hist = 0 self.match_sub_hist = 0 self.n_hist_bins = 128 self.manual_mean_var_adjustment = 0 self.max_orig_dur_s = 7 self.desired_synth_dur_s = 5 self.measurement_windowing = 2 self.imposition_windowing = 1 self.win_steepness = .5 self.imposition_method = 1 self.sub_imposition_order = 1 self.env_ac_intervals_smp = np.array([1, 2, 3, 4, 5, 6, 7, 9, 11, 14, 18, 22, 28, 36, 45, 57, 73, 92, 116, 148, 187, 237, 301]) # in samples self.sub_ac_undo_win = 1 self.sub_ac_win_choice = 2 self.num_sub_ac_period = 5 # allocate memory: self.mod_c2 = [] self.mod_c1 = [] self.env_c = [] self.subband_ac = [] self.mod_power_center_freqs = [] self.mod_c2_center_freqs = [] self.mod_c1_center_freqs = [] self.audio_cutoffs_hz = [] self.subband_mean = np.zeros(self.n_audio_channels + 2) self.subband_var = np.zeros(self.n_audio_channels + 2) self.subband_skew = np.zeros(self.n_audio_channels + 2) self.subband_kurt = np.zeros(self.n_audio_channels + 2) self.env_mean = np.zeros(self.n_audio_channels + 2) self.env_var = np.zeros(self.n_audio_channels + 2) self.env_skew = np.zeros(self.n_audio_channels + 2) self.env_kurt = np.zeros(self.n_audio_channels + 2) self.subband_hist = np.zeros([self.n_audio_channels + 2 + 1, self.n_hist_bins]) self.subband_bins = np.zeros([self.n_audio_channels + 2 + 1, self.n_hist_bins]) self.env_hist = np.zeros([self.n_audio_channels + 2, self.n_hist_bins]) self.env_bins = np.zeros([self.n_audio_channels + 2, self.n_hist_bins]) self.env_ac = np.zeros([self.n_audio_channels + 2, self.env_ac_intervals_smp.shape[0]]) self.mod_power = np.zeros([self.n_audio_channels + 2, self.n_mod_channels]) self.subband_ac_power = np.zeros(self.n_audio_channels + 2) # calculate stats: self.orig_sound, self.ds_factor = self.format_orig_sound() self.measurement_win = self.set_measurement_window(self.orig_sound.shape[0], self.measurement_windowing) self.measure_texture_stats(self.orig_sound, self.measurement_win) def format_orig_sound(self): orig_sound = self.y if orig_sound.ndim == 2: orig_sound = (orig_sound[:, 0] + orig_sound[:, 1]) / 2 # if stereo convert to mono if self.fs != self.audio_sr: orig_sound = sig.resample(orig_sound, int(orig_sound.shape[0] * self.audio_sr / self.fs)) if np.remainder(orig_sound.shape[0], 2) == 1: orig_sound = np.concatenate([orig_sound, np.array([0])]) ds_factor = self.audio_sr / self.env_sr new_l = int(np.floor((orig_sound.shape[0] / ds_factor / 2) * ds_factor * 2)) orig_sound = orig_sound[:new_l] orig_sound = orig_sound / np.sqrt(np.mean(np.square(orig_sound))) * self.desired_rms return orig_sound, ds_factor def set_measurement_window(self, sound_length, windowing_option): if windowing_option == 1: measurement_win = np.ones([int(sound_length / self.ds_factor), 1]) elif windowing_option == 2: temp = self.make_windows_rcos_flat_no_ends(int(sound_length / self.ds_factor), int(np.round(sound_length / self.audio_sr)), self.win_steepness) measurement_win = np.sum(temp, 1) else: raise Exception('measurement_win must be 1 or 2') return measurement_win @staticmethod def make_windows_rcos_flat_no_ends(signal_length_smp, num_secs, ramp_prop): num_secs = num_secs + 2 if ramp_prop == 0.5: ramp_length_smp = int(np.floor(signal_length_smp / (num_secs - 1))) flat_length_smp = 0 elif ramp_prop < 0.5: flat_length = signal_length_smp / (num_secs * (1 - ramp_prop) / (1 - 2 * ramp_prop) - ramp_prop / (1 - 2 * ramp_prop)) ramp_length_smp = int(np.floor(flat_length * ramp_prop / (1 - 2 * ramp_prop))) flat_length_smp = int(np.floor(flat_length)) else: raise Exception('ramp_prop must be less than .5') windows = np.zeros([signal_length_smp, num_secs]) windows[:flat_length_smp, 0] = 2 windows[flat_length_smp: flat_length_smp + ramp_length_smp, 0] = np.cos(np.linspace(1, ramp_length_smp, num=ramp_length_smp) / ramp_length_smp * np.pi) + 1 start_pt = flat_length_smp for n in range(0, num_secs - 2): windows[start_pt:start_pt+ramp_length_smp, n+1] = np.cos(np.linspace(-ramp_length_smp+1, 0, num=ramp_length_smp) / ramp_length_smp * np.pi) + 1 windows[start_pt+ramp_length_smp:start_pt+ramp_length_smp+flat_length_smp, n+1] = 2 windows[start_pt+ramp_length_smp+flat_length_smp:start_pt+2*ramp_length_smp+flat_length_smp, n+1] = np.cos(np.linspace(1, ramp_length_smp, num=ramp_length_smp) / ramp_length_smp * np.pi) + 1 start_pt = start_pt + flat_length_smp + ramp_length_smp windows[start_pt:start_pt+ramp_length_smp, num_secs-1] = np.cos(np.linspace(-ramp_length_smp + 1, 0, num=ramp_length_smp) / ramp_length_smp * np.pi) + 1 windows[start_pt + ramp_length_smp:signal_length_smp, num_secs-1] = 2 windows = windows[:, 1:-1] windows = windows / 2 return windows @staticmethod def stat_central_moment_win(x, n, win, x_mean=-99): win = win / np.sum(win) if x_mean == -99: x_mean = np.sum(win * x) if n == 1: m = x_mean elif n == 2: m = np.sum(win * ((x - x_mean) ** 2)) m = np.sqrt(m) / x_mean elif n == 3: m2 = np.sum(win * ((x - x_mean) ** 2)) m = np.sum(win * ((x - x_mean) ** 3)) / (m2 ** (3.0 / 2.0)) elif n == 4: m2 = np.sum(win * ((x - x_mean) ** 2)) m = np.sum(win * ((x - x_mean) ** 4)) / (m2 ** 2) else: raise Exception('input value of n not recognised') return m @staticmethod def shift_s(s, num_samples): if num_samples == 0: new_s = s elif num_samples < 0: new_s = np.concatenate([s[-num_samples:], np.zeros(-num_samples)]) else: new_s = np.concatenate([np.zeros(num_samples), s[:-num_samples]]) return new_s def stat_env_ac_scaled_win(self, f_env, sample_spacing, use_zp, win): if use_zp != 0: raise Exception('zero padding not implemented') win = win / np.sum(win) ac_values = np.zeros(sample_spacing.shape[0]) for p in range(0, sample_spacing.shape[0]): num_samp = sample_spacing[p] meanf_env = np.mean(f_env[:, p]) mf_env = f_env[:, p] - meanf_env env_var = np.mean(mf_env ** 2) ac_values[p] = np.sum(win * (self.shift_s(mf_env, -num_samp) * self.shift_s(mf_env, num_samp))) / env_var return ac_values @staticmethod def stat_var_win(s, win): win = win / np.sum(win) w_var = np.sum(win * (s - np.sum(win * s)) ** 2) return w_var def stat_mod_power_win(self, s, mod_subbands, use_zp, win): if use_zp != 0: raise Exception('zero padding not implemented') win = win / np.sum(win) s_var = self.stat_var_win(s, win) mp = np.sum(np.dot(win[:, None], np.ones([1, mod_subbands.shape[1]])) * (mod_subbands ** 2), 0) / s_var return mp @staticmethod def stat_mod_c2_win(subbands, use_zp, win): if use_zp != 0: raise Exception('zero padding not implemented') win = win / np.sum(win) analytic_subbands = np.transpose(sig.hilbert(np.transpose(subbands))) n = analytic_subbands.shape[1] c2 = np.zeros([n-1, 2]) for k in range(0, n-1): c = (analytic_subbands[:, k] ** 2) / np.abs(analytic_subbands[:, k]) sig_cw = np.sqrt(np.sum(win * (np.real(c) ** 2))) sig_fw = np.sqrt(np.sum(win * (np.real(analytic_subbands[:, k+1]) ** 2))) c2[k, 0] = np.sum(win * np.real(c) * np.real(analytic_subbands[:, k+1])) / (sig_cw * sig_fw) c2[k, 1] = np.sum(win * np.real(c) * np.imag(analytic_subbands[:, k + 1])) / (sig_cw * sig_fw) return c2 @staticmethod def stat_corr_filt_win_full(f_envs, use_zp, win): if use_zp != 0: raise Exception('zero padding not implemented') win = win / np.sum(win) cbc_value = np.zeros([f_envs.shape[1], f_envs.shape[1]]) meanf_envs = np.mean(f_envs, 0)[None, :] mf_envs = f_envs - np.dot(np.ones([f_envs.shape[0], 1]), meanf_envs) env_stds = np.sqrt(np.mean(mf_envs ** 2, 0))[None, :] cbc_value[:, :] = np.dot(np.transpose((np.dot(win[:, None], np.ones([1, f_envs.shape[1]]))) * mf_envs), mf_envs) / np.dot(np.transpose(env_stds), env_stds) return cbc_value @staticmethod def autocorr_mult(x): xf = np.transpose(np.fft.fft(np.transpose(x))) xf2 =
np.abs(xf)
numpy.abs
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import itertools import warnings import segyio from os import path import scipy from cv_lib.utils import generate_path, mask_to_disk, image_to_disk from matplotlib import pyplot as plt from PIL import Image # bugfix for scipy imports import scipy.misc import numpy as np import torch from toolz import curry from torch.utils import data import logging from deepseismic_interpretation.dutchf3.utils.batch import ( interpolate_to_fit_data, parse_labels_in_image, get_coordinates_for_slice, ) def _train_data_for(data_dir): return path.join(data_dir, "train", "train_seismic.npy") def _train_labels_for(data_dir): return path.join(data_dir, "train", "train_labels.npy") def _test1_data_for(data_dir): return path.join(data_dir, "test_once", "test1_seismic.npy") def _test1_labels_for(data_dir): return path.join(data_dir, "test_once", "test1_labels.npy") def _test2_data_for(data_dir): return path.join(data_dir, "test_once", "test2_seismic.npy") def _test2_labels_for(data_dir): return path.join(data_dir, "test_once", "test2_labels.npy") def read_labels(fname, data_info): """ Read labels from an image. Args: fname: filename of labelling mask (image) data_info: dictionary describing the data Returns: list of labels and list of coordinates """ # Alternative writings for slice-type inline_alias = ["inline", "in-line", "iline", "y"] crossline_alias = ["crossline", "cross-line", "xline", "x"] timeslice_alias = ["timeslice", "time-slice", "t", "z", "depthslice", "depth"] label_imgs = [] label_coordinates = {} # Find image files in folder tmp = fname.split("/")[-1].split("_") slice_type = tmp[0].lower() tmp = tmp[1].split(".") slice_no = int(tmp[0]) if slice_type not in inline_alias + crossline_alias + timeslice_alias: print("File:", fname, "could not be loaded.", "Unknown slice type") return None if slice_type in inline_alias: slice_type = "inline" if slice_type in crossline_alias: slice_type = "crossline" if slice_type in timeslice_alias: slice_type = "timeslice" # Read file print("Loading labels for", slice_type, slice_no, "with") img = scipy.misc.imread(fname) img = interpolate_to_fit_data(img, slice_type, slice_no, data_info) label_img = parse_labels_in_image(img) # Get coordinates for slice coords = get_coordinates_for_slice(slice_type, slice_no, data_info) # Loop through labels in label_img and append to label_coordinates for cls in np.unique(label_img): if cls > -1: if str(cls) not in label_coordinates.keys(): label_coordinates[str(cls)] = np.array(np.zeros([3, 0])) inds_with_cls = label_img == cls cords_with_cls = coords[:, inds_with_cls.ravel()] label_coordinates[str(cls)] = np.concatenate((label_coordinates[str(cls)], cords_with_cls), 1) print(" ", str(np.sum(inds_with_cls)), "labels for class", str(cls)) if len(np.unique(label_img)) == 1: print(" ", 0, "labels", str(cls)) # Add label_img to output label_imgs.append([label_img, slice_type, slice_no]) return label_imgs, label_coordinates class SectionLoader(data.Dataset): """ Base class for section data loader :param config: configuration object to define other attributes in loaders :param str split: split file to use for loading patches :param bool is_transform: Transform patch to dimensions expected by PyTorch :param list augmentations: Data augmentations to apply to patches :param bool debug: enable debugging output """ def __init__(self, config, split="train", is_transform=True, augmentations=None, debug=False): self.data_dir = config.DATASET.ROOT self.n_classes = config.DATASET.NUM_CLASSES self.MIN = config.DATASET.MIN self.MAX = config.DATASET.MAX self.split = split self.is_transform = is_transform self.augmentations = augmentations self.sections = list() self.debug = debug def __len__(self): return len(self.sections) def __getitem__(self, index): section_name = self.sections[index] direction, number = section_name.split(sep="_") if direction == "i": im = self.seismic[int(number), :, :] lbl = self.labels[int(number), :, :] elif direction == "x": im = self.seismic[:, int(number), :] lbl = self.labels[:, int(number), :] im, lbl = _transform_WH_to_HW(im), _transform_WH_to_HW(lbl) if self.debug and "test" in self.split: outdir = f"debug/test/sectionLoader_{self.split}_raw" generate_path(outdir) path_prefix = f"{outdir}/index_{index}_section_{section_name}" image_to_disk(im, path_prefix + "_img.png", self.MIN, self.MAX) mask_to_disk(lbl, path_prefix + "_lbl.png", self.n_classes) if self.augmentations is not None: augmented_dict = self.augmentations(image=im, mask=lbl) im, lbl = augmented_dict["image"], augmented_dict["mask"] if self.is_transform: im, lbl = self.transform(im, lbl) if self.debug and "test" in self.split: outdir = f"debug/test/sectionLoader_{self.split}_{'aug' if self.augmentations is not None else 'noaug'}" generate_path(outdir) path_prefix = f"{outdir}/index_{index}_section_{section_name}" image_to_disk(
np.array(im[0])
numpy.array
import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchvision.transforms as T import matplotlib.patches as patches import matplotlib.animation as animation import matplotlib.markers as mmarkers import numpy as np from PIL import Image from kivy.vector import Vector from collections import Counter import imgutils class CarEnv(object): def __init__(self, filename): self.filename = filename img = Image.open(self.filename).convert('L') self.sand = np.asarray(img)/255 self.sand = self.sand.astype(int) self.max_y, self.max_x = self.sand.shape self.pos = Vector(int(self.max_x/2), int(self.max_y/2)) self.angle = Vector(10,0).angle(self.pos) self.velocity = Vector(6, 0) self.wall_padding = 5 self.max_angle = 20 self.max_action = [self.max_angle] self.crop_size = 100 self.goal_iter = 0 self.goals = [Vector(1890, 150), Vector(140, 380)] self.last_distance = 0 self.state_dim = (32, 3) self.action_dim = (1,) self._max_episode_steps = 5000 # track rewards distribution self.rewards_distribution = Counter() self.target = Vector(335, 178) self.max_distance = 1574. def seed(self, seed): torch.manual_seed(seed) np.random.seed(seed) def reset(self): self.angle = np.random.randint(low=-180, high=180) onsand = True while onsand: self.pos.x = np.random.randint(low=self.wall_padding, high=self.max_x-self.wall_padding) self.pos.y = np.random.randint(low=self.wall_padding, high=self.max_y-self.wall_padding) if self.sand[int(self.pos.y),int(self.pos.x)] == 0: onsand = False self.velocity = Vector(0.5, 0).rotate(self.angle) return self.get_state() def random_action(self): rotation =
np.random.uniform(low=-self.max_angle, high=self.max_angle)
numpy.random.uniform
# -*- coding: utf-8 -*- import numpy as np import pandas as pd import utility_functions as utilfunc import sys import config # Import from support function repo import dispatch_functions as dFuncs import tariff_functions as tFuncs import decorators np.seterr(divide='ignore', invalid='ignore') #============================================================================== # Load logger logger = utilfunc.get_logger() #============================================================================== #%% def calc_system_size_and_financial_performance(agent): """ This function accepts the characteristics of a single agent and evaluates the financial performance of a set of solar+storage system sizes. The system size with the highest NPV is selected. Parameters ---------- agent : pandas.Series Single agent (row) from an agent dataframe. Returns ------- pandas.Series Agent with system size, business model and corresponding financial performance. """ #=========================================================================# # Setup #=========================================================================# try: in_cols = list(agent.index) if config.VERBOSE: logger.info(' ') logger.info("\tRunning system size calculations for: {}, {}, {}".format(agent['state'], agent['tariff_class'], agent['sector_abbr'])) logger.info('real_discount: {}'.format(agent['discount_rate'])) logger.info('loan_rate: {}'.format(agent['loan_rate'])) logger.info('down_payment: {}'.format(agent['down_payment'])) # Set resolution of dispatcher d_inc_n_est = 10 DP_inc_est = 12 d_inc_n_acc = 20 DP_inc_acc = 12 # Extract load profile load_profile = np.array(agent['consumption_hourly']) agent.loc['timesteps_per_year'] = 1 # Extract load profile pv_cf_profile = np.array(agent['solar_cf_profile']) / 1e3 agent['naep'] = float(np.sum(pv_cf_profile)) # Create battery object batt = dFuncs.Battery() batt_ratio = 3.0 tariff = tFuncs.Tariff(dict_obj=agent.loc['tariff_dict']) # Create export tariff object if agent['nem_system_size_limit_kw'] != 0: export_tariff = tFuncs.Export_Tariff(full_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) original_bill, original_results = tFuncs.bill_calculator(load_profile, tariff, export_tariff) if config.VERBOSE: logger.info('original_bill: {}'.format(original_bill)) agent['first_year_elec_bill_without_system'] = original_bill * agent['elec_price_multiplier'] if config.VERBOSE: logger.info('multiplied original bill: {}'.format(agent['first_year_elec_bill_without_system'])) if agent['first_year_elec_bill_without_system'] == 0: agent['first_year_elec_bill_without_system']=1.0 agent['first_year_elec_cents_per_kwh_without_system'] = agent['first_year_elec_bill_without_system'] / agent['load_per_customer_in_bin_kwh'] #=========================================================================# # Estimate bill savings revenue from a set of solar+storage system sizes #=========================================================================# max_size_load = agent.loc['load_per_customer_in_bin_kwh']/agent.loc['naep'] max_size_roof = agent.loc['developable_roof_sqft'] * agent.loc['developable_buildings_pct'] * agent.loc['pv_power_density_w_per_sqft']/1000.0 agent.loc['max_pv_size'] = min([max_size_load, max_size_roof, agent.loc['nem_system_size_limit_kw']]) if config.VERBOSE: logger.info('max_size_load: {}'.format(max_size_load)) logger.info('max_size_roof: {}'.format(max_size_roof)) dynamic_sizing = True #False if dynamic_sizing: pv_sizes = np.arange(0, 1.1, 0.1) * agent.loc['max_pv_size'] else: # Size the PV system depending on NEM availability, either to 95% of load w/NEM, or 50% w/o NEM. In both cases, roof size is a constraint. if export_tariff.full_retail_nem==True: pv_sizes = np.array([min(max_size_load * 0.95, max_size_roof)]) else: pv_sizes = np.array([min(max_size_load * 0.5, max_size_roof)]) batt_powers = np.zeros(1) # Calculate the estimation parameters for each PV size est_params_df = pd.DataFrame(index=pv_sizes) est_params_df['estimator_params'] = 'temp' for pv_size in pv_sizes: load_and_pv_profile = load_profile - pv_size*pv_cf_profile est_params_df.at[pv_size, 'estimator_params'] = dFuncs.calc_estimator_params(load_and_pv_profile, tariff, export_tariff, batt.eta_charge, batt.eta_discharge) # Create df with all combinations of solar+storage sizes system_df = pd.DataFrame(dFuncs.cartesian([pv_sizes, batt_powers]), columns=['pv', 'batt_kw']) system_df['est_bills'] = None pv_kwh_by_year = np.array([sum(x) for x in np.split(np.array(pv_cf_profile), agent.loc['timesteps_per_year'])]) pv_kwh_by_year = np.concatenate([(pv_kwh_by_year - ( pv_kwh_by_year * agent.loc['pv_deg'] * i)) for i in range(1, agent.loc['economic_lifetime']+1)]) system_df['kwh_by_timestep'] = system_df['pv'].apply(lambda x: x * pv_kwh_by_year) n_sys = len(system_df) for i in system_df.index: pv_size = system_df['pv'][i].copy() load_and_pv_profile = load_profile - pv_size*pv_cf_profile # for buy all sell all agents: calculate value of generation based on wholesale prices and subtract from original bill if agent.loc['compensation_style'] == 'Buy All Sell All': sell_all = np.sum(pv_size * pv_cf_profile * agent.loc['wholesale_elec_use_per_kwh']) system_df.loc[i, 'est_bills'] = original_bill - sell_all # for net billing agents: if system size within policy limits, set sell rate to wholesale price -- otherwise, set sell rate to 0 elif (agent.loc['compensation_style'] == 'Net Billing (Wholesale)') or (agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)'): export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) if pv_size<=agent.loc['nem_system_size_limit_kw']: if agent.loc['compensation_style'] == 'Net Billing (Wholesale)': export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) elif agent.loc['compensation_style'] == 'Net Billing (Avoided Cost)': export_tariff.set_constant_sell_price(agent.loc['hourly_excess_sell_rate_usd_per_kwh']) else: export_tariff.set_constant_sell_price(0.) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.determine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # for net metering agents: if system size within policy limits, set full_retail_nem=True -- otherwise set export value to wholesale price elif agent.loc['compensation_style'] == 'Net Metering': if pv_size<=agent.loc['nem_system_size_limit_kw']: export_tariff = tFuncs.Export_Tariff(full_retail_nem=True) export_tariff.periods_8760 = tariff.e_tou_8760 export_tariff.prices = tariff.e_prices_no_tier else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) export_tariff.set_constant_sell_price(agent.loc['wholesale_elec_usd_per_kwh']) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.determine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # for agents with no compensation mechanism: set sell rate to 0 and calculate bill with net load profile else: export_tariff = tFuncs.Export_Tariff(full_retail_nem=False) export_tariff.set_constant_sell_price(0.) batt_power = system_df['batt_kw'][i].copy() batt.set_cap_and_power(batt_power*batt_ratio, batt_power) if batt_power > 0: estimator_params = est_params_df.loc[system_df['pv'][i].copy(), 'estimator_params'] estimated_results = dFuncs.determine_optimal_dispatch(load_profile, pv_size*pv_cf_profile, batt, tariff, export_tariff, estimator_params=estimator_params, estimated=True, DP_inc=DP_inc_est, d_inc_n=d_inc_n_est, estimate_demand_levels=True) system_df.loc[i, 'est_bills'] = estimated_results['bill_under_dispatch'] else: bill_with_PV, _ = tFuncs.bill_calculator(load_and_pv_profile, tariff, export_tariff) system_df.loc[i, 'est_bills'] = bill_with_PV #+ one_time_charge # Calculate bill savings cash flow # elec_price_multiplier is the scalar increase in the cost of electricity since 2016, when the tariffs were curated # elec_price_escalator is this agent's assumption about how the price of electricity will change in the future. avg_est_bill_savings = (original_bill - np.array(system_df['est_bills'])).reshape([n_sys, 1]) * agent['elec_price_multiplier'] est_bill_savings =
np.zeros([n_sys, agent['economic_lifetime']+1])
numpy.zeros
"""Contains functions to evaluate performance of NTP model""" import copy import itertools import numpy as np from sklearn import metrics import tensorflow as tf from ntp.modules.prover import prove from ntp.modules.gradient import retrieve_top_k from ntp.modules.kb import kb2ids, partition, kb2nkb from ntp.modules.nunify import l2_sim_np from ntp.util.util_eval import decode_rules, harmonic def auc_helper(relationships, run_rules, run_confidences): """ Calculates auc-roc measuring the recall and precision of learned rules relative to a set of existing relationships """ targets = [] scores = [] for head, body in relationships.items(): targets.append(1.0) if [head, body] in run_rules: index = run_rules.index([head, body]) scores.append(run_confidences[index]) else: scores.append(0.0) for j, rule in enumerate(run_rules): if rule[0] in rule[1]: continue # Append incorrect rules with score of 0 if rule[0] in relationships: if relationships[rule[0]] == rule[1]: continue targets.append(0.0) scores.append(run_confidences[j]) return targets, scores def prop_rules(relationships, run_rules, run_confidences, threshold=0.0, allow_reverse=False): """ From a list of rules, calculates the proportion of relationships injected into the data that are present in the list of learned rules """ relationships_found = 0 for head, body in relationships.items(): if [head, body] in run_rules: # This finds the first such rule, rules should be sorted by confidence to make sure it's the highest confidence of those rules. index = run_rules.index([head, body]) if run_confidences[index] > threshold: relationships_found += 1 elif allow_reverse == True and len(body) == 1 and [head, body] in run_rules: index = run_rules.index([head, body]) if run_confidences[index] > threshold: relationships_found += 1 return relationships_found / len(relationships) def weighted_prop_rules(relationships, run_rules, run_confidences, threshold=0.0, allow_reverse=False): """ From a list of rules and confidences, calculates the proportion of relationships injected into the data that are present in the list of learned rules, weighted by rule confidence Args: relationships: relationships injected into the data run_rules: learned rules run_confidences: confidences corresponding to those rules. Rules should be sorted by confidence, from high to low. threshold: minimum confidence under which a rule is not considered allow_reverse: whether or not a rule 1>0 is accepted if the true rule is 0>1 Returns: Proportion of relationships injected into the data that are present in the list of learned rules, weighted by confidence """ relationships_found = 0 for head, body in relationships.items(): if [head, body] in run_rules: # This finds the first such rule, rules should be sorted by confidence to make sure it's the highest confidence of those rules. index = run_rules.index([head, body]) if run_confidences[index] > threshold: relationships_found += run_confidences[index] elif allow_reverse == True and len(body) == 1 and [head, body] in run_rules: index = run_rules.index([head, body]) if run_confidences[index] > threshold: relationships_found += run_confidences[index] return relationships_found / len(relationships) def weighted_precision(relationships, run_rules, run_confidences, threshold=0.0, allow_reverse=False): """ From a list of rules and confidences, calculates the proportion of those rules that match relationships injected into the data, weighted by confidence. """ wrong_relationship_weight = 0 total_relationship_weight = 0 for j, rule in enumerate(run_rules): # Skip rules with confidence below threshold if run_confidences[j] < threshold or rule[0] in rule[1]: continue total_relationship_weight += run_confidences[j] # Check if rule is correct if rule[0] in relationships: if relationships[rule[0]] == rule[1]: continue if len(rule[1]) == 1: body_pred = list(rule[1])[0] # If learning reverse rule is acceptable, check for reverse rule for rules with only one body predicate if allow_reverse and body_pred in relationships and relationships[body_pred] == {rule[0]}: continue # Learning x-->x is not wrong, technically elif len(rule) == 2 and rule[0] == body_pred: continue wrong_relationship_weight += run_confidences[j] if total_relationship_weight != 0: return (total_relationship_weight - wrong_relationship_weight) / total_relationship_weight else: return 0 def confidence_accuracy(relationships, run_rules, run_confidences, threshold=0.0, allow_reverse=False): """ From a list of rules and confidences, calculates 'confidence accuracy', giving positive points for being confident and right and negative points for confident and wrong """ score = 0 for j, rule in enumerate(run_rules): # Skip rules with confidence below threshold if run_confidences[j] < threshold: continue if rule[0] in relationships: if relationships[rule[0]] == rule[1]: score += run_confidences[j] continue if len(rule) == 2: body_pred = list(rule[1])[0] if allow_reverse and relationships[body_pred] == rule[0]: score += run_confidences[j] continue # skip identity if rule[0] == body_pred: continue # if rule was not correct, add negative confidence score -= run_confidences[j] return score def eval_batch(goal, target, emb, kb_ids, vocab, goal_struct, batch_mask, k_max, max_depth): """Retrieve accuracy of batch of facts relative to target, given kb of training facts""" kb_goal = copy.deepcopy(kb_ids) kb_goal['goal'] = [[row.numpy() for row in goal]] nkb = kb2nkb(kb_goal, emb) goal = [{'struct': 'goal', 'atom': 0, 'symbol': i} for i in range(len(goal_struct[0]))] proofs = prove(nkb, goal, goal_struct, batch_mask, k_max=k_max, max_depth=max_depth, vocab=vocab) score = np.squeeze(retrieve_top_k(proofs).numpy()) target = target.numpy() result = score > 0.5 accuracy = np.mean(result == target) weighted_accuracy = np.mean((target == 1) * (1 * result) + (target == 0) * (-1 * result)) return accuracy, weighted_accuracy def eval_fact_accuracy(batch_list, emb, kb_ids, vocab, k_max, max_depth): """Retrieve average accuracy of list of _train_ fact batches, given kb of training facts. """ accuracy_list= [] weighted_accuracy_list = [] for j, batch in enumerate(batch_list): goal = tf.constant(batch["goal"]) mask_indices = tf.constant(batch["mask_indices"]) with tf.device("/device:GPU:0"): target = tf.constant(batch["target"], dtype=tf.float32) base_mask = tf.ones([batch["n_facts_struct"], batch["batch_size"]], dtype=tf.float32) updates = -1.0 * tf.ones(len(batch["mask_indices"]), dtype=tf.float32) batch_mask = tf.transpose(tf.constant( base_mask + tf.scatter_nd(mask_indices, updates, base_mask.shape))) batch_accuracy, weighted_accuracy = eval_batch(goal, target, emb, kb_ids, vocab, batch["struct"], batch_mask, k_max, max_depth) accuracy_list.append(batch_accuracy) weighted_accuracy_list.append(weighted_accuracy) return np.mean(accuracy_list),
np.mean(weighted_accuracy_list)
numpy.mean
import numpy as np import numpy.linalg as la from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib.cm as cm from tqdm import tqdm import sys import SBW_util as util from matplotlib.animation import FuncAnimation # init cond # plots 1D # report (todo's, structure, division of work ) # 2D scheme correspondence # stability # convergence plots # test case w oxygen eps_u = 0.001 # 0.01 eps_v = 0.001 # 0.001 gamma_u = 0.005# 0.05 zeta = 0.0 alpha_v = 0.1 beta_v = 0.1 eta_w = 10.0 def constr_lineqU(U, W, V, N, M, T): ''' N: nb of x grid points (int) T: current timestep (int) U: discrete solution of u (np.array) W: discrete solution of w (np.array) V: discrete solution of v (np.array) M: nb of time steps (int) ''' h = 1.0/float(N) k = 1.0/float(M) #assert(U.shape == W.shape and W.shape == V.shape, 'Dim error') #assert(U.shape[1] ==N and U.shape[0] == M, 'Dim error') DT = 0 X_length = N A2Ut =
np.zeros((X_length, X_length))
numpy.zeros
import copy import logging import os from typing import Dict, List, Tuple import checksumdir import imageio import numpy as np import torch from torch.utils.data import DataLoader, Dataset from tqdm import tqdm from ..adapter import download_object logger = logging.getLogger("fastface.dataset") class _IdentitiyTransforms: """Dummy tranforms""" def __call__(self, img: np.ndarray, targets: Dict) -> Tuple: return img, targets def default_collate_fn(batch): batch, targets = zip(*batch) batch = np.stack(batch, axis=0).astype(np.float32) batch = torch.from_numpy(batch).permute(0, 3, 1, 2).contiguous() for i, target in enumerate(targets): for k, v in target.items(): if isinstance(v, np.ndarray): targets[i][k] = torch.from_numpy(v) return batch, targets class BaseDataset(Dataset): def __init__(self, ids: List[str], targets: List[Dict], transforms=None, **kwargs): super().__init__() assert isinstance(ids, list), "given `ids` must be list" assert isinstance(targets, list), "given `targets must be list" assert len(ids) == len(targets), "lenght of both lists must be equal" self.ids = ids self.targets = targets self.transforms = _IdentitiyTransforms() if transforms is None else transforms # set given kwargs to the dataset for key, value in kwargs.items(): if hasattr(self, key): # log warning continue setattr(self, key, value) def __getitem__(self, idx: int) -> Tuple: img = self._load_image(self.ids[idx]) targets = copy.deepcopy(self.targets[idx]) # apply transforms img, targets = self.transforms(img, targets) # clip boxes targets["target_boxes"] = self._clip_boxes( targets["target_boxes"], img.shape[:2] ) # discard zero sized boxes targets["target_boxes"] = self._discard_zero_size_boxes(targets["target_boxes"]) return (img, targets) def __len__(self) -> int: return len(self.ids) @staticmethod def _clip_boxes(boxes: np.ndarray, shape: Tuple[int, int]) -> np.ndarray: # TODO pydoc height, width = shape boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(min=0, max=width - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(min=0, max=height - 1) return boxes @staticmethod def _discard_zero_size_boxes(boxes: np.ndarray) -> np.ndarray: # TODO pydoc scale = (boxes[:, [2, 3]] - boxes[:, [0, 1]]).min(axis=1) return boxes[scale > 0] @staticmethod def _load_image(img_file_path: str): """loads rgb image using given file path Args: img_path (str): image file path to load Returns: np.ndarray: rgb image as np.ndarray """ img = imageio.imread(img_file_path) if not img.flags["C_CONTIGUOUS"]: # if img is not contiguous than fix it img = np.ascontiguousarray(img, dtype=img.dtype) if len(img.shape) == 4: # found RGBA, converting to => RGB img = img[:, :, :3] elif len(img.shape) == 2: # found GRAYSCALE, converting to => RGB img = np.stack([img, img, img], axis=-1) return
np.array(img, dtype=np.uint8)
numpy.array
import ctypes import logging import sysconfig import numpy as np import numpy.ctypeslib as npct from .. import tools from pathlib import Path logger = logging.getLogger(__name__) np_double = npct.ndpointer(np.float64, ndim=1, flags='aligned, contiguous, writeable') np_complex = npct.ndpointer(np.complex128, ndim=1, flags='aligned, c_contiguous, writeable') np_complex_2d = npct.ndpointer(np.complex128, ndim=2, flags='aligned, c_contiguous, writeable') np_complex_single = npct.ndpointer(np.complex128, ndim=0) np_int_pointer = npct.ndpointer(np.int32, ndim=1, flags='aligned, contiguous, writeable') # Find suffix suffix = sysconfig.get_config_var('EXT_SUFFIX') if suffix is None: suffix = ".so" # We start by making a path to the current directory. pymodule_dir = Path(__file__).resolve().parent __libpath__ = pymodule_dir / ('libxcorr' + suffix) # Then we open the created shared libecho file libecho = ctypes.CDLL(__libpath__) libecho.xcorr_echo_search.argtypes = [ ctypes.c_double, ctypes.c_double, ctypes.c_double, np_complex, ctypes.c_int, np_double, ctypes.c_int, np_complex_2d, np_complex_2d, np_int_pointer, np_complex, ctypes.c_int, np_int_pointer, ctypes.c_int, ctypes.c_double, ] @tools.profiling.timeing(f'{__name__}') def xcorr_echo_search( raw_data, doppler_freq_min, doppler_freq_max, doppler_freq_step, signal_model, full_gmf_output=False, ): """ # Will take a raw_data object and crosscorrelate the data. """ matched_filter_output = {} pows_output = [] index_finish = 0 sample_signal_all = np.sum(raw_data.data, 0) doppler_freq_size = int(((doppler_freq_max - doppler_freq_min) / doppler_freq_step) + 1) if len(signal_model.shape) == 1: signal_model.shape = (1, signal_model.size) signal_model_size = signal_model.shape[1] best_peak = np.zeros(sample_signal_all.shape[1], dtype=np.complex128) best_start = np.zeros(sample_signal_all.shape[1]) best_doppler = np.zeros(sample_signal_all.shape[1]) max_pow_per_delay = np.zeros( [sample_signal_all.shape[0] + signal_model_size, sample_signal_all.shape[1]], dtype=np.complex128 ) max_pow_per_delay_norm = np.zeros( [sample_signal_all.shape[0] + signal_model_size, sample_signal_all.shape[1]], dtype=np.complex128 ) samp =
np.float64(6E-6)
numpy.float64
r""" The Abel-Boutle (2012) PSD ========================== The Abel-Boutle (2012) PSD is a single moment PSD intended to represent rain drops. Particle number densities are represented using a gamma distribution function .. math:: N(D) &= N_0\ D^\gamma \ \exp(-\lambda D). The parameters :math:`N_0` and :math:`\lambda` can be diagnosed from the rain water content using .. math:: \lambda &= \left [ \frac{\pi \rho_\text{w} x_1 \Gamma(4 + \mu)}{6 \rho_\text{air} q_\text{R}}]^{\frac{1}{4 + \mu - x_2}} N_0 &= x_1 \lambda^{x_2} .. [AB2012] <NAME>, Boutle IA. 2012. An improved representation of the raindrop size distribution for single-moment microphysics schemes. <NAME>. Soc. 138: 2151–2162. DOI:10.1002/qj.1949 """ import numpy as np import scipy as sp from scipy.special import gamma from pyarts.workspace import arts_agenda from artssat import dimensions as dim from artssat.scattering.psd.data.psd_data import D_eq from artssat.scattering.psd.arts.arts_psd import ArtsPSD from artssat.scattering.psd.data.psd_data import PSDData class AB12(ArtsPSD): r""" The AB12 class provides an implementation of the Abel-Boutle (2012) single-moment PSD for rain drops. """ @classmethod def from_psd_data(self, psd, mu = 0.0): r""" Create a AB12 PSD from given psd data. Parameters: psd(PSDData or other PSD): PSD data from which to create the MY05 representation. mu(:code:`float` or array): The value of the mu parameter to use. """ mass_density = psd.get_mass_density() return AB12(mu, mass_density) def __init__(self, mu = 0.0, mass_density = None): r""" Parameters: mu(:code:`numpy.float`): The :math:`\mu` parameter of the PSD mass_density(:code:`numpy.ndarray`): Array containing the water content for a given set of volume elements in an atmosphere. """ self.mu = mu if not mass_density is None: self.mass_density = mass_density super().__init__(D_eq(1000.0)) def convert_from(self, psd): r""" Convert given psd to AB12 PSD with :math:`\mu` parameter of this instance. Parameters: psd: Other PSD providing :code:`get_moment` and :code:`get_mass_density` member functions. """ self.mass_density = psd.get_mass_density() def _get_parameters(self): """ Checks if parameters of the PSD are available and tries to broadcast them to the shape of the mass density data. Calculates parameters of Returns: :code:`tuple(n0, lmbd, mu)` containing the parameters of the PSD function. Raises: An exception if any of the parameters is not set or cannot be broadcasted into the shape of the number density data. """ # Number density # Mass density m = self.mass_density if m is None: raise Exception("The mass density needs to be set to use" " this function.") shape = m.shape try: mu = np.broadcast_to(
np.array(self.mu)
numpy.array
# -*- coding: utf-8 -*- """Tests for `codex-africanus` package.""" import numpy as np import pytest def test_fit_spi_components_vs_scipy(): """ Here we just test the per component spi fitter against a looped version of scipy's curve_fit :return: """ from africanus.model.spi import fit_spi_components curve_fit = pytest.importorskip("scipy.optimize").curve_fit np.random.seed(123) ncomps = 25 alphas = -0.7 + 0.25 * np.random.randn(ncomps, 1) i0s = 5.0 + np.random.randn(ncomps, 1) nfreqs = 100 freqs = np.linspace(0.5, 1.5, nfreqs).reshape(1, nfreqs) freq0 = 0.7 model = i0s * (freqs / freq0) ** alphas sigma = np.abs(0.25 + 0.1 * np.random.randn(nfreqs)) data = model + sigma[None, :] * np.random.randn(ncomps, nfreqs) weights = 1.0/sigma**2 alpha1, alphavar1, I01, I0var1 = fit_spi_components( data, weights, freqs.squeeze(), freq0, tol=1e-8) def spi_func(nu, I0, alpha): return I0 * nu ** alpha I02 =
np.zeros(ncomps)
numpy.zeros
