prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import os from collections import namedtuple from tqdm import tqdm import numpy as np import freesasa as fs class GraphCreator: def __init__(self, pdb_file_list, graph_label_dict): """ Create graphs with the provided pdb files and labels. Parameters: pdb_file_list (list): list of pdb file paths graph_label_dict (dict): dictionary with pdb ids as keys and ground truth labels as values """ self.pdb_file_list = pdb_file_list self.graph_label_dict = graph_label_dict def get_adjacency_matrix(self, pfh_class, starting_number): """ Save data into graph format """ edges = [] for d in pfh_class.within_range: for k in d: edges.append(list(map(int, k.split("/")))) ret = "" for e in edges: i = 0 while i < len(e): e[i] += starting_number i += 1 ret += str(e)[1:-1] + "\n" return ret def save_graph(self, file_prefix: str, cutoff=10, save_path="."): """Convert pdb files to graph """ save_path = os.path.join(save_path, "cutoff"+str(cutoff)) os.makedirs(save_path, exist_ok=True) a = open(os.path.join(save_path, file_prefix+"_A.txt"), "w") idc = open( os.path.join(save_path, file_prefix+"_graph_indicator.txt"), "w") g_label = open( os.path.join(save_path, file_prefix+"_graph_labels.txt"), "w") n_label = open( os.path.join(save_path, file_prefix+"_node_labels.txt"), "w") starting_number = 1 pdb_idx = 1 for pdb in tqdm(self.pdb_file_list): if not (pdb.endswith(".pdb") or pdb.endswith(".cif")): continue try: pdb_id = os.path.basename(pdb).split(".")[0].upper() label = self.graph_label_dict[pdb_id] except KeyError: print(f"{pdb_id} label not found.") continue pdb_pfh = PDBtoPFH(pdb, cutoff=cutoff) try: pdb_pfh.get_attributes() except AssertionError: continue except Exception: continue a.write(self.get_adjacency_matrix(pdb_pfh, starting_number)) idc.write((str(pdb_idx)+"\n")*len(pdb_pfh.all_ca)) g_label.write(str(label)+"\n") for attr in pdb_pfh.ca_attributes: n_label.write(str(attr)[1:-1]+"\n") starting_number += len(pdb_pfh.all_ca) pdb_idx += 1 a.close() idc.close() g_label.close() n_label.close() class PDBtoPFH(): def __init__(self, file_path, cutoff=7): self.file_path = file_path self.cutoff = cutoff self.resi_to_int = { "ALA": 0, "CYS": 1, "ASP": 2, "GLU": 3, "PHE": 4, "GLY": 5, "HIS": 6, "ILE": 7, "LYS": 8, "LEU": 9, "MET": 10, "ASN": 11, "PRO": 12, "GLN": 13, "ARG": 14, "SER": 15, "THR": 16, "VAL": 17, "TRP": 18, "TYR": 19, "NAA": 20 # not a amino acid } self.Atom = namedtuple( "atom", "atom_id atom_name residue_id residue_name x y z") def get_attributes(self): # read pdb file with open(self.file_path, "r") as f: self.data = f.readlines() # calculate solvent access data try: self.solvent_access = fs.calc(fs.Structure(self.file_path)) except Exception: raise self._clean_data() try: self._ca_attributes() except AssertionError: raise self._distance_to_others() self._find_in_range() # clean data, save as {atom_type/residue_index: coordinates} def _clean_data(self): self.cl_data = list() for d in self.data: if not d.startswith("ATOM"): continue if d.startswith("ENDMDL"): break try: atom_id = int(d[6:11].strip()) res_id = int(d[22:26].strip()) atom_name = d[12:16].strip() res_name = d[17:20].strip() x = float(d[30:38]) y = float(d[38:46]) z = float(d[46:54]) atom = self.Atom( atom_id=atom_id, atom_name=atom_name, residue_id=res_id, residue_name=res_name, x=x, y=y, z=z ) self.cl_data.append(atom) except ValueError: continue # get the coordinates of all C-alpha def _get_ca(self): self.all_ca = [] self.ca_res = [] self.ca_solv = [] for atom in self.cl_data: if atom.atom_name.upper() == "CA": try: self.ca_res.append( self.resi_to_int[atom.residue_name.upper()]) except KeyError: self.ca_res.append(self.resi_to_int["NAA"]) try: self.ca_solv.append( self.solvent_access.atomArea(atom.atom_id)) except Exception: self.ca_solv.append(0.0) self.all_ca.append([atom.x, atom.y, atom.z]) def _get_c(self): self.all_c = [] for atom in self.cl_data: if atom.atom_name.upper() == "C": self.all_c.append([atom.x, atom.y, atom.z]) def _get_n(self): self.all_n = [] for atom in self.cl_data: if atom.atom_name.upper() == "N": self.all_n.append([atom.x, atom.y, atom.z]) # ### calculate the distance of all the C-alpha to other C-alpha def distance(self, start, end): st = np.array(start) ed = np.array(end) return np.linalg.norm(st-ed) def _distance_to_others(self): self.dist_to_others = [] for ca_st in (self.all_ca): dist_st_ed = [] for ca_ed in (self.all_ca): dist_st_ed.append(self.distance(ca_st, ca_ed)) self.dist_to_others.append(dist_st_ed) # ### Find the C-alpha within the range of CUTOFF def _find_in_range(self): self.within_range = [] for i, ds in enumerate(self.dist_to_others): neighbors = [] for j, d in enumerate(ds): if d < self.cutoff and d > 0: key = str(i) + "/" + str(j) neighbors.append(key) self.within_range.append(neighbors) # ### calculate the "surface norms" of all the C-alpha def _calculate_norms(self): try: assert(len(self.all_ca)==len(self.all_c)) except AssertionError: print(f"{self.file_path} has different numbers of Ca and C.") raise all_ca = np.array(self.all_ca, dtype=np.float32) all_c = np.array(self.all_c, dtype=np.float32) self.norms = all_c - all_ca def _calculate_surf_norm(self): try: assert(len(self.all_ca)==len(self.all_c)) except AssertionError: print(f"{self.file_path} has different numbers of Ca and C.") raise all_ca = np.array(self.all_ca, dtype=np.float32) all_c = np.array(self.all_c, dtype=np.float32) all_n =
np.array(self.all_n, dtype=np.float32)
numpy.array
import numpy as np def lte(r,r0,n): return 0 <= (r-r0).dot(n) def lt(r,r0,n): return 0 < (r-r0).dot(n) def tilted_square_transformations(n,m,a_1=None,a_2=None): if n < 1 or m < 1: raise ValueError("n and m must be >= 1") def test_r(r): return lte(r,r0,L2) and lte(r,r0,L1) and lt(r,r1,-L2) and lt(r,r1,-L1) L1=np.array([n,m]) L2=np.array([m,-n]) r0 = np.array([0,0]) r1 = L1+L2 x = np.arange(0,n+m+1,1) x = np.kron(x,np.ones_like(x)) y = np.arange(-n,m+1,1) y = np.kron(np.ones_like(y),y) r_list = np.vstack((x,y)).T r_lat = np.array([r for r in r_list[:] if test_r(r)]) arg = np.argsort(r_lat[:,0]+1j*r_lat[:,1]) r_lat = r_lat[arg].copy() if a_1 is None: a_1 = np.array([0,1]) if a_2 is None: a_2 = np.array([1,0]) Pr =
np.array([[0,-1],[1,0]])
numpy.array
# -*- coding: utf8 -*- '''This module implements techniques derived from the pGlyco2 FDR estimation procedure described in: [1] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., … <NAME>.-Y. (2017). pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nature Communications, 8(1), 438. https://doi.org/10.1038/s41467-017-00535-2 [2] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., … <NAME>. (2016). pGlyco: a pipeline for the identification of intact N-glycopeptides by using HCD- and CID-MS/MS and MS3. Scientific Reports, 6(April), 25102. https://doi.org/10.1038/srep25102 ''' import numpy as np try: from matplotlib import pyplot as plt except ImportError: pass from glypy.utils import Enum from glycan_profiling.task import TaskBase from glycan_profiling.tandem.target_decoy import NearestValueLookUp, TargetDecoyAnalyzer from glycan_profiling.tandem.spectrum_match import SpectrumMatch from glycan_profiling.tandem.glycopeptide.core_search import approximate_internal_size_of_glycan from .mixture import GammaMixture, GaussianMixtureWithPriorComponent from .journal import SolutionSetGrouper def noop(*args, **kwargs): pass class GlycopeptideFDREstimationStrategy(Enum): multipart_gamma_gaussian_mixture = 0 peptide_fdr = 1 glycan_fdr = 2 glycopeptide_fdr = 3 GlycopeptideFDREstimationStrategy.multipart_gamma_gaussian_mixture.add_name("multipart") GlycopeptideFDREstimationStrategy.multipart_gamma_gaussian_mixture.add_name("joint") GlycopeptideFDREstimationStrategy.peptide_fdr.add_name("peptide") GlycopeptideFDREstimationStrategy.glycan_fdr.add_name("glycan") class FiniteMixtureModelFDREstimator(object): def __init__(self, decoy_scores, target_scores): self.decoy_scores = np.array(decoy_scores) self.target_scores = np.array(target_scores) self.decoy_mixture = None self.target_mixture = None self.fdr_map = None def log(self, message): print(message) def estimate_gamma(self, max_components=10): models = [] bics = [] n = len(self.decoy_scores) np.random.seed(n) if n < 10: self.log("Too few decoy observations") self.decoy_mixture = GammaMixture([1.0], [1.0], [1.0]) return self.decoy_mixture for i in range(1, max_components + 1): self.log("Fitting %d Components" % (i,)) model = GammaMixture.fit(self.decoy_scores, i) bic = model.bic(self.decoy_scores) models.append(model) bics.append(bic) self.log("BIC: %g" % (bic,)) i = np.argmin(bics) self.log("Selected %d Components" % (i + 1,)) self.decoy_mixture = models[i] return self.decoy_mixture def estimate_gaussian(self, max_components=10): models = [] bics = [] n = len(self.target_scores) np.random.seed(n) if n < 10: self.log("Too few target observations") self.target_mixture = GaussianMixtureWithPriorComponent([1.0], [1.0], self.decoy_mixture, [0.5, 0.5]) return self.target_mixture for i in range(1, max_components + 1): self.log("Fitting %d Components" % (i,)) model = GaussianMixtureWithPriorComponent.fit( self.target_scores, i, self.decoy_mixture, deterministic=True) bic = model.bic(self.target_scores) models.append(model) bics.append(bic) self.log("BIC: %g" % (bic,)) i = np.argmin(bics) self.log("Selected %d Components" % (i + 1,)) self.target_mixture = models[i] return self.target_mixture def estimate_posterior_error_probability(self, X): return self.target_mixture.prior.score(X) * self.target_mixture.weights[ -1] / self.target_mixture.score(X) def estimate_fdr(self, X): X_ = np.array(sorted(X, reverse=True)) pep = self.estimate_posterior_error_probability(X_) # The FDR is the expected value of PEP, or the average PEP in this case. # The expression below is a cumulative mean (the cumulative sum divided # by the number of elements in the sum) fdr = np.cumsum(pep) / np.arange(1, len(X_) + 1) # Use searchsorted on the ascending ordered version of X_ # to find the indices of the origin values of X, then map # those into the ascending ordering of the FDR vector to get # the FDR estimates of the original X fdr[np.isnan(fdr)] = 1.0 fdr_descending = fdr[::-1] for i in range(1, fdr_descending.shape[0]): if fdr_descending[i - 1] < fdr_descending[i]: fdr_descending[i] = fdr_descending[i - 1] fdr = fdr_descending[::-1] fdr = fdr[::-1][np.searchsorted(X_[::-1], X)] return fdr def plot_mixture(self, ax=None): if ax is None: fig, ax = plt.subplots(1) X = np.arange(1, max(self.target_scores), 0.1) ax.plot(X, np.exp(self.target_mixture.logpdf(X)).sum(axis=1)) for col in np.exp(self.target_mixture.logpdf(X)).T: ax.plot(X, col, linestyle='--') ax.hist(self.target_scores, bins=100, density=1, alpha=0.15) return ax def plot(self, ax=None): if ax is None: fig, ax = plt.subplots(1) points = np.linspace( min(self.target_scores.min(), self.decoy_scores.min()), max(self.target_scores.max(), self.decoy_scores.max()), 10000) target_scores = np.sort(self.target_scores) target_counts = [(self.target_scores >= i).sum() for i in points] decoy_counts = [(self.decoy_scores >= i).sum() for i in points] fdr = self.estimate_fdr(target_scores) at_5_percent = np.where(fdr < 0.05)[0][0] at_1_percent = np.where(fdr < 0.01)[0][0] line1 = ax.plot(points, target_counts, label='Target', color='blue') line2 = ax.plot(points, decoy_counts, label='Decoy', color='orange') ax.vlines(target_scores[at_5_percent], 0, np.max(target_counts), linestyle='--', color='blue', lw=0.75) ax.vlines(target_scores[at_1_percent], 0,
np.max(target_counts)
numpy.max
import numpy as np import os import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib from ogcore.constants import (GROUP_LABELS, VAR_LABELS, ToGDP_LABELS, CBO_UNITS, DEFAULT_START_YEAR) import ogcore.utils as utils from ogcore.utils import Inequality def plot_aggregates(base_tpi, base_params, reform_tpi=None, reform_params=None, var_list=['Y', 'C', 'K', 'L'], plot_type='pct_diff', num_years_to_plot=50, start_year=DEFAULT_START_YEAR, vertical_line_years=None, plot_title=None, path=None): ''' Create a plot of macro aggregates. Args: base_tpi (dictionary): TPI output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_tpi (dictionary): TPI output from reform run reform_params (OG-Core Specifications class): reform parameters object var_list (list): names of variable to plot plot_type (string): type of plot, can be: 'pct_diff': plots percentage difference between baselien and reform ((reform-base)/base) 'diff': plots difference between baseline and reform (reform-base) 'levels': plot variables in model units 'cbo': plots variables in levels relative to CBO baseline projection (only available for macro variables in CBO long-term forecasts) num_years_to_plot (integer): number of years to include in plot start_year (integer): year to start plot vertical_line_years (list): list of integers for years want vertical lines at plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of macro aggregates ''' assert isinstance(start_year, (int, np.integer)) assert (isinstance(num_years_to_plot, int)) # Make sure both runs cover same time period if reform_tpi: assert (base_params.start_year == reform_params.start_year) year_vec = np.arange(start_year, start_year + num_years_to_plot) start_index = start_year - base_params.start_year # Check that reform included if doing pct_diff or diff plot if plot_type == 'pct_diff' or plot_type == 'diff': assert (reform_tpi is not None) fig1, ax1 = plt.subplots() for i, v in enumerate(var_list): if plot_type == 'pct_diff': if v in ['r_gov', 'r', 'r_p']: # Compute just percentage point changes for rates plot_var = reform_tpi[v] - base_tpi[v] else: plot_var = (reform_tpi[v] - base_tpi[v]) / base_tpi[v] ylabel = r'Pct. change' plt.plot(year_vec, plot_var[start_index: start_index + num_years_to_plot], label=VAR_LABELS[v]) elif plot_type == 'diff': plot_var = reform_tpi[v] - base_tpi[v] ylabel = r'Difference (Model Units)' plt.plot(year_vec, plot_var[start_index: start_index + num_years_to_plot], label=VAR_LABELS[v]) elif plot_type == 'levels': plt.plot(year_vec, base_tpi[v][start_index: start_index + num_years_to_plot], label='Baseline ' + VAR_LABELS[v]) if reform_tpi: plt.plot(year_vec, reform_tpi[v][start_index: start_index + num_years_to_plot], label='Reform ' + VAR_LABELS[v]) ylabel = r'Model Units' elif plot_type == 'cbo': # Need reform and baseline to ensure CBO plot makes sense assert (reform_tpi is not None) # read in CBO forecasts df_cbo = utils.read_cbo_forecast() # assert variable in cbo data assert (v in df_cbo.columns) # assert cbo data has start year and end year assert (df_cbo.year.min() <= start_year) assert (df_cbo.year.max() >= start_year + num_years_to_plot) cbo_data = df_cbo[ (df_cbo['year'] >= start_year) & (df_cbo['year'] <= start_year + num_years_to_plot - 1)][v].values # Plot CBO baseline plot_var_base = cbo_data plt.plot(year_vec, plot_var_base, label='Baseline ' + VAR_LABELS[v]) # Plot change in CBO baseline pct_change = ((reform_tpi[v] - base_tpi[v]) / base_tpi[v])[start_index: start_index + num_years_to_plot] plot_var_reform = (1 + pct_change) * cbo_data plt.plot(year_vec, plot_var_reform, label='Reform ' + VAR_LABELS[v]) # making units labels will not work if multiple variables # and they are in different units ylabel = CBO_UNITS[v] else: print('Please enter a valid plot type') assert(False) # vertical markers at certain years if vertical_line_years: for yr in vertical_line_years: plt.axvline(x=yr, linewidth=0.5, linestyle='--', color='k') plt.xlabel(r'Year $t$') plt.ylabel(ylabel) if plot_title: plt.title(plot_title, fontsize=15) ax1.set_yticks(ax1.get_yticks().tolist()) vals = ax1.get_yticks() if plot_type == 'pct_diff': ax1.set_yticklabels(['{:,.2%}'.format(x) for x in vals]) plt.xlim((base_params.start_year - 1, base_params.start_year + num_years_to_plot)) plt.legend(loc=9, bbox_to_anchor=(0.5, -0.15), ncol=2) if path: fig_path1 = os.path.join(path) plt.savefig(fig_path1, bbox_inches="tight") else: return fig1 plt.close() def ss_3Dplot(base_params, base_ss, reform_params=None, reform_ss=None, var='bssmat_splus1', plot_type='levels', plot_title=None, path=None): ''' Create a 3d plot of household decisions. Args: base_params (OG-Core Specifications class): baseline parameters object base_ss (dictionary): SS output from baseline run reform_params (OG-Core Specifications class): reform parameters object reform_ss (dictionary): SS output from reform run var (string): name of variable to plot plot_type (string): type of plot, can be: 'pct_diff': plots percentage difference between baselien and reform ((reform-base)/base) 'diff': plots difference between baseline and reform (reform-base) 'levels': plot variables in model units plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of household decisions ''' if reform_params: assert(base_params.J == reform_params.J) assert(base_params.starting_age == reform_params.starting_age) assert(base_params.ending_age == reform_params.ending_age) assert(base_params.S == reform_params.S) domain = np.linspace(base_params.starting_age, base_params.ending_age, base_params.S) Jgrid = np.zeros(base_params.J) for j in range(base_params.J): Jgrid[j:] += base_params.lambdas[j] if plot_type == 'levels': data = base_ss[var].T elif plot_type == 'diff': data = (reform_ss[var] - base_ss[var]).T elif plot_type == 'pct_diff': data = ((reform_ss[var] - base_ss[var]) / base_ss[var]).T cmap1 = matplotlib.cm.get_cmap('jet') X, Y = np.meshgrid(domain, Jgrid) fig5 = plt.figure() ax5 = fig5.gca(projection='3d') ax5.set_xlabel(r'age-$s$') ax5.set_ylabel(r'ability type-$j$') ax5.set_zlabel(r'individual savings $\bar{b}_{j,s}$') ax5.plot_surface(X, Y, data, rstride=1, cstride=1, cmap=cmap1) if plot_title: plt.title(plot_title) if path: plt.savefig(path) else: return plt def plot_gdp_ratio(base_tpi, base_params, reform_tpi=None, reform_params=None, var_list=['D'], plot_type='levels', num_years_to_plot=50, start_year=DEFAULT_START_YEAR, vertical_line_years=None, plot_title=None, path=None): ''' Create a plot of some variable to GDP. Args: base_tpi (dictionary): TPI output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_tpi (dictionary): TPI output from reform run reform_params (OG-Core Specifications class): reform parameters object p (OG-Core Specifications class): parameters object var_list (list): names of variable to plot plot_type (string): type of plot, can be: 'diff': plots difference between baseline and reform (reform-base) 'levels': plot variables in model units num_years_to_plot (integer): number of years to include in plot start_year (integer): year to start plot vertical_line_years (list): list of integers for years want vertical lines at plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of ratio of a variable to GDP ''' assert isinstance(start_year, (int, np.integer)) assert (isinstance(num_years_to_plot, int)) if plot_type == 'diff': assert (reform_tpi is not None) # Make sure both runs cover same time period if reform_tpi: assert (base_params.start_year == reform_params.start_year) year_vec = np.arange(start_year, start_year + num_years_to_plot) start_index = start_year - base_params.start_year fig1, ax1 = plt.subplots() for i, v in enumerate(var_list): if plot_type == 'levels': plot_var_base = (base_tpi[v][:base_params.T] / base_tpi['Y'][:base_params.T]) if reform_tpi: plot_var_reform = (reform_tpi[v][:base_params.T] / reform_tpi['Y'][:base_params.T]) plt.plot(year_vec, plot_var_base[start_index: start_index + num_years_to_plot], label='Baseline ' + ToGDP_LABELS[v]) plt.plot(year_vec, plot_var_reform[start_index: start_index + num_years_to_plot], label='Reform ' + ToGDP_LABELS[v]) else: plt.plot(year_vec, plot_var_base[start_index: start_index + num_years_to_plot], label=ToGDP_LABELS[v]) else: # if plotting differences in ratios var_base = (base_tpi[v][:base_params.T] / base_tpi['Y'][:base_params.T]) var_reform = (reform_tpi[v][:base_params.T] / reform_tpi['Y'][:base_params.T]) plot_var = var_reform - var_base plt.plot(year_vec, plot_var[start_index: start_index + num_years_to_plot], label=ToGDP_LABELS[v]) ylabel = r'Percent of GDP' # vertical markers at certain years if vertical_line_years: for yr in vertical_line_years: plt.axvline(x=yr, linewidth=0.5, linestyle='--', color='k') plt.xlabel(r'Year $t$') plt.ylabel(ylabel) if plot_title: plt.title(plot_title, fontsize=15) ax1.set_yticks(ax1.get_yticks().tolist()) vals = ax1.get_yticks() if plot_type == 'levels': ax1.set_yticklabels(['{:,.0%}'.format(x) for x in vals]) else: ax1.set_yticklabels(['{:,.2%}'.format(x) for x in vals]) plt.xlim((base_params.start_year - 1, base_params.start_year + num_years_to_plot)) plt.legend(loc=9, bbox_to_anchor=(0.5, -0.15), ncol=2) if path: fig_path1 = os.path.join(path) plt.savefig(fig_path1, bbox_inches="tight") else: return fig1 plt.close() def ability_bar(base_tpi, base_params, reform_tpi, reform_params, var='n_mat', num_years=5, start_year=DEFAULT_START_YEAR, plot_title=None, path=None): ''' Plots percentage changes from baseline by ability group for a given variable. Args: base_tpi (dictionary): TPI output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_tpi (dictionary): TPI output from reform run reform_params (OG-Core Specifications class): reform parameters object var (string): name of variable to plot num_year (integer): number of years to compute changes over start_year (integer): year to start plot plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of results by ability type ''' assert isinstance(start_year, (int, np.integer)) assert isinstance(num_years, (int, np.integer)) # Make sure both runs cover same time period if reform_tpi: assert (base_params.start_year == reform_params.start_year) N = base_params.J fig, ax = plt.subplots() ind = np.arange(N) # the x locations for the groups width = 0.2 # the width of the bars start_index = start_year - base_params.start_year omega_to_use = base_params.omega[:base_params.T, :].reshape( base_params.T, base_params.S, 1) base_val = (base_tpi[var] * omega_to_use)[ start_index:start_index + num_years, :, :].sum(1).sum(0) reform_val = (reform_tpi[var] * omega_to_use)[ start_index:start_index + num_years, :, :].sum(1).sum(0) var_to_plot = (reform_val - base_val) / base_val ax.bar(ind, var_to_plot * 100, width, bottom=0) ax.set_xticks(ind + width / 4) ax.set_xticklabels(list(GROUP_LABELS[base_params.J].values())) plt.xticks(rotation=45) plt.ylabel(r'Percentage Change in ' + VAR_LABELS[var]) if plot_title: plt.title(plot_title, fontsize=15) if path: fig_path1 = os.path.join(path) plt.savefig(fig_path1, bbox_inches="tight") else: return fig plt.close() def ability_bar_ss(base_ss, base_params, reform_ss, reform_params, var='nssmat', plot_title=None, path=None): ''' Plots percentage changes from baseline by ability group for a given variable. Args: base_ss (dictionary): SS output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_ss (dictionary): SS output from reform run reform_params (OG-Core Specifications class): reform parameters object var (string): name of variable to plot plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of results by ability type ''' N = base_params.J fig, ax = plt.subplots() ind = np.arange(N) # the x locations for the groups width = 0.2 # the width of the bars base_val = ( base_ss[var] * base_params.omega_SS.reshape(base_params.S, 1)).sum(0) reform_val = ( reform_ss[var] * reform_params.omega_SS.reshape(reform_params.S, 1)).sum(0) var_to_plot = (reform_val - base_val) / base_val ax.bar(ind, var_to_plot * 100, width, bottom=0) ax.set_xticks(ind + width / 4) ax.set_xticklabels(list(GROUP_LABELS[base_params.J].values())) plt.xticks(rotation=45) plt.ylabel(r'Percentage Change in ' + VAR_LABELS[var]) if plot_title: plt.title(plot_title, fontsize=15) plt.legend(loc=9, bbox_to_anchor=(0.5, -0.15), ncol=2) if path: fig_path1 = os.path.join(path) plt.savefig(fig_path1, bbox_inches="tight") else: return fig plt.close() def tpi_profiles(base_tpi, base_params, reform_tpi=None, reform_params=None, by_j=True, var='n_mat', num_years=5, start_year=DEFAULT_START_YEAR, plot_title=None, path=None): ''' Plot lifecycle profiles of given variable in the SS. Args: base_ss (dictionary): TPI output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_ss (dictionary): TPI output from reform run reform_params (OG-Core Specifications class): reform parameters object var (string): name of variable to plot num_year (integer): number of years to compute changes over start_year (integer): year to start plot plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of lifecycle profiles ''' assert isinstance(start_year, (int, np.integer)) assert isinstance(num_years, (int, np.integer)) if reform_tpi: assert (base_params.start_year == reform_params.start_year) assert (base_params.S == reform_params.S) assert (base_params.starting_age == reform_params.starting_age) assert (base_params.ending_age == reform_params.ending_age) age_vec = np.arange(base_params.starting_age, base_params.starting_age + base_params.S) fig1, ax1 = plt.subplots() start_idx = start_year - base_params.start_year end_idx = start_idx + num_years if by_j: cm = plt.get_cmap('coolwarm') ax1.set_prop_cycle(color=[cm(1. * i / 7) for i in range(7)]) for j in range(base_params.J): plt.plot(age_vec, base_tpi[var][start_idx: end_idx, :, j].sum(axis=0) / num_years, label='Baseline, j = ' + str(j)) if reform_tpi: plt.plot(age_vec, reform_tpi[var][start_idx: end_idx, :, j].sum(axis=0) / num_years, label='Reform, j = ' + str(j), linestyle='--') else: base_var = (( base_tpi[var][start_idx: end_idx, :, :] * base_params.lambdas.reshape(1, 1, base_params.J) ).sum(axis=2).sum(axis=0) / num_years) plt.plot(age_vec, base_var, label='Baseline') if reform_tpi: reform_var = (( reform_tpi[var][start_idx: end_idx, :, :] * reform_params.lambdas.reshape(1, 1, base_params.J) ).sum(axis=2).sum(axis=0) / num_years) plt.plot(age_vec, reform_var, label='Reform', linestyle='--') plt.xlabel(r'Age') plt.ylabel(VAR_LABELS[var]) plt.legend(loc=9, bbox_to_anchor=(0.5, -0.15), ncol=2) if plot_title: plt.title(plot_title, fontsize=15) if path: fig_path1 = os.path.join(path) plt.savefig(fig_path1, bbox_inches="tight") else: return fig1 plt.close() def ss_profiles(base_ss, base_params, reform_ss=None, reform_params=None, by_j=True, var='nssmat', plot_data=None, plot_title=None, path=None): ''' Plot lifecycle profiles of given variable in the SS. Args: base_ss (dictionary): SS output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_ss (dictionary): SS output from reform run reform_params (OG-Core Specifications class): reform parameters object var (string): name of variable to plot plot_data (array_like): series of data to add to plot plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of lifecycle profiles ''' if reform_ss: assert (base_params.S == reform_params.S) assert (base_params.starting_age == reform_params.starting_age) assert (base_params.ending_age == reform_params.ending_age) age_vec = np.arange(base_params.starting_age, base_params.starting_age + base_params.S) fig1, ax1 = plt.subplots() if by_j: cm = plt.get_cmap('coolwarm') ax1.set_prop_cycle(color=[cm(1. * i / 7) for i in range(7)]) for j in range(base_params.J): plt.plot(age_vec, base_ss[var][:, j], label='Baseline, j = ' + str(j)) if reform_ss: plt.plot(age_vec, reform_ss[var][:, j], label='Reform, j = ' + str(j), linestyle='--') else: base_var = ( base_ss[var][:, :] * base_params.lambdas.reshape(1, base_params.J)).sum(axis=1) plt.plot(age_vec, base_var, label='Baseline') if reform_ss: reform_var = ( reform_ss[var][:, :] * reform_params.lambdas.reshape(1, reform_params.J)).sum(axis=1) plt.plot(age_vec, reform_var, label='Reform', linestyle='--') if plot_data is not None: plt.plot(age_vec, plot_data, linewidth=2.0, label='Data', linestyle=':') plt.xlabel(r'Age') plt.ylabel(VAR_LABELS[var]) plt.legend(loc=9, bbox_to_anchor=(0.5, -0.15), ncol=2) if plot_title: plt.title(plot_title, fontsize=15) if path: fig_path1 = os.path.join(path) plt.savefig(fig_path1, bbox_inches="tight") else: return fig1 plt.close() def plot_all(base_output_path, reform_output_path, save_path): ''' Function to plot all default output plots. Args: base_output_path (str): path to baseline results reform_output_path (str): path to reform results save_path (str): path to save plots to Returns: None: All output figures saved to disk. ''' # Make directory in case it doesn't exist utils.mkdirs(save_path) # Read in data # Read in TPI output and parameters base_tpi = utils.safe_read_pickle( os.path.join(base_output_path, 'TPI', 'TPI_vars.pkl') ) base_ss = utils.safe_read_pickle( os.path.join(base_output_path, 'SS', 'SS_vars.pkl') ) base_params = utils.safe_read_pickle( os.path.join(base_output_path, 'model_params.pkl') ) reform_tpi = utils.safe_read_pickle( os.path.join(reform_output_path, 'TPI', 'TPI_vars.pkl') ) reform_ss = utils.safe_read_pickle( os.path.join(reform_output_path, 'SS', 'SS_vars.pkl') ) reform_params = utils.safe_read_pickle( os.path.join(reform_output_path, 'model_params.pkl') ) # Percentage changes in macro vars (Y, K, L, C) plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi, reform_params=reform_params, var_list=['Y', 'K', 'L', 'C'], plot_type='pct_diff', num_years_to_plot=150, start_year=base_params.start_year, vertical_line_years=[ base_params.start_year + base_params.tG1, base_params.start_year + base_params.tG2], plot_title='Percentage Changes in Macro Aggregates', path=os.path.join(save_path, 'MacroAgg_PctChange.png')) # Percentage change in fiscal vars (D, G, TR, Rev) plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi, reform_params=reform_params, var_list=['D', 'G', 'TR', 'total_tax_revenue'], plot_type='pct_diff', num_years_to_plot=150, start_year=base_params.start_year, vertical_line_years=[ base_params.start_year + base_params.tG1, base_params.start_year + base_params.tG2], plot_title='Percentage Changes in Fiscal Variables', path=os.path.join(save_path, 'Fiscal_PctChange.png')) # r and w in baseline and reform -- vertical lines at tG1, tG2 plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi, reform_params=reform_params, var_list=['r'], plot_type='levels', num_years_to_plot=150, start_year=base_params.start_year, vertical_line_years=[ base_params.start_year + base_params.tG1, base_params.start_year + base_params.tG2], plot_title='Real Interest Rates Under Baseline and Reform', path=os.path.join(save_path, 'InterestRates.png')) plot_aggregates(base_tpi, base_params, reform_tpi=reform_tpi, reform_params=reform_params, var_list=['w'], plot_type='levels', num_years_to_plot=150, start_year=base_params.start_year, vertical_line_years=[ base_params.start_year + base_params.tG1, base_params.start_year + base_params.tG2], plot_title='Wage Rates Under Baseline and Reform', path=os.path.join(save_path, 'WageRates.png')) # Debt-GDP in base and reform-- vertical lines at tG1, tG2 plot_gdp_ratio(base_tpi, base_params, reform_tpi, reform_params, var_list=['D'], num_years_to_plot=150, start_year=base_params.start_year, vertical_line_years=[ base_params.start_year + base_params.tG1, base_params.start_year + base_params.tG2], plot_title='Debt-to-GDP', path=os.path.join(save_path, 'DebtGDPratio.png')) # Tax revenue to GDP in base and reform-- vertical lines at tG1, tG2 plot_gdp_ratio(base_tpi, base_params, reform_tpi, reform_params, var_list=['total_tax_revenue'], num_years_to_plot=150, start_year=base_params.start_year, vertical_line_years=[ base_params.start_year + base_params.tG1, base_params.start_year + base_params.tG2], plot_title='Tax Revenue to GDP', path=os.path.join(save_path, 'RevenueGDPratio.png')) # Pct change in c, n, b, y, etr, mtrx, mtry by ability group over 10 years var_list = ['c_path', 'n_mat', 'bmat_splus1', 'etr_path', 'mtrx_path', 'mtry_path', 'y_before_tax_mat'] title_list = ['consumption', 'labor supply', 'savings', 'effective tax rates', 'marginal tax rates on labor income', 'marginal tax rates on capital income', 'before tax income'] path_list = ['Cons', 'Labor', 'Save', 'ETR', 'MTRx', 'MTRy', 'Income'] for i, v in enumerate(var_list): ability_bar(base_tpi, base_params, reform_tpi, reform_params, var=v, num_years=10, start_year=base_params.start_year, plot_title='Percentage changes in ' + title_list[i], path=os.path.join(save_path, 'PctChange_' + path_list[i] + '.png')) # lifetime profiles, base vs reform, SS for c, n, b, y - not by j var_list = ['cssmat', 'nssmat', 'bssmat_splus1', 'etr_ss', 'mtrx_ss', 'mtry_ss'] for i, v in enumerate(var_list): ss_profiles(base_ss, base_params, reform_ss, reform_params, by_j=False, var=v, plot_title='Lifecycle Profile of ' + title_list[i], path=os.path.join(save_path, 'SSLifecycleProfile_' + path_list[i] + '.png')) # lifetime profiles, c, n , b, y by j, separately for base and reform for i, v in enumerate(var_list): ss_profiles(base_ss, base_params, by_j=True, var=v, plot_title='Lifecycle Profile of ' + title_list[i], path=os.path.join(save_path, 'SSLifecycleProfile_' + path_list[i] + '_Baseline.png')) ss_profiles(reform_ss, reform_params, by_j=True, var=v, plot_title='Lifecycle Profile of ' + title_list[i], path=os.path.join(save_path, 'SSLifecycleProfile_' + path_list[i] + '_Reform.png')) def inequality_plot( base_tpi, base_params, reform_tpi=None, reform_params=None, var='c_path', ineq_measure='gini', pctiles=None, plot_type='levels', num_years_to_plot=50, start_year=DEFAULT_START_YEAR, vertical_line_years=None, plot_title=None, path=None): ''' Plot measures of inequality over the time path. Args: base_tpi (dictionary): TPI output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_tpi (dictionary): TPI output from reform run reform_params (OG-Core Specifications class): reform parameters object var(string): name of variable to plot ineq_measure (string): inequality measure to plot, can be: 'gini': Gini coefficient 'var_of_logs': variance of logs 'pct_ratio': percentile ratio 'top_share': top share of total pctiles (tuple or None): percentiles for percentile ratios (numerator, denominator) or percentile for top share (not required for Gini or var_of_logs) plot_type (string): type of plot, can be: 'pct_diff': plots percentage difference between baselien and reform ((reform-base)/base) 'diff': plots difference between baseline and reform (reform-base) 'levels': plot variables in model units num_years_to_plot (integer): number of years to include in plot start_year (integer): year to start plot vertical_line_years (list): list of integers for years want vertical lines at plot_title (string): title for plot path (string): path to save figure to Returns: fig (Matplotlib plot object): plot of inequality measure ''' assert isinstance(start_year, (int, np.integer)) assert (isinstance(num_years_to_plot, int)) # Make sure both runs cover same time period if reform_tpi: assert (base_params.start_year == reform_params.start_year) assert ineq_measure in ['gini', 'var_of_logs', 'pct_ratio', 'top_share'] if (ineq_measure == 'pct_ratio') | (ineq_measure == 'top_share'): assert pctiles year_vec = np.arange(start_year, start_year + num_years_to_plot) # Check that reform included if doing pct_diff or diff plot if plot_type == 'pct_diff' or plot_type == 'diff': assert (reform_tpi is not None) fig1, ax1 = plt.subplots() base_values =
np.zeros(num_years_to_plot)
numpy.zeros
from equadratures.parameter import Parameter from equadratures.poly import Poly from equadratures.basis import Basis from equadratures.scalers import scaler_minmax, scaler_meanvar, scaler_custom import equadratures.plot as plot import numpy as np import scipy import scipy.io from scipy.linalg import orth, sqrtm from scipy.spatial import ConvexHull from scipy.special import comb from scipy.optimize import linprog import warnings class Subspaces(object): """ This class defines a subspaces object. It can be used for polynomial-based subspace dimension reduction. Parameters ---------- method : str The method to be used for subspace-based dimension reduction. Two options: - ``active-subspace``, which uses ideas in [1] and [2] to compute a dimension-reducing subspace with a global polynomial approximant. Gradients evaluations of the polynomial approximation are used to compute the averaged outer product of the gradient covariance matrix. The polynomial approximation in the original full-space can be provided via ``full_space_poly``. Otherwise, it is fit internally to the data provided via ``sample_points`` and ``sample_outputs``. - ``variable-projection`` [3], where a Gauss-Newton optimisation problem is solved to compute both the polynomial coefficients and its subspace, with the data provided via ``sample_points`` and ``sample_outputs``. full_space_poly : Poly, optional An instance of Poly fitted to the full-space data, to use for the AS computation. sample_points : numpy.ndarray, optional Array with shape (number_of_observations, dimensions) that corresponds to a set of sample points over the parameter space. sample_outputs : numpy.ndarray, optional Array with shape (number_of_observations, 1) that corresponds to model evaluations at the sample points. subspace_dimension : int, optional The dimension of the *active* subspace. param_args : dict, optional Arguments passed to parameters of the AS polynomial. (see :class:`~equadratures.parameter.Parameter`) poly_args : dict , optional Arguments passed to constructing polynomial used for AS computation. (see :class:`~equadratures.poly.Poly`) dr_args : dict, optional Arguments passed to customise the VP optimiser. See documentation for :meth:`~equadratures.subspaces.Subspaces._get_variable_projection` in source. Examples -------- Obtaining a 2D subspace via active subspaces on user data >>> mysubspace = Subspaces(method='active-subspace', sample_points=X, sample_outputs=Y) >>> eigs = mysubspace.get_eigenvalues() >>> W = mysubspace.get_subspace()[:, :2] >>> e = mysubspace.get_eigenvalues() Obtaining a 2D subspace via active subspaces with a Poly object (remember to call set_model() on Poly first) >>> mysubspace = Subspaces(method='active-subspace', full_space_poly=my_poly) >>> eigs = mysubspace.get_eigenvalues() >>> W = mysubspace.get_subspace()[:, :2] >>> e = mysubspace.get_eigenvalues() Obtaining a 2D subspace via variable projection on user data >>> mysubspace = Subspaces(method='variable-projection', sample_points=X, sample_outputs=Y) >>> W = mysubspace.get_subspace()[:, :2] References ---------- 1. <NAME>., (2015) Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies. SIAM Spotlights. 2. <NAME>., <NAME>., <NAME>., <NAME>., <NAME>. (2018) Turbomachinery Active Subspace Performance Maps. Journal of Turbomachinery, 140(4), 041003. `Paper <http://turbomachinery.asmedigitalcollection.asme.org/article.aspx?articleid=2668256>`__. 3. <NAME>., <NAME>., (2018) Data-driven Polynomial Ridge Approximation Using Variable Projection. SIAM Journal of Scientific Computing, 40(3), A1566-A1589. `Paper <https://epubs.siam.org/doi/abs/10.1137/17M1117690>`__. """ def __init__(self, method, full_space_poly=None, sample_points=None, sample_outputs=None, subspace_dimension=2, polynomial_degree=2, param_args=None, poly_args=None, dr_args=None): self.full_space_poly = full_space_poly self.sample_points = sample_points self.Y = None # for the zonotope vertices self.sample_outputs = sample_outputs self.method = method self.subspace_dimension = subspace_dimension self.polynomial_degree = polynomial_degree my_poly_args = {'method': 'least-squares', 'solver_args': {}} if poly_args is not None: my_poly_args.update(poly_args) self.poly_args = my_poly_args my_param_args = {'distribution': 'uniform', 'order': self.polynomial_degree, 'lower': -1, 'upper': 1} if param_args is not None: my_param_args.update(param_args) # I suppose we can detect if lower and upper is present to decide between these categories? bounded_distrs = ['analytical', 'beta', 'chebyshev', 'arcsine', 'truncated-gaussian', 'uniform'] unbounded_distrs = ['gaussian', 'normal', 'gumbel', 'logistic', 'students-t', 'studentst'] semi_bounded_distrs = ['chi', 'chi-squared', 'exponential', 'gamma', 'lognormal', 'log-normal', 'pareto', 'rayleigh', 'weibull'] if dr_args is not None: if 'standardize' in dr_args: dr_args['standardise'] = dr_args['standardize'] if self.method.lower() == 'active-subspace' or self.method.lower() == 'active-subspaces': self.method = 'active-subspace' if dr_args is not None: self.standardise = getattr(dr_args, 'standardise', True) else: self.standardise = True if self.full_space_poly is None: # user provided input/output data N, d = self.sample_points.shape if self.standardise: self.data_scaler = scaler_minmax() self.data_scaler.fit(self.sample_points) self.std_sample_points = self.data_scaler.transform(self.sample_points) else: self.std_sample_points = self.sample_points.copy() param = Parameter(**my_param_args) if param_args is not None: if (hasattr(dr_args, 'lower') or hasattr(dr_args, 'upper')) and self.standardise: warnings.warn('Points standardised but parameter range provided. Overriding default ([-1,1])...', UserWarning) myparameters = [param for _ in range(d)] mybasis = Basis("total-order") mypoly = Poly(myparameters, mybasis, sampling_args={'sample-points': self.std_sample_points, 'sample-outputs': self.sample_outputs}, **my_poly_args) mypoly.set_model() self.full_space_poly = mypoly else: # User provided polynomial # Standardise according to distribution specified. Only care about the scaling (not shift) # TODO: user provided callable with parameters? user_params = self.full_space_poly.parameters d = len(user_params) self.sample_points = self.full_space_poly.get_points() if self.standardise: scale_factors = np.zeros(d) centers = np.zeros(d) for dd, p in enumerate(user_params): if p.name.lower() in bounded_distrs: scale_factors[dd] = (p.upper - p.lower) / 2.0 centers[dd] = (p.upper + p.lower) / 2.0 elif p.name.lower() in unbounded_distrs: scale_factors[dd] = np.sqrt(p.variance) centers[dd] = p.mean else: scale_factors[dd] = np.sqrt(p.variance) centers[dd] = 0.0 self.param_scaler = scaler_custom(centers, scale_factors) self.std_sample_points = self.param_scaler.transform(self.sample_points) else: self.std_sample_points = self.sample_points.copy() if not hasattr(self.full_space_poly, 'coefficients'): raise ValueError('Please call set_model() first on poly.') self.sample_outputs = self.full_space_poly.get_model_evaluations() # TODO: use dr_args for resampling of gradient points as_args = {'grad_points': None} if dr_args is not None: as_args.update(dr_args) self._get_active_subspace(**as_args) elif self.method == 'variable-projection': self.data_scaler = scaler_minmax() self.data_scaler.fit(self.sample_points) self.std_sample_points = self.data_scaler.transform(self.sample_points) if dr_args is not None: vp_args = {'gamma':0.1, 'beta':1e-4, 'tol':1e-7, 'maxiter':1000, 'U0':None, 'verbose':False} vp_args.update(dr_args) self._get_variable_projection(**vp_args) else: self._get_variable_projection() def get_subspace_polynomial(self): """ Returns a polynomial defined over the dimension reducing subspace. Returns ------- Poly A Poly object that defines a polynomial over the subspace. The distribution of parameters is assumed to be uniform and the maximum and minimum bounds for each parameter are defined by the maximum and minimum values of the project samples. """ # TODO: Try correlated poly here active_subspace = self._subspace[:, 0:self.subspace_dimension] projected_points = np.dot(self.std_sample_points, active_subspace) myparameters = [] for i in range(0, self.subspace_dimension): param = Parameter(distribution='uniform', lower=np.min(projected_points[:, i]), upper=np.max(projected_points[:, i]), order=self.polynomial_degree) myparameters.append(param) mybasis = Basis("total-order") subspacepoly = Poly(myparameters, mybasis, method='least-squares', sampling_args={'sample-points': projected_points, 'sample-outputs': self.sample_outputs}) subspacepoly.set_model() return subspacepoly def get_eigenvalues(self): """ Returns the eigenvalues of the dimension reducing subspace. Note: this option is currently only valid for method ``active-subspace``. Returns ------- numpy.ndarray Array of shape (dimensions,) corresponding to the eigenvalues of the above mentioned covariance matrix. """ if self.method == 'active-subspace': return self._eigenvalues else: print('Only the active-subspace method yields eigenvalues.') def get_subspace(self): """ Returns the dimension reducing subspace. Returns ------- numpy.ndarray Array of shape (dimensions, dimensions) where the first ``subspace_dimension`` columns contain the dimension reducing subspace, while the remaining columns contain its orthogonal complement. """ return self._subspace def _get_active_subspace(self, grad_points=None, **kwargs): """ Private method to compute active subspaces. """ if grad_points is None: X = self.full_space_poly.get_points() else: if hasattr(self, 'data_scaler'): X = self.data_scaler.transform(grad_points) else: # Either no standardisation, or user provided poly + param scaling X = grad_points.copy() M, d = X.shape if d != self.sample_points.shape[1]: raise ValueError('In _get_active_subspace: dimensions of gradient evaluation points mismatched with input dimension!') alpha = 2.0 num_grad_lb = alpha * self.subspace_dimension * np.log(d) if M < num_grad_lb: warnings.warn('Number of gradient evaluation points is likely to be insufficient. Consider resampling!', UserWarning) polygrad = self.full_space_poly.get_polyfit_grad(X) if hasattr(self, 'param_scaler'): # Evaluate gradient in transformed coordinate space polygrad = self.param_scaler.div[:, np.newaxis] * polygrad weights = np.ones((M, 1)) / M R = polygrad.transpose() * weights C = np.dot(polygrad, R ) # Compute eigendecomposition! e, W = np.linalg.eigh(C) idx = e.argsort()[::-1] eigs = e[idx] eigVecs = W[:, idx] if hasattr(self, 'data_scaler'): scale_factors = 2.0 / (self.data_scaler.Xmax - self.data_scaler.Xmin) eigVecs = scale_factors[:, np.newaxis] * eigVecs eigVecs = np.linalg.qr(eigVecs)[0] self._subspace = eigVecs self._eigenvalues = eigs def _get_variable_projection(self, gamma=0.1, beta=1e-4, tol=1e-7, maxiter=1000, U0=None, verbose=False): """ Private method to obtain an active subspace in inputs design space via variable projection. Note: It may help to standardize outputs to zero mean and unit variance Parameters ---------- gamma : float, optional Step length reduction factor (0,1). beta : float, optional Armijo tolerance for backtracking line search (0,1). tol : float, optional Tolerance for convergence, measured in the norm of residual over norm of f. maxiter : int, optional Maximum number of optimisation iterations. U0 : numpy.ndarray, optional Initial guess for active subspace. verbose : bool, optional Set to ``True`` for debug messages. """ # NOTE: How do we know these are the best values of gamma and beta? M, m = self.std_sample_points.shape if U0 is None: Z = np.random.randn(m, self.subspace_dimension) U, _ = np.linalg.qr(Z) else: U = orth(U0) y = np.dot(self.std_sample_points,U) minmax = np.zeros((2, self.subspace_dimension)) minmax[0, :] = np.amin(y, axis=0) minmax[1, :] = np.amax(y, axis=0) # Construct the affine transformation eta = 2 * np.divide((y - minmax[0,:]), (minmax[1,:]-minmax[0,:])) - 1 # Construct the Vandermonde matrix step 6 V, poly_obj = vandermonde(eta, self.polynomial_degree) V_plus = np.linalg.pinv(V) coeff = np.dot(V_plus, self.sample_outputs) res = self.sample_outputs - np.dot(V,coeff) # R = np.linalg.norm(res) # TODO: convergence criterion?? for iteration in range(0,maxiter): # Construct the Jacobian step 9 J = jacobian_vp(V, V_plus, U, self.sample_outputs, poly_obj, eta, minmax, self.std_sample_points) # Calculate the gradient of Jacobian (step 10) G = np.zeros((m, self.subspace_dimension)) # NOTE: Can be vectorised for i in range(0, M): G += res[i]*J[i, :, :] # conduct the SVD for J_vec vec_J = np.reshape(J, (M, m*self.subspace_dimension)) Y, S, Z = np.linalg.svd(vec_J,full_matrices=False) # step 11 # obtain delta delta = np.dot(Y[:,:-self.subspace_dimension**2].T, res) delta = np.dot(np.diag(1/S[:-self.subspace_dimension**2]), delta) delta = -np.dot(Z[:-self.subspace_dimension**2,:].T, delta).reshape(U.shape) # carry out Gauss-Newton step vec_delta=delta.flatten() # step 12 # vectorize G step 13 vec_G = G.flatten() alpha = np.dot(vec_G.T, vec_delta) norm_G = np.dot(vec_G.T, vec_G) # check alpha step 14 if alpha >= 0: delta = -G alpha = -norm_G # SVD on delta step 17 Y, S, Z = np.linalg.svd(delta, full_matrices=False) UZ = np.dot(U,Z.T) t = 1 for iter2 in range(0,20): U_new = np.dot(UZ, np.diag(np.cos(S*t))) + np.dot(Y, np.diag(np.sin(S*t)))#step 19 U_new = orth(U_new) # Update the values with the new U matrix y = np.dot(self.std_sample_points, U_new) minmax[0,:] = np.amin(y, axis=0) minmax[1,:] = np.amax(y, axis=0) eta = 2 * np.divide((y - minmax[0,:]), (minmax[1,:]-minmax[0,:])) - 1 V_new, poly_obj = vandermonde(eta, self.polynomial_degree) V_plus_new = np.linalg.pinv(V_new) coeff_new = np.dot(V_plus_new, self.sample_outputs) res_new = self.sample_outputs - np.dot(V_new,coeff_new) R_new = np.linalg.norm(res_new) if np.linalg.norm(res_new) <= np.linalg.norm(res)+alpha*beta*t or t < 1e-10: # step 21 break t = t * gamma dist_change = subspace_dist(U, U_new) U = U_new V = V_new # coeff = coeff_new V_plus = V_plus_new res = res_new # R = R_new if dist_change < tol: if verbose: print("VP finished with %d iterations" % iteration) break if iteration == maxiter - 1 and verbose: print("VP finished with %d iterations" % iteration) active_subspace = U inactive_subspace = _null_space(active_subspace.T) self._subspace = np.hstack([active_subspace, inactive_subspace]) def get_zonotope_vertices(self, num_samples=10000, max_count=100000): """ Returns the vertices of the zonotope -- the projection of the high-dimensional space over the computed subspace. Parameters ---------- num_samples : int, optional Number of samples per iteration to check. max_count : int, optional Maximum number of iteration. Returns ------- numpy.ndarray Array of shape (number of vertices, ``subspace_dimension``). Note ---- This routine has been adapted from <NAME>'s zonotope_vertices() function; see reference below. <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., (2016) Python Active-Subspaces Utility Library. Journal of Open Source Software, 1(5), 79. `Paper <http://joss.theoj.org/papers/10.21105/joss.00079>`__. """ m = self._subspace.shape[0] n = self.subspace_dimension W = self._subspace[:, :n] if n == 1: y0 = np.dot(W.T, np.sign(W))[0] if y0 < -y0: yl, yu = y0, -y0 xl, xu = np.sign(W), -np.sign(W) else: yl, yu = -y0, y0 xl, xu = -np.sign(W), np.sign(W) Y = np.array([yl, yu]).reshape((2,1)) X = np.vstack((xl.reshape((1,m)), xu.reshape((1,m)))) self.Y = Y return Y else: total_vertices = 0 for i in range(n): total_vertices += comb(m-1,i) total_vertices = int(2*total_vertices) Z = np.random.normal(size=(num_samples, n)) X = get_unique_rows(np.sign(np.dot(Z, W.transpose()))) X = get_unique_rows(np.vstack((X, -X))) N = X.shape[0] count = 0 while N < total_vertices: Z = np.random.normal(size=(num_samples, n)) X0 = get_unique_rows(np.sign(np.dot(Z, W.transpose()))) X0 = get_unique_rows(np.vstack((X0, -X0))) X = get_unique_rows(np.vstack((X, X0))) N = X.shape[0] count += 1 if count > max_count: break num_vertices = X.shape[0] if total_vertices > num_vertices: print('Warning: {} of {} vertices found.'