# Copyright 2019 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest import mock import itertools import random import numpy as np import pytest import sympy import cirq class PlusGate(cirq.Gate): """A qudit gate that increments a qudit state mod its dimension.""" def __init__(self, dimension, increment=1): self.dimension = dimension self.increment = increment % dimension def _qid_shape_(self): return (self.dimension,) def _unitary_(self): inc = (self.increment - 1) % self.dimension + 1 u = np.empty((self.dimension, self.dimension)) u[inc:] = np.eye(self.dimension)[:-inc] u[:inc] = np.eye(self.dimension)[-inc:] return u class _TestMixture(cirq.Gate): def __init__(self, gate_options): self.gate_options = gate_options def _qid_shape_(self): return cirq.qid_shape(self.gate_options[0], ()) def _mixture_(self): return [(1 / len(self.gate_options), cirq.unitary(g)) for g in self.gate_options] def test_invalid_dtype(): with pytest.raises(ValueError, match='complex'): cirq.DensityMatrixSimulator(dtype=np.int32) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_no_measurements(dtype): q0, q1 = cirq.LineQubit.range(2) simulator = cirq.DensityMatrixSimulator(dtype=dtype) circuit = cirq.Circuit(cirq.X(q0), cirq.X(q1)) with pytest.raises(ValueError, match="no measurements"): simulator.run(circuit) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_no_results(dtype): q0, q1 = cirq.LineQubit.range(2) simulator = cirq.DensityMatrixSimulator(dtype=dtype) circuit = cirq.Circuit(cirq.X(q0), cirq.X(q1)) with pytest.raises(ValueError, match="no measurements"): simulator.run(circuit) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_empty_circuit(dtype): simulator = cirq.DensityMatrixSimulator(dtype=dtype) with pytest.raises(ValueError, match="no measurements"): simulator.run(cirq.Circuit()) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_bit_flips(dtype): q0, q1 = cirq.LineQubit.range(2) simulator = cirq.DensityMatrixSimulator(dtype=dtype) for b0 in [0, 1]: for b1 in [0, 1]: circuit = cirq.Circuit((cirq.X**b0)(q0), (cirq.X**b1)(q1), cirq.measure(q0), cirq.measure(q1)) result = simulator.run(circuit) np.testing.assert_equal(result.measurements, {'0': [[b0]], '1': [[b1]]}) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_qudit_increments(dtype): q0, q1 = cirq.LineQid.for_qid_shape((3, 4)) simulator = cirq.DensityMatrixSimulator(dtype=dtype) for b0 in [0, 1, 2]: for b1 in [0, 1, 2, 3]: circuit = cirq.Circuit( [PlusGate(3, 1)(q0)] * b0, [PlusGate(4, 1)(q1)] * b1, cirq.measure(q0), cirq.measure(q1), ) result = simulator.run(circuit) np.testing.assert_equal(result.measurements, { '0 (d=3)': [[b0]], '1 (d=4)': [[b1]] }) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_not_channel_op(dtype): class BadOp(cirq.Operation): def __init__(self, qubits): self._qubits = qubits @property def qubits(self): return self._qubits def with_qubits(self, *new_qubits): # coverage: ignore return BadOp(self._qubits) q0 = cirq.LineQubit(0) simulator = cirq.DensityMatrixSimulator(dtype=dtype) circuit = cirq.Circuit([BadOp([q0])]) with pytest.raises(TypeError): simulator.simulate(circuit) @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_mixture(dtype): q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit( cirq.bit_flip(0.5)(q0), cirq.measure(q0), cirq.measure(q1)) simulator = cirq.DensityMatrixSimulator(dtype=dtype) result = simulator.run(circuit, repetitions=100) np.testing.assert_equal(result.measurements['1'], [[0]] * 100) # Test that we get at least one of each result. Probability of this test # failing is 2 ** (-99). q0_measurements = set(x[0] for x in result.measurements['0'].tolist()) assert q0_measurements == {0, 1} @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_qudit_mixture(dtype): q0, q1 = cirq.LineQid.for_qid_shape((3, 2)) mixture = _TestMixture([PlusGate(3, 0), PlusGate(3, 1), PlusGate(3, 2)]) circuit = cirq.Circuit(mixture(q0), cirq.measure(q0), cirq.measure(q1)) simulator = cirq.DensityMatrixSimulator(dtype=dtype) result = simulator.run(circuit, repetitions=100) np.testing.assert_equal(result.measurements['1 (d=2)'], [[0]] * 100) # Test that we get at least one of each result. Probability of this test # failing is about 3 * (2/3) ** 100. q0_measurements = set(x[0] for x in result.measurements['0 (d=3)'].tolist()) assert q0_measurements == {0, 1, 2} @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_channel(dtype): q0, q1 = cirq.LineQubit.range(2) circuit = cirq.Circuit(cirq.X(q0), cirq.amplitude_damp(0.5)(q0), cirq.measure(q0), cirq.measure(q1)) simulator = cirq.DensityMatrixSimulator(dtype=dtype) result = simulator.run(circuit, repetitions=100) np.testing.assert_equal(result.measurements['1'], [[0]] * 100) # Test that we get at least one of each result. Probability of this test # failing is 2 ** (-99). q0_measurements = set(x[0] for x in result.measurements['0'].tolist()) assert q0_measurements == {0, 1} @pytest.mark.parametrize('dtype', [np.complex64, np.complex128]) def test_run_qudit_channel(dtype): class TestChannel(cirq.Gate): def _qid_shape_(self): return (3,) def _channel_(self): return [ np.array([[1, 0, 0], [0, 0.5**0.5, 0], [0, 0, 0.5**0.5]]), np.array([[0, 0.5**0.5, 0], [0, 0, 0], [0, 0, 0]]), np.array([[0, 0, 0], [0, 0, 0.5**0.5], [0, 0, 0]]), ] q0, q1 = cirq.LineQid.for_qid_shape((3, 4)) circuit = cirq.Circuit( PlusGate(3, 2)(q0), TestChannel()(q0), TestChannel()(q0), cirq.measure(q0), cirq.measure(q1), ) simulator = cirq.DensityMatrixSimulator(dtype=dtype) result = simulator.run(circuit, repetitions=100)
np.testing.assert_equal(result.measurements['1 (d=4)'], [[0]] * 100)
numpy.testing.assert_equal
import numpy as np import random import torch class DataSet(object): def __len__(self): raise NotImplementedError def __getitem__(self, index): raise NotImplementedError class MyDataSet(DataSet): def __init__(self, insts, transform=None): self.insts = insts self.transform = transform def __len__(self): return len(self.insts) def __getitem__(self, idx): sample = self.insts[idx] if self.transform: sample = self.transform(sample) return sample def __iter__(self): for inst in self.insts: yield inst def index(self, item): return self.insts.index(item) def data_split(self, split_rate=0.33, shuffle=False): assert self.insts and len(self.insts) > 0 if shuffle: np.random.shuffle(self.insts) val_size = int(len(self.insts) * split_rate) train_set = MyDataSet(self.insts[:-val_size]) val_set = MyDataSet(self.insts[-val_size:]) return train_set, val_set def data_split(data_set, split_rate: list, shuffle=False): assert len(data_set) != 0, 'Empty dataset !' assert len(split_rate) != 0, 'Empty split rate list !' n = len(data_set) if shuffle: range_idxs =
np.random.permutation(n)
numpy.random.permutation
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/02_data.ipynb (unless otherwise specified). __all__ = ['show', 'DeformationField', 'BaseDataset', 'RandomTileDataset', 'TileDataset'] # Cell import os, zarr, cv2, imageio, shutil, numpy as np from joblib import Parallel, delayed from scipy import ndimage from scipy.interpolate import Rbf from scipy.interpolate import interp1d from matplotlib.patches import Rectangle from skimage.measure import label from skimage.color import label2rgb import torch, torch.nn as nn, torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from fastai.vision.all import * from fastcore.all import * from .transforms import random_center, WeightTransform, preprocess_mask, create_pdf import gc gc.enable() # Cell def show(*obj, file_name=None, overlay=False, pred=False, show_bbox=True, figsize=(10,10), cmap='binary_r', **kwargs): "Show image, mask, and weight (optional)" if len(obj)==3: img,msk,weight = obj elif len(obj)==2: img,msk = obj weight = None elif len(obj)==1: img = obj[0] msk, weight = None, None else: raise ValueError(f'Function not defined for {len(obj)} arguments.') # Image preprocessing img = np.array(img) # Swap axis to channels last if img.shape[0]<20: img=np.moveaxis(img,0,-1) # One channel images if img.ndim == 3 and img.shape[-1] == 1: img=img[...,0] # Mask preprocessing if msk is not None: msk = np.array(msk) # Remove background class from masks if msk.shape[0]==2: msk=msk[1,...] # Create bbox pad = (np.array(img.shape[:2])-np.array(msk.shape))//2 bbox = Rectangle((pad[0]-1,pad[1]-1),img.shape[0]-2*pad[0]+1,img.shape[0]-2*pad[0]+1, edgecolor='r',linewidth=1,facecolor='none') # Padding mask and weights msk = np.pad(msk, pad, 'constant', constant_values=(0)) if cmap is None: cmap = 'binary_r' if msk.max()==1 else cmap # Weights preprocessing if weight is not None: weight = np.array(weight) weight = np.pad(weight, pad, 'constant', constant_values=(0)) ncol=1 if msk is None else 2 ncol=ncol if weight is None else ncol+1 fig, ax = plt.subplots(1,ncol,figsize=figsize) img_ax = ax[0] if ncol>1 else ax # Plot img img_ax.imshow(img, cmap=cmap) if file_name is not None: img_ax.set_title('Image {}'.format(file_name)) else: img_ax.set_title('Image') img_ax.set_axis_off() # Plot img and mask if msk is not None: if overlay: label_image = label(msk) img_l2o = label2rgb(label_image, image=img, bg_label=0, alpha=.8, image_alpha=1) ax[1].set_title('Image + Mask (#ROIs: {})'.format(label_image.max())) ax[1].imshow(img_l2o) else: ax[1].imshow(msk, cmap=cmap) ax[1].set_title('Mask') if show_bbox: ax[1].add_patch(copy(bbox)) ax[1].set_axis_off() # Plot weights if weight is not None: max_w = weight.max() vmax_w = max(1, max_w) ax[2].imshow(weight, vmax=vmax_w, cmap=cmap) if pred: ax[2].set_title('Prediction') else: ax[2].set_title('Weights (max value: {:.{p}f})'.format(max_w, p=1)) if show_bbox: ax[2].add_patch(copy(bbox)) ax[2].set_axis_off() #ax.set_axis_off() plt.tight_layout() plt.show() # Cell @typedispatch def show_batch(x:TensorImage, y:tuple, samples, max_n=6, figsize=None, **kwargs): "Show one batch (image, mask, and weights) from a `DataLoader`" max_n = np.min((max_n, len(x))) if figsize is None: figsize = (12, max_n * 5) for i in range(max_n): show(x[i], y[0][i], y[1][i], figsize=figsize, **kwargs) # Cell @typedispatch def show_results(x:TensorImage, y:tuple, samples, outs, max_n=4, figsize=None, **kwargs): "Show image, mask, and weights from `max_n` items" max_n = np.min((max_n, len(x))) if figsize is None: figsize = (12, max_n * 5) for i in range(max_n): show(x[i], y[0][i], outs[i][0], pred=True, figsize=figsize, **kwargs) # Cell class DeformationField: "Creates a deformation field for data augmentation" def __init__(self, shape=(540, 540), scale=1): self.shape, self.scale = shape, scale #grid_range = [np.arange(d*self.scale, step=scale) - (d*self.scale) / 2 for d in shape] #grid_range = [np.linspace(-(d*self.scale)/2, (d*self.scale)/2, d) for d in shape] # Same behavoiur as np.arange grid_range = [np.linspace(-(d*self.scale)/2, ((d*self.scale)/2)-1, d) for d in shape] self.deformationField = np.meshgrid(*grid_range)[::-1] self.orders = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC] def rotate(self, theta=0, phi=0, psi=0): "Rotate deformation field" if len(self.shape) == 2: self.deformationField = [ self.deformationField[0] * np.cos(theta) + self.deformationField[1] * np.sin(theta), -self.deformationField[0] * np.sin(theta) + self.deformationField[1] * np.cos(theta), ] else: self.deformationField = [ self.deformationField[0], self.deformationField[1] * np.cos(theta) + self.deformationField[2] * np.sin(theta), -self.deformationField[1] * np.sin(theta) + self.deformationField[2] * np.cos(theta), ] self.deformationField = [ self.deformationField[0] * np.cos(phi) + self.deformationField[2] * np.sin(phi), self.deformationField[1] - self.deformationField[0] * np.sin(phi) + self.deformationField[2] * np.cos(phi), ] self.deformationField = [ self.deformationField[0], self.deformationField[1] * np.cos(psi) + self.deformationField[2] * np.sin(psi), -self.deformationField[1] * np.sin(psi) + self.deformationField[2] * np.cos(psi), ] def mirror(self, dims): "Mirror deformation fild at dims" for d in range(len(self.shape)): if dims[d]: self.deformationField[d] = -self.deformationField[d] def addRandomDeformation(self, grid=(150, 150), sigma=(10, 10)): "Add random deformation to the deformation field" seedGrid = np.meshgrid( *[np.arange(-g / 2, s + g / 2, g) for (g, s) in zip(grid, self.shape)] ) seed = [np.random.normal(0, s, g.shape) for (g, s) in zip(seedGrid, sigma)] defFcn = [Rbf(*seedGrid, s, function="cubic") for s in seed] targetGrid = np.meshgrid(*map(np.arange, self.shape)) deformation = [f(*targetGrid) for f in defFcn] self.deformationField = [ f + df for (f, df) in zip(self.deformationField, deformation) ] def get(self, offset=(0, 0), pad=(0, 0)): "Get relevant slice from deformation field" sliceDef = tuple(slice(int(p / 2), int(-p / 2)) if p > 0 else None for p in pad) deform = [d[sliceDef] for d in self.deformationField] return [d + offs for (d, offs) in zip(deform, offset)] def apply_slow(self, data, offset=(0, 0), pad=(0, 0), order=1): "Apply deformation field to image using interpolation" outshape = tuple(int(s - p) for (s, p) in zip(self.shape, pad)) coords = [d.flatten() for d in self.get(offset, pad)] if len(data.shape) == len(self.shape) + 1: tile = np.empty((data.shape[-1], *outshape)) for c in range(data.shape[-1]): tile[c,...] = ndimage.interpolation.map_coordinates(data[..., c], coords, order=order, mode="reflect").reshape(outshape) else: tile = ndimage.interpolation.map_coordinates(data, coords, order=order, mode="reflect").reshape(outshape) return tile.astype(data.dtype) def apply(self, data, offset=(0, 0), pad=(0, 0), order=1): "Apply deformation field to image using interpolation" outshape = tuple(int(s - p) for (s, p) in zip(self.shape, pad)) coords = [np.squeeze(d).astype('float32').reshape(*outshape) for d in self.get(offset, pad)] # Get slices to avoid loading all data (.zarr files) sl = [] for i in range(len(coords)): cmin, cmax = int(coords[i].min()), int(coords[i].max()) dmax = data.shape[i] if cmin<0: cmax = max(-cmin, cmax) cmin = 0 elif cmax>dmax: cmin = min(cmin, 2*dmax-cmax) cmax = dmax coords[i] -= cmin else: coords[i] -= cmin sl.append(slice(cmin, cmax)) if len(data.shape) == len(self.shape) + 1: tile = np.empty((*outshape, data.shape[-1])) for c in range(data.shape[-1]): tile[..., c] = cv2.remap(data[sl[0],sl[1], c], coords[1],coords[0], interpolation=order, borderMode=cv2.BORDER_REFLECT) else: tile = cv2.remap(data[sl[0], sl[1]], coords[1], coords[0], interpolation=order, borderMode=cv2.BORDER_REFLECT) return tile # Cell def _read_img(path, divide=None, **kwargs): "Read image and normalize to 0-1 range" if path.suffix == '.zarr': img = zarr.convenience.open(path.as_posix()) if len(img.shape)==4: # assuming shape (z_dim, n_channel, y_dim, x_dim) img = np.max(img, axis=0) # max z projection img = np.moveaxis(img, 0, -1) else: img = imageio.imread(path, **kwargs) if divide is None and img.max()>0: img = img/np.iinfo(img.dtype).max if divide is not None: img = img/divide #assert img.max()<=1. and img.max()>.04, f'Check image loading, dividing by {divide}, max value is {img.max()}' assert img.max()<=1., f'Check image loading, dividing by {divide}' if img.ndim == 2: img = np.expand_dims(img, axis=2) return img # Cell def _read_msk(path, n_classes=2, instance_labels=False, **kwargs): "Read image and check classes" if path.suffix == '.zarr': msk = zarr.convenience.open(path.as_posix()) else: msk = imageio.imread(path, **kwargs) if not instance_labels: if np.max(msk)>n_classes: msk = msk//np.iinfo(msk.dtype).max # Remove channels if no extra information given if len(msk.shape)==3: if np.array_equal(msk[...,0], msk[...,1]): msk = msk[...,0] # Mask check assert len(np.unique(msk))<=n_classes, 'Check n_classes and provided mask' return msk # Cell class BaseDataset(Dataset): def __init__(self, files, label_fn=None, instance_labels = False, n_classes=2, divide=None, ignore={},remove_overlap=True, tile_shape=(540,540), padding=(184,184),preproc_dir=None, fbr=.1, n_jobs=-1, verbose=1, scale=1, loss_weights=True, **kwargs): store_attr('files, label_fn, instance_labels, divide, n_classes, ignore, tile_shape, remove_overlap, padding, fbr, scale, loss_weights') self.c = n_classes if label_fn is not None: if not preproc_dir: self.preproc_dir = Path(label_fn(files[0])).parent/'.cache' else: self.preproc_dir = Path(preproc_dir) self.labels = zarr.group((self.preproc_dir/'labels').as_posix()) self.pdfs = zarr.group((self.preproc_dir/'pdfs').as_posix()) self._preproc(n_jobs, verbose) def read_img(self, *args, **kwargs): return _read_img(*args, **kwargs) def read_mask(self, *args, **kwargs): return _read_msk(*args, **kwargs) def _name_fn(self, g): "Name of preprocessed and compressed data." return f'{g}_{self.fbr}' def _preproc_file(self, file): "Preprocesses and saves labels (msk), weights, and pdf." label_path = self.label_fn(file) if self.instance_labels: clabels = None instlabels = self.read_mask(label_path, self.c, instance_labels=True) else: clabels = self.read_mask(label_path, self.c) instlabels = None ign = self.ignore[file.name] if file.name in self.ignore else None lbl = preprocess_mask(clabels, instlabels, n_dims=self.c, remove_overlap=self.remove_overlap) self.labels[file.name] = lbl self.pdfs[self._name_fn(file.name)] = create_pdf(lbl, ignore=ign, fbr=self.fbr, scale=512) def _preproc(self, n_jobs=-1, verbose=0): using_cache = False preproc_queue=L() for f in self.files: try: #lbl, wgt, pdf = _get_cached_data(self._cache_fn(f.name)) self.labels[f.name] self.pdfs[self._name_fn(f.name)] if not using_cache: if verbose>0: print(f'Using preprocessed masks from {self.preproc_dir}') using_cache = True except: if n_jobs==1: if verbose>0: print('Preprocessing', f.name) self._preproc_file(f) else: preproc_queue.append(f) if len(preproc_queue)>0: if verbose>0: print('Preprocessing', L([f.name for f in preproc_queue])) _ = Parallel(n_jobs=n_jobs, verbose=verbose, backend='threading')(delayed(self._preproc_file)(f) for f in preproc_queue) def get_data(self, files=None, max_n=None, mask=False): if files is not None: files = L(files) elif max_n is not None: max_n = np.min((max_n, len(self.files))) files = self.files[:max_n] else: files = self.files data_list = L() for f in files: if mask: d = self.labels[f.name] else: d = self.read_img(f, divide=self.divide) data_list.append(d) return data_list def show_data(self, files=None, max_n=6, ncols=1, figsize=None, **kwargs): if files is not None: files = L(files) max_n = len(files) else: max_n = np.min((max_n, len(self.files))) files = self.files[:max_n] if figsize is None: figsize = (ncols*12, max_n//ncols * 5) for f in files: img = self.read_img(f, divide=self.divide) if self.label_fn is not None: lbl = self.labels[f.name] show(img, lbl, file_name=f.name, figsize=figsize, show_bbox=False, **kwargs) else: show(img, file_name=f.name, figsize=figsize, show_bbox=False, **kwargs) def clear_cached_weights(self): "Clears cache directory with pretrained weights." try: shutil.rmtree(self.preproc_dir) print(f"Deleting all cache at {self.preproc_dir}") except: print(f"No temporary files to delete at {self.preproc_dir}") #https://stackoverflow.com/questions/60101240/finding-mean-and-standard-deviation-across-image-channels-pytorch/60803379#60803379 def compute_stats(self, max_samples=50): "Computes mean and std from files" print('Computing Stats...') mean_sum, var_sum = 0., 0. for i, f in enumerate(self.files, 1): img = self.read_img(f, divide=self.divide)[:] mean_sum += img.mean((0,1)) var_sum += img.var((0,1)) if i==max_samples: print(f'Calculated stats from {i} files') continue self.mean = mean_sum/i self.std = np.sqrt(var_sum/i) return ([self.mean], [self.std]) # Cell class RandomTileDataset(BaseDataset): """ Pytorch Dataset that creates random tiles with augmentations from the input images. """ n_inp = 1 def __init__(self, *args, sample_mult=None, flip=True, rotation_range_deg=(0, 360), deformation_grid=(150, 150), deformation_magnitude=(10, 10), value_minimum_range=(0, 0), value_maximum_range=(1, 1), value_slope_range=(1, 1), p_zoom=0.75, zoom_sigma=0.1, albumentations_tfms=None, **kwargs): super().__init__(*args, **kwargs) store_attr('sample_mult, flip, rotation_range_deg, deformation_grid, deformation_magnitude, value_minimum_range, value_maximum_range, value_slope_range, zoom_sigma, p_zoom, albumentations_tfms') # Sample mulutiplier: Number of random samplings from augmented image if self.sample_mult is None: tile_shape = np.array(self.tile_shape)-np.array(self.padding) msk_shape = np.array(self.get_data(max_n=1)[0].shape[:-1]) #msk_shape = np.array(lbl.shape[-2:]) self.sample_mult = int(np.product(np.floor(msk_shape/tile_shape))) self.on_epoch_end() def __len__(self): return len(self.files)*self.sample_mult def __getitem__(self, idx): idx = idx % len(self.files) if torch.is_tensor(idx): idx = idx.tolist() img_path = self.files[idx] img = self.read_img(img_path, divide=self.divide) n_channels = img.shape[-1] lbl, pdf = self.labels[img_path.name], self.pdfs[self._name_fn(img_path.name)] center = random_center(pdf[:], lbl.shape) X = self.gammaFcn(self.deformationField.apply(img, center).flatten()).reshape((*self.tile_shape, n_channels)) Y = self.deformationField.apply(lbl, center, self.padding, 0) X1 = X.copy() if self.albumentations_tfms: augmented = self.albumentations_tfms(image=(X*255).astype('uint8'),mask=Y.astype('uint8')) X = (augmented['image']/255) Y = augmented['mask'] X = X.transpose(2, 0, 1).astype('float32') Y = Y.astype('int64') if self.loss_weights: _, W = cv2.connectedComponents((Y > 0).astype('uint8'), connectivity=4) return TensorImage(X), TensorMask(Y), torch.Tensor(W) else: return TensorImage(X), TensorMask(Y) def on_epoch_end(self, verbose=False): if verbose: print("Generating deformation field") if np.random.random()<self.p_zoom: scale=self.scale*np.random.normal(1, self.zoom_sigma) else: scale=self.scale self.deformationField = DeformationField(self.tile_shape, self.scale) if self.rotation_range_deg[1] > self.rotation_range_deg[0]: self.deformationField.rotate( theta=np.pi * (np.random.random() * (self.rotation_range_deg[1] - self.rotation_range_deg[0]) + self.rotation_range_deg[0]) / 180.0) if self.flip: self.deformationField.mirror(np.random.choice((True,False),2)) if self.deformation_grid is not None: self.deformationField.addRandomDeformation( self.deformation_grid, self.deformation_magnitude) if verbose: print("Generating value augmentation function") minValue = (self.value_minimum_range[0] + (self.value_minimum_range[1] - self.value_minimum_range[0]) * np.random.random()) maxValue = (self.value_maximum_range[0] + (self.value_maximum_range[1] - self.value_maximum_range[0]) *
np.random.random()
numpy.random.random
# ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2021-2022, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= import pytest import unittest import random import numpy as np import time import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" import json import tensorflow as tf from aimet_tensorflow.common.graph_eval import initialize_uninitialized_vars from aimet_tensorflow.quantsim import QuantizationSimModel from aimet_tensorflow.examples.test_models import depthwise_conv2d_model from aimet_tensorflow.utils.op.conv import WeightTensorUtils from aimet_common.quantsim import calculate_delta_offset tf.compat.v1.disable_eager_execution() tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.WARN) import libpymo class TestTrainingExtensionsQcQuantizeOpPerChannel(unittest.TestCase): def test_qc_quantize_op_cpu_conv(self): """ test custom op with CPU """ np.random.seed(0) zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) bitwidth = 8 use_symm_encoding = True with graph.as_default(): # place holder for the input with tf.device("/device:CPU:0"): num_output_channels = 3 inp = tf.compat.v1.placeholder(tf.float32, shape=[1, 1, 2, num_output_channels], name='input') # Assuming 3 output channels tensor_quantizer_int64 = [None] * num_output_channels tensor_quantizers = [None] * num_output_channels # Create a tensor_quantizer per channel for i in range(num_output_channels): tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizers[i] = tensor_quantizer val = libpymo.PtrToInt64(tensor_quantizer) tensor_quantizer_int64[i] = val tensor_quant_ref = tf.Variable(tensor_quantizer_int64, trainable=False, dtype=tf.int64) en_min = (np.zeros(num_output_channels)).tolist() en_max = [1.0, 2.0, 2.5] encoding_min = tf.Variable(en_min, trainable=True, dtype=tf.double) encoding_max = tf.Variable(en_max, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=bitwidth, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=use_symm_encoding, trainable=False, dtype=tf.bool) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), trainable=False, dtype=tf.int32) axis = tf.Variable(initial_value=3, trainable=False, dtype=tf.int32) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer, axis.initializer]) # Giving axis = 3 pass_through_op_output = zero_out_module.qc_quantize_per_channel(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding, axis=axis) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.ones((1, 1, 2, num_output_channels)) inp_data[:, :, :, 1] *= 2 inp_data[:, :, :, 2] *= 3 out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) for i in range(num_output_channels): encoding = tensor_quantizers[i].computeEncoding(bitwidth, use_symm_encoding, False, False) mode_var.load(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sess) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) # compare qc_quantize op's output with input expected_output = np.ones((1, 1, 2, num_output_channels)) expected_output[:, :, :, 1] *= 2 expected_output[:, :, :, 2] *= 2.5 self.assertTrue(np.allclose(out_data, expected_output, rtol=0.01)) sess.close() @pytest.mark.cuda def test_qc_quantize_op_gpu_conv(self): """ test custom op with GPU """ np.random.seed(0) zero_out_module = tf.load_op_library('libaimet_tf_ops.so') graph = tf.Graph() config = tf.compat.v1.ConfigProto(log_device_placement=False) sess = tf.compat.v1.Session(graph=graph, config=config) bitwidth = 8 use_symm_encoding = True with graph.as_default(): # place holder for the input num_output_channels = 3 inp = tf.compat.v1.placeholder(tf.float32, shape=[1, 1, 2, num_output_channels], name='input') # Assuming 3 output channels tensor_quantizer_int64 = [None] * num_output_channels tensor_quantizers = [None] * num_output_channels # Create a tensor_quantizer per channel for i in range(num_output_channels): tensor_quantizer = libpymo.TensorQuantizer(libpymo.QuantizationMode.QUANTIZATION_TF_ENHANCED, libpymo.RoundingMode.ROUND_NEAREST) tensor_quantizers[i] = tensor_quantizer val = libpymo.PtrToInt64(tensor_quantizer) tensor_quantizer_int64[i] = val tensor_quant_ref = tf.Variable(tensor_quantizer_int64, trainable=False, dtype=tf.int64) en_min = (np.zeros(num_output_channels)).tolist() en_max = [1.0, 2.0, 2.5] encoding_min = tf.Variable(en_min, trainable=True, dtype=tf.double) encoding_max = tf.Variable(en_max, trainable=True, dtype=tf.double) bit_width = tf.Variable(initial_value=bitwidth, trainable=False, dtype=tf.int8) use_symmetric_encoding = tf.Variable(initial_value=use_symm_encoding, trainable=False, dtype=tf.bool) mode_var = tf.Variable(initial_value=int(libpymo.TensorQuantizerOpMode.oneShotQuantizeDequantize), trainable=False, dtype=tf.int32) axis = tf.Variable(initial_value=3, trainable=False, dtype=tf.int32) sess.run([mode_var.initializer, tensor_quant_ref.initializer, encoding_min.initializer, encoding_max.initializer, bit_width.initializer, use_symmetric_encoding.initializer, axis.initializer]) with tf.device("/device:GPU:0"): # Giving axis = 3 pass_through_op_output = zero_out_module.qc_quantize_per_channel(name='quant_op', in_tensor=inp, op_mode=mode_var, tensor_quantizer_reference=tensor_quant_ref, encoding_min=encoding_min, encoding_max=encoding_max, bit_width=bit_width, use_symmetric_encoding=use_symmetric_encoding, axis=3) inp_tensor = sess.graph.get_tensor_by_name('input:0') inp_data = np.ones((1, 1, 2, num_output_channels)) inp_data[:, :, :, 1] *= 2 inp_data[:, :, :, 2] *= 3 out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) mode_var.load(int(libpymo.TensorQuantizerOpMode.quantizeDequantize), sess) out_data = sess.run(pass_through_op_output, feed_dict={inp_tensor: inp_data}) # compare qc_quantize op's output with input expected_output = np.ones((1, 1, 2, num_output_channels)) expected_output[:, :, :, 1] *= 2 expected_output[:, :, :, 2] *= 2.5 self.assertTrue(
np.allclose(out_data, expected_output, rtol=0.01)
numpy.allclose
#!/usr/bin/env python # Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Parts are based on https://github.com/multimodallearning/pytorch-mask-rcnn published under MIT license. """ import warnings warnings.filterwarnings('ignore', '.*From scipy 0.13.0, the output shape of zoom()*') import numpy as np import scipy.misc import scipy.ndimage import scipy.interpolate from scipy.ndimage.measurements import label as lb import torch import tqdm from custom_extensions.nms import nms from custom_extensions.roi_align import roi_align ############################################################ # Segmentation Processing ############################################################ def sum_tensor(input, axes, keepdim=False): axes = np.unique(axes) if keepdim: for ax in axes: input = input.sum(ax, keepdim=True) else: for ax in sorted(axes, reverse=True): input = input.sum(int(ax)) return input def get_one_hot_encoding(y, n_classes): """ transform a numpy label array to a one-hot array of the same shape. :param y: array of shape (b, 1, y, x, (z)). :param n_classes: int, number of classes to unfold in one-hot encoding. :return y_ohe: array of shape (b, n_classes, y, x, (z)) """ dim = len(y.shape) - 2 if dim == 2: y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3])).astype('int32') elif dim == 3: y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3], y.shape[4])).astype('int32') else: raise Exception("invalid dimensions {} encountered".format(y.shape)) for cl in np.arange(n_classes): y_ohe[:, cl][y[:, 0] == cl] = 1 return y_ohe def dice_per_batch_inst_and_class(pred, y, n_classes, convert_to_ohe=True, smooth=1e-8): ''' computes dice scores per batch instance and class. :param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1) :param y: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes] :param n_classes: int :return: dice scores of shape (b, c) ''' if convert_to_ohe: pred = get_one_hot_encoding(pred, n_classes) y = get_one_hot_encoding(y, n_classes) axes = tuple(range(2, len(pred.shape))) intersect = np.sum(pred*y, axis=axes) denominator = np.sum(pred, axis=axes)+np.sum(y, axis=axes) dice = (2.0*intersect + smooth) / (denominator + smooth) return dice def dice_per_batch_and_class(pred, targ, n_classes, convert_to_ohe=True, smooth=1e-8): ''' computes dice scores per batch and class. :param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1) :param targ: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes]) :param n_classes: int :param smooth: Laplacian smooth, https://en.wikipedia.org/wiki/Additive_smoothing :return: dice scores of shape (b, c) ''' if convert_to_ohe: pred = get_one_hot_encoding(pred, n_classes) targ = get_one_hot_encoding(targ, n_classes) axes = (0, *list(range(2, len(pred.shape)))) #(0,2,3(,4)) intersect = np.sum(pred * targ, axis=axes) denominator = np.sum(pred, axis=axes) + np.sum(targ, axis=axes) dice = (2.0 * intersect + smooth) / (denominator + smooth) assert dice.shape==(n_classes,), "dice shp {}".format(dice.shape) return dice def batch_dice(pred, y, false_positive_weight=1.0, smooth=1e-6): ''' compute soft dice over batch. this is a differentiable score and can be used as a loss function. only dice scores of foreground classes are returned, since training typically does not benefit from explicit background optimization. Pixels of the entire batch are considered a pseudo-volume to compute dice scores of. This way, single patches with missing foreground classes can not produce faulty gradients. :param pred: (b, c, y, x, (z)), softmax probabilities (network output). :param y: (b, c, y, x, (z)), one hote encoded segmentation mask. :param false_positive_weight: float [0,1]. For weighting of imbalanced classes, reduces the penalty for false-positive pixels. Can be beneficial sometimes in data with heavy fg/bg imbalances. :return: soft dice score (float).This function discards the background score and returns the mena of foreground scores. ''' if len(pred.size()) == 4: axes = (0, 2, 3) intersect = sum_tensor(pred * y, axes, keepdim=False) denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False) return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) #only fg dice here. elif len(pred.size()) == 5: axes = (0, 2, 3, 4) intersect = sum_tensor(pred * y, axes, keepdim=False) denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False) return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) #only fg dice here. else: raise ValueError('wrong input dimension in dice loss') ############################################################ # Bounding Boxes ############################################################ def compute_iou_2D(box, boxes, box_area, boxes_area): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2] THIS IS THE GT BOX boxes: [boxes_count, (y1, x1, y2, x2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) union = box_area + boxes_area[:] - intersection[:] iou = intersection / union return iou def compute_iou_3D(box, boxes, box_volume, boxes_volume): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2, z1, z2] (typically gt box) boxes: [boxes_count, (y1, x1, y2, x2, z1, z2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) z1 = np.maximum(box[4], boxes[:, 4]) z2 = np.minimum(box[5], boxes[:, 5]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) * np.maximum(z2 - z1, 0) union = box_volume + boxes_volume[:] - intersection[:] iou = intersection / union return iou def compute_overlaps(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. / 3D: (z1, z2)) For better performance, pass the largest set first and the smaller second. :return: (#boxes1, #boxes2), ious of each box of 1 machted with each of 2 """ # Areas of anchors and GT boxes if boxes1.shape[1] == 4: area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(overlaps.shape[1]): box2 = boxes2[i] #this is the gt box overlaps[:, i] = compute_iou_2D(box2, boxes1, area2[i], area1) return overlaps else: # Areas of anchors and GT boxes volume1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) * (boxes1[:, 5] - boxes1[:, 4]) volume2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) * (boxes2[:, 5] - boxes2[:, 4]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(boxes2.shape[0]): box2 = boxes2[i] # this is the gt box overlaps[:, i] = compute_iou_3D(box2, boxes1, volume2[i], volume1) return overlaps def box_refinement(box, gt_box): """Compute refinement needed to transform box to gt_box. box and gt_box are [N, (y1, x1, y2, x2)] / 3D: (z1, z2)) """ height = box[:, 2] - box[:, 0] width = box[:, 3] - box[:, 1] center_y = box[:, 0] + 0.5 * height center_x = box[:, 1] + 0.5 * width gt_height = gt_box[:, 2] - gt_box[:, 0] gt_width = gt_box[:, 3] - gt_box[:, 1] gt_center_y = gt_box[:, 0] + 0.5 * gt_height gt_center_x = gt_box[:, 1] + 0.5 * gt_width dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width dh = torch.log(gt_height / height) dw = torch.log(gt_width / width) result = torch.stack([dy, dx, dh, dw], dim=1) if box.shape[1] > 4: depth = box[:, 5] - box[:, 4] center_z = box[:, 4] + 0.5 * depth gt_depth = gt_box[:, 5] - gt_box[:, 4] gt_center_z = gt_box[:, 4] + 0.5 * gt_depth dz = (gt_center_z - center_z) / depth dd = torch.log(gt_depth / depth) result = torch.stack([dy, dx, dz, dh, dw, dd], dim=1) return result def unmold_mask_2D(mask, bbox, image_shape): """Converts a mask generated by the neural network into a format similar to it's original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ y1, x1, y2, x2 = bbox out_zoom = [y2 - y1, x2 - x1] zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)] mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32) # Put the mask in the right location. full_mask = np.zeros(image_shape[:2]) #only y,x full_mask[y1:y2, x1:x2] = mask return full_mask def unmold_mask_2D_torch(mask, bbox, image_shape): """Converts a mask generated by the neural network into a format similar to it's original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ y1, x1, y2, x2 = bbox out_zoom = [(y2 - y1).float(), (x2 - x1).float()] zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)] mask = mask.unsqueeze(0).unsqueeze(0) mask = torch.nn.functional.interpolate(mask, scale_factor=zoom_factor) mask = mask[0][0] #mask = scipy.ndimage.zoom(mask.cpu().numpy(), zoom_factor, order=1).astype(np.float32) #mask = torch.from_numpy(mask).cuda() # Put the mask in the right location. full_mask = torch.zeros(image_shape[:2]) # only y,x full_mask[y1:y2, x1:x2] = mask return full_mask def unmold_mask_3D(mask, bbox, image_shape): """Converts a mask generated by the neural network into a format similar to it's original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2, z1, z2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ y1, x1, y2, x2, z1, z2 = bbox out_zoom = [y2 - y1, x2 - x1, z2 - z1] zoom_factor = [i/j for i,j in zip(out_zoom, mask.shape)] mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32) # Put the mask in the right location. full_mask = np.zeros(image_shape[:3]) full_mask[y1:y2, x1:x2, z1:z2] = mask return full_mask def nms_numpy(box_coords, scores, thresh): """ non-maximum suppression on 2D or 3D boxes in numpy. :param box_coords: [y1,x1,y2,x2 (,z1,z2)] with y1<=y2, x1<=x2, z1<=z2. :param scores: ranking scores (higher score == higher rank) of boxes. :param thresh: IoU threshold for clustering. :return: """ y1 = box_coords[:, 0] x1 = box_coords[:, 1] y2 = box_coords[:, 2] x2 = box_coords[:, 3] assert np.all(y1 <= y2) and np.all(x1 <= x2), """"the definition of the coordinates is crucially important here: coordinates of which maxima are taken need to be the lower coordinates""" areas = (x2 - x1) * (y2 - y1) is_3d = box_coords.shape[1] == 6 if is_3d: # 3-dim case z1 = box_coords[:, 4] z2 = box_coords[:, 5] assert np.all(z1<=z2), """"the definition of the coordinates is crucially important here: coordinates of which maxima are taken need to be the lower coordinates""" areas *= (z2 - z1) order = scores.argsort()[::-1] keep = [] while order.size > 0: # order is the sorted index. maps order to index: order[1] = 24 means (rank1, ix 24) i = order[0] # highest scoring element yy1 = np.maximum(y1[i], y1[order]) # highest scoring element still in >order<, is compared to itself, that is okay. xx1 = np.maximum(x1[i], x1[order]) yy2 = np.minimum(y2[i], y2[order]) xx2 = np.minimum(x2[i], x2[order]) h = np.maximum(0.0, yy2 - yy1) w = np.maximum(0.0, xx2 - xx1) inter = h * w if is_3d: zz1 = np.maximum(z1[i], z1[order]) zz2 = np.minimum(z2[i], z2[order]) d = np.maximum(0.0, zz2 - zz1) inter *= d iou = inter / (areas[i] + areas[order] - inter) non_matches = np.nonzero(iou <= thresh)[0] # get all elements that were not matched and discard all others. order = order[non_matches] keep.append(i) return keep ############################################################ # M-RCNN ############################################################ def refine_proposals(rpn_pred_probs, rpn_pred_deltas, proposal_count, batch_anchors, cf): """ Receives anchor scores and selects a subset to pass as proposals to the second stage. Filtering is done based on anchor scores and non-max suppression to remove overlaps. It also applies bounding box refinement details to anchors. :param rpn_pred_probs: (b, n_anchors, 2) :param rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d)))) :return: batch_normalized_props: Proposals in normalized coordinates (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score)) :return: batch_out_proposals: Box coords + RPN foreground scores for monitoring/plotting (b, proposal_count, (y1, x1, y2, x2, (z1), (z2), score)) """ std_dev = torch.from_numpy(cf.rpn_bbox_std_dev[None]).float().cuda() norm = torch.from_numpy(cf.scale).float().cuda() anchors = batch_anchors.clone() batch_scores = rpn_pred_probs[:, :, 1] # norm deltas batch_deltas = rpn_pred_deltas * std_dev batch_normalized_props = [] batch_out_proposals = [] # loop over batch dimension. for ix in range(batch_scores.shape[0]): scores = batch_scores[ix] deltas = batch_deltas[ix] non_nans = deltas == deltas assert torch.all(non_nans), "deltas have nans: {}".format(deltas[~non_nans]) non_nans = anchors == anchors assert torch.all(non_nans), "anchors have nans: {}".format(anchors[~non_nans]) # improve performance by trimming to top anchors by score # and doing the rest on the smaller subset. pre_nms_limit = min(cf.pre_nms_limit, anchors.size()[0]) scores, order = scores.sort(descending=True) order = order[:pre_nms_limit] scores = scores[:pre_nms_limit] deltas = deltas[order, :] # apply deltas to anchors to get refined anchors and filter with non-maximum suppression. if batch_deltas.shape[-1] == 4: boxes = apply_box_deltas_2D(anchors[order, :], deltas) non_nans = boxes == boxes assert torch.all(non_nans), "unnormalized boxes before clip/after delta apply have nans: {}".format(boxes[~non_nans]) boxes = clip_boxes_2D(boxes, cf.window) else: boxes = apply_box_deltas_3D(anchors[order, :], deltas) boxes = clip_boxes_3D(boxes, cf.window) non_nans = boxes == boxes assert torch.all(non_nans), "unnormalized boxes before nms/after clip have nans: {}".format(boxes[~non_nans]) # boxes are y1,x1,y2,x2, torchvision-nms requires x1,y1,x2,y2, but consistent swap x<->y is irrelevant. keep = nms.nms(boxes, scores, cf.rpn_nms_threshold) keep = keep[:proposal_count] boxes = boxes[keep, :] rpn_scores = scores[keep][:, None] # pad missing boxes with 0. if boxes.shape[0] < proposal_count: n_pad_boxes = proposal_count - boxes.shape[0] zeros = torch.zeros([n_pad_boxes, boxes.shape[1]]).cuda() boxes = torch.cat([boxes, zeros], dim=0) zeros = torch.zeros([n_pad_boxes, rpn_scores.shape[1]]).cuda() rpn_scores = torch.cat([rpn_scores, zeros], dim=0) # concat box and score info for monitoring/plotting. batch_out_proposals.append(torch.cat((boxes, rpn_scores), 1).cpu().data.numpy()) # normalize dimensions to range of 0 to 1. non_nans = boxes == boxes assert torch.all(non_nans), "unnormalized boxes after nms have nans: {}".format(boxes[~non_nans]) normalized_boxes = boxes / norm where = normalized_boxes <=1 assert torch.all(where), "normalized box coords >1 found:\n {}\n".format(normalized_boxes[~where]) # add again batch dimension batch_normalized_props.append(torch.cat((normalized_boxes, rpn_scores), 1).unsqueeze(0)) batch_normalized_props = torch.cat(batch_normalized_props) batch_out_proposals = np.array(batch_out_proposals) return batch_normalized_props, batch_out_proposals def pyramid_roi_align(feature_maps, rois, pool_size, pyramid_levels, dim): """ Implements ROI Pooling on multiple levels of the feature pyramid. :param feature_maps: list of feature maps, each of shape (b, c, y, x , (z)) :param rois: proposals (normalized coords.) as returned by RPN. contain info about original batch element allocation. (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs) :param pool_size: list of poolsizes in dims: [x, y, (z)] :param pyramid_levels: list. [0, 1, 2, ...] :return: pooled: pooled feature map rois (n_proposals, c, poolsize_y, poolsize_x, (poolsize_z)) Output: Pooled regions in the shape: [num_boxes, height, width, channels]. The width and height are those specific in the pool_shape in the layer constructor. """ boxes = rois[:, :dim*2] batch_ixs = rois[:, dim*2] # Assign each ROI to a level in the pyramid based on the ROI area. if dim == 2: y1, x1, y2, x2 = boxes.chunk(4, dim=1) else: y1, x1, y2, x2, z1, z2 = boxes.chunk(6, dim=1) h = y2 - y1 w = x2 - x1 # Equation 1 in https://arxiv.org/abs/1612.03144. Account for # the fact that our coordinates are normalized here. # divide sqrt(h*w) by 1 instead image_area. roi_level = (4 + torch.log2(torch.sqrt(h*w))).round().int().clamp(pyramid_levels[0], pyramid_levels[-1]) # if Pyramid contains additional level P6, adapt the roi_level assignment accordingly. if len(pyramid_levels) == 5: roi_level[h*w > 0.65] = 5 # Loop through levels and apply ROI pooling to each. pooled = [] box_to_level = [] fmap_shapes = [f.shape for f in feature_maps] for level_ix, level in enumerate(pyramid_levels): ix = roi_level == level if not ix.any(): continue ix = torch.nonzero(ix)[:, 0] level_boxes = boxes[ix, :] # re-assign rois to feature map of original batch element. ind = batch_ixs[ix].int() # Keep track of which box is mapped to which level box_to_level.append(ix) # Stop gradient propogation to ROI proposals level_boxes = level_boxes.detach() if len(pool_size) == 2: # remap to feature map coordinate system y_exp, x_exp = fmap_shapes[level_ix][2:] # exp = expansion level_boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda()) pooled_features = roi_align.roi_align_2d(feature_maps[level_ix], torch.cat((ind.unsqueeze(1).float(), level_boxes), dim=1), pool_size) else: y_exp, x_exp, z_exp = fmap_shapes[level_ix][2:] level_boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp, z_exp, z_exp], dtype=torch.float32).cuda()) pooled_features = roi_align.roi_align_3d(feature_maps[level_ix], torch.cat((ind.unsqueeze(1).float(), level_boxes), dim=1), pool_size) pooled.append(pooled_features) # Pack pooled features into one tensor pooled = torch.cat(pooled, dim=0) # Pack box_to_level mapping into one array and add another # column representing the order of pooled boxes box_to_level = torch.cat(box_to_level, dim=0) # Rearrange pooled features to match the order of the original boxes _, box_to_level = torch.sort(box_to_level) pooled = pooled[box_to_level, :, :] return pooled def roi_align_3d_numpy(input: np.ndarray, rois, output_size: tuple, spatial_scale: float = 1., sampling_ratio: int = -1) -> np.ndarray: """ This fct mainly serves as a verification method for 3D CUDA implementation of RoIAlign, it's highly inefficient due to the nested loops. :param input: (ndarray[N, C, H, W, D]): input feature map :param rois: list (N,K(n), 6), K(n) = nr of rois in batch-element n, single roi of format (y1,x1,y2,x2,z1,z2) :param output_size: :param spatial_scale: :param sampling_ratio: :return: (List[N, K(n), C, output_size[0], output_size[1], output_size[2]]) """ out_height, out_width, out_depth = output_size coord_grid = tuple([np.linspace(0, input.shape[dim] - 1, num=input.shape[dim]) for dim in range(2, 5)]) pooled_rois = [[]] * len(rois) assert len(rois) == input.shape[0], "batch dim mismatch, rois: {}, input: {}".format(len(rois), input.shape[0]) print("Numpy 3D RoIAlign progress:", end="\n") for b in range(input.shape[0]): for roi in tqdm.tqdm(rois[b]): y1, x1, y2, x2, z1, z2 = np.array(roi) * spatial_scale roi_height = max(float(y2 - y1), 1.) roi_width = max(float(x2 - x1), 1.) roi_depth = max(float(z2 - z1), 1.) if sampling_ratio <= 0: sampling_ratio_h = int(np.ceil(roi_height / out_height)) sampling_ratio_w = int(np.ceil(roi_width / out_width)) sampling_ratio_d = int(np.ceil(roi_depth / out_depth)) else: sampling_ratio_h = sampling_ratio_w = sampling_ratio_d = sampling_ratio # == n points per bin bin_height = roi_height / out_height bin_width = roi_width / out_width bin_depth = roi_depth / out_depth n_points = sampling_ratio_h * sampling_ratio_w * sampling_ratio_d pooled_roi = np.empty((input.shape[1], out_height, out_width, out_depth), dtype="float32") for chan in range(input.shape[1]): lin_interpolator = scipy.interpolate.RegularGridInterpolator(coord_grid, input[b, chan], method="linear") for bin_iy in range(out_height): for bin_ix in range(out_width): for bin_iz in range(out_depth): bin_val = 0. for i in range(sampling_ratio_h): for j in range(sampling_ratio_w): for k in range(sampling_ratio_d): loc_ijk = [ y1 + bin_iy * bin_height + (i + 0.5) * (bin_height / sampling_ratio_h), x1 + bin_ix * bin_width + (j + 0.5) * (bin_width / sampling_ratio_w), z1 + bin_iz * bin_depth + (k + 0.5) * (bin_depth / sampling_ratio_d)] # print("loc_ijk", loc_ijk) if not (np.any([c < -1.0 for c in loc_ijk]) or loc_ijk[0] > input.shape[2] or loc_ijk[1] > input.shape[3] or loc_ijk[2] > input.shape[4]): for catch_case in range(3): # catch on-border cases if int(loc_ijk[catch_case]) == input.shape[catch_case + 2] - 1: loc_ijk[catch_case] = input.shape[catch_case + 2] - 1 bin_val += lin_interpolator(loc_ijk) pooled_roi[chan, bin_iy, bin_ix, bin_iz] = bin_val / n_points pooled_rois[b].append(pooled_roi) return np.array(pooled_rois) def refine_detections(cf, batch_ixs, rois, deltas, scores, regressions): """ Refine classified proposals (apply deltas to rpn rois), filter overlaps (nms) and return final detections. :param rois: (n_proposals, 2 * dim) normalized boxes as proposed by RPN. n_proposals = batch_size * POST_NMS_ROIS :param deltas: (n_proposals, n_classes, 2 * dim) box refinement deltas as predicted by mrcnn bbox regressor. :param batch_ixs: (n_proposals) batch element assignment info for re-allocation. :param scores: (n_proposals, n_classes) probabilities for all classes per roi as predicted by mrcnn classifier. :param regressions: (n_proposals, n_classes, regression_features (+1 for uncertainty if predicted) regression vector :return: result: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score, *regression vector features)) """ # class IDs per ROI. Since scores of all classes are of interest (not just max class), all are kept at this point. class_ids = [] fg_classes = cf.head_classes - 1 # repeat vectors to fill in predictions for all foreground classes. for ii in range(1, fg_classes + 1): class_ids += [ii] * rois.shape[0] class_ids = torch.from_numpy(np.array(class_ids)).cuda() batch_ixs = batch_ixs.repeat(fg_classes) rois = rois.repeat(fg_classes, 1) deltas = deltas.repeat(fg_classes, 1, 1) scores = scores.repeat(fg_classes, 1) regressions = regressions.repeat(fg_classes, 1, 1) # get class-specific scores and bounding box deltas idx = torch.arange(class_ids.size()[0]).long().cuda() # using idx instead of slice [:,] squashes first dimension. #len(class_ids)>scores.shape[1] --> probs is broadcasted by expansion from fg_classes-->len(class_ids) batch_ixs = batch_ixs[idx] deltas_specific = deltas[idx, class_ids] class_scores = scores[idx, class_ids] regressions = regressions[idx, class_ids] # apply bounding box deltas. re-scale to image coordinates. std_dev = torch.from_numpy(np.reshape(cf.rpn_bbox_std_dev, [1, cf.dim * 2])).float().cuda() scale = torch.from_numpy(cf.scale).float().cuda() refined_rois = apply_box_deltas_2D(rois, deltas_specific * std_dev) * scale if cf.dim == 2 else \ apply_box_deltas_3D(rois, deltas_specific * std_dev) * scale # round and cast to int since we're dealing with pixels now refined_rois = clip_to_window(cf.window, refined_rois) refined_rois = torch.round(refined_rois) # filter out low confidence boxes keep = idx keep_bool = (class_scores >= cf.model_min_confidence) if not 0 in torch.nonzero(keep_bool).size(): score_keep = torch.nonzero(keep_bool)[:, 0] pre_nms_class_ids = class_ids[score_keep] pre_nms_rois = refined_rois[score_keep] pre_nms_scores = class_scores[score_keep] pre_nms_batch_ixs = batch_ixs[score_keep] for j, b in enumerate(unique1d(pre_nms_batch_ixs)): bixs = torch.nonzero(pre_nms_batch_ixs == b)[:, 0] bix_class_ids = pre_nms_class_ids[bixs] bix_rois = pre_nms_rois[bixs] bix_scores = pre_nms_scores[bixs] for i, class_id in enumerate(unique1d(bix_class_ids)): ixs = torch.nonzero(bix_class_ids == class_id)[:, 0] # nms expects boxes sorted by score. ix_rois = bix_rois[ixs] ix_scores = bix_scores[ixs] ix_scores, order = ix_scores.sort(descending=True) ix_rois = ix_rois[order, :] class_keep = nms.nms(ix_rois, ix_scores, cf.detection_nms_threshold) # map indices back. class_keep = keep[score_keep[bixs[ixs[order[class_keep]]]]] # merge indices over classes for current batch element b_keep = class_keep if i == 0 else unique1d(torch.cat((b_keep, class_keep))) # only keep top-k boxes of current batch-element top_ids = class_scores[b_keep].sort(descending=True)[1][:cf.model_max_instances_per_batch_element] b_keep = b_keep[top_ids] # merge indices over batch elements. batch_keep = b_keep if j == 0 else unique1d(torch.cat((batch_keep, b_keep))) keep = batch_keep else: keep = torch.tensor([0]).long().cuda() # arrange output output = [refined_rois[keep], batch_ixs[keep].unsqueeze(1)] output += [class_ids[keep].unsqueeze(1).float(), class_scores[keep].unsqueeze(1)] output += [regressions[keep]] result = torch.cat(output, dim=1) # shape: (n_keeps, catted feats), catted feats: [0:dim*2] are box_coords, [dim*2] are batch_ics, # [dim*2+1] are class_ids, [dim*2+2] are scores, [dim*2+3:] are regression vector features (incl uncertainty) return result def loss_example_mining(cf, batch_proposals, batch_gt_boxes, batch_gt_masks, batch_roi_scores, batch_gt_class_ids, batch_gt_regressions): """ Subsamples proposals for mrcnn losses and generates targets. Sampling is done per batch element, seems to have positive effects on training, as opposed to sampling over entire batch. Negatives are sampled via stochastic hard-example mining (SHEM), where a number of negative proposals is drawn from larger pool of highest scoring proposals for stochasticity. Scoring is obtained here as the max over all foreground probabilities as returned by mrcnn_classifier (worked better than loss-based class-balancing methods like "online hard-example mining" or "focal loss".) Classification-regression duality: regressions can be given along with classes (at least fg/bg, only class scores are used for ranking). :param batch_proposals: (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ixs). boxes as proposed by RPN. n_proposals here is determined by batch_size * POST_NMS_ROIS. :param mrcnn_class_logits: (n_proposals, n_classes) :param batch_gt_boxes: list over batch elements. Each element is a list over the corresponding roi target coordinates. :param batch_gt_masks: list over batch elements. Each element is binary mask of shape (n_gt_rois, c, y, x, (z)) :param batch_gt_class_ids: list over batch elements. Each element is a list over the corresponding roi target labels. if no classes predicted (only fg/bg from RPN): expected as pseudo classes [0, 1] for bg, fg. :param batch_gt_regressions: list over b elements. Each element is a regression target vector. if None--> pseudo :return: sample_indices: (n_sampled_rois) indices of sampled proposals to be used for loss functions. :return: target_class_ids: (n_sampled_rois)containing target class labels of sampled proposals. :return: target_deltas: (n_sampled_rois, 2 * dim) containing target deltas of sampled proposals for box refinement. :return: target_masks: (n_sampled_rois, y, x, (z)) containing target masks of sampled proposals. """ # normalization of target coordinates #global sample_regressions if cf.dim == 2: h, w = cf.patch_size scale = torch.from_numpy(np.array([h, w, h, w])).float().cuda() else: h, w, z = cf.patch_size scale = torch.from_numpy(np.array([h, w, h, w, z, z])).float().cuda() positive_count = 0 negative_count = 0 sample_positive_indices = [] sample_negative_indices = [] sample_deltas = [] sample_masks = [] sample_class_ids = [] if batch_gt_regressions is not None: sample_regressions = [] else: target_regressions = torch.FloatTensor().cuda() std_dev = torch.from_numpy(cf.bbox_std_dev).float().cuda() # loop over batch and get positive and negative sample rois. for b in range(len(batch_gt_boxes)): gt_masks = torch.from_numpy(batch_gt_masks[b]).float().cuda() gt_class_ids = torch.from_numpy(batch_gt_class_ids[b]).int().cuda() if batch_gt_regressions is not None: gt_regressions = torch.from_numpy(batch_gt_regressions[b]).float().cuda() #if np.any(batch_gt_class_ids[b] > 0): # skip roi selection for no gt images. if np.any([len(coords)>0 for coords in batch_gt_boxes[b]]): gt_boxes = torch.from_numpy(batch_gt_boxes[b]).float().cuda() / scale else: gt_boxes = torch.FloatTensor().cuda() # get proposals and indices of current batch element. proposals = batch_proposals[batch_proposals[:, -1] == b][:, :-1] batch_element_indices = torch.nonzero(batch_proposals[:, -1] == b).squeeze(1) # Compute overlaps matrix [proposals, gt_boxes] if not 0 in gt_boxes.size(): if gt_boxes.shape[1] == 4: assert cf.dim == 2, "gt_boxes shape {} doesnt match cf.dim{}".format(gt_boxes.shape, cf.dim) overlaps = bbox_overlaps_2D(proposals, gt_boxes) else: assert cf.dim == 3, "gt_boxes shape {} doesnt match cf.dim{}".format(gt_boxes.shape, cf.dim) overlaps = bbox_overlaps_3D(proposals, gt_boxes) # Determine positive and negative ROIs roi_iou_max = torch.max(overlaps, dim=1)[0] # 1. Positive ROIs are those with >= 0.5 IoU with a GT box positive_roi_bool = roi_iou_max >= (0.5 if cf.dim == 2 else 0.3) # 2. Negative ROIs are those with < 0.1 with every GT box. negative_roi_bool = roi_iou_max < (0.1 if cf.dim == 2 else 0.01) else: positive_roi_bool = torch.FloatTensor().cuda() negative_roi_bool = torch.from_numpy(np.array([1]*proposals.shape[0])).cuda() # Sample Positive ROIs if not 0 in torch.nonzero(positive_roi_bool).size(): positive_indices = torch.nonzero(positive_roi_bool).squeeze(1) positive_samples = int(cf.train_rois_per_image * cf.roi_positive_ratio) rand_idx = torch.randperm(positive_indices.size()[0]) rand_idx = rand_idx[:positive_samples].cuda() positive_indices = positive_indices[rand_idx] positive_samples = positive_indices.size()[0] positive_rois = proposals[positive_indices, :] # Assign positive ROIs to GT boxes. positive_overlaps = overlaps[positive_indices, :] roi_gt_box_assignment = torch.max(positive_overlaps, dim=1)[1] roi_gt_boxes = gt_boxes[roi_gt_box_assignment, :] roi_gt_class_ids = gt_class_ids[roi_gt_box_assignment] if batch_gt_regressions is not None: roi_gt_regressions = gt_regressions[roi_gt_box_assignment] # Compute bbox refinement targets for positive ROIs deltas = box_refinement(positive_rois, roi_gt_boxes) deltas /= std_dev roi_masks = gt_masks[roi_gt_box_assignment] assert roi_masks.shape[1] == 1, "gt masks have more than one channel --> is this desired?" # Compute mask targets boxes = positive_rois box_ids = torch.arange(roi_masks.shape[0]).cuda().unsqueeze(1).float() if len(cf.mask_shape) == 2: y_exp, x_exp = roi_masks.shape[2:] # exp = expansion boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp], dtype=torch.float32).cuda()) masks = roi_align.roi_align_2d(roi_masks, torch.cat((box_ids, boxes), dim=1), cf.mask_shape) else: y_exp, x_exp, z_exp = roi_masks.shape[2:] # exp = expansion boxes.mul_(torch.tensor([y_exp, x_exp, y_exp, x_exp, z_exp, z_exp], dtype=torch.float32).cuda()) masks = roi_align.roi_align_3d(roi_masks, torch.cat((box_ids, boxes), dim=1), cf.mask_shape) masks = masks.squeeze(1) # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with # binary cross entropy loss. masks = torch.round(masks) sample_positive_indices.append(batch_element_indices[positive_indices]) sample_deltas.append(deltas) sample_masks.append(masks) sample_class_ids.append(roi_gt_class_ids) if batch_gt_regressions is not None: sample_regressions.append(roi_gt_regressions) positive_count += positive_samples else: positive_samples = 0 # Sample negative ROIs. Add enough to maintain positive:negative ratio, but at least 1. Sample via SHEM. if not 0 in torch.nonzero(negative_roi_bool).size(): negative_indices = torch.nonzero(negative_roi_bool).squeeze(1) r = 1.0 / cf.roi_positive_ratio b_neg_count = np.max((int(r * positive_samples - positive_samples), 1)) roi_scores_neg = batch_roi_scores[batch_element_indices[negative_indices]] raw_sampled_indices = shem(roi_scores_neg, b_neg_count, cf.shem_poolsize) sample_negative_indices.append(batch_element_indices[negative_indices[raw_sampled_indices]]) negative_count += raw_sampled_indices.size()[0] if len(sample_positive_indices) > 0: target_deltas = torch.cat(sample_deltas) target_masks = torch.cat(sample_masks) target_class_ids = torch.cat(sample_class_ids) if batch_gt_regressions is not None: target_regressions = torch.cat(sample_regressions) # Pad target information with zeros for negative ROIs. if positive_count > 0 and negative_count > 0: sample_indices = torch.cat((torch.cat(sample_positive_indices), torch.cat(sample_negative_indices)), dim=0) zeros = torch.zeros(negative_count, cf.dim * 2).cuda() target_deltas = torch.cat([target_deltas, zeros], dim=0) zeros = torch.zeros(negative_count, *cf.mask_shape).cuda() target_masks = torch.cat([target_masks, zeros], dim=0) zeros = torch.zeros(negative_count).int().cuda() target_class_ids = torch.cat([target_class_ids, zeros], dim=0) if batch_gt_regressions is not None: # regression targets need to have 0 as background/negative with below practice if 'regression_bin' in cf.prediction_tasks: zeros = torch.zeros(negative_count, dtype=torch.float).cuda() else: zeros = torch.zeros(negative_count, cf.regression_n_features, dtype=torch.float).cuda() target_regressions = torch.cat([target_regressions, zeros], dim=0) elif positive_count > 0: sample_indices = torch.cat(sample_positive_indices) elif negative_count > 0: sample_indices = torch.cat(sample_negative_indices) target_deltas = torch.zeros(negative_count, cf.dim * 2).cuda() target_masks = torch.zeros(negative_count, *cf.mask_shape).cuda() target_class_ids = torch.zeros(negative_count).int().cuda() if batch_gt_regressions is not None: if 'regression_bin' in cf.prediction_tasks: target_regressions = torch.zeros(negative_count, dtype=torch.float).cuda() else: target_regressions = torch.zeros(negative_count, cf.regression_n_features, dtype=torch.float).cuda() else: sample_indices = torch.LongTensor().cuda() target_class_ids = torch.IntTensor().cuda() target_deltas = torch.FloatTensor().cuda() target_masks = torch.FloatTensor().cuda() target_regressions = torch.FloatTensor().cuda() return sample_indices, target_deltas, target_masks, target_class_ids, target_regressions ############################################################ # Anchors ############################################################ def generate_anchors(scales, ratios, shape, feature_stride, anchor_stride): """ scales: 1D array of anchor sizes in pixels. Example: [32, 64, 128] ratios: 1D array of anchor ratios of width/height. Example: [0.5, 1, 2] shape: [height, width] spatial shape of the feature map over which to generate anchors. feature_stride: Stride of the feature map relative to the image in pixels. anchor_stride: Stride of anchors on the feature map. For example, if the value is 2 then generate anchors for every other feature map pixel. """ # Get all combinations of scales and ratios scales, ratios = np.meshgrid(np.array(scales), np.array(ratios)) scales = scales.flatten() ratios = ratios.flatten() # Enumerate heights and widths from scales and ratios heights = scales / np.sqrt(ratios) widths = scales * np.sqrt(ratios) # Enumerate shifts in feature space shifts_y = np.arange(0, shape[0], anchor_stride) * feature_stride shifts_x = np.arange(0, shape[1], anchor_stride) * feature_stride shifts_x, shifts_y =
np.meshgrid(shifts_x, shifts_y)
numpy.meshgrid
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data =
np.array([])
numpy.array
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import pytest # noqa: F401 import numpy as np # noqa: F401 import awkward as ak # noqa: F401 to_list = ak._v2.operations.to_list def test_basic(): content = ak._v2.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3, 4.4])) ind = np.array([2, 2, 0, 3, 4], dtype=np.int32) index = ak._v2.index.Index32(ind) array = ak._v2.contents.IndexedArray(index, content) assert to_list(array) == [2.2, 2.2, 0.0, 3.3, 4.4] ind[3] = 1 assert to_list(array) == [2.2, 2.2, 0.0, 1.1, 4.4] ind = np.array([2, 2, 0, 3, 4], dtype=np.uint32) index = ak._v2.index.IndexU32(ind) array = ak._v2.contents.IndexedArray(index, content) assert to_list(array) == [2.2, 2.2, 0.0, 3.3, 4.4] ind[3] = 1 assert to_list(array) == [2.2, 2.2, 0.0, 1.1, 4.4] ind = np.array([2, 2, 0, 3, 4], dtype=np.int64) index = ak._v2.index.Index64(ind) array = ak._v2.contents.IndexedArray(index, content) assert to_list(array) == [2.2, 2.2, 0.0, 3.3, 4.4] ind[3] = 1 assert to_list(array) == [2.2, 2.2, 0.0, 1.1, 4.4] ind = np.array([2, 2, 0, 3, 4], dtype=np.int32) index = ak._v2.index.Index32(ind) array = ak._v2.contents.IndexedOptionArray(index, content) assert to_list(array) == [2.2, 2.2, 0.0, 3.3, 4.4] ind[3] = 1 assert to_list(array) == [2.2, 2.2, 0.0, 1.1, 4.4] ind = np.array([2, 2, 0, 3, 4], dtype=np.int64) index = ak._v2.index.Index64(ind) array = ak._v2.contents.IndexedOptionArray(index, content) assert to_list(array) == [2.2, 2.2, 0.0, 3.3, 4.4] ind[3] = 1 assert to_list(array) == [2.2, 2.2, 0.0, 1.1, 4.4] def test_type(): content = ak._v2.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3, 4.4])) index = ak._v2.index.Index32(np.array([2, 2, 0, 3, 4], dtype=np.int32)) array = ak._v2.contents.IndexedArray(index, content) assert ak._v2.operations.type(array) == ak._v2.types.NumpyType("float64") array = ak._v2.contents.IndexedOptionArray(index, content) assert ak._v2.operations.type(array) == ak._v2.types.OptionType( ak._v2.types.NumpyType("float64") ) def test_null(): content = ak._v2.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3, 4.4])) index = ak._v2.index.Index64(np.array([2, 2, 0, -1, 4], dtype=np.int64)) array = ak._v2.contents.IndexedOptionArray(index, content) assert to_list(array) == [2.2, 2.2, 0.0, None, 4.4] def test_carry(): content = ak._v2.contents.NumpyArray(np.array([0.0, 1.1, 2.2, 3.3, 4.4])) index = ak._v2.index.Index64(np.array([2, 2, 0, 3, 4], dtype=np.int64)) indexedarray = ak._v2.contents.IndexedArray(index, content) offsets = ak._v2.index.Index64(np.array([0, 3, 3, 5], dtype=np.int64)) listoffsetarray = ak._v2.contents.ListOffsetArray(offsets, indexedarray) assert to_list(listoffsetarray) == [[2.2, 2.2, 0.0], [], [3.3, 4.4]] assert to_list(listoffsetarray[::-1]) == [[3.3, 4.4], [], [2.2, 2.2, 0.0]] assert listoffsetarray.typetracer[::-1].form == listoffsetarray[::-1].form assert to_list(listoffsetarray[[2, 0]]) == [[3.3, 4.4], [2.2, 2.2, 0.0]] assert listoffsetarray.typetracer[[2, 0]].form == listoffsetarray[[2, 0]].form assert to_list(listoffsetarray[[2, 0], 1]) == [4.4, 2.2] # invokes carry assert listoffsetarray.typetracer[[2, 0], 1].form == listoffsetarray[[2, 0], 1].form assert to_list(listoffsetarray[2:, 1]) == [4.4] # invokes carry assert listoffsetarray.typetracer[2:, 1].form == listoffsetarray[2:, 1].form index = ak._v2.index.Index64(
np.array([2, 2, 0, 3, -1], dtype=np.int64)
numpy.array
import os import pdb import numpy as np # pass in copy of objs? def corrupt_graph(objs, triples, num_attrs, attrs, vocab, random_seed=None): # either s,p,o, s_attrib, o_attrib max_corruptable_elements = 5 # max num of objs, preds, attrs in vocab max_objs = len(vocab['object_idx_to_name']) max_preds = len(vocab['pred_idx_to_name']) max_attrs = len(vocab['attribute_idx_to_name']) # objs is all objects in batch: s/o index into this list num_triples = len(triples) s, p, o = np.split(triples, 3, axis=1) num_triples = len(triples) # object ids that index into model vocab subj_objs = objs[s] obj_objs = objs[o] for n in range(0, num_triples): # debug subj = np.array(vocab['object_idx_to_name'])[subj_objs[n]] pred = np.array(vocab['pred_idx_to_name'])[p[n]] obj = np.array(vocab['object_idx_to_name'])[obj_objs[n]] print(tuple([subj, pred, obj])) pdb.set_trace() # let's corrupt some part of each triple to avoid exact matches - # randomly selected element = np.random.randint(0, max_corruptable_elements-1) element = 0 if element == 0: # s # add new obj to objs new_obj = select_object(max_objs) objs += new_obj s[n] = len(objs)-1 elif element == 1: # p p[n] = select_predicate(max_preds) elif element == 2: # o new_obj = select_object(max_objs) objs += new_obj s[n] = len(objs)-1 elif element == 3: # s_attrib a = select_attribute(max_attrs) elif element == 4: # o_attrib a = select_attribute(max_attrs) pdb.set_trace() return 0 def select_object(num_objs): return np.random.randint(0, num_objs-1) pdb.set_trace() def select_predicate(num_preds): return
np.random.randint(0, num_preds-1)
numpy.random.randint
""" Descriptions "main.py" References # Freeze Weights https://stackoverflow.com/questions/35298326/freeze-some-variables-scopes-in-tensorflow-stop-gradient-vs-passing-variables # Tensorflow mutiple sessions with multiple GPUs https://stackoverflow.com/questions/34775522/tensorflow-multiple-sessions-with-multiple-gpus # Saver goodtogreate.tistory.com/entry/Saving-and-Restoring """ # Public python modules import tensorflow as tf import pandas as pd import numpy as np import pickle # Custom Pythone modules import vgg16_adap from gen_data import generate from load_data import load from cfmtx import cfmtx # TODO: set the following parameters gpu_device = 'device:GPU:0' # Which GPU are you going to use? is_transfer_learn = True # Transfer the pre-trained weights? gen_data = True # Generate dataset (.p format)? freeze_layer = False # Are you going to freeze certain layers? (Check optimizer code below) bn = False # Turn on batch normalization? saver = False # Are you going to save whole weights after training? fold = 1 # Fold k; k-fold cross-validation rec_name = 'result/tr_nf_mspdb_2048_2048_592' + str(fold) # Save results as .csv; rec_name_cfm = 'result/cfm_tr_nf_mspdb_2048_2048_592' + str(fold) + 'ep' # Record confusion matrix as .csv pretrain_weights = 'vgg16_weights.npz' # Where is the pretraining weights? saver_name = 'saver_tr_nf_mspdb_2048_2048_592_k5.npz' # if saver = True, save the weights as .npz metadata_path = 'dataset/metadata_5fcv_box.csv' # where is meta-data? traindata_path = 'dataset/train_5fcv_k' + str(fold) + '.p' # Where is training data? validdata_path = 'dataset/valid_5fcv_k' + str(fold) + '.p' # Where is validation data? label_column_name = 'category' # In the metadata, which index indicates category? n_category = 39 # The number of categories; batch_size_tr = 39 # Batch size of training data batch_size_val = 39 # Batch size of validation data n_epoch = 50 # Epoch learning_rate = 0.001 # Learning rate # With "gpu_device" with tf.device(gpu_device): # If "gen_data" = True, generate dataset in .p format if gen_data: generate(metadata_path = metadata_path, data_path = traindata_path, batch_size = batch_size_tr, label_column_name=label_column_name, is_training = True, fold=fold) generate(metadata_path = metadata_path, data_path = validdata_path, batch_size = batch_size_tr, label_column_name=label_column_name, is_training = False, fold=fold) else: pass # Calculate mean of each channel #- Load the training data (.p); Note that "dataframe" is an instance patch_mean = np.array([0, 0, 0], np.float32) # Init. dataframe = load(traindata_path, batch_size_tr) # Instance for i, row in dataframe.dataframe.iterrows(): # Calculate mean of each channel patch = row['patch'] patch_mean[0] += np.mean(patch[:, :, 0]) # Ch 0 patch_mean[1] += np.mean(patch[:, :, 1]) # Ch 1 patch_mean[2] += np.mean(patch[:, :, 2]) # Ch 2 #print(patch_mean) patch_mean = patch_mean / len(dataframe.dataframe['patch']) print("patch_mean:", patch_mean) dataframe.left = None # Delete "dataframe" from the memory # Session config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) # Placeholders imgs = tf.placeholder(tf.float32, [None, 224, 224, 3]) # [None, width_VGG16 * height_VGG16 * depth_VGG16] y = tf.placeholder(tf.float32, [None, n_category]) # VGG16 instance; Transfer the pretrained weights if is_transfer_learn: vgg = vgg16_adap.vgg16(imgs=imgs, img_mean=patch_mean, weights=pretrain_weights, sess=sess, bn=bn, bn_is_training=False) else: vgg = vgg16_adap.vgg16(imgs=imgs, img_mean=patch_mean, sess=sess, bn=bn, bn_is_training=True) # Logits, y_out, loss logits = vgg.fc4l y_out = tf.nn.softmax(logits) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=y)) # Accuracy measurement correct_prediction = tf.equal(tf.argmax(y_out, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # Optimization if freeze_layer: #train_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss, var_list=[vgg.fc3w, vgg.fc3b, vgg.fc4w, vgg.fc4b]) # Deeper train_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss,var_list=[vgg.fc1w, vgg.fc1b,vgg.fc2w, vgg.fc2b, vgg.fc3w, vgg.fc3b, vgg.fc4w, vgg.fc4b]) # Update all layers else: train_op = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) # One should initialize "FCb" graph for TensorFlow # In the case of not transferring the pre-trained weights, we need to initialize the whole graph if is_transfer_learn: init_new_vars_op = tf.variables_initializer([vgg.fc4w, vgg.fc4b]) # New; New FC layer @"vgg16_adap" needs graph initialization sess.run(init_new_vars_op) # New; Run graph initialization else: sess.run(tf.global_variables_initializer()) # Training and validation # Variables used for recording training and validation rec_epoch = [] rec_train_err = [] rec_train_acc = [] rec_valid_err = [] rec_valid_acc = [] rec_cfm = [] # For recording confusion matrix rec_epoch_cfm = 0 print("Start training...") # Load the training data (.p); Note that "dataframe" is an instance dataframe_tr = load(traindata_path, batch_size_tr) num_batch_tr = dataframe_tr.n_batch # Load the validation data (.p) dataframe_valid = load(validdata_path, batch_size_val) num_batch_valid = dataframe_valid.n_batch # Loop; iter = epoch for epoch in range(n_epoch): # Variables for calculating average error and average accuracy aver_train_err = 0 aver_train_acc = 0 # bn_is_training vgg.bn_is_training = True # Mini-batch training for i in range(num_batch_tr): batch_x, batch_y = dataframe_tr.next_batch() err, acc, _ = sess.run([loss, accuracy, train_op], feed_dict={vgg.imgs: batch_x, y: batch_y}) aver_train_err += err aver_train_acc += acc aver_train_err = aver_train_err / num_batch_tr aver_train_acc = aver_train_acc / num_batch_tr print("epoch:", epoch, "av_tr_err:", aver_train_err, "av_tr_acc:", aver_train_acc) # Variables for calculating average-error and average-accuracy aver_valid_err = 0 aver_valid_acc = 0 cfm =
np.zeros([n_category, n_category])
numpy.zeros
import pyvista as pv import numpy as np import vtk from .sub_mesh import * from .colormap_c2c import * R_earth = 6371.0e3 # # #___CREATE PYVISTA OCEAN MESH___________________________________________________ # make potatoefication of Earth radius def create_3d_ocean_mesh(mesh, data, potatoefac=0.5,variable='elevation', do_texture=False): print(' --> compute 3d ocean mesh') #___________________________________________________________________________ # do topographic potatoefication of ocean mesh R_grid= R_earth bottom_depth_2d = -mesh.n_z; bottom_depth_2d[mesh.n_i==1]=0.0; R_grid = R_grid-( bottom_depth_2d*100*potatoefac) R_grid[mesh.n_i==1]=R_earth; #___________________________________________________________________________ # create sperical ocean coordinates xs,ys,zs = grid_cart3d(mesh.n_x, mesh.n_y, R_grid, is_deg=True) points = np.column_stack([xs,ys,zs]) del xs,ys,zs #___________________________________________________________________________ # Each cell in the cell array needs to include the size of the cell # and the points belonging to the cell. In this example, there are 8 # hexahedral cells that have common points between them. # cell_size = np.ones(mesh.n2dea, dtype=np.uint8)*3 cell_size = np.ones(mesh.n2de, dtype=np.uint8)*3 # cells = np.column_stack([cell_size, mesh.elem_2d_i]) cells = np.column_stack([cell_size, mesh.e_i]) cells = cells.ravel() del cell_size # each cell is a VTK_TRIANGLE # celltypes = np.empty(mesh.n2dea, dtype=np.uint8) celltypes = np.empty(mesh.n2de, dtype=np.uint8) celltypes[:] = vtk.VTK_TRIANGLE # the offset array points to the start of each cell (via flat indexing) # offset = np.arange(0,4*mesh.n2dea,4, dtype=np.uint32 ) # offset = np.arange(0,4*mesh.n2de,4, dtype=np.uint32 ) #___________________________________________________________________________ # create pyvista unstrucutred mesh object # meshpv_ocean = pv.UnstructuredGrid(offset, cells, celltypes, points) meshpv_ocean = pv.UnstructuredGrid(cells, celltypes, points) #___________________________________________________________________________ # add variables to ocean mesh vname = list(data.keys())[0] if not any(x in vname for x in ['depth','topo','topography','zcoord','bathymetry']): meshpv_ocean['topo'] = -mesh.n_z meshpv_ocean[vname] = data[vname].values del cells, celltypes #___do texture coordinates__________________________________________________ # Initialize the texture coordinates array if do_texture: meshpv_ocean.active_t_coords = np.zeros((points.shape[0], 2)) xs, ys, zs = grid_cart3d(mesh.n_x+90, mesh.n_y, R_grid/R_earth, is_deg=True) meshpv_ocean.active_t_coords[:,0]= 0.5 + np.arctan2(-xs,ys)/(2 * np.pi) meshpv_ocean.active_t_coords[:,1]= 0.5 + np.arcsin(zs)/np.pi del xs, ys, zs del points #___________________________________________________________________________ return meshpv_ocean # # #___CREATE PYVISTA LAND MESH TO FILL HOLES______________________________________ def create_3d_land_mesh(mesh, resol=1, potatoefac=1, do_topo=False, topo_path=[], topo_varname='topo', topo_dimname=['lon','lat'], do_texture=True): print(' --> compute 3d land mesh') from matplotlib.path import Path from matplotlib.tri import Triangulation #___________________________________________________________________________ # cycle over all land polygons for niland, lsmask in enumerate(mesh.lsmask_a): poly_x, poly_y = lsmask[:,0], lsmask[:,1] xmin, xmax = np.floor(poly_x).min(), np.ceil(poly_x).max() ymin, ymax = np.floor(poly_y).min(), np.ceil(poly_y).max() #resol = 1 x_m, y_m = np.meshgrid(np.arange(xmin, xmax, resol),np.arange(ymin, ymax, resol)) x_m, y_m = x_m.reshape((x_m.size, 1)), y_m.reshape((y_m.size, 1)) #_______________________________________________________________________ # check if regular points are within polygon IN = Path(lsmask).contains_points(np.concatenate((x_m, y_m),axis=1)) x_m, y_m = x_m[IN==True], y_m[IN==True] del IN #_______________________________________________________________________ # combine polygon points and regular points within polygon --> do triangulation outeredge = np.vstack((poly_x, poly_y)).transpose() points = np.hstack((x_m, y_m)) points = np.vstack((outeredge,points)) tri = Triangulation(points[:,0], points[:,1]) del outeredge, poly_x, poly_y #_______________________________________________________________________ # compute trinagle centroids and check if they are within polygon tri_cx = np.sum(points[tri.triangles,0],axis=1)/3 tri_cy = np.sum(points[tri.triangles,1],axis=1)/3 tri_cx = np.reshape(tri_cx,(tri_cx.size,1)) tri_cy = np.reshape(tri_cy,(tri_cy.size,1)) IN = Path(lsmask).contains_points(np.concatenate((tri_cx,tri_cy),axis=1)) tri.triangles=tri.triangles[IN==True,:] del tri_cx, tri_cy, IN #_______________________________________________________________________ # concatenate all land trinagles if niland==0: land_points = points land_elem2d = tri.triangles else: land_elem2d = np.concatenate((land_elem2d, tri.triangles+land_points.shape[0]), axis=0) land_points = np.concatenate((land_points, points), axis=0) del points #___________________________________________________________________________ # do topographic scaling (potatoefication) for land mesh R_grid = R_earth if do_topo: from netCDF4 import Dataset from scipy.interpolate import griddata fid = Dataset(topo_path,'r') topo = fid.variables[topo_varname][:] topo[topo<0]=0.0 lon = fid.variables[topo_dimname[0]][:] lat = fid.variables[topo_dimname[1]][:] fid.close() mlon,mlat=np.meshgrid(lon,lat) bottom_depth_2d = griddata( np.transpose( (mlon.flatten(),mlat.flatten() ) ), topo.flatten(), land_points, method='linear') R_grid = R_grid+( bottom_depth_2d*100*potatoefac) del topo,lon,lat,mlon,mlat #___________________________________________________________________________ # create sperical ocean coordinates xs,ys,zs = grid_cart3d(land_points[:,0], land_points[:,1], R_grid, is_deg=True) points = np.column_stack([xs,ys,zs]) del xs,ys,zs #___________________________________________________________________________ # Each cell in the cell array needs to include the size of the cell # and the points belonging to the cell. cell_size = np.ones(land_elem2d.shape[0], dtype=np.uint8)*3 cells = np.column_stack([cell_size, land_elem2d]) cells = cells.ravel() # each cell is a VTK_TRIANGLE celltypes = np.empty(land_elem2d.shape[0], dtype=np.uint8) celltypes[:] = vtk.VTK_TRIANGLE ## the offset array points to the start of each cell (via flat indexing) #offset = np.arange(0, 4*land_elem2d.shape[0], 4, dtype=np.uint32 ) #___________________________________________________________________________ # create pyvista unstrucutred mesh object meshpv_land = pv.UnstructuredGrid(cells, celltypes, points) # meshpv_land = pv.UnstructuredGrid(offset, cells, celltypes, points) #del offset, cells, celltypes, points del cells, celltypes #___do texture coordinates__________________________________________________ # Initialize the texture coordinates array if do_texture: meshpv_land.active_t_coords = np.zeros((points.shape[0], 2)) xs, ys, zs = grid_cart3d(land_points[:,0]+90, land_points[:,1], R_grid/R_earth, is_deg=True) meshpv_land.active_t_coords[:,0] = 0.5 + np.arctan2(-xs,ys)/(2 * np.pi) meshpv_land.active_t_coords[:,1] = 0.5 + np.arcsin(zs)/np.pi del xs, ys, zs del points #___________________________________________________________________________ # add land topography data to pyvista mesh object if do_topo: meshpv_land['topo'] = bottom_depth_2d print(bottom_depth_2d.shape) del bottom_depth_2d #___________________________________________________________________________ return meshpv_land # # #___CREATE PYVISTA 3d COASTLINE_________________________________________________ def create_3d_coastline(mesh): print(' --> compute 3d coastline') points_coast = list() for niland, lsmask in enumerate(mesh.lsmask_a): xs,ys,zs = grid_cart3d(lsmask[:,0], lsmask[:,1], R_earth*1.001, is_deg=True) points = np.vstack((xs,ys,zs)).transpose() points = np.row_stack((points,points[1,:])) aux_points = np.column_stack((points[:-1,:],points[1:,:])) aux_points = np.stack((points[:-1,:],points[1:,:]), axis=2) aux_points = np.moveaxis(aux_points,0,1) aux_points = aux_points.reshape(3,2*aux_points.shape[1]).transpose() points_coast.append(aux_points) del aux_points, points return points_coast # # #___CREATE PYVISTA 3D LONGITUDE GRID____________________________________________ def create_3d_lonlat_grid(dlon=30,dlat=15,potatoefac=1.0,do_topo=False): points_lonlat_grid = list() print(' --> compute 3d longitude grid') grid_lon = np.arange(-180,180,dlon) dum_lat = np.arange(-85,85+1,1) for nlonline in range(0,len(grid_lon)): if do_topo: xs,ys,zs = grid_cart3d(dum_lat*0+grid_lon[nlonline], dum_lat, R_earth+(6000*100*potatoefac), is_deg=True) else : xs,ys,zs = grid_cart3d(dum_lat*0+grid_lon[nlonline], dum_lat, R_earth*1.005 , is_deg=True) points = np.vstack((xs,ys,zs)).transpose() aux_points = np.column_stack((points[:-1,:],points[1:,:])) aux_points = np.stack((points[:-1,:],points[1:,:]), axis=2) aux_points =