.format(num_vertices, total_vertices)) Y = np.dot(X, W) self.Y = Y.reshape((num_vertices, n)) return self.Y def get_linear_inequalities(self): """ Returns the linear inequalities defining the zonotope vertices, i.e., Ax<=b. Returns ------- tuple Tuple (A,b), containing the numpy.ndarray's A and b; where A is the matrix for setting the linear inequalities, and b is the right-hand-side vector for setting the linear inequalities. """ if self.Y is None: self.Y = self.get_zonotope_vertices() n = self.Y.shape[1] if n == 1: A = np.array([[1],[-1]]) b = np.array([[max(self.Y)],[min(self.Y)]]) return A, b else: convexHull = ConvexHull(self.Y) A = convexHull.equations[:,:n] b = -convexHull.equations[:,n] return A, b def get_samples_constraining_active_coordinates(self, inactive_samples, active_coordinates): """ A hit and run type sampling strategy for generating samples at a given coordinate in the active subspace by varying its coordinates along the inactive subspace. Parameters ---------- inactive_samples : int The number of inactive samples required. active_coordiantes : numpy.ndarray The active subspace coordinates. Returns ------- numpy.ndarray Array containing the full-space coordinates. Note ---- This routine has been adapted from <NAME>'s hit_and_run() function; see reference below. <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., (2016) Python Active-Subspaces Utility Library. Journal of Open Source Software, 1(5), 79. `Paper <http://joss.theoj.org/papers/10.21105/joss.00079>`__. """ y = active_coordinates N = inactive_samples W1 = self._subspace[:, :self.subspace_dimension] W2 = self._subspace[:, self.subspace_dimension:] m, n = W1.shape s = np.dot(W1, y).reshape((m, 1)) normW2 = np.sqrt(np.sum(np.power(W2, 2), axis=1)).reshape((m, 1)) A = np.hstack((np.vstack((W2, -W2.copy())), np.vstack((normW2, normW2.copy())))) b = np.vstack((1 - s, 1 + s)).reshape((2 * m, 1)) c = np.zeros((m - n + 1, 1)) c[-1] = -1.0 # print() zc = linear_program_ineq(c, -A, -b) z0 = zc[:-1].reshape((m - n, 1)) # define the polytope A >= b s = np.dot(W1, y).reshape((m, 1)) A = np.vstack((W2, -W2)) b = np.vstack((-1 - s, -1 + s)).reshape((2 * m, 1)) # tolerance ztol = 1e-6 eps0 = ztol / 4.0 Z = np.zeros((N, m - n)) for i in range(N): # random direction bad_dir = True count, maxcount = 0, 50 while bad_dir: d = np.random.normal(size=(m - n, 1)) bad_dir = np.any(np.dot(A, z0 + eps0 * d) <= b) count += 1 if count >= maxcount: Z[i:, :] = np.tile(z0, (1, N - i)).transpose() yz = np.vstack([np.repeat(y[:, np.newaxis], N, axis=1), Z.T]) return np.dot(self._subspace, yz).T # find constraints that impose lower and upper bounds on eps f, g = b - np.dot(A, z0), np.dot(A, d) # find an upper bound on the step min_ind = np.logical_and(g <= 0, f < -np.sqrt(np.finfo(np.float).eps)) eps_max = np.amin(f[min_ind] / g[min_ind]) # find a lower bound on the step max_ind = np.logical_and(g > 0, f < -np.sqrt(np.finfo(np.float).eps)) eps_min = np.amax(f[max_ind] / g[max_ind]) # randomly sample eps eps1 = np.random.uniform(eps_min, eps_max) # take a step along d z1 = z0 + eps1 * d Z[i, :] = z1.reshape((m - n,)) # update temp var z0 = z1.copy() yz = np.vstack([np.repeat(y[:, np.newaxis], N, axis=1), Z.T]) return np.dot(self._subspace, yz).T def plot_sufficient_summary(self, ax=None, X_test=None, y_test=None, show=True, poly=True, uncertainty=False, legend=False, scatter_kwargs={}, plot_kwargs={}): """ Generates a sufficient summary plot for 1D or 2D polynomial ridge approximations. See :meth:`~equadratures.plot.plot_sufficient_summary` for full description. """ return plot.plot_sufficient_summary(self, ax, X_test, y_test, show, poly, uncertainty, legend, scatter_kwargs, plot_kwargs) def plot_2D_contour_zonotope(self, mysubspace, minmax=[- 3.5, 3.5], grid_pts=180, show=True, ax=None): """ Generates a 2D contour plot of the polynomial ridge approximation. See :meth:`~equadratures.plot.plot_2D_contour_zonotope` for full description. """ return plot.plot_2D_contour_zonotope(self,minmax,grid_pts,show,ax) def plot_samples_from_second_subspace_over_first(self, mysubspace_2, axs=None, no_of_samples=500, minmax=[- 3.5, 3.5], grid_pts=180, show=True): """ Generates a zonotope plot where samples from the second subspace are projected over the first. See :meth:`~equadratures.plot.plot_samples_from_second_subspace_over_first` for full description. """ return plot.plot_samples_from_second_subspace_over_first(self,mysubspace_2, axs, no_of_samples, minmax, grid_pts, show) def vandermonde(eta, p): # TODO: Try using a "correlated" basis here? _, n = eta.shape listing = [] for i in range(0, n): listing.append(p) Object=Basis('total-order',listing) # Establish n Parameter objects params = [] P = Parameter(order=p, lower=-1, upper=1, distribution='uniform') for i in range(0, n): params.append(P) # Use the params list to establish the Poly object poly_obj = Poly(params, Object, method='least-squares') V = poly_obj.get_poly(eta) V = V.T return V, poly_obj def vector_AS(list_of_polys, R = None, alpha=None, k=None, samples=None, bootstrap=False, bs_trials = 50 , J = None, save_path = None): # Find AS directions to vector val func # analogous to computeActiveSubspace # Since we are dealing with *one* vector val func we should have just one input space # Take the first of the polys. poly = list_of_polys[0] if samples is None: d = poly.dimensions if alpha is None: alpha = 4 if k is None or k > d: k = d M = int(alpha * k * np.log(d)) X = np.zeros((M, d)) for j in range(0, d): X[:, j] = np.reshape(poly.parameters[j].getSamples(M), M) else: X = samples M, d = X.shape n = len(list_of_polys) # number of outputs if R is None: R = np.eye(n) elif len(R.shape) == 1: R = np.diag(R) if J is None: J = jacobian_vec(list_of_polys,X) if not(save_path is None): np.save(save_path,J) J_new = np.matmul(sqrtm(R), np.transpose(J,[2,0,1])) JtJ = np.matmul(np.transpose(J_new,[0,2,1]), J_new) H = np.mean(JtJ,axis=0) # Compute P_r by solving generalized eigenvalue problem... # Assume sigma = identity for now e, W = np.linalg.eigh(H) eigs = np.flipud(e) eigVecs = np.fliplr(W) if bootstrap: all_bs_eigs = np.zeros((bs_trials, d)) all_bs_W = [] for t in range(bs_trials): print("Starting bootstrap trial %d"%t) bs_samples = X[np.random.randint(0,M,size=M), :] J_bs = jacobian_vec(list_of_polys, bs_samples) J_new_bs = np.matmul(sqrtm(R), np.transpose(J_bs,[2,0,1])) JtJ_bs = np.matmul(np.transpose(J_new_bs, [0, 2, 1]), J_new_bs) H_bs = np.mean(JtJ_bs, axis=0) # Compute P_r by solving generalized eigenvalue problem... # Assume sigma = identity for now e_bs, W_bs = np.linalg.eigh(H_bs) all_bs_eigs[t,:] = np.flipud(e_bs) eigVecs_bs = np.fliplr(W_bs) all_bs_W.append(eigVecs_bs) eigs_bs_lower = np.min(all_bs_eigs, axis = 0) eigs_bs_upper = np.max(all_bs_eigs, axis = 0) return eigs,eigVecs,eigs_bs_lower,eigs_bs_upper, all_bs_W else: return eigs,eigVecs def jacobian_vp(V, V_plus, U, f, Polybasis, eta, minmax, X): M, N = V.shape m, n = U.shape Gradient = Polybasis.get_poly_grad(eta) sub = (minmax[1,:]-minmax[0,:]).T vectord = np.reshape(2.0/sub,(n,1)) # Initialize the tensor J = np.zeros((M, m, n)) # Obtain the derivative of this tensor dV = np.zeros((m, n, M, N)) for l in range(0, n): for j in range(0, N): current = Gradient[l].T if n == 1: current = Gradient.T dV[:,l,:,j] = np.asscalar(vectord[l])*(X.T*current[:,j]) # Get the P matrix P = np.identity(M)-np.matmul(V,V_plus) V_minus = scipy.linalg.pinv(V) # Calculate entries for the tensor for j in range(0,m): for k in range(0,n): temp1 = np.linalg.multi_dot([P,dV[j,k,:,:],V_minus]) J[:, j, k]=(-np.matmul((temp1+temp1.T),f)).reshape((M,)) # Eqn 15 return J def jacobian_vec(list_of_poly, X): m = len(list_of_poly) [N, d] = X.shape J = np.zeros((m, d, N)) for p in range(len(list_of_poly)): J[p, :, :] = list_of_poly[p].get_polyfit_grad(X) return J def subspace_dist(U, V): if len(U.shape) == 1: return np.linalg.norm(np.outer(U, U) - np.outer(V, V), ord=2) else: return np.linalg.norm(np.dot(U, U.T) - np.dot(V, V.T), ord=2) def linear_program_ineq(c, A, b): c = c.reshape((c.size,)) b = b.reshape((b.size,)) # make unbounded bounds bounds = [] for i in range(c.size): bounds.append((None, None)) A_ub, b_ub = -A, -b res = linprog(c, A_ub=A_ub, b_ub=b_ub, bounds=bounds, options={"disp": False}, method='simplex') if res.success: return res.x.reshape((c.size, 1)) else: np.savez('bad_scipy_lp_ineq_{:010d}'.format(np.random.randint(int(1e9))), c=c, A=A, b=b, res=res) raise Exception('Scipy did not solve the LP. Blame Scipy.') def get_unique_rows(X0): X1 = X0.view(np.dtype((np.void, X0.dtype.itemsize * X0.shape[1]))) return np.unique(X1).view(X0.dtype).reshape(-1, X0.shape[1]) def _null_space(A, rcond=None): """ null space method adapted from scipy. """ u, s, vh = scipy.linalg.svd(A, full_matrices=True) M, N = u.shape[0], vh.shape[1] if rcond is None: rcond = np.finfo(s.dtype).eps * max(M, N) tol =
np.amax(s)
numpy.amax
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, unicode_literals import unittest import datetime import warnings import jsonpickle from jsonpickle.compat import PY2, PY3, PY_MINOR from helper import SkippableTest try: import numpy as np import numpy.testing as npt from numpy.compat import asbytes from numpy.testing import assert_equal except ImportError: np = None class NumpyTestCase(SkippableTest): def setUp(self): if np is None: self.should_skip = True return self.should_skip = False import jsonpickle.ext.numpy jsonpickle.ext.numpy.register_handlers() def tearDown(self): if self.should_skip: return import jsonpickle.ext.numpy jsonpickle.ext.numpy.unregister_handlers() def roundtrip(self, obj): return jsonpickle.decode(jsonpickle.encode(obj)) def test_dtype_roundtrip(self): if self.should_skip: return self.skip('numpy is not importable') dtypes = [ np.int, np.float, np.complex, np.int32, np.str, np.object, np.unicode, np.dtype('f4,i4,f2,i1'), np.dtype(('f4', 'i4'), ('f2', 'i1')), np.dtype('1i4', align=True), np.dtype('M8[7D]'), np.dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['<u4', '<u2', '<u2'], 'offsets':[0, 0, 2]}, align=True) ] if not PY2: dtypes.extend([ np.dtype([('f0', 'i4'), ('f2', 'i1')]), np.dtype([('top', [('tiles', ('>f4', (64, 64)), (1,)), ('rtile', '>f4', (64, 36))], (3,)), ('bottom', [('bleft', ('>f4', (8, 64)), (1,)), ('bright', '>f4', (8, 36))])]), ]) for dtype in dtypes: self.assertEqual(self.roundtrip(dtype), dtype) def test_generic_roundtrip(self): if self.should_skip: return self.skip('numpy is not importable') values = [ np.int_(1), np.int32(-2), np.float_(2.5), np.nan, -np.inf, np.inf, np.datetime64('2014-01-01'), np.str_('foo'), np.unicode_('bar'), np.object_({'a': 'b'}), np.complex_(1 - 2j) ] for value in values: decoded = self.roundtrip(value) assert_equal(decoded, value) self.assertTrue(isinstance(decoded, type(value))) def test_ndarray_roundtrip(self): if self.should_skip: return self.skip('numpy is not importable') arrays = [ np.random.random((10, 20)), np.array([[True, False, True]]), np.array(['foo', 'bar']), np.array(['baz'.encode('utf-8')]), np.array(['2010', 'NaT', '2030']).astype('M'), np.rec.array(asbytes('abcdefg') * 100, formats='i2,a3,i4', shape=3), np.rec.array([(1, 11, 'a'), (2, 22, 'b'), (3, 33, 'c'), (4, 44, 'd'), (5, 55, 'ex'), (6, 66, 'f'), (7, 77, 'g')], formats='u1,f4,a1'), np.array(['1960-03-12', datetime.date(1960, 3, 12)], dtype='M8[D]'), np.array([0, 1, -1, np.inf, -np.inf, np.nan], dtype='f2'), ] if not PY2: arrays.extend([ np.rec.array([('NGC1001', 11), ('NGC1002', 1.), ('NGC1003', 1.)], dtype=[('target', 'S20'), ('V_mag', 'f4')]) ]) for array in arrays: decoded = self.roundtrip(array) assert_equal(decoded, array) self.assertEqual(decoded.dtype, array.dtype) def test_shape(self): """test that shapes containing zeros, which cannot be represented as nested lists, are deserialized correctly""" a = np.eye(3)[3:] _a = self.roundtrip(a) npt.assert_array_equal(a, _a) def test_accuracy(self): """test if the string representation maintains accuracy""" rand = np.random.randn(3, 3) _rand = self.roundtrip(rand) npt.assert_array_equal(rand, _rand) def test_b64(self): """test that binary encoding works""" a = np.random.rand(10, 10) # array of substantial size is stored as b64 _a = self.roundtrip(a) npt.assert_array_equal(a, _a) def test_views(self): """Test that views are maintained under serialization""" rng = np.arange(20) # a range of an array view = rng[10:] # a view referencing a portion of an array data = [rng, view] _data = self.roundtrip(data) _data[0][15] = -1 self.assertEqual(_data[1][5], -1) def test_strides(self): """test that cases with non-standard strides and offsets work correctly""" arr = np.eye(3) view = arr[1:, 1:] self.assertTrue(view.base is arr) data = [arr, view] _data = self.roundtrip(data) # test that the deserialized arrays indeed view the same memory _arr, _view = _data _arr[1, 2] = -1 self.assertEqual(_view[0, 1], -1) self.assertTrue(_view.base is _arr) def test_weird_arrays(self): """test that we disallow serialization of references to arrays that do not effectively own their memory""" a = np.arange(9) b = a[5:] a.strides = 1 # this is kinda fishy; a has overlapping memory, _a does not if PY2 or (PY3 and PY_MINOR <= 3): warn_count = 0 else: warn_count = 1 with warnings.catch_warnings(record=True) as w: _a = self.roundtrip(a) self.assertEqual(len(w), warn_count)
npt.assert_array_equal(a, _a)
numpy.testing.assert_array_equal
import argparse import os import time from multiprocessing import Event, Manager, Process, Queue from operator import itemgetter import geopandas as gpd import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import seaborn as sns from gerrychain import Graph, MarkovChain, Partition from gerrychain.accept import always_accept from gerrychain.constraints import ( LowerBound, UpperBound, Validator, WithinPercentRangeOfBounds, ) from gerrychain.proposals import propose_chunk_flip, propose_random_flip from gerrychain.random import random # FOR REPRODUCIBILITY from gerrychain.updaters import Tally from tqdm import trange from twilio.rest import Client def load_data(city, state, st_FIPS): """ Loads census data and HOLC representations from disk. Parameters ---------- city : string example: "Atlanta" state : string example: "GA" st_FIPS : string example: "130" Returns ------- race_matrix : geopandas.GeoDataFrame rows are relevant, non-empty tracts, columns are racial groups. """ # Load race data FILEPATH = "./data/block_2010_data/nhgis0005_csv" relevant_cols = [ "GISJOIN", "STATEA", "COUNTYA", "H7X001", "H7X002", "H7X003", "H7X004", "H7X005", "H7X006", "H7X007", "H7X008", ] race_raw = pd.read_csv( f"{FILEPATH}/nhgis0005_ds172_2010_block.csv", usecols=relevant_cols, dtype={"GISJOIN": str, "STATEA": str, "COUNTYA": str}, ) column_mapper = dict( zip( relevant_cols, [ "GISJOIN", "state_fips", "county_fips", "total", "white", "black", "american_indian_al_native", "asian", "hawaiian_pac_islander", "other", "two_plus", ], ) ) race_raw.rename(columns=column_mapper, inplace=True) print("Race data loaded.") race_raw.set_index("GISJOIN", inplace=True) # Load relevant shapefile and crosswalks city_blocks = gpd.read_file( f"./data/block_2010_data/nhgis0005_shape/nhgis0005_shapefile_tl2010_{st_FIPS}_block_2010/{state}_block_2010.shp" ).set_index("GEOID10") city_rl_cw = pd.read_csv( f"./data/outputs/{city}_blocks_2010_crosswalk.csv", dtype={"block_id_2010": str} ).set_index("block_id_2010") city_blocks = ( city_blocks.join(city_rl_cw, how="outer").dropna().set_index("GISJOIN") ) print("City tract data loaded.") # join shapefile with race data city = city_blocks.join(race_raw, how="outer").dropna() # filter to create R R = ( city.groupby("holc_id_uq") .sum() .filter( [ "total", "white", "black", "american_indian_al_native", "asian", "hawaiian_pac_islander", "hawaiian_pac_islander", "other", "two_plus", ] ) ) # find empty districts, if any exist empty_districts = np.array(R.loc[(R.total == 0)].index) # build race matrix race_matrix = city.filter( [ "total", "white", "black", "american_indian_al_native", "asian", "hawaiian_pac_islander", "other", "two_plus", "holc_id_uq", "geometry", ] ) race_matrix.rename(columns={"holc_id_uq": "partition"}, inplace=True) # remove districts with population 0 race_matrix = race_matrix[~race_matrix["partition"].isin(empty_districts)] return race_matrix # entropy implementation def city_entropy(R, P): """ Computes entropy of a city-region (see White, 1986). Parameters ---------- R : numpy.ndarray i-by-j matrix, where i=districts and j=ethnicities. P : numpy.array i-length vector of the total population in a city-region. Returns ------- int citywide segregation entropy score. """ # define key terms in algorithm N = sum(P) R_prop =
np.apply_along_axis(lambda column: column / P, 0, R)
numpy.apply_along_axis
import logging logging.basicConfig(filename='hrmonitorlog.txt', format='%(levelname)s \ %(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', level=logging.DEBUG) def beats(filename): """module that detects the number of heartbeats in an ECG signal :param filename: the file name of the ECG input :returns beats: numpy array of times where a heart beat occured """ import numpy as np import scipy.signal as signal from signal_processing import signal_processing from extract_data import extract_time_data logging.info("beats: everything imported") time = extract_time_data(filename) corr = signal_processing(filename) peaks = signal.find_peaks_cwt(corr,
np.arange(1, 300)
numpy.arange
""" API for kernel functions: `function(W, *args, zn=True)` W: Window size (in) *args: Additional positional arguments to the function as parameters (must be cast-able to float) zn: Boolean that indicates if the kernel function integrates to zero (default is True). """ import numpy as np from discrete_shocklets.utils import zero_norm registered_kernel_functions = [] def register_kernel_function(kernel_function): registered_kernel_functions.append(kernel_function) return kernel_function @register_kernel_function def haar(L, zn=True): res = -1 *
np.ones(L)
numpy.ones
# # Copyright 2019 <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME>, <NAME>, <NAME>, <NAME>, <NAME> # # This file is part of acados. # # The 2-Clause BSD License # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE.; # from acados_template import * import numpy as nmp import matplotlib import matplotlib.pyplot as plt import scipy.linalg CODE_GEN = 1 COMPILE = 1 FORMULATION = 2 # 0 for hexagon 2 SCQP sphere i_d_ref = 1.484 i_q_ref = 1.429 w_val = 200 i_d_ref = -20 i_q_ref = 20 w_val = 300 udc = 580 u_max = 2/3*udc x0 = nmp.array([0.0, 0.0]) # fitted psi_d map def psi_d_num(x,y): # This function was generated by the Symbolic Math Toolbox version 8.0. # 07-Feb-2018 23:07:49 psi_d_expression = x*(-4.215858085639979e-3) + \ exp(y**2*(-8.413493151721978e-5))* \ atan(x*1.416834085282644e-1)*8.834738694115108e-1 return psi_d_expression def psi_q_num(x,y): # This function was generated by the Symbolic Math Toolbox version 8.0. # 07-Feb-2018 23:07:50 psi_q_expression = y*1.04488335702649e-2+ \ exp(x**2*(-1.0/7.2e1))*atan(y)*6.649036351062812e-2 return psi_q_expression psi_d_ref = psi_d_num(i_d_ref, i_q_ref) psi_q_ref = psi_q_num(i_d_ref, i_q_ref) # compute steady-state u Rs = 0.4 u_d_ref = Rs*i_d_ref - w_val*psi_q_ref u_q_ref = Rs*i_q_ref + w_val*psi_d_ref def export_rsm_model(): model_name = 'rsm' # constants theta = 0.0352 Rs = 0.4 m_load = 0.0 J = nmp.array([[0, -1], [1, 0]]) # set up states psi_d = SX.sym('psi_d') psi_q = SX.sym('psi_q') x = vertcat(psi_d, psi_q) # set up controls u_d = SX.sym('u_d') u_q = SX.sym('u_q') u = vertcat(u_d, u_q) # set up algebraic variables i_d = SX.sym('i_d') i_q = SX.sym('i_q') z = vertcat(i_d, i_q) # set up xdot psi_d_dot = SX.sym('psi_d_dot') psi_q_dot = SX.sym('psi_q_dot') xdot = vertcat(psi_d_dot, psi_q_dot) # set up parameters w = SX.sym('w') # speed dist_d = SX.sym('dist_d') # d disturbance dist_q = SX.sym('dist_q') # q disturbance p = vertcat(w, dist_d, dist_q) # build flux expression Psi = vertcat(psi_d_num(i_d, i_q), psi_q_num(i_d, i_q)) # dynamics f_impl = vertcat( psi_d_dot - u_d + Rs*i_d - w*psi_q - dist_d, \ psi_q_dot - u_q + Rs*i_q + w*psi_d - dist_q, \ psi_d - Psi[0], \ psi_q - Psi[1]) model = AcadosModel() model.f_impl_expr = f_impl model.f_expl_expr = [] model.x = x model.xdot = xdot model.u = u model.z = z model.p = p model.name = model_name # BGP constraint r = SX.sym('r', 2, 1) model.con_phi_expr = r[0]**2 + r[1]**2 model.con_r_expr = vertcat(u_d, u_q) model.con_r_in_phi = r return model def get_general_constraints_DC(u_max): # polytopic constraint on the input r = u_max x1 = r y1 = 0 x2 = r*cos(pi/3) y2 = r*sin(pi/3) q1 = -(y2 - y1/x1*x2)/(1-x2/x1) m1 = -(y1 + q1)/x1 # q1 <= uq + m1*ud <= -q1 # q1 <= uq - m1*ud <= -q1 # box constraints m2 = 0 q2 = r*sin(pi/3) # -q2 <= uq <= q2 # form D and C matrices # (acados C interface works with column major format) D = nmp.transpose(nmp.array([[1, m1],[1, -m1]])) D = nmp.array([[m1, 1],[-m1, 1]]) C = nmp.transpose(nmp.array([[0, 0], [0, 0]])) ug = nmp.array([-q1, -q1]) lg = nmp.array([+q1, +q1]) lbu = nmp.array([-q2]) ubu = nmp.array([+q2]) res = dict() res["D"] = D res["C"] = C res["lg"] = lg res["ug"] = ug res["lbu"] = lbu res["ubu"] = ubu return res # create ocp object to formulate the OCP ocp = AcadosOcp() # export model model = export_rsm_model() ocp.model = model if FORMULATION == 2: # constraints name ocp.constraints.constr_type = 'BGP' # Ts = 0.0016 # Ts = 0.0012 Ts = 0.0008 # Ts = 0.0004 nx = model.x.size()[0] nu = model.u.size()[0] nz = model.z.size()[0] np = model.p.size()[0] ny = nu + nx ny_e = nx N = 2 Tf = N*Ts # set number of shooting intervals ocp.dims.N = N # set cost module Q = nmp.eye(nx) Q[0,0] = 5e2 Q[1,1] = 5e2 R = nmp.eye(nu) R[0,0] = 1e-4 R[1,1] = 1e-4 ocp.cost.W = scipy.linalg.block_diag(Q, R) Vx = nmp.zeros((ny, nx)) Vx[0,0] = 1.0 Vx[1,1] = 1.0 ocp.cost.Vx = Vx Vu = nmp.zeros((ny, nu)) Vu[2,0] = 1.0 Vu[3,1] = 1.0 ocp.cost.Vu = Vu Vz =
nmp.zeros((ny, nz))
numpy.zeros
import tensorflow as tf import numpy as np class ConvNetMixin(object): def _conv_layer_with_relu(self, bottom, filter_size, filter_num, scope_name, bottom_channel=None, padding='SAME'): out = self._conv_layer(bottom, filter_size, filter_num, scope_name, bottom_channel, padding) with tf.variable_scope(scope_name): relu = tf.nn.relu(out, name=scope_name) return relu def _conv_layer(self, bottom, filter_size, filter_num, scope_name, bottom_channel=None, padding='SAME'): if not bottom_channel: _, _, _, bottom_channel = bottom.get_shape().as_list() with tf.variable_scope(scope_name): kernel = tf.Variable( tf.truncated_normal([*filter_size, bottom_channel, filter_num], dtype=tf.float32, stddev=1e-1), trainable=False, name='weights' ) conv = tf.nn.conv2d(bottom, kernel, [1, 1, 1, 1], padding=padding) biases = tf.Variable( tf.constant(0.0, shape=[filter_num], dtype=tf.float32), trainable=True, name='bias' ) out = tf.nn.bias_add(conv, biases) return out def _max_pool(self, bottom, name): return tf.nn.max_pool( bottom, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME', name=name ) class AnchorTargetMixin(object): def __init__(self, debug): self._anchors = self.generate_anchors(scales=(8, 16, 32)) self._debug = debug self._feat_stride = 16 def generate_anchors(self, scales): base_size = 16 ratios = np.array([0.5, 1, 2]) base_anchor = np.array([1, 1, base_size, base_size]) - 1 w, h, x_ctr, y_ctr = self._whctrs(base_anchor) w_ratios = np.round(np.sqrt(w * h / ratios)) h_ratios = np.round(
np.sqrt(ratios * w * h)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: <NAME>, CWI, Amsterdam <EMAIL> TODO fhe full data of one of the data sets described in "A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning" by <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> """ import numpy as np import astra import os import imageio import time import matplotlib.pyplot as plt import nesterov_gradient from scipy.interpolate import RegularGridInterpolator as rgi def rotate_astra_vec_geom(vecs, theta): s = np.asmatrix(vecs[:,0:3]) d = np.asmatrix(vecs[:,3:6]) u = np.asmatrix(vecs[:,6:9]) v = np.asmatrix(vecs[:,9:12]) du = d + u dv = d + v rot_mat = np.matrix([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) s = s * rot_mat.transpose() d = d * rot_mat.transpose() du = du * rot_mat.transpose() dv = dv * rot_mat.transpose() u = du - d v = dv - d vecs = np.concatenate((np.asarray(s), np.asarray(d), np.asarray(u), np.asarray(v)), axis=1) return vecs #### user defined settings #################################################### # select the ID of the sample you want to reconstruct walnut_id = 1 # define a sub-sampling factor in angular direction # (all reference reconstructions are computed with full angular resolution) angluar_sub_sampling = 1 # select of voxels per mm in one direction (higher = larger res) # volume size in one direction will be 50 * voxel_per_mm + 1 voxel_per_mm = 10 # the number of slices to be extracted will be number of voxels in one direction # times this factor radial_slice_fac = np.sqrt(2) # to avoid artefacts from the radial slicing, we compute multiple iterative # reconstructions with rotated geometries and only extract the radial slices that are close # t0 0 and 90 degrees. n_div is the number of reconstruction n_div = 24 # we enter here some intrinsic details of the dataset needed for our reconstruction scripts # set the variable "data_path" to the path where the dataset is stored on your own workstation data_path = '/bigstore/felix/Walnuts/' # set the variable "recon_path" to the path where you would like to store the # reconstructions you compute rad_slice_path = '/bigstore/felix/WalnutsRadialSlices/' # set index of gpu to use gpu_index = 3; astra.astra.set_gpu_index(gpu_index) print('computing Walnut', walnut_id, ',on GPU', gpu_index, flush=True) #### general settings ######################################################### # projection index # there are in fact 1201, but the last and first one come from the same angle projs_idx = range(0,1200, angluar_sub_sampling) nb_projs_orbit = len(projs_idx) projs_name = 'scan_{:06}.tif' dark_name = 'di000000.tif' flat_name = ['io000000.tif', 'io000001.tif'] vecs_name = 'scan_geom_corrected.geom' projs_rows = 972 projs_cols = 768 # transformation to apply to each image, we need to get the image from # the way the scanner reads it out into to way described in the projection # geometry trafo = lambda image : np.transpose(np.flipud(image)) # size of the reconstruction volume in voxels n_x = 50 * voxel_per_mm + 1 # size of a cubic voxel in mm vox_sz = 1/voxel_per_mm # number of radial slices to be extracted n_rad = int(
np.round(n_x * radial_slice_fac)
numpy.round
import argparse import cv2 import mediapipe as mp import numpy as np import csv from custom.iris_lm_depth import from_landmarks_to_depth from videosource import FileSource, WebcamSource mp_face_mesh = mp.solutions.face_mesh left_eye_landmarks_id = np.array([33, 133]) right_eye_landmarks_id = np.array([362, 263]) dist_coeff = np.zeros((4, 1)) YELLOW = (0, 255, 255) GREEN = (0, 255, 0) BLUE = (255, 0, 0) RED = (0, 0, 255) SMALL_CIRCLE_SIZE = 1 LARGE_CIRCLE_SIZE = 2 LEFT_EYE_LANDMARKS_ID =
np.array([33, 133])
numpy.array
#!/usr/bin/env python # Test QP solver against Maros Mezaros Benchmark suite from __future__ import print_function import sys import scipy.io as spio import scipy.sparse as spspa import scipy as sp import numpy as np import ipdb import mathprogbasepy as mpbpy import mathprogbasepy.quadprog.problem as mpbpy_prob def load_maros_meszaros_problem(f): # Load file m = spio.loadmat(f) # Convert matrices P = m['Q'].astype(float) n = P.shape[0] q = m['c'].T.flatten().astype(float) A = m['A'].astype(float) A = spspa.vstack([A, spspa.eye(n)]) u = np.append(m['ru'].T.flatten().astype(float), m['ub'].T.flatten().astype(float)) l = np.append(m['rl'].T.flatten().astype(float), m['lb'].T.flatten().astype(float)) # Define problem p = mpbpy.QuadprogProblem(P, q, A, l, u) return p def main(): sp.random.seed(1) # Possible ops: {'small1', 'small2', 'random', # 'primal_infeasible', 'random_primal_infeasible', # 'maros_meszaros', 'lp', 'dual_infeasible_lp', # 'dual_infeasible_qp'} example = 'random_primal_infeasible' if example == 'maros_meszaros': # Maros Meszaros Examples # f = 'tests/maros_meszaros/CVXQP2_S.mat' # f = 'tests/maros_meszaros/CVXQP1_S.mat' # f = 'tests/maros_meszaros/AUG2D.mat' f = 'maros_meszaros/CONT-200.mat' # f = 'tests/maros_meszaros/PRIMAL3.mat' # f = 'tests/maros_meszaros/QBANDM.mat' p = load_maros_meszaros_problem(f) elif example == 'small1': # Our Examples # Small Example 1 P = spspa.csc_matrix(np.array([[4., 1.], [1., 2.]])) q = np.ones(2) A = spspa.vstack([spspa.csc_matrix(np.ones((1, 2))), spspa.eye(P.shape[0])]).tocsc() l = np.array([1.0, 0.0, 0.0]) u = np.array([1.0, 0.7, 0.7]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'small2': # Small Example 2 P = spspa.csc_matrix(np.array([[11., 0.], [0., 0.]])) q = np.array([3, 4]) A = spspa.csc_matrix(np.array([[-1, 0], [0, -1], [-1, -3], [2, 5], [3, 4]])) u = np.array([0., 0., -15, 100, 80]) l = -np.inf * np.ones(len(u)) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'primal_infeasible': # primal_infeasible example # P = spspa.eye(2) P = spspa.csc_matrix((2, 2)) q = np.ones(2) A = spspa.csc_matrix(np.array([[1, 0], [0, 1], [1, 1]])) l = np.array([0., 0., -1.]) u = np.array([np.inf, np.inf, -1.]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'random_primal_infeasible': # Random Example n = 50 m = 500 # Generate random Matrices Pt = sp.randn(n, n) P = spspa.csc_matrix(np.dot(Pt.T, Pt)) q = sp.randn(n) A = spspa.csc_matrix(sp.randn(m, n)) u = 3 + sp.randn(m) # l = u l = -3 + sp.randn(m) # Make random problem primal_infeasible A[int(n/2), :] = A[int(n/2)+1, :] l[int(n/2)] = u[int(n/2)+1] + 100 * sp.rand() u[int(n/2)] = l[int(n/2)] + 0.5 # l[int(n/3)] = u[int(n/3)] + 100 * sp.rand() # l[int(n/4)] = u[int(n/4)] + 50. * sp.rand() p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'dual_infeasible_lp': # Dual infeasible example P = spspa.csc_matrix((2, 2)) q = np.array([2, -1]) A = spspa.eye(2) l = np.array([0., 0.]) u = np.array([np.inf, np.inf]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'dual_infeasible_qp': # Dual infeasible example P = spspa.csc_matrix(np.diag(np.array([4., 0.]))) q = np.array([0, 2]) A = spspa.csc_matrix([[1., 1.], [-1., 1.]]) l = np.array([-np.inf, -np.inf]) u = np.array([2., 3.]) p = mpbpy.QuadprogProblem(P, q, A, l, u) elif example == 'random': # Random Example n = 30 m = 50 # Generate random Matrices Pt = sp.randn(n, n) P = spspa.csc_matrix(
np.dot(Pt.T, Pt)
numpy.dot
import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy.linalg import sqrtm from collections import OrderedDict from GLM.GLM_Model.PoissonVariational import PoissonVariational from GLM.GLM_Model.PoissonMAP import PoissonMAP from GLM.GLM_Model import GLM_Model_GP, GLM_Model_MAP, GP_Covariate, MAP_Covariate from Utils import utils class Model_Runner: def __init__(self, params): self.params = params self.poisson_model = None self.variational_model = None self.map_model = None self.ml_model = None self.data_df = None self.hist_data = None self.stim_data = None def initialize_design_matrices_demo(self, data_df): self.data_df = data_df self.covariate_data = OrderedDict() if 'History' not in self.data_df.index: raise KeyError('"History" needs to be a data field') else: self.spike_data = self.data_df.loc['History', 'data'] for covariate in self.data_df.index: self.covariate_data[covariate] = self.data_df.loc[covariate, 'data'] self.params.num_test_trials = np.floor(self.spike_data.shape[0] * 1e-2 * self.params.percent_test_trials).astype(np.int) def create_variational_covariates_demo(self): self.kernel_prep_dict = {'chol': ['Kuu'], 'inv': ['Kuu']} self.glm_gp = GLM_Model_GP.GLM_Model_GP(self.params) self.glm_gp.add_spike_history(self.spike_data) def add_covariate(self, covariate): self.glm_gp.add_covariate(covariate) def train_demo(self): self.variational_model = PoissonVariational(self.params, self.data_df, self.glm_gp, self.kernel_prep_dict) self.variational_model.initialize_variational_model() self.variational_model.train_variational_parameters() def initialize_design_matrices(self): self.data_df = pd.read_pickle(self.params.expt_problem_data_path) self.hist_data = self.data_df.loc['History', 'data'] self.spike_data = self.data_df.loc['History', 'data'] self.stim1_data = self.data_df.loc['Stim1', 'data'] self.stim2_data = self.data_df.loc['Stim2', 'data'] self.stim3_data = self.data_df.loc['Stim3', 'data'] self.hist_data_b = self.data_df.loc['Coupling_b', 'data'] self.hist_data_c = self.data_df.loc['Coupling_c', 'data'] self.params.num_test_trials = np.floor(self.hist_data.shape[0] * 1e-2 * self.params.percent_test_trials).astype(np.int) def create_variational_covariates(self): kernel_prep_dict = {'chol': ['Kuu'], 'inv': ['Kuu']} # create glm object glm_gp = GLM_Model_GP.GLM_Model_GP(self.params) glm_gp.add_spike_history(self.spike_data) # history filter parameters hist_etc_params = {'use_exp_mean': True, 'use_basis_form': False} hist_bounds = {'m': [-np.inf, np.inf], 'r': [-np.inf, np.inf], 'u': [0, 0.25], 'alpha': [100, 100000], 'gamma': [100, 100000], 'sigma': [0.1, 15], 'kernel_epsilon_noise_std': [1e-4, 5], 'gain': [-15, -3], 'tau': [1e-4, 3e-3] } hist_time_params = {'filter_offset': 1, 'filter_duration': 110, 'time_plot_min': 1, 'time_plot_max': 115, 'inducing_pt_spacing_init': 2, 'is_hist': True} hist_gp_params = {'alpha': [750.0, True], 'gamma': [1000.0, True], 'sigma': [np.sqrt(4), True], 'gain': [-5, False], 'tau': [1e-3, False], 'kernel_epsilon_noise_std': [1e-3, False], 'kernel_fn': [utils.decay_kernel_torch, False]} hist = GP_Covariate.GP_Covariate(self.params, hist_etc_params, self.hist_data, name='History', use_bases=False) hist.add_bounds_params(hist_bounds) hist.add_gp_params(hist_gp_params) hist.add_time_init(hist_time_params) glm_gp.add_covariate(hist) ########################################## # Stim1 ########################################## cue_etc_params = {'use_exp_mean': False, 'use_basis_form': False} cue_bounds = {'m': [-np.inf, np.inf], 'r': [-np.inf, np.inf], 'u': [0, 2.0], 'alpha': [50, 5000], 'gamma': [10, 3000], 'sigma': [0.1, 15], 'b': [300e-3, 800e-3], 'kernel_epsilon_noise_std': [1e-4, 1.5] } cue_time_params = {'filter_offset': 0, 'filter_duration': 1000, 'time_plot_min': 0, 'time_plot_max': 1100, 'inducing_pt_spacing_init': 15} cue_gp_params = {'alpha': [100.0, True], 'gamma': [600.0, True], 'sigma': [np.sqrt(4), True], 'b': [500e-3, True], 'kernel_epsilon_noise_std': [1e-3, False], 'kernel_fn': [utils.decay_kernel_torch, False]} cue = GP_Covariate.GP_Covariate(self.params, cue_etc_params, self.stim1_data, name='Stim1') cue.add_bounds_params(cue_bounds) cue.add_gp_params(cue_gp_params) cue.add_time_init(cue_time_params) glm_gp.add_covariate(cue) ########################################## # Stim2 ########################################## cue_etc_params = {'use_exp_mean': False, 'use_basis_form': False} cue_bounds = {'m': [-np.inf, np.inf], 'r': [-np.inf, np.inf], 'u': [-300e-3, 300e-3], 'alpha': [50, 5000], 'gamma': [10, 3000], 'sigma': [0.1, 15], 'b': [0e-3, 200e-3], 'kernel_epsilon_noise_std': [1e-4, 1.5] } cue_time_params = {'filter_offset': -250, 'filter_duration': 500, 'time_plot_min': -300, 'time_plot_max': 300, 'inducing_pt_spacing_init': 15} cue_gp_params = {'alpha': [100.0, True], 'gamma': [600.0, True], 'sigma': [np.sqrt(4), True], 'b': [100e-3, True], 'kernel_epsilon_noise_std': [1e-3, False], 'kernel_fn': [utils.decay_kernel_torch, False]} cue = GP_Covariate.GP_Covariate(self.params, cue_etc_params, self.stim2_data, name='Stim2') cue.add_bounds_params(cue_bounds) cue.add_gp_params(cue_gp_params) cue.add_time_init(cue_time_params) glm_gp.add_covariate(cue) ########################################## # Stim1 ########################################## cue_etc_params = {'use_exp_mean': False, 'use_basis_form': False} cue_bounds = {'m': [-np.inf, np.inf], 'r': [-np.inf, np.inf], 'u': [0, 500e-3], 'alpha': [50, 5000], 'gamma': [10, 3000], 'sigma': [0.1, 15], 'b': [100e-3, 500e-3], 'kernel_epsilon_noise_std': [1e-4, 1.5] } cue_time_params = {'filter_offset': 0, 'filter_duration': 400, 'time_plot_min': 0, 'time_plot_max': 500, 'inducing_pt_spacing_init': 15} cue_gp_params = {'alpha': [100.0, True], 'gamma': [600.0, True], 'sigma': [np.sqrt(4), True], 'b': [250e-3, True], 'kernel_epsilon_noise_std': [1e-3, False], 'kernel_fn': [utils.decay_kernel_torch, False]} cue = GP_Covariate.GP_Covariate(self.params, cue_etc_params, self.stim3_data, name='Stim3') cue.add_bounds_params(cue_bounds) cue.add_gp_params(cue_gp_params) cue.add_time_init(cue_time_params) glm_gp.add_covariate(cue) ########################################## # Coupling a ########################################## cue_etc_params = {'use_exp_mean': False, 'use_basis_form': False} cue_bounds = {'m': [-np.inf, np.inf], 'r': [-np.inf, np.inf], 'u': [0, 200], 'alpha': [50, 10000], 'gamma': [10, 5000], 'sigma': [0.1, 15], 'b': [5e-3, 100e-3], 'kernel_epsilon_noise_std': [1e-4, 1.5] } cue_time_params = {'filter_offset': 1, 'filter_duration': 100, 'time_plot_min': 0, 'time_plot_max': 150, 'inducing_pt_spacing_init': 2} cue_gp_params = {'alpha': [5000.0, True], 'gamma': [1000.0, True], 'sigma': [np.sqrt(9), True], 'b': [15e-3, True], 'kernel_epsilon_noise_std': [1e-3, False], 'kernel_fn': [utils.decay_kernel_torch, False]} cue = GP_Covariate.GP_Covariate(self.params, cue_etc_params, self.hist_data_b, name='Coupling_b') cue.add_bounds_params(cue_bounds) cue.add_gp_params(cue_gp_params) cue.add_time_init(cue_time_params) glm_gp.add_covariate(cue) ########################################## # Coupling b ########################################## cue_etc_params = {'use_exp_mean': False, 'use_basis_form': False} cue_bounds = {'m': [-np.inf, np.inf], 'r': [-np.inf, np.inf], 'u': [0, 200], 'alpha': [50, 10000], 'gamma': [10, 5000], 'sigma': [0.1, 15], 'b': [5e-3, 100e-3], 'kernel_epsilon_noise_std': [1e-4, 1.5] } cue_time_params = {'filter_offset': 1, 'filter_duration': 100, 'time_plot_min': 0, 'time_plot_max': 150, 'inducing_pt_spacing_init': 2} cue_gp_params = {'alpha': [5000.0, True], 'gamma': [1000.0, True], 'sigma': [np.sqrt(9), True], 'b': [30e-3, True], 'kernel_epsilon_noise_std': [1e-3, False], 'kernel_fn': [utils.decay_kernel_torch, False]} cue = GP_Covariate.GP_Covariate(self.params, cue_etc_params, self.hist_data_c, name='Coupling_c',) cue.add_bounds_params(cue_bounds) cue.add_gp_params(cue_gp_params) cue.add_time_init(cue_time_params) glm_gp.add_covariate(cue) self.variational_model = PoissonVariational(self.params, self.data_df, glm_gp, kernel_prep_dict) self.variational_model.initialize_variational_model() def create_map_covariates(self): glm_map = GLM_Model_MAP.GLM_Model_MAP(self.params) glm_map.add_spike_history(self.spike_data) ################################### # History ################################### hist_bounds = {'m': [-np.inf, np.inf], 'r': [0, np.inf]} hist_bases_params = {'bases_fn': utils.create_nonlinear_raised_cos, 'duration': 150, 'num_bases': 20, 'bin_size': self.params.delta, 'start_point': 0, 'end_point': 60e-3, 'nl_offset': 1e-4, 'offset': 1, 'filter_duration': self.params.duration_hist, 'filter_offset': 1, 'time_plot_min': 1, 'time_plot_max': 100} # hist = MAP_Covariate.MAP_Covariate(self.params, y, name='History', is_cov=False, is_hist=True) hist = MAP_Covariate.MAP_Covariate(self.params, self.hist_data, name='History', is_cov=False, is_hist=True) hist.add_bounds_params(hist_bounds) hist.add_bases_params(hist_bases_params) glm_map.add_covariate(hist) # stimulus 1 parameters cue_bounds = {'m': [-np.inf, np.inf], 'r': [0, 5]} cue_bases_params = {'bases_fn': utils.create_nonlinear_raised_cos, 'num_bases': 15, 'duration': 1000, # self.params.duration_cov, 'bin_size': self.params.delta, 'end_point': 600e-3, 'start_point': 0, 'nl_offset': 1.3e-2, 'offset': 0, 'filter_duration': 1500, 'filter_offset': 0, 'time_plot_min': 0, 'time_plot_max': 1500} cue = MAP_Covariate.MAP_Covariate(self.params, self.stim1_data, name='Stim1', is_cov=True, is_hist=False) cue.add_bounds_params(cue_bounds) cue.add_bases_params(cue_bases_params) glm_map.add_covariate(cue) ###################### # Lick Init ###################### lick_init_bounds = {'m': [-np.inf, np.inf], 'r': [0, 2]} lick_init_bases_params = {'bases_fn': utils.create_raised_cosine_basis, 'duration': 500, 'num_bases': 20, 'bin_size': self.params.delta, 'start_point': 1, 'end_point': 60e-3, 'nl_offset': 1e-4, 'offset': -250, 'filter_duration': 500, 'filter_offset': -250, 'time_plot_min': -250, 'time_plot_max': 250} lick_init = MAP_Covariate.MAP_Covariate(self.params, self.stim2_data, name='Stim2', is_cov=True, is_hist=False) lick_init.add_bounds_params(lick_init_bounds) lick_init.add_bases_params(lick_init_bases_params) glm_map.add_covariate(lick_init) ################### # Lick Train ################### lick_train_bounds = {'m': [-np.inf, np.inf], 'r': [0, 2]} lick_train_bases_params = {'bases_fn': utils.create_raised_cosine_basis, 'duration': 500, 'num_bases': 20, 'bin_size': self.params.delta, 'start_point': 1, 'end_point': 60e-3, 'nl_offset': 1e-4, 'offset': 0, 'filter_duration': 500, 'filter_offset': 0, 'time_plot_min': 0, 'time_plot_max': 500} lick_train = MAP_Covariate.MAP_Covariate(self.params, self.stim3_data, name='Stim3', is_cov=True, is_hist=False) lick_train.add_bounds_params(lick_train_bounds) lick_train.add_bases_params(lick_train_bases_params) glm_map.add_covariate(lick_train) ################################### # Coupling a ################################### hist_bounds = {'m': [-np.inf, np.inf], 'r': [0, 2]} hist_bases_params = {'bases_fn': utils.create_raised_cosine_basis, 'duration': 125, 'num_bases': 20, 'bin_size': self.params.delta, 'start_point': 0, 'end_point': 60e-3, 'nl_offset': 1e-4, 'offset': 1, 'filter_duration': 125, 'filter_offset': 1, 'time_plot_min': 1, 'time_plot_max': 125} # hist = MAP_Covariate.MAP_Covariate(self.params, y, name='History', is_cov=False, is_hist=True) hist = MAP_Covariate.MAP_Covariate(self.params, self.hist_data_b, name='Coupling_b', is_cov=False, is_hist=False) hist.add_bounds_params(hist_bounds) hist.add_bases_params(hist_bases_params) glm_map.add_covariate(hist) ################################### # Coupling b ################################### hist_bounds = {'m': [-np.inf, np.inf], 'r': [0, 2]} hist_bases_params = {'bases_fn': utils.create_raised_cosine_basis, 'duration': 125, 'num_bases': 20, 'bin_size': self.params.delta, 'start_point': 0, 'end_point': 60e-3, 'nl_offset': 1e-4, 'offset': 1, 'filter_duration': 125, 'filter_offset': 1, 'time_plot_min': 1, 'time_plot_max': 125} # hist = MAP_Covariate.MAP_Covariate(self.params, y, name='History', is_cov=False, is_hist=True) hist = MAP_Covariate.MAP_Covariate(self.params, self.hist_data_c, name='Coupling_c', is_cov=False, is_hist=False) hist.add_bounds_params(hist_bounds) hist.add_bases_params(hist_bases_params) glm_map.add_covariate(hist) self.map_model = PoissonMAP(self.params, self.data_df, glm_map) self.map_model.initialize_model() def create_ml_covariates(self): glm_map = GLM_Model_MAP.GLM_Model_MAP(self.params) # stimulus 1 parameters stim1_bounds = {'m': [-np.inf, np.inf]} stim1_bases_params = {'bases_fn': utils.create_raised_cosine_basis, 'num_bases': 10, 'duration': self.params.duration_cov, 'bin_size': self.params.delta, 'end_point': 125e-3, 'start_point': 0, 'nl_offset': 2e-3, 'offset': self.params.offset_cov, 'filter_duration': self.params.duration_cov, 'filter_offset': self.params.offset_cov} stim1 = ML_Covariate.ML_Covariate(self.params, self.stim_data, name='Stimuli_1', is_cov=True, is_hist=False) stim1.add_bounds_params(stim1_bounds) stim1.add_bases_params(stim1_bases_params) glm_map.add_covariate(stim1) # history filter parameters hist_bounds = {'m': [-np.inf, np.inf]} hist_bases_params = {'bases_fn': utils.create_nonlinear_raised_cos, 'duration': 80, 'num_bases': 15, 'bin_size': self.params.delta, 'start_point': 0, 'end_point': 35e-3, 'nl_offset': 1e-4, 'offset': 1, 'filter_duration': self.params.duration_hist, 'filter_offset': self.params.offset_hist} hist = ML_Covariate.ML_Covariate(self.params, self.hist_data, name='History', is_cov=False, is_hist=True) hist.add_bounds_params(hist_bounds) hist.add_bases_params(hist_bases_params) glm_map.add_covariate(hist) self.ml_model = PoissonMAP(self.params, self.data_df, glm_map, self.params.run_toy_problem) self.ml_model.initialize_model() def train_variational(self): self.variational_model.train_variational_parameters() def train_map(self): self.map_model.train_map_parameters() def train_ml(self): self.ml_model.train_ml_parameters() def _add_training_params(self): pass def train_model(self, model='variational'): trained_params = self.poisson_model.train_variational() def _get_ml_h_k_mu(self): optimizer = Optimizer.Optimizer(self.params.gp_ml_opt, self.h.shape[0], b1=self.params.gp_ml_b1, b2=self.params.gp_ml_b2, step_size=self.params.gp_ml_step_size) for i in range(self.params.gp_ml_iter): grad = self.X.T @ self.y - self.params.delta * self.X.T @ np.exp(self.X @ self.h + self.Y @ self.k) update = optimizer.get_update(grad) self.h = self.h + update # maximizing maximum likelihood plt.plot(self.h, label='ml') plt.plot(self.h_true, label='ground truth') plt.title('ml estimate') plt.show() def plot_updates(self): fig, axs = plt.subplots(self.h_evolution.shape[0] - 1, figsize=(10,60)) fig.suptitle('GP Filter Evolution', y=0.92) for dx, (row, series) in enumerate(self.h_evolution.iloc[1:,:].iterrows()): axs[dx].plot(series['filter'], label='gp', color='k') axs[dx].plot(self.h_true, label='true', color='r') axs[dx].fill_between(np.arange(series['filter'].shape[0]), series['filter'] - series['cov'], series['filter'] + series['cov'], alpha=0.3, color='k') axs[dx].plot(series['inducing'], np.zeros(series['inducing'].shape[0]), 'o', color='orange', label='inducing points') axs[dx].legend() self._set_filter_axs(axs[dx]) axs[dx].set_title(row) plt.subplots_adjust(hspace=0.3) fig.savefig('glm_data/gp_filter_evolution.pdf', dpi=300) plt.show() def _set_filter_axs(self, axs): len = self.h_time.shape[0] axs.set_xticks([i for i in np.arange(len + 1) if i % 50 == 0]) labels = [int(i * self.params.time_div) for i in self.h_time if (i * self.params.time_div) % 50 == 0] labels.append(int(len / 2)) axs.set_xticklabels(labels) # def fn_min(half_coeff, x, y, Kinv): # temp = np.zeros(Kinv.shape[0]) # return -1 * (h.T @ (x.T @ y) - np.sum(np.exp(x @ h)) - 0.5 * h.T @ (Kinv @ h)) # # def jac(half_coeff, X, y, Kinv): # return X.T @ np.exp(X@h) - X.T @ y + Kinv @ h # # def hess(half_coeff, x, y, Kinv): # return x.T @ np.diag(np.exp(x@h)) @ x def callback(h_updated): print('entered callback') mult_exp_mat = np.load('mult_exp_mat.npy') unused_exp = mult_exp_mat @ h_updated cov = np.load('callback_var.npy') # h_unused = np.random.multivariate_normal(unused_exp, cov) h_unused = unused_exp np.save('h_unused.npy', h_unused) def fn_min(half_coeff, time, use_dx, unuse_dx, X, x_use, y, Kinv): delta = 0.001 h = np.zeros(time.shape[0]) h[use_dx] = half_coeff h[unuse_dx] = np.load('h_unused.npy') obj = -1 * (h.T @ (X.T @ y) - delta*np.sum(np.exp(X @ h)) - 0.5 * half_coeff @ (Kinv @ half_coeff)) + time.shape[0] * np.log(delta) print(obj) return obj def jac(half_coeff, time, use_dx, unuse_dx, X, x_use, y, Kinv): delta = 0.001 h = np.zeros(time.shape[0]) h[use_dx] = half_coeff h[unuse_dx] = np.load('h_unused.npy') return delta*x_use.T @ np.exp(X@h) - x_use.T @ y + Kinv @ half_coeff def hess(half_coeff, time, use_dx, unuse_dx, X, x_use, y, Kinv): delta = 0.001 h = np.zeros(time.shape[0]) h[use_dx] = half_coeff h[unuse_dx] = np.load('h_unused.npy') hess = delta*x_use.T @ np.diag(np.exp(X@h)) @ x_use # if not utils.isPD(hess): # return utils.nearestPD(hess) return hess # # u = 4 # unused_dx = [i for i in range(self.h_time.shape[0]) if i % u == 0] # used_dx = [i for i in range(self.h_time.shape[0]) if i % u != 0] # unused_time = self.h_time[unused_dx] # hh_time = self.h_time[used_dx] # # h = self.h_true + 0.01*np.random.randn(self.h.shape[0]) # hh = h[used_dx] # xx = self.X[:, used_dx] # # kk = utils.decay_kernel(self.h_time.reshape(-1, 1),self.h_time.reshape(-1, 1), sigma_h=self.sigma_true, # # alpha=self.alpha_true, gamma=self.gamma_true)[:,used_dx][used_dx,:] # kk = ka.RBF(1).__call__(1000*hh_time.reshape(-1,1)) # kk_inv = np.linalg.inv(kk) # # # # # # k_used_used = utils.decay_kernel(hh_time.reshape(-1, 1),hh_time.reshape(-1, 1), sigma_h=self.sigma_true, # # alpha=self.alpha_true, gamma=self.gamma_true) # k_used_used = ka.RBF(1).__call__(hh_time.reshape(-1,1)*1000, 1000*hh_time.reshape(-1,1)) # k_unused_used = ka.RBF(1).__call__(1000*unused_time.reshape(-1, 1),1000*hh_time.reshape(-1, 1)) # k_used_unused = ka.RBF(1).__call__(1000*hh_time.reshape(-1, 1), 1000*unused_time.reshape(-1, 1)) # k_unused_unused = ka.RBF(1).__call__(1000*unused_time.reshape(-1, 1), 1000*unused_time.reshape(-1, 1)) # k_unused_used = utils.decay_kernel(unused_time.reshape(-1, 1),hh_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true) # k_used_unused = utils.decay_kernel(hh_time.reshape(-1, 1),unused_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true) # k_unused_unused = utils.decay_kernel(unused_time.reshape(-1, 1),unused_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true) # time, use_dx, unuse_dx, X, x_use, y, Kinv # # # u = 3 # r = 10 # h = np.copy(self.h_true) + 0.5*np.random.randn(self.h_true.shape[0]) # unuse_dx = [i for i in range(self.h_time.shape[0]) if i % u == 0] # use_dx = [i for i in range(self.h_time.shape[0]) if i % u != 0] # time = self.h_time # hh_time = time[use_dx] # unused_time = time[unuse_dx] # # K = utils.decay_kernel(hh_time.reshape(-1, 1),hh_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true, noise_std=self.params.gp_noise_std) # k_unused_used = utils.decay_kernel(unused_time.reshape(-1, 1),hh_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true) # k_used_unused = utils.decay_kernel(hh_time.reshape(-1, 1),unused_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true) # k_unused_unused = utils.decay_kernel(unused_time.reshape(-1, 1),unused_time.reshape(-1, 1), sigma_h=self.sigma_true, # alpha=self.alpha_true, gamma=self.gamma_true, noise_std=self.params.gp_noise_std) # # # X = np.copy(self.X) # x_use = X[:,use_dx] # y = np.copy(self.y) # # y[y>0] = 1 # # Kinv = scipy.linalg.inv(K) # h_use = h[use_dx] # # mult_exp_mat = k_unused_used @ Kinv # h_unuse_est = mult_exp_mat @ h_use # np.save('mult_exp_mat.npy', mult_exp_mat) # # cov = k_unused_unused - k_unused_used @ Kinv @ k_unused_used.T # np.save('callback_var.npy', cov) # h_unused = np.random.multivariate_normal(mult_exp_mat @ h_use, cov) # np.save('h_unused.npy', h_unused) # # a = scipy.optimize.minimize(fn_min, h_use, args=(time, use_dx, unuse_dx, X, x_use, y, Kinv), # method='Newton-CG', jac=jac, hess=hess, options={'xtol':1e-4, 'disp':True, 'maxiter':100000}, # callback=callback) # min_h_use = a.x # mult_exp_mat = k_unused_used @ Kinv # h_unuse_est = mult_exp_mat @ min_h_use # h_use_est = k_used_unused @ (np.linalg.inv(k_unused_unused) @ h_unuse_est) # # estimated_h_all = np.zeros(self.h_true.shape[0]) # estimated_h_all[use_dx] = h_use_est # estimated_h_all[unuse_dx] = h_unuse_est # plt.plot(estimated_h_all) # plt.plot(self.h_true) # plt.show() # k_used_used = ka.RBF(r).__call__(hh_time.reshape(-1,1)*1000, 1000*hh_time.reshape(-1,1)) # k_unused_used = ka.RBF(r).__call__(1000*unused_time.reshape(-1, 1),1000*hh_time.reshape(-1, 1)) # k_used_unused = ka.RBF(r).__call__(1000*hh_time.reshape(-1, 1), 1000*unused_time.reshape(-1, 1)) # k_unused_unused = ka.RBF(r).__call__(1000*unused_time.reshape(-1, 1), 1000*unused_time.reshape(-1, 1)) # # a = scipy.optimize.minimize(fn_min, hh, args=(xx, self.y, kk_inv), # method='Newton-CG', jac=jac, hess=hess, options={'xtol':1e-5, 'disp':True, 'maxiter':100000}, # callback=callback) # h_used = a.x # # h_unused = -1*(k_unused_used) @ (utils.nearestPD(np.linalg.inv(k_used_used)) @ h_used) # h_unused = self.h_true[unused_dx] # h_all = np.zeros(self.h_time.shape[0]) # h_all[used_dx] = h_used # h_all[unused_dx] = h_unused # plt.plot(h_all) # plt.plot(self.h_true) # plt.show() # # # plt.plot(h_used) # plt.plot(self.h_true[used_dx]) # plt.show() # # k_unused_unused = utils.decay_kernel(10*unused_time.reshape(-1, 1),10*unused_time.reshape(-1, 1), sigma_h=1000, # alpha=0.1, gamma=0.45) # # sample = np.random.multivariate_normal(np.zeros(k_unused_unused.shape[0]), k_unused_unused) # plt.plot(sample) # plt.show() # # def obj_fn(alpha, X, y, h, h_time): # K = utils.decay_kernel(h_time.reshape(-1, 1), h_time.reshape(-1, 1), sigma_h=2, alpha=alpha, gamma=600, noise_std=1) # Kinv = np.linalg.inv(K) # W = X.T @ np.diag(np.exp(X @ h)) @ X # Wsqrt = np.sqrt(1e-3) * sqrtm(X.T @ (np.diag(np.exp(X @ h)) @ X)) # I = np.identity(K.shape[0]) # obj1 = y.T @ X @ h # obj2 = -1 * np.sum(np.exp(X@h)) # obj3 = -0.5 * h.T @ Kinv @ h # obj4 = 0 #-0.5 * np.linalg.slogdet(I + Wsqrt @ (K @ Wsqrt)) # # return -1*(obj1 + obj2 + obj3 + obj4) # # def obj_grad(alpha, X, y, h, h_time): # K = utils.decay_kernel(h_time.reshape(-1, 1), h_time.reshape(-1, 1), sigma_h=2, # alpha=alpha, gamma=600, noise_std=0.001) # Kinv = np.linalg.inv(K) # Wsqrt = np.sqrt(1e-3) * sqrtm(X.T @ (np.diag(np.exp(X @ h)) @ X)) # I = np.identity(K.shape[0]) # # K_prime = K * -1 * np.log(np.outer(np.exp(h_time ** 2), np.exp(h_time ** 2))) # term1 = 0.5 * h.T @ (Kinv @ (K_prime @ Kinv)) @ h # term2 = -0.5 * np.trace(np.linalg.inv(I + Wsqrt @ K @ Wsqrt) @ (Wsqrt @ K_prime @ Wsqrt)) # # return -1*(term1 + term2) # # def callback(alpha): # print(f'alpha: {alpha}') # # a = optimize.minimize(obj_fn, 500, args=(x_design, y_true, h_true, h_time), # method='BFGS', jac=obj_grad, options={'xtol': 1e-4, 'disp': True, 'maxiter': 500}, # callback=callback) # # def test_deriv(): # a = 1 # b = 1 # c = 3.1 # d = 1.3 # e = 2.4 # time = np.array([1,2]).reshape(-1,1) # time_add_sq = -1 * np.log(np.outer(np.exp(time ** 2), np.exp(time ** 2))) # A = np.array([[a, 0], [0, b]]) # B = np.array([[c, d], [0, e]]) # # K = utils.decay_kernel(time, time, sigma_h=2, # alpha=2, gamma=1) # # inside_log = a*e*K[1,1] + a*b + c*e*K[0,0]*K[1,1] + c*b*K[0,0] + d*e*K[1,0]*K[1,1] + b*d*K[1,0] # deriv = (-a*e*(2**2 + 2**2)*K[1,1] - c*e*K[0,0]*(2**2 + 2**2)*K[1,1] - c*e*K[1,1]*(1**2 + 1**2)*K[0,0] - # b*c*(1**2 + 1**2)*K[0,0] - d*e*K[1,0]*(2**2 + 2**2)*K[1,1] - d*e*K[1,1]*(1**2 + 2**2)*K[1,0] - d*b*(1**2 + 2**2)*K[1,0]) # # K_prime = K * time_add_sq # grad1 = deriv/inside_log # grad2 = np.trace(np.linalg.inv(A + B@K) @ B@K_prime) def _log_likelihood_brute( params, *args): alpha = params[0] gamma = params[1] sigma = params[2] print(alpha) h = args[0] time = args[1] X = args[2] y = args[3] delta = self.params.delta Kinv = self.GP.K_all_inv obj = -1 * (h.T @ (X.T @ y) - delta * np.sum(np.exp(X @ h)) - 0.5 * h @ (Kinv @ h)) + \ time.shape[0] * np.log(delta) return obj # y = np.zeros(200) # for alpha in range(y.shape[0]): # y[alpha] = _log_marginal_deriv_wrt_alpha_test(np.array([5*alpha]), self.h_true) def _log_marginal_deriv_wrt_alpha_test(alpha_in): h = self.h alpha = alpha_in[0] sigma = self.sigma gamma = self.gamma K = utils.decay_kernel(self.h_time.reshape(-1, 1), self.h_time.reshape(-1, 1), sigma_h=sigma, alpha=alpha, gamma=gamma, noise_std=0.001) Kinv = np.linalg.inv(K) W = self.params.delta * self.X.T @ (np.diag(np.exp(self.X @ self.h_true)) @ self.X) Winv = np.linalg.inv(W) Wsqrt = np.sqrt(self.params.delta) * sqrtm(self.X.T @ (np.diag(np.exp(self.X @ self.h_true)) @ self.X)) I = np.identity(K.shape[0]) K_prime = K * -1 * np.log(np.outer(np.exp(self.h_time ** 2), np.exp(self.h_time ** 2))) # term1 = 0.5 * self.h_true.T @ (Kinv @ (K_prime @ Kinv)) @ self.h_true # term2 = -0.5 * np.trace(np.linalg.inv(I + Wsqrt @ K @ Wsqrt) @ (Wsqrt @ K_prime @ Wsqrt)) term1 = 0.5*h.T @ (Kinv @ K_prime @ Kinv) @ h - 0.5*np.trace(np.linalg.inv(Winv + K)@K_prime) term2 = np.zeros(self.X.shape[1]) inv_K_inv_W = np.linalg.inv(Kinv + W) for i in range(self.X.shape[1]): term2[i] = -0.5*np.trace(inv_K_inv_W @ (self.X.T @ np.diag(self.X[:,i]*np.exp(self.X@h)) @ self.X)) # X_reshape = self.X.reshape(self.X.shape[0], 1, -1) # inv_Kinv_pl_W = np.linalg.inv(Kinv + W) # # diag_mat = diag_3d(self.X*np.exp(self.X@h).reshape(-1,1)) # part1 = np.einsum('ij,jkl->ikl', self.X.T, diag_mat) # part2 = np.einsum('ijl,jk->ikl', part1, self.X) # part3 = np.einsum('ij,jkl->ikl', inv_Kinv_pl_W, part2) # term2 = np.trace(part3) # # diag_mat = diag_3d(self.X[:,self.X.shape[1]//2:] * np.exp(self.X @ h).reshape(-1, 1)) # part1 = np.einsum('ij,jkl->ikl', self.X.T, diag_mat) # part2 = np.einsum('ijl,jk->ikl', part1, self.X) # part3 = np.einsum('ij,jkl->ikl', inv_Kinv_pl_W, part2) # term2 = np.concatenate([term2, np.trace(part3)]) term3 = np.linalg.inv(I + K@W) @ K_prime @ (self.X.T @ self.y - self.params.delta*self.X.T @ np.exp(self.X@h)) grad = term1 +