np.moveaxis(aux_points,0,1)
numpy.moveaxis
from Bio.PDB.Atom import Atom from Bio.PDB.PDBIO import PDBIO from Bio.PDB import PDBParser, Polypeptide from Bio import SVDSuperimposer import numpy as np import os DATA_DIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data') VW_RADII = { "ALA": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0 }, "CYS": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "SG": 1.8 }, "ASP": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 1.7, "OD1": 1.5, "OD2": 1.5 }, "GLU": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "CD": 1.7, "OE1": 1.5, "OE2": 1.5 }, "PHE": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 1.7, "CD1": 1.9, "CD2": 1.9, "CE1": 1.9, "CE2": 1.9, "CZ": 1.9 }, "GLY": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4 }, "HIS": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 1.7, "ND1": 1.7, "CD2": 1.9, "CE1": 1.9, "NE2": 1.7 }, "ILE": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG1": 2.0, "CG2": 2.0, "CD1": 2.0 }, "LYS": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "CD": 2.0, "CE": 2.0, "NZ": 2.0 }, "LEU": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "CD1": 2.0, "CD2": 2.0 }, "MET": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "SD": 1.8, "CE": 2.0 }, "ASN": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 1.7, "OD1": 1.6, "ND2": 1.6 }, "PRO": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "CD": 2.0 }, "GLN": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "CD": 1.7, "OE1": 1.6, "NE2": 1.6 }, "ARG": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 2.0, "CD": 2.0, "NE": 1.7, "CZ": 2.0, "NH1": 2.0, "NH2": 2.0 }, "SER": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "OG": 1.6 }, "THR": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "OG1": 1.6, "CG2": 2.0 }, "VAL": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG1": 2.0, "CG2": 2.0 }, "TRP": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 1.7, "CD1": 1.9, "CD2": 1.7, "NE1": 1.7, "CE2": 1.7, "CE3": 1.9, "CZ2": 1.9, "CZ3": 1.9, "CH2": 1.9 }, "TYR": { "N": 1.7, "CA": 2.0, "C": 1.7, "O": 1.4, "CB": 2.0, "CG": 1.7, "CD1": 1.9, "CD2": 1.9, "CE1": 1.9, "CE2": 1.9, "CZ": 1.7, "OH": 1.6 } } CHI_ANGLES = {"CHI1": {'CYS': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'SG']}, 'ASP': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'SER': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'OG']}, 'GLN': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'LYS': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'ILE': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG1']}, 'PRO': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'THR': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'OG1']}, 'PHE': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'ASN': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'HIS': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'LEU': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'ARG': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'TRP': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'VAL': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG1']}, 'GLU': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'TYR': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}, 'MET': {'axis': ['CA', 'CB'], 'ref_plane': ['N', 'CA', 'CB', 'CG']}}, "CHI2": { 'ASP': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'OD1']}, 'GLN': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD']}, 'LYS': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD']}, 'ILE': {'axis': ['CB', 'CG1'], 'ref_plane': ['CA', 'CB', 'CG1', 'CD1']}, 'PRO': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD']}, 'PHE': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD1']}, 'ASN': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'OD1']}, 'HIS': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'ND1']}, 'LEU': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD1']}, 'ARG': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD']}, 'TRP': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD1']}, 'GLU': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD']}, 'TYR': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'CD1']}, 'MET': {'axis': ['CB', 'CG'], 'ref_plane': ['CA', 'CB', 'CG', 'SD']}, }, "CHI3": { 'ARG': {'axis': ['CG', 'CD'], 'ref_plane': ['CB', 'CG', 'CD', 'NE']}, 'GLN': {'axis': ['CG', 'CD'], 'ref_plane': ['CB', 'CG', 'CD', 'OE1']}, 'GLU': {'axis': ['CG', 'CD'], 'ref_plane': ['CB', 'CG', 'CD', 'OE1']}, 'LYS': {'axis': ['CG', 'CD'], 'ref_plane': ['CB', 'CG', 'CD', 'CE']}, 'MET': {'axis': ['CG', 'SD'], 'ref_plane': ['CB', 'CG', 'SD', 'CE']}, }, "CHI4": { 'ARG': {'axis': ['CD', 'NE'], 'ref_plane': ['CG', 'CD', 'NE', 'CZ']}, 'LYS': {'axis': ['CG', 'CE'], 'ref_plane': ['CG', 'CD', 'CE', 'NZ']}, } } RESIDUE_ORDER = {'CYS': ['N', 'CA', 'C', 'O', 'CB', 'SG'], 'ASP': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'OD1', 'OD2'], 'SER': ['N', 'CA', 'C', 'O', 'CB', 'OG'], 'GLN': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE2', 'OE1'], 'LYS': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'CE', 'NZ'], 'ILE': ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2', 'CD1'], 'PRO': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD'], 'THR': ['N', 'CA', 'C', 'O', 'CB', 'CG2', 'OG1'], 'PHE': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ'], 'ASN': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'ND2', 'OD1'], 'GLY': ['N', 'CA', 'C', 'O'], 'HIS': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD2', 'ND1', 'CE1', 'NE2'], 'LEU': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2'], 'ARG': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'NE', 'CZ', 'NH1', 'NH2'], 'TRP': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE2', 'CE3', 'NE1', 'CZ2', 'CZ3', 'CH2'], 'ALA': ['N', 'CA', 'C', 'O', 'CB'], 'VAL': ['N', 'CA', 'C', 'O', 'CB', 'CG1', 'CG2'], 'GLU': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD', 'OE1', 'OE2'], 'TYR': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'CD1', 'CD2', 'CE1', 'CE2', 'CZ', 'OH'], 'MET': ['N', 'CA', 'C', 'O', 'CB', 'CG', 'SD', 'CE']} def load_rotamers(rotamer_loc="{}/rotamers.lib".format(DATA_DIR)): _dunbrack = {} with open(rotamer_loc) as fn: for line in fn: if line.startswith("#"): continue if not line.split()[0] in _dunbrack: _dunbrack[line.split()[0]] = {} if not int(line.split()[1]) in _dunbrack[line.split()[0]]: _dunbrack[line.split()[0]][int(line.split()[1])] = {} if not int(line.split()[2]) in _dunbrack[line.split()[0]][int(line.split()[1])]: _dunbrack[line.split()[0]][int(line.split()[1])][int(line.split()[2])] = [] _dunbrack[line.split()[0]][int(line.split()[1])][int(line.split()[2])].append({ 'prob': float(line.split()[8]), 'CHI1': float(line.split()[9]), 'CHI2': float(line.split()[10]), 'CHI3': float(line.split()[11]), 'CHI4': float(line.split()[12]) }) return _dunbrack def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. """ from scipy.linalg import expm, norm return expm(np.cross(np.eye(3), axis / norm(axis) * theta)) def dihedral_from_vectors(v1, v2, v3, v4): """Praxeolitic formula 1 sqrt, 1 cross product""" b0 = -1.0 * (v2 - v1) b1 = v3 - v2 b2 = v4 - v3 # normalize b1 so that it does not influence magnitude of vector # rejections that come next b1 /= np.linalg.norm(b1) # vector rejections # v = projection of b0 onto plane perpendicular to b1 # = b0 minus component that aligns with b1 # w = projection of b2 onto plane perpendicular to b1 # = b2 minus component that aligns with b1 v = b0 - np.dot(b0, b1) * b1 w = b2 - np.dot(b2, b1) * b1 # angle between v and w in a plane is the torsion angle # v and w may not be normalized but that's fine since tan is y/x x = np.dot(v, w) y = np.dot(np.cross(b1, v), w) return np.arctan2(y, x) def distance(x, y): return np.sqrt((x[0] - y[0]) ** 2 + (x[1] - y[1]) ** 2 + (x[2] - y[2]) ** 2) def select_best_rotemer_based_on_clashes(pdb_object, chain, res_num, mutate_to, sample_residue, rotamers): best_rotamer = None lowest_energy = float('inf') for rotamer in rotamers: vdw_energy = 0 # Introduce the rotamer for angle in ['CHI1', 'CHI2', 'CHI3', 'CHI4']: if mutate_to not in CHI_ANGLES[angle]: continue dihedral_start = dihedral_from_vectors( *[sample_residue[x] for x in CHI_ANGLES[angle][mutate_to]['ref_plane']]) rotation_angle = dihedral_start - np.deg2rad(rotamer[angle]) axis = CHI_ANGLES[angle][mutate_to]['axis'] # print(angle) for atom in RESIDUE_ORDER[mutate_to][RESIDUE_ORDER[mutate_to].index(axis[1]) + 1:]: sample_residue[atom] = np.dot( rotation_matrix(sample_residue[axis[0]] - sample_residue[axis[1]], rotation_angle), sample_residue[atom] - sample_residue[axis[1]]) + sample_residue[axis[1]] for rotamer_atom, rotamer_vector in sample_residue.items(): for residues in list(pdb_object[0][chain].get_residues()): for residue_atoms in list(residues.get_atoms()): if residues.get_id()[1] == res_num: # Skip itself continue # print(residues.get_id()[1], residue_atoms.get_id()) # print(residues.get_resname(), residue_atoms.coord, rotamer_atom, rotamer_vector) dist = distance(residue_atoms.coord, rotamer_vector) if dist > 6: continue try: vdw_radi = VW_RADII[residues.get_resname()][residue_atoms.get_id()] + VW_RADII[mutate_to][rotamer_atom] except KeyError: continue # print(residues.get_id()[1], residue_atoms.get_id(), rotamer_atom, dist, ((vdw_radi / dist) ** 12 - (vdw_radi / dist) ** 6)) vdw_energy += ((vdw_radi / dist) ** 12 - (vdw_radi / dist) ** 6) # print(rotamer, vdw_energy) # print('________________________') if vdw_energy < lowest_energy: lowest_energy = vdw_energy best_rotamer = rotamer return best_rotamer def mutate(pdb_obj, chain, res_num, mutate_to, rotamer_lib=None, mutation_type="best"): _residue, _residue_idx = [(x, n) for n, x in enumerate(pdb_obj[0][chain].get_residues()) if x.get_id()[1] == res_num][0] # print(_residue) _residue_atoms = list(_residue.get_atoms()) for atom in _residue_atoms: if atom.name not in ['C', 'N', 'CA', 'O']: residue = atom.parent residue.detach_child(atom.id) polypeptide = Polypeptide.Polypeptide(pdb_obj[0][chain]) phi, psi = polypeptide.get_phi_psi_list()[_residue_idx] if not phi: phi = 0 if not psi: psi = 0 phi, psi = round(np.rad2deg(phi), -1), round(np.rad2deg(psi), -1) # print(phi, psi) # print(_residue['N'].coord) sample_residue = {} with open('{}/{}.pdb'.format(DATA_DIR, mutate_to.upper())) as fn: for line in fn: sample_residue[line[12:16].strip()] = np.array([float(line[30:38]), float(line[38:46]), float(line[46:54])]) starting_points = np.mat([sample_residue["N"], sample_residue["CA"], sample_residue["C"]]) end_points =
np.mat([_residue["N"].coord, _residue["CA"].coord, _residue["C"].coord])
numpy.mat
""" Created in Nov. 2021 @author: <NAME> -- CALTECH """ import numpy as np , scipy as sp , random from scipy.spatial import Voronoi , voronoi_plot_2d from scipy import sparse import matplotlib.pyplot as plt from copy import deepcopy from math import atan2 from shapely.geometry import Point from shapely.geometry.polygon import Polygon from itertools import product def Lattice_Points(XY_lens , dens , disorder , unit_cell='square' , spdim=2): nx = int(round(XY_lens[0]*np.sqrt(dens))) ny = int(round(XY_lens[1]*np.sqrt(dens))) if unit_cell == 'square': R_lst = [[i , j] for i in range(nx) for j in range(ny)] else: R_lst_0 = [[(1+(-1)**(j+1))/4 , j*np.sqrt(3)/2] for j in range(1,ny,2)] R_lst_1 = [[i+(1+(-1)**(j+1))/4 , j*np.sqrt(3)/2] for i in range(1,nx) for j in range(ny)] R_lst = R_lst_0 + R_lst_1 R_cnts = np.asarray(R_lst).astype(float) R_cnts -=
np.mean(R_cnts,axis=0)
numpy.mean
# Taken from https://github.com/psclklnk/spdl and wrapped to our architecture # Modified by <NAME>, copy of the license at TeachMyAgent/teachers/LICENSES/SPDL import torch import numpy as np from copy import deepcopy from functools import partial from TeachMyAgent.teachers.algos.AbstractTeacher import AbstractTeacher from TeachMyAgent.teachers.utils.conjugate_gradient import cg_step from TeachMyAgent.teachers.utils.torch import to_float_tensor from TeachMyAgent.teachers.utils.gaussian_torch_distribution import GaussianTorchDistribution class Buffer: def __init__(self, n_elements, max_buffer_size, reset_on_query): self.reset_on_query = reset_on_query self.max_buffer_size = max_buffer_size self.buffers = [list() for i in range(0, n_elements)] def update_buffer(self, datas): if isinstance(datas[0], list): for buffer, data in zip(self.buffers, datas): buffer.extend(data) else: for buffer, data in zip(self.buffers, datas): buffer.append(data) while len(self.buffers[0]) > self.max_buffer_size: for buffer in self.buffers: del buffer[0] def read_buffer(self, reset=None): if reset is None: reset = self.reset_on_query res = tuple([buffer for buffer in self.buffers]) if reset: for i in range(0, len(self.buffers)): self.buffers[i] = [] return res def __len__(self): return len(self.buffers[0]) class AbstractSelfPacedTeacher(): ''' Base SPDL Teacher ''' def __init__(self, init_mean, flat_init_chol, target_mean, flat_target_chol, alpha_function, max_kl, cg_parameters): self.context_dist = GaussianTorchDistribution(init_mean, flat_init_chol, use_cuda=False) self.target_dist = GaussianTorchDistribution(target_mean, flat_target_chol, use_cuda=False) self.alpha_function = alpha_function self.max_kl = max_kl self.cg_parameters = {"n_epochs_line_search": 10, "n_epochs_cg": 10, "cg_damping": 1e-2, "cg_residual_tol": 1e-10} if cg_parameters is not None: self.cg_parameters.update(cg_parameters) self.task = None self.iteration = 0 def target_context_kl(self, numpy=True): kl_div = torch.distributions.kl.kl_divergence(self.context_dist.distribution_t, self.target_dist.distribution_t).detach() if numpy: kl_div = kl_div.numpy() return kl_div def save(self, path): weights = self.context_dist.get_weights() np.save(path, weights) def load(self, path): self.context_dist.set_weights(np.load(path)) def _compute_context_kl(self, old_context_dist): return torch.distributions.kl.kl_divergence(old_context_dist.distribution_t, self.context_dist.distribution_t) def _compute_context_loss(self, cons_t, old_c_log_prob_t, c_val_t, alpha_cur_t): con_ratio_t = torch.exp(self.context_dist.log_pdf_t(cons_t) - old_c_log_prob_t) kl_div = torch.distributions.kl.kl_divergence(self.context_dist.distribution_t, self.target_dist.distribution_t) return torch.mean(con_ratio_t * c_val_t) - alpha_cur_t * kl_div class SelfPacedTeacher(AbstractTeacher, AbstractSelfPacedTeacher): def __init__(self, mins, maxs, seed, env_reward_lb, env_reward_ub, update_frequency, update_offset, alpha_function, initial_dist=None, target_dist=None, max_kl=0.1, std_lower_bound=None, kl_threshold=None, cg_parameters=None, use_avg_performance=False, max_context_buffer_size=1000, reset_contexts=True, discount_factor=0.99): ''' Self-paced Deep Reinforcement Learning (https://papers.nips.cc/paper/2020/hash/68a9750337a418a86fe06c1991a1d64c-Abstract.html). Taken from https://github.com/psclklnk/spdl and wrapped to our architecture. Works in a non-episodic setup, updates are thus made in the `step_update` method. Args: update_frequency: Update frequency of the sampling distribution (in steps) update_offset: How many steps must be done before the starting to update the distribution alpha_function: Function calculating the alpha parameter initial_dist: Initial distribution to start from target_dist: Target distribution to reach max_kl: Maximum KL-divergence authorized between the old and new distributions when updating std_lower_bound: Minimum std authorized on the sampling distribution if the KL-divergence between the latter and the target distribution is greater than `kl_threshold`. Set this to `None` if no constraint on the std must be applied kl_threshold: Threshold enforcing the std constraint cg_parameters: Additional parameters for the Conjugate Gradient method use_avg_performance: Whether the alpha function must used the averaged performance max_context_buffer_size: Maximum size of the buffer storing sampled tasks reset_contexts: Whether the buffer should be reset when queried discount_factor: Discount factor used in the Universal Value Function ''' AbstractTeacher.__init__(self, mins, maxs, env_reward_lb, env_reward_ub, seed) torch.manual_seed(self.seed) initial_mean, initial_variance = self.get_or_create_dist(initial_dist, mins, maxs, subspace=True) # Random subspace of the task space if no intial dist target_mean, target_variance = self.get_or_create_dist(target_dist, mins, maxs, subspace=False) # Full task space if no intial dist context_bounds = (np.array(mins), np.array(maxs)) self.update_frequency = update_frequency self.update_offset = update_offset self.step_counter = 0 self.discounted_sum_reward = 0 self.discount_factor = discount_factor self.discounted_sum_rewards = [] self.current_disc = 1 self.pending_initial_state = None self.algorithm_iterations = 0 # The bounds that we show to the outside are limited to the interval [-1, 1], as this is typically better for # neural nets to deal with self.context_buffer = Buffer(2, max_context_buffer_size, reset_contexts) self.context_dim = target_mean.shape[0] self.context_bounds = context_bounds self.use_avg_performance = use_avg_performance if std_lower_bound is not None and kl_threshold is None: raise RuntimeError("Error! Both Lower Bound on standard deviation and kl threshold need to be set") else: if std_lower_bound is not None: if isinstance(std_lower_bound, np.ndarray): if std_lower_bound.shape[0] != self.context_dim: raise RuntimeError("Error! Wrong dimension of the standard deviation lower bound") elif std_lower_bound is not None: std_lower_bound = np.ones(self.context_dim) * std_lower_bound self.std_lower_bound = std_lower_bound self.kl_threshold = kl_threshold # Create the initial context distribution if isinstance(initial_variance, np.ndarray): flat_init_chol = GaussianTorchDistribution.flatten_matrix(initial_variance, tril=False) else: flat_init_chol = GaussianTorchDistribution.flatten_matrix(initial_variance *
np.eye(self.context_dim)
numpy.eye
import numpy as np import matplotlib.pyplot as plt from irise.plot.util import legend from myscripts.statistics import mean_diff from myscripts.models import speedy from myscripts.projects.ithaca.tendencies import load_tendency def main(): sigma = speedy.sigma_levels[1] sbits =
np.arange(5, 24)
numpy.arange
import datetime import random import time import numpy as np import torch import torch.utils.data import utils from datasets import load_dataset, load_metric from reprod_log import ReprodLogger from torch import nn from transformers import AdamW, BertTokenizer, DataCollatorWithPadding, get_scheduler from transformers.models.bert import BertForSequenceClassification task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } def train_one_epoch( model, criterion, optimizer, lr_scheduler, data_loader, device, epoch, print_freq, scaler=None, ): model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter( "lr", utils.SmoothedValue( window_size=1, fmt="{value}")) metric_logger.add_meter( "sentence/s", utils.SmoothedValue( window_size=10, fmt="{value}")) header = "Epoch: [{}]".format(epoch) for batch in metric_logger.log_every(data_loader, print_freq, header): start_time = time.time() batch.to(device) labels = batch.pop("labels") with torch.cuda.amp.autocast(enabled=scaler is not None): logits = model(**batch)[0] loss = criterion( logits.reshape(-1, model.num_labels), labels.reshape(-1)) optimizer.zero_grad() if scaler is not None: scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() else: loss.backward() optimizer.step() lr_scheduler.step() batch_size = batch["input_ids"].shape[0] metric_logger.update( loss=loss.item(), lr=lr_scheduler.get_last_lr()[-1]) metric_logger.meters["sentence/s"].update(batch_size / (time.time() - start_time)) def evaluate(model, criterion, data_loader, device, metric, print_freq=100): model.eval() metric_logger = utils.MetricLogger(delimiter=" ") header = "Test:" with torch.no_grad(): for batch in metric_logger.log_every(data_loader, print_freq, header): batch.to(device) labels = batch.pop("labels") logits = model(**batch)[0] loss = criterion( logits.reshape(-1, model.num_labels), labels.reshape(-1)) metric_logger.update(loss=loss.item()) metric.add_batch( predictions=logits.argmax(dim=-1), references=labels, ) acc_global_avg = metric.compute()["accuracy"] # gather the stats from all processes metric_logger.synchronize_between_processes() print(" * Accuracy {acc_global_avg:.6f}".format( acc_global_avg=acc_global_avg)) return acc_global_avg def set_seed(seed=42): random.seed(seed)
np.random.seed(seed)
numpy.random.seed
import numpy as np import dlib import glob import cv2 import os os.chdir('/media/imi-yujun/579e63e9-5852-43a7-9323-8e51241f5d3a/yujun/Course_porject_fac e') def LoadBase(): predictor_path = 'Network/shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) return predictor,detector def SaveLandmark(shape): tmp = np.zeros((68,2),dtype=np.uint) for i in range(68): tmp[i,0] = shape.part(i).x tmp[i, 1] = shape.part(i).y return tmp def Run(): count =0 predictor, detector = LoadBase() image_list = glob.glob('CoarseData/CoarseData/*/*.jpg') for path_ in image_list: image_= cv2.imread(path_) #gray_= cv2.cvtColor(image_, cv2.COLOR_BGR2GRAY) try: print(count) count += 1 # dets = detector(gray_, 1) # shape = predictor(gray_, dets[0]) # tmp = SaveLandmark(shape) # np.savetxt(path_[:len(path_)-4]+'_landmark.txt',tmp, fmt='%d') # res = Normalize(image_,tmp) # cv2.imwrite(path_[:len(path_)-4]+'_224.png',res) # landmark = np.loadtxt(path_[:len(path_)-4]+'_landmark.txt') shape_, exp_, eular_, translate_, scale_ = Get3Dmm(path_[:len(path_)-4]+'.txt') crop_image, translation, new_scale = Normalize2(image_,landmark,translate_,scale_) cv2.imwrite(path_[:len(path_) - 4] + '_224.png', crop_image) label = np.zeros([185]) label[:100] = shape_ label[100:179] = exp_ label[179:182] =eular_ label[182:184] = translate_ label[184] = scale_ np.savetxt(path_[:len(path_) - 4] + '_224.txt',label) except: continue print("error") def Normalize(image,landmark_): xmin = np.min(landmark_[:,0]) xmax = np.max(landmark_[:,0]) ymin = np.min(landmark_[:,1]) ymax = np.max(landmark_[:,1]) sub_image = image[ymin:ymax,xmin:xmax] res = cv2.resize(sub_image, (224,224), interpolation=cv2.INTER_LINEAR) return res def Package(): Save_path = 'Input/' image_list = glob.glob('CoarseData/CoarseData/*/*_224.png') data = np.zeros((len(image_list),224,224,3),dtype=np.uint8) label = np.zeros((len(image_list),185)) for i in range(len(image_list)): print(i) path_ = image_list[i] img = cv2.imread(path_) # f = open(path_[:len(path_)-8]+'.txt') # content = f.readlines() # content= [x.strip() for x in content] # label[i,:100] = np.array(content[0].split(" "),dtype = np.float) # label[i,100:179] = np.array(content[1].split(" "),dtype = np.float) # label[i,179:] = np.array(content[2].split(" "),dtype = np.float) # f.close() label[i,:] = np.loadtxt(path_[:len(path_)-8]+'_224.txt') data[i,:,:] = np.array(img,dtype=np.uint8) np.save(Save_path+'data.npy',data) np.save(Save_path+'label.npy',label) def Split(): test_num = 5000 data = np.load('Input/data.npy') label= np.load('Input/label.npy') train_data= data[test_num:,:] test_data = data[:test_num,:] test_label = label[:test_num,:] train_label = label[test_num:,:] np.save('Input/train_data.npy',train_data) np.save('Input/mean_data.npy',np.mean(data,axis=0)) np.save('Input/mean_label.npy', np.mean(label, axis=0)) np.save('Input/test_data.npy',test_data) np.save('Input/train_label.npy',train_label) np.save('Input/test_label.npy',test_label) np.save('Input/std_label.npy', np.std(label, axis=0)) net_img_size = 224 def Normalize2(image, landmark_, translation=np.array([0,0]), scale=0): xmin = np.min(landmark_[:, 0]) xmax = np.max(landmark_[:, 0]) ymin = np.min(landmark_[:, 1]) ymax = np.max(landmark_[:, 1]) old_cx = (xmin + xmax) / 2 old_cy = (ymin + ymax) / 2; cx = (net_img_size - 1) / 2.0 cy = (net_img_size - 1) * 2.0 / 5.0; length = ((xmax - xmin) ** 2 + (ymax - ymin) ** 2) ** 0.5 length *= 1.2 ori_crop_scale = net_img_size / length new_scale = scale * ori_crop_scale image = cv2.resize(image, (0, 0), fx=ori_crop_scale, fy=ori_crop_scale) old_cx = old_cx * ori_crop_scale old_cy = old_cy * ori_crop_scale start_x = int(old_cx - cx) start_y = int(old_cy - cy) crop_image = image[start_y:start_y + 224, start_x:start_x + 224] shape_ = np.shape(crop_image) tmp = np.zeros((224,224,3),dtype=np.uint8) tmp[:shape_[0],:shape_[1],:] = crop_image translation = translation * ori_crop_scale translation[0] = translation[0] - start_x translation[1] = translation[1] - (len(image) - 224-start_y) # landmark_=landmark_*ori_crop_scale # tmp = np.zeros((224,224),dtype=np.uint8) # for i in range(68): # tmp[ int(landmark_[i,1] - start_y),int(landmark_[i,0] - start_x) ] = 255; # cv2.imwrite("landmarl.jpg",tmp) return tmp, translation, new_scale def Get3Dmm(path): with open(path) as f: dmm_para = f.readlines() dmm_para = [x.strip() for x in dmm_para] shape_ = np.array(dmm_para[0].split(), dtype=np.float) exp_ = np.array(dmm_para[1].split(), dtype=np.float) tmp = np.array(dmm_para[2].split(), dtype=np.float) eular_ = tmp[:3] translate_ = tmp[3:5] scale_ = tmp[5] return shape_,exp_,eular_,translate_,scale_ def Custom(): cap = cv2.VideoCapture('Input/gx.MOV') sample_num = 150 M = cv2.getRotationMatrix2D((1920 / 2, 1080 / 2), 270, 1) predictor, detector = LoadBase() index_=0 data =
np.zeros((sample_num,224,224,3))
numpy.zeros
""" Test the ColumnTransformer. """ import numpy as np from scipy import sparse import pytest from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_false from sklearn.utils.testing import assert_dict_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_allclose_dense_sparse from sklearn.base import BaseEstimator from sklearn.compose import ColumnTransformer, make_column_transformer from sklearn.exceptions import NotFittedError from sklearn.preprocessing import StandardScaler, Normalizer from sklearn.feature_extraction import DictVectorizer class Trans(BaseEstimator): def fit(self, X, y=None): return self def transform(self, X, y=None): # 1D Series -> 2D DataFrame if hasattr(X, 'to_frame'): return X.to_frame() # 1D array -> 2D array if X.ndim == 1: return np.atleast_2d(X).T return X class SparseMatrixTrans(BaseEstimator): def fit(self, X, y=None): return self def transform(self, X, y=None): n_samples = len(X) return sparse.eye(n_samples, n_samples).tocsr() def test_column_transformer(): X_array = np.array([[0, 1, 2], [2, 4, 6]]).T X_res_first1D = np.array([0, 1, 2]) X_res_second1D = np.array([2, 4, 6]) X_res_first = X_res_first1D.reshape(-1, 1) X_res_both = X_array cases = [ # single column 1D / 2D (0, X_res_first), ([0], X_res_first), # list-like ([0, 1], X_res_both), (np.array([0, 1]), X_res_both), # slice (slice(0, 1), X_res_first), (slice(0, 2), X_res_both), # boolean mask (np.array([True, False]), X_res_first), ] for selection, res in cases: ct = ColumnTransformer([('trans', Trans(), selection)], remainder='drop') assert_array_equal(ct.fit_transform(X_array), res) assert_array_equal(ct.fit(X_array).transform(X_array), res) ct = ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])]) assert_array_equal(ct.fit_transform(X_array), X_res_both) assert_array_equal(ct.fit(X_array).transform(X_array), X_res_both) # test with transformer_weights transformer_weights = {'trans1': .1, 'trans2': 10} both = ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])], transformer_weights=transformer_weights) res = np.vstack([transformer_weights['trans1'] * X_res_first1D, transformer_weights['trans2'] * X_res_second1D]).T assert_array_equal(both.fit_transform(X_array), res) assert_array_equal(both.fit(X_array).transform(X_array), res) both = ColumnTransformer([('trans', Trans(), [0, 1])], transformer_weights={'trans': .1}) assert_array_equal(both.fit_transform(X_array), 0.1 * X_res_both) assert_array_equal(both.fit(X_array).transform(X_array), 0.1 * X_res_both) def test_column_transformer_dataframe(): pd = pytest.importorskip('pandas') X_array = np.array([[0, 1, 2], [2, 4, 6]]).T X_df = pd.DataFrame(X_array, columns=['first', 'second']) X_res_first = np.array([0, 1, 2]).reshape(-1, 1) X_res_both = X_array cases = [ # String keys: label based # scalar ('first', X_res_first), # list (['first'], X_res_first), (['first', 'second'], X_res_both), # slice (slice('first', 'second'), X_res_both), # int keys: positional # scalar (0, X_res_first), # list ([0], X_res_first), ([0, 1], X_res_both), (np.array([0, 1]), X_res_both), # slice (slice(0, 1), X_res_first), (slice(0, 2), X_res_both), # boolean mask (np.array([True, False]), X_res_first), (pd.Series([True, False], index=['first', 'second']), X_res_first), ] for selection, res in cases: ct = ColumnTransformer([('trans', Trans(), selection)], remainder='drop') assert_array_equal(ct.fit_transform(X_df), res) assert_array_equal(ct.fit(X_df).transform(X_df), res) ct = ColumnTransformer([('trans1', Trans(), ['first']), ('trans2', Trans(), ['second'])]) assert_array_equal(ct.fit_transform(X_df), X_res_both) assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both) ct = ColumnTransformer([('trans1', Trans(), [0]), ('trans2', Trans(), [1])]) assert_array_equal(ct.fit_transform(X_df), X_res_both) assert_array_equal(ct.fit(X_df).transform(X_df), X_res_both) # test with transformer_weights transformer_weights = {'trans1': .1, 'trans2': 10} both = ColumnTransformer([('trans1', Trans(), ['first']), ('trans2', Trans(), ['second'])], transformer_weights=transformer_weights) res = np.vstack([transformer_weights['trans1'] * X_df['first'], transformer_weights['trans2'] * X_df['second']]).T assert_array_equal(both.fit_transform(X_df), res) assert_array_equal(both.fit(X_df).transform(X_df), res) # test multiple columns both = ColumnTransformer([('trans', Trans(), ['first', 'second'])], transformer_weights={'trans': .1}) assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both) assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both) both = ColumnTransformer([('trans', Trans(), [0, 1])], transformer_weights={'trans': .1}) assert_array_equal(both.fit_transform(X_df), 0.1 * X_res_both) assert_array_equal(both.fit(X_df).transform(X_df), 0.1 * X_res_both) # ensure pandas object is passes through class TransAssert(BaseEstimator): def fit(self, X, y=None): return self def transform(self, X, y=None): assert_true(isinstance(X, (pd.DataFrame, pd.Series))) if isinstance(X, pd.Series): X = X.to_frame() return X ct = ColumnTransformer([('trans', TransAssert(), 'first')], remainder='drop') ct.fit_transform(X_df) ct = ColumnTransformer([('trans', TransAssert(), ['first', 'second'])]) ct.fit_transform(X_df) # integer column spec + integer column names -> still use positional X_df2 = X_df.copy() X_df2.columns = [1, 0] ct = ColumnTransformer([('trans', Trans(), 0)], remainder='drop') assert_array_equal(ct.fit_transform(X_df), X_res_first) assert_array_equal(ct.fit(X_df).transform(X_df), X_res_first) def test_column_transformer_sparse_array(): X_sparse = sparse.eye(3, 2).tocsr() # no distinction between 1D and 2D X_res_first = X_sparse[:, 0] X_res_both = X_sparse for col in [0, [0], slice(0, 1)]: for remainder, res in [('drop', X_res_first), ('passthrough', X_res_both)]: ct = ColumnTransformer([('trans', Trans(), col)], remainder=remainder) assert_true(sparse.issparse(ct.fit_transform(X_sparse))) assert_allclose_dense_sparse(ct.fit_transform(X_sparse), res) assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse), res) for col in [[0, 1], slice(0, 2)]: ct = ColumnTransformer([('trans', Trans(), col)]) assert_true(sparse.issparse(ct.fit_transform(X_sparse))) assert_allclose_dense_sparse(ct.fit_transform(X_sparse), X_res_both) assert_allclose_dense_sparse(ct.fit(X_sparse).transform(X_sparse), X_res_both) def test_column_transformer_sparse_stacking(): X_array = np.array([[0, 1, 2], [2, 4, 6]]).T col_trans = ColumnTransformer([('trans1', Trans(), [0]), ('trans2', SparseMatrixTrans(), 1)]) col_trans.fit(X_array) X_trans = col_trans.transform(X_array) assert_true(sparse.issparse(X_trans)) assert_equal(X_trans.shape, (X_trans.shape[0], X_trans.shape[0] + 1)) assert_array_equal(X_trans.toarray()[:, 1:], np.eye(X_trans.shape[0])) def test_column_transformer_error_msg_1D(): X_array = np.array([[0., 1., 2.], [2., 4., 6.]]).T col_trans = ColumnTransformer([('trans', StandardScaler(), 0)]) assert_raise_message(ValueError, "1D data passed to a transformer", col_trans.fit, X_array) assert_raise_message(ValueError, "1D data passed to a transformer", col_trans.fit_transform, X_array) class TransRaise(BaseEstimator): def fit(self, X, y=None): raise ValueError("specific message") def transform(self, X, y=None): raise ValueError("specific message") col_trans = ColumnTransformer([('trans', TransRaise(), 0)]) for func in [col_trans.fit, col_trans.fit_transform]: assert_raise_message(ValueError, "specific message", func, X_array) def test_2D_transformer_output(): class TransNo2D(BaseEstimator): def fit(self, X, y=None): return self def transform(self, X, y=None): return X X_array =
np.array([[0, 1, 2], [2, 4, 6]])
numpy.array
""" Copyright 2019 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ Sample demonstration of hyperparameter tuning of a swap gate on 2 qubits on a 4 qubit system, a more complicated example compared to time_basis_cnot. This example uses the sinusoidal basis and varies control power level, control bandwidth, in addition to the control length. It also uses an external optimizer, Scipy's L-BFGS-B, a second order gradient based optimizer with simple constraints for much faster and better convergence on complex pulses. It saves the results in graphical format and NMR machine parsable format. """ import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import datetime import pathlib from basisgen import sinusoidal_basis_gen from padqoc import PADQOC from scipy.optimize import minimize,Bounds #Pauli Matrices px = np.array([[0,1+0j],[1+0j,0]]) py = np.array([[0,-1j],[1j,0]]) pz = np.array([[1+0j,0],[0,-1+0j]]) pi = np.array([[1+0j,0],[0,1+0j]]) pi2 = np.kron(pi,pi) pi3 = np.kron(pi,pi2) pi4 = np.kron(pi2,pi2) #Pauli Matrices Generator def pcat(s): cs = 1 for c in s: if(c=='i'): cs =
np.kron(cs,pi)
numpy.kron
import itertools import os import re import numpy as np from numpy.testing import assert_allclose, assert_almost_equal from numpy.testing import assert_array_almost_equal, assert_array_equal from scipy import sparse import pytest from sklearn.base import clone from sklearn.datasets import load_iris, make_classification from sklearn.metrics import log_loss from sklearn.metrics import get_scorer from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.utils import compute_class_weight, _IS_32BIT from sklearn.utils._testing import ignore_warnings from sklearn.utils import shuffle from sklearn.linear_model import SGDClassifier from sklearn.preprocessing import scale from sklearn.utils._testing import skip_if_no_parallel from sklearn.exceptions import ConvergenceWarning from sklearn.linear_model._logistic import ( _log_reg_scoring_path, _logistic_regression_path, LogisticRegression, LogisticRegressionCV, ) X = [[-1, 0], [0, 1], [1, 1]] X_sp = sparse.csr_matrix(X) Y1 = [0, 1, 1] Y2 = [2, 1, 0] iris = load_iris() def check_predictions(clf, X, y): """Check that the model is able to fit the classification data""" n_samples = len(y) classes = np.unique(y) n_classes = classes.shape[0] predicted = clf.fit(X, y).predict(X) assert_array_equal(clf.classes_, classes) assert predicted.shape == (n_samples,) assert_array_equal(predicted, y) probabilities = clf.predict_proba(X) assert probabilities.shape == (n_samples, n_classes) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) assert_array_equal(probabilities.argmax(axis=1), y) def test_predict_2_classes(): # Simple sanity check on a 2 classes dataset # Make sure it predicts the correct result on simple datasets. check_predictions(LogisticRegression(random_state=0), X, Y1) check_predictions(LogisticRegression(random_state=0), X_sp, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X, Y1) check_predictions(LogisticRegression(C=100, random_state=0), X_sp, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X, Y1) check_predictions(LogisticRegression(fit_intercept=False, random_state=0), X_sp, Y1) def test_error(): # Test for appropriate exception on errors msg = "Penalty term must be positive" with pytest.raises(ValueError, match=msg): LogisticRegression(C=-1).fit(X, Y1) with pytest.raises(ValueError, match=msg): LogisticRegression(C="test").fit(X, Y1) msg = "is not a valid scoring value" with pytest.raises(ValueError, match=msg): LogisticRegressionCV(scoring="bad-scorer", cv=2).fit(X, Y1) for LR in [LogisticRegression, LogisticRegressionCV]: msg = "Tolerance for stopping criteria must be positive" with pytest.raises(ValueError, match=msg): LR(tol=-1).fit(X, Y1) with pytest.raises(ValueError, match=msg): LR(tol="test").fit(X, Y1) msg = "Maximum number of iteration must be positive" with pytest.raises(ValueError, match=msg): LR(max_iter=-1).fit(X, Y1) with pytest.raises(ValueError, match=msg): LR(max_iter="test").fit(X, Y1) def test_logistic_cv_mock_scorer(): class MockScorer: def __init__(self): self.calls = 0 self.scores = [0.1, 0.4, 0.8, 0.5] def __call__(self, model, X, y, sample_weight=None): score = self.scores[self.calls % len(self.scores)] self.calls += 1 return score mock_scorer = MockScorer() Cs = [1, 2, 3, 4] cv = 2 lr = LogisticRegressionCV(Cs=Cs, scoring=mock_scorer, cv=cv) lr.fit(X, Y1) # Cs[2] has the highest score (0.8) from MockScorer assert lr.C_[0] == Cs[2] # scorer called 8 times (cv*len(Cs)) assert mock_scorer.calls == cv * len(Cs) # reset mock_scorer mock_scorer.calls = 0 custom_score = lr.score(X, lr.predict(X)) assert custom_score == mock_scorer.scores[0] assert mock_scorer.calls == 1 @skip_if_no_parallel def test_lr_liblinear_warning(): n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] lr = LogisticRegression(solver="liblinear", n_jobs=2) warning_message = ( "'n_jobs' > 1 does not have any effect when" " 'solver' is set to 'liblinear'. Got 'n_jobs'" " = 2." ) with pytest.warns(UserWarning, match=warning_message): lr.fit(iris.data, target) def test_predict_3_classes(): check_predictions(LogisticRegression(C=10), X, Y2) check_predictions(LogisticRegression(C=10), X_sp, Y2) def test_predict_iris(): # Test logistic regression with the iris dataset n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] # Test that both multinomial and OvR solvers handle # multiclass data correctly and give good accuracy # score (>0.95) for the training data. for clf in [ LogisticRegression(C=len(iris.data), solver="liblinear", multi_class="ovr"), LogisticRegression(C=len(iris.data), solver="lbfgs", multi_class="multinomial"), LogisticRegression( C=len(iris.data), solver="newton-cg", multi_class="multinomial" ), LogisticRegression( C=len(iris.data), solver="sag", tol=1e-2, multi_class="ovr", random_state=42 ), LogisticRegression( C=len(iris.data), solver="saga", tol=1e-2, multi_class="ovr", random_state=42, ), ]: clf.fit(iris.data, target) assert_array_equal(np.unique(target), clf.classes_) pred = clf.predict(iris.data) assert np.mean(pred == target) > 0.95 probabilities = clf.predict_proba(iris.data) assert_array_almost_equal(probabilities.sum(axis=1), np.ones(n_samples)) pred = iris.target_names[probabilities.argmax(axis=1)] assert np.mean(pred == target) > 0.95 @pytest.mark.parametrize("solver", ["lbfgs", "newton-cg", "sag", "saga"]) def test_multinomial_validation(solver): lr = LogisticRegression(C=-1, solver=solver, multi_class="multinomial") with pytest.raises(ValueError): lr.fit([[0, 1], [1, 0]], [0, 1]) @pytest.mark.parametrize("LR", [LogisticRegression, LogisticRegressionCV]) def test_check_solver_option(LR): X, y = iris.data, iris.target msg = ( r"Logistic Regression supports only solvers in \['liblinear', " r"'newton-cg', 'lbfgs', 'sag', 'saga'\], got wrong_name." ) lr = LR(solver="wrong_name", multi_class="ovr") with pytest.raises(ValueError, match=msg): lr.fit(X, y) msg = "multi_class should be 'multinomial', 'ovr' or 'auto'. Got wrong_name" lr = LR(solver="newton-cg", multi_class="wrong_name") with pytest.raises(ValueError, match=msg): lr.fit(X, y) # only 'liblinear' solver msg = "Solver liblinear does not support a multinomial backend." lr = LR(solver="liblinear", multi_class="multinomial") with pytest.raises(ValueError, match=msg): lr.fit(X, y) # all solvers except 'liblinear' and 'saga' for solver in ["newton-cg", "lbfgs", "sag"]: msg = "Solver %s supports only 'l2' or 'none' penalties," % solver lr = LR(solver=solver, penalty="l1", multi_class="ovr") with pytest.raises(ValueError, match=msg): lr.fit(X, y) for solver in ["newton-cg", "lbfgs", "sag", "saga"]: msg = "Solver %s supports only dual=False, got dual=True" % solver lr = LR(solver=solver, dual=True, multi_class="ovr") with pytest.raises(ValueError, match=msg): lr.fit(X, y) # only saga supports elasticnet. We only test for liblinear because the # error is raised before for the other solvers (solver %s supports only l2 # penalties) for solver in ["liblinear"]: msg = "Only 'saga' solver supports elasticnet penalty, got solver={}.".format( solver ) lr = LR(solver=solver, penalty="elasticnet") with pytest.raises(ValueError, match=msg): lr.fit(X, y) # liblinear does not support penalty='none' msg = "penalty='none' is not supported for the liblinear solver" lr = LR(penalty="none", solver="liblinear") with pytest.raises(ValueError, match=msg): lr.fit(X, y) @pytest.mark.parametrize("solver", ["lbfgs", "newton-cg", "sag", "saga"]) def test_multinomial_binary(solver): # Test multinomial LR on a binary problem. target = (iris.target > 0).astype(np.intp) target = np.array(["setosa", "not-setosa"])[target] clf = LogisticRegression( solver=solver, multi_class="multinomial", random_state=42, max_iter=2000 ) clf.fit(iris.data, target) assert clf.coef_.shape == (1, iris.data.shape[1]) assert clf.intercept_.shape == (1,) assert_array_equal(clf.predict(iris.data), target) mlr = LogisticRegression( solver=solver, multi_class="multinomial", random_state=42, fit_intercept=False ) mlr.fit(iris.data, target) pred = clf.classes_[np.argmax(clf.predict_log_proba(iris.data), axis=1)] assert np.mean(pred == target) > 0.9 def test_multinomial_binary_probabilities(): # Test multinomial LR gives expected probabilities based on the # decision function, for a binary problem. X, y = make_classification() clf = LogisticRegression(multi_class="multinomial", solver="saga") clf.fit(X, y) decision = clf.decision_function(X) proba = clf.predict_proba(X) expected_proba_class_1 = np.exp(decision) / (np.exp(decision) + np.exp(-decision)) expected_proba = np.c_[1 - expected_proba_class_1, expected_proba_class_1] assert_almost_equal(proba, expected_proba) def test_sparsify(): # Test sparsify and densify members. n_samples, n_features = iris.data.shape target = iris.target_names[iris.target] clf = LogisticRegression(random_state=0).fit(iris.data, target) pred_d_d = clf.decision_function(iris.data) clf.sparsify() assert sparse.issparse(clf.coef_) pred_s_d = clf.decision_function(iris.data) sp_data = sparse.coo_matrix(iris.data) pred_s_s = clf.decision_function(sp_data) clf.densify() pred_d_s = clf.decision_function(sp_data) assert_array_almost_equal(pred_d_d, pred_s_d) assert_array_almost_equal(pred_d_d, pred_s_s) assert_array_almost_equal(pred_d_d, pred_d_s) def test_inconsistent_input(): # Test that an exception is raised on inconsistent input rng = np.random.RandomState(0) X_ = rng.random_sample((5, 10)) y_ = np.ones(X_.shape[0]) y_[0] = 0 clf = LogisticRegression(random_state=0) # Wrong dimensions for training data y_wrong = y_[:-1] with pytest.raises(ValueError): clf.fit(X, y_wrong) # Wrong dimensions for test data with pytest.raises(ValueError): clf.fit(X_, y_).predict(rng.random_sample((3, 12))) def test_write_parameters(): # Test that we can write to coef_ and intercept_ clf = LogisticRegression(random_state=0) clf.fit(X, Y1) clf.coef_[:] = 0 clf.intercept_[:] = 0 assert_array_almost_equal(clf.decision_function(X), 0) def test_nan(): # Test proper NaN handling. # Regression test for Issue #252: fit used to go into an infinite loop. Xnan = np.array(X, dtype=np.float64) Xnan[0, 1] = np.nan logistic = LogisticRegression(random_state=0) with pytest.raises(ValueError): logistic.fit(Xnan, Y1) def test_consistency_path(): # Test that the path algorithm is consistent rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = np.logspace(0, 4, 10) f = ignore_warnings # can't test with fit_intercept=True since LIBLINEAR # penalizes the intercept for solver in ["sag", "saga"]: coefs, Cs, _ = f(_logistic_regression_path)( X, y, Cs=Cs, fit_intercept=False, tol=1e-5, solver=solver, max_iter=1000, multi_class="ovr", random_state=0, ) for i, C in enumerate(Cs): lr = LogisticRegression( C=C, fit_intercept=False, tol=1e-5, solver=solver, multi_class="ovr", random_state=0, max_iter=1000, ) lr.fit(X, y) lr_coef = lr.coef_.ravel() assert_array_almost_equal( lr_coef, coefs[i], decimal=4, err_msg="with solver = %s" % solver ) # test for fit_intercept=True for solver in ("lbfgs", "newton-cg", "liblinear", "sag", "saga"): Cs = [1e3] coefs, Cs, _ = f(_logistic_regression_path)( X, y, Cs=Cs, tol=1e-6, solver=solver, intercept_scaling=10000.0, random_state=0, multi_class="ovr", ) lr = LogisticRegression( C=Cs[0], tol=1e-4, intercept_scaling=10000.0, random_state=0, multi_class="ovr", solver=solver, ) lr.fit(X, y) lr_coef = np.concatenate([lr.coef_.ravel(), lr.intercept_]) assert_array_almost_equal( lr_coef, coefs[0], decimal=4, err_msg="with solver = %s" % solver ) def test_logistic_regression_path_convergence_fail(): rng = np.random.RandomState(0) X = np.concatenate((rng.randn(100, 2) + [1, 1], rng.randn(100, 2))) y = [1] * 100 + [-1] * 100 Cs = [1e3] # Check that the convergence message points to both a model agnostic # advice (scaling the data) and to the logistic regression specific # documentation that includes hints on the solver configuration. with pytest.warns(ConvergenceWarning) as record: _logistic_regression_path( X, y, Cs=Cs, tol=0.0, max_iter=1, random_state=0, verbose=0 ) assert len(record) == 1 warn_msg = record[0].message.args[0] assert "lbfgs failed to converge" in warn_msg assert "Increase the number of iterations" in warn_msg assert "scale the data" in warn_msg assert "linear_model.html#logistic-regression" in warn_msg def test_liblinear_dual_random_state(): # random_state is relevant for liblinear solver only if dual=True X, y = make_classification(n_samples=20, random_state=0) lr1 = LogisticRegression( random_state=0, dual=True, max_iter=1, tol=1e-15, solver="liblinear", multi_class="ovr", ) lr1.fit(X, y) lr2 = LogisticRegression( random_state=0, dual=True, max_iter=1, tol=1e-15, solver="liblinear", multi_class="ovr", ) lr2.fit(X, y) lr3 = LogisticRegression( random_state=8, dual=True, max_iter=1, tol=1e-15, solver="liblinear", multi_class="ovr", ) lr3.fit(X, y) # same result for same random state assert_array_almost_equal(lr1.coef_, lr2.coef_) # different results for different random states msg = "Arrays are not almost equal to 6 decimals" with pytest.raises(AssertionError, match=msg): assert_array_almost_equal(lr1.coef_, lr3.coef_) def test_logistic_cv(): # test for LogisticRegressionCV object n_samples, n_features = 50, 5 rng = np.random.RandomState(0) X_ref = rng.randn(n_samples, n_features) y = np.sign(X_ref.dot(5 * rng.randn(n_features))) X_ref -= X_ref.mean() X_ref /= X_ref.std() lr_cv = LogisticRegressionCV( Cs=[1.0], fit_intercept=False, solver="liblinear", multi_class="ovr", cv=3 ) lr_cv.fit(X_ref, y) lr = LogisticRegression( C=1.0, fit_intercept=False, solver="liblinear", multi_class="ovr" ) lr.fit(X_ref, y) assert_array_almost_equal(lr.coef_, lr_cv.coef_) assert_array_equal(lr_cv.coef_.shape, (1, n_features)) assert_array_equal(lr_cv.classes_, [-1, 1]) assert len(lr_cv.classes_) == 2 coefs_paths = np.asarray(list(lr_cv.coefs_paths_.values())) assert_array_equal(coefs_paths.shape, (1, 3, 1, n_features)) assert_array_equal(lr_cv.Cs_.shape, (1,)) scores = np.asarray(list(lr_cv.scores_.values())) assert_array_equal(scores.shape, (1, 3, 1)) @pytest.mark.parametrize( "scoring, multiclass_agg_list", [ ("accuracy", [""]), ("precision", ["_macro", "_weighted"]), # no need to test for micro averaging because it # is the same as accuracy for f1, precision, # and recall (see https://github.com/ # scikit-learn/scikit-learn/pull/ # 11578#discussion_r203250062) ("f1", ["_macro", "_weighted"]), ("neg_log_loss", [""]), ("recall", ["_macro", "_weighted"]), ], ) def test_logistic_cv_multinomial_score(scoring, multiclass_agg_list): # test that LogisticRegressionCV uses the right score to compute its # cross-validation scores when using a multinomial scoring # see https://github.com/scikit-learn/scikit-learn/issues/8720 X, y = make_classification( n_samples=100, random_state=0, n_classes=3, n_informative=6 ) train, test = np.arange(80), np.arange(80, 100) lr = LogisticRegression(C=1.0, multi_class="multinomial") # we use lbfgs to support multinomial params = lr.get_params() # we store the params to set them further in _log_reg_scoring_path for key in ["C", "n_jobs", "warm_start"]: del params[key] lr.fit(X[train], y[train]) for averaging in multiclass_agg_list: scorer = get_scorer(scoring + averaging) assert_array_almost_equal( _log_reg_scoring_path( X, y, train, test, Cs=[1.0], scoring=scorer, **params )[2][0], scorer(lr, X[test], y[test]), ) def test_multinomial_logistic_regression_string_inputs(): # Test with string labels for LogisticRegression(CV) n_samples, n_features, n_classes = 50, 5, 3 X_ref, y = make_classification( n_samples=n_samples, n_features=n_features, n_classes=n_classes, n_informative=3, random_state=0, ) y_str = LabelEncoder().fit(["bar", "baz", "foo"]).inverse_transform(y) # For numerical labels, let y values be taken from set (-1, 0, 1) y = np.array(y) - 1 # Test for string labels lr = LogisticRegression(multi_class="multinomial") lr_cv = LogisticRegressionCV(multi_class="multinomial", Cs=3) lr_str = LogisticRegression(multi_class="multinomial") lr_cv_str = LogisticRegressionCV(multi_class="multinomial", Cs=3) lr.fit(X_ref, y) lr_cv.fit(X_ref, y) lr_str.fit(X_ref, y_str) lr_cv_str.fit(X_ref, y_str) assert_array_almost_equal(lr.coef_, lr_str.coef_) assert sorted(lr_str.classes_) == ["bar", "baz", "foo"] assert_array_almost_equal(lr_cv.coef_, lr_cv_str.coef_) assert sorted(lr_str.classes_) == ["bar", "baz", "foo"] assert sorted(lr_cv_str.classes_) == ["bar", "baz", "foo"] # The predictions should be in original labels assert sorted(np.unique(lr_str.predict(X_ref))) == ["bar", "baz", "foo"] assert sorted(np.unique(lr_cv_str.predict(X_ref))) == ["bar", "baz", "foo"] # Make sure class weights can be given with string labels lr_cv_str = LogisticRegression( class_weight={"bar": 1, "baz": 2, "foo": 0}, multi_class="multinomial" ).fit(X_ref, y_str) assert sorted(np.unique(lr_cv_str.predict(X_ref))) == ["bar", "baz"] def test_logistic_cv_sparse(): X, y = make_classification(n_samples=50, n_features=5, random_state=0) X[X < 1.0] = 0.0 csr = sparse.csr_matrix(X) clf = LogisticRegressionCV() clf.fit(X, y) clfs = LogisticRegressionCV() clfs.fit(csr, y) assert_array_almost_equal(clfs.coef_, clf.coef_) assert_array_almost_equal(clfs.intercept_, clf.intercept_) assert clfs.C_ == clf.C_ def test_ovr_multinomial_iris(): # Test that OvR and multinomial are correct using the iris dataset. train, target = iris.data, iris.target n_samples, n_features = train.shape # The cv indices from stratified kfold (where stratification is done based # on the fine-grained iris classes, i.e, before the classes 0 and 1 are # conflated) is used for both clf and clf1 n_cv = 2 cv = StratifiedKFold(n_cv) precomputed_folds = list(cv.split(train, target)) # Train clf on the original dataset where classes 0 and 1 are separated clf = LogisticRegressionCV(cv=precomputed_folds, multi_class="ovr") clf.fit(train, target) # Conflate classes 0 and 1 and train clf1 on this modified dataset clf1 = LogisticRegressionCV(cv=precomputed_folds, multi_class="ovr") target_copy = target.copy() target_copy[target_copy == 0] = 1 clf1.fit(train, target_copy) # Ensure that what OvR learns for class2 is same regardless of whether # classes 0 and 1 are separated or not assert_allclose(clf.scores_[2], clf1.scores_[2]) assert_allclose(clf.intercept_[2:], clf1.intercept_) assert_allclose(clf.coef_[2][np.newaxis, :], clf1.coef_) # Test the shape of various attributes. assert clf.coef_.shape == (3, n_features) assert_array_equal(clf.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf.coefs_paths_.values())) assert coefs_paths.shape == (3, n_cv, 10, n_features + 1) assert clf.Cs_.shape == (10,) scores = np.asarray(list(clf.scores_.values())) assert scores.shape == (3, n_cv, 10) # Test that for the iris data multinomial gives a better accuracy than OvR for solver in ["lbfgs", "newton-cg", "sag", "saga"]: max_iter = 500 if solver in ["sag", "saga"] else 15 clf_multi = LogisticRegressionCV( solver=solver, multi_class="multinomial", max_iter=max_iter, random_state=42, tol=1e-3 if solver in ["sag", "saga"] else 1e-2, cv=2, ) clf_multi.fit(train, target) multi_score = clf_multi.score(train, target) ovr_score = clf.score(train, target) assert multi_score > ovr_score # Test attributes of LogisticRegressionCV assert clf.coef_.shape == clf_multi.coef_.shape assert_array_equal(clf_multi.classes_, [0, 1, 2]) coefs_paths = np.asarray(list(clf_multi.coefs_paths_.values())) assert coefs_paths.shape == (3, n_cv, 10, n_features + 1) assert clf_multi.Cs_.shape == (10,) scores = np.asarray(list(clf_multi.scores_.values())) assert scores.shape == (3, n_cv, 10) def test_logistic_regression_solvers(): """Test solvers converge to the same result.""" X, y = make_classification(n_features=10, n_informative=5, random_state=0) params = dict(fit_intercept=False, random_state=42, multi_class="ovr") solvers = ("newton-cg", "lbfgs", "liblinear", "sag", "saga") regressors = { solver: LogisticRegression(solver=solver, **params).fit(X, y) for solver in solvers } for solver_1, solver_2 in itertools.combinations(regressors, r=2): assert_array_almost_equal( regressors[solver_1].coef_, regressors[solver_2].coef_, decimal=3 ) def test_logistic_regression_solvers_multiclass(): """Test solvers converge to the same result for multiclass problems.""" X, y = make_classification( n_samples=20, n_features=20, n_informative=10, n_classes=3, random_state=0 ) tol = 1e-7 params = dict(fit_intercept=False, tol=tol, random_state=42, multi_class="ovr") solvers = ("newton-cg", "lbfgs", "liblinear", "sag", "saga") # Override max iteration count for specific solvers to allow for # proper convergence. solver_max_iter = {"sag": 1000, "saga": 10000} regressors = { solver: LogisticRegression( solver=solver, max_iter=solver_max_iter.get(solver, 100), **params ).fit(X, y) for solver in solvers } for solver_1, solver_2 in itertools.combinations(regressors, r=2): assert_array_almost_equal( regressors[solver_1].coef_, regressors[solver_2].coef_, decimal=4 ) def test_logistic_regressioncv_class_weights(): for weight in [{0: 0.1, 1: 0.2}, {0: 0.1, 1: 0.2, 2: 0.5}]: n_classes = len(weight) for class_weight in (weight, "balanced"): X, y = make_classification( n_samples=30, n_features=3, n_repeated=0, n_informative=3, n_redundant=0, n_classes=n_classes, random_state=0, ) clf_lbf = LogisticRegressionCV( solver="lbfgs", Cs=1, fit_intercept=False, multi_class="ovr", class_weight=class_weight, ) clf_ncg = LogisticRegressionCV( solver="newton-cg", Cs=1, fit_intercept=False, multi_class="ovr", class_weight=class_weight, ) clf_lib = LogisticRegressionCV( solver="liblinear", Cs=1, fit_intercept=False, multi_class="ovr", class_weight=class_weight, ) clf_sag = LogisticRegressionCV( solver="sag", Cs=1, fit_intercept=False, multi_class="ovr", class_weight=class_weight, tol=1e-5, max_iter=10000, random_state=0, ) clf_saga = LogisticRegressionCV( solver="saga", Cs=1, fit_intercept=False, multi_class="ovr", class_weight=class_weight, tol=1e-5, max_iter=10000, random_state=0, ) clf_lbf.fit(X, y) clf_ncg.fit(X, y) clf_lib.fit(X, y) clf_sag.fit(X, y) clf_saga.fit(X, y) assert_array_almost_equal(clf_lib.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_ncg.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_sag.coef_, clf_lbf.coef_, decimal=4) assert_array_almost_equal(clf_saga.coef_, clf_lbf.coef_, decimal=4) def test_logistic_regression_sample_weights(): X, y = make_classification( n_samples=20, n_features=5, n_informative=3, n_classes=2, random_state=0 ) sample_weight = y + 1 for LR in [LogisticRegression, LogisticRegressionCV]: kw = {"random_state": 42, "fit_intercept": False, "multi_class": "ovr"} if LR is LogisticRegressionCV: kw.update({"Cs": 3, "cv": 3}) # Test that passing sample_weight as ones is the same as # not passing them at all (default None) for solver in ["lbfgs", "liblinear"]: clf_sw_none = LR(solver=solver, **kw) clf_sw_ones = LR(solver=solver, **kw) clf_sw_none.fit(X, y) clf_sw_ones.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(clf_sw_none.coef_, clf_sw_ones.coef_, decimal=4) # Test that sample weights work the same with the lbfgs, # newton-cg, and 'sag' solvers clf_sw_lbfgs = LR(**kw) clf_sw_lbfgs.fit(X, y, sample_weight=sample_weight) clf_sw_n = LR(solver="newton-cg", **kw) clf_sw_n.fit(X, y, sample_weight=sample_weight) clf_sw_sag = LR(solver="sag", tol=1e-10, **kw) # ignore convergence warning due to small dataset with ignore_warnings(): clf_sw_sag.fit(X, y, sample_weight=sample_weight) clf_sw_liblinear = LR(solver="liblinear", **kw) clf_sw_liblinear.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_n.coef_, decimal=4) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_sag.coef_, decimal=4) assert_array_almost_equal(clf_sw_lbfgs.coef_, clf_sw_liblinear.coef_, decimal=4) # Test that passing class_weight as [1,2] is the same as # passing class weight = [1,1] but adjusting sample weights # to be 2 for all instances of class 2 for solver in ["lbfgs", "liblinear"]: clf_cw_12 = LR(solver=solver, class_weight={0: 1, 1: 2}, **kw) clf_cw_12.fit(X, y) clf_sw_12 = LR(solver=solver, **kw) clf_sw_12.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(clf_cw_12.coef_, clf_sw_12.coef_, decimal=4) # Test the above for l1 penalty and l2 penalty with dual=True. # since the patched liblinear code is different. clf_cw = LogisticRegression( solver="liblinear", fit_intercept=False, class_weight={0: 1, 1: 2}, penalty="l1", tol=1e-5, random_state=42, multi_class="ovr", ) clf_cw.fit(X, y) clf_sw = LogisticRegression( solver="liblinear", fit_intercept=False, penalty="l1", tol=1e-5, random_state=42, multi_class="ovr", ) clf_sw.fit(X, y, sample_weight) assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4) clf_cw = LogisticRegression( solver="liblinear", fit_intercept=False, class_weight={0: 1, 1: 2}, penalty="l2", dual=True, random_state=42, multi_class="ovr", ) clf_cw.fit(X, y) clf_sw = LogisticRegression( solver="liblinear", fit_intercept=False, penalty="l2", dual=True, random_state=42, multi_class="ovr", ) clf_sw.fit(X, y, sample_weight) assert_array_almost_equal(clf_cw.coef_, clf_sw.coef_, decimal=4) def _compute_class_weight_dictionary(y): # helper for returning a dictionary instead of an array classes = np.unique(y) class_weight = compute_class_weight("balanced", classes=classes, y=y) class_weight_dict = dict(zip(classes, class_weight)) return class_weight_dict def test_logistic_regression_class_weights(): # Multinomial case: remove 90% of class 0 X = iris.data[45:, :] y = iris.target[45:] solvers = ("lbfgs", "newton-cg") class_weight_dict = _compute_class_weight_dictionary(y) for solver in solvers: clf1 = LogisticRegression( solver=solver, multi_class="multinomial", class_weight="balanced" ) clf2 = LogisticRegression( solver=solver, multi_class="multinomial", class_weight=class_weight_dict ) clf1.fit(X, y) clf2.fit(X, y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=4) # Binary case: remove 90% of class 0 and 100% of class 2 X = iris.data[45:100, :] y = iris.target[45:100] solvers = ("lbfgs", "newton-cg", "liblinear") class_weight_dict = _compute_class_weight_dictionary(y) for solver in solvers: clf1 = LogisticRegression( solver=solver, multi_class="ovr", class_weight="balanced" ) clf2 = LogisticRegression( solver=solver, multi_class="ovr", class_weight=class_weight_dict ) clf1.fit(X, y) clf2.fit(X, y) assert_array_almost_equal(clf1.coef_, clf2.coef_, decimal=6) def test_logistic_regression_multinomial(): # Tests for the multinomial option in logistic regression # Some basic attributes of Logistic Regression n_samples, n_features, n_classes = 50, 20, 3 X, y = make_classification( n_samples=n_samples, n_features=n_features, n_informative=10, n_classes=n_classes, random_state=0, ) X = StandardScaler(with_mean=False).fit_transform(X) # 'lbfgs' is used as a referenced solver = "lbfgs" ref_i = LogisticRegression(solver=solver, multi_class="multinomial") ref_w = LogisticRegression( solver=solver, multi_class="multinomial", fit_intercept=False ) ref_i.fit(X, y) ref_w.fit(X, y) assert ref_i.coef_.shape == (n_classes, n_features) assert ref_w.coef_.shape == (n_classes, n_features) for solver in ["sag", "saga", "newton-cg"]: clf_i = LogisticRegression( solver=solver, multi_class="multinomial", random_state=42, max_iter=2000, tol=1e-7, ) clf_w = LogisticRegression( solver=solver, multi_class="multinomial", random_state=42, max_iter=2000, tol=1e-7, fit_intercept=False, ) clf_i.fit(X, y) clf_w.fit(X, y) assert clf_i.coef_.shape == (n_classes, n_features) assert clf_w.coef_.shape == (n_classes, n_features) # Compare solutions between lbfgs and the other solvers assert_allclose(ref_i.coef_, clf_i.coef_, rtol=1e-2) assert_allclose(ref_w.coef_, clf_w.coef_, rtol=1e-2) assert_allclose(ref_i.intercept_, clf_i.intercept_, rtol=1e-2) # Test that the path give almost the same results. However since in this # case we take the average of the coefs after fitting across all the # folds, it need not be exactly the same. for solver in ["lbfgs", "newton-cg", "sag", "saga"]: clf_path = LogisticRegressionCV( solver=solver, max_iter=2000, tol=1e-6, multi_class="multinomial", Cs=[1.0] ) clf_path.fit(X, y) assert_allclose(clf_path.coef_, ref_i.coef_, rtol=2e-2) assert_allclose(clf_path.intercept_, ref_i.intercept_, rtol=2e-2) def test_liblinear_decision_function_zero(): # Test negative prediction when decision_function values are zero. # Liblinear predicts the positive class when decision_function values # are zero. This is a test to verify that we do not do the same. # See Issue: https://github.com/scikit-learn/scikit-learn/issues/3600 # and the PR https://github.com/scikit-learn/scikit-learn/pull/3623 X, y = make_classification(n_samples=5, n_features=5, random_state=0) clf = LogisticRegression(fit_intercept=False, solver="liblinear", multi_class="ovr") clf.fit(X, y) # Dummy data such that the decision function becomes zero. X = np.zeros((5, 5)) assert_array_equal(clf.predict(X), np.zeros(5)) def test_liblinear_logregcv_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5, random_state=0) clf = LogisticRegressionCV(solver="liblinear", multi_class="ovr") clf.fit(sparse.csr_matrix(X), y) def test_saga_sparse(): # Test LogRegCV with solver='liblinear' works for sparse matrices X, y = make_classification(n_samples=10, n_features=5, random_state=0) clf = LogisticRegressionCV(solver="saga") clf.fit(sparse.csr_matrix(X), y) def test_logreg_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: clf = LogisticRegression( intercept_scaling=i, solver="liblinear", multi_class="ovr" ) msg = ( "Intercept scaling is %r but needs to be greater than 0." " To disable fitting an intercept," " set fit_intercept=False." % clf.intercept_scaling ) with pytest.raises(ValueError, match=msg): clf.fit(X, Y1) def test_logreg_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False clf = LogisticRegression(fit_intercept=False) clf.fit(X, Y1) assert clf.intercept_ == 0.0 def test_logreg_l1(): # Because liblinear penalizes the intercept and saga does not, we do not # fit the intercept to make it possible to compare the coefficients of # the two models at convergence. rng = np.random.RandomState(42) n_samples = 50 X, y = make_classification(n_samples=n_samples, n_features=20, random_state=0) X_noise = rng.normal(size=(n_samples, 3)) X_constant = np.ones(shape=(n_samples, 2)) X = np.concatenate((X, X_noise, X_constant), axis=1) lr_liblinear = LogisticRegression( penalty="l1", C=1.0, solver="liblinear", fit_intercept=False, multi_class="ovr", tol=1e-10, ) lr_liblinear.fit(X, y) lr_saga = LogisticRegression( penalty="l1", C=1.0, solver="saga", fit_intercept=False, multi_class="ovr", max_iter=1000, tol=1e-10, ) lr_saga.fit(X, y) assert_array_almost_equal(lr_saga.coef_, lr_liblinear.coef_) # Noise and constant features should be regularized to zero by the l1 # penalty assert_array_almost_equal(lr_liblinear.coef_[0, -5:], np.zeros(5)) assert_array_almost_equal(lr_saga.coef_[0, -5:], np.zeros(5)) def test_logreg_l1_sparse_data(): # Because liblinear penalizes the intercept and saga does not, we do not # fit the intercept to make it possible to compare the coefficients of # the two models at convergence. rng = np.random.RandomState(42) n_samples = 50 X, y = make_classification(n_samples=n_samples, n_features=20, random_state=0) X_noise = rng.normal(scale=0.1, size=(n_samples, 3)) X_constant = np.zeros(shape=(n_samples, 2)) X = np.concatenate((X, X_noise, X_constant), axis=1) X[X < 1] = 0 X = sparse.csr_matrix(X) lr_liblinear = LogisticRegression( penalty="l1", C=1.0, solver="liblinear", fit_intercept=False, multi_class="ovr", tol=1e-10, ) lr_liblinear.fit(X, y) lr_saga = LogisticRegression( penalty="l1", C=1.0, solver="saga", fit_intercept=False, multi_class="ovr", max_iter=1000, tol=1e-10, ) lr_saga.fit(X, y) assert_array_almost_equal(lr_saga.coef_, lr_liblinear.coef_) # Noise and constant features should be regularized to zero by the l1 # penalty assert_array_almost_equal(lr_liblinear.coef_[0, -5:], np.zeros(5)) assert_array_almost_equal(lr_saga.coef_[0, -5:], np.zeros(5)) # Check that solving on the sparse and dense data yield the same results lr_saga_dense = LogisticRegression( penalty="l1", C=1.0, solver="saga", fit_intercept=False, multi_class="ovr", max_iter=1000, tol=1e-10, ) lr_saga_dense.fit(X.toarray(), y) assert_array_almost_equal(lr_saga.coef_, lr_saga_dense.coef_) @pytest.mark.parametrize("random_seed", [42]) @pytest.mark.parametrize("penalty", ["l1", "l2"]) def test_logistic_regression_cv_refit(random_seed, penalty): # Test that when refit=True, logistic regression cv with the saga solver # converges to the same solution as logistic regression with a fixed # regularization parameter. # Internally the LogisticRegressionCV model uses a warm start to refit on # the full data model with the optimal C found by CV. As the penalized # logistic regression loss is convex, we should still recover exactly # the same solution as long as the stopping criterion is strict enough (and # that there are no exactly duplicated features when penalty='l1'). X, y = make_classification(n_samples=100, n_features=20, random_state=random_seed) common_params = dict( solver="saga", penalty=penalty, random_state=random_seed, max_iter=1000, tol=1e-12, ) lr_cv = LogisticRegressionCV(Cs=[1.0], refit=True, **common_params) lr_cv.fit(X, y) lr = LogisticRegression(C=1.0, **common_params) lr.fit(X, y) assert_array_almost_equal(lr_cv.coef_, lr.coef_) def test_logreg_predict_proba_multinomial(): X, y = make_classification( n_samples=10, n_features=20, random_state=0, n_classes=3, n_informative=10 ) # Predicted probabilities using the true-entropy loss should give a # smaller loss than those using the ovr method. clf_multi = LogisticRegression(multi_class="multinomial", solver="lbfgs") clf_multi.fit(X, y) clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_ovr = LogisticRegression(multi_class="ovr", solver="lbfgs") clf_ovr.fit(X, y) clf_ovr_loss = log_loss(y, clf_ovr.predict_proba(X)) assert clf_ovr_loss > clf_multi_loss # Predicted probabilities using the soft-max function should give a # smaller loss than those using the logistic function. clf_multi_loss = log_loss(y, clf_multi.predict_proba(X)) clf_wrong_loss = log_loss(y, clf_multi._predict_proba_lr(X)) assert clf_wrong_loss > clf_multi_loss @pytest.mark.parametrize("max_iter", np.arange(1, 5)) @pytest.mark.parametrize("multi_class", ["ovr", "multinomial"]) @pytest.mark.parametrize( "solver, message", [ ( "newton-cg", "newton-cg failed to converge. Increase the number of iterations.", ), ( "liblinear", "Liblinear failed to converge, increase the number of iterations.", ), ("sag", "The max_iter was reached which means the coef_ did not converge"), ("saga", "The max_iter was reached which means the coef_ did not converge"), ("lbfgs", "lbfgs failed to converge"), ], ) def test_max_iter(max_iter, multi_class, solver, message): # Test that the maximum number of iteration is reached X, y_bin = iris.data, iris.target.copy() y_bin[y_bin == 2] = 0 if solver == "liblinear" and multi_class == "multinomial": pytest.skip("'multinomial' is unavailable when solver='liblinear'") lr = LogisticRegression( max_iter=max_iter, tol=1e-15, multi_class=multi_class, random_state=0, solver=solver, ) with pytest.warns(ConvergenceWarning, match=message): lr.fit(X, y_bin) assert lr.n_iter_[0] == max_iter @pytest.mark.parametrize("solver", ["newton-cg", "liblinear", "sag", "saga", "lbfgs"]) def test_n_iter(solver): # Test that self.n_iter_ has the correct format. X, y = iris.data, iris.target n_classes = np.unique(y).shape[0] assert n_classes == 3 # Also generate a binary classification sub-problem. y_bin = y.copy() y_bin[y_bin == 2] = 0 n_Cs = 4 n_cv_fold = 2 # Binary classification case clf = LogisticRegression(tol=1e-2, C=1.0, solver=solver, random_state=42) clf.fit(X, y_bin) assert clf.n_iter_.shape == (1,) clf_cv = LogisticRegressionCV( tol=1e-2, solver=solver, Cs=n_Cs, cv=n_cv_fold, random_state=42 ) clf_cv.fit(X, y_bin) assert clf_cv.n_iter_.shape == (1, n_cv_fold, n_Cs) # OvR case clf.set_params(multi_class="ovr").fit(X, y) assert clf.n_iter_.shape == (n_classes,) clf_cv.set_params(multi_class="ovr").fit(X, y) assert clf_cv.n_iter_.shape == (n_classes, n_cv_fold, n_Cs) # multinomial case if solver == "liblinear": # This solver only supports one-vs-rest multiclass classification. return # When using the multinomial objective function, there is a single # optimization problem to solve for all classes at once: clf.set_params(multi_class="multinomial").fit(X, y) assert clf.n_iter_.shape == (1,) clf_cv.set_params(multi_class="multinomial").fit(X, y) assert clf_cv.n_iter_.shape == (1, n_cv_fold, n_Cs) @pytest.mark.parametrize("solver", ("newton-cg", "sag", "saga", "lbfgs")) @pytest.mark.parametrize("warm_start", (True, False)) @pytest.mark.parametrize("fit_intercept", (True, False)) @pytest.mark.parametrize("multi_class", ["ovr", "multinomial"]) def test_warm_start(solver, warm_start, fit_intercept, multi_class): # A 1-iteration second fit on same data should give almost same result # with warm starting, and quite different result without warm starting. # Warm starting does not work with liblinear solver. X, y = iris.data, iris.target clf = LogisticRegression( tol=1e-4, multi_class=multi_class, warm_start=warm_start, solver=solver, random_state=42, fit_intercept=fit_intercept, ) with ignore_warnings(category=ConvergenceWarning): clf.fit(X, y) coef_1 = clf.coef_ clf.max_iter = 1 clf.fit(X, y) cum_diff = np.sum(np.abs(coef_1 - clf.coef_)) msg = ( "Warm starting issue with %s solver in %s mode " "with fit_intercept=%s and warm_start=%s" % (solver, multi_class, str(fit_intercept), str(warm_start)) ) if warm_start: assert 2.0 > cum_diff, msg else: assert cum_diff > 2.0, msg def test_saga_vs_liblinear(): iris = load_iris() X, y = iris.data, iris.target X = np.concatenate([X] * 3) y = np.concatenate([y] * 3) X_bin = X[y <= 1] y_bin = y[y <= 1] * 2 - 1 X_sparse, y_sparse = make_classification( n_samples=50, n_features=20, random_state=0 ) X_sparse = sparse.csr_matrix(X_sparse) for X, y in ((X_bin, y_bin), (X_sparse, y_sparse)): for penalty in ["l1", "l2"]: n_samples = X.shape[0] # alpha=1e-3 is time consuming for alpha in np.logspace(-1, 1, 3): saga = LogisticRegression( C=1.0 / (n_samples * alpha), solver="saga", multi_class="ovr", max_iter=200, fit_intercept=False, penalty=penalty, random_state=0, tol=1e-24, ) liblinear = LogisticRegression( C=1.0 / (n_samples * alpha), solver="liblinear", multi_class="ovr", max_iter=200, fit_intercept=False, penalty=penalty, random_state=0, tol=1e-24, ) saga.fit(X, y) liblinear.fit(X, y) # Convergence for alpha=1e-3 is very slow assert_array_almost_equal(saga.coef_, liblinear.coef_, 3) @pytest.mark.parametrize("multi_class", ["ovr", "multinomial"]) @pytest.mark.parametrize("solver", ["newton-cg", "liblinear", "saga"]) @pytest.mark.parametrize("fit_intercept", [False, True]) def test_dtype_match(solver, multi_class, fit_intercept): # Test that np.float32 input data is not cast to np.float64 when possible # and that the output is approximately the same no matter the input format. if solver == "liblinear" and multi_class == "multinomial": pytest.skip("liblinear does not support multinomial logistic") out32_type = np.float64 if solver == "liblinear" else np.float32 X_32 = np.array(X).astype(np.float32) y_32 = np.array(Y1).astype(np.float32) X_64 =
np.array(X)
numpy.array
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for recurrent layers functionality other than GRU, LSTM, SimpleRNN. See also: lstm_test.py, gru_test.py, simplernn_test.py. """ import collections import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import keras from keras.engine import base_layer_utils from keras.layers.rnn import gru from keras.layers.rnn import gru_v1 from keras.layers.rnn import lstm from keras.layers.rnn import lstm_v1 from keras.testing_infra import test_combinations from keras.testing_infra import test_utils from keras.utils import generic_utils # isort: off from tensorflow.python.training.tracking import ( util as trackable_util, ) # Used for nested input/output/state RNN test. NestedInput = collections.namedtuple("NestedInput", ["t1", "t2"]) NestedState = collections.namedtuple("NestedState", ["s1", "s2"]) @test_combinations.run_all_keras_modes class RNNTest(test_combinations.TestCase): def test_minimal_rnn_cell_non_layer(self): class MinimalRNNCell: def __init__(self, units, input_dim): self.units = units self.state_size = units self.kernel = keras.backend.variable( np.random.random((input_dim, units)) ) def call(self, inputs, states): prev_output = states[0] output = keras.backend.dot(inputs, self.kernel) + prev_output return output, [output] # Basic test case. cell = MinimalRNNCell(32, 5) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [ MinimalRNNCell(8, 5), MinimalRNNCell(32, 8), MinimalRNNCell(32, 32), ] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_minimal_rnn_cell_non_layer_multiple_states(self): class MinimalRNNCell: def __init__(self, units, input_dim): self.units = units self.state_size = (units, units) self.kernel = keras.backend.variable( np.random.random((input_dim, units)) ) def call(self, inputs, states): prev_output_1 = states[0] prev_output_2 = states[1] output = keras.backend.dot(inputs, self.kernel) output += prev_output_1 output -= prev_output_2 return output, [output * 2, output * 3] # Basic test case. cell = MinimalRNNCell(32, 5) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [ MinimalRNNCell(8, 5), MinimalRNNCell(16, 8), MinimalRNNCell(32, 16), ] layer = keras.layers.RNN(cells) self.assertEqual(layer.cell.state_size, ((8, 8), (16, 16), (32, 32))) self.assertEqual(layer.cell.output_size, 32) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_minimal_rnn_cell_layer(self): class MinimalRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super().__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer="uniform", name="kernel", ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer="uniform", name="recurrent_kernel", ) self.built = True def call(self, inputs, states): prev_output = states[0] h = keras.backend.dot(inputs, self.kernel) output = h + keras.backend.dot( prev_output, self.recurrent_kernel ) return output, [output] def get_config(self): config = {"units": self.units} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) # Test basic case. x = keras.Input((None, 5)) cell = MinimalRNNCell(32) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() with generic_utils.CustomObjectScope( {"MinimalRNNCell": MinimalRNNCell} ): layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) # Test stacking. cells = [MinimalRNNCell(8), MinimalRNNCell(12), MinimalRNNCell(32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacked RNN serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() with generic_utils.CustomObjectScope( {"MinimalRNNCell": MinimalRNNCell} ): layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) def test_minimal_rnn_cell_abstract_rnn_cell(self): class MinimalRNNCell(keras.layers.AbstractRNNCell): def __init__(self, units, **kwargs): self.units = units super().__init__(**kwargs) @property def state_size(self): return self.units def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer="uniform", name="kernel", ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer="uniform", name="recurrent_kernel", ) self.built = True def call(self, inputs, states): prev_output = states[0] h = keras.backend.dot(inputs, self.kernel) output = h + keras.backend.dot( prev_output, self.recurrent_kernel ) return output, output @property def output_size(self): return self.units cell = MinimalRNNCell(32) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [MinimalRNNCell(8), MinimalRNNCell(16), MinimalRNNCell(32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_rnn_with_time_major(self): batch = 10 time_step = 5 embedding_dim = 4 units = 3 # Test basic case. x = keras.Input((time_step, embedding_dim)) time_major_x = keras.layers.Lambda( lambda t: tf.transpose(t, [1, 0, 2]) )(x) layer = keras.layers.SimpleRNN( units, time_major=True, return_sequences=True ) self.assertEqual( layer.compute_output_shape( (time_step, None, embedding_dim) ).as_list(), [time_step, None, units], ) y = layer(time_major_x) self.assertEqual(layer.output_shape, (time_step, None, units)) y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, embedding_dim)), np.zeros((batch, time_step, units)), ) # Test stacking. x = keras.Input((time_step, embedding_dim)) time_major_x = keras.layers.Lambda( lambda t: tf.transpose(t, [1, 0, 2]) )(x) cell_units = [10, 8, 6] cells = [keras.layers.SimpleRNNCell(cell_units[i]) for i in range(3)] layer = keras.layers.RNN(cells, time_major=True, return_sequences=True) y = layer(time_major_x) self.assertEqual(layer.output_shape, (time_step, None, cell_units[-1])) y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, embedding_dim)), np.zeros((batch, time_step, cell_units[-1])), ) # Test masking. x = keras.Input((time_step, embedding_dim)) time_major = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))( x ) mask = keras.layers.Masking()(time_major) rnn = keras.layers.SimpleRNN( units, time_major=True, return_sequences=True )(mask) y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(rnn) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(
np.zeros((batch, time_step, embedding_dim))
numpy.zeros