np.sum(term2*term3)
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 8 13:28:03 2021 @author: pmazumdar """ ############################################## ## Smooth 13CO map to CHIMPS Resolution ## ############################################## import radio_beam from spectral_cube import SpectralCube from astropy import units as u from astropy.table import Table from astrodendro import Dendrogram, ppv_catalog, structure from astropy import wcs from astropy.table import Table from astropy.io import fits import numpy as np import matplotlib.pyplot as plt from astrodendro.pruning import all_true, min_vchan, min_delta, min_area from astropy import constants as const import aplpy import seaborn as sns import scipy.stats as sst from astropy.convolution import Gaussian2DKernel from astropy.convolution import convolve cube = SpectralCube.read('/home/pmazumdar/Documents/LASMA/Reduction/class_maps/temp/G305_13CO_resample.fits') cube_cd = SpectralCube.read('/home/pmazumdar/Documents/LASMA/Reduction/class_maps/temp/ntotal.fits') beam = radio_beam.Beam(major=27.4*u.arcsec, minor=27.4*u.arcsec, pa=0*u.deg) new_cube = cube.convolve_to(beam) new_cube_cd = cube_cd.convolve_to(beam) hdu_13CO = fits.open('/home/pmazumdar/Documents/LASMA/Reduction/class_maps/temp/G305_13CO-moment0.fits')[0] mask_nan = ~np.isnan(hdu_13CO.data) # only include non nan pixels masked_cube = new_cube.with_mask(mask_nan) # apply mask to spectral cube masked_cube_cd = new_cube_cd.with_mask(mask_nan) # apply mask to spectral cube data = masked_cube.hdu.data hd = masked_cube.hdu.header wc = wcs.WCS(hd) data_cd = masked_cube_cd.hdu.data hd_cd = masked_cube_cd.hdu.header wc_cd = wcs.WCS(hd_cd) ## Custom Definitions for the Dendrogram ## rms = 0.15 # rms noise rms_cd = 1.6e7 cd_min = 3.37e11 bmaj = hd['bmaj'] # beam_major bmin = hd['bmin'] # beam_minor cdelt1 = hd['cdelt1'] # delta_x cdelt2 = hd['cdelt2'] # delta_y deltav_kms = abs(hd['CDELT3']/1000.) # vel res in kmps ppb = abs((bmaj*bmin)/(cdelt1*cdelt2)*2*np.pi/(8*np.log(2))) # pixel_per_beam #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #&% #&% Creating the Dendrogram #&% #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% # Prune leaves below a given height: #def custom_independent(structure, index=None, value=None): # peak_index, peak_value = structure.get_peak() # return peak_value > 5 is_independent = all_true((min_delta(5*rms), min_area(1*ppb), min_vchan(6))) #is_independent_cd = all_true((min_delta(3*cd_min), min_area(1*ppb), min_vchan(2))) d = Dendrogram.compute(data, min_value=5*rms, wcs=wc, is_independent = is_independent, verbose=1) d.save_to('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_13CO_smoothed_dendro.fits') #d_cd = Dendrogram.compute(data_cd, min_value=5*cd_min, wcs=wc_cd, is_independent = is_independent_cd, verbose=1) #d_cd.save_to('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_column_densty_smoothed_dendro.fits') #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #&% #&% START HERE IF DENDROGRAM ALREADY RUN #&% #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #d = Dendrogram.load_from('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_13CO_dendro.fits') #d_cd = Dendrogram.load_from('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_column_densty_dendro.fits') leaf_id=np.array([]) for s in d.all_structures: if s.is_leaf: leaf_id=np.append(leaf_id,s.idx) print(leaf_id) leaf_id.sort() leaf_cd_id=np.array([]) #for s in d_cd.all_structures: # if s.is_leaf: # leaf_cd_id=np.append(leaf_cd_id,s.idx) #print(leaf_cd_id) #leaf_cd_id.sort() #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #&% #&% Viewing and Plotting the Dendrogram #&% #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% p = d.plotter() #p_cd = d_cd.plotter() #fig,ax = plt.subplots(nrows = 2, ncols=1) #plt.rcParams.update({"font.size":6}) #ax[0] = fig.add_subplot(1, 1, 1) #ax[0].set_ylabel('$^{13}$CO Peak Intensity') #p.plot_tree(ax[0],color='seagreen',lw=0.5) #p_cd.plot_tree(ax[1],color='orange',lw=0.5) #ax[1].set_yscale('log') #ax[1].set_xlabel('Index of Structure') #ax[1].set_ylabel('$^{13}$CO Column Density') #plt.savefig("/home/pmazumdar/Documents/LASMA/Reduction/class_maps/temp/plots/Dendrogram_G305.eps",dpi=300) #plt.close() #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #&% #&% Creating the ppv_catalog #&% #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% metadata = {} metadata['data_unit'] = u.Jy metadata['beam_major'] = (bmaj * u.deg .to(u.arcsecond))*u.arcsecond # FWHM metadata['beam_minor'] = (bmin * u.deg .to(u.arcsecond))*u.arcsecond # FWHM metadata['velocity_scale'] = 0.5 * u.km/u.s # v_res cat = ppv_catalog(d,metadata) #cat_cd = ppv_catalog(d_cd,metadata) # Note : Catalog of Column Density : Flux per pixel represents Col. Density per delX.delY.delV ## # dists = 3800*u.parsec # Distance of the source. dist_gc = 6598.5452942296305*u.parsec x2 = 18 # x2 = X_CO / 2E20 [cm^-2 / K km s^-1] , where X_CO is a CO-H2 conversion factor. #x2 = 1 # for 12CO sigma_v = np.array(cat['v_rms']) sigma_x = np.array(cat['radius'])*(((1*u.arcsecond).to(u.rad)).value)*dists.value #sigma_v_cd = np.array(cat_cd['v_rms']) #sigma_x_cd = np.array(cat_cd['radius'])*(((1*u.arcsecond).to(u.rad)).value)*dists.value eta = 1.91 # conversion factor. R = eta * sigma_r G = 4.302e-3 # units of pc (M_sun)^-1 (km/s)^2 deltax_pc = abs(np.pi/180.*hd['CDELT1']*dists.value) # delta x in pc deltay_pc = abs(np.pi/180.*hd['CDELT2']*dists.value) # delta y in pc sigma_majs = cat['major_sigma'] sigma_mins = cat['minor_sigma'] #sigma_majs_cd = cat_cd['major_sigma'] #sigma_mins_cd = cat_cd['minor_sigma'] R12_13 = (6.21*(dist_gc.value/1000.0))+18.71 # C12/C13 abundance ratio (Milam et al. 2005) R12 = 8.5e-5 # C12/H2 abundance (Frerking et al.) R13_inv = R12_13/R12 mu = 2.72 # Average H2 mass including He fraction mp = 8.4089382e-58*u.solMass # Proton Mass nu_12CO = 345.79598990*u.GHz nu_13CO = 330.58796530*u.GHz delta_nu_12 = 0.0011534512649414282*u.GHz delta_nu_13 = 0.0011027227552869259*u.GHz ## ## Additions to Integrated Intensity Catalog ## ## adding a radius column to the catalog cat['radius_pc'] = np.zeros(len(cat),dtype=float) cat['radius_pc'] = eta*np.sqrt((sigma_majs*deltax_pc)*(sigma_mins*deltay_pc)) cat['radius_pc'].unit = u.parsec ## adding a luminosity column to the catalog cat['luminosity']=np.zeros(len(cat),dtype=float) cat['luminosity'] = cat['flux']*deltav_kms*deltax_pc*deltay_pc cat['luminosity'].unit = u.K * u.km / u.s * u.pc * u.pc ## adding a mass column to the catalog #cat['M_lum']=np.zeros(len(cat),dtype=float) #cat['M_lum'] = cat['luminosity']*4.4*x2 #cat['M_lum'].unit = u.solMass cat['Mass']=np.zeros(len(cat),dtype=float) cat['Mass'].unit = u.solMass for s in d.all_structures: str_mask = s.get_mask() str_cube = data_cd[str_mask] total_cd = np.nansum(str_cube) mass = mu*mp.value*R13_inv*total_cd*deltax_pc*deltay_pc*(u.parsec.to(u.centimeter))**2 cat[s.idx]['Mass'] = mass ## adding a surface density column to the catalog cat['Sigma_exact']=np.zeros(len(cat),dtype=float) cat['Sigma_exact'] = cat['Mass']/(cat['area_exact']*deltax_pc*deltay_pc) cat['Sigma_exact'].unit = u.solMass/(u.pc*u.pc) cat['Sigma_ellipse'] = np.zeros(len(cat),dtype=float) cat['Sigma_ellipse'] = cat['Mass']/(np.pi*cat['radius_pc']**2) cat['Sigma_ellipse'].unit = u.solMass/(u.pc*u.pc) ## calculating virial parameter alpha cat['virial_parameter'] = np.zeros(len(cat),dtype=float) cat['virial_parameter'] = (5*((sigma_v)**2)*cat['radius_pc'])/(4.4*x2*cat['luminosity']*G) cat['virial_parameter'].unit = '' ## ## Additions to Integrated Col. Den. Catalog ## ## adding a radius column to the catalog #cat_cd['radius_pc'] = np.zeros(len(cat_cd),dtype=float) #cat_cd['radius_pc'] = eta*np.sqrt((sigma_majs_cd*deltax_pc)*(sigma_mins_cd*deltay_pc)) #cat_cd['radius_pc'].unit = u.parsec ## adding a mass column to the catalog #cat_cd['Mass'] = np.zeros(len(cat_cd),dtype=float) #cat_cd['Mass'] = mu*mp*R13_inv*cat_cd['flux']*deltav_kms*deltax_pc*deltay_pc*(u.parsec.to(u.centimeter))**2 #cat_cd['Mass'].unit = u.solMass ## adding a surface density column to the catalog #cat_cd['Sigma_exact']=np.zeros(len(cat_cd),dtype=float) #cat_cd['Sigma_exact'] = cat_cd['Mass']/(cat_cd['area_exact']*deltax_pc*deltay_pc) #cat_cd['Sigma_exact'].unit = u.solMass/(u.pc*u.pc) #cat_cd['Sigma_ellipse'] = np.zeros(len(cat_cd),dtype=float) #cat_cd['Sigma_ellipse'] = cat_cd['Mass']/(np.pi*cat_cd['radius_pc']**2) #cat_cd['Sigma_ellipse'].unit = u.solMass/(u.pc*u.pc) ## calculating virial parameter alpha #cat_cd['virial_parameter'] = np.zeros(len(cat_cd),dtype=float) #cat_cd['virial_parameter'] = (3*((sigma_v_cd)**2)*cat_cd['radius_pc'])/(cat_cd['Mass']*G) #cat_cd['virial_parameter'].unit = '' ## Save Catalogs ## cat.write('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_13CO_smoothed_cat.fits',overwrite=True) #cat_cd.write('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_column_density_smoothed_cat.fits',overwrite=True) #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #&% #&% Loading the ppv_catalog #&% #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #cat = Table.read('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_13CO_cat.fits') #cat_cd = Table.read('/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/G305_column_density_cat.fits') # # Variables for plotting leaves # L_CO = np.array([]) radius_pc = np.array([]) vrms = np.array([]) mass = np.array([]) Sigma_exact = np.array([]) Sigma_ellipse = np.array([]) alpha = np.array([]) #radius_pc_cd = np.array([]) #vrms_cd = np.array([]) #mass_cd = np.array([]) #Sigma_exact_cd = np.array([]) #Sigma_ellipse_cd = np.array([]) #alpha_cd = np.array([]) for i in leaf_id: L_CO = np.append(L_CO, cat[int(i)]['luminosity']) radius_pc = np.append(radius_pc,cat[int(i)]['radius_pc']) vrms = np.append(vrms,sigma_v[int(i)]) mass = np.append(mass, cat[int(i)]['M_lum']) #mass = np.append(mass, cat[i]['Mass']) Sigma_exact = np.append(Sigma_exact, cat[int(i)]['Sigma_exact']) Sigma_ellipse = np.append(Sigma_ellipse,cat[int(i)]['Sigma_ellipse']) alpha = np.append(alpha,cat[int(i)]['virial_parameter']) #for i in leaf_cd_id: # radius_pc_cd = np.append(radius_pc_cd,cat_cd[int(i)]['radius_pc']) # vrms_cd = np.append(vrms_cd,sigma_v_cd[int(i)]) # mass_cd = np.append(mass_cd, cat_cd[int(i)]['Mass']) # Sigma_exact_cd = np.append(Sigma_exact_cd, cat_cd[int(i)]['Sigma_exact']) # Sigma_ellipse_cd = np.append(Sigma_ellipse_cd,cat_cd[int(i)]['Sigma_ellipse']) # alpha_cd = np.append(alpha_cd,cat_cd[int(i)]['virial_parameter']) #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% #&% #&% CHIMPS and ATLASGAL Data Load #&% #&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&%&% cmp_data = Table.read("/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/table4.fits") cmp_mass = cmp_data['Mass'] cmp_radius = cmp_data['R_eq'] cmp_alpha = cmp_data['alpha'].astype(np.float64) cmp_flag = cmp_data['Flag_R'] cmp_vrms = cmp_data['sigma_v'] AGAL_data = Table.read("/home/pmazumdar/Documents/LASMA/Dendrogram/fits_files/asu.fits") AGAL_mass = AGAL_data['logMclump'].astype(np.float64) AGAL_alpha = AGAL_data['alpha'].astype(np.float64) AGAL_radius = AGAL_data['Rad'].astype(np.float64) AGAL_vrms = AGAL_data['NH3LW'].astype(np.float64) plt.rcParams.update({'font.size':10}) fig,ax = plt.subplots(ncols=4,nrows=1,figsize=(15,4)) sns.kdeplot(data=np.log10(mass),ax=ax[0],c='goldenrod',fill=1,alpha=0.5,label='G305') #sns.kdeplot(data=np.log10(mass_cd),ax=ax[0],c='gray',fill=0,alpha=0.5,label='N$_{cd}$') sns.kdeplot(data=np.log10(cmp_mass[(cmp_flag==3)]),ax=ax[0],c='blue',fill=1,alpha=0.5,label='CHIMPS') sns.kdeplot(data=AGAL_mass[AGAL_mass>0],ax=ax[0],c='maroon',fill=0,alpha=0.5,linestyle='dashed',label='AGAL') ax[0].set_xlabel(r'log$_{10}$(M/M$_{\odot}$)') ax[0].legend(loc='upper left') sns.kdeplot(data=np.log10(radius_pc),ax=ax[1],c='goldenrod',fill=1,alpha=0.5) #sns.kdeplot(data=np.log10(radius_pc_cd),ax=ax[1],c='gray',fill=0,alpha=0.5) sns.kdeplot(data=np.log10(cmp_radius[(cmp_flag==3)]),ax=ax[1],c='blue',fill=1,alpha=0.5) sns.kdeplot(data=np.log10(AGAL_radius[AGAL_radius>0]),ax=ax[1],c='maroon',fill=0,alpha=0.5,linestyle='dashed') ax[1].set_xlabel(r'log$_{10}$(R$_{eq}$/pc)') ax[1].set_ylabel('') sns.kdeplot(data=
np.log10(alpha)
numpy.log10
#!/usr/bin/env python import argparse parser = argparse.ArgumentParser(description="Convert UVHDF5 files into CASA Measurement Set files.") parser.add_argument("--HDF5", default="model.hdf5", help="The name of the UVHDF5 file you wish to import.") parser.add_argument("--MS", help="The original MS data set, so that we can copy it to stuff in new values.") parser.add_argument("--out", default="model.ms", help="The output MS dataset.") parser.add_argument("--casac", action="store_true", help="Use the casac distribution instead of casapy") parser.add_argument("--skip", action="store_true", help="Skip checking that the weights are the same.") args,extras = parser.parse_known_args() import numpy as np import sys import shutil import h5py import os cc = 2.99792458e10 # [cm s^-1] # Credit: parts of this file originated from the `vis_sample` repository, # at https://github.com/AstroChem/vis_sample/blob/master/vis_sample/file_handling.py # CASA interfacing code comes from <NAME>' casa-python and casa-data package # commands for retrieving ms data are from <NAME> (@seanandrews) ms_clone = args.MS outfile = args.out if args.casac: try: import casac tb = casac.casac.table() ms = casac.casac.ms() except ImportError: print("casac was not able to be imported, make sure all dependent packages are installed") print("try: conda install -c pkgw casa-python casa-data") sys.exit(1) # Copy the original file so that we can then stuff our own visibilities into it os.system("rm -rf " + outfile) shutil.copytree(ms_clone, outfile) # Use CASA ms tools to get the channel/spw info ms.open(outfile) spw_info = ms.getspectralwindowinfo() nchan = spw_info["0"]["NumChan"] npol = spw_info["0"]["NumCorr"] ms.close() # Use CASA table tools to get frequencies tb.open(outfile + "/SPECTRAL_WINDOW") ms_freqs = np.squeeze(tb.getcol("CHAN_FREQ")) tb.close() # Ascertain whether the frequencies were stored increasing or decreasing in the original MS if np.all(np.diff(ms_freqs) > 0.0): dnu_pos = True elif np.all(np.diff(ms_freqs) < 0.0): dnu_pos = False else: raise RuntimeError("Measurement Set Frequencies not in strict monotonically increasing or decreasing order.") # Read the model from the HDF5 file fid = h5py.File(args.HDF5, "r") if dnu_pos: freqs = fid["freqs"][:] # [Hz] uu = fid["uu"][:,:] # [kilolam] vv = fid["vv"][:,:] # [kilolam] real = fid["real"][:,:] # [Jy] imag = fid["imag"][:,:] # [Jy] weight = fid["weight"][:,:] #[1/Jy^2] unflagged = fid["flag"][:,:] # Bool else: freqs = fid["freqs"][:][::-1] # [Hz] uu = fid["uu"][:][::-1,:] # [kilolam] vv = fid["vv"][:][::-1,:] # [kilolam] real = fid["real"][:][::-1,:] # [Jy] imag = fid["imag"][:][::-1,:] # [Jy] weight = fid["weight"][:][::-1,:] #[1/Jy^2] unflagged = fid["flag"][:][::-1,:] # Bool VV = real + 1.0j * imag # [Jy] fid.close() # Check to make sure the frequencies of the two datasets match assert np.allclose(freqs, ms_freqs), "Frequencies of MS and HDF5 do not match." # Use CASA table tools to fill new DATA and WEIGHT tb.open(outfile, nomodify=False) data = tb.getcol("DATA") uvw = tb.getcol("UVW") ms_weight = tb.getcol("WEIGHT") ms_flag = tb.getcol("FLAG") # flagged = np.any(ms_flag, axis=(0, 1)) # Boolean array of length nvis # unflagged = ~flagged # Flip so that indexing by this array gives us the good visibilities flagged = np.any(ms_flag, axis=(0)) # we need to pull the antennas and find where the autocorrelation values are and aren't ant1 = tb.getcol("ANTENNA1") ant2 = tb.getcol("ANTENNA2") # xc = ant1 != ant2 # indices of cross-correlations xc = ant1 != ant2 # indices of cross-correlations # Now, combine the flagging indices with the autocorrelation indices # These flags denote all visibilities that we should not be including in our likelihood calculation. # ms_flag = ~xc & flagged ms_unflagged = xc & ~flagged # Break out the u, v spatial frequencies (in meter units) ms_uu = uvw[0,:] ms_vv = uvw[1,:] # u and v are measured in meters, convert to microns and then convert these to kilo-lambda # Convert freqs to wavelengths in microns lams = cc/ms_freqs * 1e4 # [microns] ms_uu = 1e-3 * (np.tile(ms_uu * 1e6, (nchan, 1)).T / lams).T ms_vv = 1e-3 * (
np.tile(ms_vv * 1e6, (nchan, 1))
numpy.tile
from parcels import (FieldSet, Field, ScipyParticle, JITParticle, Variable, StateCode, OperationCode, CurvilinearZGrid) from parcels import ParticleSetSOA, ParticleFileSOA, KernelSOA # noqa from parcels import ParticleSetAOS, ParticleFileAOS, KernelAOS # noqa import numpy as np import pytest ptype = {'scipy': ScipyParticle, 'jit': JITParticle} pset_type = {'soa': {'pset': ParticleSetSOA, 'pfile': ParticleFileSOA, 'kernel': KernelSOA}, 'aos': {'pset': ParticleSetAOS, 'pfile': ParticleFileAOS, 'kernel': KernelAOS}} def fieldset(xdim=40, ydim=100): U = np.zeros((ydim, xdim), dtype=np.float32) V = np.zeros((ydim, xdim), dtype=np.float32) lon = np.linspace(0, 1, xdim, dtype=np.float32) lat = np.linspace(-60, 60, ydim, dtype=np.float32) depth = np.zeros(1, dtype=np.float32) data = {'U': np.array(U, dtype=np.float32), 'V': np.array(V, dtype=np.float32)} dimensions = {'lat': lat, 'lon': lon, 'depth': depth} return FieldSet.from_data(data, dimensions) @pytest.fixture(name="fieldset") def fieldset_fixture(xdim=40, ydim=100): return fieldset(xdim=xdim, ydim=ydim) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_create_lon_lat(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart, dtype=np.float32) lat = np.linspace(1, 0, npart, dtype=np.float32) pset = pset_type[pset_mode]['pset'](fieldset, lon=lon, lat=lat, pclass=ptype[mode]) assert np.allclose([p.lon for p in pset], lon, rtol=1e-12) assert np.allclose([p.lat for p in pset], lat, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) @pytest.mark.parametrize('lonlatdepth_dtype', [np.float64, np.float32]) def test_pset_create_line(fieldset, pset_mode, mode, lonlatdepth_dtype, npart=100): lon = np.linspace(0, 1, npart, dtype=lonlatdepth_dtype) lat = np.linspace(1, 0, npart, dtype=lonlatdepth_dtype) pset = pset_type[pset_mode]['pset'].from_line(fieldset, size=npart, start=(0, 1), finish=(1, 0), pclass=ptype[mode], lonlatdepth_dtype=lonlatdepth_dtype) assert np.allclose([p.lon for p in pset], lon, rtol=1e-12) assert np.allclose([p.lat for p in pset], lat, rtol=1e-12) assert isinstance(pset[0].lat, lonlatdepth_dtype) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_create_list_with_customvariable(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart, dtype=np.float32) lat = np.linspace(1, 0, npart, dtype=np.float32) class MyParticle(ptype[mode]): v = Variable('v') v_vals = np.arange(npart) pset = pset_type[pset_mode]['pset'].from_list(fieldset, lon=lon, lat=lat, v=v_vals, pclass=MyParticle) assert np.allclose([p.lon for p in pset], lon, rtol=1e-12) assert np.allclose([p.lat for p in pset], lat, rtol=1e-12) assert np.allclose([p.v for p in pset], v_vals, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) @pytest.mark.parametrize('restart', [True, False]) def test_pset_create_fromparticlefile(fieldset, pset_mode, mode, restart, tmpdir): filename = tmpdir.join("pset_fromparticlefile.nc") lon = np.linspace(0, 1, 10, dtype=np.float32) lat = np.linspace(1, 0, 10, dtype=np.float32) class TestParticle(ptype[mode]): p = Variable('p', np.float32, initial=0.33) p2 = Variable('p2', np.float32, initial=1, to_write=False) p3 = Variable('p3', np.float32, to_write='once') pset = pset_type[pset_mode]['pset'](fieldset, lon=lon, lat=lat, depth=[4]*len(lon), pclass=TestParticle, p3=np.arange(len(lon))) pfile = pset.ParticleFile(filename, outputdt=1) def Kernel(particle, fieldset, time): particle.p = 2. if particle.lon == 1.: particle.delete() pset.execute(Kernel, runtime=2, dt=1, output_file=pfile) pfile.close() pset_new = pset_type[pset_mode]['pset'].from_particlefile(fieldset, pclass=TestParticle, filename=filename, restart=restart, repeatdt=1) for var in ['lon', 'lat', 'depth', 'time', 'p', 'p2', 'p3']: assert np.allclose([getattr(p, var) for p in pset], [getattr(p, var) for p in pset_new]) if restart: assert np.allclose([p.id for p in pset], [p.id for p in pset_new]) pset_new.execute(Kernel, runtime=2, dt=1) assert len(pset_new) == 3*len(pset) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy']) @pytest.mark.parametrize('lonlatdepth_dtype', [np.float64, np.float32]) def test_pset_create_field(fieldset, pset_mode, mode, lonlatdepth_dtype, npart=100): np.random.seed(123456) shape = (fieldset.U.lon.size, fieldset.U.lat.size) K = Field('K', lon=fieldset.U.lon, lat=fieldset.U.lat, data=np.ones(shape, dtype=np.float32), transpose=True) pset = pset_type[pset_mode]['pset'].from_field(fieldset, size=npart, pclass=ptype[mode], start_field=K, lonlatdepth_dtype=lonlatdepth_dtype) assert (np.array([p.lon for p in pset]) <= K.lon[-1]).all() assert (np.array([p.lon for p in pset]) >= K.lon[0]).all() assert (np.array([p.lat for p in pset]) <= K.lat[-1]).all() assert (np.array([p.lat for p in pset]) >= K.lat[0]).all() assert isinstance(pset[0].lat, lonlatdepth_dtype) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) def test_pset_create_field_curvi(pset_mode, npart=100): np.random.seed(123456) r_v = np.linspace(.25, 2, 20) theta_v = np.linspace(0, np.pi/2, 200) dtheta = theta_v[1]-theta_v[0] dr = r_v[1]-r_v[0] (r, theta) = np.meshgrid(r_v, theta_v) x = -1 + r * np.cos(theta) y = -1 + r * np.sin(theta) grid = CurvilinearZGrid(x, y) u = np.ones(x.shape) v = np.where(np.logical_and(theta > np.pi/4, theta < np.pi/3), 1, 0) ufield = Field('U', u, grid=grid) vfield = Field('V', v, grid=grid) fieldset = FieldSet(ufield, vfield) pset = pset_type[pset_mode]['pset'].from_field(fieldset, size=npart, pclass=ptype['scipy'], start_field=fieldset.V) lons = np.array([p.lon+1 for p in pset]) lats = np.array([p.lat+1 for p in pset]) thetas = np.arctan2(lats, lons) rs = np.sqrt(lons*lons + lats*lats) test = np.pi/4-dtheta < thetas test *= thetas < np.pi/3+dtheta test *= rs > .25-dr test *= rs < 2+dr assert np.all(test) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_create_with_time(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart) lat = np.linspace(1, 0, npart) time = 5. pset = pset_type[pset_mode]['pset'](fieldset, lon=lon, lat=lat, pclass=ptype[mode], time=time) assert np.allclose([p.time for p in pset], time, rtol=1e-12) pset = pset_type[pset_mode]['pset'].from_list(fieldset, lon=lon, lat=lat, pclass=ptype[mode], time=[time]*npart) assert np.allclose([p.time for p in pset], time, rtol=1e-12) pset = pset_type[pset_mode]['pset'].from_line(fieldset, size=npart, start=(0, 1), finish=(1, 0), pclass=ptype[mode], time=time) assert np.allclose([p.time for p in pset], time, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_repeated_release(fieldset, pset_mode, mode, npart=10): time = np.arange(0, npart, 1) # release 1 particle every second pset = pset_type[pset_mode]['pset'](fieldset, lon=np.zeros(npart), lat=np.zeros(npart), pclass=ptype[mode], time=time) assert np.allclose([p.time for p in pset], time) def IncrLon(particle, fieldset, time): particle.lon += 1. pset.execute(IncrLon, dt=1., runtime=npart) assert np.allclose([p.lon for p in pset], np.arange(npart, 0, -1)) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_dt0(fieldset, pset_mode, mode, npart=10): pset = pset_type[pset_mode]['pset'](fieldset, lon=np.zeros(npart), lat=np.zeros(npart), pclass=ptype[mode]) def IncrLon(particle, fieldset, time): particle.lon += 1 pset.execute(IncrLon, dt=0., runtime=npart) assert np.allclose([p.lon for p in pset], 1.) assert np.allclose([p.time for p in pset], 0.) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) def test_pset_repeatdt_check_dt(pset_mode, fieldset): pset = pset_type[pset_mode]['pset'](fieldset, lon=[0], lat=[0], pclass=ScipyParticle, repeatdt=5) def IncrLon(particle, fieldset, time): particle.lon = 1. pset.execute(IncrLon, dt=2, runtime=21) assert np.allclose([p.lon for p in pset], 1) # if p.dt is nan, it won't be executed so p.lon will be 0 @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_repeatdt_custominit(fieldset, pset_mode, mode): class MyParticle(ptype[mode]): sample_var = Variable('sample_var') pset = pset_type[pset_mode]['pset'](fieldset, lon=0, lat=0, pclass=MyParticle, repeatdt=1, sample_var=5) def DoNothing(particle, fieldset, time): return StateCode.Success pset.execute(DoNothing, dt=1, runtime=21) assert np.allclose([p.sample_var for p in pset], 5.) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_stop_simulation(fieldset, pset_mode, mode): pset = pset_type[pset_mode]['pset'](fieldset, lon=0, lat=0, pclass=ptype[mode]) def Delete(particle, fieldset, time): if time == 4: return OperationCode.StopExecution pset.execute(Delete, dt=1, runtime=21) assert pset[0].time == 4 @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_access(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart, dtype=np.float32) lat = np.linspace(1, 0, npart, dtype=np.float32) pset = pset_type[pset_mode]['pset'](fieldset, lon=lon, lat=lat, pclass=ptype[mode]) assert(pset.size == 100) assert np.allclose([pset[i].lon for i in range(pset.size)], lon, rtol=1e-12) assert np.allclose([pset[i].lat for i in range(pset.size)], lat, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_custom_ptype(fieldset, pset_mode, mode, npart=100): class TestParticle(ptype[mode]): p = Variable('p', np.float32, initial=0.33) n = Variable('n', np.int32, initial=2) pset = pset_type[pset_mode]['pset'](fieldset, pclass=TestParticle, lon=np.linspace(0, 1, npart), lat=np.linspace(1, 0, npart)) assert(pset.size == npart) assert np.allclose([p.p - 0.33 for p in pset], np.zeros(npart), atol=1e-5) assert np.allclose([p.n - 2 for p in pset], np.zeros(npart), rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_add_explicit(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart) lat = np.linspace(1, 0, npart) pset = pset_type[pset_mode]['pset'](fieldset, lon=[], lat=[], pclass=ptype[mode], lonlatdepth_dtype=np.float64) for i in range(npart): particle = pset_type[pset_mode]['pset'](pclass=ptype[mode], lon=lon[i], lat=lat[i], fieldset=fieldset, lonlatdepth_dtype=np.float64) pset.add(particle) assert(pset.size == 100) assert np.allclose([p.lon for p in pset], lon, rtol=1e-12) assert np.allclose([p.lat for p in pset], lat, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_add_shorthand(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart, dtype=np.float32) lat = np.linspace(1, 0, npart, dtype=np.float32) pset = pset_type[pset_mode]['pset'](fieldset, lon=[], lat=[], pclass=ptype[mode]) for i in range(npart): pset += pset_type[pset_mode]['pset'](pclass=ptype[mode], lon=lon[i], lat=lat[i], fieldset=fieldset) assert(pset.size == 100) assert np.allclose([p.lon for p in pset], lon, rtol=1e-12) assert np.allclose([p.lat for p in pset], lat, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_add_execute(fieldset, pset_mode, mode, npart=10): def AddLat(particle, fieldset, time): particle.lat += 0.1 pset = pset_type[pset_mode]['pset'](fieldset, lon=[], lat=[], pclass=ptype[mode]) for i in range(npart): pset += pset_type[pset_mode]['pset'](pclass=ptype[mode], lon=0.1, lat=0.1, fieldset=fieldset) for _ in range(3): pset.execute(pset.Kernel(AddLat), runtime=1., dt=1.0) assert np.allclose(np.array([p.lat for p in pset]), 0.4, rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_merge_inplace(fieldset, pset_mode, mode, npart=100): pset1 = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.linspace(1, 0, npart)) pset2 = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.linspace(0, 1, npart)) assert(pset1.size == 100) assert(pset2.size == 100) pset1.add(pset2) assert(pset1.size == 200) @pytest.mark.xfail(reason="ParticleSet duplication has not been implemented yet") @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_merge_duplicate(fieldset, pset_mode, mode, npart=100): pset1 = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.linspace(1, 0, npart)) pset2 = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.linspace(0, 1, npart)) pset3 = pset1 + pset2 assert(pset1.size == 100) assert(pset2.size == 100) assert(pset3.size == 200) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_remove_index(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart) lat = np.linspace(1, 0, npart) pset = pset_type[pset_mode]['pset'](fieldset, lon=lon, lat=lat, pclass=ptype[mode], lonlatdepth_dtype=np.float64) for ilon, ilat in zip(lon[::-1], lat[::-1]): assert(pset[-1].lon == ilon) assert(pset[-1].lat == ilat) pset.remove_indices(-1) assert(pset.size == 0) @pytest.mark.xfail(reason="Particle removal has not been implemented yet") @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_remove_particle(fieldset, pset_mode, mode, npart=100): lon = np.linspace(0, 1, npart) lat = np.linspace(1, 0, npart) pset = pset_type[pset_mode]['pset'](fieldset, lon=lon, lat=lat, pclass=ptype[mode]) for ilon, ilat in zip(lon[::-1], lat[::-1]): assert(pset.lon[-1] == ilon) assert(pset.lat[-1] == ilat) pset.remove_indices(pset[-1]) assert(pset.size == 0) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_remove_kernel(fieldset, pset_mode, mode, npart=100): def DeleteKernel(particle, fieldset, time): if particle.lon >= .4: particle.delete() pset = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.linspace(1, 0, npart)) pset.execute(pset.Kernel(DeleteKernel), endtime=1., dt=1.0) assert(pset.size == 40) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_multi_execute(fieldset, pset_mode, mode, npart=10, n=5): def AddLat(particle, fieldset, time): particle.lat += 0.1 pset = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.zeros(npart)) k_add = pset.Kernel(AddLat) for _ in range(n): pset.execute(k_add, runtime=1., dt=1.0) assert np.allclose([p.lat - n*0.1 for p in pset], np.zeros(npart), rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) def test_pset_multi_execute_delete(fieldset, pset_mode, mode, npart=10, n=5): def AddLat(particle, fieldset, time): particle.lat += 0.1 pset = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=np.linspace(0, 1, npart), lat=np.zeros(npart)) k_add = pset.Kernel(AddLat) for _ in range(n): pset.execute(k_add, runtime=1., dt=1.0) pset.remove_indices(-1) assert np.allclose([p.lat - n*0.1 for p in pset], np.zeros(npart - n), rtol=1e-12) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('mode', ['scipy', 'jit']) @pytest.mark.parametrize('area_scale', [True, False]) def test_density(fieldset, pset_mode, mode, area_scale): lons, lats = np.meshgrid(np.linspace(0.05, 0.95, 10), np.linspace(-30, 30, 20)) pset = pset_type[pset_mode]['pset'](fieldset, pclass=ptype[mode], lon=lons, lat=lats) arr = pset.density(area_scale=area_scale) if area_scale: assert np.allclose(arr, 1 / fieldset.U.cell_areas(), rtol=1e-3) # check that density equals 1/area else: assert(np.sum(arr) == lons.size) # check conservation of particles inds = np.where(arr) for i in range(len(inds[0])): # check locations (low atol because of coarse grid) assert np.allclose(fieldset.U.lon[inds[1][i]], pset[i].lon, atol=fieldset.U.lon[1]-fieldset.U.lon[0]) assert np.allclose(fieldset.U.lat[inds[0][i]], pset[i].lat, atol=fieldset.U.lat[1]-fieldset.U.lat[0]) @pytest.mark.parametrize('pset_mode', ['soa', 'aos']) @pytest.mark.parametrize('staggered_grid', ['Agrid', 'Cgrid']) def test_from_field_exact_val(pset_mode, staggered_grid): xdim = 4 ydim = 3 lon = np.linspace(-1, 2, xdim, dtype=np.float32) lat = np.linspace(50, 52, ydim, dtype=np.float32) dimensions = {'lat': lat, 'lon': lon} if staggered_grid == 'Agrid': U = np.zeros((ydim, xdim), dtype=np.float32) V = np.zeros((ydim, xdim), dtype=np.float32) data = {'U': np.array(U, dtype=np.float32), 'V': np.array(V, dtype=np.float32)} mask = np.array([[1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1]]) fieldset = FieldSet.from_data(data, dimensions, mesh='flat') FMask = Field('mask', mask, lon, lat) fieldset.add_field(FMask) elif staggered_grid == 'Cgrid': U = np.array([[0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0]]) V = np.array([[0, 1, 0, 0], [0, 1, 0, 0], [0, 1, 1, 0]]) data = {'U': np.array(U, dtype=np.float32), 'V':
np.array(V, dtype=np.float32)
numpy.array
""" @authors: <NAME>, <NAME>, <NAME> DCE-MRI two-compartment filtration model fit 2021 """ import numpy as np import sys from scipy import integrate np.set_printoptions(threshold=sys.maxsize) def aif_trapz(aif, time, timepoint, Hct): """ This function computes the numerical integration for the AIF first and second pass. Args ---- timepoints (list): DCE dynamic timepoints. aif (list): arterial input function. timepoint (int): number of baseline acquisitions. Hct (float): hematocrit. Returns ------- first_pass_aif_new (ndarray): first pass aif from composite trapezoidal rule. second_pass_aif_new (ndarray): second pass aif from composite trapezoidal rule. """ aif0 = np.mean(aif[0:timepoint]) aif_new = (aif-aif0)/(1-Hct) first_pass_aif_new = integrate.cumtrapz(aif_new,time) first_pass_aif_new = np.insert(first_pass_aif_new,0,0)#add extra zero to make array back to 265 second_pass_aif_new = integrate.cumtrapz(first_pass_aif_new,time) second_pass_aif_new = np.insert(second_pass_aif_new,0,0)#add extra zero to make array back to 265 return first_pass_aif_new, second_pass_aif_new def Linear_Least_Squares_2CFM(images_to_be_fitted, time, timepoint, first_pass_aif_new, second_pass_aif_new, return_parameters=True): """ Linear least squares 2-compartment filtration model fit. Args ---- images_to_be_fitted (numpy.ndarray): input image at all time-series (i.e. at each DCE dynamic measurement) with shape [x-dim*y-dim, total time-series]. time (list): corresponding timepoints at each AIF. timepoint (int): user-defined timepoint. first_pass_aif_new (ndarray): first pass aif from composite trapezoidal rule second_pass_aif_new (ndarray): second pass aif from composite trapezoidal rule return_parameters (condition): User-defined condition to return paramter maps. Default is True. If False then empty parameter maps are returned. Returns ------- Sfit (numpy.ndarray): signal model fit at all time-series with shape [x-dim*y-dim, total time-series]. Fp (numpy.ndarray): fitted parameter 'Fp' with shape [x-dim*y-dim]. Tp (numpy.ndarray): fitted parameter 'Tp' with shape [x-dim*y-dim]. PS (numpy.ndarray): fitted parameter 'PS' with shape [x-dim*y-dim]. Te (numpy.ndarray): fit parameter 'Te' with shape [x-dim*y-dim]. """ shape = np.shape(images_to_be_fitted) S0 = np.empty(shape[0]) St = images_to_be_fitted # signal Ct = np.empty(shape) #concentration Sfit = np.empty(shape) Cfit = np.empty(shape) for x in range(shape[0]):#pixels S0[x] = np.mean(St[x,0:timepoint]) # timepoint = 15 baselines only Ct[x,:] = St[x,:]-S0[x] time = np.tile(time, (shape[0],1)) # tile to repeat to match ct_new shape first_pass_ct_new = integrate.cumtrapz(Ct,time) first_pass_ct_new = np.insert(first_pass_ct_new,0,0, axis=1)#add extra zero to make array back to 265 second_pass_ct_new = integrate.cumtrapz(first_pass_ct_new,time) second_pass_ct_new = np.insert(second_pass_ct_new,0,0, axis=1)#add extra zero to make array back to 265 X = np.empty([shape[0],4]) A = np.empty([265,4]) A[:,2] = second_pass_aif_new A[:,3] = first_pass_aif_new alpha = np.empty(shape[0]) beta = np.empty(shape[0]) gamma = np.empty(shape[0]) Fp = np.empty(shape[0]) for x in range(shape[0]): A[:,0] = - second_pass_ct_new[x,:] A[:,1] = - first_pass_ct_new[x,:] X[x,:] = np.linalg.lstsq(A,Ct[x,:],rcond=None)[0] Cfit[x,:] =X[x,0]*A[:,0] + X[x,1]*A[:,1] + X[x,2]*A[:,2] + X[x,3]*A[:,3] Sfit[x,:] = S0[x]+Cfit[x,:] alpha[x] = X[x,0] beta[x] = X[x,1] gamma[x] = X[x,2] Fp[x] = X[x,3] if return_parameters: if alpha.all() == 0: # TODO: conditions TBC with Steven Tp = 1/beta PS = np.zeros(shape[0]) Te = np.zeros(shape[0]) else: if alpha.all() == 0 and beta.all() == 0: Fp = np.zeros(shape[0]) Tp = np.zeros(shape[0]) PS = np.zeros(shape[0]) Te = np.zeros(shape[0]) else: T = gamma/(alpha*Fp) det = np.square(beta)-4*alpha if det < 0 : Tp = beta/(2*alpha) Te = beta/(2*alpha) else: Tp = (beta - np.sqrt(np.square(beta)-4*alpha))/(2*alpha) Te = (beta + np.sqrt(np.square(beta)-4*alpha))/(2*alpha) if Te == 0: Fp = np.zeros(shape[0]) Tp = np.zeros(shape[0]) PS =
np.zeros(shape[0])
numpy.zeros
import torch from model import D, FrontEnd, G, Q import numpy as np from torch.autograd import Variable from torchvision.utils import save_image import os has_cuda = torch.cuda.is_available() model_path = './results/False/2019-01-16-15-57-41' device = torch.device("cuda" if has_cuda else "cpu") b_sz = 100 # torch.manual_seed(1) def _noise_sample(dis_c, con_c, noise, bs): idx = np.random.randint(10, size=bs) c = np.zeros((bs, 10)) c[range(bs), idx] = 1.0 idx_2 = np.random.randint(2, size=bs) c_2 = np.zeros((bs, 2)) c_2[range(bs), idx_2] = 1.0 # print('c_2: ', c_2) dis_c.data.copy_(torch.Tensor(c)) con_c.data.copy_(torch.Tensor(c_2)) noise.data.uniform_(-1.0, 1.0) print('noise: ', noise.shape) z = torch.cat([noise, dis_c, con_c], 1).view(-1, 74, 1, 1) return z, idx, idx_2 model_Q = Q().to(device) model_FE = FrontEnd().to(device) model_G = G().to(device) model_D = D().to(device) model_Q.load_state_dict(torch.load(model_path + '/model_Q.pytorch', map_location='cpu')) model_D.load_state_dict(torch.load(model_path + '/model_D.pytorch', map_location='cpu')) model_FE.load_state_dict(torch.load(model_path + '/model_FE.pytorch', map_location='cpu')) model_G.load_state_dict(torch.load(model_path + '/model_G.pytorch', map_location='cpu')) model_Q.eval() model_D.eval() model_FE.eval() model_G.eval() dis_c = torch.FloatTensor(b_sz, 10).to(device) con_c = torch.FloatTensor(b_sz, 2).to(device) noise = torch.FloatTensor(b_sz, 62).to(device) dis_c = Variable(dis_c) con_c = Variable(con_c) noise = Variable(noise) dis_c.data.resize_(b_sz, 10) con_c.data.resize_(b_sz, 2) noise.data.resize_(b_sz, 62) fix_noise = np.tile(np.linspace(-1, 1, num=5), 12) fix_noise = torch.from_numpy(np.tile(np.concatenate([fix_noise, np.linspace(-1, 1, num=2)]), 100).reshape([-1, 62])) # fix_noise = torch.Tensor(100, 62).uniform_(-1, 1) # print(fix_noise.shape) addons = np.linspace(-0.5, 0.5, num=10) print('len(fix_noise): ', len(fix_noise)) for i in range(len(fix_noise)): fix_noise[i] += addons[i % 10] print(fix_noise) fix_idx = np.arange(10).repeat(10) one_hot = np.zeros((100, 10)) one_hot[range(100), fix_idx] = 1 noise.data.copy_(fix_noise) dis_c.data.copy_(torch.Tensor(one_hot)) c = np.ones(shape=[b_sz, 1]) c1 = np.hstack([c,
np.zeros_like(c)
numpy.zeros_like
# -*- coding: utf-8 -*- """ Created on Wed Nov 08 17:46:45 2017 @author: apfranco """ import numpy as np import scipy from scipy.optimize import leastsq def RockPhysicsCalibration(agd, OM): # ALGORITMO PARA CALIBRACAO DE MODELOS DE FISICA DE ROCHA # # MODELOS # 1 - porosidade de neutrons: # phi = A + B phiE + C vsh ou # 2 - raios gama: # gr = grmin + (grmax - grmin) vsh # 3 - modelo densidade: # rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh * (1 - phiE); # 4 - resistividade: # 1/ Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh # # DESCRICAO GERAL: # O programa deve ser rodado para gerar os coefientes e densidades acima descritos # para serem usados em etapas posteriores de inferencia de porosidade, # volume de argila e saturacao. O programa fornece opcao de entrada de # limites estratigraficos conhecidos, realizando uma calibracao geral para # todo o pacote e tambem em grupos separados em funcao do volume de # folhelho como funcao de um valor de corte (cutclay). O programa fornece 3 # opcoes de saida envolvendo calibracao em todo o segmento analizado, em # segmentos menores definidos na entrada (secHoriz) ou em nesses mesmos segmentos # menores subdivididos ainda mais em funcao do conteudo de folhelho. # # PARAMETROS DE ENTRADA: # dados de perfis - raios gama, porosidade, densidade, VP e VS # dados de testemunho (se disponiveis) - volume de argila, porosidade, densidade # top, bot - limites superior e inferior da secao a ser analisada # phiSand - porosidade de areia homogenea (zero em conteudo de argila) # grmin, grmax - valores minimo e maximo para a conversao de raios gama em volume de folhelho # cutclay - valor limite para a transicao de areia para folhelho (grao para matriz suportada) # secHoriz - Matriz (nFac x 2) contendo os limites superior e inferior de cada unidade estratigrafica # satUncert - =0 desliga seletor de calibracao para horizonte com oleo. # Caso contrario iOut necesariamente igual a 3 # iOut - seletor de detalhamento de facies para saida de parametros 1, 2, # ou 3, conforme explicado acima. # modPhiC - seletor do tipo de porosidade de calibracao (porosidade # efetiva): = 1 perfil porosidade de neutros; = 2 porosidade # efetiva independente (ex. testemunho); = 3 porosidade efetiva # calculada pela formula 1 acima. # OBS: CUIDADO opcao modPhiC = 3 carece de aprimoramentos devendo ser usada em # casos muito especificos. Em geral produz matrizes mal condicionadas. # # PARAMETROS DE SAIDA: # calibData_nomePoco - arquivo contendo os dados de referencia para o processo de calibracao # phiC # clayC # rhoC # resC # calibCPR_Vel_nomePoco - arquivo contendo os parametros do modelo linear de velocidade de Han # facies # phiSand # neutron # denLitho # cValuesPhi # cValuesChi # covMatrixPar # coefVP # coefVS # fluidProp # fluidPars print ("CHAMANDO A FUNCAO EM ALGO") #Parametros de entrada inputPars = agd.get_input() well_uid = agd.get_well_uid() log_index = OM.list('log', well_uid)[0] indexes = log_index.get_index()[0] z = indexes[0].data topCL = inputPars.get('topCL', None) #Intervalo para calibracao (com agua) botCL = inputPars.get('botCL', None) top = inputPars.get('top', None) #Intervalo para inferencia bot = inputPars.get('bot', None) indLog = np.argwhere(np.logical_and(z>=top, z<=bot)) indLog = np.squeeze(indLog,1) #Input dos Perfis de pressao press_file = np.loadtxt('U:/bkp_Windows06nov2017/Documents/Pocos_Morena/MA20.prs') z = z[indLog] gr = inputPars.get('gr', None ) gr = gr[indLog] gr = logInterp(gr,z) phi = inputPars.get('phi', None ) phi = phi[indLog] phi = logInterp(phi,z) rhoFull = inputPars.get('rho', None ) rho = rhoFull[indLog] rho = logInterp(rho,z) res = inputPars.get('res', None ) res = res[indLog] if (np.all(res == np.NaN)): res = np.empty(np.size(indLog)) else: res = logInterp(res,z) fac = inputPars.get('fac', None ) fac = fac[indLog] fac = np.array(np.floor(fac), dtype=int) fac = logInterp(fac,z) #Input dos Perfis de pressao zProv = indexes[0].data mpp = 0.0980665*press_file[:,0] mtzp = press_file[:,1] lpres, cpres = np.shape(press_file) if (cpres == 3): mmzp = press_file[:,cpres - 1] else: mmzp = np.empty([0,0]) nDP = np.size(mtzp) tvdss = inputPars.get('tvdss', None ) tvdss = tvdss[indLog] izp = np.empty(nDP, dtype=int) if (np.size(mmzp) == 0): indr = indLog lindr = np.size(indr) - 1 tol = 0.1 for i in range (0, nDP): indp = np.argwhere(np.logical_and(tvdss <= (mtzp[i] + tol), tvdss >= (mtzp[i] - tol))) indp= np.squeeze(indp,1) cizp = np.argwhere(np.logical_and(indp >= indr[0], indp <= indr[lindr])) cizp= np.squeeze(cizp,1) if (np.size(cizp) == 0): izp[i] = np.argmin(np.abs(tvdss - mtzp[i])) else: izp[i] = indp[cizp[0]] mzp = zProv[izp] matsort = np.concatenate([[mzp],[mpp], [mtzp],[izp]]).T indsort = np.argsort(matsort[:,0],0) matsort = np.array([[matsort[indsort,0]],[matsort[indsort,1]],[matsort[indsort,2]],[matsort[indsort,3]]]).T matsort = np.squeeze(matsort) mzp = matsort[:,0] mpp = matsort[:,1] mtzp = matsort[:,2] izp = matsort[:,3].astype(int) zp = zProv[izp[0]:izp[nDP - 1] + 1] rhopp = rhoFull[izp[0]:izp[nDP - 1] + 1] rhopp = logInterp(rhopp, zp) else: mzp = mmzp for i in range (0, nDP): izp[i] = np.argmin(np.abs(zProv - mzp[i])) zp = zProv[izp[0]:izp[nDP - 1] + 1] rhopp = rhoFull[izp[0]:izp[nDP - 1] + 1] rhopp = logInterp(rhopp, zp) phiCore = np.empty([0,0]) secHoriz = np.array([top, bot]) #Parametros e dados de calibracao e saida nFac = 4 modPhiC = 1 #indicador do tipo de dado de calibracao a ser usado como porosidade efetiva #1: perfil de neutrons 2: perfil de porosidade efetiva useCore = 0 iOut = 2 #iuseclay = 0 #indicador do tipo de argilosidade a ser usado #0: vsh direto do perfil 1: clay (calculada atraves do GR) #Parametros de densidade rhoMin = np.array([2.55, 2.569, 2.623, 2.707]) #Existem 4 facies na regiao relatada #Parametros de resistividade mP = 2.0 # expoente de cimentacao em areias limpas: 1.3 (inconsolidado) - 2.0 (consol.) nS = 2.0 # expoente de saturacao em areias limpas 1.5 - 2.0. # E reduzido na presenca de laminacao e microporosidade aT = 0.8 # constante da eq. de Archie Rw = 0.028 # resistividade da agua Rsh = 2.048 # resistividade do folhelho resCoef = np.array([[mP, nS, aT*Rw, Rsh], [1.5, nS, aT*Rw, Rsh], [2.0, nS, aT*Rw, Rsh], [2.0, nS, aT*Rw, Rsh]]) # Secao de Propriedades dos fluidos e matrizes de areia e folhelho #Parametros #calculo da pressao pres_poros = np.mean(mpp) # pressao de poro referencia para o calc da densidade temp = 89.0 # temperatura oC sal = 102400 # salinidade RGO = 75.0 # razao gas oleo API = 29.0 # grau API G = 0.835 # gravidade especifica #Ordenar parametros no vetor para chamada da funcao fluidPars = np.array([pres_poros, temp, sal, RGO, API, G]) #AQUI COMECA O CODIGO secCalibVshPhiRhoRes_vpHan #Trecho de calibracao indCL = np.where(np.logical_and(z>=topCL, z<=botCL)) nData = np.size(z) # Calculo de porosidade efetiva e vsh com estimativa dos valores # de grmin e grmax em todo o pacote coberto pelos dados # Transformacao dos dados observados # Volume de folhelho a partir de rais gama indSh = np.argwhere(fac==4) indSh= np.squeeze(indSh,1) indSd = np.argwhere(fac == 1) indSd= np.squeeze(indSd,1) if (np.size(indSh) == 0 and np.size(indSd) == 0): grmax = np.percentile(gr, 95) grmin = np.percentile(gr, 5) else: grmax = np.percentile(gr[indSh], 95) #146.3745 grmin = np.percentile(gr[indSd], 5) #54.2600 claye = vshGRcalc(gr, grmin, grmax) #Por enquanto usando apenas modPhic == 1 if modPhiC == 1: grlim = grmax ind = np.where (gr>= grlim) phiNsh = np.median(phi[ind]) phiEe = np.fmax(0.01, phi - claye*phiNsh) modPhiC =2 elif (modPhiC == 2 and np.size(phiCore) == 0): print ("Nao existe a funcao chamada aqui dentro") #phiEe = phiSd2phiE (zR, claye, phiSand, secHoriz) elif (modPhiC == 2 and useCore == 1 ): phiEe = phiCore #fluidProp matriz com valores para Kf e densidade para fases salmoura, #oleo e gas, ordenados da seguinte forma: #bulk_salmoura, bulk_oleo, bulk_gas (modulo variavel com a pressao #rho_salmoura, rho_oleo, rho_gas (so a densidade sera fixa) nDP = np.size(mpp) fluidPropP = np.empty([nDP, 2, 3]) #esqueleto de nDP 'paginas' que guardara #as matrizes 2x3 de retorno da funcao seismicPropFluids for i in np.arange(0, nDP): #atualizar pressao de poro fluidPars[0] = mpp[i] fluidPropP[i] = seismicPropFluids(fluidPars) fluidProp = np.mean(fluidPropP, 0) rhoFluids = fluidProp[1] rhoW = rhoFluids[0] rhoO = rhoFluids[1] #rock physics model calibration #selecao de perfis apenas na regial de calibracao com agua phiC = phiEe[indCL] clayC = claye[indCL] rhoCL = rho[indCL] resCL = res[indCL] phiCL = phi[indCL] facCL = fac[indCL] # Calibracao para toda a secao rhoMin_T = np.median(rhoMin); opt = 2 if (opt == 1): [cPhi_T, phiMod_T, cRho_T, rhoMod_T, cRes_T, resMod_T] = calibClayPhiRhoRes(phiCL, rhoCL, resCL, clayC, phiC, rhoMin_T, resCoef, modPhiC) rhoSd = cRho_T[0] rhoWe = cRho_T[1] rhoSh = cRho_T[2] rhoDisp = cRho_T[2] else: [cPhi_T, phiMod_T, cRho_T, rhoMod_T, cRes_T, resMod_T] = calibClayPhiRhoRes2(phiCL, rhoCL, resCL, clayC, phiC , rhoW, resCoef, modPhiC) rhoSd = cRho_T[0] rhoWe = rhoW rhoSh = cRho_T[1] rhoDisp = cRho_T[1] phiPar_T = np.concatenate([[cPhi_T[0]], [cPhi_T[1]], [cPhi_T[2]]]) denPar_T = np.concatenate([[rhoSd], [rhoWe], [rhoO], [rhoSh], [rhoDisp]]) resPar_T = cRes_T [phiMod_T, rhoMod_T, resMod_T] = calibCPRRreMod(phiEe, claye, phiPar_T , denPar_T, resPar_T, modPhiC) facies_T = np.ones((nData,1)) phiMod = np.zeros((nData,1)) rhoMod = np.zeros((nData,1)) resMod = np.zeros((nData,1)) phiPar = np.empty([nFac,3]) denPar = np.empty([nFac,5]) resPar = np.empty([nFac,4]) facH = np.zeros([np.size(facCL),1]) for i in range(0,nFac): ind = np.argwhere(facCL == i + 1) ind= np.squeeze(ind,1) secPhi = phiCL[ind] secRho = rhoCL[ind] secRes = resCL[ind] secClayC = clayC[ind] secPhiC = phiC[ind] #[cHan,vpMod(ind),s2] = calibHan(secVP,secPhiC,secClayC); #coefHanVP(i,:) = cHan'; # a parte de porosidade de neutrons e densidade nao utiliza separacao # e calibracao distinta para grupamentos em termos de volume de # folhelho. Os coeficientes sao repetidos (iguais) para areia e folhelho resCoef_line = np.empty((resCoef.shape[0],1)) resCoef_line[:,0] = resCoef[i] if (opt == 1): [cPhi, dataPhi, cRho, dataRho, cRes, dataRes] = calibClayPhiRhoRes(secPhi, secRho, secRes, secClayC, secPhiC , rhoMin[i], resCoef_line, modPhiC) rhoSd = cRho_T[0] rhoWe = cRho_T[1] rhoSh = cRho_T[2] rhoDisp = cRho_T[2] else: [cPhi, dataPhi, cRho, dataRho, cRes, dataRes] = calibClayPhiRhoRes2(secPhi, secRho, secRes, secClayC, secPhiC , rhoW, resCoef_line, modPhiC) rhoSd = cRho_T[0] rhoWe = rhoW rhoSh = cRho_T[1] rhoDisp = cRho_T[1] phiPar[i] = np.array([cPhi[0], cPhi[1], cPhi[2]]) denPar[i] = np.array([rhoSd, rhoWe, rhoO, rhoSh, rhoDisp]) resPar[i] = cRes facH[ind] = i + 1 resPar_line = np.empty([1,nFac]) resPar_line[0,:] = resPar[i] ind = np.argwhere(fac == i + 1) ind= np.squeeze(ind,1) passArg = np.array([rhoSd, rhoW, rhoSh]) [dataPhi, dataRho, dataRes] = calibCPRRreMod(phiEe[ind], claye[ind], phiPar[i],passArg, resPar_line, modPhiC) phiMod[ind,0] = dataPhi rhoMod[ind,0] = dataRho resMod[ind] = dataRes if (iOut == 1): nOutFac = 1 facies = facies_T neutron = phiPar_T denLitho = denPar_T rhoComp = rhoMod_T phiComp = phiMod_T resComp = resMod_T elif (iOut == 2): nOutFac = np.ones([nFac,1]) facies = facH neutron = phiPar denLitho = denPar denLitho[:,4] = neutron[:,2] rhoComp = rhoMod phiComp = phiMod resComp = resMod else: raise Exception ('Seletor de saida deve ser 1 ou 2') r2Phi = rsquared (phiComp, phi) r2Rho = rsquared (rhoComp, rho) r2Res = rsquared (resComp, res) print ("Fim da calibracao, com seguintes ajustes R2:\n Phi = %7.2f\n RHO = %7.2f\n RES = %7.2f\n" % (r2Phi, r2Rho, r2Res)) #Saida de Dados def calibClayPhiRhoRes(phi, rho, Rt, vsh, phiE, rhoMin, RtCoef, mode): """ FINALIDADE: calcular parametros dos modelos de porosidade e densidade a partir do ajuste dos dados de perfis de porosidade de neutrons e de densidade, usando informacoes de volume de folhelho e de porosidade efetiva com 3 opcoes distintas para a porosidade efetiva: 1 - usa o proprio perfil de neutrons como porosidade efetiva (identidade) 2 - usa um perfil independente de porosidade efetiva (ex. testemunho) ENTRADA: phi - perfil de neutrons rho - perfil de densidade vsh - volume de folhelho (normalmente extraido do perfil de raios gama) phiE - perfil de porosidade efetiva rhoMin - densidade media dos graos minerais constituintes da matriz da rocha RtCoef - mode - indicador de porosidade efetiva, sendo 1, 2 ou 3 conforme os casos acima descritos. SAIDA: phiPar - parametros de ajuste do modelo de porosidade de neutrons phiComp - perfil calculado de porosidade de neutrons rhoPar - parametros de ajuste do modelo de densidade rhoComp - perfil calculado de densidade MODELOS porosidade de neutrons: phi = A + 1.0 phiE + C vsh modelo de densidade: rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh; modelo de resistividade: Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh """ if((mode != 1) and (mode != 2) and (mode != 3)): raise Exception("Seletor de porosidadade efetiva de entrada deve ser 1 ou 2!") n = np.size(vsh) if (np.size(phi) != n or np.size(rho) != n): raise Exception("Vetores de entrada devem ter as mesmas dimensoes") if (mode == 1 or mode == 2 and np.size(phiE) != n ): raise Exception ("Vetor de entrada de porosidade efetiva nao esta com dimensao apropriada") options = np.empty([0,0]) lb = np.array([0.0, 0.5]) ub = np.array([0.5, 4.0]) x0 = RtCoef[2:4,0] cRes = RtCoef[0:2,0] phiPar = np.empty(3) rhoPar = np.empty(3) if (mode == 1): # o proprio perfil de neutrons fornece a porosidade efetiva, segundo o # modelo phiN = phiE phiPar = np.array([0.0, 1.0, 0.0]) phiComp = phiE elif (mode == 2): #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiE + vsh) A = np.concatenate([[col1], [phiE], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) # parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] elif (mode ==3): phiSand = 0.25 #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiSand + vsh) col2 = np.ones(n)*phiSand A = np.concatenate([[col1], [col2], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) #parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] vecConc = vsh*(1-phiE) B = np.concatenate([[phiE], [vecConc]]) xRho1 = fitNorm1(B, (rho - rhoMin), 10) rhoPar[0] = rhoMin rhoPar[1] = xRho1[0] + rhoMin rhoPar[2] = xRho1[1] + rhoMin rhoComp = np.dot(B,xRho1) + rhoMin xRes = scipy.optimize.leastsq(ofSimandouxPhiChiSw100, x0, args=(Rt, cRes, phiE, vsh))[0] #checar como vai se comportar sem lb e ub RtPar = np.concatenate([cRes, xRes]) RtPar = RtPar.reshape(1, RtPar.size) facies = np.ones((n,1)) RtComp = dCompSimandouxPhiChiSw100(phiE,vsh,facies,RtPar) return phiPar, phiComp, rhoPar, rhoComp, RtPar, RtComp def calibClayPhiRhoRes2(phi, rho, Rt, vsh, phiE, rhoWater, RtCoef, mode): """ FINALIDADE: calcular parametros dos modelos de porosidade e densidade a partir do ajuste dos dados de perfis de porosidade de neutrons e de densidade, usando informacoes de volume de folhelho e de porosidade efetiva com 3 opcoes distintas para a porosidade efetiva: 1 - usa o proprio perfil de neutrons como porosidade efetiva (identidade) 2 - usa um perfil independente de porosidade efetiva (ex. testemunho) ENTRADA: phi - perfil de neutrons rho - perfil de densidade vsh - volume de folhelho (normalmente extraido do perfil de raios gama) phiE - perfil de porosidade efetiva rhoWater - densidade da agua RtCoef - mode - indicador de porosidade efetiva, sendo 1, 2 ou 3 conforme os casos acima descritos. SAIDA: phiPar - parametros de ajuste do modelo de porosidade de neutrons phiComp - perfil calculado de porosidade de neutrons rhoPar - parametros de ajuste do modelo de densidade rhoComp - perfil calculado de densidade MODELOS porosidade de neutrons: phi = A + 1.0 phiE + C vsh modelo de densidade: rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh; modelo de resistividade: Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh """ if((mode != 1) and (mode != 2) and (mode != 3)): raise Exception("Seletor de porosidadade efetiva de entrada deve ser 1 ou 2!") n = np.size(vsh) if (np.size(phi) != n or np.size(rho) != n): raise Exception("Vetores de entrada devem ter as mesmas dimensoes") if (mode == 1 or mode == 2 and np.size(phiE) != n ): raise Exception ("Vetor de entrada de porosidade efetiva nao esta com dimensao apropriada") options = np.empty([0,0]) lb = np.array([0.0, 0.5]) ub = np.array([0.5, 4.0]) x0 = RtCoef[2:4,0] cRes = RtCoef[0:2,0] phiPar = np.empty(3) if (mode == 1): # o proprio perfil de neutrons fornece a porosidade efetiva, segundo o # modelo phiN = phiE phiPar = np.array([0.0, 1.0, 0.0]) phiComp = phiE elif (mode == 2): #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiE + vsh) A = np.concatenate([[col1], [phiE], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) # parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] elif (mode ==3): phiSand = 0.25 #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiSand + vsh) col2 = np.ones(n)*phiSand A = np.concatenate([[col1], [col2], [vsh]]).T xPhi2 = fitNorm1(A,phi,10) #parametros do modelo para ajuste da porosidade de neutrons phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] col2 = vsh*(1-phiE) col1 = (1-vsh)*(1-phiE) B = np.concatenate([[col1], [col2]]).T rhoCte = rhoWater * phiE xRho = fitNorm1(B, (rho - rhoCte),10) rhoPar = np.empty(2) rhoPar[0] = xRho[0] rhoPar[1] = xRho[1] rhoComp = np.dot(B, xRho) + rhoCte xRes = scipy.optimize.leastsq(ofSimandouxPhiChiSw100, x0, args=(Rt, cRes, phiE, vsh))[0] print ("VALORES DE xRES", xRes) RtPar = np.concatenate([cRes, xRes]) RtPar = np.reshape(RtPar,(1,np.size(RtPar))) facies = np.ones((n,1)) RtComp = dCompSimandouxPhiChiSw100(phiE,vsh,facies,RtPar) return phiPar, phiComp, rhoPar, rhoComp, RtPar, RtComp def calibCPRRreMod(phiE, vsh, phiPar, rhoPar, RtPar, mode): # FINALIDADE: calcular os dados modelados usando os modelos calibrados # em outro intervalo do poco, seguindo as 3 opcoes distintas para a porosidade efetiva: # 1 - usa o proprio perfil de neutrons como porosidade efetiva (identidade) # 2 - usa um perfil independente de porosidade efetiva (ex. testemunho) # # ENTRADA: # phi - perfil de neutrons # rho - perfil de densidade # vsh - volume de folhelho (normalmente extraido do perfil de raios gama) # phiE - perfil de porosidade efetiva # phiPar # rhoPar - densidade da agua # RtPar - # mode - indicador de porosidade efetiva, sendo 1, 2 ou 3 conforme os # casos acima descritos. # # SAIDA: # phiComp - perfil calculado de porosidade de neutrons # rhoComp - perfil calculado de densidade # RtComp # # # MODELOS # porosidade de neutrons: # phi = A + 1.0 phiE + C vsh # modelo de densidade: # rho = rhoq + (rhof-rhoq) * phiE + (rhoc-rhoq) * vsh; # modelo de resistividade: # Rt = ( phiE**m Sw**n ) / ( a Rw (1-chi) ) + ( chi Sw ) / Rsh if (mode != 1 and mode != 2 and mode != 3): raise Exception ('Seletor de porosidadade efetiva de entrada deve ser 1 ou 2') n = np.size(vsh) if (mode == 1 or mode == 2 and np.size(phiE) != n ): raise Exception ('Vetor de entrada de porosidade efetiva nao esta com dimensao apropriada'); if (mode == 1): # o proprio perfil de neutrons fornece a porosidade efetiva, segundo o # modelo phiN = phiE phiPar = np.array([0.0, 1.0, 0.0]) phiComp = phiE elif (mode ==2): #nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - phiE + vsh phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] elif (mode == 3): phiSand = 0.25 # nesse caso phiE e' um vetor de porosidade efetiva col1 = 1 - (phiSand + vsh) phiPar[0] = xPhi2[0] phiPar[1] = xPhi2[1] #Verificar o uso desse mode 3, talvez seja melhor cortar fora do if la em cima phiPar[2] = xPhi2[2] phiComp = col1 * phiPar[0] + phiE * phiPar[1] + vsh * phiPar[2] col2 = vsh*(1-phiE) col1 = (1-vsh)*(1 - phiE) B = np.concatenate([[col1], [col2]]) rhoCte = rhoPar[1]*phiE rhoComp = col1 * rhoPar[0] + col2*rhoPar[2] + rhoCte facies =
np.ones((n,1))
numpy.ones
#!/usr/bin/env python # # -*- coding: utf-8 -*- # # Copyright (c) 2019 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: EPL-2.0 # import os import nibabel as nib import numpy as np from tqdm import tqdm import glob import argparse parser = argparse.ArgumentParser( description="Convert Decathlon raw Nifti data " "(http://medicaldecathlon.com/) " "files to Numpy data files", add_help=True, formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--data_path", default="../../data/decathlon/Task01_BrainTumour/", help="Path to the raw BraTS datafiles") parser.add_argument("--save_path", default="../../data/decathlon/", help="Folder to save Numpy data files") parser.add_argument("--resize", type=int, default=128, help="Resize height and width to this size. " "Original size = 240") parser.add_argument("--split", type=float, default=0.85, help="Train/test split ratio") args = parser.parse_args() def crop_center(img, cropx, cropy, cropz): """ Take a center crop of the images. If we are using a 2D model, then we'll just stack the z dimension so we can take all slices in that case rather than just the crop. """ if len(img.shape) == 4: x, y, z, c = img.shape else: x, y, z = img.shape startx = x//2-(cropx//2) starty = y//2-(cropy//2) startz = z//2-(cropz//2) if len(img.shape) == 4: # return img[startx:startx+cropx,starty:starty+cropy,startz:startz+cropz,:] return img[startx:startx+cropx, starty:starty+cropy, :, :] else: # return img[startx:startx+cropx,starty:starty+cropy,startz:startz+cropz] return img[startx:startx+cropx, starty:starty+cropy, :] def normalize_img(img): """ Normalize the pixel values. This is one of the most important preprocessing steps. We need to make sure that the pixel values have a mean of 0 and a standard deviation of 1 t0 help the model to train faster and more accurately. """ for channel in range(img.shape[3]): img[:, :, :, channel] = ( img[:, :, :, channel] - np.mean(img[:, :, :, channel])) \ / np.std(img[:, :, :, channel]) return img def convert_raw_data_to_numpy(trainList, testList, imgList, save_dir): # Save training set images print("Step 1 of 4. Save training images.") first = True for idx in tqdm(trainList): # nibabel loads images as X,Y,Z,C (HWDC) img = np.array(nib.load(imgList[idx]).dataobj) img = crop_center(img, args.resize, args.resize, args.resize) img = normalize_img(img) if first: imgsArray = img first = False else: imgsArray = np.concatenate([imgsArray, img], axis=2) np.save(os.path.join(save_dir, "imgs_train.npy"), np.swapaxes(imgsArray, 0, -2)) del imgsArray # Save testing set images print("Step 2 of 4. Save testing images.") first = True for idx in tqdm(testList): img = np.array(nib.load(imgList[idx]).dataobj) img = crop_center(img, args.resize, args.resize, args.resize) img = normalize_img(img) if first: imgsArray = img first = False else: imgsArray = np.concatenate([imgsArray, img], axis=2) np.save(os.path.join(save_dir, "imgs_test.npy"), np.swapaxes(imgsArray, 0, -2)) del imgsArray # Save training set masks print("Step 3 of 4. Save training masks.") first = True for idx in tqdm(trainList): msk = np.array(nib.load(mskList[idx]).dataobj) msk = crop_center(msk, args.resize, args.resize, args.resize) msk[msk > 1] = 1 # Combine all masks msk = np.expand_dims(msk, -1) if first: msksArray = msk first = False else: msksArray = np.concatenate([msksArray, msk], axis=2) np.save(os.path.join(save_dir, "msks_train.npy"), np.swapaxes(msksArray, 0, -2)) del msksArray # Save testing set masks print("Step 4 of 4. Save testing masks.") first = True for idx in tqdm(testList): msk = np.array(nib.load(mskList[idx]).dataobj) msk = crop_center(msk, args.resize, args.resize, args.resize) msk[msk > 1] = 1 # Combine all masks msk = np.expand_dims(msk, -1) if first: msksArray = msk first = False else: msksArray = np.concatenate([msksArray, msk], axis=2) np.save(os.path.join(save_dir, "msks_test.npy"), np.swapaxes(msksArray, 0, -2)) del msksArray print("Finished processing.") print("Numpy arrays saved to {}".format(save_dir)) if __name__ == "__main__": print("Converting Decathlon raw Nifti data files to training and testing" " Numpy data files.") print(args) save_dir = os.path.join( args.save_path, "{}x{}/".format(args.resize, args.resize)) # Create directory try: os.makedirs(save_dir) except OSError: if not os.path.isdir(save_dir): raise # Check for existing numpy train/test files check_dir = os.listdir(save_dir) for item in check_dir: if item.endswith(".npy"): os.remove(os.path.join(save_dir, item)) print("Removed old version of {}".format(item)) """ Get the training file names from the data directory. Anything ending in .nii.gz in the imagesTr subdirectory is a training file. """ imgList = glob.glob(os.path.join(args.data_path, "imagesTr", "*.nii.gz")) mskList = [w.replace("imagesTr", "labelsTr") for w in imgList] """ Randomize the file list. Then separate into training and validation (testing) lists. """ numFiles = len(imgList) # Set the random seed so that always get same random mix np.random.seed(816) idxList = np.arange(numFiles) # List of file indices np.random.shuffle(idxList) # Randomize the file list trainList = idxList[:np.int(numFiles*args.split)] testList = idxList[
np.int(numFiles*args.split)
numpy.int
""" Project: RadarBook File: ovals_of_cassini_example.py Created by: <NAME> On: 7/2/2018 Created with: PyCharm Copyright (C) 2019 Artech House (<EMAIL>) This file is part of Introduction to Radar Using Python and MATLAB and can not be copied and/or distributed without the express permission of Artech House. """ import sys from Chapter04.ui.OvalsOfCassini_ui import Ui_MainWindow from numpy import linspace, log10, sqrt, sin, cos, imag, real from scipy.constants import c, Boltzmann as k, pi from PyQt5.QtWidgets import QApplication, QMainWindow from matplotlib.backends.qt_compat import QtCore from matplotlib.backends.backend_qt5agg import (FigureCanvas, NavigationToolbar2QT as NavigationToolbar) from matplotlib.figure import Figure class OvalsOfCassini(QMainWindow, Ui_MainWindow): def __init__(self): super(self.__class__, self).__init__() self.setupUi(self) # Connect to the input boxes, when the user presses enter the form updates self.separation_distance.returnPressed.connect(self._update_canvas) self.system_temperature.returnPressed.connect(self._update_canvas) self.bandwidth.returnPressed.connect(self._update_canvas) self.noise_figure.returnPressed.connect(self._update_canvas) self.transmit_losses.returnPressed.connect(self._update_canvas) self.receive_losses.returnPressed.connect(self._update_canvas) self.peak_power.returnPressed.connect(self._update_canvas) self.transmit_antenna_gain.returnPressed.connect(self._update_canvas) self.receive_antenna_gain.returnPressed.connect(self._update_canvas) self.frequency.returnPressed.connect(self._update_canvas) self.bistatic_target_rcs.returnPressed.connect(self._update_canvas) # Set up a figure for the plotting canvas fig = Figure() self.axes1 = fig.add_subplot(111) self.my_canvas = FigureCanvas(fig) # Add the canvas to the vertical layout self.verticalLayout.addWidget(self.my_canvas) self.addToolBar(QtCore.Qt.TopToolBarArea, NavigationToolbar(self.my_canvas, self)) # Update the canvas for the first display self._update_canvas() def _update_canvas(self): """ Update the figure when the user changes an input value. :return: """ # Get the values from the form separation_distance = float(self.separation_distance.text()) system_temperature = float(self.system_temperature.text()) bandwidth = float(self.bandwidth.text()) noise_figure = float(self.noise_figure.text()) transmit_losses = float(self.transmit_losses.text()) receive_losses = float(self.receive_losses.text()) peak_power = float(self.peak_power.text()) transmit_antenna_gain = float(self.transmit_antenna_gain.text()) receive_antenna_gain = float(self.receive_antenna_gain.text()) frequency = float(self.frequency.text()) bistatic_target_rcs = float(self.bistatic_target_rcs.text()) # Number of points for plotting ovals number_of_points = 100000 # Parameters for the Cassini ovals equation # r ^ 4 + a ^ 4 - 2 a ^ 2 r ^ 2(1 + cos(2 theta)) = b ^ 4 # Parameter "a" a = 0.5 * separation_distance # Calculate the wavelength (m) wavelength = c / frequency # Calculate the bistatic radar range factor bistatic_range_factor = (peak_power * transmit_antenna_gain * receive_antenna_gain * wavelength ** 2 * 10.0 ** (bistatic_target_rcs / 10.0)) / ((4.0 * pi) ** 3 * k * system_temperature * bandwidth * 10.0 ** (noise_figure / 10.0) * transmit_losses * receive_losses) # Full angle sweep t = linspace(0, 2.0 * pi, number_of_points) # Calculate the signal to noise ratio at which a = b SNR_0 = 10.0 * log10(16.0 * bistatic_range_factor / separation_distance ** 4) # Create the list of signal to noise ratios to plot SNR = [SNR_0 - 6, SNR_0 - 3, SNR_0, SNR_0 + 3] # Clear the axes for the updated plot self.axes1.clear() # Loop over all the desired signal to noise ratios for s in SNR: # Convert to linear units snr = 10.0 ** (s / 10.0) # Parameter for Cassini ovals b = (bistatic_range_factor / snr) ** 0.25 if a > b: # Calculate the +/- curves r1 = sqrt(a ** 2 * (cos(2.0 * t) + sqrt(cos(2 * t) ** 2 - 1.0 + (b / a) ** 4))) r2 = sqrt(a ** 2 * (
cos(2.0 * t)
numpy.cos
import unittest import numpy as np from l5kit.kinematic import fit_ackerman_model_approximate, fit_ackerman_model_exact class TestAckermanSteeringModel(unittest.TestCase): def test_fit_ackerman_steering(self) -> None: # These are only smoke tests for now, to be improved test_trajectory =
np.array([[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0]])
numpy.array
from enum import Enum from ProGED.generators.base_generator import BaseExpressionGenerator from ProGED.equation_discoverer import EqDisco import numpy as np import torch from torch.autograd import Variable import torch.nn.functional as F import torch.nn as nn from torch.utils.data import Dataset, Sampler from tqdm import tqdm class SymType(Enum): Var = 1 Const = 2 Operator = 3 Fun = 4 universal_symbols = [{"symbol": 'x1', "type": SymType.Var, "precedence": 5}, {"symbol": 'x2', "type": SymType.Var, "precedence": 5}, {"symbol": 'x3', "type": SymType.Var, "precedence": 5}, {"symbol": 'x4', "type": SymType.Var, "precedence": 5}, {"symbol": 'x5', "type": SymType.Var, "precedence": 5}, {"symbol": 'C', "type": SymType.Const, "precedence": 5}, {"symbol": '+', "type": SymType.Operator, "precedence": 0}, {"symbol": '-', "type": SymType.Operator, "precedence": 0}, {"symbol": '*', "type": SymType.Operator, "precedence": 1}, {"symbol": '/', "type": SymType.Operator, "precedence": 1}, {"symbol": '^', "type": SymType.Operator, "precedence": 2}, {"symbol": 'sin', "type": SymType.Fun, "precedence": 5}, {"symbol": 'cos', "type": SymType.Fun, "precedence": 5}, {"symbol": 'sqrt', "type": SymType.Fun, "precedence": 5}, {"symbol": 'exp', "type": SymType.Fun, "precedence": 5}] class GeneratorHVAE(BaseExpressionGenerator): def __init__(self, model, variables, symbols): self.generator_type = "HVAE" self.decoding_dict = symbols self.precedence = {t["symbol"]: t["precedence"] for t in symbols} self.constant = [t["symbol"] for t in symbols if t["type"]==SymType.Const][0] self.variables = variables if isinstance(model, str): self.model = torch.load(model) self.model.eval() else: self.model = model self.input_mean = torch.zeros(1, 1, next(self.model.decoder.parameters()).size(0)) a = 0 @staticmethod def train_and_init(equations, variables, symbols, representation_size=64, hidden_size=64, batch_size=32, epochs=20, verbose=True, model_path=None): s_for_tokenization = {t["symbol"]: t for i, t in enumerate(symbols)} trees = [tokens_to_tree(e, s_for_tokenization) for e in equations] model = HVAE(len(symbols), hidden_size, representation_size) dataset = TreeDataset(symbols, train=trees, test=[]) sampler = TreeSampler(batch_size, len(dataset)) def collate_fn(batch): return batch trainloader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler, collate_fn=collate_fn, num_workers=0) optimizer = torch.optim.Adam(model.parameters()) criterion = torch.nn.CrossEntropyLoss() iter_counter = 0 lmbda = (np.tanh(-4.5) + 1) / 2 midpoint = len(dataset) // (2 * batch_size) for epoch in range(epochs): total = 0 num_trees = 0 with tqdm(total=len(dataset), desc=f'Testing - Epoch: {epoch + 1}/{epochs}', unit='chunks') as prog_bar: for i, trees in enumerate(trainloader): total_loss = 0 for t in trees: mu, logvar, outputs = model(t) loss, b, k = outputs.loss(mu, logvar, lmbda, criterion) total_loss += loss total += loss.detach().item() num_trees += batch_size optimizer.zero_grad() total_loss = total_loss / batch_size total_loss.backward() optimizer.step() prog_bar.set_postfix(**{'run:': "HVAE", 'loss': total / num_trees, 'BCE': b.item(), 'KLD': k.item()}) prog_bar.update(batch_size) iter_counter += 1 if iter_counter < 2400: lmbda = (np.tanh((iter_counter - 4500) / 1000) + 1) / 2 if verbose and i == midpoint: z = model.encode(trees[0])[0] decoded_tree = model.decode(z, symbols) print("\nO: {}".format(str(trees[0]))) print("P: {}".format(str(decoded_tree))) for t in trees: t.clear_prediction() if model_path is not None: torch.save(model, model_path) return GeneratorHVAE(model_path, variables, symbols) else: return GeneratorHVAE(model, variables, symbols) def generate_one(self): inp = torch.normal(self.input_mean) tree = self.model.decode(inp, self.decoding_dict) # print(str(tree)) tree.change_redundant_variables(self.variables, self.constant) return tree.to_list(with_precedence=True, precedence=self.precedence), 0, str(inp.tolist()) def decode_latent(self, latent): tree = self.model.decode(latent, self.decoding_dict) tree.change_redundant_variables(self.variables, self.constant) return tree.to_list(with_precedence=True, precedence=self.precedence) class Node: def __init__(self, symbol=None, right=None, left=None, target=None): self.symbol = symbol self.right = right self.left = left self.target = target self.prediction = None def __str__(self): if self.left is None and self.right is None: return self.symbol elif self.left is not None and self.right is None: return f"[{self.symbol}{str(self.left)}]" else: return f"[{str(self.left)}{self.symbol}{str(self.right)}]" def height(self): hl = self.left.height() if self.left is not None else 0 hr = self.right.height() if self.right is not None else 0 return max(hl, hr) + 1 def to_list(self, notation="infix", with_precedence=False, precedence=None): if with_precedence and precedence is None: raise Exception("Should add a dictionary with precendence or list without precedence") left = [] if self.left is None else self.left.to_list(notation, with_precedence, precedence) right = [] if self.right is None else self.right.to_list(notation, with_precedence, precedence) if notation == "prefix": return [self.symbol] + left + right elif notation == "postfix": return left + right + [self.symbol] elif not with_precedence: if len(left) > 0 and len(right) == 0: return [self.symbol] + ["("] + left + [")"] return left + [self.symbol] + right else: if len(left) > 0 and len(right) == 0: return [self.symbol] + ["("] + left + [")"] if self.left is not None and precedence[self.symbol] > precedence[self.left.symbol]: left = ["("] + left + [")"] if self.right is not None and precedence[self.symbol] > precedence[self.right.symbol]: right = ["("] + right + [")"] return left + [self.symbol] + right def to_dict(self): d = {'s': self.symbol} if self.left is not None: d['l'] = self.left.to_dict() if self.right is not None: d['r'] = self.right.to_dict() return d def to_vector(self, symbol_dict, n_symbols): mat = [] vec = torch.zeros(1, n_symbols) vec[0, symbol_dict[self.symbol]] = 1.0 mat.append(vec) if self.left is not None: mat.append(self.left.to_vector(symbol_dict, n_symbols)) if self.right is not None: mat.append(self.right.to_vector(symbol_dict, n_symbols)) return torch.cat(mat) @staticmethod def from_dict(d): left = None right = None if "l" in d: left = Node.from_dict(d["l"]) if 'r' in d: right = Node.from_dict(d["r"]) return Node(d["s"], right=right, left=left) @staticmethod def to_matrix(tree, matrix_type="prediction"): reps = [] if tree.left is not None: reps.append(Node.to_matrix(tree.left, matrix_type)) if matrix_type == "target": reps.append(torch.Tensor([torch.argmax(tree.target[0, 0, :])]).long()) else: reps.append(tree.prediction[0, :, :]) if tree.right is not None: reps.append(Node.to_matrix(tree.right, matrix_type)) return torch.cat(reps) def create_target_vector(self, symbol_dict, n_symbols): target = torch.zeros(n_symbols).float() target[symbol_dict[self.symbol]] = 1.0 self.target = Variable(target[None, None, :]) if self.left is not None: self.left.create_target_vector(symbol_dict, n_symbols) if self.right is not None: self.right.create_target_vector(symbol_dict, n_symbols) def loss(self, mu, logvar, lmbda, criterion): pred = Node.to_matrix(self, "prediction") target = Node.to_matrix(self, "target") BCE = criterion(pred, target) KLD = (lmbda * -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp())) return BCE + KLD, BCE, KLD def trim_to_height(self, max_height, types, const_symbol="c"): if max_height == 1 and types[self.symbol] is not SymType.Const and types[self.symbol] is not SymType.Var: self.symbol = const_symbol self.left = None self.right = None if self.left is not None and max_height > 1: self.left.trim_to_height(max_height-1, types, const_symbol) if self.right is not None and max_height > 1: self.right.trim_to_height(max_height-1, types, const_symbol) def change_redundant_variables(self, variables, constant): has_child = False if self.right is not None: self.right.change_redundant_variables(variables, constant) has_child = True if self.left is not None: self.left.change_redundant_variables(variables, constant) has_child = True if not has_child and self.symbol not in variables: self.symbol = constant def clear_prediction(self): if self.left is not None: self.left.clear_prediction() if self.right is not None: self.right.clear_prediction() self.prediction = None def tokens_to_tree(tokens, symbols): """ tokens : list of string tokens symbols: dictionary of possible tokens -> attributes, each token must have attributes: nargs (0-2), order """ tokens = ["("] + tokens + [")"] operator_stack = [] out_stack = [] for token in tokens: if token == "(": operator_stack.append(token) elif token in symbols and (symbols[token]["type"] is SymType.Var or symbols[token]["type"] is SymType.Const): out_stack.append(Node(token)) elif token in symbols and symbols[token]["type"] is SymType.Fun: operator_stack.append(token) elif token in symbols and symbols[token]["type"] is SymType.Operator: while len(operator_stack) > 0 and operator_stack[-1] != '(' \ and symbols[operator_stack[-1]]["precedence"] > symbols[token]["precedence"]: # or (symbols[operator_stack[-1]]["precedence"] == symbols[token]["precedence"] and symbols[token]["left_asoc"])): if symbols[operator_stack[-1]]["type"] is SymType.Fun: out_stack.append(Node(operator_stack.pop(), left=out_stack.pop())) else: out_stack.append(Node(operator_stack.pop(), out_stack.pop(), out_stack.pop())) operator_stack.append(token) else: while len(operator_stack) > 0 and operator_stack[-1] != '(': if symbols[operator_stack[-1]]["type"] is SymType.Fun: out_stack.append(Node(operator_stack.pop(), left=out_stack.pop())) else: out_stack.append(Node(operator_stack.pop(), out_stack.pop(), out_stack.pop())) operator_stack.pop() if len(operator_stack) > 0 and operator_stack[-1] in symbols and symbols[operator_stack[-1]]["type"] is SymType.Fun: out_stack.append(Node(operator_stack.pop(), left=out_stack.pop())) return out_stack[-1] class TreeDataset(Dataset): def __init__(self, symbols, train, test): self.symbols = {t["symbol"]: i for i, t in enumerate(symbols)} self.n_symbols = len(symbols) self.train = self.transform_trees(train) self.test = self.transform_trees(test) def __getitem__(self, idx): return self.train[idx] def __len__(self): return len(self.train) def transform_trees(self, tree_objects): trees = [] for i, t in enumerate(tree_objects): t.create_target_vector(self.symbols, self.n_symbols) trees.append(t) return trees class TreeSampler(Sampler): def __init__(self, batch_size, num_eq): self.batch_size = batch_size self.num_eq = num_eq def __iter__(self): for i in range(len(self)): batch = np.random.randint(low=0, high=self.num_eq, size=self.batch_size) yield batch def __len__(self): return self.num_eq // self.batch_size class HVAE(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(HVAE, self).__init__() self.encoder = Encoder(input_size, hidden_size, output_size) self.decoder = Decoder(output_size, hidden_size, input_size) def forward(self, tree): mu, logvar = self.encoder(tree) z = self.sample(mu, logvar) out = self.decoder(z, tree) return mu, logvar, out def sample(self, mu, logvar): eps = Variable(torch.randn(mu.size())) std = torch.exp(logvar / 2.0) return mu + eps * std def encode(self, tree): mu, logvar = self.encoder(tree) return mu, logvar def decode(self, z, symbol_dict): return self.decoder.decode(z, symbol_dict) class Encoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Encoder, self).__init__() self.hidden_size = hidden_size self.gru = GRU221(input_size=input_size, hidden_size=hidden_size) self.mu = nn.Linear(in_features=hidden_size, out_features=output_size) self.logvar = nn.Linear(in_features=hidden_size, out_features=output_size) torch.nn.init.xavier_uniform_(self.mu.weight) torch.nn.init.xavier_uniform_(self.logvar.weight) def forward(self, tree): tree_encoding = self.recursive_forward(tree) mu = self.mu(tree_encoding) logvar = self.logvar(tree_encoding) return mu, logvar def recursive_forward(self, tree): left = self.recursive_forward(tree.left) if tree.left is not None else torch.zeros(tree.target.size(0), 1, self.hidden_size) right = self.recursive_forward(tree.right) if tree.right is not None else torch.zeros(tree.target.size(0), 1, self.hidden_size) hidden = self.gru(tree.target, left, right) return hidden class Decoder(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Decoder, self).__init__() self.hidden_size = hidden_size self.z2h = nn.Linear(input_size, hidden_size) self.h2o = nn.Linear(hidden_size, output_size) self.gru = GRU122(input_size=output_size, hidden_size=hidden_size) torch.nn.init.xavier_uniform_(self.z2h.weight) torch.nn.init.xavier_uniform_(self.h2o.weight) def forward(self, z, tree): hidden = self.z2h(z) self.recursive_forward(hidden, tree) return tree def recursive_forward(self, hidden, tree): prediction = self.h2o(hidden) a = F.softmax(prediction, dim=2) tree.prediction = prediction if tree.left is not None or tree.right is not None: left, right = self.gru(a, hidden) if tree.left is not None: self.recursive_forward(left, tree.left) if tree.right is not None: self.recursive_forward(right, tree.right) def decode(self, z, symbol_dict): hidden = self.z2h(z) tree = self.recursive_decode(hidden, symbol_dict) return tree def recursive_decode(self, hidden, symbol_dict): prediction = self.h2o(hidden) sampled, symbol, stype = self.sample_symbol(prediction, symbol_dict) if stype.value is SymType.Fun.value: left, right = self.gru(F.softmax(sampled, dim=2), hidden) l_tree = self.recursive_decode(left, symbol_dict) r_tree = None elif stype.value is SymType.Operator.value: left, right = self.gru(F.softmax(sampled, dim=2), hidden) l_tree = self.recursive_decode(left, symbol_dict) r_tree = self.recursive_decode(right, symbol_dict) else: l_tree = None r_tree = None return Node(symbol, right=r_tree, left=l_tree) def sample_symbol(self, prediction, symbol_dict): sampled = F.softmax(prediction, dim=2) sampled_symbol = torch.argmax(sampled).item() sd = symbol_dict[sampled_symbol] symbol = sd["symbol"] stype = sd["type"] # is_leaf = sd["type"] is SymType.Var or sd["type"] is SymType.Const # is_unary = sd["type"] is SymType.Fun return sampled, symbol, stype class GRU221(nn.Module): def __init__(self, input_size, hidden_size): super(GRU221, self).__init__() self.wir = nn.Linear(in_features=input_size, out_features=hidden_size) self.whr = nn.Linear(in_features=2*hidden_size, out_features=hidden_size) self.wiz = nn.Linear(in_features=input_size, out_features=hidden_size) self.whz = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size) self.win = nn.Linear(in_features=input_size, out_features=hidden_size) self.whn = nn.Linear(in_features=2 * hidden_size, out_features=hidden_size) torch.nn.init.xavier_uniform_(self.wir.weight) torch.nn.init.xavier_uniform_(self.whr.weight) torch.nn.init.xavier_uniform_(self.wiz.weight) torch.nn.init.xavier_uniform_(self.whz.weight) torch.nn.init.xavier_uniform_(self.win.weight) torch.nn.init.xavier_uniform_(self.whn.weight) def forward(self, x, h1, h2): h = torch.cat([h1, h2], dim=2) r = torch.sigmoid(self.wir(x) + self.whr(h)) z = torch.sigmoid(self.wiz(x) + self.whz(h)) n = torch.tanh(self.win(x) + r * self.whn(h)) return (1 - z) * n + (z / 2) * h1 + (z / 2) * h2 class GRU122(nn.Module): def __init__(self, input_size, hidden_size): super(GRU122, self).__init__() self.hidden_size = hidden_size self.wir = nn.Linear(in_features=input_size, out_features=2*hidden_size) self.whr = nn.Linear(in_features=hidden_size, out_features=2*hidden_size) self.wiz = nn.Linear(in_features=input_size, out_features=2*hidden_size) self.whz = nn.Linear(in_features=hidden_size, out_features=2*hidden_size) self.win = nn.Linear(in_features=input_size, out_features=2*hidden_size) self.whn = nn.Linear(in_features=hidden_size, out_features=2*hidden_size) torch.nn.init.xavier_uniform_(self.wir.weight) torch.nn.init.xavier_uniform_(self.whr.weight) torch.nn.init.xavier_uniform_(self.wiz.weight) torch.nn.init.xavier_uniform_(self.whz.weight) torch.nn.init.xavier_uniform_(self.win.weight) torch.nn.init.xavier_uniform_(self.whn.weight) def forward(self, x, h): r = torch.sigmoid(self.wir(x) + self.whr(h)) z = torch.sigmoid(self.wiz(x) + self.whz(h)) n = torch.tanh(self.win(x) + r * self.whn(h)) dh = h.repeat(1, 1, 2) out = (1 - z) * n + z * dh return torch.split(out, self.hidden_size, dim=2) if __name__ == '__main__': num_points = 1000 x =
np.random.random(10000)
numpy.random.random
from __future__ import division, print_function """ This script goes through a set of synthetic fit results and, using the final chains of the sampling along with the true data initialisation parameters, calculates the residuals (how much I'm off by) and the normalised residuals (if how much I think I'm off by is consistent with how much I'm off by) """ import logging import matplotlib.pyplot as plt import numpy as np import pdb import sys import os sys.path.insert(0, '..') # master_pdir = "../plots/residuals_better/" #master_pdir = "../plots/tb_synth_residuals/" master_pdir = "../plots/residuals_better_2/" # os.mkdir(master_pdir) def calc_best_fit(flat_samples): """ Given a set of aligned (converted?) samples, calculate the median and errors of each parameter """ return np.array( map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(flat_samples, [16,50,84], axis=0)))) def getInfo(result, ix=-1): """ "Result" is a numpy saved file from previous form of traceforward code """ chain = result[1] flat_chain = chain.reshape(-1,9) flat_chain[:,6:8] = np.exp(flat_chain[:,6:8]) best_fit = calc_best_fit(flat_chain) mean = best_fit[0] sigma = np.mean(best_fit[:,1:], axis=1) group_pars = result[4] return np.array([mean[ix], sigma[ix], group_pars[ix]]) # ------------------------------------------------------------ # ---------- Starting simple, lets plot age offsets ------- # ------------------------------------------------------------ # I will use the result from the giant exhaustive run as a starting # point, and alter it to accommodate new synth fits """ ages = [5, 10, 20] spreads = [2, 5, 10] v_disps = [1, 2, 5] sizes = [25, 50, 100] precs = ['perf', 'half', 'gaia', 'double'] ages = [5, 10] spreads = [2] v_disps = [1] sizes = [25] precs = ['perf'] """ ages = [5, 15, 30, 50] o_spreads = [1, 5] o_v_disps = [2, 10] o_sizes = [25, 100] e_spreads = [2, 10] e_v_disps = [1, 5] e_sizes = [50, 200] precs = ['perf', 'half', 'gaia', 'double'] # load all the relevant data into a massive array where # ix implicitly correspond to the value of the parameter rdir = "../results/synth_fit/all_with_lcc_vel/" #rdir = "../results/tb_synth_fit/" chain_file = "final_chain.npy" origin_file = "origins.npy" ofits_file = rdir + 'odd_fits.npy' ofits_w_errs_file = rdir + 'odd_fits_w_errs.npy' efits_file = rdir + 'even_fits.npy' efits_w_errs_file = rdir + 'even_fits_w_errs.npy' prec_val = {'perf':0., 'half':0.5, 'gaia':1.0, 'double':2.0} try: o_fits = np.load(ofits_file) o_fits_w_errs = np.load(ofits_w_errs_file) e_fits = np.load(efits_file) e_fits_w_errs = np.load(efits_w_errs_file) except IOError: #------------------------------------------------------------ #------- GATHER FITS FROM THE 'ODD' SIMULATIONS ----------- #------------------------------------------------------------ logging.info("Gathering 'ODD' simulations") o_fits = np.zeros((len(ages), len(o_spreads), len(o_v_disps), len(o_sizes), len(precs), 9, 3)) o_fits_w_errs = np.zeros((len(ages), len(o_spreads), len(o_v_disps), len(o_sizes), len(precs), 9, 3)) for age_ix, age in enumerate(ages): for spread_ix, spread in enumerate(o_spreads): for v_disp_ix, v_disp in enumerate(o_v_disps): for size_ix, size in enumerate(o_sizes): for prec_ix, prec in enumerate(precs): pdir = rdir + "{}_{}_{}_{}/{}/".format( age, spread, v_disp, size, prec ) try: flat_chain = np.load(pdir + chain_file).\ reshape(-1,9) conv_chain = np.copy(flat_chain) conv_chain[:,6:8] = np.exp(conv_chain[:,6:8]) origin = np.load(pdir + origin_file).item() fit_w_errs = calc_best_fit(conv_chain) o_fits_w_errs[age_ix,spread_ix,v_disp_ix,size_ix, prec_ix] = fit_w_errs means = fit_w_errs[:,0] sigs = fit_w_errs[:,1:].mean(axis=1) key_info = np.vstack((means,sigs, origin.pars[:-1])).T except IOError: print("Missing files for: {} {} {} {} {}".format( age, spread, v_disp, size, prec )) key_info = np.array([None]*27).reshape(9,3) o_fits[age_ix,spread_ix,v_disp_ix,size_ix,prec_ix]=\ key_info #------------------------------------------------------------ #------- GATHER FITS FROM THE 'EVEN' SIMULATIONS ---------- #------------------------------------------------------------ logging.info("Gathering 'EVEN' simulations") e_fits = np.zeros((len(ages), len(e_spreads), len(e_v_disps), len(e_sizes), len(precs), 9, 3)) e_fits_w_errs = np.zeros((len(ages), len(o_spreads), len(o_v_disps), len(o_sizes), len(precs), 9, 3)) for age_ix, age in enumerate(ages): for spread_ix, spread in enumerate(e_spreads): for v_disp_ix, v_disp in enumerate(e_v_disps): for size_ix, size in enumerate(e_sizes): for prec_ix, prec in enumerate(precs): pdir = rdir + "{}_{}_{}_{}/{}/".format( age, spread, v_disp, size, prec ) try: flat_chain = np.load(pdir + chain_file). \ reshape(-1,9) conv_chain = np.copy(flat_chain) conv_chain[:,6:8] = np.exp(conv_chain[:,6:8]) origin = np.load(pdir + origin_file).item() fit_w_errs = calc_best_fit(conv_chain) e_fits_w_errs[age_ix,spread_ix,v_disp_ix,size_ix, prec_ix] = fit_w_errs means = fit_w_errs[:,0] sigs = fit_w_errs[:,1:].mean(axis=1) key_info = np.vstack((means,sigs, origin.pars[:-1])).T except IOError: print("Missing files for: {} {} {} {} {}".format( age, spread, v_disp, size, prec )) key_info = np.array([None]*27).reshape(9,3) e_fits[age_ix,spread_ix,v_disp_ix,size_ix,prec_ix]= \ key_info np.save(ofits_file, o_fits) np.save(ofits_w_errs_file, o_fits_w_errs) np.save(efits_file, e_fits) np.save(efits_w_errs_file, e_fits_w_errs) o_res = (o_fits[:,:,:,:,:,:,0]-o_fits[:,:,:,:,:,:,2]) o_norm_res = o_res / o_fits[:,:,:,:,:,:,1] # the fits where all parameters are within 15 sigma o_worst_ixs = np.where(abs(o_norm_res).max(axis=-1) > 15) o_bad_ixs = np.where(abs(o_norm_res).max(axis=-1) > 5) o_fine_ixs = np.where(abs(o_norm_res).max(axis=-1) < 15) o_great_ixs = np.where(abs(o_norm_res).max(axis=-1) < 5) e_res = (e_fits[:,:,:,:,:,:,0]-e_fits[:,:,:,:,:,:,2]) e_norm_res = e_res / e_fits[:,:,:,:,:,:,1] # the fits where all parameters are within 15 sigma e_worst_ixs = np.where(abs(e_norm_res).max(axis=-1) > 15) e_bad_ixs = np.where(abs(e_norm_res).max(axis=-1) > 5) e_fine_ixs = np.where(abs(e_norm_res).max(axis=-1) < 15) e_great_ixs = np.where(abs(e_norm_res).max(axis=-1) < 5) # # # Plot a multiplane plot showing histograms of ages # # !!!!! CHANGE THIS SO IT's WORKING!!!! # f, axes = plt.subplots( # 1, # 4, # sharey=True, # gridspec_kw = {'wspace':0, 'hspace':0} # ) # axes[0].set_ylabel('Age offset [Myr]') # range=[-.4,.6] # bins = [5, 5, 5, 5] # for i in range(len(ages)): # axes[i].tick_params(direction='in', top=True, right=True,) # axes[i].hist( # np.hstack(( # # !!!!! CHANGE THIS SO IT's WORKING!!!! # o_fits[i,0,0,:,1:,-1].flatten(), # e_fits[i,0,0,:,1:,-1].flatten() # )), # bins=bins[i], # orientation='horizontal' # ) # axes[i].set_title('{} Myr'.format(ages[i])) # # f.set_xlabel('True age [Myr]') # f.set_tight_layout(tight=True) # f.savefig('temp_plots/multipane_ages_hist.pdf') # Plot a multiplane plot showing histograms of ages f, axes = plt.subplots( 1, 4, sharey=True, gridspec_kw = {'wspace':0, 'hspace':0} ) span = [-0.475, .575] bins = [10, 10, 10, 10] axes[0].set_ylabel('Age offset [Myr]') for i in range(len(ages)): axes[i].tick_params(direction='in', top=True, right=True,) axes[i].hist( np.hstack(( o_res[i,0,0,:,1:,-1].flatten(), e_res[i,0,0,:,1:,-1].flatten() )), bins=bins[i], orientation='horizontal', range=span, ) axes[i].set_title('{} Myr'.format(ages[i])) # f.set_xlabel('True age [Myr]') f.set_tight_layout(tight=True) f.savefig('temp_plots/multipane_res_hist.pdf') # plot a multiplane plot showing histogram of normalised resids f, axes = plt.subplots( 1, 4, sharey=True, gridspec_kw = {'wspace':0, 'hspace':0} ) # bins = [7, 8, 12, 25] axes[0].set_ylabel('Normalised age residuals') for i in range(len(ages)): bin_range = [-3.25,3.25] nbins = 13 axes[i].tick_params(direction='in', top=True, right=True) axes[i].hist( np.hstack(( o_norm_res[i,0,0,:,1:,-1].flatten(), e_norm_res[i,0,0,:,1:,-1].flatten() )), bins=nbins, range=bin_range, orientation='horizontal' ) # axes[i].set_xlim(axes[i].get_xlim()[0], axes[i].get_xlim()[1]+5) axes[i].set_title('{} Myr'.format(ages[i])) # f.set_xlabel('True age [Myr]') f.set_tight_layout(tight=True) f.savefig('temp_plots/multipane_norm_res_hist.pdf') # ------------------------------------------------------------ # ---- PLOTTING ALL PLOTS IN ORIGINAL STYLE -------------- # ------------------------------------------------------------ if False: # ------------------------------------------------------------ # ---- PLOTTING *ALL* NORMED RESIDUALS HIST -------------- # ------------------------------------------------------------ plt.clf() all_norm_resids = np.hstack((o_norm_res[:,:,:,:,:,-1].flatten(), e_norm_res[:,:,:,:,:,-1].flatten())) plt.hist(all_norm_resids) plt.xlabel("Normalised offset in age") plt.ylabel("Number of simulations") plt.savefig(master_pdir + "all-norm-age-res-hist.pdf") #plotting histogram of all first plt.clf() age_resids = np.hstack((o_res[:, 0, 0, :, :, -1].flatten(), e_res[:, 0, 0, :, :, -1].flatten())) plt.hist(age_resids) plt.xlabel("Raw offset in age") plt.ylabel("Number of simulations") plt.savefig(master_pdir+"all-raw-age-low-dv-low-dx-hist.pdf") # ------------------------------------------------------------ # ---- PLOTTING RAW RESIDUALS WITH LOW DV HIST ------------- # ------------------------------------------------------------ plt.clf() all_low_dv_raw_resids = np.hstack((o_res[:,:,0,:,:,-1].flatten(), e_res[:,:,0,:,:,-1].flatten())) plt.hist(all_low_dv_raw_resids) plt.xlabel("Raw age offset [Myr]") plt.ylabel("Number of simulations") plt.savefig(master_pdir + "all-raw-age-res-low-dv-hist.pdf") # ------------------------------------------------------------ # ---- PLOTTING *ALL* NORMED RESIDUALS V PARS -------------- # ------------------------------------------------------------ plt.clf() fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(7,7), sharey=True) # PLOTTING ALL RESIDUALS AS FUNCTION OF TRUE AGE ax = axs[0,0] age_fit_means = [] age_fit_stds = [] for i, age in enumerate(ages): age_norm_resids = np.hstack((o_norm_res[i,:,:,:,:,-1].flatten(), e_norm_res[i,:,:,:,:,-1].flatten())) age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) ax.errorbar(ages, age_fit_means, yerr=age_fit_stds, fmt='b.') ax.plot(ages, np.zeros(len(ages)), color='b', ls=':') ax.set_xlabel("True age [Myr]") ax.set_ylabel("Normalised offset in age") # PLOTTING ALL RESIDUALS AS FUNCTION OF STAR COUNT ax = axs[0,1] age_fit_means = [] age_fit_stds = [] sizes = [] for i, size in enumerate(zip(o_sizes, e_sizes)): age_norm_resids = o_norm_res[:,:,:,:,i,-1] age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) sizes.append(size[0]) age_norm_resids = e_norm_res[:,:,:,:,i,-1] age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) sizes.append(size[1]) ax.errorbar(sizes, age_fit_means, yerr=age_fit_stds, fmt='b.') ax.plot(sizes, np.zeros(len(sizes)), color='b', ls=':') ax.set_xlabel("Star count") # PLOTTING ALL RESIDUALS AS FUNCTION OF DX ax = axs[1,0] age_fit_means = [] age_fit_stds = [] spreads = [] for i, spread in enumerate(zip(o_spreads, e_spreads)): age_norm_resids = o_norm_res[:,i,:,:,:,-1] age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) spreads.append(spread[0]) age_norm_resids = e_norm_res[:,i,:,:,:,-1] age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) spreads.append(spread[1]) ax.errorbar(spreads, age_fit_means, yerr=age_fit_stds, fmt='b.') ax.plot(spreads, np.zeros(len(spreads)), color='b', ls=':') ax.set_xlabel("Spread [pc]") ax.set_ylabel("Normalised offset in age") # PLOTTING ALL RESIDUALS AS FUNCTION OF DV ax = axs[1,1] age_fit_means = [] age_fit_stds = [] v_disps = [] for i, v_disp in enumerate(zip(o_v_disps, e_v_disps)): # Flipped the order cause e_v_disps has the lower v_disps age_norm_resids = e_norm_res[:,:,i,:,:,-1] age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) v_disps.append(e_v_disps[i]) age_norm_resids = o_norm_res[:,:,i,:,:,-1] age_fit_means.append(np.mean(age_norm_resids)) age_fit_stds.append(np.std(age_norm_resids)) v_disps.append(o_v_disps[i]) ax.errorbar(v_disps, age_fit_means, yerr=age_fit_stds, fmt='b.') ax.plot(v_disps, np.zeros(len(v_disps)), color='b', ls=':') ax.set_xlabel("Velocity dispersion [km/s]") # PLOTTING ALL RESIDUALS AS FUNCTION OF PRECISION ax = axs[2,0] age_fit_means = [] age_fit_stds = [] vals = [] for i, prec in enumerate(precs): vals.append(prec_val[prec]) age_norm_resids = np.hstack((o_norm_res[:,:,:,:,i,-1].flatten(), e_norm_res[:,:,:,:,i,-1].flatten())) age_fit_means.append(
np.mean(age_norm_resids)
numpy.mean