# # Copyright 2019 <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # from acados_template import * import acados_template as at import numpy as nmp from ctypes import * import matplotlib import matplotlib.pyplot as plt import scipy.linalg import json CODE_GEN = 1 COMPILE = 1 FORMULATION = 2 # 0 for hexagon 1 for sphere 2 SCQP sphere i_d_ref = 1.484 i_q_ref = 1.429 w_val = 200 i_d_ref = -20 i_q_ref = 20 w_val = 300 udc = 580 u_max = 2/3*udc # fitted psi_d map def psi_d_num(x,y): # This function was generated by the Symbolic Math Toolbox version 8.0. # 07-Feb-2018 23:07:49 psi_d_expression = x*(-4.215858085639979e-3) + \ exp(y**2*(-8.413493151721978e-5))*atan(x*1.416834085282644e-1)*8.834738694115108e-1 return psi_d_expression def psi_q_num(x,y): # This function was generated by the Symbolic Math Toolbox version 8.0. # 07-Feb-2018 23:07:50 psi_q_expression = y*1.04488335702649e-2+exp(x**2*(-1.0/7.2e1))*atan(y)*6.649036351062812e-2 return psi_q_expression psi_d_ref = psi_d_num(i_d_ref, i_q_ref) psi_q_ref = psi_q_num(i_d_ref, i_q_ref) # compute steady-state u Rs = 0.4 u_d_ref = Rs*i_d_ref - w_val*psi_q_ref u_q_ref = Rs*i_q_ref + w_val*psi_d_ref def export_dae_model(): model_name = 'rsm' # constants theta = 0.0352 Rs = 0.4 m_load = 0.0 J = nmp.array([[0, -1], [1, 0]]) # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # set up algebraic variables i_d = SX.sym('i_d') i_q = SX.sym('i_q') z = vertcat(i_d, i_q) # set up xdot psi_d_dot = SX.sym('psi_d_dot') psi_q_dot = SX.sym('psi_q_dot') xdot = vertcat(psi_d_dot, psi_q_dot) # set up parameters w = SX.sym('w') # speed dist_d = SX.sym('dist_d') # d disturbance dist_q = SX.sym('dist_q') # q disturbance p = vertcat(w, dist_d, dist_q) # build flux expression Psi = vertcat(psi_d_num(i_d, i_q), psi_q_num(i_d, i_q)) # dynamics f_impl = vertcat( psi_d_dot - u_d + Rs*i_d - w*psi_q - dist_d, \ psi_q_dot - u_q + Rs*i_q + w*psi_d - dist_q, \ psi_d - Psi[0], \ psi_q - Psi[1]) model = acados_dae() model.f_impl_expr = f_impl model.f_expl_expr = [] model.x = x model.xdot = xdot model.u = u model.z = z model.p = p model.name = model_name return model def export_voltage_sphere_con(): con_name = 'v_sphere' # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # voltage sphere constraint = acados_constraint() constraint.expr = u_d**2 + u_q**2 # constraint.expr = u_d + u_q constraint.x = x constraint.u = u constraint.nc = 1 constraint.name = con_name return constraint def export_nonlinear_part_voltage_constraint(): con_name = 'v_sphere_nl' # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # voltage sphere constraint = acados_constraint() constraint.expr = vertcat(u_d, u_q) # constraint.expr = u_d + u_q constraint.x = x constraint.u = u constraint.nc = 2 constraint.name = con_name return constraint def get_general_constraints_DC(u_max): # polytopic constraint on the input r = u_max x1 = r y1 = 0 x2 = r*cos(pi/3) y2 = r*sin(pi/3) q1 = -(y2 - y1/x1*x2)/(1-x2/x1) m1 = -(y1 + q1)/x1 # q1 <= uq + m1*ud <= -q1 # q1 <= uq - m1*ud <= -q1 # box constraints m2 = 0 q2 = r*sin(pi/3) # -q2 <= uq <= q2 # form D and C matrices # (acados C interface works with column major format) D = nmp.transpose(nmp.array([[1, m1],[1, -m1]])) # D = nmp.array([[1, m1],[1, -m1]]) # TODO(andrea): ??? # D = nmp.transpose(nmp.array([[m1, 1],[-m1, 1]])) D = nmp.array([[m1, 1],[-m1, 1]]) C = nmp.transpose(nmp.array([[0, 0], [0, 0]])) ug = nmp.array([-q1, -q1]) lg = nmp.array([+q1, +q1]) lbu = nmp.array([-q2]) ubu = nmp.array([+q2]) res = dict() res["D"] = D res["C"] = C res["lg"] = lg res["ug"] = ug res["lbu"] = lbu res["ubu"] = ubu return res # create render arguments ra = acados_ocp_nlp() # export model model = export_dae_model() # export constraint description constraint = export_voltage_sphere_con() constraint_nl = export_nonlinear_part_voltage_constraint() # set model_name ra.model_name = model.name if FORMULATION == 1: # constraints name ra.con_h_name = constraint.name if FORMULATION == 2: # constraints name ra.con_h_name = constraint.name ra.con_p_name = constraint_nl.name # Ts = 0.0016 # Ts = 0.0012 Ts = 0.0008 # Ts = 0.0004 nx = model.x.size()[0] nu = model.u.size()[0] nz = model.z.size()[0] np = model.p.size()[0] ny = nu + nx ny_e = nx N = 2 Tf = N*Ts # set ocp_nlp_dimensions nlp_dims = ra.dims nlp_dims.nx = nx nlp_dims.nz = nz nlp_dims.ny = ny nlp_dims.ny_e = ny_e nlp_dims.nbx = 0 nlp_dims.nbu = 1 if FORMULATION == 0: nlp_dims.nbu = 1 nlp_dims.ng = 2 if FORMULATION == 1: nlp_dims.ng = 0 nlp_dims.nh = 1 if FORMULATION == 2: nlp_dims.ng = 2 nlp_dims.npd = 2 nlp_dims.nh = 1 nlp_dims.nh_e = 0 # nlp_dims.nbu = 2 # nlp_dims.ng = 2 # nlp_dims.ng = 0 nlp_dims.ng_e = 0 nlp_dims.nbx_e = 0 nlp_dims.nu = nu nlp_dims.np = np nlp_dims.N = N # nlp_dims.npd_e = -1 # nlp_dims.nh = 1 # set weighting matrices nlp_cost = ra.cost Q = nmp.eye(nx) Q[0,0] = 5e2*Tf/N Q[1,1] = 5e2*Tf/N R = nmp.eye(nu) R[0,0] = 1e-4*Tf/N R[1,1] = 1e-4*Tf/N # R[0,0] = 1e1 # R[1,1] = 1e1 nlp_cost.W = scipy.linalg.block_diag(Q, R) Vx = nmp.zeros((ny, nx)) Vx[0,0] = 1.0 Vx[1,1] = 1.0 nlp_cost.Vx = Vx Vu = nmp.zeros((ny, nu)) Vu[2,0] = 1.0 Vu[3,1] = 1.0 nlp_cost.Vu = Vu Vz = nmp.zeros((ny, nz)) Vz[0,0] = 0.0 Vz[1,1] = 0.0 nlp_cost.Vz = Vz Q_e =
nmp.eye(nx)
numpy.eye
#!python2 # -*- coding: utf-8 -*- """ Created on Wed Jan 11 14:33:54 2017 @author: lansford """ from __future__ import division import os from pdos_overlap.coordination import get_geometric_data import numpy as np import matplotlib.pyplot as plt from pdos_overlap.vasp_dos import VASP_DOS from pdos_overlap.vasp_dos import get_all_VASP_files from pdos_overlap.plotting_tools import set_figure_settings from scipy.stats import linregress set_figure_settings('paper') Downloads_folder = os.path.join(os.path.expanduser("~"),'Downloads') GCNList = [] atom_type = [] band_list = [] band_width_list = [] occupied_band_list = [] unoccupied_band_list = [] filling_list = [] second_moment_list = [] bond_energy_list = [] DOSCAR_files, CONTCAR_files = get_all_VASP_files(\ r'C:\Users\lansf\Documents\Data\PROBE_PDOS\lobster_files_(N+1)bands\nanoparticles_noW') for DOSCAR, CONTCAR in zip(DOSCAR_files, CONTCAR_files): indices, GCNs, atom_types = get_geometric_data(CONTCAR) GCNList += GCNs.tolist() atom_type += atom_types.tolist() # read and return densityofstates object PDOS = VASP_DOS(DOSCAR) for atom_index in indices: band_center = PDOS.get_band_center(atom_index, ['s','d']\ , sum_density=True) - PDOS.e_fermi occupied_band_center = PDOS.get_band_center(atom_index, ['s','d']\ , sum_density=True, max_energy=PDOS.e_fermi) - PDOS.e_fermi unoccupied_band_center = PDOS.get_band_center(atom_index, ['s','d']\ , sum_density=True, min_energy=PDOS.e_fermi) - PDOS.e_fermi band_width = PDOS.get_center_width(PDOS.e_fermi, atom_index, ['s','d']\ , sum_density=True) second_moment = PDOS.get_second_moment(atom_index, ['s','d']\ , sum_density=True) bond_energy = PDOS.get_bond_energy(atom_index, ['s','d']\ , sum_density=True) filling = PDOS.get_filling(atom_index, ['s','d']\ , sum_density=True, max_energy=PDOS.e_fermi) band_list.append(band_center) band_width_list.append(band_width) occupied_band_list.append(occupied_band_center) unoccupied_band_list.append(unoccupied_band_center) filling_list.append(filling) second_moment_list.append(second_moment) bond_energy_list.append(bond_energy) GCNList = np.array(GCNList) atom_type = np.array(atom_type) band_list = np.array(band_list).T band_width_list = np.array(band_width_list).T occupied_band_list = np.array(occupied_band_list).T unoccupied_band_list = np.array(unoccupied_band_list).T filling_list = np.array(filling_list).T second_moment_list = np.array(second_moment_list).T bond_energy_list = np.array(bond_energy_list).T #plotting scaling of band center with GCN for surface sites colors = ['b', 'r'] plt.figure(figsize=(3.5,3.2)) Efit = [] for count, color in enumerate(colors): Efit.append(np.polyfit(GCNList[atom_type=='surface']\ ,filling_list[count][atom_type=='surface'], 1)) plt.plot(np.sort(GCNList[atom_type=='surface'])\ , np.poly1d(Efit[count])\ (np.sort(GCNList[atom_type=='surface'])), color + '--') for count, color in enumerate(colors): plt.plot(GCNList[atom_type=='surface'], filling_list[count][atom_type=='surface'], color + 'o') plt.legend([r'${filling}_{s}$=%.2fGCN + %.2f states' %(Efit[0][0],Efit[0][1]) ,r'${filling}_{d}$=%.2fGCN + %.2f states' %(Efit[1][0],Efit[1][1])] ,loc='best',frameon=False) plt.xlabel('Generalized coordination number (GCN)') plt.ylabel('Filling [states]') plt.show() #plotting scaling of band center with GCN fig = plt.figure(figsize=(7.2,5),dpi=400) axes = fig.subplots(nrows=2, ncols=2) #plotting function Efit = [] for count, color in enumerate(colors): slope, intercept, r_value, p_value, std_err = linregress(GCNList, band_list[count]) Efit.append([slope, intercept]) print('band center R^2 value and std_err') print(r_value**2) print(std_err) axes[0,0].plot(np.sort(GCNList), np.poly1d(Efit[count])(
np.sort(GCNList)
numpy.sort
""" Experiment utilities. """ from common.log import log, LogLevel import math import models import numpy import torch def training_arguments(parser): """ Default training arguments. :param parser: argument parser :type parser: argparse.ArgumentParser """ parser.add_argument('-n', '--normalization', type=str, dest='normalization', default='') parser.add_argument('-a', '--activation', type=str, dest='activation', default='relu') parser.add_argument('--whiten', action='store_true', default=False) parser.add_argument('--dropout', action='store_true', default=False) parser.add_argument('--init_scale', default=1, type=float) parser.add_argument('--scale', default=1, type=float) parser.add_argument('--rescale', action='store_true', default=False) parser.add_argument('--channels', default=32, type=int) parser.add_argument('--clipping', default=None, type=float) def training_argument_list(args): """ Get default training parameters. :param args: arguments :type args: [str] :return: arguments :rtype: [str] """ training_args = [ '-n=%s' % str(args.normalization), '-a=%s' % str(args.activation), '--init_scale=%s' % str(args.init_scale), '--channels=%s' % str(args.channels), '--scale=%s' % str(args.scale), ] if args.clipping is not None: training_args += ['--clipping=%s' % str(args.clipping)] if args.whiten: training_args += ['--whiten'] if args.dropout: training_args += ['--dropout'] return training_args def get_training_directory(training_config, args, suffix=''): """ Get training directory based on training arguments. :param training_config: training configuration :type training_config: common.experiments.config.NormalTrainingConfig :param args: arguments :param suffix: suffix to use for directory :type suffix: str :return: directory name :rtype: str """ init_scale = args.init_scale scale = args.scale clipping = args.clipping channels = args.channels whiten = args.whiten dropout = args.dropout architecture = args.architecture normalization = args.normalization if normalization == '': log('[Warning] no normalization', LogLevel.WARNING) activation = args.activation if activation == '': log('[Warning] no activation', LogLevel.WARNING) # just allows to call various scripts sequentially without caring about resetting the original directory if getattr(training_config, 'original_directory', None) is None: training_config.original_directory = training_config.directory directory = training_config.original_directory if suffix != '': directory += '_' + suffix directory += '_' + architecture if normalization != '': directory += '_' + normalization if activation != 'relu': directory += '_' + activation if whiten: directory += '_whiten' if dropout: directory += '_dropout' if scale != 1: directory += ('_scale%g' % scale).replace('.', '') if clipping is not None: directory += ('_clipping%g' % clipping).replace('.', '') if not math.isclose(init_scale, 1.): directory += ('_%g' % init_scale).replace('.', '') directory += '_%d' % channels return directory def get_get_model(args, config): """ Get a function to return and initialize the model. :param args: arguments :param config: training configuration :return: callable to get model """ channels = args.channels whiten = args.whiten dropout = args.dropout init_scale = args.init_scale scale = args.scale clipping = args.clipping architecture = args.architecture normalization = args.normalization activation = args.activation def set_whiten(model, resolution): mean = numpy.zeros(resolution[0]) std = numpy.zeros(resolution[0]) for c in range(resolution[0]): mean[c] = numpy.mean(config.trainset.images[:, :, :, c]) std[c] =
numpy.std(config.trainset.images[:, :, :, c])
numpy.std
import os import numpy as np from random import shuffle from collections import namedtuple from glob import glob import tensorflow as tf from tensorflow.keras.optimizers import Adam from tf2_module import build_generator, build_discriminator_classifier, softmax_criterion from tf2_utils import get_now_datetime, save_midis class Classifier(object): def __init__(self, args): self.dataset_A_dir = args.dataset_A_dir self.dataset_B_dir = args.dataset_B_dir self.sample_dir = args.sample_dir self.batch_size = args.batch_size self.time_step = args.time_step self.pitch_range = args.pitch_range self.input_c_dim = args.input_nc # number of input image channels self.sigma_c = args.sigma_c self.sigma_d = args.sigma_d self.lr = args.lr self.model = args.model self.generator = build_generator self.discriminator = build_discriminator_classifier OPTIONS = namedtuple('OPTIONS', 'batch_size ' 'time_step ' 'input_nc ' 'output_nc ' 'pitch_range ' 'gf_dim ' 'df_dim ' 'is_training') self.options = OPTIONS._make((args.batch_size, args.time_step, args.input_nc, args.output_nc, args.pitch_range, args.ngf, args.ndf, args.phase == 'train')) self.now_datetime = get_now_datetime() self._build_model(args) print("Initializing classifier...") def _build_model(self, args): # build classifier self.classifier = self.discriminator(self.options, name='Classifier') # optimizer self.classifier_optimizer = Adam(self.lr, beta_1=args.beta1) # checkpoints model_name = "classifier.model" model_dir = "classifier_{}2{}_{}_{}".format(self.dataset_A_dir, self.dataset_B_dir, self.now_datetime, str(self.sigma_c)) self.checkpoint_dir = os.path.join(args.checkpoint_dir, model_dir, model_name) if not os.path.exists(self.checkpoint_dir): os.makedirs(self.checkpoint_dir) self.checkpoint = tf.train.Checkpoint(classifier_optimizer=self.classifier_optimizer, classifier=self.classifier) self.checkpoint_manager = tf.train.CheckpointManager(self.checkpoint, self.checkpoint_dir, max_to_keep=5) def train(self, args): # create training list (origin data with corresponding label) # Label for A is (1, 0), for B is (0, 1) dataA = glob('./datasets/{}/train/*.*'.format(self.dataset_A_dir)) dataB = glob('./datasets/{}/train/*.*'.format(self.dataset_B_dir)) labelA = [(1.0, 0.0) for _ in range(len(dataA))] labelB = [(0.0, 1.0) for _ in range(len(dataB))] data_origin = dataA + dataB label_origin = labelA + labelB training_list = [pair for pair in zip(data_origin, label_origin)] print('Successfully create training list!') # create test list (origin data with corresponding label) dataA = glob('./datasets/{}/test/*.*'.format(self.dataset_A_dir)) dataB = glob('./datasets/{}/test/*.*'.format(self.dataset_B_dir)) labelA = [(1.0, 0.0) for _ in range(len(dataA))] labelB = [(0.0, 1.0) for _ in range(len(dataB))] data_origin = dataA + dataB label_origin = labelA + labelB testing_list = [pair for pair in zip(data_origin, label_origin)] print('Successfully create testing list!') data_test = [np.load(pair[0]) * 2. - 1. for pair in testing_list] data_test = np.array(data_test).astype(np.float32) gaussian_noise = np.random.normal(0, self.sigma_c, [data_test.shape[0], data_test.shape[1], data_test.shape[2], data_test.shape[3]]) data_test += gaussian_noise label_test = [pair[1] for pair in testing_list] label_test =
np.array(label_test)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 5 14:19:05 2020 Functions to attach the LCFS to carbon emissions, based on code by <NAME> @author: lenakilian """ import numpy as np import pandas as pd import io_functions as io df = pd.DataFrame import demand_functions as dm import copy as cp def convert36to33(Y,concs_dict2,years): Y2 = {} for yr in years: temp = np.dot(Y[yr],concs_dict2['C43_to_C40']) Y2[yr] = df(temp, index = Y[yr].index, columns = concs_dict2['C43_to_C40'].columns) return Y2 """ def make_totals(hhspenddata, years, concs_dict2, total_Yhh_112): coicop_exp_tot = {} for yr in years: coicop_exp_tot[yr] = np.sum(hhspenddata[yr].loc[:,'1.1.1.1':'192.168.127.12'],0) coicop_exp_tot2 = {} for yr in years: corrector = np.zeros(shape = 307) countstart = 0 countend = 0 for numb in range(0,33): conc = concs_dict2[str(numb)+'a'] countend = np.sum(np.sum(conc))+countstart lcf_subtotal = np.sum(np.dot(coicop_exp_tot[yr],conc)) #*52/1000) required_subtotal = np.sum(total_Yhh_112[yr].iloc[:,numb]) correction_factor = required_subtotal/lcf_subtotal for c in range(countstart,countend): corrector[c] = correction_factor countstart = countend coicop_exp_tot2[yr] = np.dot(coicop_exp_tot[yr],np.diag(corrector)) return coicop_exp_tot2 """ def expected_totals(hhspenddata, years, concs_dict2, total_Yhh_106): coicop_exp_tot = {} for year in years: temp = np.sum(hhspenddata[year], 0) corrector = np.zeros(shape = 307) start = 0 end = 0 corrector = [] for i in range(0, 33): conc = concs_dict2[str(i) + 'a'] end = len(conc.columns) + start lcf_subtotal = np.sum(np.dot(temp, conc)) required_subtotal = np.sum(total_Yhh_106[year].iloc[:, i]) corrector += [required_subtotal/lcf_subtotal for i in range(start, end)] start = end coicop_exp_tot[year] = np.dot(temp, np.diag(corrector)) return(coicop_exp_tot) def make_y_hh_307(Y,coicop_exp_tot,years,concs_dict2,meta): yhh_wide = {} for yr in years: temp = np.zeros(shape = [meta['fd']['len_idx'],307]) countstart = 0 countend = 0 col = [] for a in range(0,33): conc = np.tile(concs_dict2[str(a)],(meta['reg']['len'],1)) countend = np.sum(np.sum(concs_dict2[str(a)+'a']))+countstart category_total = np.dot(coicop_exp_tot[yr],concs_dict2[str(a)+'a']) #test1 = np.dot(np.diag(Y[yr].iloc[:,a]),conc) test1 = np.dot(conc,np.diag(category_total)) #test2 = np.tile(np.dot(Y[yr].iloc[:,a],conc),(1590,1)) test2 = np.transpose(np.tile(np.dot(conc,category_total),(np.size(conc,1),1))) test3 = test1/test2 test3 = np.nan_to_num(test3, copy=True) #num = np.dot(conc,np.diag(category_total)) #test4 = np.multiply(num,test3) test4 = np.dot(np.diag(Y[yr].iloc[:,a]),test3) #den = np.dot(np.diag(np.sum(num,1)),concs_dict2[str(a)]) #prop = np.divide(num,den) #prop = np.nan_to_num(prop, copy=True) #temp[:,countstart:countend] = (np.dot(np.diag(total_Yhh_106[yr].iloc[:,a]),prop)) temp[:,countstart:countend] = test4 col[countstart:countend] = concs_dict2[str(a) + 'a'].columns countstart = countend yhh_wide[yr] = df(temp, columns = col) return yhh_wide def make_y_hh_prop(Y,total_Yhh_106,meta,years): yhh_prop = {} for yr in years: temp = np.zeros(shape=(len(Y[yr]))) for r in range(0,meta['reg']['len']): temp[r*106:(r+1)*106] = np.divide(np.sum(Y[yr].iloc[r*106:(r+1)*106,0:36],1),np.sum(total_Yhh_106[yr],1)) np.nan_to_num(temp, copy = False) yhh_prop[yr] = temp return yhh_prop def make_new_Y(Y,yhh_wide,meta,years): newY = {} col = [] for yr in years: temp = np.zeros(shape=[len(Y[yr]),314]) temp[:,0:307] = yhh_wide[yr] temp[:,307:314] = Y[yr].iloc[:,33:40] col[0:307] = yhh_wide[yr].columns col[307:314] = Y[yr].iloc[:,33:40].columns newY[yr] = df(temp, index = Y[yr].index, columns = col) return newY def make_ylcf_props(hhspenddata,years): ylcf_props = {} for yr in years: totalspend = np.sum(hhspenddata[yr].loc[:,'1.1.1.1':'192.168.127.12']) temp = np.divide(hhspenddata[yr].loc[:,'1.1.1.1':'192.168.127.12'],np.tile(totalspend,[len(hhspenddata[yr]),1])) np.nan_to_num(temp, copy = False) ylcf_props[yr] = df(temp, index = hhspenddata[yr].index) return ylcf_props def makefoot(S,U,Y,stressor,years): footbyCOICOP = {} for yr in years: temp = np.zeros(shape = 307) Z = io.make_Z_from_S_U(S[yr],U[yr]) bigY = np.zeros(shape = [np.size(Y[yr],0)*2,np.size(Y[yr],1)]) bigY[np.size(Y[yr],0):np.size(Y[yr],0)*2,0:] = Y[yr] x = io.make_x(Z,bigY) L = io.make_L(Z,x) bigstressor = np.zeros(shape = [np.size(Y[yr],0)*2,1]) bigstressor[0:np.size(Y[yr],0),:] = stressor[yr] e = np.sum(bigstressor,1)/x eL = np.dot(e,L) for a in range(0,307): temp[a] = np.dot(eL,bigY[:,a]) footbyCOICOP[yr] = temp return footbyCOICOP def makelcffootdata(domfootbyLCF_nrg,impfootbyLCF_nrg,hhspenddata,years): data = {} for yr in years: temp = np.zeros(shape = [len(domfootbyLCF_nrg[yr]),307+307+17]) cols = ['index','weight','age','sex','ethnicity','number of people','household type','dwelling type','tenure type','GOR','OAC','income','income tax','Soc-ec','no of rooms','cum sum','income rank',] temp[:,0] = hhspenddata[yr].index temp[:,1:10] = hhspenddata[yr].loc[:,'weight':'GOR modified'] for a in range(0,len(hhspenddata[yr])): if hhspenddata[yr].iloc[a,9] == ' ': temp[a,10] = 0 else: temp[a,10] = int(hhspenddata[yr].iloc[a,9]) temp[:,11:15] = hhspenddata[yr].loc[:,'Income anonymised':'rooms in accommodation'] cols[17:324] = hhspenddata[yr].loc[:,'1.1.1.1':'192.168.127.12'].columns cols[341:631] = hhspenddata[yr].loc[:,'1.1.1.1':'192.168.127.12'].columns temp[:,17:17+307] = domfootbyLCF_nrg[yr][:,0:307] temp[:,17+307:17+307+307] = impfootbyLCF_nrg[yr][:,0:307] temp2 = df(temp,columns = cols) temp3 = temp2.sort_values('income') weightsum = np.sum(temp3.loc[:,'weight']) weightsum20 = weightsum/20 temp3.iloc[0,15] = temp3.iloc[0,1] for a in range(1,len(domfootbyLCF_nrg[yr])): temp3.iloc[a,15] = temp3.iloc[a-1,15] + temp3.iloc[a,1] a=0 for b in range(0,len(domfootbyLCF_nrg[yr])): if temp3.iloc[b,15]<(a+1)*weightsum20: temp3.iloc[b,16] = a else: a=a+1 temp3.iloc[b,16] = a-1 data[yr] = temp3 return data def lcfs_analysis(exp_data, concs_dict, concs_dict2, og_Y, S, U, meta, ghg, uk_ghg_direct): Y = cp.copy(og_Y) hhdspend_uk = {} for year in list(exp_data.keys()): temp = exp_data[year].loc[:,'1.1.1.1':'192.168.127.12'] hhdspend_uk[year] = temp.apply(lambda x: x * exp_data[year]['pop']) hhdspend_uk[year].index = exp_data[year].index # use concs temp =
np.dot(Y[year], concs_dict2['C43_to_C40'])
numpy.dot
import colorsys import numpy as np def float_to_uint8(float_color): """ Converts a float color (0 to 1.0) to uint8 (0 to 255) """ return tuple(map(lambda x: int(255.0 * x), float_color)) def uint8_to_float(uint8_color): """ Converts a uint8 color (0 to 255) to float (0 to 1.0) """ return tuple(map(lambda x: float(x) / 255.0, uint8_color)) def rgb_uint8_to_hsv_float(rgb_color): return colorsys.rgb_to_hsv(*uint8_to_float(rgb_color)) def hsv_float_to_rgb_uint8(hsv_color): return float_to_uint8(colorsys.hsv_to_rgb(*hsv_color)) def clip(low, input, high): return min(max(input, low), high) def blend_to_buffer(source, destination, progress, mode): h1,l1,s1 = source.T h2,l2,s2 = destination.T if mode == 'overwrite': not_dark = l1 > 0.0 destination[not_dark] = source[not_dark] else: raise NotImplementedError return destination def hls_blend(start, end, output_buffer, progress, mode, fade_length=1.0, ease_power=0.5): p = abs(progress) startPower = (1.0 - p) / fade_length startPower = clip(0.0, startPower, 1.0) startPower = pow(startPower, ease_power) endPower = p / fade_length endPower = clip(0.0, endPower, 1.0) endPower = pow(endPower, ease_power) h1,l1,s1 = start.T h2,l2,s2 = end.T np.clip(l1,0,1,l1) np.clip(l2,0,1,l2) np.clip(s1,0,1,s1) np.clip(s2,0,1,s2) startWeight = (1.0 - 2 * np.abs(0.5 - l1)) * s1 endWeight = (1.0 - 2 * np.abs(0.5 - l2)) * s2 s = (s1 * startPower + s2 * endPower) x1 = np.cos(2 * np.pi * h1) * startPower * startWeight x2 = np.cos(2 * np.pi * h2) * endPower * endWeight y1 = np.sin(2 * np.pi * h1) * startPower * startWeight y2 = np.sin(2 * np.pi * h2) * endPower * endWeight x = x1 + x2 y = y1 + y2 if progress >= 0: l = np.maximum(l1 * startPower, l2 * endPower) opposition = np.sqrt(np.square((x1-x2)/2) + np.square((y1-y2)/2)) if mode == 'multiply': l -= opposition elif mode == 'add': l = np.maximum(l, opposition, l) else: # hacky support for old blend l = np.sqrt(np.square(x) + np.square(y)) / 2 h = np.arctan2(y, x) / (2*np.pi) nocolor = (x * y == 0) np.where(nocolor, h, 0) np.where(nocolor, s, 0) np.clip(l, 0, 1, l) if output_buffer is not None: frame = output_buffer frame[:, 0] = h frame[:, 1] = l frame[:, 2] = s else: frame = np.asarray([h, l, s]).T return frame def rgb_to_hls(arr): """ fast rgb_to_hls using numpy array """ # adapted from <NAME> # http://www.mail-archive.com/<EMAIL>/msg06147.html arr = arr.astype("float32") / 255.0 out = np.empty_like(arr) arr_max = arr.max(-1) delta = arr.ptp(-1) arr_min = arr.min(-1) total = arr_max + arr_min l = total / 2.0 s = delta / total idx = (l > 0.5) s[idx] = delta[idx] / (2.0 - total[idx]) # red is max idx = (arr[:,:,0] == arr_max) out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx] # green is max idx = (arr[:,:,1] == arr_max) out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0] ) / delta[idx] # blue is max idx = (arr[:,:,2] == arr_max) out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1] ) / delta[idx] out[:,:,0] = (out[:,:,0]/6.0) % 1.0 out[:,:,1] = l out[:,:,2] = s idx = (delta==0) out[idx, 2] = 0.0 out[idx, 0] = 0.0 # remove NaN out[np.isnan(out)] = 0 return out def hls_to_rgb(hls): """ Converts HLS color array [[H,L,S]] to RGB array. http://en.wikipedia.org/wiki/HSL_and_HSV#From_HSL Returns [[R,G,B]] in [0..1] Adapted from: http://stackoverflow.com/questions/4890373/detecting-thresholds-in-hsv-color-space-from-rgb-using-python-pil/4890878#4890878 """ H = hls[:, 0] L = hls[:, 1] S = hls[:, 2] C = (1 - np.absolute(2 * L - 1)) * S Hp = H * 6.0 i = Hp.astype(np.int) #f = Hp - i # |H' mod 2| ? X = C * (1 - np.absolute(
np.mod(Hp, 2)
numpy.mod
"""Additional functions for stitching images together.""" import numpy as np import dask.array as da from dask.delayed import delayed from dask.distributed import Client, LocalCluster import matplotlib.pyplot as plt import matplotlib as mpl from ipywidgets import interact, interactive, fixed, interact_manual import ipywidgets as widgets import dask import numba import scipy.ndimage as ndi from sklearn.neighbors import NearestNeighbors import zarr from scipy.optimize import bisect, minimize import scipy.sparse as ssp from .registration import * def qhist(data, quality, binbins=20, cmap='viridis', ax=None, bins=20): """A helper function to plot a histogram of `data` with the spread of `quality` over the bins indicated by color. Parameters ---------- data : array_like quality : array_like Must be same shape as or broadcastable to shape of `data` binbins : inmt, default=20 Number of different colors to show. cmap : str, default='viridis' Colormap to use. Must be a string recognized by mpl.cm.get_cmap. ax : None, or mpl.axes.Axes Optionally specify a pre-existing mpl ax to plot on. bins : int, default=20 Number of horizontal bins for the histogram of `data`. """ ds = 1 / binbins binbin =
np.arange(0, 1, ds)
numpy.arange
# MIT License # # Copyright (C) The Adversarial Robustness Toolbox (ART) Authors 2018 # # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated # documentation files (the "Software"), to deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import, division, print_function, unicode_literals import logging import unittest import keras.backend as k import numpy as np from art.attacks.evasion.hop_skip_jump import HopSkipJump from art.estimators.estimator import BaseEstimator from art.estimators.classification import ClassifierMixin from art.estimators.classification.keras import KerasClassifier from art.utils import random_targets from tests.utils import TestBase from tests.utils import get_image_classifier_tf, get_image_classifier_kr, get_image_classifier_pt from tests.utils import get_tabular_classifier_tf, get_tabular_classifier_kr from tests.utils import get_tabular_classifier_pt, master_seed from tests.attacks.utils import backend_test_classifier_type_check_fail logger = logging.getLogger(__name__) class TestHopSkipJump(TestBase): """ A unittest class for testing the HopSkipJump attack. """ @classmethod def setUpClass(cls): master_seed(seed=1234, set_tensorflow=True, set_torch=True) super().setUpClass() cls.n_train = 100 cls.n_test = 10 cls.x_train_mnist = cls.x_train_mnist[0 : cls.n_train] cls.y_train_mnist = cls.y_train_mnist[0 : cls.n_train] cls.x_test_mnist = cls.x_test_mnist[0 : cls.n_test] cls.y_test_mnist = cls.y_test_mnist[0 : cls.n_test] def setUp(self): master_seed(seed=1234, set_tensorflow=True, set_torch=True) super().setUp() def test_3_tensorflow_mnist(self): """ First test with the TensorFlowClassifier. :return: """ x_test_original = self.x_test_mnist.copy() # Build TensorFlowClassifier tfc, sess = get_image_classifier_tf() # First targeted attack and norm=2 hsj = HopSkipJump(classifier=tfc, targeted=True, max_iter=20, max_eval=100, init_eval=10, verbose=False) params = {"y": random_targets(self.y_test_mnist, tfc.nb_classes)} x_test_adv = hsj.generate(self.x_test_mnist, **params) self.assertFalse((self.x_test_mnist == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target = np.argmax(params["y"], axis=1) y_pred_adv = np.argmax(tfc.predict(x_test_adv), axis=1) self.assertTrue((target == y_pred_adv).any()) # Test the masking 1 mask = np.random.binomial(n=1, p=0.5, size=np.prod(self.x_test_mnist.shape)) mask = mask.reshape(self.x_test_mnist.shape) params.update(mask=mask) x_test_adv = hsj.generate(self.x_test_mnist, **params) mask_diff = (1 - mask) * (x_test_adv - self.x_test_mnist) self.assertAlmostEqual(float(np.max(np.abs(mask_diff))), 0.0, delta=0.00001) unmask_diff = mask * (x_test_adv - self.x_test_mnist) self.assertGreater(float(np.sum(np.abs(unmask_diff))), 0.0) # Test the masking 2 mask = np.random.binomial(n=1, p=0.5, size=np.prod(self.x_test_mnist.shape[1:])) mask = mask.reshape(self.x_test_mnist.shape[1:]) params.update(mask=mask) x_test_adv = hsj.generate(self.x_test_mnist, **params) mask_diff = (1 - mask) * (x_test_adv - self.x_test_mnist) self.assertAlmostEqual(float(np.max(np.abs(mask_diff))), 0.0, delta=0.00001) unmask_diff = mask * (x_test_adv - self.x_test_mnist) self.assertGreater(float(np.sum(np.abs(unmask_diff))), 0.0) # First targeted attack and norm=np.inf hsj = HopSkipJump( classifier=tfc, targeted=True, max_iter=20, max_eval=100, init_eval=10, norm=np.Inf, verbose=False ) params = {"y": random_targets(self.y_test_mnist, tfc.nb_classes)} x_test_adv = hsj.generate(self.x_test_mnist, **params) self.assertFalse((self.x_test_mnist == x_test_adv).all()) self.assertTrue((x_test_adv <= 1.0001).all()) self.assertTrue((x_test_adv >= -0.0001).all()) target =
np.argmax(params["y"], axis=1)
numpy.argmax
import os import tempfile import numpy as np import scipy.ndimage.measurements as meas from functools import reduce import warnings import sys sys.path.append(os.path.abspath(r'../lib')) import NumCppPy as NumCpp # noqa E402 #################################################################################### def factors(n): return set(reduce(list.__add__, ([i, n//i] for i in range(1, int(n**0.5) + 1) if n % i == 0))) #################################################################################### def test_seed(): np.random.seed(1) #################################################################################### def test_abs(): randValue = np.random.randint(-100, -1, [1, ]).astype(np.double).item() assert NumCpp.absScaler(randValue) == np.abs(randValue) components = np.random.randint(-100, -1, [2, ]).astype(np.double) value = complex(components[0], components[1]) assert np.round(NumCpp.absScaler(value), 9) == np.round(np.abs(value), 9) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.absArray(cArray), np.abs(data)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) + \ 1j * np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(np.round(NumCpp.absArray(cArray), 9), np.round(np.abs(data), 9)) #################################################################################### def test_add(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArray(shape) data1 = np.random.randint(-100, 100, [shape.rows, shape.cols]) data2 = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArray(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 data2 = np.random.randint(1, 100, [shape.rows, shape.cols]) cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArray(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) data1 = np.random.randint(1, 100, [shape.rows, shape.cols]) real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) value = np.random.randint(-100, 100) + 1j * np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(cArray, value), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) value = np.random.randint(-100, 100) assert np.array_equal(NumCpp.add(value, cArray), data + value) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray1 = NumCpp.NdArrayComplexDouble(shape) cArray2 = NumCpp.NdArrayComplexDouble(shape) real1 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag1 = np.random.randint(1, 100, [shape.rows, shape.cols]) data1 = real1 + 1j * imag1 real2 = np.random.randint(1, 100, [shape.rows, shape.cols]) imag2 = np.random.randint(1, 100, [shape.rows, shape.cols]) data2 = real2 + 1j * imag2 cArray1.setArray(data1) cArray2.setArray(data2) assert np.array_equal(NumCpp.add(cArray1, cArray2), data1 + data2) #################################################################################### def test_alen(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(-100, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.alen(cArray) == shape.rows #################################################################################### def test_all(): shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert NumCpp.all(cArray, NumCpp.Axis.NONE).astype(bool).item() == np.all(data).item() shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data = np.random.randint(0, 100, [shape.rows, shape.cols]) cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArrayComplexDouble(shape) real = np.random.randint(1, 100, [shape.rows, shape.cols]) imag = np.random.randint(1, 100, [shape.rows, shape.cols]) data = real + 1j * imag cArray.setArray(data) assert np.array_equal(NumCpp.all(cArray, NumCpp.Axis.ROW).flatten().astype(bool), np.all(data, axis=0)) shapeInput = np.random.randint(20, 100, [2, ]) shape = NumCpp.Shape(shapeInput[0].item(), shapeInput[1].item()) cArray = NumCpp.NdArray(shape) data =
np.random.randint(0, 100, [shape.rows, shape.cols])
numpy.random.randint
# -------------------------------------------------------- # Deep Iterative Matching Network # Licensed under The Apache-2.0 License [see LICENSE for details] # Written by <NAME>, <NAME> # -------------------------------------------------------- from __future__ import print_function, division import numpy as np import os, sys cur_path = os.path.abspath(os.path.dirname(__file__)) sys.path.insert(1, os.path.join(cur_path, "..")) from lib.pair_matching.RT_transform import * from lib.utils.mkdir_if_missing import mkdir_if_missing import random from lib.render_glumpy.render_py_light_modelnet import Render_Py_Light_ModelNet import cv2 classes = [ "airplane", "bed", "bench", "bookshelf", "car", "chair", "guitar", "laptop", "mantel", #'dresser', "piano", "range_hood", "sink", "stairs", "stool", "tent", "toilet", "tv_stand", "door", "glass_box", "wardrobe", "plant", "xbox", "bathtub", "table", "monitor", "sofa", "night_stand", ] # print(classes) # config for renderer width = 640 height = 480 K = np.array([[572.4114, 0, 325.2611], [0, 573.57043, 242.04899], [0, 0, 1]]) # LM ZNEAR = 0.25 ZFAR = 6.0 depth_factor = 1000 modelnet_root = os.path.join(cur_path, "../data/ModelNet") modelnet40_root = os.path.join(modelnet_root, "ModelNet40") import argparse def parse_args(): parser = argparse.ArgumentParser(description="renderer") parser.add_argument("--model_path", required=True, help="model path") parser.add_argument("--texture_path", required=True, help="texture path") parser.add_argument("--seed", required=True, type=int, help="seed") args = parser.parse_args() return args args = parse_args() model_path = args.model_path texture_path = args.texture_path random.seed(args.seed) np.random.seed(args.seed) def angle_axis_to_quat(angle, rot_axis): angle = angle % (2 * np.pi) # print(angle) q = np.zeros(4) q[0] = np.cos(0.5 * angle) q[1:] = np.sin(0.5 * angle) * rot_axis if q[0] < 0: q *= -1 # print('norm of q: ', LA.norm(q)) q = q / np.linalg.norm(q) # print('norm of q: ', LA.norm(q)) return q def angle(u, v): c = np.dot(u, v) / (np.linalg.norm(u) * np.linalg.norm(v)) # -> cosine of the angle rad = np.arccos(np.clip(c, -1, 1)) deg = rad / np.pi * 180 return deg # init render machines brightness_ratios = [0.7] ################### render_machine = Render_Py_Light_ModelNet( model_path, texture_path, K, width, height, ZNEAR, ZFAR, brightness_ratios ) def gen_real(): data_dir = os.path.join(modelnet_root, "modelnet_render_v1/data/real") mkdir_if_missing(data_dir) real_set_dir = os.path.join(modelnet_root, "modelnet_render_v1/image_set/real") mkdir_if_missing(real_set_dir) # ----------------- model_folder_string_list = model_path.split("/") cls_name = model_folder_string_list[-3] cls_idx = classes.index(cls_name) + 1 set = model_folder_string_list[-2] data_dir = os.path.join(data_dir, cls_name, set) mkdir_if_missing(data_dir) model_prefix = model_folder_string_list[-1].split(".")[0] pz_up_dict = { "car": np.array([0, -1, 0]), "airplane":
np.array([0, -1, 0])
numpy.array
#NUMBA ############################################ import numba as nb import numpy as np import math as m @nb.njit def dummy(): return None @nb.njit(cache=True,error_model='numpy') def fit_multiplicative_offset_jitter(x0,f,y,dy): off=x0[0] jit=x0[1] newerr=np.sqrt((dy)**2+jit**2)/off lnL=-0.5*np.sum(((y/off-f)/(newerr))**2.0+np.log(2.0*np.pi)+np.log(newerr**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_only_multiplicative_offset(x0,f,y,dy): off=x0 lnL=-0.5*np.sum(((y/off-f)/(dy/off))**2.0+np.log(2.0*np.pi)+np.log((dy/off)**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_linear_offset_jitter(x0,f,y,dy): off=x0[0] jit=x0[1] lnL=-0.5*np.sum(((y-off-f)/(np.sqrt(dy**2+jit**2)))**2.0+np.log(2.0*np.pi)+np.log(dy**2+jit**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_only_linear_offset(x0,f,y,dy): off=x0 lnL=-0.5*np.sum(((y-off-f)/(dy))**2.0+np.log(2.0*np.pi)+np.log(dy**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_only_jitter(x0,f,y,dy): jit=x0 lnL=-0.5*np.sum(((y-f)/(np.sqrt(dy**2+jit**2)))**2.0+np.log(2.0*np.pi)+np.log(dy**2+jit**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def _coeff_mat(x, deg): mat_ = np.zeros(shape=(x.shape[0],deg + 1)) const = np.ones_like(x) mat_[:,0] = const mat_[:, 1] = x if deg > 1: for n in range(2, deg + 1): mat_[:, n] = x**n return mat_ @nb.njit(cache=True,error_model='numpy') def _fit_x(a, b): # linalg solves ax = b det_ = np.linalg.lstsq(a, b)[0] return det_ @nb.njit(cache=True,error_model='numpy') def fit_poly(x, y, deg,w): a = _coeff_mat(x, deg)*w.reshape(-1,1) p = _fit_x(a, y*w) # Reverse order so p[0] is coefficient of highest order return p[::-1] ##################################################### ############# UTILITIES ############################# ##################################################### @nb.njit(cache=True,error_model='numpy') def gaussian(x, amplitude, mean, stddev): return amplitude * np.exp(-(x-mean)**2/(2*stddev**2)) @nb.njit(cache=True,error_model='numpy') def gaussian2(x, amplitude, mean, stddev,C): return C + amplitude * np.exp(-(x-mean)**2/(2*stddev**2)) @nb.njit(cache=True,error_model='numpy') def normalize_spectra_nb(bins,wavelength,flux): x_bin=np.zeros(len(bins)-1) y_bin=np.zeros(len(bins)-1) for i in range(len(bins)-1): idxup = wavelength>bins[i] idxdown= wavelength<bins[i+1] idx=idxup & idxdown y_bin[i]=flux[idx].max() x_bin[i]=wavelength[idx][np.argmax(flux[idx])] #divide by 6th deg polynomial return x_bin, y_bin @nb.njit(cache=True,error_model='numpy') def interpolation_nb(xp,x,y,left=0,right=0): # Create result array yp=np.zeros(len(xp)) minx=x[0] maxx=x[-1] lastidx=1 for i,xi in enumerate(xp): if xi<minx: #extrapolate left yp[i]=left elif xi>maxx: #extrapolate right yp[i]=right else: for j in range(lastidx,len(x)): #per no fer el loop sobre tota la x, ja que esta sorted sempre comenso amb lanterior. if x[j]>xi: #Trobo el primer x mes gran que xj. llavors utilitzo x[j] i x[j-1] per interpolar yp[i]=y[j-1]+(xi-x[j-1])*(y[j]-y[j-1])/(x[j]-x[j-1]) lastidx=j break return yp @nb.njit(cache=True,error_model='numpy') def cross_correlation_nb(rv,wv,flx,wv_ref,flx_ref): #Compute the CCF against the reference spectrum. Can be optimized. ccf=np.zeros(len(rv)) #initialize ccf lenf=len(flx_ref) for i in range(len(rv)): wvshift=wv_ref*(1.0+rv[i]/2.99792458e8) #shift ref spectrum, in m/s # fshift=np.interp(wvshift,wv,flx) fshift = interpolation_nb(wvshift,wv,flx,left=0,right=0) ccf[i]=np.sum(flx_ref*fshift)/lenf #compute ccf return (ccf-np.min(ccf))/np.max((ccf-np.min(ccf))) @nb.njit(cache=True,error_model='numpy') def cross_correlation_mask(rv,wv,f,wvm,fm): ccf = np.zeros(len(rv)) lenm = len(wvm) wvmin=wv[0] for i in range(len(rv)): wvshift=wvm*(1.0+rv[i]/2.99792458e8) #shift ref spectrum, in m/s #for each mask line for j in range(lenm): #find wavelengths right and left of the line. wvline=wvshift[j] if wvline<3000.0: idxlf = int((wvline-wvmin)/0.1) elif wvline<4999.986: if wvmin<3000.0: idxlf = np.round(int((3000.0-wvmin)/0.1)) + int((wvline-3000.0)/0.006) else: idxlf = int((wvline-wvmin)/0.006) elif wvline<5000.0: if wvmin<3000.0: idxlf = np.round(int((3000.0-wvmin)/0.1)) + int((4999.986-3000.0)/0.006) + 1 else: idxlf = int((4999.986-wvmin)/0.006) + 1 elif wvline<10000.0: if wvmin<3000.0: idxlf = np.round(int((3000.0-wvmin)/0.1)) + int((4999.986-3000.0)/0.006) + 1 + int((wvline-5000.0)/0.01) elif wvmin<4999.986: idxlf = int((4999.986-wvmin)/0.006) + 1 + int((wvline-5000.0)/0.01) else: idxlf = int((wvline-wvmin)/0.01) elif wvline<15000.0: if wvmin<3000.0: idxlf = np.round(int((3000.0-wvmin)/0.1)) + int((4999.986-3000.0)/0.006) + 1 + int((10000.0-5000.0)/0.01) + int((wvline-10000.0)/0.02) elif wvmin<4999.986: idxlf = int((4999.986-wvmin)/0.006) + 1 + int((10000-5000.0)/0.01) + int((wvline-10000.0)/0.02) elif wvmin<10000.0: idxlf = int((10000.0-wvmin)/0.01) + int((wvline-10000.0)/0.02) else: idxlf = int((wvline-wvmin)/0.02) else: if wvmin<3000.0: idxlf = np.round(int((3000.0-wvmin)/0.1)) + int((4999.986-3000.0)/0.006) + 1 + int((10000.0-5000.0)/0.01) + int((15000.0-10000.0)/0.02) + int((wvline-15000.0)/0.03) elif wvmin<4999.986: idxlf = int((4999.986-wvmin)/0.006) + 1 + int((10000-5000.0)/0.01) + int((15000-10000.0)/0.02) + int((wvline-15000.0)/0.03) elif wvmin<10000.0: idxlf = int((10000.0-wvmin)/0.01) + int((15000-10000.0)/0.02) + int((wvline-15000.0)/0.03) elif wvmin<15000.0: idxlf = int((15000-wvmin)/0.02) + int((wvline-15000.0)/0.03) else: idxlf = int((wvline-wvmin)/0.03) idxrg = idxlf + 1 diffwv=wv[idxrg]-wv[idxlf] #pixel size in wavelength midpix=(wv[idxrg]+wv[idxlf])/2 #wavelength between the two pixels leftmask = wvline - diffwv/2 #left edge of the mask rightmask = wvline + diffwv/2 #right edge of the mask frac1 = (midpix - leftmask)/diffwv #fraction of the mask ovelapping the left pixel frac2 = (rightmask - midpix)/diffwv #fraction of the mask overlapping the right pixel midleft = (leftmask + midpix)/2 #central left overlapp midright = (rightmask + midpix)/2 #central wv right overlap f1 = f[idxlf] + (midleft-wv[idxlf])*(f[idxrg]-f[idxlf])/(diffwv) f2 = f[idxlf] + (midright-wv[idxlf])*(f[idxrg]-f[idxlf])/(diffwv) ccf[i]=ccf[i] - f1*fm[j]*frac1 - f2*fm[j]*frac2 return (ccf-np.min(ccf))/np.max((ccf-np.min(ccf))) @nb.njit(cache=True,error_model='numpy') def weight_mask(wvi,wvf,o_weight,wvm,fm): j=0 maxj=len(wvi) for i in range(len(wvm)): if wvm[i]<wvi[j]: fm[i]=0.0 elif wvm[i]>=wvi[j] and wvm[i]<=wvf[j]: fm[i]=fm[i]*o_weight[j] elif wvm[i]>wvf[j]: j+=1 if j>=maxj: fm[i]=0.0 break else: i-=1 return wvm, fm @nb.njit(cache=True,error_model='numpy') def polar2colatitude_nb(r,a,i): '''Enters the polars coordinates and the inclination i (with respect to the north pole, i=0 makes transits, 90-(inclination defined in exoplanets)) Returns the colatitude in the star (90-latitude) ''' a=a*m.pi/180. i=-i #negative to make the rotation toward the observer. theta=m.acos(r*m.sin(a)*m.cos(i)-m.sin(i)*m.sqrt(1-r*r)) return theta @nb.njit(cache=True,error_model='numpy') def polar2longitude_nb(r,a,i): '''Enters the polars coordinates and the inclination i (with respect to the north pole, i=0 makes transits, 90-(inclination defined in exoplanets)) Returns the longitude in the star (from -90 to 90) ''' a=a*m.pi/180. i=-i #negative to make the rotation toward the observer. h=m.sqrt((1.-(r*m.cos(a))**2.)/(m.tan(i)**2.+1.)) #heigh of the terminator (long=pi/2) if r*np.sin(a)>h: phi=m.asin(-r*m.cos(a)/m.sqrt(1.-(r*m.sin(a)*m.cos(i)-m.sin(i)*m.sqrt(1.-r*r))**2.))+m.pi #to correct for mirroring of longitudes in the terminator else: phi=m.asin(r*m.cos(a)/m.sqrt(1.-(r*m.sin(a)*m.cos(i)-m.sin(i)*m.sqrt(1.-r*r))**2.)) return phi @nb.njit(cache=True,error_model='numpy') def speed_bisector_nb(rv,ccf,integrated_bis): ''' Fit the bisector of the CCF with a 5th deg polynomial ''' idxmax=ccf.argmax() maxccf=ccf[idxmax] maxrv=rv[idxmax] xnew = rv ynew = ccf cutleft=0 cutright=len(ynew)-1 # if not integrated_bis: #cut the CCF at the minimum of the wings only for reference CCF, if not there are errors. for i in range(len(ynew)): if xnew[i]>maxrv: if ynew[i]>ynew[i-1]: cutright=i break for i in range(len(ynew)): if xnew[-1-i]<maxrv: if ynew[-1-i]>ynew[-i]: cutleft=len(ynew)-i break xnew=xnew[cutleft:cutright] ynew=ynew[cutleft:cutright] minright=np.min(ynew[xnew>maxrv]) minleft=np.min(ynew[xnew<maxrv]) minccf=np.max(np.array([minright,minleft])) ybis=np.linspace(minccf+0.01*(maxccf-minccf),0.999*maxccf,50) #from 5% to maximum xbis=np.zeros(len(ybis)) for i in range(len(ybis)): for j in range(len(ynew)-1): if ynew[j]<ybis[i] and ynew[j+1]>ybis[i] and xnew[j]<maxrv: rv1=xnew[j]+(xnew[j+1]-xnew[j])*(ybis[i]-ynew[j])/(ynew[j+1]-ynew[j]) if ynew[j]>ybis[i] and ynew[j+1]<ybis[i] and xnew[j+1]>maxrv: rv2=xnew[j]+(xnew[j+1]-xnew[j])*(ybis[i]-ynew[j])/(ynew[j+1]-ynew[j]) xbis[i]=(rv1+rv2)/2.0 #bisector # xbis[-1]=maxrv #at the top should be max RV return cutleft,cutright,xbis,ybis @nb.njit(cache=True,error_model='numpy') def limb_darkening_law(LD_law,LD1,LD2,amu): if LD_law == 'linear': mu=1-LD1*(1-amu) elif LD_law == 'quadratic': a=2*np.sqrt(LD1)*LD2 b=np.sqrt(LD1)*(1-2*LD2) mu=1-a*(1-amu)-b*(1-amu)**2 elif LD_law == 'sqrt': a=np.sqrt(LD1)*(1-2*LD2) b=2*np.sqrt(LD1)*LD2 mu=1-a*(1-amu)-b*(1-np.sqrt(amu)) elif LD_law == 'log': a=LD2*LD1**2+1 b=LD1**2-1 mu=1-a*(1-amu)-b*amu*(1-np.log(amu)) else: print('LD law not valid.') return mu @nb.njit(cache=True,error_model='numpy') def compute_spot_position(t,spot_map,ref_time,Prot,diff_rot,Revo,Q): pos=np.zeros((len(spot_map),4)) for i in range(len(spot_map)): tini = spot_map[i][0] #time of spot apparence dur = spot_map[i][1] #duration of the spot tfin = tini + dur #final time of spot colat = spot_map[i][2] #colatitude lat = 90 - colat #latitude longi = spot_map[i][3] #longitude Rcoef = spot_map[i][4:7] #coefficients for the evolution od the radius. Depends on the desired law. pht = longi + (t-ref_time)/Prot%1*360 #update longitude adding diff rotation phsr= pht + (t-ref_time)*diff_rot*(1.698*m.sin(np.deg2rad(lat))**2+2.346*m.sin(np.deg2rad(lat))**4) if Revo == 'constant': if t>=tini and t<=tfin: rad=Rcoef[0] else: rad=0.0 elif Revo == 'linear': if t>=tini and t<=tfin: rad=Rcoef[0]+(t-tini)*(Rcoef[1]-Rcoef[0])/dur else: rad=0.0 elif Revo == 'quadratic': if t>=tini and t<=tfin: rad=-4*Rcoef[0]/(dur*(1-2*tini))*(t-tini)*(t-tini-dur) else: rad=0.0 else: print('Spot evolution law not implemented yet. Only constant and linear are implemented.') if Q!=0.0: #to speed up the code when no fac are present rad_fac=np.deg2rad(rad)*m.sqrt(1+Q) else: rad_fac=0.0 pos[i]=np.array([np.deg2rad(colat), np.deg2rad(phsr),
np.deg2rad(rad)
numpy.deg2rad
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept = np.sum(image_aug == 255) nb_dropped = image.shape[2] - nb_kept assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.isclose(nb_dropped, image.shape[2]*0.75, atol=75) def test_force_nb_keep_channels(self): image = np.full((1, 1, 3), 255, dtype=np.uint8) images = np.array([image] * 1000) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) images_aug = aug(images=images) ids_kept = [np.nonzero(image[0, 0, :]) for image in images_aug] ids_kept_uq = np.unique(ids_kept) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name # on average, keep 1 of 3 channels # due to p=1.0 we expect to get exactly 2/3 dropped assert np.isclose(nb_dropped, (len(images)*images.shape[3])*(2/3), atol=1) # every channel dropped at least once, i.e. which one is kept is random assert sorted(ids_kept_uq.tolist()) == [0, 1, 2] def test_some_images_below_nb_keep_channels(self): image_2c = np.full((1, 1, 2), 255, dtype=np.uint8) image_3c = np.full((1, 1, 3), 255, dtype=np.uint8) images = [image_2c if i % 2 == 0 else image_3c for i in sm.xrange(100)] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=2) images_aug = aug(images=images) for i, image_aug in enumerate(images_aug): assert np.sum(image_aug == 255) == 2 if i % 2 == 0: assert np.sum(image_aug == 0) == 0 else: assert np.sum(image_aug == 0) == 1 def test_all_images_below_nb_keep_channels(self): image = np.full((1, 1, 2), 255, dtype=np.uint8) images = np.array([image] * 100) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert nb_dropped == 0 def test_get_parameters(self): aug = iaa.Dropout2d(p=0.7, nb_keep_channels=2) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert np.isclose(params[0].p.value, 0.3) assert params[1] == 2 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.full(shape, 255, dtype=np.uint8) aug = iaa.Dropout2d(1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if value == 0: assert np.sum(image_aug == value) == 10 else: assert np.sum(image_aug == value) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if _isclose(value, 0.0): assert np.sum(_isclose(image_aug, value)) == 10 else: assert ( np.sum(_isclose(image_aug, np.float128(value))) == 3) assert np.sum(image_aug == 0) == 7 def test_pickleable(self): aug = iaa.Dropout2d(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3, shape=(1, 1, 50)) class TestTotalDropout(unittest.TestCase): def setUp(self): reseed() def test___init___p(self): aug = iaa.TotalDropout(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.sum(images_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.TotalDropout(p=1.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.TotalDropout(p=1.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=1.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_heatmaps(self): aug = iaa.TotalDropout(p=0.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.TotalDropout(p=0.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=0.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075_multiple_images_list(self): images = [np.full((1, 1, 1), 255, dtype=np.uint8)] * 3000 aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum([np.sum(image_aug == 255) for image_aug in images_aug]) nb_dropped = len(images) - nb_kept for image_aug in images_aug: assert image_aug.shape == images[0].shape assert image_aug.dtype.name == images[0].dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_p_is_075_multiple_images_array(self): images = np.full((3000, 1, 1, 1), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = len(images) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_get_parameters(self): aug = iaa.TotalDropout(p=0.0) params = aug.get_parameters() assert params[0] is aug.p def test_unusual_channel_numbers(self): shapes = [ (5, 1, 1, 4), (5, 1, 1, 5), (5, 1, 1, 512), (5, 1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): images = np.zeros(shape, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert np.all(images_aug == 0) assert images_aug.dtype.name == "uint8" assert images_aug.shape == shape def test_zero_sized_axes(self): shapes = [ (5, 0, 0), (5, 0, 1), (5, 1, 0), (5, 0, 1, 0), (5, 1, 0, 0), (5, 0, 1, 1), (5, 1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): images = np.full(shape, 255, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert images_aug.dtype.name == "uint8" assert images_aug.shape == images.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 0 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0) or value == 0: assert np.sum(images_aug == 0) == 5*3 else: assert np.sum(images_aug == value) == 5*3 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0): assert np.sum(_isclose(images_aug, 0.0)) == 5*3 else: assert ( np.sum(_isclose(images_aug, np.float128(value))) == 5*3) def test_pickleable(self): aug = iaa.TotalDropout(p=0.5, random_state=1) runtest_pickleable_uint8_img(aug, iterations=30, shape=(4, 4, 2)) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Multiply(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Multiply(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_per_channel(self): aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=True) observed = aug.augment_image(np.ones((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 2 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Multiply(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Multiply(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(1) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Multiply(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Multiply(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) if np.dtype(dtype).kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1.2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(1.2 * int(center_value))) if np.dtype(dtype).kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.Multiply(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.Multiply(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.Multiply((0.5, 1.5), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) class TestMultiplyElementwise(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0.5, 1.5)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.95 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) assert observed.shape == (100, 100, 3) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.MultiplyElementwise(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.MultiplyElementwise(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.MultiplyElementwise(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.MultiplyElementwise(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), int(center_value), dtype=dtype) # aug = iaa.MultiplyElementwise(1.2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == int(1.2 * int(center_value))) # deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == min_value) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10.0, dtype=dtype) # aug = iaa.MultiplyElementwise(2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestReplaceElementwise(unittest.TestCase): def setUp(self): reseed() def test_mask_is_always_zero(self): # no replace, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=0, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mask_is_always_one(self): # replace at 100 percent prob., should change everything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=1, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_mask_is_stochastic_parameter(self): # replace half aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) img = np.ones((100, 100, 1), dtype=np.uint8) nb_iterations = 100 nb_diff_all = 0 for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) nb_diff = np.sum(img != observed) nb_diff_all += nb_diff p = nb_diff_all / (nb_iterations * 100 * 100) assert 0.45 <= p <= 0.55 def test_mask_is_list(self): # mask is list aug = iaa.ReplaceElementwise(mask=[0.2, 0.7], replacement=1) img = np.zeros((20, 20, 1), dtype=np.uint8) seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_image(img) p = np.mean(observed) if 0.1 < p < 0.3: seen[0] += 1 elif 0.6 < p < 0.8: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) aug_det = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_replacement_is_stochastic_parameter(self): # different replacements aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Choice([100, 200])) img = np.zeros((1000, 1000, 1), dtype=np.uint8) img100 = img + 100 img200 = img + 200 observed = aug.augment_image(img) nb_diff_100 = np.sum(img100 != observed) nb_diff_200 = np.sum(img200 != observed) p100 = nb_diff_100 / (1000 * 1000) p200 = nb_diff_200 / (1000 * 1000) assert 0.45 <= p100 <= 0.55 assert 0.45 <= p200 <= 0.55 # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.ReplaceElementwise(mask=iap.Choice([0, 1]), replacement=1, per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.ReplaceElementwise(mask="test", replacement=1) except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.ReplaceElementwise(mask=1, replacement=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.ReplaceElementwise(mask=0.5, replacement=2, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert isinstance(params[0].p, iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert isinstance(params[2], iap.Deterministic) assert 0.5 - 1e-6 < params[0].p.value < 0.5 + 1e-6 assert params[1].value == 2 assert params[2].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.ReplaceElementwise(mask=1, replacement=0.5) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.7) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.2) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=2) image = np.full((3, 3), 1, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 2) # deterministic stochastic parameters are by default int32 for # any integer value and hence cannot cover the full uint32 value # range if dtype.name != "uint32": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 2 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32, np.float64]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) atol = 1e-3*max_value if dtype == np.float16 else 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) aug = iaa.ReplaceElementwise(mask=1, replacement=1.0) image = np.full((3, 3), 0.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 1.0) aug = iaa.ReplaceElementwise(mask=1, replacement=2.0) image = np.full((3, 3), 1.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 2.0) # deterministic stochastic parameters are by default float32 for # any float value and hence cannot cover the full float64 value # range if dtype.name != "float64": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1], atol=0.01) def test_pickleable(self): aug = iaa.ReplaceElementwise(mask=0.5, replacement=(0, 255), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) # not more tests necessary here as SaltAndPepper is just a tiny wrapper around # ReplaceElementwise class TestSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt > 200 def test_pickleable(self): aug = iaa.SaltAndPepper(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) aug2 = iaa.CoarseSaltAndPepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSaltAndPepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSaltAndPepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSaltAndPepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.CoarseSaltAndPepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSaltAndPepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=(4, 15), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 # Salt() occasionally replaces with 127, which probably should be the center-point here anyways assert np.all(observed >= 127) def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper == 0 assert nb_salt > 200 def test_pickleable(self): aug = iaa.Salt(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSalt(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSalt(p=0.5, size_px=100) aug2 = iaa.CoarseSalt(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSalt(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSalt(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSalt(p="test", size_px=100) except Exception: got_exception = True assert got_exception def test_size_px_or_size_percent_not_none(self): got_exception = False try: _ = iaa.CoarseSalt(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSalt(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSalt(p=0.5, size_px=(4, 15), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestPepper(unittest.TestCase): def setUp(self): reseed() def test_probability_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Pepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 assert np.all(observed <= 128) def test_probability_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Pepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt == 0 def test_pickleable(self): aug = iaa.Pepper(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarsePepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarsePepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarsePepper(p=0.5, size_px=100) aug2 = iaa.CoarsePepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarsePepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarsePepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarsePepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception def test_size_px_or_size_percent_not_none(self): got_exception = False try: _ = iaa.CoarsePepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarsePepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarsePepper(p=0.5, size_px=(4, 15), per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20) class Test_invert(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_invert): mock_invert.return_value = "foo" arr = np.zeros((1,), dtype=np.uint8) observed = iaa.invert(arr) assert observed == "foo" args = mock_invert.call_args_list[0] assert np.array_equal(mock_invert.call_args_list[0][0][0], arr) assert args[1]["min_value"] is None assert args[1]["max_value"] is None assert args[1]["threshold"] is None assert args[1]["invert_above_threshold"] is True @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_invert): mock_invert.return_value = "foo" arr = np.zeros((1,), dtype=np.uint8) observed = iaa.invert(arr, min_value=1, max_value=10, threshold=5, invert_above_threshold=False) assert observed == "foo" args = mock_invert.call_args_list[0] assert np.array_equal(mock_invert.call_args_list[0][0][0], arr) assert args[1]["min_value"] == 1 assert args[1]["max_value"] == 10 assert args[1]["threshold"] == 5 assert args[1]["invert_above_threshold"] is False def test_uint8(self): values = np.array([0, 20, 45, 60, 128, 255], dtype=np.uint8) expected = np.array([ 255, 255-20, 255-45, 255-60, 255-128, 255-255 ], dtype=np.uint8) observed = iaa.invert(values) assert np.array_equal(observed, expected) assert observed is not values # most parts of this function are tested via Invert class Test_invert_(unittest.TestCase): def test_arr_is_noncontiguous_uint8(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) max_vr_flipped = np.fliplr(np.copy(zeros + 255)) observed = iaa.invert_(max_vr_flipped) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_arr_is_view_uint8(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) max_vr_view = np.copy(zeros + 255)[:, :, [0, 2]] observed = iaa.invert_(max_vr_view) expected = zeros[:, :, [0, 2]] assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_uint(self): dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values)) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint_with_threshold_0_inv_above(self): threshold = 0 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, max_value - 60, max_value - center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint8_with_threshold_255_inv_above(self): threshold = 255 dtypes = ["uint8"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, 60, center_value, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint8_with_threshold_256_inv_above(self): threshold = 256 dtypes = ["uint8"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, 20, 45, 60, center_value, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["uint8", "uint16", "uint32", "uint64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ max_value - 0, max_value - 20, max_value - 45, 60, center_value, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.array_equal(observed, expected) def test_uint_with_threshold_50_inv_above_with_min_max(self): threshold = 50 # uint64 does not support custom min/max, hence removed it here dtypes = ["uint8", "uint16", "uint32"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([0, 20, 45, 60, center_value, max_value], dtype=dt) expected = np.array([ 0, # not clipped to 10 as only >thresh affected 20, 45, 100 - 50, 100 - 90, 100 - 90 ], dtype=dt) observed = iaa.invert_(np.copy(values), min_value=10, max_value=100, threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_int_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["int8", "int16", "int32", "int64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([-45, -20, center_value, 20, 45, max_value], dtype=dt) expected = np.array([ -45, -20, center_value, 20, 45, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.array_equal(observed, expected) def test_int_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["int8", "int16", "int32", "int64"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = int(center_value) values = np.array([-45, -20, center_value, 20, 45, max_value], dtype=dt) expected = np.array([ (-1) * (-45) - 1, (-1) * (-20) - 1, (-1) * center_value - 1, (-1) * 20 - 1, (-1) * 45 - 1, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.array_equal(observed, expected) def test_float_with_threshold_50_inv_above(self): threshold = 50 dtypes = ["float16", "float32", "float64", "float128"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = center_value values = np.array([-45.5, -20.5, center_value, 20.5, 45.5, max_value], dtype=dt) expected = np.array([ -45.5, -20.5, center_value, 20.5, 45.5, min_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=True) assert np.allclose(observed, expected, rtol=0, atol=1e-4) def test_float_with_threshold_50_inv_below(self): threshold = 50 dtypes = ["float16", "float32", "float64", "float128"] for dt in dtypes: with self.subTest(dtype=dt): min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) center_value = center_value values = np.array([-45.5, -20.5, center_value, 20.5, 45.5, max_value], dtype=dt) expected = np.array([ (-1) * (-45.5), (-1) * (-20.5), (-1) * center_value, (-1) * 20.5, (-1) * 45.5, max_value ], dtype=dt) observed = iaa.invert_(np.copy(values), threshold=threshold, invert_above_threshold=False) assert np.allclose(observed, expected, rtol=0, atol=1e-4) class Test_solarize(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.solarize_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is not arr assert np.array_equal(args[0], arr) assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.solarize_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is not arr assert np.array_equal(args[0], arr) assert kwargs["threshold"] == 5 assert observed == "foo" def test_uint8(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) observed = iaa.solarize(arr) expected = np.array([0, 10, 50, 255-150, 255-200, 255-255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_compare_with_pil(self): import PIL.Image import PIL.ImageOps def _solarize_pil(image, threshold): img = PIL.Image.fromarray(image) return np.asarray(PIL.ImageOps.solarize(img, threshold)) image = np.mod(np.arange(20*20*3), 255).astype(np.uint8)\ .reshape((20, 20, 3)) for threshold in np.arange(256): image_pil = _solarize_pil(image, threshold) image_iaa = iaa.solarize(image, threshold) assert np.array_equal(image_pil, image_iaa) class Test_solarize_(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked_defaults(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize_(arr) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 128 assert observed == "foo" @mock.patch("imgaug.augmenters.arithmetic.invert_") def test_mocked(self, mock_sol): arr = np.zeros((1,), dtype=np.uint8) mock_sol.return_value = "foo" observed = iaa.solarize_(arr, threshold=5) args = mock_sol.call_args_list[0][0] kwargs = mock_sol.call_args_list[0][1] assert args[0] is arr assert kwargs["threshold"] == 5 assert observed == "foo" class TestInvert(unittest.TestCase): def setUp(self): reseed() def test_p_is_one(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0).augment_image(zeros + 255) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_p_is_zero(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=0.0).augment_image(zeros + 255) expected = zeros + 255 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_max_value_set(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0, max_value=200).augment_image(zeros + 200) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_min_value_and_max_value_set(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 200) expected = zeros + 100 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros + 100) expected = zeros + 200 assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_min_value_and_max_value_set_with_float_image(self): # with min/max and float inputs zeros = np.zeros((4, 4, 3), dtype=np.uint8) zeros_f32 = zeros.astype(np.float32) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros_f32 + 200) expected = zeros_f32 + 100 assert observed.dtype.name == "float32" assert np.array_equal(observed, expected) observed = iaa.Invert(p=1.0, max_value=200, min_value=100).augment_image(zeros_f32 + 100) expected = zeros_f32 + 200 assert observed.dtype.name == "float32" assert np.array_equal(observed, expected) def test_p_is_80_percent(self): nb_iterations = 1000 nb_inverted = 0 aug = iaa.Invert(p=0.8) img = np.zeros((1, 1, 1), dtype=np.uint8) + 255 expected = np.zeros((1, 1, 1), dtype=np.uint8) for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) if np.array_equal(observed, expected): nb_inverted += 1 pinv = nb_inverted / nb_iterations assert 0.75 <= pinv <= 0.85 nb_iterations = 1000 nb_inverted = 0 aug = iaa.Invert(p=iap.Binomial(0.8)) img = np.zeros((1, 1, 1), dtype=np.uint8) + 255 expected = np.zeros((1, 1, 1), dtype=np.uint8) for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) if np.array_equal(observed, expected): nb_inverted += 1 pinv = nb_inverted / nb_iterations assert 0.75 <= pinv <= 0.85 def test_per_channel(self): aug = iaa.Invert(p=0.5, per_channel=True) img = np.zeros((1, 1, 100), dtype=np.uint8) + 255 observed = aug.augment_image(img) assert len(np.unique(observed)) == 2 # TODO split into two tests def test_p_is_stochastic_parameter_per_channel_is_probability(self): nb_iterations = 1000 aug = iaa.Invert(p=iap.Binomial(0.8), per_channel=0.7) img = np.zeros((1, 1, 20), dtype=np.uint8) + 255 seen = [0, 0] for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) uq = np.unique(observed) if len(uq) == 1: seen[0] += 1 elif len(uq) == 2: seen[1] += 1 else: assert False assert 300 - 75 < seen[0] < 300 + 75 assert 700 - 75 < seen[1] < 700 + 75 def test_threshold(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) aug = iaa.Invert(p=1.0, threshold=128, invert_above_threshold=True) observed = aug.augment_image(arr) expected = np.array([0, 10, 50, 255-150, 255-200, 255-255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_threshold_inv_below(self): arr = np.array([0, 10, 50, 150, 200, 255], dtype=np.uint8) arr = arr.reshape((2, 3, 1)) aug = iaa.Invert(p=1.0, threshold=128, invert_above_threshold=False) observed = aug.augment_image(arr) expected = np.array([255-0, 255-10, 255-50, 150, 200, 255], dtype=np.uint8).reshape((2, 3, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed zeros = np.zeros((4, 4, 3), dtype=np.uint8) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=zeros.shape)] aug = iaa.Invert(p=1.0) aug_det = iaa.Invert(p=1.0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Invert(p="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Invert(p=0.5, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Invert(1.0) image_aug = aug(image=image) assert np.all(image_aug == 255) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Invert(1.0) image_aug = aug(image=image) assert np.all(image_aug == 255) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Invert(p=0.5, per_channel=False, min_value=10, max_value=20) params = aug.get_parameters() assert params[0] is aug.p assert params[1] is aug.per_channel assert params[2] == 10 assert params[3] == 20 assert params[4] is aug.threshold assert params[5] is aug.invert_above_threshold def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Invert(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_p_is_zero(self): # with p=0.0 aug = iaa.Invert(p=0.0) dtypes = [bool, np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64, np.float128] for dtype in dtypes: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) kind = np.dtype(dtype).kind image_min = np.full((3, 3), min_value, dtype=dtype) if dtype is not bool: image_center = np.full((3, 3), center_value if kind == "f" else int(center_value), dtype=dtype) image_max = np.full((3, 3), max_value, dtype=dtype) image_min_aug = aug.augment_image(image_min) image_center_aug = None if dtype is not bool: image_center_aug = aug.augment_image(image_center) image_max_aug = aug.augment_image(image_max) assert image_min_aug.dtype == np.dtype(dtype) if image_center_aug is not None: assert image_center_aug.dtype == np.dtype(dtype) assert image_max_aug.dtype == np.dtype(dtype) if dtype is bool: assert np.all(image_min_aug == image_min) assert np.all(image_max_aug == image_max) elif np.dtype(dtype).kind in ["i", "u"]: assert np.array_equal(image_min_aug, image_min) assert np.array_equal(image_center_aug, image_center) assert np.array_equal(image_max_aug, image_max) else: assert np.allclose(image_min_aug, image_min) assert np.allclose(image_center_aug, image_center) assert np.allclose(image_max_aug, image_max) def test_other_dtypes_p_is_one(self): # with p=1.0 aug = iaa.Invert(p=1.0) dtypes = [np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64, np.float128] for dtype in dtypes: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) kind = np.dtype(dtype).kind image_min = np.full((3, 3), min_value, dtype=dtype) if dtype is not bool: image_center = np.full((3, 3), center_value if kind == "f" else int(center_value), dtype=dtype) image_max = np.full((3, 3), max_value, dtype=dtype) image_min_aug = aug.augment_image(image_min) image_center_aug = None if dtype is not bool: image_center_aug = aug.augment_image(image_center) image_max_aug = aug.augment_image(image_max) assert image_min_aug.dtype == np.dtype(dtype) if image_center_aug is not None: assert image_center_aug.dtype == np.dtype(dtype) assert image_max_aug.dtype == np.dtype(dtype) if dtype is bool: assert np.all(image_min_aug == image_max) assert np.all(image_max_aug == image_min) elif np.dtype(dtype).kind in ["i", "u"]: assert np.array_equal(image_min_aug, image_max) assert np.allclose(image_center_aug, image_center, atol=1.0+1e-4, rtol=0) assert np.array_equal(image_max_aug, image_min) else: assert np.allclose(image_min_aug, image_max) assert np.allclose(image_center_aug, image_center) assert np.allclose(image_max_aug, image_min) def test_other_dtypes_p_is_one_with_min_value(self): # with p=1.0 and min_value aug = iaa.Invert(p=1.0, min_value=1) dtypes = [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32, np.float16, np.float32] for dtype in dtypes: _min_value, _center_value, max_value = iadt.get_value_range_of_dtype(dtype) min_value = 1 kind = np.dtype(dtype).kind center_value = min_value + 0.5 * (max_value - min_value) image_min = np.full((3, 3), min_value, dtype=dtype) if dtype is not bool: image_center = np.full((3, 3), center_value if kind == "f" else int(center_value), dtype=dtype) image_max = np.full((3, 3), max_value, dtype=dtype) image_min_aug = aug.augment_image(image_min) image_center_aug = None if dtype is not bool: image_center_aug = aug.augment_image(image_center) image_max_aug = aug.augment_image(image_max) assert image_min_aug.dtype == np.dtype(dtype) if image_center_aug is not None: assert image_center_aug.dtype == np.dtype(dtype) assert image_max_aug.dtype == np.dtype(dtype) if dtype is bool: assert np.all(image_min_aug == 1) assert np.all(image_max_aug == 1) elif np.dtype(dtype).kind in ["i", "u"]: assert np.array_equal(image_min_aug, image_max) assert np.allclose(image_center_aug, image_center, atol=1.0+1e-4, rtol=0) assert np.array_equal(image_max_aug, image_min) else: assert np.allclose(image_min_aug, image_max) assert np.allclose(image_center_aug, image_center) assert np.allclose(image_max_aug, image_min) def test_other_dtypes_p_is_one_with_max_value(self): # with p=1.0 and max_value aug = iaa.Invert(p=1.0, max_value=16) dtypes = [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32, np.float16, np.float32] for dtype in dtypes: min_value, _center_value, _max_value = iadt.get_value_range_of_dtype(dtype) max_value = 16 kind = np.dtype(dtype).kind center_value = min_value + 0.5 * (max_value - min_value) image_min = np.full((3, 3), min_value, dtype=dtype) if dtype is not bool: image_center = np.full((3, 3), center_value if kind == "f" else int(center_value), dtype=dtype) image_max = np.full((3, 3), max_value, dtype=dtype) image_min_aug = aug.augment_image(image_min) image_center_aug = None if dtype is not bool: image_center_aug = aug.augment_image(image_center) image_max_aug = aug.augment_image(image_max) assert image_min_aug.dtype == np.dtype(dtype) if image_center_aug is not None: assert image_center_aug.dtype == np.dtype(dtype) assert image_max_aug.dtype == np.dtype(dtype) if dtype is bool: assert not np.any(image_min_aug == 1) assert not np.any(image_max_aug == 1) elif np.dtype(dtype).kind in ["i", "u"]: assert np.array_equal(image_min_aug, image_max) assert np.allclose(image_center_aug, image_center, atol=1.0+1e-4, rtol=0) assert np.array_equal(image_max_aug, image_min) else: assert np.allclose(image_min_aug, image_max) if dtype is np.float16: # for float16, this is off by about 10 assert np.allclose(image_center_aug, image_center, atol=0.001*np.finfo(dtype).max) else: assert np.allclose(image_center_aug, image_center) assert np.allclose(image_max_aug, image_min) def test_pickleable(self): aug = iaa.Invert(p=0.5, per_channel=True, random_state=1) runtest_pickleable_uint8_img(aug, iterations=20, shape=(2, 2, 5)) class TestSolarize(unittest.TestCase): def test_p_is_one(self): zeros = np.zeros((4, 4, 3), dtype=np.uint8) observed = iaa.Solarize(p=1.0).augment_image(zeros) expected = zeros assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) def test_p_is_one_some_values_above_threshold(self): arr = np.array([0, 99, 111, 200]).astype(np.uint8).reshape((2, 2, 1)) observed = iaa.Solarize(p=1.0, threshold=(100, 110))(image=arr) expected = np.array([0, 99, 255-111, 255-200])\ .astype(np.uint8).reshape((2, 2, 1)) assert observed.dtype.name == "uint8" assert np.array_equal(observed, expected) class TestContrastNormalization(unittest.TestCase): @unittest.skipIf(sys.version_info[0] <= 2, "Warning is not generated in 2.7 on travis, but locally " "in 2.7 it is?!") def test_deprecation_warning(self): with warnings.catch_warnings(record=True) as caught_warnings: warnings.simplefilter("always") aug = arithmetic_lib.ContrastNormalization((0.9, 1.1)) assert isinstance(aug, contrast_lib._ContrastFuncWrapper) assert len(caught_warnings) == 1 assert ( "deprecated" in str(caught_warnings[-1].message) ) # TODO use this in test_contrast.py or remove it? """ def deactivated_test_ContrastNormalization(): reseed() zeros = np.zeros((4, 4, 3), dtype=np.uint8) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=zeros.shape)] # contrast stays the same observed = iaa.ContrastNormalization(alpha=1.0).augment_image(zeros + 50) expected = zeros + 50 assert np.array_equal(observed, expected) # image with mean intensity (ie 128), contrast cannot be changed observed = iaa.ContrastNormalization(alpha=2.0).augment_image(zeros + 128) expected = zeros + 128 assert np.array_equal(observed, expected) # increase contrast observed = iaa.ContrastNormalization(alpha=2.0).augment_image(zeros + 128 + 10) expected = zeros + 128 + 20 assert np.array_equal(observed, expected) observed = iaa.ContrastNormalization(alpha=2.0).augment_image(zeros + 128 - 10) expected = zeros + 128 - 20 assert np.array_equal(observed, expected) # decrease contrast observed = iaa.ContrastNormalization(alpha=0.5).augment_image(zeros + 128 + 10) expected = zeros + 128 + 5 assert np.array_equal(observed, expected) observed = iaa.ContrastNormalization(alpha=0.5).augment_image(zeros + 128 - 10) expected = zeros + 128 - 5 assert np.array_equal(observed, expected) # increase contrast by stochastic parameter observed = iaa.ContrastNormalization(alpha=iap.Choice([2.0, 3.0])).augment_image(zeros + 128 + 10) expected1 = zeros + 128 + 20 expected2 = zeros + 128 + 30 assert np.array_equal(observed, expected1) or np.array_equal(observed, expected2) # change contrast by tuple nb_iterations = 1000 nb_changed = 0 last = None for i in sm.xrange(nb_iterations): observed = iaa.ContrastNormalization(alpha=(0.5, 2.0)).augment_image(zeros + 128 + 40) if last is None: last = observed else: if not np.array_equal(observed, last): nb_changed += 1 p_changed = nb_changed / (nb_iterations-1) assert p_changed > 0.5 # per_channel=True aug = iaa.ContrastNormalization(alpha=(1.0, 6.0), per_channel=True) img = np.zeros((1, 1, 100), dtype=np.uint8) + 128 + 10 observed = aug.augment_image(img) uq = np.unique(observed) assert len(uq) > 5 # per_channel with probability aug = iaa.ContrastNormalization(alpha=(1.0, 4.0), per_channel=0.7) img = np.zeros((1, 1, 100), dtype=np.uint8) + 128 + 10 seen = [0, 0] for _ in sm.xrange(1000): observed = aug.augment_image(img) uq = np.unique(observed) if len(uq) == 1: seen[0] += 1 elif len(uq) >= 2: seen[1] += 1 assert 300 - 75 < seen[0] < 300 + 75 assert 700 - 75 < seen[1] < 700 + 75 # keypoints shouldnt be changed aug = iaa.ContrastNormalization(alpha=2.0) aug_det = iaa.ContrastNormalization(alpha=2.0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) # test exceptions for wrong parameter types got_exception = False try: _ = iaa.ContrastNormalization(alpha="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.ContrastNormalization(alpha=1.5, per_channel="test") except Exception: got_exception = True assert got_exception # test get_parameters() aug = iaa.ContrastNormalization(alpha=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 # test heatmaps (not affected by augmenter) aug = iaa.ContrastNormalization(alpha=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) """ class TestJpegCompression(unittest.TestCase): def setUp(self): reseed() def test_compression_is_zero(self): # basic test at 0 compression img = ia.quokka(extract="square", size=(64, 64)) aug = iaa.JpegCompression(0) img_aug = aug.augment_image(img) diff = np.average(np.abs(img.astype(np.float32) - img_aug.astype(np.float32))) assert diff < 1.0 def test_compression_is_90(self): # basic test at 90 compression img = ia.quokka(extract="square", size=(64, 64)) aug = iaa.JpegCompression(90) img_aug = aug.augment_image(img) diff = np.average(np.abs(img.astype(np.float32) - img_aug.astype(np.float32))) assert 1.0 < diff < 50.0 def test___init__(self): aug = iaa.JpegCompression([0, 100]) assert isinstance(aug.compression, iap.Choice) assert len(aug.compression.a) == 2 assert aug.compression.a[0] == 0 assert aug.compression.a[1] == 100 def test_get_parameters(self): aug = iaa.JpegCompression([0, 100]) assert len(aug.get_parameters()) == 1 assert aug.get_parameters()[0] == aug.compression def test_compression_is_stochastic_parameter(self): # test if stochastic parameters are used by augmentation img = ia.quokka(extract="square", size=(64, 64)) class _TwoValueParam(iap.StochasticParameter): def __init__(self, v1, v2): super(_TwoValueParam, self).__init__() self.v1 = v1 self.v2 = v2 def _draw_samples(self, size, random_state): arr = np.full(size, self.v1, dtype=np.float32) arr[1::2] = self.v2 return arr param = _TwoValueParam(0, 100) aug = iaa.JpegCompression(param) img_aug_c0 = iaa.JpegCompression(0).augment_image(img) img_aug_c100 = iaa.JpegCompression(100).augment_image(img) imgs_aug = aug.augment_images([img] * 4) assert