from collections import OrderedDict, defaultdict import pandas as pd import cv2 import torch import os import yaml import numpy as np import json from tqdm import tqdm from shutil import copy from ast import literal_eval import SimpleITK as sitk import pydicom import nibabel as nib import matplotlib.pyplot as plt from matplotlib import cm import albumentations from torchvision.utils import make_grid from pathlib import Path from adpkd_segmentation.config.config_utils import get_object_instance # noqa from adpkd_segmentation.datasets import dataloader as _dataloader # noqa from adpkd_segmentation.datasets import datasets as _datasets # noqa from adpkd_segmentation.data.link_data import makelinks # noqa from adpkd_segmentation.data.data_utils import display_sample # noqa from adpkd_segmentation.utils.train_utils import load_model_data # noqa from adpkd_segmentation.utils.stats_utils import ( # noqa bland_altman_plot, scatter_plot, linreg_plot, ) from adpkd_segmentation.utils.losses import ( SigmoidBinarize, Dice, binarize_thresholds, ) IOP = "IOP" IPP = "IPP" IPP_dist = "IPP_dist" def load_config(config_path, run_makelinks=False, inference_path=None): """Reads config file and calculates additional dcm attributes such as slice volume. Returns a dictionary used for patient wide calculations such as TKV. Args: config_path (str): config file path run_makelinks (bool, optional): Creates symbolic links during the first run. Defaults to False. Returns: dataloader, model, device, binarize_func, save_dir (str), model_name (str), split (str) """ if run_makelinks: makelinks() with open(config_path, "r") as f: config = yaml.load(f, Loader=yaml.FullLoader) model_config = config["_MODEL_CONFIG"] loader_to_eval = config["_LOADER_TO_EVAL"] dataloader_config = config[loader_to_eval] # replace inference_path in config if one is provided if inference_path is not None: dataloader_config["dataset"]["inference_path"] = inference_path saved_checkpoint = config["_MODEL_CHECKPOINT"] checkpoint_format = config["_NEW_CKP_FORMAT"] model = get_object_instance(model_config)() if saved_checkpoint is not None: load_model_data(saved_checkpoint, model, new_format=checkpoint_format) dataloader = get_object_instance(dataloader_config)() print(f"Images in inference input= {len(dataloader.dataset)}") # TODO: support other metrics as needed # binarize_func = SigmoidBinarize(thresholds=[0.5]) pred_process_config = config["_LOSSES_METRICS_CONFIG"]["criterions_dict"][ "dice_metric" ]["pred_process"] pred_process = get_object_instance(pred_process_config) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() model_name = Path(config_path).absolute().parts[-3] save_dir = "./saved_inference" res = { "dataloader": dataloader, "model": model, "device": device, "binarize_func": pred_process, "save_dir": save_dir, "model_name": model_name, } return res def plot_model_results(csv_path, name): df = pd.read_csv(csv_path) pred = df["TKV_Pred"].to_numpy() gt = df["TKV_GT"].to_numpy() bland_altman_plot( pred, gt, percent=True, title=f"{name} BA Plot: TKV % error" ) patient_dice = df["patient_dice"].to_numpy() scatter_plot(patient_dice, gt, title=f"{name} Dice by TKV") linreg_plot(pred, gt, title=f"{name} Linear Fit") def inference_to_disk( dataloader, model, device, binarize_func, save_dir="./saved_inference", model_name="model", ): """ Generates inferences from InferenceDataloader. Args: dataloader (dataloader): Dataloader instance for an InferenceDataset. model (model): Dataloader instance. device (device): Device instance. binarize_func (function): Binarizing function. save_dir (str, optional): Directory to save inference. Defaults to "./saved_inference". model_name (str, optional): Name of model. Defaults to "model". """ dataset = dataloader.dataset output_idx_check = ( hasattr(dataloader.dataset, "output_idx") and dataloader.dataset.output_idx ) assert ( output_idx_check is True ), "output indexes are required for the dataset" for batch_idx, output in enumerate(dataloader): x_batch, idxs_batch = output x_batch = x_batch.to(device) with torch.no_grad(): # get_verbose returns (sample, dcm_path, attributes dict) dcm_file_paths = [ Path(dataset.get_verbose(idx)[1]) for idx in idxs_batch ] dcm_file_names = [ Path(dataset.get_verbose(idx)[1]).stem for idx in idxs_batch ] file_attribs = [dataset.get_verbose(idx)[2] for idx in idxs_batch] y_batch_hat = model(x_batch) # TODO: support only sigmoid saves y_batch_hat_binary = binarize_func(y_batch_hat) for dcm_path, dcm_name, file_attrib, img, logit, pred in zip( dcm_file_paths, dcm_file_names, file_attribs, x_batch, y_batch_hat, y_batch_hat_binary, ): out_dir = ( Path.cwd() / Path(save_dir) / model_name / file_attrib["patient"] / file_attrib["MR"] / dcm_name ) out_dir.parent.mkdir(parents=True, exist_ok=True) # print(out_dir) np.save(str(out_dir) + "_img", img.cpu().numpy()) np.save(str(out_dir) + "_logit", logit.cpu().numpy()) np.save(str(out_dir) + "_pred", pred.cpu().numpy()) copy(dcm_path, out_dir.parent / (out_dir.name + "_DICOM.dcm")) class NpEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() else: return super(NpEncoder, self).default(obj) # get resize transform within compose object Resize = albumentations.augmentations.transforms.Resize transform_resize = next( v for v in dataloader.dataset.augmentation.transforms if isinstance(v, Resize) ) assert ( transform_resize is not None ), "transform_resize must be defined" file_attrib["transform_resize_dim"] = ( transform_resize.height, transform_resize.width, ) attrib_json = json.dumps(file_attrib, cls=NpEncoder) f = open(str(out_dir) + "_attrib.json", "w") f.write(attrib_json) f.close() # %% def inference_to_nifti(inference_dir, inverse_crop_ratio=640 / 512): """exports directory dicom files to formated nifti volume. calls sorting helper function Args: inference_dir (str, optional): inference directory. Returns: pd.DataFrame: Dataframe containing sorted values. """ # get inference paths preds = Path(inference_dir).glob("*_pred.npy") dcm_paths = Path(inference_dir).glob("*.dcm") preds = sorted(preds, key=lambda x: x.name) dcm_paths = sorted(dcm_paths, key=lambda x: x.name) dcms = [pydicom.read_file(p) for p in dcm_paths] out_folder = "ITKSNAP_DCM_NIFTI" # prepare data and sort based on IOP/IPP IOPs = [d.ImageOrientationPatient for d in dcms] IPPs = [d.ImagePositionPatient for d in dcms] data = {"preds": preds, "dcm_paths": dcm_paths, IOP: IOPs, IPP: IPPs} sorted_df = IOP_IPP_dicomsort(pd.DataFrame(data)) # use SITK to generate numpy from dicom header reader = sitk.ImageSeriesReader() sorted_dcms_paths = [str(p) for p in sorted_df["dcm_paths"]] reader.SetFileNames(sorted_dcms_paths) errors = [] try: image_3d = reader.Execute() except Exception as e: errors.append(f"error:{str(e)}\n path:{dcm_paths[0]}") out_dir = dcm_paths[0].parent / out_folder os.makedirs(out_dir, exist_ok=True) dcm_save_name = "dicom_vol.nii" pred_save_name = "pred_vol.nii" sitk.WriteImage( image_3d, str(out_dir / dcm_save_name), ) # load saved saved nii volume into nibabel object dcm_nii_vol = nib.load(out_dir / dcm_save_name) npy_preds = [np.squeeze(np.load(Path(p))) for p in sorted_df["preds"]] # reverse center crop -- use idx 0 to get shape pad_width = ( (npy_preds[0].shape[0] * inverse_crop_ratio) - (npy_preds[0].shape[0]) ) / 2 pad_width = round(pad_width) npy_reverse_crops = [np.pad(pred, pad_width) for pred in npy_preds] # resize predictions to match dicom x_y_dim = dcm_nii_vol.get_fdata().shape[0:2] # shape is in x, y, z resized_preds = [ cv2.resize(orig, (x_y_dim), interpolation=cv2.INTER_NEAREST) for orig in npy_reverse_crops ] corrected_transpose = [np.transpose(r) for r in resized_preds] # convert 2d npy to 3d npy volume npy_pred_vol = np.stack(corrected_transpose, axis=-1).astype(np.uint16) # create nifti mask for predictions dicom_header = dcm_nii_vol.header.copy() pred_nii_vol = nib.Nifti1Image(npy_pred_vol, None, header=dicom_header) nib.save(pred_nii_vol, out_dir / pred_save_name) print(f"Wrote to: {Path(str(out_dir / dcm_save_name))}") return pred_nii_vol, dcm_nii_vol # %% def resized_stack(numpy_list, dsize=None): """resizing lists of array with dimension: slices x 1 x H x W, where H = W. Sets output size to first array at idx 0 or dsize Args: numpy_list (list): list of numpy arr dsize (int, optional): output dimension. Defaults to None. Returns: numpy: stacked numpy lists with same size """ assert numpy_list[0].shape[1] == 1, "dimension check" assert numpy_list[0].shape[2] == numpy_list[0].shape[3], "square check" def reshape(arr): """reshapes [slices x 1 x H x W] to [H x W x slices]""" arr = np.moveaxis(arr, 0, -1) # slices to end arr = np.squeeze(arr) # remove 1 dimension return arr reshaped = [reshape(arr) for arr in numpy_list] if dsize is None: dsize = reshaped[0].shape[0:2] # get H, W from first arr resized = [ cv2.resize(src, dsize, interpolation=cv2.INTER_CUBIC) for src in reshaped ] return np.stack(resized) def display_volumes( study_dir, style="prob", plot_error=False, skip_display=True, save_dir=None, output_style="png", ): """Displays inference over original image. Note: skip_display should be set to true to save figs. Args: study_dir (path): Directory of inferences. style (str, optional): Type of data displayed. Defaults to "prob" for probability. plot_error (bool, optional): Display error. Defaults to False. skip_display (bool, optional): Display console display. save_dir (path, optional): Directory to save figs. Defaults to None. Returns: dict: Dictionary of images, logits, predictions, probs """ print(f"loading from {study_dir}") study_dir = Path(study_dir) imgs = sorted(study_dir.glob("*_img.npy")) imgs_np = [np.load(i) for i in imgs] logits = sorted(study_dir.glob("*_logit.npy")) logits_np = [np.load(logit) for logit in logits] preds = sorted(study_dir.glob("*_pred.npy")) preds_np = [np.load(p) for p in preds] vols = { "img": np.stack(imgs_np), "logit": np.stack(logits_np), "pred":
np.stack(preds_np)
numpy.stack
""" This file warp around the nuscenes dataset => We only focus on what we want """ from __future__ import print_function from __future__ import division from __future__ import absolute_import # insert system path for fast debugging import sys sys.path.insert(0, "../") from nuscenes.nuscenes import NuScenes from nuscenes.nuscenes import NuScenesExplorer from nuscenes.utils.data_classes import LidarPointCloud, RadarPointCloud, PointCloud from nuscenes.utils.geometry_utils import view_points, transform_matrix from config.config_nuscenes import config_nuscenes as cfg from nuscenes.utils.geometry_utils import view_points, box_in_image, BoxVisibility from pyquaternion import Quaternion from PIL import Image from functools import reduce import math import os import pickle import numpy as np from config.config_nuscenes import config_nuscenes as cfg from misc.devkit.python.read_depth import depth_read # Define the kitti dataset abstraction object class Nuscenes_dataset(object): # Initialize the dataset def __init__(self, mode="mini") -> None: # Check mode if not mode in ["mini", "full"]: raise ValueError("[Error] Unknow nuscene dataset mode. Consider using 'mini' or 'full'") self.mode = mode # Initialize nuscenes dataset API print("[Info] Initializing Nuscenes official database...") if self.mode == "mini": dataroot = os.path.join(cfg.DATASET_ROOT, "v1.0-mini") self.dataset = NuScenes(version="v1.0-mini", dataroot=dataroot) elif self.mode == "full": # dataroot = os.path.join(cfg.DATASET_ROOT, "v1.0-trainval") dataroot = cfg.DATASET_ROOT self.dataset = NuScenes(version="v1.0-trainval", dataroot=dataroot) self.explorer = NuScenesExplorer(self.dataset) print("[Info] Finished initializing Nuscenes official database!") # ipdb.set_trace() # Initialize some tables self.samples = self.dataset.sample self.scenes = self.dataset.scene self.num_scenes = len(self.scenes) self.num_samples = len(self.scenes) self.train_val_table = self.get_train_val_table() # Train related attributes self.train_samples = self.train_val_table["train_samples"] self.train_sample_tokens = self.train_val_table["train_sample_tokens"] # Val related attributes self.val_samples = self.train_val_table["val_samples"] self.val_sample_tokens = self.train_val_table["val_sample_tokens"] # Define camera keywords self.camera_orientations = ["front", "front_right", "front_left", "back_right", "back_left", "back"] self.orientation_to_camera = { "front": "CAM_FRONT", "front_right": "CAM_FRONT_RIGHT", "front_left": "CAM_FRONT_LEFT", "back_right": "CAM_BACK_RIGHT", "back_left": "CAM_BACK_LEFT", "back": "CAM_BACK" } # Define radar keywords self.radar_orientations = ['front', 'front_right', 'front_left', 'back_right', 'back_left'] self.radar_keywords = ['RADAR_FRONT', 'RADAR_FRONT_RIGHT', 'RADAR_FRONT_LEFT', 'RADAR_BACK_RIGHT', 'RADAR_BACK_LEFT'] self.orientation_to_radar = { "front": 'RADAR_FRONT', "front_right": 'RADAR_FRONT_RIGHT', "front_left": 'RADAR_FRONT_LEFT', "back_right": 'RADAR_BACK_RIGHT', "back_left": 'RADAR_BACK_LEFT' } # Now based on dataset version, we include different orientations # print(cfg.version) assert cfg.version in ["ver1", "ver2", "ver3"] self.version = cfg.version print("===============================") print("[Info] Use dataset %s" % (self.version)) self.train_datapoints = self.get_datapoints("train") self.val_datapoints = self.get_datapoints("val") print("\t train datapoints: %d" % (len(self.train_datapoints))) print("\t val datapoints: %d" % (len(self.val_datapoints))) print("===============================") # Initialize how many sweeps to use self.lidar_sweeps = cfg.lidar_sweeps self.radar_sweeps = cfg.radar_sweeps #################################### ## Some dataset manipulation APIs ## #################################### # Easier call for get def get(self, table_name, token): return self.dataset.get(table_name, token) # Easier call for get_sample_data def get_sample_data(self, sample_data_token): return self.dataset.get_sample_data(sample_data_token) # Generate the train / val table based on the random seed def get_train_val_table(self): seed = cfg.TRAIN_VAL_SEED val_num = int(cfg.VAL_RATIO * self.num_scenes) # Get train / val scenes all = set(list(range(self.num_scenes))) np.random.seed(seed) val = set(np.random.choice(np.arange(0, self.num_scenes, 1), val_num, replace=False)) train = all - val # Split number set train_scenes = list(train) val_scenes = list(val) # Token list train_scene_tokens = [self.scenes[_]["token"] for _ in train_scenes] val_scene_tokens = [self.scenes[_]["token"] for _ in val_scenes] # object list train_scene_objs = [self.scenes[_] for _ in train_scenes] val_scene_objs = [self.scenes[_] for _ in val_scenes] # sample token list train_sample_tokens = [] for scene_obj in train_scene_objs: train_sample_tokens += self.get_sample_tokens_from_scene(scene_obj) val_sample_tokens = [] for scene_obj in val_scene_objs: val_sample_tokens += self.get_sample_tokens_from_scene(scene_obj) # sample list train_samples = [] for scene_obj in train_scene_objs: train_samples += self.get_samples_from_scene(scene_obj) val_samples = [] for scene_obj in val_scene_objs: val_samples += self.get_samples_from_scene(scene_obj) return { "train_scene_tokens": train_scene_tokens, "train_scene_objs": train_scene_objs, "train_sample_tokens": train_sample_tokens, "train_samples": train_samples, "val_scene_tokens": val_scene_tokens, "val_scene_objs": val_scene_objs, "val_sample_tokens": val_sample_tokens, "val_samples": val_samples } # Get all samples in one scene def get_samples_from_scene(self, scene_obj): # Check if scene is valid if not self.check_scene_obj(scene_obj): raise ValueError sample_lst = [] current_sample_token = scene_obj['first_sample_token'] while True: current_sample = self.get("sample", current_sample_token) sample_lst.append(current_sample) if not current_sample["next"] == "": current_sample_token = current_sample["next"] else: break return sample_lst # Get all samples in one scene def get_sample_tokens_from_scene(self, scene_obj): # Check if scene is valid if not self.check_scene_obj(scene_obj): raise ValueError sample_token_lst = [] current_sample_token = scene_obj['first_sample_token'] while True: current_sample = self.get("sample", current_sample_token) sample_token_lst.append(current_sample["token"]) if not current_sample["next"] == "": current_sample_token = current_sample["next"] else: break return sample_token_lst ######################## ## Torch dataset APIs ## ######################## # Add orientations to datapoints def get_datapoints(self, mode="train"): datapoints = [] # Get orientations given dataset version if self.version in ["ver1", "ver3"]: orientations = ["front", "back"] elif self.version == "ver2": orientations = self.camera_orientations if mode == "train": samples = self.train_samples elif mode == "val": samples = self.val_samples for idx, sample in enumerate(samples): for ori in orientations: datapoint = [idx, ori] datapoints.append(datapoint) return datapoints # Get data given corresponding datapoints def get_data(self, datapoint, mode="train"): assert mode in ["train", "val"] # Check if datapoint is valid if mode == "train": assert datapoint in self.train_datapoints else: assert datapoint in self.val_datapoints sample_index = datapoint[0] orientation = datapoint[1] if mode == "train": sample_obj = self.train_samples[sample_index] else: sample_obj = self.val_samples[sample_index] lidar_data = self.get_lidar_depth_map_multi_bidirectional(sample_obj, orientation, num_sweeps=self.lidar_sweeps) radar_data = self.get_radar_depth_map_multi_bidirectional(sample_obj, orientation, num_sweeps=self.radar_sweeps) return { "lidar_depth": lidar_data["depth"], "lidar_points": lidar_data["points"], "lidar_depth_points": lidar_data["depth_points"], "radar_depth": radar_data["depth"], "radar_points": radar_data["points"], "radar_depth_points": radar_data["depth_points"], "radar_raw_points": radar_data["raw_points"], "image": lidar_data["image"] } # Get dataset length given the mode def get_dataset_length(self, mode="train"): assert mode in ["train", "val"] if mode == "train": return len(self.train_datapoints) else: return len(self.val_datapoints) ##################################### ## LiDAR point cloud manipulations ## ##################################### # Plot point cloud def get_lidar_depth_map(self, sample_obj, orientation): # Check the input orientation assert self.check_camera_orientation(orientation) == True # Get sensor tokens lidar_token = sample_obj['data']['LIDAR_TOP'] orientation_key = self.map_camera_keyword(orientation) camera_front_token = sample_obj['data'][orientation_key] # Get projected point cloud and depth points, depth_points, image = self.explorer.map_pointcloud_to_image(lidar_token, camera_front_token) # Construct detph map image = np.array(image) depth = np.zeros(image.shape[:2]) # Assign depth value to corresponding pixel on the image depth_loc = (points[:2, :].T).astype(np.int32) depth[depth_loc[:, 1], depth_loc[:, 0]] = depth_points return { "image": image, "depth": depth, "points": points, "depth_points": depth_points } # Plot lidar depth map with multiple sweeps def get_lidar_depth_map_multi(self, sample_obj, orientation, num_sweeps=10): # Check the input orientation assert self.check_camera_orientation(orientation) == True # Get sensor tokens lidar_token = sample_obj['data']['LIDAR_TOP'] lidar_record = self.dataset.get("sample_data", lidar_token) # Get camera token orientation_key = self.map_camera_keyword(orientation) camera_front_token = sample_obj['data'][orientation_key] camera_record = self.dataset.get("sample_data", camera_front_token) im = Image.open(os.path.join(self.dataset.dataroot, camera_record['filename'])) # Get multiple sweeps point_clouds, times = LidarPointCloud.from_file_multisweep(self.dataset, sample_obj, lidar_record["channel"], "LIDAR_TOP", nsweeps=num_sweeps) # First step: transform the point-cloud to the ego vehicle frame for the timestamp of the sweep. cs_record = self.dataset.get('calibrated_sensor', lidar_record['calibrated_sensor_token']) point_clouds.rotate(Quaternion(cs_record['rotation']).rotation_matrix) point_clouds.translate(np.array(cs_record['translation'])) # Second step: transform to the global frame. poserecord = self.dataset.get('ego_pose', lidar_record['ego_pose_token']) point_clouds.rotate(Quaternion(poserecord['rotation']).rotation_matrix) point_clouds.translate(np.array(poserecord['translation'])) # Third step: transform into the ego vehicle frame for the timestamp of the image. poserecord = self.dataset.get('ego_pose', camera_record['ego_pose_token']) point_clouds.translate(-np.array(poserecord['translation'])) point_clouds.rotate(Quaternion(poserecord['rotation']).rotation_matrix.T) # Fourth step: transform into the camera. cs_record = self.dataset.get('calibrated_sensor', camera_record['calibrated_sensor_token']) point_clouds.translate(-np.array(cs_record['translation'])) point_clouds.rotate(Quaternion(cs_record['rotation']).rotation_matrix.T) # Fifth step: actually take a "picture" of the point cloud. # Grab the depths (camera frame z axis points away from the camera). depths = point_clouds.points[2, :] # Take the actual picture (matrix multiplication with camera-matrix + renormalization). points = view_points(point_clouds.points[:3, :], np.array(cs_record['camera_intrinsic']), normalize=True) # Mask the depth that is not in the field of view mask = np.ones(depths.shape[0], dtype=bool) mask = np.logical_and(mask, depths > 0) mask = np.logical_and(mask, points[0, :] > 1) mask = np.logical_and(mask, points[0, :] < im.size[0] - 1) mask = np.logical_and(mask, points[1, :] > 1) mask = np.logical_and(mask, points[1, :] < im.size[1] - 1) points = points[:, mask] depths = depths[mask] # Construct detph map image = np.array(im) depth =
np.zeros(image.shape[:2])
numpy.zeros
import os import random import datetime import argparse import time import argparse import numpy as np from torchvision import models import torch.nn as nn import torch import random import dlib import cv2 import imutils from imutils.video import VideoStream from imutils import face_utils from moviepy.editor import * from moviepy.editor import VideoFileClip, concatenate_videoclips ############################################## # # # generate stagemix # # # ############################################## class RandomDistance: def distance(self, reference_clip, compare_clip, args): dur_end = min(reference_clip.duration, compare_clip.duration) return random.randrange(1,100), min(dur_end, random.randrange(3,7)), {} class FaceDistance: def __init__(self, shape_predictor_path): self.skip_frame_rate = 4 # 'the number of frames to skip' self.minimax_frames = 5 # 'the number of frames to minimax distance' # https://www.pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-python/ self.shape_predictor = shape_predictor_path def extract_landmark(self, reference_clip, compare_clip): self.clips =[reference_clip, compare_clip] # face detect detector = dlib.get_frontal_face_detector() # face landmark predictor = dlib.shape_predictor(self.shape_predictor) # reference, compare 영상의 landmark 추출하기 clips_frame_info = [] for clip in self.clips: i=0 every_frame_info= [] # for every frame while True: frame = clip.get_frame(i*1.0/clip.fps) i+=self.skip_frame_rate # skip frames if (i*1.0/clip.fps)> clip.duration: break # resizing width & convert to gray scale frame = imutils.resize(frame, width=800) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # face rect detect rects = detector(gray, 0) # if there is face recognized if len(rects)>0: # find the largest face rect max_width = 0 max_rect = None for rect in rects: if int(rects[0].width()) > max_width: max_rect = rect # face landmark coordinate: (x, y) shape = predictor(gray, max_rect) shape = face_utils.shape_to_np(shape) every_frame_info.append(shape) else: every_frame_info.append([]) clips_frame_info.append(np.array(every_frame_info)) cv2.destroyAllWindows() return clips_frame_info def get_all_frame_distance(self, clips_frame_info, min_size): dist_arr = [] # Calculate distance by frame for i in range(min_size-1): if len(clips_frame_info[0][i])>0 and len(clips_frame_info[1][i+1])>0: # 얼굴 둘다 있으면 # 두 영상에서 눈의 거리(왼쪽 눈 끼리, 오른쪽 눈 끼리) l = 36 # 왼쪽 눈 왼쪽 끝 r = 45 # 오른쪽 눈3 오른쪽 끝 left_eye = ((clips_frame_info[0][i][l][0] - clips_frame_info[1][i+1][l][0])**2 + (clips_frame_info[0][i][l][1] - clips_frame_info[1][i+1][l][1])**2)**0.5 right_eye = ((clips_frame_info[0][i][r][0] - clips_frame_info[1][i+1][r][0])**2 + (clips_frame_info[0][i][r][1] - clips_frame_info[1][i+1][r][1])**2)**0.5 total_diff = left_eye + right_eye dist_arr.append(total_diff) else: dist_arr.append(None) return dist_arr def distance(self, reference_clip, compare_clip, args): time.sleep(2.0) clips_frame_info = self.extract_landmark(reference_clip, compare_clip) # 모든 프레임마다 길이 계산해줌 min_size = min(len(clips_frame_info[0]),len(clips_frame_info[1])) dist_arr = self.get_all_frame_distance(clips_frame_info, min_size) clips =[reference_clip,compare_clip] # Minimize max distance in (minimax_frames) frames minimax_frames = self.minimax_frames min_diff = np.float('Inf') min_idx = 0 max_dist = [] for i in range(min_size - (minimax_frames - 1)): # 해당 frame "이전과 이후"에 frame들 확인 start_minmax_idx = 0 if (i - minimax_frames)<0 else i - minimax_frames if (None in dist_arr[start_minmax_idx :i + minimax_frames]): max_dist.append(None) else: tmp_max = np.max(dist_arr[start_minmax_idx:i + minimax_frames]) max_dist.append(tmp_max) if min_diff > tmp_max: min_diff = tmp_max min_idx = i # return distance, second, additional_info return min_diff, (min_idx*self.skip_frame_rate)/self.clips[0].fps, {} class PoseDistance: def __init__(self): self.SKIP_FRAME_RATE = 10 self.MINIMAX_FRAME = 4 # 함수에서 documentaiton 읽기 self.model = models.detection.fasterrcnn_resnet50_fpn(pretrained=True) self.model.eval() os.environ['KMP_DUPLICATE_LIB_OK']='True' def extract_boxes(self, reference_clip, compare_clip): self.clips = [reference_clip, compare_clip] clips_frame_info = [] for clip in self.clips: i = 0 every_frame_info = [] # loop over the frames from the video stream while True: i+=self.SKIP_FRAME_RATE # 1초에 60 fps가 있으므로 몇개는 skip해도 될거 같음! if (i*1.0/clip.fps)> clip.duration: break frame = clip.get_frame(i*1.0/clip.fps) frame = imutils.resize(frame, width=640) frame = frame/255 # image, and should be in ``0-1`` range. frame = np.transpose(frame, (2,0,1)) # HWC -> CHW(그 위치에 몇차원 애를 넣을거냔?) x = [torch.from_numpy(frame).float()] # label list https://github.com/tensorflow/models/blob/master/research/object_detection/data/mscoco_label_map.pbtxt predictions = self.model(x) prediction= predictions[0] each_box_list = zip(prediction['boxes'].tolist(), prediction['labels'].tolist(), prediction['scores'].tolist()) # 0.95 정도 올려야 까맣게 보이는 관중이 없어짐! filtered_box_list = filter(lambda x: x[1]==1 and x[2] >= 0.95, each_box_list) filtered_center_dot_list = list(map(lambda x: [(x[0][0]+x[0][2])/2, (x[0][1]+x[0][3])/2], filtered_box_list)) # x좌표로 정렬하기(대형이 가로로 늘어져 있다고 가정하고 순서대로 정렬) sorted_dot_list = sorted(filtered_center_dot_list, key = lambda x: x[0]) every_frame_info.append(sorted_dot_list) # 프레임별 정보 clips_frame_info.append(
np.array(every_frame_info)
numpy.array
import numpy as np from .. import evaluate as ev class Null(object): def __init__(self, *args, **kwargs): self.default_cache = 'feature-cache' def __call__(self, g, n1, n2=None): return self.compute_features(g, n1, n2) def write_fm(self, json_fm={}): return json_fm def compute_features(self, g, n1, n2=None): if n2 is None: c1 = g.node[n1][self.default_cache] return self.compute_node_features(g, n1, c1) if g.node[n1]['size'] > g.node[n2]['size']: n1, n2 = n2, n1 # smaller node first c1, c2, ce = [d[self.default_cache] for d in [g.node[n1], g.node[n2], g[n1][n2]]] return np.concatenate(( self.compute_node_features(g, n1, c1), self.compute_node_features(g, n2, c2), self.compute_edge_features(g, n1, n2, ce), self.compute_difference_features(g, n1, n2, c1, c2) )) def create_node_cache(self, *args, **kwargs): return np.array([]) def create_edge_cache(self, *args, **kwargs): return np.array([]) def update_node_cache(self, *args, **kwargs): pass def update_edge_cache(self, *args, **kwargs): pass def compute_node_features(self, *args, **kwargs): return np.array([]) def compute_edge_features(self, *args, **kwargs): return np.array([]) def compute_difference_features(self, *args, **kwargs): return np.array([]) class Composite(Null): def __init__(self, children=[], *args, **kwargs): super(Composite, self).__init__() self.children = children def write_fm(self, json_fm={}): for child in self.children: json_fm.update(child.write_fm(json_fm)) return json_fm def create_node_cache(self, *args, **kwargs): return [c.create_node_cache(*args, **kwargs) for c in self.children] def create_edge_cache(self, *args, **kwargs): return [c.create_edge_cache(*args, **kwargs) for c in self.children] def update_node_cache(self, g, n1, n2, dst, src): for i, child in enumerate(self.children): child.update_node_cache(g, n1, n2, dst[i], src[i]) def update_edge_cache(self, g, e1, e2, dst, src): for i, child in enumerate(self.children): child.update_edge_cache(g, e1, e2, dst[i], src[i]) def compute_node_features(self, g, n, cache=None): if cache is None: cache = g.node[n][self.default_cache] features = [] for i, child in enumerate(self.children): features.append(child.compute_node_features(g, n, cache[i])) return np.concatenate(features) def compute_edge_features(self, g, n1, n2, cache=None): if cache is None: cache = g[n1][n2][self.default_cache] features = [] for i, child in enumerate(self.children): features.append(child.compute_edge_features(g, n1, n2, cache[i])) return np.concatenate(features) def compute_difference_features(self, g, n1, n2, cache1=None, cache2=None): if cache1 is None: cache1 = g.node[n1][self.default_cache] if cache2 is None: cache2 = g.node[n2][self.default_cache] features = [] for i, child in enumerate(self.children): features.append(child.compute_difference_features( g, n1, n2, cache1[i], cache2[i])) return np.concatenate(features) def _compute_delta_vi(ctable, fragments0, fragments1): c0 = np.sum(ctable[list(fragments0)], axis=0) c1 = np.sum(ctable[list(fragments1)], axis=0) cr = c0 + c1 p0 = np.sum(c0) p1 = np.sum(c1) pr = np.sum(cr) p0g = np.sum(ev.xlogx(c0)) p1g = np.sum(ev.xlogx(c1)) prg = np.sum(ev.xlogx(cr)) return (pr * np.log2(pr) - p0 * np.log2(p0) - p1 * np.log2(p1) - 2 * (prg - p0g - p1g)) class Mock(Null): ''' Mock feature manager to verify agglomerative learning works. This manager learns a different feature map for fragments vs agglomerated segments. It relies on knowing the ground truth for a given fragmentation. Parameters ---------- frag, gt : array of int, same shape The fragmentation and ground truth volumes. Must have same shape. ''' def __init__(self, frag, gt): super().__init__() self.ctable = ev.contingency_table(frag, gt, ignore_seg=[], ignore_gt=[]).toarray() self._std = 0.1 # standard deviation of feature computations def eps(self): return np.random.randn(2) * self._std def compute_features(self, g, n1, n2=None): if n2 is None: return np.array([]) f1, f2 = g.node[n1]['fragments'], g.node[n2]['fragments'] should_merge = _compute_delta_vi(self.ctable, f1, f2) < 0 if should_merge: return np.array([0., 0.]) + self.eps() else: if len(f1) + len(f2) == 2: # single-fragment merge return np.array([1., 0.]) + self.eps() else: # multi-fragment merge return
np.array([0., 1.])
numpy.array
from inspect import trace import os import glob import time from datetime import datetime import argparse import gym from gym.envs.registration import register import torch import numpy as np import random import shap from PIL import Image, ImageDraw, ImageFont import imageio import matplotlib.pyplot as plt from PPO import PPO import pdb def visualize_agent(args, env): # action space dimension if args.has_continuous_action_space: action_dim = env.action_space.shape[0] else: action_dim = env.action_space.n ppo_agents = [] for i in range(args.n_agents): ppo_agents.append(PPO(args.obs_dim, args.obs_size, action_dim, args.lr_actor, args.lr_critic, args.gamma, args.K_epochs, args.eps_clip, args.has_continuous_action_space, args.action_std)) directory = "storage" + '/' + args.policy_env + '/' for i in range(args.n_agents): checkpoint_path = directory + f"PPO_{args.policy_env}_seed_{args.random_seed}_run_{args.run_num_pretrained}_agent_{i}.pth" ppo_agents[i].load(checkpoint_path) print("--------------------------------------------------------------------------------------------") test_running_reward = 0 frame_count = 0 img_buffer = [] for ep_idx in range(1, args.n_episodes+ 1): obs = env.reset() ep_reward = 0 # render first frame of env render_image(img_buffer, args, env, ep_idx, t=frame_count, done=False, save=True) for t in range(1, args.max_ep_len+ 1): # select action with policy actions = [] for i in range(args.n_agents): action = ppo_agents[i].select_action(obs[i]) actions.append(action) obs, reward, done, _ = env.step(actions) ep_reward += reward render_image(img_buffer, args, env, ep_idx, frame_count, done, ep_reward, save=True) frame_count += 1 if done: # add some frames to make the gif "hang" at the end for end_frames in range(args.gif_n_end_frames): frame_count += 1 render_image(img_buffer, args, env, ep_idx, frame_count, done, ep_reward, save=True) break # clear agent buffer for i in range(args.n_agents): ppo_agents[i].buffer.clear() test_running_reward += ep_reward print('Episode: {} \t Reward: {}'.format(ep_idx, round(ep_reward.item(), 2))) ep_reward = 0 env.close() print("============================================================================================") avg_test_reward = test_running_reward / args.n_episodes avg_test_reward = round(avg_test_reward.item(), 2) print("average test reward : " + str(avg_test_reward)) print("============================================================================================") # save gif to disk save_gif(args, img_buffer) def feature_importance_SHAP(args, env): # action space dimension if args.has_continuous_action_space: action_dim = env.action_space.shape[0] else: action_dim = env.action_space.n ppo_agents = [] for i in range(args.n_agents): ppo_agents.append(PPO(args.obs_dim, args.obs_size, action_dim, args.lr_actor, args.lr_critic, args.gamma, args.K_epochs, args.eps_clip, args.has_continuous_action_space, args.action_std)) directory = "storage" + '/' + args.policy_env + '/' for i in range(args.n_agents): checkpoint_path = directory + f"PPO_{args.policy_env}_seed_{args.random_seed}_run_{args.run_num_pretrained}_agent_{i}.pth" ppo_agents[i].load(checkpoint_path) print("--------------------------------------------------------------------------------------------") #TODO so this isn't actually used with the "partition" explainer method, it would only be needed if we did CIU (I think, double check that actually) or the "Sampling" explainer # create a "background" dataset of agent observations test_running_reward = 0 frame_count = 0 img_buffer = [] obs = env.reset() obs_buffer = [] for ep_idx in range(1, args.n_episodes_background + 1): obs = env.reset() # img = env.render() # pdb.set_trace() obs_buffer.append(
np.expand_dims(obs[0], 0)
numpy.expand_dims
import ast import glob import xnet import numpy as np import matplotlib.pyplot as plt from igraph import * from textwrap import wrap from sklearn.cluster import KMeans from util import get_attr_pacs, get_pac_list from sklearn.cluster import AgglomerativeClustering from sklearn.feature_extraction.text import CountVectorizer # data = xnet.xnet2igraph('../data/citation_network_ge1990_pacs.xnet') def get_papers(colab_net, author_vtx): edges = colab_net.incident(author_vtx) papers = set() for e in edges: papers |= set(ast.literal_eval(colab_net.es[e]['papers'])) return papers def to_str(pac_list): pac_str = "none" for pac in pac_list: if pac == 'None': continue pac = pac[:2] pac_str += " " + pac # if "," in pac_list or ";" in pac_list: # print("ERRO, PRECISA APLICAR SPLIT") # print(pac_str) return pac_str def authors2str(colab_net, citation_net): authors = colab_net.vs vecs = [] i = 0 for author in authors: i += 1 if i % 10000 == 0: print(i) paper_idxs = get_papers(colab_net, author) papers = citation_net.vs.select(numeric_id_in=paper_idxs) if not len(paper_idxs) == len(papers): print("DEU RUIM") pacs = papers['PACS-0'] + papers['PACS-1'] + papers['PACS-2'] + papers['PACS-3'] + papers['PACS-4'] vec = to_str(pacs) vecs.append(vec) return vecs def authors2vec(vecs): vocab = ['01', '02', '03', '04', '05', '06', '07', '11', '12', '13', '14', '21', '22', '23', '24', '25', '26', '27', '28', '29', '31', '32', '33', '34'] vocab += ['35', '36', '37', '41', '42', '43', '44', '45', '46', '47', '51', '52', '61', '62', '63', '64', '65', '66', '67', '68', '71', '72', '73', '74'] vocab += ['75', '76', '77', '78', '79', '81', '82', '83', '84', '85', '86', '87', '88', '89', '91', '92', '93', '94', '95', '96', '97', '98', 'none'] vectorizer = CountVectorizer(vocabulary=vocab) X = vectorizer.fit_transform(vecs) # print(vectorizer.vocabulary_) return X.toarray() def clustering_by_pac(colab_net, citation_net, year): vecs = authors2str(colab_net, citation_net) bow = authors2vec(vecs) for i, line in enumerate(bow): colab_net.vs[i]['bow'] = str(line.tolist()) # for line in bow[:100]: # print(line.tolist()) clustering = AgglomerativeClustering(n_clusters=5, affinity='cosine', linkage='average') fited_clustering = clustering.fit(bow) labels = fited_clustering.labels_ labels = [str(l) for l in labels] colab_net.vs['pac_hier'] = labels print('hierarquico', np.unique(labels, return_counts=True)) clustering = KMeans(n_clusters=5, random_state=0) fited_clustering = clustering.fit(bow) labels = fited_clustering.labels_ labels = [str(l) for l in labels] print('kmeans', np.unique(labels, return_counts=True)) colab_net.vs['pac_kmeans'] = labels # pca = PCA(n_components=3) # bow_3d = pca.fit_transform(bow) # print(bow_3d) # fig = plt.figure() # ax = fig.add_subplot(111,projection='3d') # color = {'0':'red','1':'blue','2':'green','3':'black','4':'orange','5':'yellow','6':'pink','7':'purple','8':'magenta','9':'cyan'} # colors = [color[l] for l in labels] # ax.scatter(bow_3d[:,0],bow_3d[:,1],bow_3d[:,2],c=colors,alpha=0.5) # plt.savefig('test_kmeans_'+str(year)+'.pdf',format='pdf') return colab_net def get_largest_component(g): components = g.components() giant = components.giant() return giant def identify_communities_multilevel(net, lvl): giant = get_largest_component(net) comm_level = giant.community_multilevel(weights='weight', return_levels=True) t = len(comm_level) - 1 comms = comm_level[min(lvl, t)] comm_list = comms.subgraphs() # communities in current level print('Level', min(lvl, t), 'Number of communities identified:', len(comm_list)) net_copy = net.copy() net_copy.vs['community'] = "-1" for idx, c_graph in enumerate(comm_list): for v1 in c_graph.vs: v2 = net_copy.vs.find(name=v1['name']) v2['community'] = str(idx + 1) return net_copy def pac_nets_comm(files): for f in files: pac_net = xnet.xnet2igraph(f) pac_net = identify_communities_multilevel(pac_net, 0) # xnet.igraph2xnet(pac_net, f[:-5]+'_multilevel2.xnet') def authors_to_str(): year = 1990 for f in files: print(f) colab_net = xnet.xnet2igraph(f) vtx2del = [vtx for vtx in colab_net.vs if colab_net.degree(vtx) == 0] colab_net.delete_vertices(vtx2del) vecs = authors2str(colab_net, data) for vtx, vec in zip(colab_net.vs, vecs): vtx['pac_list'] = vec xnet.igraph2xnet(colab_net, f[:-5] + '_with_author_pac_list.xnet') year += 1 if __name__ == '__main__': code2name = {'01': "Communication, education, history, and philosophy", '02': "Mathematical methods in physics", '03': "Quantum mechanics, fiel theories, and special relativity", '04': "General relativity and gravitation", '05': "Statistical physics, thermodynamics, and nonlinear dynamical systems", '11': "General theory of fields and particles", '12': "Specific theories and interaction models; particle systematics", '13': "Specific reactions and phenomenology", '14': "Properties of specific particles", '21': 'Nuclear structure', '24': 'Nuclear reactions: general', '25': 'Nuclear reactions: specific reactions', '27': 'Properties of specific nuclei listed by mass ranges', '29': 'Experimental methods and instrumentation for elementary particle and nuclear physics', '32': 'Atomic properties and interactions with photons', '34': 'Atomic and molecular collision processes and interactions', '41': 'Electromagnetism; electron and ion optics', '42': 'Optics', '47': 'Fluid dynamics', '52': 'Physics of plasmas and electric discharges', '61': 'Structure of solids and liquids; crystallography', '64': 'Equations of state, phase equilibria, and phase transitions', '68': 'Surfaces and interfaces; thin films and nanosystems (structure and nonelectronic properties)', '71': 'Electronic structure of bulk materials', '73': 'Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures', '74': 'Superconductivity', '75': 'Magnetic properties and materials', '78': 'Optical properties, condensed - matter spectroscopy and other interactions of radiation and particles with condensed matter', '81': 'Materials science', '82': 'Physical chemistry and chemical physics', '84': 'Electronics; radiowave and microwave technology; direct energy conversion and storage', '87': 'Biological and medical physics', '94': 'Physics of the ionosphere and magnetosphere', '95': 'Fundamental astronomy and astrophysics; instrumentation, techniques, and astronomical observations', '97': 'Stars', '98': 'Stellar systems; interstellar medium; galactic and extragalactic objects and systems; the Unive'} # authors_to_str() # files = 'colabs/wbasic/*0.5*selected_wb_with_author_pac_list.xnet' files = 'data/pacs/2lvls/*delta4_v3.xnet' # files = glob.glob(files) files = sorted(files) # # pac_nets_comm(files) # PACS distribuição para 2010 file = 'data/pacs/2lvls/pac_net_2006_2lvls_delta4_v3_multilevel2.xnet' pacs_net_2006 = xnet.xnet2igraph(file) data = xnet.xnet2igraph('data/citation_network_ge1991_pacs.xnet') papers_2006 = data.vs.select(year_ge=2006, year_le=2010) attr_pacs = get_attr_pacs() pac_list = get_pac_list() comms = dict() for pac in pacs_net_2006.vs: comms[pac['name']] = pac['community'] pac_disc = defaultdict(lambda: []) paper_count = defaultdict(lambda: set()) author_count = defaultdict(lambda: set()) for paper in papers_2006: for attr in attr_pacs: pac = paper[attr][:2] if pac not in pac_list: continue c = comms[pac] paper_count[c].add(paper.index) pac_disc[c].append(pac) for author in paper['authors_idxs'].split(','): author_count[c].add(author) print('pac count') for comm in pac_disc.keys(): print(comm) dist_pacs = pac_disc[comm] u, c = np.unique(dist_pacs, return_counts=True) print(sum(c)) idx =
np.argsort(-c)
numpy.argsort
""" Experiment 1: swarm tec correlation - for various background estimation sizes and artifact keys: - collect random days - get dtec prof - interpolate swarm dne at the profile points - estimate mean and covariance between the two """ import numpy as np import pandas from ttools import io, rbf_inversion, swarm, utils, config, convert LW = 9 def run_experiment(n, bg_est_shape, artifact_key): start_date = np.datetime64("2014-01-01") end_date = np.datetime64("2020-01-01") time_range_days = (end_date - start_date).astype('timedelta64[D]').astype(int) offsets = np.random.randint(0, time_range_days, n) dates = start_date + offsets.astype('timedelta64[D]') x = [] dne = [] mlat_x = [] mlat_dne = [] for date in dates: _x, _dne, _mlat_x, _mlat_dne = run_day(date, bg_est_shape, artifact_key) x += _x dne += _dne mlat_x += _mlat_x mlat_dne += _mlat_dne x = np.concatenate(x, axis=0) dne = np.concatenate(dne, axis=0) mlat_x = np.array(mlat_x) mlat_dne = np.array(mlat_dne) data = np.column_stack((x, dne)) mean = np.nanmean(data, axis=0) cov = pandas.DataFrame(data=data).corr().values mlat_data = np.column_stack((mlat_x, mlat_dne)) mlat_mean = np.nanmean(mlat_data, axis=0) mlat_cov = pandas.DataFrame(data=mlat_data).cov().values return mean, cov, mlat_mean, mlat_cov def run_day(date, bg_est_shape, artifact_key): print(f"Running {date}") one_h = np.timedelta64(1, 'h') start_time = date.astype('datetime64[D]').astype('datetime64[s]') end_time = start_time + np.timedelta64(1, 'D') comparison_times = np.arange(start_time, end_time, one_h) swarm_segments = swarm.get_segments_data(comparison_times) swarm_troughs = swarm.get_swarm_troughs(swarm_segments) tec_start = comparison_times[0] -
np.floor(bg_est_shape[0] / 2)
numpy.floor
import pandas as pd from lifelines import KaplanMeierFitter, CoxPHFitter import numpy as np from sklearn.exceptions import ConvergenceWarning from multiprocessing import Pool import numpy as np import functools from .correlation import intersection, header_list import plotly import plotly.offline as opy from sklearn.preprocessing import StandardScaler from sklearn.model_selection import ShuffleSplit, GridSearchCV import warnings ####################### ### Sklearn Survival ## ####################### class EarlyStoppingMonitor: def __init__(self, window_size, max_iter_without_improvement): self.window_size = window_size self.max_iter_without_improvement = max_iter_without_improvement self._best_step = -1 def __call__(self, iteration, estimator, args): # continue training for first self.window_size iterations if iteration < self.window_size: return False # compute average improvement in last self.window_size iterations. # oob_improvement_ is the different in negative log partial likelihood # between the previous and current iteration. start = iteration - self.window_size + 1 end = iteration + 1 improvement = np.mean(estimator.oob_improvement_[start:end]) if improvement > 1e-6: self._best_step = iteration return False # continue fitting # stop fitting if there was no improvement # in last max_iter_without_improvement iterations diff = iteration - self._best_step return diff >= self.max_iter_without_improvement def IPC_RIDGE(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.linear_model import IPCRidge from sklearn.pipeline import make_pipeline # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) y_train_log = y_train.copy() y_train_log["time"] = np.log1p(y_train["time"]) y_test_log = y_test.copy() y_test_log["time"] = np.log1p(y_test["time"]) #https://github.com/sebp/scikit-survival/issues/41 n_alphas = 50 alphas = np.logspace(-10, 1, n_alphas) gcv = GridSearchCV(IPCRidge(max_iter=100000), {"alpha":alphas}, cv = 2, n_jobs=10).fit(X_train,y_train_log) best_model = gcv.best_estimator_.named_steps["IPCRidge"] alpha = best_model.alphas_ scoreTraining = best_model.score(X_train,y_train_log) scoreTest = best_model.score(X_test,y_test_log) feature = pd.DataFrame(best_model.coef_, index=lFeature)[0] return scoreTraining, scoreTest, feature def score_survival_model(model, X, y): from sksurv.metrics import concordance_index_censored prediction = model.predict(X) result = concordance_index_censored(y['event'], y['time'], prediction) return result[0] def SurvivalSVM(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.svm import FastSurvivalSVM import numpy as np # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) ssvm = FastSurvivalSVM(max_iter=100, tol=1e-5, random_state=seed) param_grid = {'alpha': 2. ** np.arange(-12, 13, 4)} cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=seed) gcv = GridSearchCV(ssvm, param_grid, scoring=score_survival_model, n_jobs = n_core , refit=False, cv=cv) warnings.filterwarnings("ignore", category=FutureWarning) gcv = gcv.fit(X_train, y_train) ssvm.set_params(**gcv.best_params_) ssvm.fit(X_train, y_train) scoreTraining = ssvm.score(X_train,y_train) scoreTest = ssvm.score(X_test,y_test) feature = pd.Series(ssvm.coef_, index=lFeature) return scoreTraining, scoreTest, feature def PenaltyCox(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.linear_model import CoxPHSurvivalAnalysis, CoxnetSurvivalAnalysis from sklearn.pipeline import make_pipeline seed = np.random.RandomState(seed) # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) model = CoxnetSurvivalAnalysis(alpha_min_ratio=0.12, l1_ratio=0.9, max_iter=100) #https://github.com/sebp/scikit-survival/issues/41 model.set_params(max_iter = 100, n_alphas = 50) model.fit(X_train, y_train) warnings.simplefilter("ignore", ConvergenceWarning) alphas = model.alphas_ gcv = GridSearchCV( make_pipeline(CoxnetSurvivalAnalysis(l1_ratio=0.9, max_iter=1000)), param_grid={"coxnetsurvivalanalysis__alphas": [[v] for v in alphas]}, cv = 2, n_jobs= n_core).fit(X_train,y_train) best_model = gcv.best_estimator_.named_steps["coxnetsurvivalanalysis"] alpha = best_model.alphas_ scoreTraining = best_model.score(X_train,y_train) scoreTest = best_model.score(X_test,y_test) feature = pd.DataFrame(best_model.coef_, index=lFeature)[0] return scoreTraining, scoreTest, feature def SurvivalForest(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.ensemble import RandomSurvivalForest from eli5.formatters import format_as_dataframe from eli5.sklearn import explain_weights_sklearn from eli5.sklearn import PermutationImportance # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) rsf = RandomSurvivalForest(n_estimators=300, min_samples_split=10, min_samples_leaf=15, max_features="sqrt", n_jobs= n_core, random_state=seed) rsf.fit(X_train, y_train) scoreTraining = rsf.score(X_train,y_train) scoreTest = rsf.score(X_test,y_test) perm = PermutationImportance(rsf, n_iter=3, random_state=seed) perm.fit(X_test, y_test) feature = format_as_dataframe(explain_weights_sklearn(perm, feature_names=lFeature, top = len(lFeature) )) feature = pd.Series(feature["weight"].tolist(), index=feature["feature"].tolist()) #feature = pd.DataFrame(rsf.feature_importances_, index=lFeature) return scoreTraining, scoreTest, feature def gradient_boosted_models(X_train, y_train, X_test, y_test, lFeature = None, n_core = 2, seed = 123): from sksurv.ensemble import GradientBoostingSurvivalAnalysis # let's normalize, anyway scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) seed = np.random.RandomState(seed) model = GradientBoostingSurvivalAnalysis( n_estimators=1000, learning_rate=0.05, subsample=0.5, max_depth=1, random_state=seed ) monitor = EarlyStoppingMonitor(25, 100) model.fit(X_train, y_train, monitor=monitor) scoreTraining = model.score(X_train,y_train) scoreTest = model.score(X_test,y_test) feature = pd.Series(model.feature_importances_, index=lFeature) return scoreTraining, scoreTest, feature def survival_selection(data, k = 10, topk = 100, event = "event", n_core = 2, seed = 123): from sksurv.datasets import get_x_y from sklearn.model_selection import StratifiedKFold import copy from miopy.feature_selection import sort_abs # list of classifiers, selected on the basis of our previous paper " modelList = [ [gradient_boosted_models,"Gradient Boosted Models"], [SurvivalSVM,"Support Vector Machine"], #[SurvivalForest,"Random Forest",], [PenaltyCox,"Penalized Cox",] ] print("Loading dataset...") X, Y = get_x_y(data, attr_labels = [event,"time"], pos_label=0) skf = StratifiedKFold(n_splits=k, shuffle=True, random_state =
np.random.RandomState(seed)
numpy.random.RandomState
try: from matplotlib import pyplot as plt import matplotlib except: import matplotlib matplotlib.rcParams['backend'] = 'TkAgg' from matplotlib import pyplot as plt import numpy as np import pdb def cornertex(s, ax, offset=(0,0), fontsize=14): plt.text(0.02+offset[0],0.95+offset[1],s,transform=ax.transAxes,color='k',va='top',ha='left',fontsize=fontsize, zorder=100) class DataPlt(): ''' Dynamic plot context, intended for displaying geometries. like removing axes, equal axis, dynamically tune your figure and save it. Args: figsize (tuple, default=(6,4)): figure size. filename (filename, str): filename to store generated figure, if None, it will not save a figure. Attributes: figsize (tuple, default=(6,4)): figure size. filename (filename, str): filename to store generated figure, if None, it will not save a figure. ax (Axes): matplotlib Axes instance. Examples: with DynamicShow() as ds: c = Circle([2, 2], radius=1.0) ds.ax.add_patch(c) ''' def __init__(self, figsize=(6, 4), filename=None, dpi=300): self.figsize = figsize self.filename = filename self.ax = None self.fig = None def __enter__(self): _setup_mpl() plt.ion() self.fig = plt.figure(figsize=self.figsize) self.ax = plt.gca() return self def __exit__(self, *args): if self.filename is not None: print('Press `c` to save figure to "%s", `Ctrl+d` to break >>' % self.filename) pdb.set_trace() plt.savefig(self.filename, dpi=300) else: pdb.set_trace() class NoBoxPlt(): ''' Dynamic plot context, intended for displaying geometries. like removing axes, equal axis, dynamically tune your figure and save it. Args: figsize (tuple, default=(6,4)): figure size. filename (filename, str): filename to store generated figure, if None, it will not save a figure. Attributes: figsize (tuple, default=(6,4)): figure size. graph_layout (tuple|None): number of graphs, None for single graph. filename (filename, str): filename to store generated figure, if None, it will not save a figure. ax (Axes): matplotlib Axes instance. Examples: with DynamicShow() as ds: c = Circle([2, 2], radius=1.0) ds.ax.add_patch(c) ''' def __init__(self, figsize=(6, 4), graph_layout=None, filename=None, dpi=300): self.figsize = figsize self.filename = filename self.ax = None self.graph_layout = graph_layout def __enter__(self): _setup_mpl() plt.ion() self.fig = plt.figure(figsize=self.figsize) if self.graph_layout is None: self.ax = plt.subplot(111) else: self.ax = [] self.gs = plt.GridSpec(*self.graph_layout) for i in range(self.graph_layout[0]): for j in range(self.graph_layout[1]): self.ax.append(plt.subplot(self.gs[i, j])) return self def __exit__(self, *args): axes = [self.ax] if self.graph_layout is None else self.ax for ax in axes: ax.axis('equal') ax.axis('off') plt.tight_layout() if self.filename is not None: print('Press `c` to save figure to "%s", `Ctrl+d` to break >>' % self.filename) pdb.set_trace() plt.savefig(self.filename, dpi=300) else: pdb.set_trace() def _setup_mpl(): '''customize matplotlib.''' plt.rcParams['lines.linewidth'] = 2 plt.rcParams['axes.labelsize'] = 16 plt.rcParams['axes.titlesize'] = 18 plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = 'Ubuntu' plt.rcParams["mathtext.fontset"] = "dejavuserif" plt.rcParams['font.monospace'] = 'Ubuntu Mono' plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['xtick.labelsize'] = 16 plt.rcParams['ytick.labelsize'] = 16 plt.rcParams['legend.fontsize'] = 14 plt.rcParams['figure.titlesize'] = 18 def _setup_font(): myfont = matplotlib.font_manager.FontProperties( family='wqy', fname='/usr/share/fonts/truetype/wqy/wqy-microhei.ttc') matplotlib.rcParams["pdf.fonttype"] = 42 return myfont def visualize_tree(pairs, geometry): if len(geometry)==2: xs, ys = np.meshgrid(np.arange(geometry[0]), np.arange(geometry[1]), indexing='ij') else: num_bit = geometry[0] t = np.linspace(0,2*np.pi*(num_bit-1)/num_bit,num_bit) xs, ys = np.cos(t), np.sin(t) locs = np.concatenate([xs[...,None], ys[...,None]], axis=-1).reshape([-1,2]) plt.scatter(locs[:,0], locs[:,1], s=80, zorder=101) for i, loc in enumerate(locs): plt.text(loc[0], loc[1]-0.2, '%d'%i, fontsize=18, va='center', ha='center') wl = np.array([p[2] for p in pairs]) w_interval = wl.max()-wl.min() wl/=w_interval*1.2 wl-=wl.min()-0.01 print(wl) for (i, j, _), w in zip(pairs, wl): start, end = locs[i], locs[j] cmap = plt.get_cmap('jet') plt.plot([start[0], end[0]], [start[1], end[1]],color=cmap(w*10)) def visualize_tree(pairs, geometry, engine='viznet', offsets=None): if len(geometry)==2: xs, ys = np.meshgrid(np.arange(geometry[0]), np.arange(geometry[1]), indexing='ij') num_bit = np.prod(geometry) else: num_bit = geometry[0] t = np.linspace(0,2*np.pi*(num_bit-1)/num_bit,num_bit) xs, ys = np.sqrt(num_bit)/2.5*np.cos(t), np.sqrt(num_bit)/2.5*np.sin(t) locs =
np.concatenate([xs[...,None], ys[...,None]], axis=-1)
numpy.concatenate
#%% import random import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras import seaborn as sns import numpy as np import pickle from sklearn.model_selection import StratifiedKFold from math import log2, ceil import sys sys.path.append("../../src/") from lifelong_dnn import LifeLongDNN from joblib import Parallel, delayed #%% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def get_colors(colors, inds): c = [colors[i] for i in inds] return c def generate_2d_rotation(theta=0, acorn=None): if acorn is not None: np.random.seed(acorn) R = np.array([ [np.cos(theta), np.sin(theta)], [-np.sin(theta), np.cos(theta)] ]) return R def generate_spirals(N, D=2, K=5, noise = 0.5, acorn = None, density=0.3): #N number of poinst per class #D number of features, #K number of classes X = [] Y = [] if acorn is not None: np.random.seed(acorn) if K == 2: turns = 2 elif K==3: turns = 2.5 elif K==5: turns = 3.5 elif K==7: turns = 4.5 else: print ("sorry, can't currently surpport %s classes " %K) return mvt = np.random.multinomial(N, 1/K * np.ones(K)) if K == 2: r = np.random.uniform(0,1,size=int(N/K)) r = np.sort(r) t = np.linspace(0, np.pi* 4 * turns/K, int(N/K)) + noise * np.random.normal(0, density, int(N/K)) dx = r * np.cos(t) dy = r* np.sin(t) X.append(np.vstack([dx, dy]).T ) X.append(np.vstack([-dx, -dy]).T) Y += [0] * int(N/K) Y += [1] * int(N/K) else: for j in range(1, K+1): r = np.linspace(0.01, 1, int(mvt[j-1])) t = np.linspace((j-1) * np.pi *4 *turns/K, j* np.pi * 4* turns/K, int(mvt[j-1])) + noise * np.random.normal(0, density, int(mvt[j-1])) dx = r * np.cos(t) dy = r* np.sin(t) dd = np.vstack([dx, dy]).T X.append(dd) #label Y += [j-1] * int(mvt[j-1]) return np.vstack(X), np.array(Y).astype(int) #%% def experiment(n_spiral3, n_spiral5, n_test, reps, n_trees, max_depth, acorn=None): #print(1) if n_spiral3==0 and n_rxor==0: raise ValueError('Wake up and provide samples to train!!!') if acorn != None: np.random.seed(acorn) errors = np.zeros((reps,4),dtype=float) for i in range(reps): l2f = LifeLongDNN() uf = LifeLongDNN() #source data spiral3, label_spiral3 = generate_spirals(n_spiral3, 2, 3, noise = 2.5) test_spiral3, test_label_spiral3 = generate_spirals(n_test, 2, 3, noise = 2.5) #target data spiral5, label_spiral5 = generate_spirals(n_spiral5, 2, 5, noise = 2.5) test_spiral5, test_label_spiral5 = generate_spirals(n_test, 2, 5, noise = 2.5) if n_spiral3 == 0: l2f.new_forest(spiral5, label_spiral5, n_estimators=n_trees,max_depth=max_depth) errors[i,0] = 0.5 errors[i,1] = 0.5 uf_task2=l2f.predict(test_spiral5, representation=0, decider=0) l2f_task2=l2f.predict(test_spiral5, representation='all', decider=0) errors[i,2] = 1 -
np.sum(uf_task2 == test_label_spiral5)
numpy.sum
#!/usr/bin/env python # -*- coding: utf-8 -*- r"""RBDL model interface used in priority tasks. This is based on the implementation in `https://github.com/ADVRHumanoids/ModelInterfaceRBDL`, which is licensed under the LPGLv3. References: - [1] "OpenSoT: A whole-body control library for the compliant humanoid robot COMAN", Rocchi et al., 2015 - [2] "Robot Control for Dummies: Insights and Examples using OpenSoT", Hoffman et al., 2017 - [3] "Rigid Body Dynamics Algorithms", Featherstone, 2008 """ import numpy as np import rbdl from pyrobolearn.priorities.models import ModelInterface from pyrobolearn.utils.transformation import get_quaternion_from_matrix __author__ = "<NAME>" __copyright__ = "Copyright 2019, PyRoboLearn" __credits__ = ["<NAME> (C++)", "<NAME> (C++)", "<NAME> (Python + doc)"] __license__ = "GNU GPLv3" __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" class RBDLModelInterface(ModelInterface): r"""RBDL Model interface. """ def __init__(self, urdf, floating_base=False, verbose=False): """ Initialize the RBDL model interface. Args: urdf (str): path to the URDF file. floating_base (bool): set this variable to True, if we have a floating-based robot. verbose (bool): if True, it will print information when loading the URDF. """ # load the RBDL model model = rbdl.loadModel(filename=urdf.encode(), floating_base=floating_base, verbose=verbose) # call parent constructor super(RBDLModelInterface, self).__init__(model) # define joint attributes self.zeros = np.zeros(self.model.q_size) self._q = np.zeros(self.model.q_size) self._dq = np.zeros(self.model.qdot_size) self._ddq = np.zeros(self.model.qdot_size) self.mass = 0 for body_id in range(len(self.model.mBodies)): body = self.model.mBodies[body_id] self.mass += body.mMass self.com = np.zeros(3) self.com_vel = np.zeros(3) self.com_acc = np.zeros(3) self.angular_momentum_com = np.zeros(3) self.change_angular_momentum_com = np.zeros(3) ############## # Properties # ############## @property def model(self): """Return the model instance.""" return self._model @model.setter def model(self, model): """Set the model instance.""" if not isinstance(model, rbdl.Model): raise TypeError("Expecting the given 'model' to be an instance of `rbdl.Model`, instead got: " "{}".format(type(model))) self._model = model @property def num_dofs(self): """Return the number of degrees of freedom.""" return self.model.dof_count ########### # Methods # ########### def get_link_id(self, link): """ Return the link id associated with the given name. Args: link (str, int): unique link name (or id). If id, it will just return the argument. Returns: int: unique link id """ if isinstance(link, (str, bytes)): if link == 'world' or link == 'ROOT': link = self.model.GetBodyId('ROOT'.encode()) else: link = self.model.GetBodyId(link.encode()) if link >= 4294967295: raise ValueError("The given link doesn't exist in the RBDL model.") return link def get_mass(self): """ Return the total mass of the model. Returns: float: total mass """ return self.mass def has_floating_base(self): """ Return True if we have a floating base. Returns: bool: True if floating base. """ if len(self.model.mBodies) - 1 != self.model.dof_count: # mBodies contains 'ROOT' as well return True return False def get_floating_base_link(self): """ Return the floating base link. Returns: int: floating base link """ pass def get_joint_positions(self): """ Get the joint positions. Returns: np.array[float[N]]: the joint positions. """ return self._q def get_joint_velocities(self): """ Get the joint velocities. Returns: np.array[float[N]]: the joint positions. """ return self._dq def get_joint_accelerations(self): """ Get the joint accelerations. Returns: np.array[float[N]]: the joint positions. """ return self._ddq def get_com_position(self): """ Get the position of the center of mass (CoM). Returns: np.array[float[3]]: position of the center of mass """ # return rbdl.CalcCenterOfMass(self.model, self._q, self._dq, self._ddq, self.com, self.com_vel, self.com_acc, # self.angular_momentum_com, self.change_angular_momentum_com, # update_kinematics=True) rbdl.CalcCenterOfMass(self.model, self._q, self._dq, self._ddq, self.com) # TODO: update library return self.com def get_com_velocity(self): """ Get the linear CoM velocity. Returns: np.array[float[3]]: CoM velocity. """ rbdl.CalcCenterOfMass(self.model, self._q, self._dq, self._ddq, self.com, com_velocity=self.com_vel) return self.com_vel def get_com_acceleration(self): """ Get the linear CoM acceleration. Returns: np.array[float[3]]: CoM acceleration. """ rbdl.CalcCenterOfMass(self.model, self._q, self._dq, self._ddq, self.com, com_acceleration=self.com_acc) return self.com_acc def get_com_jacobian(self, full=False): """ Get the CoM Jacobian. Args: full (bool): if True, it will return the jacobian as the concatenation of the angular and linear Jacobian. Otherwise, it will just return the linear Jacobian. Returns: if full: np.array[float[6,N]]: CoM Jacobian (concatenation of the angular and linear Jacobian, where N is the number of DoFs) else: np.array[float[3,N]]: CoM Jacobian (only the linear part) """ jacobian = np.zeros((6, self.num_dofs)) if full else np.zeros((3, self.num_dofs)) mass = 0 for body_id in range(len(self.model.mBodies)): body = self.model.mBodies[body_id] jac = np.zeros(3, self.num_dofs) rbdl.CalcPointJacobian(self.model, self._q, body_id, body.mCenterOfMass, jac, update_kinematics=False) if full: jacobian[3:] += body.mMass * jac else: jacobian += body.mMass * jac mass += body.mMass return jacobian / mass def get_gravity(self): """ Get the gravity vector applied on the model. Returns: np.array[float[3]]: gravity vector expressed in the world frame. """ return m.gravity def set_gravity(self, gravity): """ Set the gravity vector applied on the model. Args: gravity (np.array[float[3]]): gravity vector expressed in the world frame. """ m.gravity = gravity def get_model_ordered_joint_names(self): """ Get the model ordered joint names. Returns: list[str]: list of joint names. """ pass def get_jacobian(self, link, wrt_link=None, point=(0., 0., 0.)): # TODO: wrt_link r""" Get the 6D Jacobian for a point on a link, that when multiplied with :math:`\dot{q}` gives a 6D vector that has the angular velocity as the first three entries and the linear velocity as the last three entries. .. math:: v = [\omega, \dot{p}] = J(q) \dot{q} where :math:`J(q)` is the concatenation of the angular and linear Jacobian. Args: link (int, str): unique link id, or name. wrt_link (int, str, None): unique link id, or name. If specified, it will take the relative jacobian. If None, the jacobian will be taken with respect to the world frame. point (np.array[float[3]]): position of the point in link's local frame. Returns: np.array[float[6,N]]: 6D Jacobian (=concatenation of the angular and linear Jacobian). """ link = self.get_link_id(link) jacobian = np.zeros((6, self.num_dofs)) point = np.asarray(point) rbdl.CalcPointJacobian6D(self.model, self._q, link, point, jacobian, update_kinematics=False) return jacobian def get_pose(self, link, wrt_link=None, point=(0., 0., 0.)): """ Return the pose of the specified link with respect to the other given link. Args: link (int, str): unique link id, or name. wrt_link (int, str, None): the other link id, or name. If None, returns the position wrt to the world, and if -1 wrt to the base. point (np.array[float[3]]): position of the point in link's local frame. Returns: np.array[float[7]]: pose (position and quaternion expressed as [x,y,z,w]) """ link = self.get_link_id(link) point = np.asarray(point) position = rbdl.CalcBodyToBaseCoordinates(self.model, self._q, link, point, update_kinematics=False) orientation = rbdl.CalcBodyWorldOrientation(self.model, self._q, link, update_kinematics=False) orientation = get_quaternion_from_matrix(orientation) return np.concatenate((position, orientation)) def get_velocity_twist(self, link, point=(0., 0., 0.)): r""" Compute the angular and linear velocity of a link, given by :math:`v = [\omega, \dot{p}]`. Args: link (int, str): unique link id, or name. point (np.array[float[3]]): position of the point in link's local frame. Returns: np.array[float[6]]: The resulting 6D spatial velocity vector where the first three elements are the angular velocity and the last three are the linear velocity expressed in the global world reference frame. """ link = self.get_link_id(link) point =
np.asarray(point)
numpy.asarray
# -*- coding: utf-8 -*- """ chebpy.osf ========== OSS and OSC class. """ import numpy as np from scipy.fftpack import dst, idst, dct, idct from scipy.fftpack import fft, ifft, fft2, ifft2, fftn, ifftn __all__ = ['OSS', # Operator Splitting, Sine basis 'OSC', # Operator Splitting, Cosine basis 'OSF', # Operator splitting, Fourier basis, 1D 'OSF2d', # Operator splitting, Fourier basis, 2D 'OSF3d', # Operator splitting, Fourier basis, 3D ] class OSS(object): def __init__(self, Lx, N, Ns, h=None): ''' :param:Lx: physical size of the 1D spacial grid. :param:Ns: number of grid points in time. :param:N: number of grid points in space. :param:h: time step. ''' self.Lx = Lx self.N = N self.Ns = Ns if h is None: self.h = 1. / (Ns - 1) else: self.h = h self.update() def update(self): ii = np.arange(self.N+1) self.x = 1. * ii * self.Lx / self.N k2 = (np.pi/self.Lx)**2 * np.arange(1, self.N)**2 self.expd = np.exp(-self.h * k2) def solve(self, w, u0, q=None): ''' dq/dt = Dq + Wq = Dq - wq ''' u = u0.copy() v = u[1:-1] # v = {u[1], u[2], ..., u[N-1]} expw = np.exp(-0.5 * self.h * w[1:-1]) for i in xrange(self.Ns-1): v = expw * v ak = dst(v, type=1) / self.N * self.expd v = 0.5 * idst(ak, type=1) v = expw * v if q is not None: q[i+1, 1:-1] = v u[1:-1] = v u[0] = 0.; u[-1] = 0.; return (u, self.x) class OSC(object): def __init__(self, Lx, N, Ns, h=None): ''' :param:Lx: physical size of the 1D spacial grid. :param:Ns: number of grid points in time. :param:N: number of grid points in space. :param:h: time step. ''' self.Lx = Lx self.N = N self.Ns = Ns if h is None: self.h = 1. / (Ns - 1) else: self.h = h self.update() def update(self): ii = np.arange(self.N+1) self.x = 1. * ii * self.Lx / self.N k2 = (np.pi/self.Lx)**2 * np.arange(self.N+1)**2 self.expd = np.exp(-self.h * k2) def solve(self, w, u0, q=None): ''' dq/dt = Dq + Wq = Dq - wq ''' u = u0.copy() expw = np.exp(-0.5 * self.h * w) for i in xrange(self.Ns-1): u = expw * u ak = dct(u, type=1) / self.N * self.expd u = 0.5 * idct(ak, type=1) u = expw * u if q is not None: q[i+1] = u return (u, self.x) class OSF(object): def __init__(self, Lx, N, Ns, h=None): ''' :param:Lx: physical size of the 1D spacial grid. :param:N: number of grid points in space. :param:Ns: number of grid points in time. :param:h: time step. ''' self.Lx = Lx self.N = N self.Ns = Ns if h is None: self.h = 1. / (Ns - 1) else: self.h = h self.update() def update(self): Lx = self.Lx N = self.N h = self.h k2 = [i**2 for i in xrange(N/2+1)] # i=0, 1, ..., N/2 k2.extend([(N-i)**2 for i in xrange(N/2+1, N)]) # i=N/2+1, ..., N-1 k2 = np.array(k2) * (2*np.pi/Lx)**2 self.expd = np.exp(-h * k2) def solve(self, w, u0, q=None): ''' dq/dt = Dq + Wq = Dq - wq ''' u = u0.copy() h = self.h expw = np.exp(-0.5 * h * w) for i in xrange(self.Ns-1): u = expw * u ak = fft(u) * self.expd u = ifft(ak).real u = expw * u if q is not None: q[i+1, :] = u return u class OSF2d(object): def __init__(self, Lx, Ly, Nx, Ny, Ns, h=None): ''' :param:Lx: physical size of the 1D spacial grid. :param:N: number of grid points in space. :param:Ns: number of grid points in time. :param:h: time step. ''' self.Lx = Lx self.Ly = Ly self.Nx = Nx self.Ny = Ny self.Ns = Ns if h is None: self.h = 1. / (Ns - 1) else: self.h = h self.update() def update(self): Lx = self.Lx Ly = self.Ly Nx = self.Nx Ny = self.Ny h = self.h ccx = (2*np.pi/Lx)**2 ccy = (2*np.pi/Ly)**2 k2 = np.zeros((Nx,Ny)) for i in xrange(Nx): for j in xrange(Ny): if i < Nx/2+1: kx2 = i**2 else: kx2 = (Nx-i)**2 if j < Ny/2+1: ky2 = j**2 else: ky2 = (Ny-j)**2 k2[i,j] = ccx * kx2 + ccy * ky2 self.expd = np.exp(-h * k2) def solve(self, w, u0, q=None): ''' dq/dt = Dq + Wq = Dq - wq ''' u = u0.copy() h = self.h expw = np.exp(-0.5 * h * w) for i in xrange(self.Ns-1): u = expw * u ak = fft2(u) * self.expd u = ifft2(ak).real u = expw * u if q is not None: q[i+1] = u return u class OSF3d(object): def __init__(self, Lx, Ly, Lz, Nx, Ny, Nz, Ns, h=None): ''' :param:Lx: physical size of the 1D spacial grid. :param:N: number of grid points in space. :param:Ns: number of grid points in time. :param:h: time step. ''' self.Lx = Lx self.Ly = Ly self.Lz = Lz self.Nx = Nx self.Ny = Ny self.Nz = Nz self.Ns = Ns if h is None: self.h = 1. / (Ns - 1) else: self.h = h self.update() def update(self): Lx = self.Lx Ly = self.Ly Lz = self.Lz Nx = self.Nx Ny = self.Ny Nz = self.Nz h = self.h ccx = (2*np.pi/Lx)**2 ccy = (2*np.pi/Ly)**2 ccz = (2*np.pi/Lz)**2 k2 =
np.zeros((Nx,Ny,Nz))
numpy.zeros
""" A module containing LCPrimitive and its subclasses. They implement components of a pulsar light curve. Includes primitives (Gaussian, Lorentzian), etc. as well as more sophisticated holistic templates that provide single-parameter (location) representations of the light curve. $Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/pulsar/lcprimitives.py,v 1.35 2017/03/17 21:37:52 kerrm Exp $ author: <NAME> <<EMAIL>> """ # NB -- big TODO -- I don't think wrapped primitives quite correctly return # Monte Carlo variables because they don't account for the uniform approx. # perhaps this isn't a big deal import numpy as np from scipy.special import erf,i0,i1 from scipy.integrate import simps,quad from scipy.interpolate import interp1d from scipy.stats import norm,cauchy from math import sin,cos,sinh,cosh,atan,tan ROOT2PI = (2*np.pi)**0.5 R2DI = (2/np.pi)**0.5 ROOT2 = 2**0.5 TWOPI = (2*np.pi) PI = np.pi*1 MAXWRAPS = 15 MINWRAPS = 3 WRAPEPS = 1e-8 # TODO -- possible "LCBase" class with certain method common to LCPrimitive and LCTemplate def two_comp_mc(n,w1,w2,loc,func): """ Helper function to generate MC photons from a two-sided distribution. NB -- this should work as is if w1,w2,loc are vectors. n -- total number of photons w1 -- scale parameter for func, lefthand peak w2 -- scale parameter for func, righthand peak loc -- position of peak func -- an 'rvs' function from scipy """ frac1 = w1/(w1+w2) # number of photons required from left side n1 = (np.random.rand(n) < frac1).sum() r1 = func(loc=0,scale=w1,size=n1) # reflect and relocate photons to right or lef side r1 = loc + np.where(r1<=0,r1,-r1) r2 = func(loc=0,scale=w2,size=n-n1) r2 = loc + np.where(r2>0,r2,-r2) return np.mod(np.append(r1,r2),1) def approx_gradient(func,phases,log10_ens,eps=1e-6): """ Return a numerical gradient. This works for both LCPrimitive and LCTemplate objects. HOW AWESOME! """ orig_p = func.get_parameters(free=False).copy() g = np.zeros([len(orig_p),len(phases)]) weights = np.asarray([-1,8,-8,1])/(12*eps) def do_step(which,eps): p0 = orig_p.copy() p0[which] += eps func.set_parameters(p0,free=False) return func(phases,log10_ens) for i in range(len(orig_p)): # use a 4th-order central difference scheme for j,w in zip([2,1,-1,-2],weights): g[i,:] += w*do_step(i,j*eps) func.set_parameters(orig_p,free=False) return g def check_gradient(func,atol=1e-8,rtol=1e-5,quiet=False): """ Test gradient function with a set of MC photons. This works with either LCPrimitive or LCTemplate objects. TODO -- there is trouble with the numerical gradient when a for the location-related parameters when the finite step causes the peak to shift from one side of an evaluation phase to the other.""" en = np.random.rand(1000)*2 + 1 # 100 MeV to 10 GeV ph = func.random(en) if hasattr(func,'closest_to_peak'): eps = min(1e-6,0.2*func.closest_to_peak(ph)) else: eps = 1e-6 g1 = func.gradient(ph,en,free=False) g2 = func.approx_gradient(ph,en,eps=eps) anyfail = False for i in range(g1.shape[0]): d1 = np.abs(g1[i]-g2[i]) a = np.argmax(d1) fail = np.any(d1 > (atol + rtol*np.abs(g2))) if not quiet: pass_string = 'FAILED' if fail else 'passed' print ('%02d (%s) %.3g (abs)'%(i,pass_string,d1.max())) anyfail = anyfail or fail return not anyfail class Fittable(object): # TODO """ Base class for any object with fittable parameters. Handle parameter names, etc. here?""" def get_parameters(self): pass def set_parameters(self): pass def get_bounds(self): pass def __call__(self,*args): return self._call(*args)[self.free] def _call(self,*args): raise NotImplementedError('Child class instantiates.') def grad(self,*args): return self._grad(*args)[self.free] def _grad(self,*args): raise NotImplementedError('Child class instantiates.') class LCPrimitive(object): """ Base class for various components of a light curve. All "analytic" light curve models must inherit and must implement the three 'virtual' functions below.""" def is_energy_dependent(self): return False def is_two_sided(self): """ True if primitive is asymmetric. Default is False, two-sided child classes should override.""" return False def copy(self): from copy import deepcopy return deepcopy(self) def __call__(self,phases): raise NotImplementedError('Virtual function must be implemented by child class.') def integrate(self,x1=0,x2=1,log10_ens=3): """ Base implemention with scipy quad.""" f = lambda ph: self(ph,log10_ens) return quad(f,x1,x2)[0] def cdf(self,x,log10_ens=3): return self.integrate(x1=0,x2=x,log10_ens=3) def fwhm(self): """Return the full-width at half-maximum of the light curve model.""" return self.hwhm(0)+self.hwhm(1) def hwhm(self,right=False): """Return the half-width at half-maximum of the light curve model.""" raise NotImplementedError('Virtual function must be implemented by child class.') def init(self): self.p = np.asarray([1]) self.pnames = [] self.name = 'Default' self.shortname = 'None' def _asarrays(self): for key in ['p','free','bounds','errors','slope','slope_free']: if hasattr(self,key): v = self.__dict__[key] if v is not None: self.__dict__[key] = np.asarray(v,dtype=bool if 'free' in key else float) def _default_bounds(self): bounds = [[]] *len(self.p) # this order works for LCHarmonic, too bounds[0] = [0.005,0.5] # width bounds[-1] = [-1,1] # position if len(bounds) > 2: bounds[1] = [0.005,0.5] # width return bounds def _default_priors(self): loc = self.p.copy() width = np.asarray([0.1]*len(self.p)) enable = np.asarray([False]*len(self.p)) return loc,width,enable def __init__(self,**kwargs): """ Generally, class-specific setup work is performed in init. Here, init is called and certain guaranteed default members are established.""" self.init() if not hasattr(self,'bounds'): self.bounds = self._default_bounds() # default self.errors = np.zeros_like(self.p) self.free = np.asarray([True]*len(self.p)) self.__dict__.update(kwargs) self._asarrays() self.gauss_prior_loc, self.gauss_prior_width, self.gauss_prior_enable = self._default_priors() self.shift_mode = False def _make_p(self,log10_ens=3): """ Internal method to return parameters appropriate for use in functional form.""" return [None] + list(self.p) def set_parameters(self,p,free=True): if free: self.p[self.free] = p else: self.p[:] = p # adjust position to be between 0 and 1 self.p[-1] = self.p[-1] % 1 return np.all(self.p >= 0) def get_parameters(self,free=True): if free: return self.p[self.free] return self.p def get_parameter_names(self,free=True): return [p for (p,b) in zip(self.pnames,self.free) if b] def set_errors(self,errs): n = self.free.sum() self.errors[:] = 0. self.errors[self.free] = errs[:n] return n def get_errors(self,free=True): return self.errors[self.free] def get_bounds(self): return self.bounds[self.free] def get_gauss_prior_parameters(self): mod_array = [False]*(len(self.p)-1)+[True] return ( self.gauss_prior_loc[self.free], self.gauss_prior_width[self.free], np.asarray(mod_array)[self.free], self.gauss_prior_enable[self.free], ) def enable_gauss_prior(self,enable=True): """ [Convenience] Turn on gaussian prior.""" self.gauss_prior_enable[:] = enable def center_gauss_prior(self,enable=False): """ [Convenience] Set gauss mode to current params.""" self.gauss_prior_loc[:] = self.p[:] if enable: self.enable_gauss_prior() def get_location(self,error=False): if error: return np.asarray([self.p[-1],self.errors[-1]]) return self.p[-1] def set_location(self,loc): self.p[-1] = loc def get_norm(self,error=False): #if error: return np.asarray([self.p[0],self.errors[0]]) #return self.p[0] return 1 def get_width(self,error=False,hwhm=False,right=False): """ Return the width of the distribution. Keyword arguments: ----------------- error [False] if True, return tuple with value and error hwhm [False] if True, scale width to be HWHM right [False] if True, return "right" component, else "left". There is no distinction for symmetric dists. """ scale = self.hwhm(right=right)/self.p[int(right)] if hwhm else 1 if error: return np.asarray([self.p[int(right)],self.errors[int(right)]])*scale return self.p[int(right)]*scale def get_gradient(self,phases,log10_ens=3): raise DeprecationWarning() return self.gradient(phases,log10_ens,free=True) def gradient(self,phases,log10_ens=3,free=False): raise NotImplementedError('No gradient function found for this object.') def random(self,n): """ Default is accept/reject.""" if n < 1: return 0 M = self(np.asarray([self.p[-1]])) # peak amplitude rvals = np.empty(n) position = 0 rfunc = np.random.rand while True: cand_phases = rfunc(n) cand_phases = cand_phases[rfunc(n) < self(cand_phases)/M] ncands = len(cand_phases) if ncands == 0: continue rvals[position:position + ncands] = cand_phases[:n-position] position += ncands if position >= n: break return rvals def __str__(self): m=max([len(n) for n in self.pnames]) l = [] errors = self.errors if hasattr(self,'errors') else [0]*len(self.pnames) for i in range(len(self.pnames)): fstring = '' if self.free[i] else ' [FIXED]' n=self.pnames[i][:m] t_n = n+(m-len(n))*' ' l += [t_n + ': %.4f +\- %.4f%s'%(self.p[i],errors[i],fstring)] l = [self.name+'\n------------------'] + l return '\n'.join(l) def approx_gradient(self,phases,log10_ens=3,eps=1e-5): return approx_gradient(self,phases,log10_ens,eps=eps) def check_gradient(self,atol=1e-8,rtol=1e-5,quiet=False): return check_gradient(self,atol=atol,rtol=rtol,quiet=quiet) def sanity_checks(self,eps=1e-6): """ A few checks on normalization, integration, etc. """ errfac = 1 # Normalization test y,ye = quad(self,0,1) #t1 = abs(self.p[0]-y)<(ye*errfac) t1 = abs(1-y)<(ye*errfac) # integrate method test #t2 = abs(self.p[0]-self.integrate(0,1))<eps t2 = abs(1-self.integrate(0,1))<eps # FWHM test t3 = (self(self.p[-1])*0.5-self(self.p[-1]-self.fwhm()/2))<eps # gradient test try: t4 = self.check_gradient(quiet=True) except: t4 = False # boundary conditions t5 = abs(self(0)-self(1-eps))<eps if not t1: print ('Failed Normalization test') if not t2: print ('Failed integrate method test') if not t3: print ('Failed FWHM test') if not t4: print ('Failed gradient test') if not t5: print ('Did not pass boundary conditions') return np.all([t1,t2,t3,t4,t5]) def eval_string(self): """ Return a string that can be evaled to instantiate a nearly- identical object.""" return '%s(p=%s,free=%s,slope=%s,slope_free=%s)'%( self.__class__.__name__,str(list(self.p)),str(list(self.free)), str(list(self.slope)) if hasattr(self,'slope') else None, str(list(self.slope_free)) if hasattr(self,'slope_free') else None) def dict_string(self): """ Return a string to express the object as a dictionary that can be easily instantiated using its keys.""" def pretty_list(l,places=5): fmt = '%.'+'%d'%places+'f' s = ', '.join([fmt%x for x in l]) return '['+s+']' t = ['name = %s'%self.__class__.__name__, 'p = %s'%(pretty_list(self.p)), 'free = %s'%(str(list(self.free))), 'slope = %s'%(pretty_list(self.slope) if hasattr(self,'slope') else None), 'slope_free = %s'%(str(list(self.slope_free)) if hasattr(self,'slope_free') else None), ] #return 'dict(\n'+'\n '.join(t)+'\n return t def closest_to_peak(self,phases): """ Return the minimum distance between a member of the array of phases and the position of the mode of the primitive.""" return np.abs(phases-self.get_location()).min() def get_fixed_energy_version(self,log10_en=3): return self class LCWrappedFunction(LCPrimitive): """ Super-class for profiles derived from wrapped functions. While some distributions (e.g. the wrapped normal) converge quickly, others (e.g. the wrapped Lorentzian) converge very slowly and must be truncated before machine precision is reached. In order to preserve normalization, the pdf is slightly adjusted: f(phi) = sum_(i,-N,N,g(phi+i)) + (1 - int(phi,-N,N,g(phi)) ). This introduces an additional parameteric dependence which must be accounted for by computation of the gradient. """ def _norm(self,nwraps,log10_ens=3): """ Compute the truncated portion of the template.""" #return self.p[0]-self.base_int(-nwraps,nwraps+1) return 1-self.base_int(-nwraps,nwraps+1,log10_ens) def _grad_norm(self,nwraps,log10_ens=3): """ Compute the gradient terms due to truncated portion. That is, since we add on a uniform component beyond nwraps, the amplitude of this component depends on the CDF and hence on the parameters. Default implementation is to ignore these terms, applicable for rapidly-converging distributions (e.g. wrapped normal with small width parameter). On the other hand, it is not negligible for long-tailed distributions, e.g. Lorentzians.""" return None def __call__(self,phases,log10_ens=3): """ Return wrapped template + DC component corresponding to truncation.""" results = self.base_func(phases,log10_ens) for i in range(1,MAXWRAPS+1): t = self.base_func(phases,log10_ens,index= i) t += self.base_func(phases,log10_ens,index=-i) results += t if (i>=MINWRAPS) and (np.all(t < WRAPEPS)): break return results+self._norm(i,log10_ens) def gradient(self,phases,log10_ens=3,free=False): """ Return the gradient evaluated at a vector of phases. output : a num_parameter x len(phases) ndarray, the num_parameter-dim gradient at each phase """ results = self.base_grad(phases,log10_ens) for i in range(1,MAXWRAPS+1): t = self.base_grad(phases,log10_ens,index=i) t += self.base_grad(phases,log10_ens,index=-i) results += t if (i >= MINWRAPS) and (np.all(t < WRAPEPS)): break gn = self._grad_norm(i,log10_ens) if gn is not None: for i in range(len(gn)): results[i,:] += gn[i] if free: return results[self.free] return results def integrate(self,x1,x2,log10_ens=3): #if(x1==0) and (x2==0): return 1. # NB -- this method is probably overkill now. results = self.base_int(x1,x2,log10_ens,index=0) for i in range(1,MAXWRAPS+1): t = self.base_int(x1,x2,log10_ens,index=i) t += self.base_int(x1,x2,log10_ens,index=-i) results += t if np.all(t < WRAPEPS): break return results+(x2-x1)*self._norm(i,log10_ens) def base_func(self,phases,log10_ens=3,index=0): raise NotImplementedError( 'No base_func function found for this object.') def base_grad(self,phases,log10_ens=3,index=0): raise NotImplementedError( 'No base_grad function found for this object.') def base_int(self,phases,log10_ens=3,index=0): raise NotImplementedError( 'No base_int function found for this object.') class LCGaussian(LCWrappedFunction): """ Represent a (wrapped) Gaussian peak. Parameters Width the standard deviation parameter of the norm dist. Location the mode of the Gaussian distribution """ def init(self): self.p = np.asarray([0.03,0.5]) self.pnames = ['Width','Location'] self.name = 'Gaussian' self.shortname = 'G' def hwhm(self,right=False): return self.p[0]*(2 * np.log(2))**0.5 def base_func(self,phases,log10_ens=3,index=0): e,width,x0 = self._make_p(log10_ens) z = (phases + index - x0)/width return (1./(width*ROOT2PI))*np.exp(-0.5*z**2 ) def base_grad(self,phases,log10_ens=3,index=0): e,width,x0 = self._make_p(log10_ens) z = (phases + index - x0)/width f = (1./(width*ROOT2PI))*np.exp(-0.5*z**2 ) return np.asarray([f/width*(z**2 - 1.),f/width*z]) def base_int(self,x1,x2,log10_ens=3,index=0): e,width,x0 = self._make_p(log10_ens) z1 = (x1 + index - x0)/width z2 = (x2 + index - x0)/width return 0.5*(erf(z2/ROOT2)-erf(z1/ROOT2)) def random(self,n): if hasattr(n,'__len__'): n = len(n) return np.mod(norm.rvs(loc=self.p[-1],scale=self.p[0],size=n),1) class LCGaussian2(LCWrappedFunction): """ Represent a (wrapped) two-sided Gaussian peak. Parameters Width1 the standard deviation parameter of the norm dist. Width2 the standard deviation parameter of the norm dist. Location the mode of the distribution """ def init(self): self.p = np.asarray([0.03,0.03,0.5]) self.pnames = ['Width1','Width2','Location'] self.name = 'Gaussian2' self.shortname = 'G2' def is_two_sided(self): return True def hwhm(self,right=False): return (self.p[int(right)])*(2 * np.log(2))**0.5 def base_func(self,phases,log10_ens=3,index=0): e,width1,width2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) z *= np.where(z <= 0, 1./width1, 1./width2) return (R2DI/(width1+width2)) * np.exp(-0.5*z**2 ) def base_grad(self,phases,log10_ens=3,index=0): e,width1,width2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) m = (z <= 0) w = np.where(m, width1, width2) z /= w f = (R2DI/(width1+width2)) * np.exp(-0.5*z**2 ) k = 1./(width1+width2) z2w = z**2/w t = f*(z2w-k) g1 = f*(z2w*( m)-k) g2 = f*(z2w*(~m)-k) g3 = f*z/w return np.asarray([g1,g2,g3]) def base_int(self,x1,x2,log10_ens=3,index=0): e,width1,width2,x0 = self._make_p(log10_ens) if index==0 and (x1 < x0) and (x2 > x0): z1 = (x1 + index - x0)/width1 z2 = (x2 + index - x0)/width2 k1 = 2*width1/(width1+width2) k2 = 2*width2/(width1+width2) return 0.5*(k2*erf(z2/ROOT2)-k1*erf(z1/ROOT2)) w = width1 if ((x1+index) < x0) else width2 z1 = (x1 + index - x0)/w z2 = (x2 + index - x0)/w k = 2*w/(width1+width2) return 0.5*k*(erf(z2/ROOT2)-erf(z1/ROOT2)) def random(self,n): """ Use multinomial technique to return random photons from both components.""" if hasattr(n,'__len__'): n = len(n) return two_comp_mc(n,self.p[0],self.p[1],self.p[-1],norm.rvs) class LCLorentzian(LCPrimitive): """ Represent a (wrapped) Lorentzian peak. Parameters Width the width paramater of the wrapped Cauchy distribution, namely HWHM*2PI for narrow distributions Location the center of the peak in phase """ def init(self): self.p = np.asarray([0.1,0.5]) self.pnames = ['Width','Location'] self.name = 'Lorentzian' self.shortname = 'L' def hwhm(self,right=False): # NB -- bounds on p[1] set such that this is well-defined return np.arccos( 2-cosh(self.p[0]) )/TWOPI def __call__(self,phases,log10_ens=3): e,gamma,loc = self._make_p(log10_ens) z = TWOPI*(phases-loc) # NB -- numpy call not as efficient as math.sinh etc. # but this allows easy inheritance for the energy-dependence return np.sinh(gamma)/(np.cosh(gamma)-np.cos(z)) def gradient(self,phases,log10_ens=3,free=False): e,gamma,loc = self._make_p(log10_ens) z = TWOPI*(phases-loc) s1 = np.sinh(gamma); c1 = np.cosh(gamma) c = np.cos(z); s = np.sin(z) f = s1/(c1-c) f2 = f**2 g1 = f*(c1/s1) - f2 g2 = f2*(TWOPI/s1)*s if free: return np.asarray([g1,g2])[self.free] return np.asarray([g1,g2]) def random(self,n): if hasattr(n,'__len__'): n = len(n) return np.mod(cauchy.rvs(loc=self.p[-1],scale=self.p[0]/TWOPI,size=n),1) def integrate(self,x1,x2,log10_ens=3): # NB -- due to the use of tans below, must be careful to use an angle # range of -pi/2 to pi/2 rather than 0 to pi as one would want # I haven't carefully tested this solution e,gamma,loc = self._make_p(log10_ens) x1 = PI*(x1-loc) x2 = PI*(x2-loc) t = 1./np.tanh(0.5*gamma) # coth(gamma/2) v2 = np.arctan(t*tan(x2))/PI v1 = np.arctan(t*tan(x1))/PI return (v2<=v1) + v2 - v1 # correction for tan wrapping class LCLorentzian2(LCWrappedFunction): """ Represent a (wrapped) two-sided Lorentzian peak. Parameters Width1 the HWHM of the distribution (left) Width2 the HWHM of the distribution (right) Location the mode of the distribution """ def init(self): self.p = np.asarray([0.03,0.03,0.5]) self.pnames = ['Width1','Width2','Location'] self.name = 'Lorentzian2' self.shortname = 'L2' def is_two_sided(self): return True def hwhm(self,right=False): return self.p[int(right)] def _grad_norm(self,nwraps,log10_ens=3): e,gamma1,gamma2,x0 = self._make_p(log10_ens) z1 = (-nwraps-x0)/gamma1 z2 = (nwraps+1-x0)/gamma2 t = gamma2*np.arctan(z2)-gamma1*np.arctan(z1) t1 = 1./(1+z1**2) t2 = 1./(1+z2**2) k = 2/(gamma1+gamma2)/PI f = k*t g1 = -1./(gamma1+gamma2)-(np.arctan(z1)-z1*t1)/t g2 = -1./(gamma1+gamma2)+(np.arctan(z2)-z2*t2)/t g3 = (t1-t2)/t return [-f*g1,-f*g2,-f*g3] def base_func(self,phases,log10_ens=3,index=0): e,gamma1,gamma2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) z *= np.where(z<=0, 1./gamma1, 1./gamma2) k = 2/(gamma1+gamma2)/PI return k/(1+z**2) def base_grad(self,phases,log10_ens=3,index=0): e,gamma1,gamma2,x0 = self._make_p(log10_ens) z = (phases + (index - x0)) m = z < 0 g = np.where(m,1./gamma1,1./gamma2) t1 = 1+(z*g)**2 t2 = 2*(z*g)/t1 g1 = -1/(gamma1+gamma2)+t2*((m*z)/gamma1**2) g2 = -1/(gamma1+gamma2)+t2*((~m*z)/gamma2**2) g3 = t2*g f = (2./(gamma1+gamma2)/PI)/t1 return np.asarray([f*g1,f*g2,f*g3]) def base_int(self,x1,x2,log10_ens=3,index=0): gamma1,gamma2,x0 = self.p # the only case where g1 and g2 can be different is if we're on the # 0th wrap, i.e. index=0; this also includes the case when we want # to use base_int to do a "full" integral if index==0 and (x1 < x0) and (x2 > x0): g1,g2 = gamma1,gamma2 else: g1,g2 = [gamma1]*2 if ((x1+index) < x0) else [gamma2]*2 z1 = (x1 + index - x0)/g1 z2 = (x2 + index - x0)/g2 k = (2./(gamma1+gamma2)/PI) return k*(g2*atan(z2)-g1*atan(z1)) def random(self,n): """ Use multinomial technique to return random photons from both components.""" return two_comp_mc(n,self.p[0],self.p[1],self.p[-1],cauchy.rvs) class LCVonMises(LCPrimitive): """ Represent a peak from the von Mises distribution. This function is used in directional statistics and is naturally wrapped. Parameters: Width inverse of the 'kappa' parameter in the std. def. Location the center of the peak in phase """ def init(self): self.p = np.asarray([0.05,0.5]) self.pnames = ['Width','Location'] self.name = 'VonMises' self.shortname = 'VM' def hwhm(self,right=False): return 0.5*np.arccos(self.p[0]*np.log(0.5)+1)/TWOPI def __call__(self,phases,log10_ens=3): e,width,loc = self._make_p(log10_ens) z = TWOPI*(phases-loc) return np.exp(np.cos(z)/width)/i0(1./width) def gradient(self,phases,log10_ens=3,free=False): e,width,loc = self._make_p(log10_ens) my_i0 = i0(1./width) my_i1 = i1(1./width) z = TWOPI*(phases-loc) cz = np.cos(z) sz = np.sin(z) f = (np.exp(cz)/width)/my_i0 return np.asarray([-cz/width**2*f,TWOPI*(sz/width+my_i1/my_i0)*f]) class LCKing(LCWrappedFunction): """ Represent a (wrapped) King function peak. Parameters Sigma the width parameter Gamma the tail parameter Location the mode of the distribution """ # NOTES -- because we don't integrate over solid angle, the norm # integral / jacobean for the usual King function isn't trivial; # need to see if this is a show stopper def init(self): self.p =
np.asarray([0.03,0.5])
numpy.asarray
import torch import numpy as np import pickle def h36m_valid_angle_check(p3d): """ p3d: [bs,16,3] or [bs,48] """ if p3d.shape[-1] == 48: p3d = p3d.reshape([p3d.shape[0], 16, 3]) cos_func = lambda p1, p2: np.sum(p1 * p2, axis=1) / np.linalg.norm(p1, axis=1) / np.linalg.norm(p2, axis=1) data_all = p3d valid_cos = {} # Spine2LHip p1 = data_all[:, 3] p2 = data_all[:, 6] cos_gt_l = np.sum(p1 * p2, axis=1) / np.linalg.norm(p1, axis=1) / np.linalg.norm(p2, axis=1) # Spine2RHip p1 = data_all[:, 0] p2 = data_all[:, 6] cos_gt_r = np.sum(p1 * p2, axis=1) / np.linalg.norm(p1, axis=1) / np.linalg.norm(p2, axis=1) valid_cos['Spine2Hip'] = np.vstack((cos_gt_l, cos_gt_r)) # LLeg2LeftHipPlane p0 = data_all[:, 3] p1 = data_all[:, 4] - data_all[:, 3] p2 = data_all[:, 5] - data_all[:, 4] n0 = np.cross(p0, p1) cos_gt_l = np.sum(n0 * p2, axis=1) / np.linalg.norm(n0, axis=1) / np.linalg.norm(p2, axis=1) # RLeg2RHipPlane p0 = data_all[:, 0] p1 = data_all[:, 1] - data_all[:, 0] p2 = data_all[:, 2] - data_all[:, 1] n0 = np.cross(p1, p0) cos_gt_r = np.sum(n0 * p2, axis=1) / np.linalg.norm(n0, axis=1) / np.linalg.norm(p2, axis=1) valid_cos['Leg2HipPlane'] = np.vstack((cos_gt_l, cos_gt_r)) # Shoulder2Hip p1 = data_all[:, 10] - data_all[:, 7] p2 = data_all[:, 3] cos_gt_l = np.sum(p1 * p2, axis=1) / np.linalg.norm(p1, axis=1) / np.linalg.norm(p2, axis=1) p1 = data_all[:, 13] - data_all[:, 7] p2 = data_all[:, 0] cos_gt_r = np.sum(p1 * p2, axis=1) / np.linalg.norm(p1, axis=1) / np.linalg.norm(p2, axis=1) valid_cos['Shoulder2Hip'] = np.vstack((cos_gt_l, cos_gt_r)) # Leg2ShoulderPlane p0 = data_all[:, 13] p1 = data_all[:, 10] p2 = data_all[:, 4] p3 = data_all[:, 1] n0 = np.cross(p0, p1) cos_gt_l = np.sum(n0 * p2, axis=1) / np.linalg.norm(n0, axis=1) / np.linalg.norm(p2, axis=1) cos_gt_r = np.sum(n0 * p3, axis=1) / np.linalg.norm(n0, axis=1) / np.linalg.norm(p3, axis=1) valid_cos['Leg2ShoulderPlane'] = np.vstack((cos_gt_l, cos_gt_r)) # Shoulder2Shoulder p0 = data_all[:, 13] - data_all[:, 7] p1 = data_all[:, 10] - data_all[:, 7] cos_gt = np.sum(p0 * p1, axis=1) / np.linalg.norm(p0, axis=1) / np.linalg.norm(p1, axis=1) valid_cos['Shoulder2Shoulder'] = cos_gt # Neck2Spine p0 = data_all[:, 7] - data_all[:, 6] p1 = data_all[:, 6] cos_gt = np.sum(p0 * p1, axis=1) / np.linalg.norm(p0, axis=1) / np.linalg.norm(p1, axis=1) valid_cos['Neck2Spine'] = cos_gt # Spine2HipPlane1 p0 = data_all[:, 3] p1 = data_all[:, 4] - data_all[:, 3] n0 = np.cross(p1, p0) p2 = data_all[:, 6] n1 = np.cross(p2, n0) cos_dir_l = np.sum(p0 * n1, axis=1) / np.linalg.norm(p0, axis=1) / np.linalg.norm(n1, axis=1) cos_gt_l = np.sum(n0 * p2, axis=1) / np.linalg.norm(n0, axis=1) / np.linalg.norm(p2, axis=1) p0 = data_all[:, 0] p1 = data_all[:, 1] - data_all[:, 0] n0 = np.cross(p0, p1) p2 = data_all[:, 6] n1 = np.cross(n0, p2) cos_dir_r = np.sum(p0 * n1, axis=1) / np.linalg.norm(p0, axis=1) / np.linalg.norm(n1, axis=1) cos_gt_r = np.sum(n0 * p2, axis=1) / np.linalg.norm(n0, axis=1) / np.linalg.norm(p2, axis=1) cos_gt_l1 = np.ones_like(cos_gt_l) * 0.5 cos_gt_r1 = np.ones_like(cos_gt_r) * 0.5 cos_gt_l1[cos_dir_l < 0] = cos_gt_l[cos_dir_l < 0] cos_gt_r1[cos_dir_r < 0] = cos_gt_r[cos_dir_r < 0] valid_cos['Spine2HipPlane1'] = np.vstack((cos_gt_l1, cos_gt_r1)) # Spine2HipPlane2 cos_gt_l2 =
np.ones_like(cos_gt_l)
numpy.ones_like
from __future__ import division from scipy.stats import ttest_ind, ttest_1samp, ttest_rel, mannwhitneyu, norm from collections import OrderedDict from numpy.random import randint import matplotlib.gridspec as gridspec from matplotlib.lines import Line2D from matplotlib.ticker import MultipleLocator, MaxNLocator, LinearLocator, FixedLocator from decimal import Decimal import matplotlib.pyplot as plt from matplotlib import rc, rcParams, rcdefaults import sys import seaborn.apionly as sns import pandas as pd import numpy as np import warnings # These have been placed in separate .py files for reduced code clutter. from .mpl_tools import rotateTicks, normalizeSwarmY, normalizeContrastY, offsetSwarmX, resetSwarmX, getSwarmSpan from .mpl_tools import align_yaxis, halfviolin, drawback_y, drawback_x from .bootstrap_tools import ci, bootstrap, bootstrap_contrast, bootstrap_indexes, jackknife_indexes, getstatarray, bca from .plot_bootstrap_tools import plotbootstrap, plotbootstrap_hubspoke, swarmsummary def pairedcontrast(data, x, y, idcol, reps = 3000, statfunction = None, idx = None, figsize = None, beforeAfterSpacer = 0.01, violinWidth = 0.005, floatOffset = 0.05, showRawData = False, showAllYAxes = False, floatContrast = True, smoothboot = False, floatViolinOffset = None, showConnections = True, summaryBar = False, contrastYlim = None, swarmYlim = None, barWidth = 0.005, rawMarkerSize = 8, rawMarkerType = 'o', summaryMarkerSize = 10, summaryMarkerType = 'o', summaryBarColor = 'grey', meansSummaryLineStyle = 'solid', contrastZeroLineStyle = 'solid', contrastEffectSizeLineStyle = 'solid', contrastZeroLineColor = 'black', contrastEffectSizeLineColor = 'black', pal = None, legendLoc = 2, legendFontSize = 12, legendMarkerScale = 1, axis_title_size = None, yticksize = None, xticksize = None, tickAngle=45, tickAlignment='right', **kwargs): # Preliminaries. data = data.dropna() # plot params if axis_title_size is None: axis_title_size = 15 if yticksize is None: yticksize = 12 if xticksize is None: xticksize = 12 axisTitleParams = {'labelsize' : axis_title_size} xtickParams = {'labelsize' : xticksize} ytickParams = {'labelsize' : yticksize} rc('axes', **axisTitleParams) rc('xtick', **xtickParams) rc('ytick', **ytickParams) ## If `idx` is not specified, just take the FIRST TWO levels alphabetically. if idx is None: idx = tuple(np.unique(data[x])[0:2],) else: # check if multi-plot or not if all(isinstance(element, str) for element in idx): # if idx is supplied but not a multiplot (ie single list or tuple) if len(idx) != 2: print(idx, "does not have length 2.") sys.exit(0) else: idx = (tuple(idx, ),) elif all(isinstance(element, tuple) for element in idx): # if idx is supplied, and it is a list/tuple of tuples or lists, we have a multiplot! if ( any(len(element) != 2 for element in idx) ): # If any of the tuples contain more than 2 elements. print(element, "does not have length 2.") sys.exit(0) if floatViolinOffset is None: floatViolinOffset = beforeAfterSpacer/2 if contrastYlim is not None: contrastYlim = np.array([contrastYlim[0],contrastYlim[1]]) if swarmYlim is not None: swarmYlim = np.array([swarmYlim[0],swarmYlim[1]]) ## Here we define the palette on all the levels of the 'x' column. ## Thus, if the same pandas dataframe is re-used across different plots, ## the color identity of each group will be maintained. ## Set palette based on total number of categories in data['x'] or data['hue_column'] if 'hue' in kwargs: u = kwargs['hue'] else: u = x if ('color' not in kwargs and 'hue' not in kwargs): kwargs['color'] = 'k' if pal is None: pal = dict( zip( data[u].unique(), sns.color_palette(n_colors = len(data[u].unique())) ) ) else: pal = pal # Initialise figure. if figsize is None: if len(idx) > 2: figsize = (12,(12/np.sqrt(2))) else: figsize = (6,6) fig = plt.figure(figsize = figsize) # Initialise GridSpec based on `levs_tuple` shape. gsMain = gridspec.GridSpec( 1, np.shape(idx)[0]) # 1 row; columns based on number of tuples in tuple. # Set default statfunction if statfunction is None: statfunction = np.mean # Create list to collect all the contrast DataFrames generated. contrastList = list() contrastListNames = list() for gsIdx, xlevs in enumerate(idx): ## Pivot tempdat to get before and after lines. data_pivot = data.pivot_table(index = idcol, columns = x, values = y) # Start plotting!! if floatContrast is True: ax_raw = fig.add_subplot(gsMain[gsIdx], frame_on = False) ax_contrast = ax_raw.twinx() else: gsSubGridSpec = gridspec.GridSpecFromSubplotSpec(2, 1, subplot_spec = gsMain[gsIdx]) ax_raw = plt.Subplot(fig, gsSubGridSpec[0, 0], frame_on = False) ax_contrast = plt.Subplot(fig, gsSubGridSpec[1, 0], sharex = ax_raw, frame_on = False) ## Plot raw data as swarmplot or stripplot. if showRawData is True: swarm_raw = sns.swarmplot(data = data, x = x, y = y, order = xlevs, ax = ax_raw, palette = pal, size = rawMarkerSize, marker = rawMarkerType, **kwargs) else: swarm_raw = sns.stripplot(data = data, x = x, y = y, order = xlevs, ax = ax_raw, palette = pal, **kwargs) swarm_raw.set_ylim(swarmYlim) ## Get some details about the raw data. maxXBefore = max(swarm_raw.collections[0].get_offsets().T[0]) minXAfter = min(swarm_raw.collections[1].get_offsets().T[0]) if showRawData is True: #beforeAfterSpacer = (getSwarmSpan(swarm_raw, 0) + getSwarmSpan(swarm_raw, 1))/2 beforeAfterSpacer = 1 xposAfter = maxXBefore + beforeAfterSpacer xAfterShift = minXAfter - xposAfter ## shift the after swarmpoints closer for aesthetic purposes. offsetSwarmX(swarm_raw.collections[1], -xAfterShift) ## pandas DataFrame of 'before' group x1 = pd.DataFrame({str(xlevs[0] + '_x') : pd.Series(swarm_raw.collections[0].get_offsets().T[0]), xlevs[0] : pd.Series(swarm_raw.collections[0].get_offsets().T[1]), '_R_' : pd.Series(swarm_raw.collections[0].get_facecolors().T[0]), '_G_' : pd.Series(swarm_raw.collections[0].get_facecolors().T[1]), '_B_' : pd.Series(swarm_raw.collections[0].get_facecolors().T[2]), }) ## join the RGB columns into a tuple, then assign to a column. x1['_hue_'] = x1[['_R_', '_G_', '_B_']].apply(tuple, axis=1) x1 = x1.sort_values(by = xlevs[0]) x1.index = data_pivot.sort_values(by = xlevs[0]).index ## pandas DataFrame of 'after' group ### create convenient signifiers for column names. befX = str(xlevs[0] + '_x') aftX = str(xlevs[1] + '_x') x2 = pd.DataFrame( {aftX : pd.Series(swarm_raw.collections[1].get_offsets().T[0]), xlevs[1] : pd.Series(swarm_raw.collections[1].get_offsets().T[1])} ) x2 = x2.sort_values(by = xlevs[1]) x2.index = data_pivot.sort_values(by = xlevs[1]).index ## Join x1 and x2, on both their indexes. plotPoints = x1.merge(x2, left_index = True, right_index = True, how='outer') ## Add the hue column if hue argument was passed. if 'hue' in kwargs: h = kwargs['hue'] plotPoints[h] = data.pivot(index = idcol, columns = x, values = h)[xlevs[0]] swarm_raw.legend(loc = legendLoc, fontsize = legendFontSize, markerscale = legendMarkerScale) ## Plot the lines to join the 'before' points to their respective 'after' points. if showConnections is True: for i in plotPoints.index: ax_raw.plot([ plotPoints.ix[i, befX], plotPoints.ix[i, aftX] ], [ plotPoints.ix[i, xlevs[0]], plotPoints.ix[i, xlevs[1]] ], linestyle = 'solid', color = plotPoints.ix[i, '_hue_'], linewidth = 0.75, alpha = 0.75 ) ## Hide the raw swarmplot data if so desired. if showRawData is False: swarm_raw.collections[0].set_visible(False) swarm_raw.collections[1].set_visible(False) if showRawData is True: #maxSwarmSpan = max(np.array([getSwarmSpan(swarm_raw, 0), getSwarmSpan(swarm_raw, 1)]))/2 maxSwarmSpan = 0.5 else: maxSwarmSpan = barWidth ## Plot Summary Bar. if summaryBar is True: # Calculate means means = data.groupby([x], sort = True).mean()[y] # # Calculate medians # medians = data.groupby([x], sort = True).median()[y] ## Draw summary bar. bar_raw = sns.barplot(x = means.index, y = means.values, order = xlevs, ax = ax_raw, ci = 0, facecolor = summaryBarColor, alpha = 0.25) ## Draw zero reference line. ax_raw.add_artist(Line2D( (ax_raw.xaxis.get_view_interval()[0], ax_raw.xaxis.get_view_interval()[1]), (0,0), color='black', linewidth=0.75 ) ) ## get swarm with largest span, set as max width of each barplot. for i, bar in enumerate(bar_raw.patches): x_width = bar.get_x() width = bar.get_width() centre = x_width + width/2. if i == 0: bar.set_x(centre - maxSwarmSpan/2.) else: bar.set_x(centre - xAfterShift - maxSwarmSpan/2.) bar.set_width(maxSwarmSpan) # Get y-limits of the treatment swarm points. beforeRaw = pd.DataFrame( swarm_raw.collections[0].get_offsets() ) afterRaw = pd.DataFrame( swarm_raw.collections[1].get_offsets() ) before_leftx = min(beforeRaw[0]) after_leftx = min(afterRaw[0]) after_rightx = max(afterRaw[0]) after_stat_summary = statfunction(beforeRaw[1]) # Calculate the summary difference and CI. plotPoints['delta_y'] = plotPoints[xlevs[1]] - plotPoints[xlevs[0]] plotPoints['delta_x'] = [0] * np.shape(plotPoints)[0] tempseries = plotPoints['delta_y'].tolist() test = tempseries.count(tempseries[0]) != len(tempseries) bootsDelta = bootstrap(plotPoints['delta_y'], statfunction = statfunction, smoothboot = smoothboot, reps = reps) summDelta = bootsDelta['summary'] lowDelta = bootsDelta['bca_ci_low'] highDelta = bootsDelta['bca_ci_high'] # set new xpos for delta violin. if floatContrast is True: if showRawData is False: xposPlusViolin = deltaSwarmX = after_rightx + floatViolinOffset else: xposPlusViolin = deltaSwarmX = after_rightx + maxSwarmSpan else: xposPlusViolin = xposAfter if showRawData is True: # If showRawData is True and floatContrast is True, # set violinwidth to the barwidth. violinWidth = maxSwarmSpan xmaxPlot = xposPlusViolin + violinWidth # Plot the summary measure. ax_contrast.plot(xposPlusViolin, summDelta, marker = 'o', markerfacecolor = 'k', markersize = summaryMarkerSize, alpha = 0.75 ) # Plot the CI. ax_contrast.plot([xposPlusViolin, xposPlusViolin], [lowDelta, highDelta], color = 'k', alpha = 0.75, linestyle = 'solid' ) # Plot the violin-plot. v = ax_contrast.violinplot(bootsDelta['stat_array'], [xposPlusViolin], widths = violinWidth, showextrema = False, showmeans = False) halfviolin(v, half = 'right', color = 'k') # Remove left axes x-axis title. ax_raw.set_xlabel("") # Remove floating axes y-axis title. ax_contrast.set_ylabel("") # Set proper x-limits ax_raw.set_xlim(before_leftx - beforeAfterSpacer/2, xmaxPlot) ax_raw.get_xaxis().set_view_interval(before_leftx - beforeAfterSpacer/2, after_rightx + beforeAfterSpacer/2) ax_contrast.set_xlim(ax_raw.get_xlim()) if floatContrast is True: # Set the ticks locations for ax_raw. ax_raw.get_xaxis().set_ticks((0, xposAfter)) # Make sure they have the same y-limits. ax_contrast.set_ylim(ax_raw.get_ylim()) # Drawing in the x-axis for ax_raw. ## Set the tick labels! ax_raw.set_xticklabels(xlevs, rotation = tickAngle, horizontalalignment = tickAlignment) ## Get lowest y-value for ax_raw. y = ax_raw.get_yaxis().get_view_interval()[0] # Align the left axes and the floating axes. align_yaxis(ax_raw, statfunction(plotPoints[xlevs[0]]), ax_contrast, 0) # Add label to floating axes. But on ax_raw! ax_raw.text(x = deltaSwarmX, y = ax_raw.get_yaxis().get_view_interval()[0], horizontalalignment = 'left', s = 'Difference', fontsize = 15) # Set reference lines ## zero line ax_contrast.hlines(0, # y-coordinate ax_contrast.xaxis.get_majorticklocs()[0], # x-coordinates, start and end. ax_raw.xaxis.get_view_interval()[1], linestyle = 'solid', linewidth = 0.75, color = 'black') ## effect size line ax_contrast.hlines(summDelta, ax_contrast.xaxis.get_majorticklocs()[1], ax_raw.xaxis.get_view_interval()[1], linestyle = 'solid', linewidth = 0.75, color = 'black') # Align the left axes and the floating axes. align_yaxis(ax_raw, after_stat_summary, ax_contrast, 0.) else: # Set the ticks locations for ax_raw. ax_raw.get_xaxis().set_ticks((0, xposAfter)) fig.add_subplot(ax_raw) fig.add_subplot(ax_contrast) ax_contrast.set_ylim(contrastYlim) # Calculate p-values. # 1-sample t-test to see if the mean of the difference is different from 0. ttestresult = ttest_1samp(plotPoints['delta_y'], popmean = 0)[1] bootsDelta['ttest_pval'] = ttestresult contrastList.append(bootsDelta) contrastListNames.append( str(xlevs[1])+' v.s. '+str(xlevs[0]) ) # Turn contrastList into a pandas DataFrame, contrastList = pd.DataFrame(contrastList).T contrastList.columns = contrastListNames # Now we iterate thru the contrast axes to normalize all the ylims. for j,i in enumerate(range(1, len(fig.get_axes()), 2)): axx=fig.get_axes()[i] ## Get max and min of the dataset. lower = np.min(contrastList.ix['stat_array',j]) upper =