np.array_equal(imgs_aug[0], img_aug_c0)
numpy.array_equal
#!/usr/bin/env python2 # Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Train a network with Detectron.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import cv2 # NOQA (Must import before importing caffe2 due to bug in cv2) import logging import numpy as np import pprint import sys from caffe2.python import workspace from detectron.datasets.json_dataset import JsonDataset from detectron.core.config import assert_and_infer_cfg from detectron.core.config import cfg from detectron.core.config import merge_cfg_from_file from detectron.core.config import merge_cfg_from_list from detectron.datasets.roidb import flipped_roidb_for_training,extend_with_flipped_entries,get_training_roidb from detectron.core.test_engine import run_inference from detectron.utils.logging import setup_logging import detectron.utils.c2 as c2_utils import detectron.utils.train from bitmap import BitMap from detectron.utils.helper import * import pickle c2_utils.import_contrib_ops() c2_utils.import_detectron_ops() # OpenCL may be enabled by default in OpenCV3; disable it because it's not # thread safe and causes unwanted GPU memory allocations. cv2.ocl.setUseOpenCL(False) def parse_args(): parser = argparse.ArgumentParser( description='Train a network with Detectron' ) parser.add_argument( '--cfg', dest='cfg_file', help='Config file for training (and optionally testing)', default=None, type=str ) parser.add_argument( '--multi-gpu-testing', dest='multi_gpu_testing', help='Use cfg.NUM_GPUS GPUs for inference', action='store_true' ) parser.add_argument( '--skip-test', dest='skip_test', help='Do not test the final model', action='store_true' ) parser.add_argument( 'opts', help='See lib/core/config.py for all options', default=None, nargs=argparse.REMAINDER ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def main(): # Initialize C2 workspace.GlobalInit( ['caffe2', '--caffe2_log_level=0', '--caffe2_gpu_memory_tracking=1'] ) # Set up logging and load config options logger = setup_logging(__name__) logging.getLogger('detectron.roi_data.loader').setLevel(logging.INFO) args = parse_args() logger.info('Called with args:') logger.info(args) if args.cfg_file is not None: merge_cfg_from_file(args.cfg_file) if args.opts is not None: merge_cfg_from_list(args.opts) assert_and_infer_cfg() logger.info('Training with config:') logger.info(pprint.pformat(cfg)) # Note that while we set the numpy random seed network training will not be # deterministic in general. There are sources of non-determinism that cannot # be removed with a reasonble execution-speed tradeoff (such as certain # non-deterministic cudnn functions). np.random.seed(cfg.RNG_SEED) # Execute the training run fs = open('imgnames.pkl','rb') roidbnames = pickle.load(fs) fs.close() logger.info('Loading dataset: {}'.format(cfg.TRAIN.DATASETS)) dataset_names = cfg.TRAIN.DATASETS;proposal_files = cfg.TRAIN.PROPOSAL_FILES roidb = get_training_roidb(dataset_names,proposal_files) logger.info('{:d} roidb entries'.format(len(roidb))) total_num = len(roidb) # bitmap idx indicated for training bitmapRoidb = BitMap(total_num) # initial samples # initial_num = int(total_num*0.2) # for i in range(initial_num): # bitmapRoidb.set(i) # # train_roidb = [roidb[i] for i in range(initial_num)] initialidx = [] train_roidb =[] for i,x in enumerate(roidb): if x['image'].split('/')[-1] in roidbnames: initialidx.append(i) train_roidb.append(x) for i in initialidx: bitmapRoidb.set(i) logger.info('{:d} the number initial roidb entries'.format(len(train_roidb))) # append flipped images train_roidb = flipped_roidb_for_training(train_roidb) logger.info('{:d} the number initial roidb entries'.format(len(train_roidb))) alamount = 0;ssamount = 0;gamma = 0.95 # control al proportion al_proportion_checkpoint = [int(x*total_num*0.4) for x in
np.linspace(0.2,1,10)
numpy.linspace
import os from IMLearn.utils import split_train_test from IMLearn.learners.regressors import LinearRegression from typing import NoReturn import numpy as np import pandas as pd import plotly.graph_objects as go import plotly.express as px import plotly.io as pio from matplotlib import pyplot as plt pio.templates.default = "simple_white" def load_data(filename: str): """ Load house prices dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (prices) - either as a single DataFrame or a Tuple[DataFrame, Series] """ file = pd.read_csv(filename) new_df = pd.DataFrame(file) new_df = new_df.dropna() new_df.drop(columns=['id'], inplace=True) new_df.drop(columns=['date'], inplace=True) new_df = new_df[new_df['price'] > 0] new_df = new_df[new_df['bathrooms'] > 0] new_df = new_df[new_df['sqft_lot15'] > 0] return new_df def feature_evaluation(X: pd.DataFrame, y: pd.Series, output_path: str = "C:/Users/nogaz/PycharmProjects/IML.HUJI/graphs/ex2") -> NoReturn: """ Create scatter plot between each feature and the response. - Plot title specifies feature name - Plot title specifies Pearson Correlation between feature and response - Plot saved under given folder with file name including feature name Parameters ---------- X : DataFrame of shape (n_samples, n_features) Design matrix of regression problem y : array-like of shape (n_samples, ) Response vector to evaluate against output_path: str (default ".") Path to folder in which plots are saved """ X = X.join(pd.DataFrame({'price': y})) covx = X.cov() for feature in X.columns: fig = plt.figure() fig.clear() pear = covx[feature]['price'] / (np.std(X[feature]) * np.std(X['price'])) title = ("Pearson Correlation between " "" + str(feature) + " and price = " + str(pear)) plt.scatter(X[feature], y) plt.xlabel(str(feature)) plt.ylabel('price') plt.title(title) plt.savefig(output_path + "/{}.png".format(feature)) plt.close() if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of housing prices dataset df = load_data(r'C:\Users\nogaz\PycharmProjects\IML.HUJI\datasets\house_prices.csv') price = df['price'] df = df.drop('price', axis=1) # Question 2 - Feature evaluation with respect to response feature_evaluation(df, price) # Question 3 - Split samples into training- and testing sets. tr_x, tr_y, te_x, te_y = split_train_test(df, price) # Question 4 - Fit model over increasing percentages of the overall training data # For every percentage p in 10%, 11%, ..., 100%, repeat the following 10 times: # 1) Sample p% of the overall training data # 2) Fit linear model (including intercept) over sampled set # 3) Test fitted model over test set # 4) Store average and variance of loss over test set mean_loss = [] var_loss = [] model = LinearRegression() samp_size = np.linspace(10, 100, num=90) for i in range(10, 100): f = i / 100 loss_i = np.ones(10, ) for j in range(10): cur_tr_x = tr_x.sample(frac=f) cur_tr_y = tr_y.loc[cur_tr_x.index] model._fit(cur_tr_x.values, cur_tr_y.values) cur_loss = model._loss(te_x.values, te_y.values) loss_i[j] = cur_loss mean_loss.append(np.mean(loss_i)) var_loss.append(np.std(loss_i)) fig = go.Figure( [go.Scatter(x=samp_size, y=np.array(mean_loss) - (2 * np.array(var_loss)), fill=None, mode="lines", line=dict(color="lightgrey"), showlegend=False), go.Scatter(x=samp_size, y=np.array(mean_loss) + (2 *
np.array(var_loss)
numpy.array
from matplotlib.testing import setup import numpy as np import numpy.testing as npt import matplotlib.pyplot as plt import matplotlib as mpl import packaging.version import pytest import animatplot as amp from tests.tools import animation_compare from animatplot.blocks import Block, Title setup() class TestTitleBlock: def test_list_of_str(self): labels = ['timestep 0', 'timestep 1'] result = Title(labels) assert labels == result.titles assert len(result) == 2 def test_invalid_input(self): with pytest.raises(TypeError): Title(0) with pytest.raises(TypeError): Title([6, 7]) def test_format_str(self): actual = Title('timestep {num}', num=[1, 2]).titles assert actual == ['timestep 1', 'timestep 2'] actual = Title('timestep {num}', num=[1]).titles assert actual == ['timestep 1'] def test_no_replacements(self): actual = Title('Name').titles assert actual == ['Name'] def test_multiple_replacements(self): actual = Title('timestep {num}, max density {n}', num=[1, 2], n=[500, 10]).titles expected = ['timestep {num}, max density {n}'.format(num=1, n=500), 'timestep {num}, max density {n}'.format(num=2, n=10)] assert actual == expected def test_string_formatting(self): actual = Title('timestep {values:.2f}', values=[5e7]).titles assert actual == ['timestep 50000000.00'] def test_format_str_numpy_arrays(self): actual = Title('timestep {num}', num=np.array([1, 2])).titles assert actual == ['timestep 1', 'timestep 2'] # Hypothesis test that the strings are always formatted correctly? def test_text(self): # TODO test that the right type of object is produced? title_block = Title('timestep {num}', num=[1, 2]) ax = plt.gca() assert ax.get_title() == 'timestep 1' title_block._update(1) assert ax.get_title() == 'timestep 2' plt.close('all') def test_mpl_kwargs(self): expected = {'loc': 'left', 'fontstyle': 'italic'} actual = Title('timestep {num}', num=[1, 2], **expected) assert actual._mpl_kwargs == expected def assert_jagged_arrays_equal(x, y): for x, y in zip(x, y): npt.assert_equal(x, y) class TestLineBlock: def test_2d_inputs(self): x = np.linspace(0, 1, 10) t = np.linspace(0, 1, 5) x_grid, t_grid = np.meshgrid(x, t) y_data = np.sin(2 * np.pi * (x_grid + t_grid)) line_block = amp.blocks.Line(x_grid, y_data) assert isinstance(line_block, amp.blocks.Line) npt.assert_equal(line_block.x, x_grid) npt.assert_equal(line_block.y, y_data) assert len(line_block) == len(t) assert isinstance(line_block.line, mpl.lines.Line2D) xdata, ydata = line_block.line.get_data() npt.assert_equal(xdata, x) npt.assert_equal(ydata, y_data[0, :]) def test_update(self): x = np.linspace(0, 1, 10) t = np.linspace(0, 1, 5) x_grid, t_grid = np.meshgrid(x, t) y_data = np.sin(2 * np.pi * (x_grid + t_grid)) line_block = amp.blocks.Line(x_grid, y_data) line_block._update(frame=1) npt.assert_equal(line_block.line.get_xdata(), x) npt.assert_equal(line_block.line.get_ydata(), y_data[1, :]) def test_constant_x(self): x = np.linspace(0, 1, 10) t = np.linspace(0, 1, 5) x_grid, t_grid = np.meshgrid(x, t) y_data = np.sin(2 * np.pi * (x_grid + t_grid)) line_block = amp.blocks.Line(x, y_data) npt.assert_equal(line_block.line.get_xdata(), x) npt.assert_equal(line_block.x[-1], x) def test_no_x_input(self): x = np.linspace(0, 1, 10) t = np.linspace(0, 1, 5) x_grid, t_grid = np.meshgrid(x, t) y_data = np.sin(2 * np.pi * (x_grid + t_grid)) line_block = amp.blocks.Line(y_data) expected_x = np.arange(10) npt.assert_equal(line_block.line.get_xdata(), expected_x) def test_list_input(self): x_data = [np.array([1, 2, 3]), np.array([1, 2, 3])] y_data = [np.array([5, 6, 7]), np.array([4, 2, 9])] line_block = amp.blocks.Line(x_data, y_data) npt.assert_equal(line_block.y, np.array([[5, 6, 7], [4, 2, 9]])) npt.assert_equal(line_block.x,
np.array([[1, 2, 3], [1, 2, 3]])
numpy.array
#!/usr/bin/env python # Copyright 2014-2019 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # ''' domain decomposition COSMO See also the code on github https://github.com/filippolipparini/ddPCM and the papers [1] Domain decomposition for implicit solvation models. <NAME>, <NAME>, <NAME> J. Chem. Phys., 139, 054111 (2013) http://dx.doi.org/10.1063/1.4816767 [2] Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives. <NAME>, <NAME>, <NAME>, <NAME>, <NAME> J. Chem. Theory Comput., 9, 3637-3648 (2013) http://dx.doi.org/10.1021/ct400280b [3] Quantum, classical, and hybrid QM/MM calculations in solution: General implementation of the ddCOSMO linear scaling strategy. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, J.-P.Piquemal, <NAME>, <NAME> J. Chem. Phys., 141, 184108 (2014) http://dx.doi.org/10.1063/1.4901304 -- Dielectric constants (from https://gaussian.com/scrf/) -- More dataset can be found in Minnesota Solvent Descriptor Database (https://comp.chem.umn.edu/solvation) Water 78.3553 Acetonitrile 35.688 Methanol 32.613 Ethanol 24.852 IsoQuinoline 11.00 Quinoline 9.16 Chloroform 4.7113 DiethylEther 4.2400 Dichloromethane 8.93 DiChloroEthane 10.125 CarbonTetraChloride 2.2280 Benzene 2.2706 Toluene 2.3741 ChloroBenzene 5.6968 NitroMethane 36.562 Heptane 1.9113 CycloHexane 2.0165 Aniline 6.8882 Acetone 20.493 TetraHydroFuran 7.4257 DiMethylSulfoxide 46.826 Argon 1.430 Krypton 1.519 Xenon 1.706 n-Octanol 9.8629 1,1,1-TriChloroEthane 7.0826 1,1,2-TriChloroEthane 7.1937 1,2,4-TriMethylBenzene 2.3653 1,2-DiBromoEthane 4.9313 1,2-EthaneDiol 40.245 1,4-Dioxane 2.2099 1-Bromo-2-MethylPropane 7.7792 1-BromoOctane 5.0244 1-BromoPentane 6.269 1-BromoPropane 8.0496 1-Butanol 17.332 1-ChloroHexane 5.9491 1-ChloroPentane 6.5022 1-ChloroPropane 8.3548 1-Decanol 7.5305 1-FluoroOctane 3.89 1-Heptanol 11.321 1-Hexanol 12.51 1-Hexene 2.0717 1-Hexyne 2.615 1-IodoButane 6.173 1-IodoHexaDecane 3.5338 1-IodoPentane 5.6973 1-IodoPropane 6.9626 1-NitroPropane 23.73 1-Nonanol 8.5991 1-Pentanol 15.13 1-Pentene 1.9905 1-Propanol 20.524 2,2,2-TriFluoroEthanol 26.726 2,2,4-TriMethylPentane 1.9358 2,4-DiMethylPentane 1.8939 2,4-DiMethylPyridine 9.4176 2,6-DiMethylPyridine 7.1735 2-BromoPropane 9.3610 2-Butanol 15.944 2-ChloroButane 8.3930 2-Heptanone 11.658 2-Hexanone 14.136 2-MethoxyEthanol 17.2 2-Methyl-1-Propanol 16.777 2-Methyl-2-Propanol 12.47 2-MethylPentane 1.89 2-MethylPyridine 9.9533 2-NitroPropane 25.654 2-Octanone 9.4678 2-Pentanone 15.200 2-Propanol 19.264 2-Propen-1-ol 19.011 3-MethylPyridine 11.645 3-Pentanone 16.78 4-Heptanone 12.257 4-Methyl-2-Pentanone 12.887 4-MethylPyridine 11.957 5-Nonanone 10.6 AceticAcid 6.2528 AcetoPhenone 17.44 a-ChloroToluene 6.7175 Anisole 4.2247 Benzaldehyde 18.220 BenzoNitrile 25.592 BenzylAlcohol 12.457 BromoBenzene 5.3954 BromoEthane 9.01 Bromoform 4.2488 Butanal 13.45 ButanoicAcid 2.9931 Butanone 18.246 ButanoNitrile 24.291 ButylAmine 4.6178 ButylEthanoate 4.9941 CarbonDiSulfide 2.6105 Cis-1,2-DiMethylCycloHexane 2.06 Cis-Decalin 2.2139 CycloHexanone 15.619 CycloPentane 1.9608 CycloPentanol 16.989 CycloPentanone 13.58 Decalin-mixture 2.196 DiBromomEthane 7.2273 DiButylEther 3.0473 DiEthylAmine 3.5766 DiEthylSulfide 5.723 DiIodoMethane 5.32 DiIsoPropylEther 3.38 DiMethylDiSulfide 9.6 DiPhenylEther 3.73 DiPropylAmine 2.9112 e-1,2-DiChloroEthene 2.14 e-2-Pentene 2.051 EthaneThiol 6.667 EthylBenzene 2.4339 EthylEthanoate 5.9867 EthylMethanoate 8.3310 EthylPhenylEther 4.1797 FluoroBenzene 5.42 Formamide 108.94 FormicAcid 51.1 HexanoicAcid 2.6 IodoBenzene 4.5470 IodoEthane 7.6177 IodoMethane 6.8650 IsoPropylBenzene 2.3712 m-Cresol 12.44 Mesitylene 2.2650 MethylBenzoate 6.7367 MethylButanoate 5.5607 MethylCycloHexane 2.024 MethylEthanoate 6.8615 MethylMethanoate 8.8377 MethylPropanoate 6.0777 m-Xylene 2.3478 n-ButylBenzene 2.36 n-Decane 1.9846 n-Dodecane 2.0060 n-Hexadecane 2.0402 n-Hexane 1.8819 NitroBenzene 34.809 NitroEthane 28.29 n-MethylAniline 5.9600 n-MethylFormamide-mixture 181.56 n,n-DiMethylAcetamide 37.781 n,n-DiMethylFormamide 37.219 n-Nonane 1.9605 n-Octane 1.9406 n-Pentadecane 2.0333 n-Pentane 1.8371 n-Undecane 1.9910 o-ChloroToluene 4.6331 o-Cresol 6.76 o-DiChloroBenzene 9.9949 o-NitroToluene 25.669 o-Xylene 2.5454 Pentanal 10.0 PentanoicAcid 2.6924 PentylAmine 4.2010 PentylEthanoate 4.7297 PerFluoroBenzene 2.029 p-IsoPropylToluene 2.2322 Propanal 18.5 PropanoicAcid 3.44 PropanoNitrile 29.324 PropylAmine 4.9912 PropylEthanoate 5.5205 p-Xylene 2.2705 Pyridine 12.978 sec-ButylBenzene 2.3446 tert-ButylBenzene 2.3447 TetraChloroEthene 2.268 TetraHydroThiophene-s,s-dioxide 43.962 Tetralin 2.771 Thiophene 2.7270 Thiophenol 4.2728 trans-Decalin 2.1781 TriButylPhosphate 8.1781 TriChloroEthene 3.422 TriEthylAmine 2.3832 Xylene-mixture 2.3879 z-1,2-DiChloroEthene 9.2 ''' import ctypes import copy import numpy from pyscf import lib from pyscf.lib import logger from pyscf import gto from pyscf import df from pyscf.dft import gen_grid, numint from pyscf.data import radii from pyscf.symm import sph def ddcosmo_for_scf(mf, solvent_obj=None, dm=None): '''Patch ddCOSMO to SCF (HF and DFT) method. Kwargs: dm : if given, solvent does not response to the change of density matrix. A frozen ddCOSMO potential is added to the results. ''' if getattr(mf, 'with_solvent', None): if solvent_obj is not None: mf.with_solvent = solvent_obj return mf oldMF = mf.__class__ if solvent_obj is None: solvent_obj = DDCOSMO(mf.mol) if dm is not None: solvent_obj.epcm, solvent_obj.vpcm = solvent_obj.kernel(dm) solvent_obj.frozen = True class SCFWithSolvent(oldMF): def __init__(self, mf, solvent): self.__dict__.update(mf.__dict__) self.with_solvent = solvent self._keys.update(['with_solvent']) def dump_flags(self, verbose=None): oldMF.dump_flags(self, verbose) self.with_solvent.check_sanity() self.with_solvent.dump_flags(verbose) return self # Note vpcm should not be added to get_hcore for scf methods. # get_hcore is overloaded by many post-HF methods. Modifying # SCF.get_hcore may lead error. def get_veff(self, mol=None, dm=None, *args, **kwargs): vhf = oldMF.get_veff(self, mol, dm, *args, **kwargs) with_solvent = self.with_solvent if not with_solvent.frozen: with_solvent.epcm, with_solvent.vpcm = with_solvent.kernel(dm) epcm, vpcm = with_solvent.epcm, with_solvent.vpcm # NOTE: vpcm should not be added to vhf in this place. This is # because vhf is used as the reference for direct_scf in the next # iteration. If vpcm is added here, it may break direct SCF. return lib.tag_array(vhf, epcm=epcm, vpcm=vpcm) def get_fock(self, h1e=None, s1e=None, vhf=None, dm=None, cycle=-1, diis=None, diis_start_cycle=None, level_shift_factor=None, damp_factor=None): # DIIS was called inside oldMF.get_fock. vpcm, as a function of # dm, should be extrapolated as well. To enable it, vpcm has to be # added to the fock matrix before DIIS was called. if getattr(vhf, 'vpcm', None) is None: vhf = self.get_veff(self.mol, dm) return oldMF.get_fock(self, h1e, s1e, vhf+vhf.vpcm, dm, cycle, diis, diis_start_cycle, level_shift_factor, damp_factor) def energy_elec(self, dm=None, h1e=None, vhf=None): if dm is None: dm = self.make_rdm1() if getattr(vhf, 'epcm', None) is None: vhf = self.get_veff(self.mol, dm) e_tot, e_coul = oldMF.energy_elec(self, dm, h1e, vhf) e_tot += vhf.epcm logger.debug(self, ' E_diel = %.15g', vhf.epcm) return e_tot, e_coul def nuc_grad_method(self): from pyscf.solvent import ddcosmo_grad grad_method = oldMF.nuc_grad_method(self) return ddcosmo_grad.ddcosmo_grad(grad_method, self.with_solvent) mf1 = SCFWithSolvent(mf, solvent_obj) return mf1 def ddcosmo_for_casscf(mc, solvent_obj=None, dm=None): '''Patch ddCOSMO to CASSCF method. Kwargs: dm : if given, solvent does not response to the change of density matrix. A frozen ddCOSMO potential is added to the results. ''' if getattr(mc, 'with_solvent', None): if solvent_obj is not None: mc.with_solvent = solvent_obj return mc oldCAS = mc.__class__ if solvent_obj is None: if getattr(mc._scf, 'with_solvent', None): solvent_obj = mc._scf.with_solvent else: solvent_obj = DDCOSMO(mc.mol) if dm is not None: solvent_obj.epcm, solvent_obj.vpcm = solvent_obj.kernel(dm) solvent_obj.frozen = True class CASSCFWithSolvent(oldCAS): def __init__(self, mc, solvent): self.__dict__.update(mc.__dict__) self.with_solvent = solvent self._e_tot_without_solvent = 0 self._keys.update(['with_solvent']) def dump_flags(self, verbose=None): oldCAS.dump_flags(self, verbose) self.with_solvent.check_sanity() self.with_solvent.dump_flags(verbose) if self.conv_tol < 1e-7: logger.warn(self, 'CASSCF+ddCOSMO may not be able to ' 'converge to conv_tol=%g', self.conv_tol) return self def update_casdm(self, mo, u, fcivec, e_ci, eris, envs={}): casdm1, casdm2, gci, fcivec = \ oldCAS.update_casdm(self, mo, u, fcivec, e_ci, eris, envs) # The potential is generated based on the density of current micro iteration. # It will be added to hcore in casci function. Strictly speaking, this density # is not the same to the CASSCF density (which was used to measure # convergence) in the macro iterations. When CASSCF is converged, it # should be almost the same to the CASSCF density of the macro iterations. with_solvent = self.with_solvent if not with_solvent.frozen: # Code to mimic dm = self.make_rdm1(ci=fcivec) mocore = mo[:,:self.ncore] mocas = mo[:,self.ncore:self.ncore+self.ncas] dm = reduce(numpy.dot, (mocas, casdm1, mocas.T)) dm += numpy.dot(mocore, mocore.T) * 2 with_solvent.epcm, with_solvent.vpcm = with_solvent.kernel(dm) return casdm1, casdm2, gci, fcivec # ddCOSMO Potential should be added to the effective potential. However, there # is no hook to modify the effective potential in CASSCF. The workaround # here is to modify hcore. It can affect the 1-electron operator in many CASSCF # functions: gen_h_op, update_casdm, casci. Note hcore is used to compute the # energy for core density (Ecore). The resultant total energy from casci # function will include the contribution from ddCOSMO potential. The # duplicated energy contribution from solvent needs to be removed. def get_hcore(self, mol=None): hcore = self._scf.get_hcore(mol) if self.with_solvent.vpcm is not None: hcore += self.with_solvent.vpcm return hcore def casci(self, mo_coeff, ci0=None, eris=None, verbose=None, envs=None): log = logger.new_logger(self, verbose) log.debug('Running CASCI with solvent. Note the total energy ' 'has duplicated contributions from solvent.') # In oldCAS.casci function, dE was computed based on the total # energy without removing the duplicated solvent contributions. # However, envs['elast'] is the last total energy with correct # solvent effects. Hack envs['elast'] to make oldCAS.casci print # the correct energy difference. envs['elast'] = self._e_tot_without_solvent e_tot, e_cas, fcivec = oldCAS.casci(self, mo_coeff, ci0, eris, verbose, envs) self._e_tot_without_solvent = e_tot log.debug('Computing corrections to the total energy.') dm = self.make_rdm1(ci=fcivec, ao_repr=True) with_solvent = self.with_solvent if with_solvent.epcm is not None: edup = numpy.einsum('ij,ji->', with_solvent.vpcm, dm) ediel = with_solvent.epcm e_tot = e_tot - edup + ediel log.info('Removing duplication %.15g, ' 'adding E_diel = %.15g to total energy:\n' ' E(CASSCF+solvent) = %.15g', edup, ediel, e_tot) # Update solvent effects for next iteration if needed if not with_solvent.frozen: with_solvent.epcm, with_solvent.vpcm = with_solvent.kernel(dm) return e_tot, e_cas, fcivec def nuc_grad_method(self): from pyscf.solvent import ddcosmo_grad grad_method = oldCAS.nuc_grad_method(self) return ddcosmo_grad.ddcosmo_grad(grad_method, self.with_solvent) return CASSCFWithSolvent(mc, solvent_obj) def ddcosmo_for_casci(mc, solvent_obj=None, dm=None): '''Patch ddCOSMO to CASCI method. Kwargs: dm : if given, solvent does not response to the change of density matrix. A frozen ddCOSMO potential is added to the results. ''' if getattr(mc, 'with_solvent', None): if solvent_obj is not None: mc.with_solvent = solvent_obj return mc oldCAS = mc.__class__ if solvent_obj is None: if getattr(mc._scf, 'with_solvent', None): solvent_obj = mc._scf.with_solvent else: solvent_obj = DDCOSMO(mc.mol) if dm is not None: solvent_obj.epcm, solvent_obj.vpcm = solvent_obj.kernel(dm) solvent_obj.frozen = True class CASCIWithSolvent(oldCAS): def __init__(self, mc, solvent): self.__dict__.update(mc.__dict__) self.with_solvent = solvent self._keys.update(['with_solvent']) def dump_flags(self, verbose=None): oldCAS.dump_flags(self, verbose) self.with_solvent.check_sanity() self.with_solvent.dump_flags(verbose) return self def get_hcore(self, mol=None): hcore = self._scf.get_hcore(mol) if self.with_solvent.vpcm is not None: # NOTE: get_hcore was called by CASCI to generate core # potential. vpcm is added in this place to take accounts the # effects of solvent. Its contribution is duplicated and it # should be removed from the total energy. hcore += self.with_solvent.vpcm return hcore def kernel(self, mo_coeff=None, ci0=None, verbose=None): with_solvent = self.with_solvent log = logger.new_logger(self) log.info('\n** Self-consistently update the solvent effects for %s **', oldCAS) log1 = copy.copy(log) log1.verbose -= 1 # Suppress a few output messages def casci_iter_(ci0, log): # self.e_tot, self.e_cas, and self.ci are updated in the call # to oldCAS.kernel e_tot, e_cas, ci0 = oldCAS.kernel(self, mo_coeff, ci0, log)[:3] if isinstance(self.e_cas, (float, numpy.number)): dm = self.make_rdm1(ci=ci0) else: log.debug('Computing solvent responses to DM of state %d', with_solvent.state_id) dm = self.make_rdm1(ci=ci0[with_solvent.state_id]) if with_solvent.epcm is not None: edup = numpy.einsum('ij,ji->', with_solvent.vpcm, dm) self.e_tot += with_solvent.epcm - edup if not with_solvent.frozen: with_solvent.epcm, with_solvent.vpcm = with_solvent.kernel(dm) log.debug(' E_diel = %.15g', with_solvent.epcm) return self.e_tot, e_cas, ci0 if with_solvent.frozen: with lib.temporary_env(self, _finalize=lambda:None): casci_iter_(ci0, log) log.note('Total energy with solvent effects') self._finalize() return self.e_tot, self.e_cas, self.ci, self.mo_coeff, self.mo_energy self.converged = False with lib.temporary_env(self, canonicalization=False): e_tot = e_last = 0 for cycle in range(self.with_solvent.max_cycle): log.info('\n** Solvent self-consistent cycle %d:', cycle) e_tot, e_cas, ci0 = casci_iter_(ci0, log1) de = e_tot - e_last if isinstance(e_cas, (float, numpy.number)): log.info('Sovlent cycle %d E(CASCI+solvent) = %.15g ' 'dE = %g', cycle, e_tot, de) else: for i, e in enumerate(e_tot): log.info('Solvent cycle %d CASCI root %d ' 'E(CASCI+solvent) = %.15g dE = %g', cycle, i, e, de[i]) if abs(e_tot-e_last).max() < with_solvent.conv_tol: self.converged = True break e_last = e_tot # An extra cycle to canonicalize CASCI orbitals with lib.temporary_env(self, _finalize=lambda:None): casci_iter_(ci0, log) if self.converged: log.info('self-consistent CASCI+solvent converged') else: log.info('self-consistent CASCI+solvent not converged') log.note('Total energy with solvent effects') self._finalize() return self.e_tot, self.e_cas, self.ci, self.mo_coeff, self.mo_energy def nuc_grad_method(self): from pyscf.solvent import ddcosmo_grad grad_method = oldCAS.nuc_grad_method(self) return ddcosmo_grad.ddcosmo_grad(grad_method, self.with_solvent) return CASCIWithSolvent(mc, solvent_obj) def ddcosmo_for_post_scf(method, solvent_obj=None, dm=None): '''Default wrapper to patch ddCOSMO to post-SCF methods (CC, CI, MP, TDDFT etc.) NOTE: this implementation often causes (macro iteration) convergence issue Kwargs: dm : if given, solvent does not response to the change of density matrix. A frozen ddCOSMO potential is added to the results. ''' if getattr(method, 'with_solvent', None): if solvent_obj is not None: method.with_solvent = solvent_obj method._scf.with_solvent = solvent_obj return method old_method = method.__class__ if getattr(method._scf, 'with_solvent', None): scf_with_solvent = method._scf if solvent_obj is not None: scf_with_solvent.with_solvent = solvent_obj else: scf_with_solvent = ddcosmo_for_scf(method._scf, solvent_obj, dm) if dm is None: solvent_obj = scf_with_solvent.with_solvent solvent_obj.epcm, solvent_obj.vpcm = \ solvent_obj.kernel(scf_with_solvent.make_rdm1()) # Post-HF objects access the solvent effects indirectly through the # underlying ._scf object. basic_scanner = method.as_scanner() basic_scanner._scf = scf_with_solvent.as_scanner() if dm is not None: solvent_obj = scf_with_solvent.with_solvent solvent_obj.epcm, solvent_obj.vpcm = solvent_obj.kernel(dm) solvent_obj.frozen = True class PostSCFWithSolvent(old_method): def __init__(self, method): self.__dict__.update(method.__dict__) self._scf = scf_with_solvent @property def with_solvent(self): return self._scf.with_solvent def dump_flags(self, verbose=None): old_method.dump_flags(self, verbose) self.with_solvent.check_sanity() self.with_solvent.dump_flags(verbose) return self def kernel(self, *args, **kwargs): with_solvent = self.with_solvent # The underlying ._scf object is decorated with solvent effects. # The resultant Fock matrix and orbital energies both include the # effects from solvent. It means that solvent effects for post-HF # methods are automatically counted if solvent is enabled at scf # level. if with_solvent.frozen: return old_method.kernel(self, *args, **kwargs) log = logger.new_logger(self) log.info('\n** Self-consistently update the solvent effects for %s **', old_method) ##TODO: Suppress a few output messages #log1 = copy.copy(log) #log1.note, log1.info = log1.info, log1.debug e_last = 0 #diis = lib.diis.DIIS() for cycle in range(self.with_solvent.max_cycle): log.info('\n** Solvent self-consistent cycle %d:', cycle) # Solvent effects are applied when accessing the # underlying ._scf objects. The flag frozen=True ensures that # the generated potential with_solvent.vpcm is passed to the # the post-HF object, without being updated in the implicit # call to the _scf iterations. with lib.temporary_env(with_solvent, frozen=True): e_tot = basic_scanner(self.mol) dm = basic_scanner.make_rdm1(ao_repr=True) #dm = diis.update(dm) # To generate the solvent potential for ._scf object. Since # frozen is set when calling basic_scanner, the solvent # effects are frozen during the scf iterations. with_solvent.epcm, with_solvent.vpcm = with_solvent.kernel(dm) de = e_tot - e_last log.info('Sovlent cycle %d E_tot = %.15g dE = %g', cycle, e_tot, de) if abs(e_tot-e_last).max() < with_solvent.conv_tol: break e_last = e_tot # An extra cycle to compute the total energy log.info('\n** Extra cycle for solvent effects') with lib.temporary_env(with_solvent, frozen=True): #Update everything except the _scf object and _keys basic_scanner(self.mol) self.__dict__.update(basic_scanner.__dict__) self._scf.__dict__.update(basic_scanner._scf.__dict__) self._finalize() return self.e_corr, None def nuc_grad_method(self): from pyscf.solvent import ddcosmo_grad grad_method = old_method.nuc_grad_method(self) return ddcosmo_grad.ddcosmo_grad(grad_method, self.with_solvent) return PostSCFWithSolvent(method) # Inject DDCOSMO into other methods from pyscf import scf from pyscf import mcscf from pyscf import mp, ci, cc scf.hf.SCF.DDCOSMO = ddcosmo_for_scf mcscf.casci.DDCOSMO = ddcosmo_for_casci mcscf.mc1step.DDCOSMO = ddcosmo_for_casscf mp.mp2.MP2.DDCOSMO = ddcosmo_for_post_scf ci.cisd.CISD.DDCOSMO = ddcosmo_for_post_scf cc.ccsd.CCSD.DDCOSMO = ddcosmo_for_post_scf # TODO: Testing the value of psi (make_psi_vmat). All intermediates except # psi are tested against ddPCM implementation on github. Psi needs to be # computed by the host program. It requires the numerical integration code. def gen_ddcosmo_solver(pcmobj, verbose=None): '''Generate ddcosmo function to compute energy and potential matrix ''' mol = pcmobj.mol if pcmobj.grids.coords is None: pcmobj.grids.build(with_non0tab=True) natm = mol.natm lmax = pcmobj.lmax r_vdw = pcmobj.get_atomic_radii() coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) ylm_1sph = numpy.vstack(sph.real_sph_vec(coords_1sph, lmax, True)) fi = make_fi(pcmobj, r_vdw) ui = 1 - fi ui[ui<0] = 0 nexposed = numpy.count_nonzero(ui==1) nbury = numpy.count_nonzero(ui==0) on_shell = numpy.count_nonzero(ui>0) - nexposed logger.debug(pcmobj, 'Num points exposed %d', nexposed) logger.debug(pcmobj, 'Num points buried %d', nbury) logger.debug(pcmobj, 'Num points on shell %d', on_shell) nlm = (lmax+1)**2 Lmat = make_L(pcmobj, r_vdw, ylm_1sph, fi) Lmat = Lmat.reshape(natm*nlm,-1) cached_pol = cache_fake_multipoles(pcmobj.grids, r_vdw, lmax) def gen_vind(dm): pcmobj._dm = dm if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2): # spin-traced DM for UHF or ROHF dm = dm[0] + dm[1] phi = make_phi(pcmobj, dm, r_vdw, ui) L_X = numpy.linalg.solve(Lmat, phi.ravel()).reshape(natm,-1) psi, vmat = make_psi_vmat(pcmobj, dm, r_vdw, ui, pcmobj.grids, ylm_1sph, cached_pol, L_X, Lmat)[:2] dielectric = pcmobj.eps if dielectric > 0: f_epsilon = (dielectric-1.)/dielectric else: f_epsilon = 1 pcmobj.epcm = .5 * f_epsilon * numpy.einsum('jx,jx', psi, L_X) pcmobj.vpcm = .5 * f_epsilon * vmat return pcmobj.epcm, pcmobj.vpcm return gen_vind def energy(pcmobj, dm): ''' ddCOSMO energy Es = 1/2 f(eps) \int rho(r) W(r) dr ''' epcm = gen_ddcosmo_solver(pcmobj, pcmobj.verbose)(dm)[0] return epcm def get_atomic_radii(pcmobj): mol = pcmobj.mol vdw_radii = pcmobj.radii_table atom_radii = pcmobj.atom_radii atom_symb = [mol.atom_symbol(i) for i in range(mol.natm)] r_vdw = [vdw_radii[gto.charge(x)] for x in atom_symb] if atom_radii is not None: for i in range(mol.natm): if atom_symb[i] in atom_radii: r_vdw[i] = atom_radii[atom_symb[i]] return numpy.asarray(r_vdw) def regularize_xt(t, eta): xt = numpy.zeros_like(t) inner = t <= 1-eta on_shell = (1-eta < t) & (t < 1) xt[inner] = 1 ti = t[on_shell] # JCTC, 9, 3637 xt[on_shell] = 1./eta**5 * (1-ti)**3 * (6*ti**2 + (15*eta-12)*ti + 10*eta**2 - 15*eta + 6) # JCP, 139, 054111 # xt[on_shell] = 1./eta**4 * (1-ti)**2 * (ti-1+2*eta)**2 return xt def make_grids_one_sphere(lebedev_order): ngrid_1sph = gen_grid.LEBEDEV_ORDER[lebedev_order] leb_grid = numpy.empty((ngrid_1sph,4)) gen_grid.libdft.MakeAngularGrid(leb_grid.ctypes.data_as(ctypes.c_void_p), ctypes.c_int(ngrid_1sph)) coords_1sph = leb_grid[:,:3] # Note the Lebedev angular grids are normalized to 1 in pyscf weights_1sph = 4*numpy.pi * leb_grid[:,3] return coords_1sph, weights_1sph def make_L(pcmobj, r_vdw, ylm_1sph, fi): # See JCTC, 9, 3637, Eq (18) mol = pcmobj.mol natm = mol.natm lmax = pcmobj.lmax eta = pcmobj.eta nlm = (lmax+1)**2 coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) ngrid_1sph = weights_1sph.size atom_coords = mol.atom_coords() ylm_1sph = ylm_1sph.reshape(nlm,ngrid_1sph) # JCP, 141, 184108 Eq (9), (12) is incorrect # L_diag = <lm|(1/|s-s'|)|l'm'> # Using Laplace expansion for electrostatic potential 1/r # L_diag = 4pi/(2l+1)/|s| <lm|l'm'> L_diag = numpy.zeros((natm,nlm)) p1 = 0 for l in range(lmax+1): p0, p1 = p1, p1 + (l*2+1) L_diag[:,p0:p1] = 4*numpy.pi/(l*2+1) L_diag *= 1./r_vdw.reshape(-1,1) Lmat = numpy.diag(L_diag.ravel()).reshape(natm,nlm,natm,nlm) for ja in range(natm): # scale the weight, precontract d_nj and w_n # see JCTC 9, 3637, Eq (16) - (18) # Note all values are scaled by 1/r_vdw to make the formulas # consistent to Psi in JCP, 141, 184108 part_weights = weights_1sph.copy() part_weights[fi[ja]>1] /= fi[ja,fi[ja]>1] for ka in atoms_with_vdw_overlap(ja, atom_coords, r_vdw): vjk = r_vdw[ja] * coords_1sph + atom_coords[ja] - atom_coords[ka] tjk = lib.norm(vjk, axis=1) / r_vdw[ka] wjk = pcmobj.regularize_xt(tjk, eta, r_vdw[ka]) wjk *= part_weights pol = sph.multipoles(vjk, lmax) p1 = 0 for l in range(lmax+1): fac = 4*numpy.pi/(l*2+1) / r_vdw[ka]**(l+1) p0, p1 = p1, p1 + (l*2+1) a = numpy.einsum('xn,n,mn->xm', ylm_1sph, wjk, pol[l]) Lmat[ja,:,ka,p0:p1] += -fac * a return Lmat def make_fi(pcmobj, r_vdw): coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) mol = pcmobj.mol eta = pcmobj.eta natm = mol.natm atom_coords = mol.atom_coords() ngrid_1sph = coords_1sph.shape[0] fi = numpy.zeros((natm,ngrid_1sph)) for ia in range(natm): for ja in atoms_with_vdw_overlap(ia, atom_coords, r_vdw): v = r_vdw[ia]*coords_1sph + atom_coords[ia] - atom_coords[ja] rv = lib.norm(v, axis=1) t = rv / r_vdw[ja] xt = pcmobj.regularize_xt(t, eta, r_vdw[ja]) fi[ia] += xt fi[fi < 1e-20] = 0 return fi def make_phi(pcmobj, dm, r_vdw, ui): mol = pcmobj.mol natm = mol.natm coords_1sph, weights_1sph = make_grids_one_sphere(pcmobj.lebedev_order) ngrid_1sph = coords_1sph.shape[0] if not (isinstance(dm, numpy.ndarray) and dm.ndim == 2): dm = dm[0] + dm[1] tril_dm = lib.pack_tril(dm+dm.T) nao = dm.shape[0] diagidx =
numpy.arange(nao)
numpy.arange
"""WFSC Loop Function.""" import numpy as np import os import time import pickle import matplotlib.pyplot as plt import falco def loop(mp, out): """ Loop over the estimator and controller for WFSC. Parameters ---------- mp : falco.config.ModelParameters Structure of model parameters out : falco.config.Object Output variables Returns ------- None Outputs are included in the objects mp and out. """ if type(mp) is not falco.config.ModelParameters: raise TypeError('Input "mp" must be of type ModelParameters') pass # Measured, mean raw contrast in scoring regino of dark hole. InormHist = np.zeros((mp.Nitr+1,)) # Take initial broadband image Im = falco.imaging.get_summed_image(mp) ########################################################################### # Begin the Correction Iterations ########################################################################### mp.flagCullActHist = np.zeros((mp.Nitr+1,), dtype=bool) mp.thput_vec = np.zeros(mp.Nitr+1) for Itr in range(mp.Nitr): # Start of new estimation+control iteration print('Iteration: %d / %d\n' % (Itr, mp.Nitr-1), end='') out.serialDate[Itr] = time.time() # Re-normalize PSF after latest DM commands falco.imaging.calc_psf_norm_factor(mp) # Updated DM data # Change the selected DMs if using the scheduled EFC controller if mp.controller.lower() in ['plannedefc']: mp.dm_ind = mp.dm_ind_sched[Itr] # Report which DMs are used in this iteration print('DMs to be used in this iteration = [', end='') for jj in range(len(mp.dm_ind)): print(' %d' % (mp.dm_ind[jj]), end='') print(' ]') # Fill in History of DM commands to Store if hasattr(mp, 'dm1'): if hasattr(mp.dm1, 'V'): out.dm1.Vall[:, :, Itr] = mp.dm1.V if hasattr(mp, 'dm2'): if hasattr(mp.dm2, 'V'): out.dm2.Vall[:, :, Itr] = mp.dm2.V if hasattr(mp, 'dm5'): if hasattr(mp.dm5, 'V'): out.dm5.Vall[:, :, Itr] = mp.dm5.V if hasattr(mp, 'dm8'): if hasattr(mp.dm8, 'V'): out.dm8.Vall[:, Itr] = mp.dm8.V[:] if hasattr(mp, 'dm9'): if hasattr(mp.dm9, 'V'): out.dm9.Vall[:, Itr] = mp.dm9.V[:] # Compute the DM surfaces if np.any(mp.dm_ind == 1): DM1surf = falco.dm.gen_surf_from_act(mp.dm1, mp.dm1.compact.dx, mp.dm1.compact.Ndm) else: DM1surf = np.zeros((mp.dm1.compact.Ndm, mp.dm1.compact.Ndm)) if np.any(mp.dm_ind == 2): DM2surf = falco.dm.gen_surf_from_act(mp.dm2, mp.dm2.compact.dx, mp.dm2.compact.Ndm) else: DM2surf = np.zeros((mp.dm2.compact.Ndm, mp.dm2.compact.Ndm)) # Updated plot and reporting # Calculate the core throughput (at higher resolution to be more accurate) thput, ImSimOffaxis = falco.imaging.calc_thput(mp) if mp.flagFiber: mp.thput_vec[Itr] = np.max(thput) else: mp.thput_vec[Itr] = thput # record keeping # Compute the current contrast level InormHist[Itr] = np.mean(Im[mp.Fend.corr.maskBool]) if(any(mp.dm_ind == 1)): mp.dm1 = falco.dm.enforce_constraints(mp.dm1) if(any(mp.dm_ind == 2)): mp.dm2 = falco.dm.enforce_constraints(mp.dm2) # Plotting if(mp.flagPlot): if Itr == 0: fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2) # else: # ax1.clear() # ax2.clear() # ax3.clear() # ax4.clear() fig.subplots_adjust(hspace=0.4, wspace=0.0) fig.suptitle(mp.coro+': Iteration %d' % Itr) im1 = ax1.imshow(np.log10(Im), cmap='magma', interpolation='none', extent=[np.min(mp.Fend.xisDL),
np.max(mp.Fend.xisDL)
numpy.max