np.max(contrastList.ix['stat_array',j])
numpy.max
import numba import numpy as np @numba.jit(nopython=True, cache=True) def sigmoid(x): return 1 / (1 + np.exp(-x)) @numba.jit(nopython=True, cache=True) def hid1_to_vis(h1, w1, vis_b): return sigmoid(np.dot(w1, h1.astype(np.float32)) + vis_b) @numba.jit(nopython=True, cache=True) def hid1_to_hid2(h1, w2, hid_b2): return sigmoid(np.dot(h1.astype(np.float32), w2) + hid_b2) @numba.jit(nopython=True, cache=True) def vis_hid2_to_hid1(v, h2, w1, w2, hid_b1): return sigmoid( np.dot(w2, h2.astype(np.float32)) + np.dot(v.astype(np.float32), w1) + hid_b1 ) @numba.jit(nopython=True, cache=True) def gibbs_sampling_with_mask( n_samples, v, mask, w1, w2, hid_b1, hid_b2, vis_b, n_warmup_samples=5000, random_h1=False, ): # Initialize h1 if random_h1: h1 = np.array([np.random.binomial(1, 0.5) for _ in range(hid_b1.shape[0])]) else: h1 = gibbs_initialize_h1_from_vh2_with_mask( v, mask, w1, w2, hid_b1, hid_b2, vis_b ) for ii in range(n_warmup_samples): h1 = gibbs_h1_vh2_h1_with_mask(h1, v, mask, w1, w2, hid_b1, hid_b2, vis_b) means_for_v = np.zeros((n_samples, v.shape[0])) for ii in range(n_samples): h1 = gibbs_h1_vh2_h1_with_mask(h1, v, mask, w1, w2, hid_b1, hid_b2, vis_b) means_for_v[ii] = hid1_to_vis(h1, w1, vis_b) return means_for_v @numba.jit(nopython=True, cache=True) def gibbs_h1_vh2_h1_with_mask(h1, v_true, mask, w1, w2, hid_b1, hid_b2, vis_b): # h1 to v, h2 v = np.array([np.random.binomial(1, p) for p in hid1_to_vis(h1, w1, vis_b)]) v[mask == 0] = v_true[mask == 0] h2 = np.array([np.random.binomial(1, p) for p in hid1_to_hid2(h1, w2, hid_b2)]) # v, h2 to h1 h1 = np.array( [
np.random.binomial(1, p)
numpy.random.binomial
import numpy as np from sklearn.metrics.cluster import silhouette_score from sklearn.cluster import KMeans import pandas as pd from sklearn.metrics.pairwise import euclidean_distances def init_population(ind, N, K): return np.random.randint(0, K, (ind,N)) def get_fitness(data, population): return np.array([silhouette_score(data, x) for x in population]) def local_kmeans(data: pd.DataFrame, population, iter_max): new_pop = np.zeros(population.shape) for ind in range(len(population)): indexes = [np.where(population[ind] == unq) for unq in np.unique(population[ind])] centroids = np.array([np.average(data.iloc[x], axis=0) for x in indexes]) kmeans = KMeans(n_clusters=len(centroids), init=centroids, max_iter=iter_max) kmeans.fit(data) new_pop[ind] = kmeans.labels_ return new_pop def roulette_selection(population, fitness, n_select): total = sum(fitness) acc_fit = 0 roulette = [-1] pos = 0 new_population = [] for fit in fitness: acc_fit += fit roulette.append(acc_fit/total) roulette.append(1.1) for i in range(n_select): p = np.random.rand() for j, value in enumerate(roulette): if p < value: pos = j break new_population.append(population[pos - 1]) return np.array(new_population) def opDivision(data: pd.DataFrame, individual): new_ind = individual labels = np.unique(individual) k = len(labels) k = np.random.randint(0, k) cluster = data.iloc[np.where(individual == k)] indexes = cluster.index.values if cluster.shape[0] <= 3: return individual centroids = np.array([np.average(cluster.values, axis=0)]) dist = euclidean_distances(centroids, cluster.values)[0] centroids = np.append(centroids, cluster.values[np.argmax(dist)].reshape(1, -1), axis=0) d = euclidean_distances(centroids, cluster.values) labelA = max(labels) + 1 labelB = labelA + 1 for index in range(len(cluster.values)): if d[0][index] < d[1][index]: new_ind[indexes[index]] = labelA else: new_ind[indexes[index]] = labelB return new_ind def opExclusion(data: pd.DataFrame, individual): labels = np.unique(individual) if len(labels) <= 2: return individual centroids = [np.average(data.iloc[np.where(individual == unq)], axis=0) for unq in labels] k = len(labels) k = np.random.randint(0, k) centroids.pop(k) dist = euclidean_distances(centroids, data) return np.argmin(dist.T, axis=1) def get_EAC(data: pd.DataFrame): N = data.shape[0] n_individuals = 4 n_cluster = 5 itKmeans = 2 itEAC = 1000 window_size = 50 window = np.zeros(window_size) wi = 0 population = init_population(n_individuals, N, n_cluster) for it in range(itEAC): population = local_kmeans(data, population, itKmeans) fitness = get_fitness(data, population) best_idx = np.argmax(fitness) best_fitness = fitness[best_idx] best_ind = population[best_idx] population = roulette_selection(population, fitness, n_individuals) idx = np.arange(n_individuals)
np.random.shuffle(idx)
numpy.random.shuffle
import os import numpy as np import pytest import xarray as xr from xclim import atmos from xclim.core.calendar import percentile_doy from xclim.core.options import set_options from xclim.core.units import convert_units_to from xclim.testing import open_dataset K2C = 273.15 class TestCSDI: def test_simple(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn += K2C tn[10:20] -= 2 tn = tasmin_series(tn) tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert out[0] == 10 def test_convert_units(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn[10:20] -= 2 tn = tasmin_series(tn + K2C) tn.attrs["units"] = "C" tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert out[0] == 10 def test_nan_presence(self, tasmin_series): i = 3650 A = 10.0 tn = ( np.zeros(i) + K2C + A * np.sin(np.arange(i) / 365.0 * 2 * np.pi) + 0.1 * np.random.rand(i) ) tn[10:20] -= 2 tn[9] = np.nan tn = tasmin_series(tn) tn10 = percentile_doy(tn, per=10).sel(percentiles=10) out = atmos.cold_spell_duration_index(tn, tn10, freq="AS-JUL") assert np.isnan(out[0]) class TestDTR: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_DTR_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan dtr = atmos.daily_temperature_range(tasmin, tasmax, freq="MS") dtrC = atmos.daily_temperature_range(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] dtr1 = max1 - min1 np.testing.assert_array_equal(dtr, dtrC) assert dtr.attrs["units"] == "K" assert np.allclose(dtr1[0:31].mean(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) dtr = atmos.max_daily_temperature_range(tasmin, tasmax, freq="MS") dtrC = atmos.max_daily_temperature_range(tasmin_C, tasmax_C, freq="MS") np.testing.assert_array_equal(dtr, dtrC) assert dtr.attrs["units"] == "K" assert np.allclose(dtr1[0:31].max(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) class TestDTRVar: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_dtr_var_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan dtr = atmos.daily_temperature_range_variability(tasmin, tasmax, freq="MS") dtrC = atmos.daily_temperature_range_variability(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] assert dtr.attrs["units"] == "K" dtr1a = max1 - min1 dtr1 = abs(np.diff(dtr1a)) np.testing.assert_array_equal(dtr, dtrC) # first month jan use 0:30 (n==30) because of day to day diff assert np.allclose(dtr1[0:30].mean(), dtr.values[0, 0, 0]) assert np.isnan(dtr.values[1, 1, 0]) assert np.isnan(dtr.values[0, -1, -1]) class TestETR: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_dtr_var_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmax_C = open_dataset(self.nc_tasmax).tasmax tasmax_C -= K2C tasmax_C.attrs["units"] = "C" tasmin = open_dataset(self.nc_tasmin).tasmin tasmin_C = open_dataset(self.nc_tasmin).tasmin tasmin_C -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[32, 1, 0] = np.nan tasmin_C.values[32, 1, 0] = np.nan etr = atmos.extreme_temperature_range(tasmin, tasmax, freq="MS") etrC = atmos.extreme_temperature_range(tasmin_C, tasmax_C, freq="MS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] np.testing.assert_array_equal(etr, etrC) etr1 = max1[0:31].max() - min1[0:31].min() assert np.allclose(etr1, etr.values[0, 0, 0]) assert np.isnan(etr.values[1, 1, 0]) assert np.isnan(etr.values[0, -1, -1]) class TestTmean: nc_files = ( os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc"), os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc"), ) def test_Tmean_3d_data(self): ds_tmax = open_dataset(self.nc_files[0]) ds_tmin = open_dataset(self.nc_files[1]) tas = atmos.tg(ds_tmin.tasmin, ds_tmax.tasmax) tas_C = atmos.tg(ds_tmin.tasmin, ds_tmax.tasmax) tas_C.values -= K2C tas_C.attrs["units"] = "C" # put a nan somewhere tas.values[180, 1, 0] = np.nan tas_C.values[180, 1, 0] = np.nan tmmean = atmos.tg_mean(tas) tmmeanC = atmos.tg_mean(tas_C) x1 = tas.values[:, 0, 0] tmmean1 = x1.mean() # TODO: Investigate the differences between the two outputs. # The conversion to K is done after / before the mean. np.testing.assert_array_almost_equal(tmmeanC, tmmean, 3) # test single point vs manual assert np.allclose(tmmean1, tmmean.values[0, 0, 0], tmmeanC.values[0, 0, 0]) # test single nan point assert np.isnan(tmmean.values[0, 1, 0]) # test all nan point assert np.isnan(tmmean.values[0, -1, -1]) class TestTx: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_TX_3d_data(self): tasmax = open_dataset(self.nc_file).tasmax tasmax_C = open_dataset(self.nc_file).tasmax tasmax_C.values -= K2C tasmax_C.attrs["units"] = "C" # put a nan somewhere tasmax.values[180, 1, 0] = np.nan tasmax_C.values[180, 1, 0] = np.nan txmean = atmos.tx_mean(tasmax) txmax = atmos.tx_max(tasmax) txmin = atmos.tx_min(tasmax) txmeanC = atmos.tx_mean(tasmax_C) txmaxC = atmos.tx_max(tasmax_C) txminC = atmos.tx_min(tasmax_C) no_nan = ( ~np.isnan(txmean).values & ~np.isnan(txmax).values & ~np.isnan(txmin).values ) # test maxes always greater than mean and mean always greater than min (non nan values only) assert np.all(txmax.values[no_nan] > txmean.values[no_nan]) & np.all( txmean.values[no_nan] > txmin.values[no_nan] ) np.testing.assert_array_almost_equal(txmeanC, txmean, 3) np.testing.assert_array_equal(txminC, txmin) np.testing.assert_array_equal(txmaxC, txmax) x1 = tasmax.values[:, 0, 0] txmean1 = x1.mean() txmin1 = x1.min() txmax1 = x1.max() # test single point vs manual assert np.allclose(txmean1, txmean.values[0, 0, 0], txmeanC.values[0, 0, 0]) assert np.allclose(txmax1, txmax.values[0, 0, 0], txmaxC.values[0, 0, 0]) assert np.allclose(txmin1, txmin.values[0, 0, 0], txminC.values[0, 0, 0]) # test single nan point assert np.isnan(txmean.values[0, 1, 0]) assert np.isnan(txmin.values[0, 1, 0]) assert np.isnan(txmax.values[0, 1, 0]) # test all nan point assert np.isnan(txmean.values[0, -1, -1]) assert np.isnan(txmin.values[0, -1, -1]) assert np.isnan(txmax.values[0, -1, -1]) class TestTn: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_TN_3d_data(self): tasmin = open_dataset(self.nc_file).tasmin tasmin_C = open_dataset(self.nc_file).tasmin tasmin_C.values -= K2C tasmin_C.attrs["units"] = "C" # put a nan somewhere tasmin.values[180, 1, 0] = np.nan tasmin_C.values[180, 1, 0] = np.nan tnmean = atmos.tn_mean(tasmin) tnmax = atmos.tn_max(tasmin) tnmin = atmos.tn_min(tasmin) tnmeanC = atmos.tn_mean(tasmin_C) tnmaxC = atmos.tn_max(tasmin_C) tnminC = atmos.tn_min(tasmin_C) no_nan = ( ~np.isnan(tnmean).values & ~np.isnan(tnmax).values & ~np.isnan(tnmin).values ) # test maxes always greater than mean and mean alwyas greater than min (non nan values only) assert np.all(tnmax.values[no_nan] > tnmean.values[no_nan]) & np.all( tnmean.values[no_nan] > tnmin.values[no_nan] ) np.testing.assert_array_almost_equal(tnmeanC, tnmean, 3) np.testing.assert_array_equal(tnminC, tnmin) np.testing.assert_array_equal(tnmaxC, tnmax) x1 = tasmin.values[:, 0, 0] txmean1 = x1.mean() txmin1 = x1.min() txmax1 = x1.max() # test single point vs manual assert np.allclose(txmean1, tnmean.values[0, 0, 0], tnmeanC.values[0, 0, 0]) assert np.allclose(txmax1, tnmax.values[0, 0, 0], tnmaxC.values[0, 0, 0]) assert np.allclose(txmin1, tnmin.values[0, 0, 0], tnminC.values[0, 0, 0]) # test single nan point assert np.isnan(tnmean.values[0, 1, 0]) assert np.isnan(tnmin.values[0, 1, 0]) assert np.isnan(tnmax.values[0, 1, 0]) # test all nan point assert np.isnan(tnmean.values[0, -1, -1]) assert np.isnan(tnmin.values[0, -1, -1]) assert np.isnan(tnmax.values[0, -1, -1]) class TestConsecutiveFrostDays: def test_one_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [1]) def test_three_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [3]) def test_two_equal_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 a[6:9] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [3]) def test_two_events_freeze_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2:5] -= 20 a[6:10] -= 20 ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [4]) def test_convert_units_freeze_day(self, tasmin_series): a = np.zeros(365) + 5.0 a[2:5] -= 20 a[6:10] -= 20 ts = tasmin_series(a) ts.attrs["units"] = "C" out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [4]) def test_one_nan_day(self, tasmin_series): a = np.zeros(365) + K2C + 5.0 a[2] -= 20 a[-1] = np.nan ts = tasmin_series(a) out = atmos.consecutive_frost_days(ts) np.testing.assert_array_equal(out, [np.nan]) class TestConsecutiveFrostFreeDays: def test_real_data(self, atmosds): tasmin = atmosds.tasmin test = atmos.maximum_consecutive_frost_free_days(tasmin) np.testing.assert_allclose(test[2, 0], [68], rtol=1e-1) assert ( "Annual maximum number of consecutive days with minimum daily temperature above or equal to 0 degc." ) in test.description class TestFrostSeasonLength: def test_simple(self, tasmin_series): a = np.zeros(730) + K2C + 15 a[300:400] = K2C - 5 a[404:407] = K2C - 5 tasmin = tasmin_series(a, start="2000-01-01") # Default, window = 5, mid_date = 07-01, freq= AS-JUL out = atmos.frost_season_length(tasmin=tasmin) np.testing.assert_array_equal(out, [np.nan, 107, np.nan]) out = atmos.frost_season_length(tasmin=tasmin, window=3) np.testing.assert_array_equal(out, [np.nan, 100, np.nan]) out = atmos.frost_season_length(tasmin=tasmin, mid_date="07-01", freq="YS") np.testing.assert_array_equal(out, [np.nan, np.nan]) class TestColdSpellDays: def test_simple(self, tas_series): a = np.zeros(365) + K2C a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning ts = tas_series(a) out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_convert_units(self, tas_series): a = np.zeros(365) a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning ts = tas_series(a) ts.attrs["units"] = "C" out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, 0]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]) def test_nan_presence(self, tas_series): a = np.zeros(365) + K2C a[10:20] -= 15 # 10 days a[40:43] -= 50 # too short -> 0 a[80:100] -= 30 # at the end and beginning a[-1] = np.nan ts = tas_series(a) out = atmos.cold_spell_days(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [10, 0, 12, 8, 0, 0, 0, 0, 0, 0, 0, np.nan]) out = atmos.cold_spell_frequency(ts, thresh="-10 C", freq="MS") np.testing.assert_array_equal(out, [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, np.nan]) class TestFrostDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tasmin = open_dataset(self.nc_file).tasmin tasminC = open_dataset(self.nc_file).tasmin tasminC -= K2C tasminC.attrs["units"] = "C" # put a nan somewhere tasmin.values[180, 1, 0] = np.nan tasminC.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 273.16 fd = atmos.frost_days(tasmin, freq="YS") fdC = atmos.frost_days(tasminC, freq="YS") # fds = xci.frost_days(tasmin, thresh=thresh, freq='YS', skipna=True) x1 = tasmin.values[:, 0, 0] fd1 = (x1[x1 < thresh]).size np.testing.assert_array_equal(fd, fdC) assert np.allclose(fd1, fd.values[0, 0, 0]) # assert (np.allclose(fd1, fds.values[0, 0, 0])) assert np.isnan(fd.values[0, 1, 0]) # assert (np.allclose(fd2, fds.values[0, 1, 0])) assert np.isnan(fd.values[0, -1, -1]) # assert (np.isnan(fds.values[0, -1, -1])) class TestIceDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tasC = open_dataset(self.nc_file).tasmax tasC -= K2C tasC.attrs["units"] = "C" # put a nan somewhere tas.values[180, 1, 0] = np.nan tasC.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 273.16 fd = atmos.ice_days(tas, freq="YS") fdC = atmos.ice_days(tasC, freq="YS") x1 = tas.values[:, 0, 0] fd1 = (x1[x1 < thresh]).size np.testing.assert_array_equal(fd, fdC) assert np.allclose(fd1, fd.values[0, 0, 0]) assert np.isnan(fd.values[0, 1, 0]) assert np.isnan(fd.values[0, -1, -1]) class TestCoolingDegreeDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tas.attrs["cell_methods"] = "time: mean within days" # put a nan somewhere tas.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 18 + K2C cdd = atmos.cooling_degree_days(tas, thresh="18 C", freq="YS") x1 = tas.values[:, 0, 0] cdd1 = (x1[x1 > thresh] - thresh).sum() assert np.allclose(cdd1, cdd.values[0, 0, 0]) assert np.isnan(cdd.values[0, 1, 0]) assert np.isnan(cdd.values[0, -1, -1]) def test_convert_units(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tas.values -= K2C tas.attrs["units"] = "C" tas.attrs["cell_methods"] = "time: mean within days" # put a nan somewhere tas.values[180, 1, 0] = np.nan # compute with both skipna options thresh = 18 cdd = atmos.cooling_degree_days(tas, thresh="18 C", freq="YS") x1 = tas.values[:, 0, 0] # x2 = tas.values[:, 1, 0] cdd1 = (x1[x1 > thresh] - thresh).sum() # gdd2 = (x2[x2 > thresh] - thresh).sum() assert np.allclose(cdd1, cdd.values[0, 0, 0]) # assert (np.allclose(gdd1, gdds.values[0, 0, 0])) assert np.isnan(cdd.values[0, 1, 0]) # assert (np.allclose(gdd2, gdds.values[0, 1, 0])) assert np.isnan(cdd.values[0, -1, -1]) # assert (np.isnan(gdds.values[0, -1, -1])) class TestHeatingDegreeDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax # put a nan somewhere tas.values[180, 1, 0] = np.nan tas.attrs["cell_methods"] = "time: mean within days" # compute with both skipna options thresh = 17 + K2C hdd = atmos.heating_degree_days(tas, freq="YS") x1 = tas.values[:, 0, 0] hdd1 = (thresh - x1).clip(min=0).sum() assert np.allclose(hdd1, hdd.values[0, 0, 0]) assert np.isnan(hdd.values[0, 1, 0]) assert np.isnan(hdd.values[0, -1, -1]) def test_convert_units(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax # put a nan somewhere tas.values[180, 1, 0] = np.nan tas.values -= K2C tas.attrs["units"] = "C" tas.attrs["cell_methods"] = "time: mean within days" # compute with both skipna options thresh = 17 hdd = atmos.heating_degree_days(tas, freq="YS") x1 = tas.values[:, 0, 0] hdd1 = (thresh - x1).clip(min=0).sum() assert np.allclose(hdd1, hdd.values[0, 0, 0]) assert np.isnan(hdd.values[0, 1, 0]) assert np.isnan(hdd.values[0, -1, -1]) class TestGrowingDegreeDays: nc_file = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") def test_3d_data_with_nans(self): # test with 3d data tas = open_dataset(self.nc_file).tasmax tas.attrs["cell_methods"] = "time: mean within days" # put a nan somewhere tas.values[180, 1, 0] = np.nan # compute with both skipna options thresh = K2C + 4 gdd = atmos.growing_degree_days(tas, freq="YS") # gdds = xci.growing_degree_days(tas, thresh=thresh, freq='YS', skipna=True) x1 = tas.values[:, 0, 0] # x2 = tas.values[:, 1, 0] gdd1 = (x1[x1 > thresh] - thresh).sum() # gdd2 = (x2[x2 > thresh] - thresh).sum() assert np.allclose(gdd1, gdd.values[0, 0, 0]) assert np.isnan(gdd.values[0, 1, 0]) assert np.isnan(gdd.values[0, -1, -1]) class TestHeatWaveFrequency: def test_1d(self, tasmax_series, tasmin_series): tn1 = np.zeros(366) tx1 = np.zeros(366) tn1[:10] = np.array([20, 23, 23, 23, 23, 21, 23, 23, 23, 23]) tx1[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tn = tasmin_series(tn1 + K2C, start="1/1/2000") tx = tasmax_series(tx1 + K2C, start="1/1/2000") tnC = tasmin_series(tn1, start="1/1/2000") tnC.attrs["units"] = "C" txC = tasmax_series(tx1, start="1/1/2000") txC.attrs["units"] = "C" hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) hwfC = atmos.heat_wave_frequency( tnC, txC, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) np.testing.assert_array_equal(hwf, hwfC) np.testing.assert_allclose(hwf.values[:1], 2) hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", window=4, freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 1) # one long hw hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="10 C", thresh_tasmax="10 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 1) # no hw hwf = atmos.heat_wave_frequency( tn, tx, thresh_tasmin="40 C", thresh_tasmax="40 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 0) class TestHeatWaveMaxLength: def test_1d(self, tasmax_series, tasmin_series): tn1 = np.zeros(366) tx1 = np.zeros(366) tn1[:10] = np.array([20, 23, 23, 23, 23, 21, 23, 23, 23, 23]) tx1[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tn = tasmin_series(tn1 + K2C, start="1/1/2000") tx = tasmax_series(tx1 + K2C, start="1/1/2000") tnC = tasmin_series(tn1, start="1/1/2000") tnC.attrs["units"] = "C" txC = tasmax_series(tx1, start="1/1/2000") txC.attrs["units"] = "C" hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) hwfC = atmos.heat_wave_max_length( tnC, txC, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) np.testing.assert_array_equal(hwf, hwfC) np.testing.assert_allclose(hwf.values[:1], 4) hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="20 C", thresh_tasmax="30 C", window=4, freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 5) # one long hw hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="10 C", thresh_tasmax="10 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 10) # no hw hwf = atmos.heat_wave_max_length( tn, tx, thresh_tasmin="40 C", thresh_tasmax="40 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 0) class TestHeatWaveTotalLength: def test_1d(self, tasmax_series, tasmin_series): tn1 = np.zeros(366) tx1 = np.zeros(366) tn1[:10] = np.array([20, 23, 23, 23, 23, 21, 23, 23, 23, 23]) tx1[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tn = tasmin_series(tn1 + K2C, start="1/1/2000") tx = tasmax_series(tx1 + K2C, start="1/1/2000") tnC = tasmin_series(tn1, start="1/1/2000") tnC.attrs["units"] = "C" txC = tasmax_series(tx1, start="1/1/2000") txC.attrs["units"] = "C" hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) hwfC = atmos.heat_wave_total_length( tnC, txC, thresh_tasmin="22 C", thresh_tasmax="30 C", freq="YS" ) np.testing.assert_array_equal(hwf, hwfC) np.testing.assert_allclose(hwf.values[:1], 7) hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="20 C", thresh_tasmax="30 C", window=4, freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 5) # one long hw hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="10 C", thresh_tasmax="10 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 10) # no hw hwf = atmos.heat_wave_total_length( tn, tx, thresh_tasmin="40 C", thresh_tasmax="40 C", freq="YS" ) np.testing.assert_allclose(hwf.values[:1], 0) class TestHeatWaveIndex: def test_simple(self, tasmax_series): tx = np.zeros(366) tx[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tx = tasmax_series(tx + K2C, start="1/1/2000") hwi = atmos.heat_wave_index(tx, freq="YS") np.testing.assert_array_equal(hwi, [10]) def test_convert_units(self, tasmax_series): tx = np.zeros(366) tx[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tx = tasmax_series(tx, start="1/1/2000") tx.attrs["units"] = "C" hwi = atmos.heat_wave_index(tx, freq="YS") np.testing.assert_array_equal(hwi, [10]) def test_nan_presence(self, tasmax_series): tx = np.zeros(366) tx[:10] = np.array([29, 31, 31, 31, 29, 31, 31, 31, 31, 31]) tx[-1] = np.nan tx = tasmax_series(tx + K2C, start="1/1/2000") hwi = atmos.heat_wave_index(tx, freq="YS") np.testing.assert_array_equal(hwi, [np.nan]) class TestDailyFreezeThaw: nc_tasmax = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmax_1990.nc") nc_tasmin = os.path.join("NRCANdaily", "nrcan_canada_daily_tasmin_1990.nc") def test_3d_data_with_nans(self): tasmax = open_dataset(self.nc_tasmax).tasmax tasmin = open_dataset(self.nc_tasmin).tasmin # put a nan somewhere tasmin.values[180, 1, 0] = np.nan frzthw = atmos.daily_freezethaw_cycles(tasmin, tasmax, freq="YS") min1 = tasmin.values[:, 0, 0] max1 = tasmax.values[:, 0, 0] frzthw1 = ((min1 < K2C) * (max1 > K2C) * 1.0).sum()
np.testing.assert_allclose(frzthw1, frzthw.values[0, 0, 0])
numpy.testing.assert_allclose
# ----------------------------------------------------------------------------- # File: face_preprocess.py """This code is take from git checkout 07f6547 src/common/face_preprocess.py I have added some comments and docstrings to this code (which are completely missing in the original). """ from typing import Tuple import cv2 from skimage import transform as trans import numpy as np # toolbox imports from dltb.base.image import Image, Imagelike, Sizelike class FaceAligner: @staticmethod def parse_lst_line(line): """Parse alignment information from a text line (tabulator separated values). The line should contain either 3, 7 or 17 values. The first 3 values specify (aligned, image_path, label), the (numeriic) aligned flag, the path to the image file and a numerical label. This can be followed in fields 3 to 6 by four integer coordinates for the bouding boxes, and then in fields 7-16 by ten coordinates for the facial landmarks. Arguments --------- line: Result ------ image_path: str label: int bbox: np.ndarray of shape (4,), dtype np.int32 landmark: np.ndarray of shape (2, 5), dtype np.float32 aligned: int """ vec = line.strip().split("\t") assert len(vec) >= 3 aligned = int(vec[0]) image_path = vec[1] label = int(vec[2]) bbox = None landmark = None # print(vec) if len(vec) > 3: bbox = np.zeros((4,), dtype=np.int32) for i in range(3, 7): bbox[i-3] = int(vec[i]) landmark = None # optional: coordinates for 5 landmarks if len(vec) > 7: coordinates = [] for i in range(7, 17): coordinates.append(float(vec[i])) landmark = np.array(coordinates).reshape((2, 5)).T return image_path, label, bbox, landmark, aligned @staticmethod def read_image(img_path, **kwargs): """Read an image from a file """ mode = kwargs.get('mode', 'rgb') layout = kwargs.get('layout', 'HWC') if mode == 'gray': img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_GRAYSCALE) else: img = cv2.imread(img_path, cv2.CV_LOAD_IMAGE_COLOR) if mode == 'rgb': # print('to rgb') img = img[..., ::-1] # BGR -> RGB if layout == 'CHW': img = np.transpose(img, (2, 0, 1)) return img def preprocess(self, image: Imagelike, size: Tuple[int, int] = None, bbox=None, landmark=None, margin: int = 0, **kwargs): # margin=44 """Preprocess the image. Preprocessing consists of multiple steps: 1. read the image 2. obtain the target image size 3. align the image Arguments --------- image: The image to be preprocessed. size: The target size of the image after preprocessing. bbox: The bounding for the image. landmarks: Facial landmarks for face alignment. margin: Extra margin to put around the face. """ # # 1. read the image # img = Image.as_array(image) # # 2. obtain the target image size # # str_image_size = image_size # image_size = [] # image_size as two-element list [width, height] # if str_image_size: # image_size = [int(x) for x in str_image_size.split(',')] # if len(image_size) == 1: # image_size = [image_size[0], image_size[0]] if size is None: image_size = (112, 112) else: image_size = size assert len(image_size) == 2 assert image_size[0] == 112 assert image_size[0] == 112 or image_size[1] == 96 # # 3. align the image # # obtain a transformation matrix transformation = landmark and self._transformation_matrix(landmark) # if no transformation was obtained, just resize if transformation is None: return self._resize_image(img, image_size, margin=margin) # otherweise apply the transformation return self._transform_image(img, transformation, image_size) @staticmethod def _transformation_matrix(landmarks, size): """ size: The size of the target image. Only two sizes are supported: (112, 1112) or (112, 96). """ src = np.array([ [30.2946, 51.6963], [65.5318, 51.5014], [48.0252, 71.7366], [33.5493, 92.3655], [62.7299, 92.2041]], dtype=np.float32) if size[1] == 112: src[:, 0] += 8.0 dst = landmarks.astype(np.float32) # src = src[0:3,:] # dst = dst[0:3,:] tform = trans.SimilarityTransform() tform.estimate(dst, src) trans_matrix = tform.params[0:2, :] # trans_matrix = \ # cv2.estimateRigidTransform(dst.reshape(1,5,2), # src.reshape(1,5,2), False) # print(src.shape, dst.shape) # print(src) # print(dst) # print(trans_matrix) return trans_matrix @staticmethod def _resize_image(image: np.ndarray, image_size, bbox=None, margin: int = 44): """ Arguments --------- image: The image to be resized. size: The new size of the image. bbox: BoundingBox (x1, y1, x2, y2) to cut out of the input image. Only that part of the input image will be resized. If the (extended - see margin) bounding box reaches out of the image boundaries, it will adapted so that it is inside the image (this may distort the aspect ratio). margin: An extra margin by which the bounding box is extended on all sides (half of the margin is added left/rigth and top/bottom). """ # no transformation: use bounding box for resizing if bbox is None: # use center crop det = np.zeros(4, dtype=np.int32) det[0] = int(image.shape[1]*0.0625) det[1] = int(image.shape[0]*0.0625) det[2] = image.shape[1] - det[0] det[3] = image.shape[0] - det[1] else: det = bbox bbox =
np.zeros(4, dtype=np.int32)
numpy.zeros
#!/usr/bin/env python """ Testing healpix module """ __author__ = "<NAME>" import unittest import numpy as np import healpy as hp import fitsio from ugali.utils import healpix from ugali.utils.logger import logger logger.setLevel(logger.WARN) NSIDE = 4096 FACTOR = 4 PIX = np.array([104582830, 43361203, 142027178]) U_GRADE_PIX_NEST = np.array([[418331320, 418331321, 418331322, 418331323], [173444812, 173444813, 173444814, 173444815], [568108712, 568108713, 568108714, 568108715]]) U_GRADE_PIX_RING = np.array([[418356572, 418323804, 418323803, 418291036], [173492070, 173459302, 173459301, 173426534], [568152916, 568120148, 568120147, 568087380]]) D_GRADE_PIX_NEST = PIX//FACTOR D_GRADE_PIX_RING =
np.array([26142551, 10842585, 35509461])
numpy.array
import numpy as np import pandas as pd import unittest from collections import OrderedDict from kabuki.generate import gen_rand_data, _add_noise def gen_func_df(size=100, loc=0, scale=1): data = np.random.normal(loc=loc, scale=scale, size=size) return pd.DataFrame(data, columns=['data']) class TestGenerate(unittest.TestCase): def runTest(self): pass def test_add_noise(self): noise = 1 params = OrderedDict([('loc', 0), ('scale', 1)]) np.random.seed(31337) new_params = _add_noise({'test': params}, noise=noise)['test'] # check if copied self.assertFalse(new_params is params) # check if noise correctly added np.random.seed(31337) self.assertTrue(new_params['loc'] == np.random.normal(loc=params['loc'], scale=noise)) self.assertTrue(new_params['scale'] == np.random.normal(loc=params['scale'], scale=noise)) # test whether exclude works new_params = _add_noise({'test': params}, noise=noise, exclude_params=('scale',))['test'] self.assertTrue(new_params['scale'] == 1) # test whether bounds work for i in range(10): bound_params = _add_noise({'test': params}, bounds={'loc': (-1, 1), 'scale': (0, 2)}, noise=3)['test'] assert (bound_params['loc'] > -1) and (bound_params['loc'] < 1) assert (bound_params['scale'] > 0) and (bound_params['scale'] < 2) # test whether valid_func works check_valid_func = lambda **params: (params['loc'] > -1) and (params['loc'] < 1) and (params['scale'] > 0) and ( params['scale'] < 2) for i in range(10): bound_params = _add_noise({'test': params}, check_valid_func=check_valid_func, noise=3)['test'] assert (bound_params['loc'] > -1) and (bound_params['loc'] < 1) assert (bound_params['scale'] > 0) and (bound_params['scale'] < 2) def test_single_cond_no_subj(self): params = {'loc': 0, 'scale': 1} seed = 31337 data, params_return = gen_rand_data(gen_func_df, params, size=100, seed=seed)
np.random.seed(seed)
numpy.random.seed
""" Demo of HMR. Note that HMR requires the bounding box of the person in the image. The best performance is obtained when max length of the person in the image is roughly 150px. When only the image path is supplied, it assumes that the image is centered on a person whose length is roughly 150px. Alternatively, you can supply output of the openpose to figure out the bbox and the right scale factor. Sample usage: # On images on a tightly cropped image around the person python -m demo --img_path data/im1963.jpg python -m demo --img_path data/coco1.png # On images, with openpose output python -m demo --img_path data/random.jpg --json_path data/random_keypoints.json """ from __future__ import absolute_import from __future__ import division from __future__ import print_function """ added by CCJ: > see problem : _tkinter.TclError: no display name and no $DISPLAY environment variable, at https://stackoverflow.com/questions/37604289/tkinter-tclerror-no-display-name-and-no-display-environment-variable You can solve it by adding these two lines in the VERY beginning of your *.py script. It should in the very beginning of the code. This is important. """ from os.path import join, exists import matplotlib matplotlib.use('Agg') import sys from absl import flags import numpy as np import skimage.io as io import tensorflow as tf from src.util import renderer as vis_util from src.util import image as img_util from src.util import openpose as op_util from src.load_data_4_inference import data_loader_for_inference as load from src.load_data_4_inference import extract_14_joints from src.util import surreal_in_extrinc as surreal_util from src.RunModelDepth import RunModelV2 from src.RunModel import RunModel as RunModelV1 #added by ccj; import src.pfmutil as pfm import cv2 import os from src.config import get_config from src.pose_perceptron import (get_one_batched_cad_toy_example, draw_lsp_skeleton, save_to_mesh_file) from src.benchmark.eval_util import align_by_pelvis,compute_error_one_sample from datetime import datetime import src.pfmutil as pfm import deepdish as dd #flags.DEFINE_string('depth_fname', 'data/cad-60-small/dep-scale-RGB_20.pfm', 'depth image to run') #flags.DEFINE_string('image_fname', 'data/cad-60-small/img-scale-RGB_20.pfm', 'depth image to run') #flags.DEFINE_integer('gender', 2, 'femael :0, male : 1, neutral = 2') #flags.DEFINE_string('info_fname', 'data/im1963.jpg', 'info file run') #flags.DEFINE_string('result_dir', 'data/im1963.jpg', 'results dir to save files') #flags.DEFINE_integer('t_beg', 0, 'frame begin idx') #flags.DEFINE_integer('t_end', 1, 'frame end idx') #flags.DEFINE_string('json_path', None, 'If specified, uses the openpose output to crop the image.') def visualize(img, proc_param, joints, verts, cam, save_fig_result): """ Renders the result in original image coordinate frame. """ cam_for_render, vert_shifted, joints_orig = vis_util.get_original( proc_param, verts, cam, joints, img_size=img.shape[:2]) # Render results skel_img = vis_util.draw_skeleton(img, joints_orig) rend_img_overlay = renderer( vert_shifted, cam=cam_for_render, img=img, do_alpha=True) rend_img = renderer( vert_shifted, cam=cam_for_render, img_size=img.shape[:2]) rend_img_vp1 = renderer.rotated( vert_shifted, 60, cam=cam_for_render, img_size=img.shape[:2]) rend_img_vp2 = renderer.rotated( vert_shifted, -60, cam=cam_for_render, img_size=img.shape[:2]) import matplotlib.pyplot as plt # plt.ion() plt.figure(1) plt.clf() plt.subplot(231) plt.imshow(img) plt.title('input') plt.axis('off') plt.subplot(232) plt.imshow(skel_img) plt.title('joint projection') plt.axis('off') plt.subplot(233) plt.imshow(rend_img_overlay) plt.title('3D Mesh overlay') plt.axis('off') plt.subplot(234) plt.imshow(rend_img) plt.title('3D mesh') plt.axis('off') plt.subplot(235) plt.imshow(rend_img_vp1) plt.title('diff vp') plt.axis('off') plt.subplot(236) plt.imshow(rend_img_vp2) plt.title('diff vp') plt.axis('off') plt.draw() """ > see https://hub.docker.com/r/dawars/hmr/ Matplotlib cannot open a window in docker (by default), therefore it needs to replaced by saving the figures instead: In the demo.py change plt.show() to plt.savefig("figure.png") """ # added by CCJ; dockerEnv = True if not dockerEnv: plt.show() else: plt.savefig(save_fig_result) print ("saved %s ..." % save_fig_result) # import ipdb # ipdb.set_trace() return cam_for_render, joints_orig def visualize_joints2d_3kinds(img, joints1, joints2, joints3, save_fig_result): """ Renders the result in original image coordinate frame. """ # Render results skel_img1 = vis_util.draw_skeleton(img, joints1) skel_img2 = vis_util.draw_skeleton(img, joints2) skel_img3 = vis_util.draw_skeleton(img, joints3) import matplotlib.pyplot as plt # plt.ion() plt.figure(1) plt.clf() plt.subplot(311) plt.imshow(skel_img1) plt.title('joints2d_gt') plt.axis('off') plt.subplot(312) plt.title('joints 3d smpl ext/intric projection') plt.imshow(skel_img2) plt.axis('off') plt.subplot(313) plt.imshow(skel_img3) plt.title('joints 3d tf smpl ext/intric projection') plt.axis('off') plt.draw() """ > see https://hub.docker.com/r/dawars/hmr/ Matplotlib cannot open a window in docker (by default), therefore it needs to replaced by saving the figures instead: In the demo.py change plt.show() to plt.savefig("figure.png") """ # added by CCJ; dockerEnv = True if not dockerEnv: plt.show() else: plt.savefig(save_fig_result) print ("saved %s ..." % save_fig_result) # import ipdb # ipdb.set_trace() def preprocess_image(img, depth, json_path=None, joints2d_gt=None, cam_gt=None): #img = io.imread(img_path) #if img.shape[2] == 4: # img = img[:, :, :3] #if depth_path is not None: # if ".pfm" in depth_path: # dep = pfm.load_pfm(depth_path) # else: # dep = io.imread(depth_path) #else: # dep = np.zeros(img.size, dtype = np.float32) if img.shape[2] == 4: img = img[:, :, :3] depth = np.reshape(depth, [depth.shape[0], depth.shape[1], 1]) img_orig = img img =
np.concatenate([img, depth], -1)
numpy.concatenate
import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np from matplotlib.transforms import Bbox from mpl_toolkits.axes_grid1 import make_axes_locatable, axes_size from .error_estimation import poisson_interval ######################################## # Histogram plotter def histplot(h, bins, weights=None, yerr=None, variances=None, stack=False, density=False, histtype='step', label=None, edges=False, binticks=False, ax=None, **kwargs): if ax is None: ax = plt.gca() else: if not isinstance(ax, plt.Axes): raise ValueError("ax must be a matplotlib Axes object") # mpl updated to new methods _mpl_up = np.prod([int(v) >= int(ref) for v, ref in zip(mpl.__version__.split('.')[:3], [3, 3, 3]) ]).astype(bool) # arg check if histtype != 'step': assert edges is False, "edges is only valid with histtype='step'" _allowed_histtype = ['fill', 'step', 'errorbar'] _err_message = "Select 'histtype' from: {}".format(_allowed_histtype) assert histtype in _allowed_histtype, _err_message # Preprocess h = np.asarray(h) bins =
np.asarray(bins)
numpy.asarray
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' #%% [markdown] # # SciPy Family # # Python-based ecosystem [scipy.org](https://scipy.org) # # * SciPy Library - Fundamental library for scientific computing # * NumPy - Numeric Python: Base N-dimensional array package # * Pandas - Data structures (Dataframes) & analysis # * Mathplotlib - Comprehensive 2D Plotting # * Sympy - Symbolic mathematics # * IPython - Enhanced Interactive Console # # The datatypes (dtype attribute) supported by Numpy is many: # [Numpy basic data types](https://docs.scipy.org/doc/numpy/user/basics.types.html) #%% # might need to install numpy from the terminal # %pip install numpy # %pip3 install numpy # %sudo pip install numpy # %sudo pip3 install numpy # %sudo -H pip3 install numpy # %conda install numpy # %pip freeze # %pip list # %pip show numpy #%% import numpy as np # or from numpy import * # import matplotlib.pyplot as plt # import pandas as pd #%% # # Review lists list0 = [9,8,7] list0b = [6,5,4] # # What are the lengths of list1 and list1b? #%% # What do you get with list0 + list0b? # list0+list0b #%% # explore data structures with list of list, how many dimensions? list1 = [ [11,12,13,14], [21,22,23,24], [31,32,33,34]] list1b = [ [41,42,43,44], [51,52,53,54], [61,62,63,64]] # #%% # Again, what is list1 + list1b? # list1+list1b #%% # Question: How do you describe (in english) these two lists? What are the "shapes" of the objects? # # These are 3 by 4 matrices. Two-dimensional arrays. # # Question: how do you get the element '32' in list1? # # # # Question: how do you get the row of [31,32,33,34] in list1? # # # #%% # Question: How to you get the column of 12, 22, 32 ??? # # #%% [ row[1] for row in list1 ] #%% # OR Loop it v3 = [] for row in list1: v3.append(row[1]) print(v3) #%% #%% list2 = [ [11,12,13], [21,22,23], [31,32,33], [41,42,43] ] # two dimensional list (2-D array) # (4,3) # list2b = [ [51,52,53], [61,62,63], [71,72,73], [81,82,83]] # How do you access the different parts of these two lists? #%% # How do you create a higher-dimensional list (say 2x3x4)? # # list3D = [ [ [111,112,113], [121,122,123], [131,132,133], [141,142,143] ] # , [ [211,212,213], [221,222,223], [231,232,233], [241,242,243] ] ] list3D = [ [ [ 111, 112, 113, 114 ], [ 121, 122, 123, 124 ], [131, 132, 133, 134] ] , [ [ 211, 212, 213, 214 ], [ 221, 222, 223, 224 ], [231, 232, 233, 234] ] ] #%% # Now try numpy import numpy as np # Some basic attributes and simple functions of numpy arrays a = np.arange(15) # numpy creates a range of 15 consecutive integers, like the range() function in basic python print('a:',a) a = np.arange(15).reshape(3,-1) # Using -1 for the last dimension lets numpy calculate directly # a = np.arange(15).reshape(3,5) # Same result as line above a = np.arange(24).reshape(2,3,-1) # 3d array print('a:',a) print('a.shape:',a.shape) print('a.ndim:',a.ndim) print('a.dtype:',a.dtype) print('a.dtype.name:',a.dtype.name) print('a.itemsize:',a.itemsize) print('a.size:',a.size) print('type(a):',type(a)) b = np.array([6, 7, 8]) print('b:',(b)) print('type(b):',type(b)) # # The opposite of reshape, can use ravel() print('a ravel:', a.ravel().shape) print('a again:', a) # # IMPORTANT # The a.ravel() function does NOT change a!! # I create a true copy of a and ravel/unravel it only. # Remember the differences in class/object definitions, # it is critical what is the "return" value in # those function/methods. # If return self, you are getting back the object a. # But this function return a separate true copy of # the result instead. This is by design. # # A lot of other functions in numpy/pandas behave like that too. # # The same thing for reshape, for example print('a reshape:', a.reshape(1,-1)) print('a.shape:',a.shape) print('a:',a) print('#',50*"-") #%% # If you really want to change a, try this: # a = a.ravel() # exact same result as a = a.reshape(-1) print('a: ',a) print('type a: ',type(a)) print('a.shape: ',a.shape) print('#',50*"-") #%% # Other examples to create some simply numpy arrays print('zeros:', np.zeros( (3,4) )) print('ones:', np.ones( (2,3,4), dtype=np.int16 )) print('empty:', np.empty( (2,3) )) print('arange variation 1:', np.arange( 10, 30, 5 )) print('arange variation 2:', np.arange( 0, 2, 0.3 ) ) print('complex:', np.array( [ [1,2], [3,4] ], dtype=complex )) print('float:', np.arange(2, 10, dtype=float) ) from numpy import pi x = np.linspace( 0, 2*pi, 100 ) f = np.sin(x) print('sine of linspace:',f) print('#',50*"-") #%% # import numpy as np # Creating numpy arrays from python lists (and other list-like objects) # Also look at the concept of "strides" nparray1 = np.array(list1) print("nparray1 = \n", nparray1) print("type(nparray1) =", type(nparray1)) print("nparray1.dtype =", nparray1.dtype) # int64 print("nparray1.shape =", nparray1.shape) print("nparray1.strides =", nparray1.strides) # each value is int64, hence 8-byte of memory, with four columns, it takes 8x4 = 32 bytes to the next row, same position. Strides = (32,8) to the next row and next column #%% # if we redo nparray1 = np.array(list1, dtype= np.int32) print("nparray1 = \n", nparray1) print("type(nparray1) =", type(nparray1)) print("nparray1.dtype =", nparray1.dtype) # int32 print("nparray1.shape =", nparray1.shape) print("nparray1.strides =", nparray1.strides) # now each value is int32, 4-byte, with four columns, it takes 4x4 = 16 bytes to next row. #%% # Try others nparray2 = np.array(list2) print("nparray2 = \n", nparray2) print("type(nparray2) =", type(nparray2)) print("nparray2.dtype =", nparray2.dtype) # int64 print("nparray2.shape =", nparray2.shape) #%% import sys try: nparray12 = nparray1+nparray2 except ValueError as err : # except (RuntimeError, TypeError, NameError): print("Value Error: {0}".format(err), " Try transpose...") nparray12 = nparray1+nparray2.T except TypeError as err : # except (RuntimeError, TypeError, NameError): print("Type Error: {0}".format(err)) except: print("unexpected error:", sys.exc_info()[0]) #%% list4 = [ 5, 'a', 2, 3.5, True ] list5 = [ 5, [1,4], 3, 1 ] nparray4 = np.array(list4) print("nparray4 = \n", nparray4) print("type(nparray4) =", type(nparray4)) print("nparray4.dtype =", nparray4.dtype) print("nparray4.shape =", nparray4.shape) #%% # list5 = [ 5, [1,4], 3, 1 ] nparray5 = np.array(list5) print("nparray5 = \n", nparray5) print("type(nparray5) =", type(nparray5)) print("nparray5.dtype =", nparray5.dtype) print("nparray5.shape =", nparray5.shape) #%% # If they are 2D-arrays, and have compatible dimensions, you can multiply them as matrices tprod12 = np.dot(nparray1,nparray2) print("tprod12.shape =", tprod12.shape) mprod21 = np.dot(nparray2,nparray1) print("mprod21.shape =", mprod21.shape) #%% # Also try the 3d-array that we constructed... # In physics, those are called tensors. nparray3D = np.array(list3D) print("nparray3D = \n", nparray3D) print("type(nparray3D) =", type(nparray3D)) print("nparray3D.dtype =", nparray3D.dtype) print("nparray3D.shape =", nparray3D.shape) #%% # If they are 2D-arrays, and have compatible dimensions, you can multiply them as matrices tprod32 = np.dot(nparray3D,nparray2) print("tprod32.shape =", tprod32.shape) #%%[markdown] # speed and ease of use is the strength of numpy array, compared to python lists. # The entire array must be of a single type, however. # If we try to time or clock the code execution times, you will find similar functions # is much faster than looping thru a python list. # This is mainly because NumPy is written in C, and optimized these specialized # operations in a well-designed library. #%% # filtering and indexing print(nparray1[0:2,:2],'\n') print(nparray1[:,-1:]) #%% # Let us do something simpler. # Obtain the third column of nparray1 print(nparray1) v3 = nparray1[:,2] print(v3) # it is a column vector, or array one by three (3,1) print(v3.shape) # it is a column vector, or array one by three (3,1) # Much easier than dealing with lists on the coding side of things. Speed is also maximized. #%% # BROADCASTING # # Let's practice slicing numpy arrays and using NumPy's broadcasting concept. # Remember, broadcasting refers to a numpy array's ability to VECTORIZE operations, # so they are performed on all elements of an object at once. # If you need to perform some simple operations on all array elements, # nparray1squared = nparray1 ** 2 print(nparray1squared) #%% nparray1mod7 = nparray1 % 7 # remainder from dividing by 7 print(nparray1mod7) #%% nparray1b = np.array(list1b) nparray1bovera = nparray1b / nparray1 print(nparray1bovera) # Try some other operations, see if they work. # Next try to do the above with loops or comprehensions? #%% # boolean indexing print(nparray1) npbool1greater = nparray1 > 21 print(npbool1greater) #%% print(nparray1[npbool1greater]) #%% print(nparray1[npbool1greater].shape) #%% npbool1mod = nparray1 %2 ==1 print(npbool1mod) print(nparray1[npbool1mod]) print(nparray1[npbool1mod].shape) # Again, try to do these with loops or comprehensions? #%% # Let us look at filtering again. x =
np.arange(10)
numpy.arange
import numpy as np import numba import math def dtft(x, omegas): """ Exact evaluation the DTFT at the indicated points omega for the signal x Note this is incredibly slow Note x runs from 0 to N-1 """ N = len(x) ns = np.arange(N) W = np.zeros((len(omegas), N), dtype=np.complex128) for wi, w in enumerate(omegas): W[wi, :] = np.exp(-1.0j * w * ns) return np.dot(W, x) @numba.jit(nopython=True) def nextpow2(n): """ Return the smallest power of two greater than or equal to n. """ return int(math.ceil(math.log(n)/math.log(2))) # now try ourselves a chirp-z transform @numba.jit def chirpz(x, M, A, W): """ chirp z transform per Rabiner derivation pp1256 x is our (complex) signal of length N """ N = len(x) L = 2**(nextpow2(N + M -1)) # or nearest power of two yn = np.zeros(L, dtype=np.complex128) for n in range(N): yn_scale = A**(-n) * W**((n**2.0)/2.0) yn[n] = x[n] * yn_scale Yr = np.fft.fft(yn) vn = np.zeros(L, dtype=np.complex128) for n in range(M): vn[n] = W**((-n**2.0)/2.0) for n in range(L-N+1, L): vn[n] = W**(-((L-n)**2.0)/2.0) Vr = np.fft.fft(vn) Gr = Yr * Vr gk = np.fft.ifft(Gr) #gk = np.convolve(yn, vn) Xk = np.zeros(M, dtype=np.complex128) for k in range(M): g_scale = W**((k**2.0)/2.0) Xk[k] = g_scale * gk[k] return Xk @numba.jit def chirpz2d(x, M, A, W): N = len(x) x = x.T out = np.zeros((N, M), dtype=np.complex128) for i in range(N): out[i] = chirpz(x[i], M, A, W) out2d = np.zeros((M, M), dtype=np.complex128) for i in range(M): out2d[i] = chirpz(out[:, i], M, A, W) return out2d @numba.jit def fchirpz2d(x, M, A, W): """ chirp z transform per Rabiner derivation pp1256 x is our (complex) signal of length N assume x is square, output M will be square, dims are the same on all sides """ N = len(x) L = 2**(nextpow2(N + M -1)) # or nearest power of two yn = np.zeros((L, L), dtype=np.complex128) ns =
np.arange(N)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 4 16:29:08 2020 @author: L.I.Vazquez-Salazar @email: <EMAIL> Class to compute the KL divergency for two distributions. """ import numpy as np import pandas as pd from scipy import stats from scipy import integrate class Metrics: def __init__(self,df,df1): self.df = df self.df1 = df1 def get_data(self,key,key1): ''' Read .csv file for the reference and target databases Parameters ---------- key : Key decribing the values of the bond lenght for the reference database key1 : Key describing the values of the bond lenght for the target database Returns ------- dp : Values of the bond lenghts for reference and targe. ''' data = self.df[key] data_clean = data.dropna() data1 = self.df1[key1] data1_clean = data1.dropna() dp = [data_clean, data1_clean] return dp def support_array(self,array,grid_size=1000): ''' Creates an array for the generation of the Gaussian Kernel distribution from the minimum value of the array to the maximum. The size of the grid can be modify. Parameters ---------- array : Array of values used for the creation of the kernel distribution. grid_size : TYPE, optional. Number of points used for the array. The default is 1000. Returns ------- sup_arr : Array of values for the evaluation of the Gaussian Kernel distribution. ''' v_min = np.min(array)-1 v_max =
np.max(array)
numpy.max
#!/usr/bin/env python # """ This script is to visualize how match sift features are matched between an image and camera frame. Usage ----- $ roslaunch roseus_tutorials usb-camera.launch $ roslaunch jsk_2015_05_baxter_apc sift_matcher_for_imgs.launch $ rosrun image_view image_view image:=/sift_matcher_for_imgs/output """ import os import cv2 import numpy as np import rospy import cv_bridge from sensor_msgs.msg import Image from posedetection_msgs.srv import Feature0DDetect from sift_matcher import SiftMatcher, imgsift_client from common import load_img class ImageSubscriber(object): def __init__(self, image_topic): rospy.Subscriber(image_topic, Image, self._cb_img) rospy.loginfo('Waiting for: {topic}'.format(topic=image_topic)) rospy.wait_for_message(image_topic, Image) rospy.loginfo('Found: {topic}'.format(topic=image_topic)) def _cb_img(self, msg): """Callback function of Subscribers to listen Image""" bridge = cv_bridge.CvBridge() self.stamp = msg.header.stamp self.img = bridge.imgmsg_to_cv2(msg) class SiftMatcherOneImg(SiftMatcher): """Compare two images. Usually camera image (input) with static image (reference)""" def __init__(self): super(SiftMatcherOneImg, self).__init__() self.img_sub = ImageSubscriber('~input') self.reference_sub = ImageSubscriber('~input/reference') self.pub = rospy.Publisher('~output', Image, queue_size=1) def match(self): input_stamp, input_img = self.img_sub.stamp, self.img_sub.img input_features = self.query_features reference_img = self.reference_sub.img reference_features = imgsift_client(reference_img) matches = self.find_match(input_features.descriptors, reference_features.descriptors) rospy.loginfo('matches: {}'.format(len(matches))) # prepare output img matched_img = drawMatches(input_img, input_features.positions, reference_img, reference_features.positions, matches) cv2.putText(matched_img, 'matches: {}'.format(len(matches)), (5, 25), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 255, 255)) self.publish_img(stamp=input_stamp, img=matched_img) def publish_img(self, stamp, img, encoding='bgr8'): bridge = cv_bridge.CvBridge() img_msg = bridge.cv2_to_imgmsg(img, encoding=encoding) img_msg.header.stamp = stamp self.pub.publish(img_msg) def drawMatches(query_img, query_pos, train_img, train_pos, matches): """Draw match points for two images""" query_img = cv2.cvtColor(query_img, cv2.COLOR_RGB2GRAY) train_img = cv2.cvtColor(train_img, cv2.COLOR_RGB2GRAY) query_pos = np.array(query_pos).reshape((-1, 2)) train_pos =
np.array(train_pos)
numpy.array
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # REP assert len(A._ID_dict['non-collapse']) == len(A._ID_dict['repairable']) assert len(A._ID_dict['irreparable']) == 0 # cost DV_COST = A._DV_dict['rec_cost'] # DS1 C_CDF = DV_COST.iloc[:, 0] C_CDF = np.around(C_CDF / 10., decimals=0) * 10. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 2500], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 C_CDF = DV_COST.iloc[:, 1] C_CDF = np.around(C_CDF / 100., decimals=0) * 100. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 25000], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 C_CDF = DV_COST.iloc[:, 2] C_CDF = np.around(C_CDF / 1000., decimals=0) * 1000. vals, counts = np.unique(C_CDF, return_counts=True) assert_allclose(vals, [0, 250000], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # time DV_TIME = A._DV_dict['rec_time'] # DS1 T_CDF = DV_TIME.iloc[:, 0] T_CDF = np.around(T_CDF, decimals=1) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 2.5], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS2 T_CDF = DV_TIME.iloc[:, 1] T_CDF = np.around(T_CDF, decimals=0) vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 25], rtol=0.01) t_prob = 0.3413445 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # DS3 T_CDF = DV_TIME.iloc[:, 2] T_CDF = np.around(T_CDF / 10., decimals=0) * 10. vals, counts = np.unique(T_CDF, return_counts=True) assert_allclose(vals, [0, 250], rtol=0.01) t_prob = 0.1586555 assert_allclose(counts / NC_count, [1. - t_prob, t_prob], rtol=0.1) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation S = A._SUMMARY SD = S.describe().T assert_allclose(S[('event time', 'month')], A._TIME['month'] + 1) assert_allclose(S[('event time', 'weekday?')], A._TIME['weekday?']) assert_allclose(S[('event time', 'hour')], A._TIME['hour']) assert_allclose(S[('inhabitants', '')], A._POP.iloc[:, 0]) assert SD.loc[('collapses', 'collapsed'), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('collapses', 'mode'), 'mean'] == 0. assert SD.loc[('collapses', 'mode'), 'count'] == pytest.approx(5000, rel=0.05) assert SD.loc[('red tagged', ''), 'mean'] == pytest.approx(0.5, rel=0.05) assert SD.loc[('red tagged', ''), 'count'] == pytest.approx(5000, rel=0.05) for col in ['irreparable', 'cost impractical', 'time impractical']: assert SD.loc[('reconstruction', col), 'mean'] == 0. assert SD.loc[('reconstruction', col), 'count'] == pytest.approx(5000, rel=0.05) RC = deepcopy(S.loc[:, ('reconstruction', 'cost')]) RC_CDF = np.around(RC / 1000., decimals=0) * 1000. vals, counts = np.unique(RC_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.]) * 1000.) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) RT = deepcopy(S.loc[:, ('reconstruction', 'time-parallel')]) RT_CDF = np.around(RT, decimals=0) vals, counts = np.unique(RT_CDF, return_counts=True) assert_allclose(vals, np.array([0, 2., 3., 25., 250., 300.])) t_prob1 = 0.3413445 / 2. t_prob2 = 0.1586555 / 2. assert_allclose(counts / 10000., [t_prob2, t_prob1 / 2., t_prob1 / 2., t_prob1, t_prob2, 0.5], atol=0.01, rtol=0.1) assert_allclose(S.loc[:, ('reconstruction', 'time-parallel')], S.loc[:, ('reconstruction', 'time-sequential')]) CAS = deepcopy(S.loc[:, ('injuries', 'sev1')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.075, 0.15, 0.25, 0.3, 0.5, 1.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2, 2.5, 7, 5]) / 56., atol=0.01, rtol=0.1) CAS = deepcopy(S.loc[:, ('injuries', 'sev2')]) CAS_CDF = np.around(CAS, decimals=3) vals, counts = np.unique(CAS_CDF, return_counts=True) assert_allclose(vals, [0, 0.025, 0.05, 0.1, 2.25, 4.5, 9.]) assert_allclose(counts / 10000., np.array([35, 1, 3.5, 2.5, 2, 7, 5]) / 56., atol=0.01, rtol=0.1) def test_FEMA_P58_Assessment_EDP_uncertainty_basic(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_2.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_2.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T assert_allclose(thetas, [9.80665, 12.59198, 0.074081, 0.044932], rtol=0.02) assert_allclose(betas, [0.25, 0.25, 0.3, 0.4], rtol=0.02) rho = RV_EDP[0].RV_set.Rho() rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] assert_allclose(rho, rho_target, atol=0.05) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer( [0.3, 0.4], [0.3, 0.4]), upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[ 0] DMG_2_PID = mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[ 0] DMG_1_PFA = mvn_od(np.log([0.074081, 9.80665]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] DMG_2_PFA = mvn_od(np.log([0.074081, 12.59198]), np.array([[1, 0.3], [0.3, 1]]) * np.outer([0.3, 0.25], [0.3, 0.25]), lower=np.log([1e-6, 9.80665]), upper=np.log([0.1, np.inf]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert DMG_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert DMG_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert DMG_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 and 1022 P_target = [ mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log([0.074081, 0.044932]), np.array([[1, 0.7], [0.7, 1]]) * np.outer([0.3, 0.4], [0.3, 0.4]), lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2011 and 2012 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 9.80665, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2021 and 2022 P_target = [ mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6]), upper=np.log([0.1, np.inf, 9.80665]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 9.80665, 9.80665]), upper=np.log([0.1, np.inf, np.inf]))[0], mvn_od(np.log([0.074081, 9.80665, 12.59198]), np.array([[1.0, 0.3, 0.3], [0.3, 1.0, 0.6], [0.3, 0.6, 1.0]]) * np.outer([0.3, 0.25, 0.25], [0.3, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 9.80665]), upper=np.log([0.1, 9.80665, np.inf]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(P_target, P_test, atol=0.02) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == pytest.approx(DMG_1_PID, rel=0.10) assert RED_check[2] == pytest.approx(DMG_2_PID, rel=0.10) assert RED_check[4] == pytest.approx(DMG_1_PFA, rel=0.10) assert RED_check[6] == pytest.approx(DMG_2_PFA, rel=0.10) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log([0.074081, 0.044932, 9.80665, 12.59198]), np.array( [[1.0, 0.7, 0.3, 0.3], [0.7, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.6], [0.3, 0.3, 0.6, 1.0]]) * np.outer( [0.3, 0.4, 0.25, 0.25], [0.3, 0.4, 0.25, 0.25]), lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [0.05488, 0.05488, 9.80665, 9.80665]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = (1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[ ('red tagged', ''), 'count'] / 10000. def test_FEMA_P58_Assessment_EDP_uncertainty_detection_limit(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. This test differs from the basic case in having unreliable EDP values above a certain limit - a typical feature of interstory drifts in dynamic simulations. Such cases should not be a problem if the limits can be estimated and they are specified as detection limits in input file. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_3.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_3.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_failed_analyses(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. Here we use EDP results with unique values assigned to failed analyses. In particular, PID=1.0 and PFA=100.0 are used when an analysis fails. These values shall be handled by detection limits of 10 and 100 for PID and PFA, respectively. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_4.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_4.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 12.59198, 0.074081, 0.044932] EDP_beta_target = [0.25, 0.25, 0.3, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.025) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = [ [1.0, 0.6, 0.3, 0.3], [0.6, 1.0, 0.3, 0.3], [0.3, 0.3, 1.0, 0.7], [0.3, 0.3, 0.7, 1.0]] EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) assert_allclose(EDP_rho_test, EDP_rho_target, atol=0.15) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], upper=np.log([0.1, 0.1]))[0] assert COL_check['mean'].values[0] == prob_approx(col_target, 0.03) # DMG DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / 10000. for i in range(8)] DMG_1_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:,2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.1]))[0] DMG_2_PID = mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.1, 0.1]))[0] DMG_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] DMG_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0] assert DMG_check[0] == pytest.approx(DMG_check[1], rel=0.01) assert DMG_check[2] == pytest.approx(DMG_check[3], rel=0.01) assert DMG_check[4] == pytest.approx(DMG_check[5], rel=0.01) assert DMG_check[6] == pytest.approx(DMG_check[7], rel=0.01) assert DMG_check[0] == prob_approx(DMG_1_PID, 0.03) assert DMG_check[2] == prob_approx(DMG_2_PID, 0.03) assert DMG_check[4] == prob_approx(DMG_1_PFA, 0.03) assert DMG_check[6] == prob_approx(DMG_2_PFA, 0.03) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 250., 1250.] T_target = [0., 0.25, 1.25] # PG 1011 and 1012 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.05488, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 1e-6]), upper=np.log([0.1, 0.05488]))[0], ] for i in [0, 1]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 1021 and 1022 P_target = [ mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 1e-6]), upper=np.log([0.1, 0.05488]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([0.05488, 0.05488]), upper=np.log([0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test[2:]), EDP_COV_test[2:, 2:], lower=np.log([1e-6, 0.05488]), upper=np.log([0.05488, 0.1]))[0], ] for i in [2, 3]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2011 and 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], ] for i in [4, 5]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # PG 2021 and 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, 9.80665, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 9.80665, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6]), upper=np.log([9.80665, np.inf, 0.1, 0.1]))[0], ] for i in [6, 7]: C_test, P_test = np.unique( np.around(DV_COST.iloc[:, i].values / 10., decimals=0) * 10., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique( np.around(DV_TIME.iloc[:, i].values * 100., decimals=0) / 100., return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / 10000. assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) prob_allclose(P_target, P_test, 0.04) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / 10000.).values assert RED_check[0] == pytest.approx(RED_check[1], rel=0.01) assert RED_check[2] == pytest.approx(RED_check[3], rel=0.01) assert RED_check[4] == pytest.approx(RED_check[5], rel=0.01) assert RED_check[6] == pytest.approx(RED_check[7], rel=0.01) assert RED_check[0] == prob_approx(DMG_1_PID, 0.03) assert RED_check[2] == prob_approx(DMG_2_PID, 0.03) assert RED_check[4] == prob_approx(DMG_1_PFA, 0.03) assert RED_check[6] == prob_approx(DMG_2_PFA, 0.03) DMG_on = np.where(A._DMG > 0.0)[0] RED_on = np.where(A._DV_dict['red_tag'] > 0.0)[0] assert_allclose(DMG_on, RED_on) # ------------------------------------------------------------------------ A.aggregate_results() # ------------------------------------------------ check result aggregation P_no_RED_target = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([9.80665, 9.80665, 0.05488, 0.05488]))[0] S = A._SUMMARY SD = S.describe().T P_no_RED_test = ((1.0 - SD.loc[('red tagged', ''), 'mean']) * SD.loc[('red tagged', ''), 'count'] / 10000.) assert P_no_RED_target == prob_approx(P_no_RED_test, 0.04) def test_FEMA_P58_Assessment_EDP_uncertainty_3D(): """ Perform a loss assessment with customized inputs that focus on testing the methods used to estimate the multivariate lognormal distribution of EDP values. Besides the fitting, this test also evaluates the propagation of EDP uncertainty through the analysis. Dispersions in other calculation parameters are reduced to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. In this test we look at the propagation of EDP values provided for two different directions. (3D refers to the numerical model used for response estimation.) """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test_5.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test_5.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values()) assert np.all([rv.distribution == 'lognormal' for rv in RV_EDP]) thetas, betas = np.array([rv.theta for rv in RV_EDP]).T EDP_theta_test = thetas EDP_beta_test = betas EDP_theta_target = [9.80665, 8.65433, 12.59198, 11.11239, 0.074081, 0.063763, 0.044932, 0.036788] EDP_beta_target = [0.25, 0.25, 0.25, 0.25, 0.3, 0.3, 0.4, 0.4] assert_allclose(EDP_theta_test, EDP_theta_target, rtol=0.05) assert_allclose(EDP_beta_test, EDP_beta_target, rtol=0.1) rho = RV_EDP[0].RV_set.Rho() EDP_rho_test = rho EDP_rho_target = np.array([ [1.0, 0.8, 0.6, 0.5, 0.3, 0.3, 0.3, 0.3], [0.8, 1.0, 0.5, 0.6, 0.3, 0.3, 0.3, 0.3], [0.6, 0.5, 1.0, 0.8, 0.3, 0.3, 0.3, 0.3], [0.5, 0.6, 0.8, 1.0, 0.3, 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, 0.3, 1.0, 0.8, 0.7, 0.6], [0.3, 0.3, 0.3, 0.3, 0.8, 1.0, 0.6, 0.7], [0.3, 0.3, 0.3, 0.3, 0.7, 0.6, 1.0, 0.8], [0.3, 0.3, 0.3, 0.3, 0.6, 0.7, 0.8, 1.0]]) large_rho_ids = np.where(EDP_rho_target >= 0.5) small_rho_ids = np.where(EDP_rho_target < 0.5) assert_allclose(EDP_rho_test[large_rho_ids], EDP_rho_target[large_rho_ids], atol=0.1) assert_allclose(EDP_rho_test[small_rho_ids], EDP_rho_target[small_rho_ids], atol=0.2) EDP_COV_test = EDP_rho_test * np.outer(EDP_beta_test, EDP_beta_test) # ------------------------------------------------------------------------ A.define_loss_model() A.calculate_damage() # ------------------------------------------------ check damage calculation theta_PID = np.log(EDP_theta_target[4:]) COV_PID = EDP_COV_test[4:, 4:] # COL COL_check = A._COL.describe().T col_target = 1.0 - mvn_od(theta_PID, COV_PID, upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] assert COL_check['mean'].values[0] == pytest.approx(col_target, rel=0.1, abs=0.05) # DMG realization_count = float(A._AIM_in['general']['realizations']) DMG_check = [len(np.where(A._DMG.iloc[:, i] > 0.0)[0]) / realization_count for i in range(8)] DMG_1_1_PID = mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_1_2_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_2_1_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_2_2_PID = mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0] DMG_1_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_1_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_2_1_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_2_2_PFA = mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0] DMG_ref = [DMG_1_1_PID, DMG_1_2_PID, DMG_2_1_PID, DMG_2_2_PID, DMG_1_1_PFA, DMG_1_2_PFA, DMG_2_1_PFA, DMG_2_2_PFA] assert_allclose(DMG_check, DMG_ref, rtol=0.10, atol=0.01) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # COST DV_COST = A._DV_dict['rec_cost'] DV_TIME = A._DV_dict['rec_time'] C_target = [0., 249., 624., 1251., 1875.] T_target = [0., 0.249, 0.624, 1.251, 1.875] # PG 1011 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.05488, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.05488, 0.05488, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 0].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 0].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1012 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 0.05488]), upper=np.log([0.05488, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 1e-6]), upper=np.log([0.05488, 0.1, 0.05488, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 1].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 1].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1021 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 0.05488]), upper=np.log([0.05488, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 1e-6]), upper=np.log([0.1, 0.05488, 0.1, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 1e-6]), upper=np.log([0.05488, 0.1, 0.1, 0.05488]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 1e-6]), upper=np.log([0.05488, 0.05488, 0.1, 0.05488]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 2].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 2].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count #print('------------------------') #print('P_target') #print(P_target) #print('------------------------') assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 1022 P_target = [ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log([0.1, 0.1, 0.1, 0.05488]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 0.05488, 0.05488]), upper=np.log([0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 0.05488, 0.05488]), upper=np.log([0.05488, 0.1, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 0.05488, 0.05488]), upper=np.log([0.1, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 0.05488, 1e-6, 0.05488]), upper=np.log([0.1, 0.1, 0.05488, 0.1]))[0], ]), np.sum([ mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 0.05488, 0.05488]), upper=np.log([0.05488, 0.05488, 0.1, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([0.05488, 1e-6, 1e-6, 0.05488]), upper=np.log([0.1, 0.05488, 0.05488, 0.1]))[0], mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 0.05488, 1e-6, 0.05488]), upper=np.log([0.05488, 0.1, 0.05488, 0.1]))[0], ]), mvn_od(theta_PID, COV_PID, lower=np.log([1e-6, 1e-6, 1e-6, 0.05488]), upper=np.log([0.05488, 0.05488, 0.05488, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 3].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 5)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 3].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 5)] P_test = P_test[np.where(P_test > 5)] P_test = P_test / realization_count assert_allclose(P_target[:-1], P_test[:4], atol=0.05) assert_allclose(C_target[:-1], C_test[:4], rtol=0.001) assert_allclose(T_target[:-1], T_test[:4], rtol=0.001) # PG 2011 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 4].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 4].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2012 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 5].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 5].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target[:4], P_test[:4], atol=0.05) assert_allclose(C_target[:4], C_test[:4], rtol=0.001) assert_allclose(T_target[:4], T_test[:4], rtol=0.001) # PG 2021 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 6].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 6].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # PG 2022 P_target = [ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log([1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, 9.80665, 0.1, 0.1, 0.1, 0.1]))[0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), np.sum([ mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 9.80665, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, np.inf, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [9.80665, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [np.inf, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 9.80665, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, np.inf, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[ 0], ]), mvn_od(np.log(EDP_theta_test), EDP_COV_test, lower=np.log( [1e-6, 1e-6, 1e-6, 9.80665, 1e-6, 1e-6, 1e-6, 1e-6]), upper=np.log( [9.80665, 9.80665, 9.80665, np.inf, 0.1, 0.1, 0.1, 0.1]))[0], ] C_test, P_test = np.unique( np.around(DV_COST.iloc[:, 7].values / 3., decimals=0) * 3., return_counts=True) C_test = C_test[np.where(P_test > 10)] T_test, P_test = np.unique(np.around(DV_TIME.iloc[:, 7].values * 333.33333, decimals=0) / 333.33333, return_counts=True) T_test = T_test[np.where(P_test > 10)] P_test = P_test[np.where(P_test > 10)] P_test = P_test / realization_count assert_allclose(P_target, P_test, atol=0.05) assert_allclose(C_target, C_test, rtol=0.001) assert_allclose(T_target, T_test, rtol=0.001) # RED TAG RED_check = A._DV_dict['red_tag'].describe().T RED_check = (RED_check['mean'] * RED_check['count'] / realization_count).values assert_allclose(RED_check, DMG_ref, atol=0.02, rtol=0.10) DMG_on =
np.where(A._DMG > 0.0)
numpy.where
""" Several helper functions for calculating pairwise quantities. Original code in this file from IDP Conformer Generator package (https://github.com/julie-forman-kay-lab/IDPConformerGenerator) developed by <NAME> (@joaomcteixeira), and added to the MSCCE repository in commit 30e417937968f3c6ef09d8c06a22d54792297161. """ import numpy as np import numba as nb from numba import jit @jit(nb.float64[:,:](nb.float32[:,:,:]), nopython=True, nogil=True) def calc_all_vs_all_dists(coords): """ Calculate the upper half of all vs. all distances for a batch. Reproduces the operations of scipy.spatial.distance.pdist. Parameters ---------- coords : np.ndarray, shape (B, N, 3), dtype=np.float64, B: batch size Returns ------- np.ndarray, shape (B, (N * N - N) // 2,), dytpe=np.float64 """ batch_size = coords.shape[0] len_ = coords.shape[1] shape = (batch_size, (len_ * len_ - len_) // 2,) results = np.empty(shape, dtype=np.float64) for bi in range(batch_size): c = 1 i = 0 for a in coords[bi]: for b in coords[bi,c:]: x = b[0] - a[0] y = b[1] - a[1] z = b[2] - a[2] results[bi, i] = (x * x + y * y + z * z) ** 0.5 i += 1 c += 1 return results @jit(nb.float64[:,:](nb.float32[:,:,:], nb.float32[:,:,:]), nopython=True, nogil=True) def calc_new_vs_old_dists(coords_new, coords_old): """ First calculate the upper half all-vs-all distances for coords_new, and then calculate all-new vs all-old distances """ batch_size = coords_new.shape[0] len_new = coords_new.shape[1] len_old = coords_old.shape[1] shape = (batch_size, (len_new * len_new - len_new) // 2 + len_new * len_old,) results = np.empty(shape, dtype=np.float64) for bi in range(batch_size): c = 1 i = 0 # new coord block for a in coords_new[bi]: for b in coords_new[bi,c:]: x = b[0] - a[0] y = b[1] - a[1] z = b[2] - a[2] results[bi, i] = (x * x + y * y + z * z) ** 0.5 i += 1 c += 1 # new-old coord block for a in coords_new[bi]: for b in coords_old[bi]: x = b[0] - a[0] y = b[1] - a[1] z = b[2] - a[2] results[bi, i] = (x * x + y * y + z * z) ** 0.5 i += 1 return results @jit(nb.void(nb.float64[:],nb.float64[:]), nopython=True, nogil=True) def sum_upper_diagonal_raw(data, result): """ Calculate outer sum for upper diagonal with for loops. The use of for-loop based calculation avoids the creation of very large arrays using numpy outer derivates. This function is thought to be jut compiled. Does not create new data structure. It requires the output structure to be provided. Hence, modifies in place. This was decided so because this function is thought to be jit compiled and errors with the creation of very large arrays were rising. By passing the output array as a function argument, errors related to memory freeing are avoided. Parameters ---------- data : an interable of Numbers, of length N result : a mutable sequence, either list of np.ndarray, of length N*(N-1)//2 """ c = 0 len_ = len(data) for i in range(len_ - 1): for j in range(i + 1, len_): result[c] = data[i] + data[j] c += 1 # assert result.size == (data.size * data.size - data.size) // 2 # assert abs(result[0] - (data[0] + data[1])) < 0.0000001 # assert abs(result[-1] - (data[-2] + data[-1])) < 0.0000001 return @jit(nb.void(nb.float64[:],nb.float64[:],nb.float64[:]), nopython=True, nogil=True) def sum_partial_upper_diagonal(data_new, data_old, result): sum_upper_diagonal_raw(data_new, result) c = len(data_new) * (len(data_new) - 1) // 2 for i in range(len(data_new)): for j in range(len(data_old)): result[c] = data_new[i] + data_old[j] c += 1 return @jit(nb.void(nb.float64[:],nb.float64[:]), nopython=True, nogil=True) def multiply_upper_diagonal_raw(data, result): """ Calculate the upper diagonal multiplication with for loops. The use of for-loop based calculation avoids the creation of very large arrays using numpy outer derivatives. This function is thought to be njit compiled. Does not create new data structure. It requires the output structure to be provided. Hence, modifies in place. This was decided so because this function is thought to be jit compiled and errors with the creation of very large arrays were rising. By passing the output array as a function argument, errors related to memory freeing are avoided. Parameters ---------- data : an interable of Numbers, of length N result : a mutable sequence, either list of np.ndarray, of length N*(N-1)//2 """ c = 0 len_ = len(data) for i in range(len_ - 1): for j in range(i + 1, len_): result[c] = data[i] * data[j] c += 1 @jit(nb.void(nb.float64[:],nb.float64[:],nb.float64[:]), nopython=True, nogil=True) def multiply_partial_upper_diagonal(data_new, data_old, result): multiply_upper_diagonal_raw(data_new, result) c = len(data_new) * (len(data_new) - 1) // 2 for i in range(len(data_new)): for j in range(len(data_old)): result[c] = data_new[i] * data_old[j] c += 1 return @jit(nopython=True, nogil=True) def calc_angle_coords( coords, ARCCOS=np.arccos, DOT=np.dot, NORM=np.linalg.norm, ): """Calculate the angle between two vectors.""" # https://stackoverflow.com/questions/2827393/ v1 = coords[0] - coords[1] v2 = coords[2] - coords[1] return calc_angle(v1, v2) @jit(nopython=True, nogil=True) def calc_angle( v1, v2, ARCCOS=np.arccos, DOT=np.dot, NORM=np.linalg.norm, ): """Calculate the angle between two vectors.""" # https://stackoverflow.com/questions/2827393/ v1_u = v1 / NORM(v1) v2_u = v2 / NORM(v2) dot_ncan = np.dot(v1_u, v2_u) if dot_ncan < -1.0: dot_ncan_clean = -1.0 elif dot_ncan > 1.0: dot_ncan_clean = 1.0 else: dot_ncan_clean = dot_ncan return ARCCOS(dot_ncan_clean) # @njit def calc_torsion_angles( coords, ARCTAN2=np.arctan2, CROSS=np.cross, DIAGONAL=np.diagonal, MATMUL=np.matmul, NORM=np.linalg.norm, ): """ Calculate torsion angles from sequential coordinates. Uses ``NumPy`` to compute angles in a vectorized fashion. Sign of the torsion angle is also calculated. Uses Prof. Azevedo implementation: https://azevedolab.net/resources/dihedral_angle.pdf Example ------- Given the sequential coords that represent a dummy molecule of four atoms: >>> xyz = numpy.array([ >>> [0.06360, -0.79573, 1.21644], >>> [-0.47370, -0.10913, 0.77737], >>> [-1.75288, -0.51877, 1.33236], >>> [-2.29018, 0.16783, 0.89329], >>> ]) A1---A2 \ \ A3---A4 Calculates the torsion angle in A2-A3 that would place A4 in respect to the plane (A1, A2, A3). Likewise, for a chain of N atoms A1, ..., An, calculates the torsion angles in (A2, A3) to (An-2, An-1). (A1, A2) and (An-1, An) do not have torsion angles. If coords represent a protein backbone consisting of N, CA, and C atoms and starting at the N-terminal, the torsion angles are given by the following slices to the resulting array: - phi (N-CA), [2::3] - psi (CA-C), [::3] - omega (C-N), [1::3] Parameters ---------- coords : numpy.ndarray of shape (N>=4, 3) Where `N` is the number of atoms, must be equal or above 4. Returns ------- numpy.ndarray of shape (N - 3,) The torsion angles in radians. If you want to convert those to degrees just apply ``np.degrees`` to the returned result. """ # requires assert coords.shape[0] > 3 assert coords.shape[1] == 3 crds = coords.T # Yes, I always write explicit array indices! :-) q_vecs = crds[:, 1:] - crds[:, :-1] cross = CROSS(q_vecs[:, :-1], q_vecs[:, 1:], axis=0) unitary = cross / NORM(cross, axis=0) # components # u0 comes handy to define because it fits u1 u0 = unitary[:, :-1] # u1 is the unitary cross products of the second plane # that is the unitary q2xq3, obviously applied to the whole chain u1 = unitary[:, 1:] # u3 is the unitary of the bonds that have a torsion representation, # those are all but the first and the last u3 = q_vecs[:, 1:-1] / NORM(q_vecs[:, 1:-1], axis=0) # u2 # there is no need to further select dimensions for u2, those have # been already sliced in u1 and u3. u2 = CROSS(u3, u1, axis=0) # calculating cos and sin of the torsion angle # here we need to use the .T and np.diagonal trick to achieve # broadcasting along the whole coords chain # np.matmul is preferred to np.dot in this case # https://numpy.org/doc/stable/reference/generated/numpy.matmul.html cos_theta = DIAGONAL(MATMUL(u0.T, u1)) sin_theta = DIAGONAL(MATMUL(u0.T, u2)) # torsion angles return -ARCTAN2(sin_theta, cos_theta) @jit(nopython=True, nogil=True) def norm_along_last_axis(array): # calculate norm along the last axis and keep the dimension original_shape = array.shape flattened_to_last_axis = np.reshape(array, (-1, original_shape[-1])) result = np.empty((flattened_to_last_axis.shape[0], 1)) for i in range(flattened_to_last_axis.shape[0]): result[i] = np.sum(flattened_to_last_axis[i] ** 2) ** (1/2) return result.reshape(original_shape[: -1] + (1, )) @jit(nopython=True, nogil=True) def dot_along_last_axis(array1, array2): # dot product along the last axis and keep the dimension result = np.empty(len(array1)) for i in range(len(array1)): result[i] = np.dot(array1[i], array2[i]) return result @jit(nopython=True, nogil=True) def calc_proper_torsions(coords): """ A vectorized and jitted version for calculating a set of proper torsion angle values Params ---------- coords: np.array with shape Bx4x3 B is the batch size, 4 are the 4 atoms in each batch for defining the dihedral angle, and 3 are x,y,z coordinates Returns ---------- result: np.array with shape B The proper torsion angles for each batch element, in units of radian """ # coords: Bx4x3 q_vecs = coords[:, 1:, :] - coords[:, :-1, :] # Bx3x3 cross = np.cross(q_vecs[:, :-1, :], q_vecs[:, 1:, :]) unitary = cross / norm_along_last_axis(cross) # Bx2x3 u0 = unitary[:, 0, :] u1 = unitary[:, 1, :] u3 = q_vecs[:, 1, :] / norm_along_last_axis(q_vecs[:, 1, :] * 1) # strange bug: have to multiply by 1, otherwise numba does not compile u2 = np.cross(u3, u1) cos_theta = dot_along_last_axis(u0, u1) sin_theta = dot_along_last_axis(u0, u2) result = -np.arctan2(sin_theta, cos_theta) return result def calc_improper_torsion_angles(): pass @jit(nopython=True, nogil=True) def hamiltonian_multiplication_Q(a1, b1, c1, d1, a2, b2, c2, d2): """Hamiltonian Multiplication.""" return ( (a1 * a2) - (b1 * b2) - (c1 * c2) - (d1 * d2), (a1 * b2) + (b1 * a2) + (c1 * d2) - (d1 * c2), (a1 * c2) - (b1 * d2) + (c1 * a2) + (d1 * b2), (a1 * d2) + (b1 * c2) - (c1 * b2) + (d1 * a2), ) @jit(nopython=True, nogil=True) def rotate_coordinates_Q( coords, rot_vec, angle_rad, ARRAY=np.array, HMQ=hamiltonian_multiplication_Q, VSTACK=np.vstack, ): """ Rotate coordinates by radians along an axis. Rotates using quaternion operations. Parameters ---------- coords : nd.array (N, 3), dtype=np.float64 The coordinates to rotate. rot_vec : (,3) A 3D space vector around which to rotate coords. Rotation vector **must** be a unitary vector. angle_rad : float The angle in radians to rotate the coords. Returns ------- nd.array shape (N, 3), dtype=np.float64 The rotated coordinates """ # assert coords.shape[1] == 3 b2, b3, b4 = np.sin(angle_rad / 2) * rot_vec b1 = np.cos(angle_rad / 2) c1, c2, c3, c4 = HMQ( b1, b2, b3, b4, 0, coords[:, 0], coords[:, 1], coords[:, 2], ) _, d2, d3, d4 = HMQ( c1, c2, c3, c4, b1, -b2, -b3, -b4, ) rotated = VSTACK((d2, d3, d4)).T assert rotated.shape[1] == 3 return rotated @jit(nopython=True, nogil=True) def place_sidechain_template( bb_cnf, ss_template, CROSS=np.cross, NORM=np.linalg.norm, ): """ Place sidechain templates on backbone. Sidechain residue template is expected to have CA already at 0,0,0. Parameters ---------- bb_cnf : numpy nd.array, shape (3, 3), dtype=float64 The backbone coords in the form of: N-CA-C Coordinates are not expected to be at any particular position. ss_template : numpy nd.array, shape (M, 3), dtype=float64 The sidechain all-atom template. **Expected** to have the CA atom at the origin (0, 0, 0), and the first 3 atoms are N, CA, C. This requirement could be easily removed but it is maintained for performance reasons and considering in the context where this function is meant to be used. Returns ------- nd.array, shape (M, 3), dtype=float64 The displaced side chain coords. All atoms are returned. """ # places bb with CA at 0,0,0 bbtmp =
np.full(bb_cnf.shape, np.nan, dtype=np.float32)
numpy.full
import numpy as np import xarray as xr import pandas as pd import multiprocessing as mp class PreprocessData: """Class instantiation of PreprocessData: Here we will be preprocessing data for deep learning model training. Attributes: working_directory (str): The path to the directory where the deep learning preprocessing files will be saved and worked from. stormpatch_path (str): Where the storm patch files were saved. climate (str): The climate period to derive deep learning data for. Options are ``current`` or ``future``. threshold1 (int): The UH threshold to use. This value will delineate some form of ``severe`` and ``non-severe`` storm patches. mask (boolean): Whether the threshold will be applied within the storm patch mask or within the full storm patch. Defaults to ``False``. num_cpus (int): Number of CPUs to use in a node for parallelizing extractions. Defaults to 36 (Cheyenne compute nodes contain 36). """ def __init__(self, working_directory, stormpatch_path, climate, threshold1, mask=False, num_cpus=36): # class attributes self.working_directory=working_directory self.stormpatch_path=stormpatch_path # sanity check if climate!='current' and climate!='future': raise Exception("Please enter current or future for climate option.") else: self.climate=climate # class attributes self.threshold1=threshold1 # string help self.mask=mask if not self.mask: self.mask_str='nomask' if self.mask: self.mask_str='mask' # cpus for parallelizing self.num_cpus=num_cpus def generate_time_full(self): """Creation of the full time period that will be looped through for extracting storm patch information. Only considering December-May months due to warm season bias over the central CONUS. The CONUS1 simulations were run for 2000-2013. Returns: Pandas date range (DatetimeIndex). """ return pd.date_range('2000-10-01','2013-09-30',freq='MS')[(pd.date_range('2000-10-01','2013-09-30',freq='MS').month==12)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==1)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==2)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==3)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==4)| (pd.date_range('2000-10-01','2013-09-30',freq='MS').month==5)] def create_data_indices(self, time): """Split the loaded data into categories based on the UH threshold chosen and save the first intermediary files. Here we create the indices of the storm patches that satisfy UH criteria for later use. Args: time (DatetimeIndex): Time object from pandas date range. """ if not self.mask: data=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_assemble=xr.Dataset({'grid':(['x'], np.argwhere(data.uh25_grid.values.max(axis=(1,2)) > self.threshold1)[:,0])}) data_assemble.to_netcdf(f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc") if self.mask: data=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_assemble=xr.Dataset({'grid':(['x'], np.argwhere(data.uh25_grid.where(data.mask).max(axis=(1,2), skipna=True).values > self.threshold1)[:,0])}) data_assemble.to_netcdf(f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc") def parallelizing_indxs(self): """Activate the multiprocessing function to parallelize the functions. """ print(f"Starting jobs...") timearray=self.generate_time_full() pool1=mp.Pool(self.num_cpus) for time in timearray: print(f"Extracting {time.strftime('%Y-%m')} indices...") pool1.apply_async(self.create_data_indices, args=([time])) pool1.close() pool1.join() print(f"Completed the jobs.") def generate_time_month(self, month_int): """Creation of the time array that will be looped through for extracting storm patch information. Args: month_int (int): The month being used for the time array (2000-2013 years). Returns: Pandas date range (DatetimeIndex) for the respective month. """ return pd.date_range('2000-10-01','2013-09-30',freq='MS')[(pd.date_range('2000-10-01','2013-09-30',freq='MS').month==month_int)] def apply_exceed_mask(self, data_var, data_mask, level): """Function to retain the patches that exceeded the threshold. Args: data_var (Xarray data array): The variable's data. data_mask (Xarray data array): The storm patch mask. level (int): The dataset level coordinate. This could be 0, 1, 2, or 3. Returns: Xarray data array of the variable for the storm patches that exceeded the UH threshold. """ return data_var.var_grid.sel(levels=level)[data_mask.grid.values,:,:] def apply_notexceed_mask(self, data_var, data_mask, level): """Function to retain the patches that did not exceed the threshold. Args: data_var (Xarray data array): The variable's data. data_mask (Xarray data array): The storm patch mask. level (int): The dataset level coordinate. This could be 0, 1, 2, or 3. Returns: Numpy array of the variable for the storm patches that did not exceed the UH threshold. """ return np.delete(data_var.var_grid.sel(levels=level).values, data_mask.grid.values, axis=0) def flatten_list(self, array): """Function to flatten the created list of Xarray data arrays. Args: array (list): The list of Xarray data arrays. Returns: Flattened list of Xarray data arrays. """ return [j for i in array for j in i.values] def flatten_arraylist(self, array): """Function to flatten the created list of numpy arrays. Args: array (list): The list of numpy arrays. Returns: Flattened list of numpy arrays. """ return [j for i in array for j in i] def month_translate(self, num): """Convert integer month to string month. Args: num (int): Input month. Returns: out (str): Input month as string. Raises: ValueError: If the month is not within the study's range (Dec-May). """ var={12:'December', 1:'January', 2:'February', 3:'March', 4:'April', 5:'May'} try: out=var[num] return out except: raise ValueError("Please enter month integer from Dec-May.") def run_months(self, months=np.array([12,1,2,3,4,5]), uh=True, nouh=True): """Function to automate and parallelize the creation of the exceedance/nonexceedance files. Args: months (int array): Months to iterate through. uh (boolean): Whether to compute analysis for threshold exceedances. Defaults to ``True``. nouh(boolean): Whether to compute analysis for threshold non-exceedances. Defaults to ``True``. """ pool2=mp.Pool(self.num_cpus) for mo in months: if uh: print(f"Creating {self.month_translate(mo)} patches of threshold exceedances...") pool2.apply_async(self.create_files_exceed_threshold, args=([mo])) if nouh: print(f"Creating {self.month_translate(mo)} patches of threshold non-exceedances...") pool2.apply_async(self.create_files_notexceed_threshold, args=([mo])) pool2.close() pool2.join() print(f"Completed the jobs.") def create_files_exceed_threshold(self, month_int): """Create and save files containing the environment patches for storms that exceeded the threshold. Data files being opened contain the storm patches, not the full CONUS WRF domain. Args: month_int (int): Month for analysis. """ time_temp=self.generate_time_month(month_int) data_temp_sev_1=[]; data_temp_sev_3=[]; data_temp_sev_5=[]; data_temp_sev_7=[]; data_evwd_sev_1=[]; data_evwd_sev_3=[] data_euwd_sev_1=[]; data_euwd_sev_3=[]; data_euwd_sev_5=[]; data_euwd_sev_7=[]; data_evwd_sev_5=[]; data_evwd_sev_7=[] data_qvap_sev_1=[]; data_qvap_sev_3=[]; data_qvap_sev_5=[]; data_qvap_sev_7=[]; data_dbzs_sev_1=[]; data_maxw_sev_1=[] data_pres_sev_1=[]; data_pres_sev_3=[]; data_pres_sev_5=[]; data_pres_sev_7=[]; data_ctts_sev_1=[]; data_mask_sev_1=[] data_wwnd_sev_1=[]; data_wwnd_sev_3=[]; data_wwnd_sev_5=[]; data_wwnd_sev_7=[]; data_uh25_sev_1=[]; data_uh03_sev_1=[] for time in time_temp: print(f"opening files for {time.strftime('%Y')}{time.strftime('%m')}") data_mask=xr.open_mfdataset( f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc", combine='by_coords') data_temp=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_tk_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_evwd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_ev_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_euwd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_eu_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_qvap=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_qvapor_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_pres=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_p_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_wwnd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_w_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_maxw=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_maxw_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_gen =xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_temp_sev_1.append(self.apply_exceed_mask(data_temp, data_mask, 0)) data_temp_sev_3.append(self.apply_exceed_mask(data_temp, data_mask, 1)) data_temp_sev_5.append(self.apply_exceed_mask(data_temp, data_mask, 2)) data_temp_sev_7.append(self.apply_exceed_mask(data_temp, data_mask, 3)) data_evwd_sev_1.append(self.apply_exceed_mask(data_evwd, data_mask, 0)) data_evwd_sev_3.append(self.apply_exceed_mask(data_evwd, data_mask, 1)) data_evwd_sev_5.append(self.apply_exceed_mask(data_evwd, data_mask, 2)) data_evwd_sev_7.append(self.apply_exceed_mask(data_evwd, data_mask, 3)) data_euwd_sev_1.append(self.apply_exceed_mask(data_euwd, data_mask, 0)) data_euwd_sev_3.append(self.apply_exceed_mask(data_euwd, data_mask, 1)) data_euwd_sev_5.append(self.apply_exceed_mask(data_euwd, data_mask, 2)) data_euwd_sev_7.append(self.apply_exceed_mask(data_euwd, data_mask, 3)) data_qvap_sev_1.append(self.apply_exceed_mask(data_qvap, data_mask, 0)) data_qvap_sev_3.append(self.apply_exceed_mask(data_qvap, data_mask, 1)) data_qvap_sev_5.append(self.apply_exceed_mask(data_qvap, data_mask, 2)) data_qvap_sev_7.append(self.apply_exceed_mask(data_qvap, data_mask, 3)) data_pres_sev_1.append(self.apply_exceed_mask(data_pres, data_mask, 0)) data_pres_sev_3.append(self.apply_exceed_mask(data_pres, data_mask, 1)) data_pres_sev_5.append(self.apply_exceed_mask(data_pres, data_mask, 2)) data_pres_sev_7.append(self.apply_exceed_mask(data_pres, data_mask, 3)) data_wwnd_sev_1.append(self.apply_exceed_mask(data_wwnd, data_mask, 0)) data_wwnd_sev_3.append(self.apply_exceed_mask(data_wwnd, data_mask, 1)) data_wwnd_sev_5.append(self.apply_exceed_mask(data_wwnd, data_mask, 2)) data_wwnd_sev_7.append(self.apply_exceed_mask(data_wwnd, data_mask, 3)) data_maxw_sev_1.append(data_maxw.var_grid[data_mask.grid.values,:,:]) data_dbzs_sev_1.append(data_gen.dbz_grid[data_mask.grid.values,:,:]) data_ctts_sev_1.append(data_gen.ctt_grid[data_mask.grid.values,:,:]) data_uh25_sev_1.append(data_gen.uh25_grid[data_mask.grid.values,:,:]) data_uh03_sev_1.append(data_gen.uh03_grid[data_mask.grid.values,:,:]) data_mask_sev_1.append(data_gen.mask[data_mask.grid.values,:,:]) data_temp_sev_1_patches=self.flatten_list(data_temp_sev_1) data_temp_sev_3_patches=self.flatten_list(data_temp_sev_3) data_temp_sev_5_patches=self.flatten_list(data_temp_sev_5) data_temp_sev_7_patches=self.flatten_list(data_temp_sev_7) data_evwd_sev_1_patches=self.flatten_list(data_evwd_sev_1) data_evwd_sev_3_patches=self.flatten_list(data_evwd_sev_3) data_evwd_sev_5_patches=self.flatten_list(data_evwd_sev_5) data_evwd_sev_7_patches=self.flatten_list(data_evwd_sev_7) data_euwd_sev_1_patches=self.flatten_list(data_euwd_sev_1) data_euwd_sev_3_patches=self.flatten_list(data_euwd_sev_3) data_euwd_sev_5_patches=self.flatten_list(data_euwd_sev_5) data_euwd_sev_7_patches=self.flatten_list(data_euwd_sev_7) data_qvap_sev_1_patches=self.flatten_list(data_qvap_sev_1) data_qvap_sev_3_patches=self.flatten_list(data_qvap_sev_3) data_qvap_sev_5_patches=self.flatten_list(data_qvap_sev_5) data_qvap_sev_7_patches=self.flatten_list(data_qvap_sev_7) data_pres_sev_1_patches=self.flatten_list(data_pres_sev_1) data_pres_sev_3_patches=self.flatten_list(data_pres_sev_3) data_pres_sev_5_patches=self.flatten_list(data_pres_sev_5) data_pres_sev_7_patches=self.flatten_list(data_pres_sev_7) data_wwnd_sev_1_patches=self.flatten_list(data_wwnd_sev_1) data_wwnd_sev_3_patches=self.flatten_list(data_wwnd_sev_3) data_wwnd_sev_5_patches=self.flatten_list(data_wwnd_sev_5) data_wwnd_sev_7_patches=self.flatten_list(data_wwnd_sev_7) data_maxw_sev_1_patches=self.flatten_list(data_maxw_sev_1) data_dbzs_sev_1_patches=self.flatten_list(data_dbzs_sev_1) data_ctts_sev_1_patches=self.flatten_list(data_ctts_sev_1) data_uh25_sev_1_patches=self.flatten_list(data_uh25_sev_1) data_uh03_sev_1_patches=self.flatten_list(data_uh03_sev_1) data_mask_sev_1_patches=self.flatten_list(data_mask_sev_1) data_assemble=xr.Dataset({ 'temp_sev_1':(['patch','y','x'], np.array(data_temp_sev_1_patches)), 'temp_sev_3':(['patch','y','x'], np.array(data_temp_sev_3_patches)), 'temp_sev_5':(['patch','y','x'], np.array(data_temp_sev_5_patches)), 'temp_sev_7':(['patch','y','x'], np.array(data_temp_sev_7_patches)), 'evwd_sev_1':(['patch','y','x'], np.array(data_evwd_sev_1_patches)), 'evwd_sev_3':(['patch','y','x'], np.array(data_evwd_sev_3_patches)), 'evwd_sev_5':(['patch','y','x'], np.array(data_evwd_sev_5_patches)), 'evwd_sev_7':(['patch','y','x'], np.array(data_evwd_sev_7_patches)), 'euwd_sev_1':(['patch','y','x'], np.array(data_euwd_sev_1_patches)), 'euwd_sev_3':(['patch','y','x'], np.array(data_euwd_sev_3_patches)), 'euwd_sev_5':(['patch','y','x'], np.array(data_euwd_sev_5_patches)), 'euwd_sev_7':(['patch','y','x'], np.array(data_euwd_sev_7_patches)), 'qvap_sev_1':(['patch','y','x'], np.array(data_qvap_sev_1_patches)), 'qvap_sev_3':(['patch','y','x'], np.array(data_qvap_sev_3_patches)), 'qvap_sev_5':(['patch','y','x'], np.array(data_qvap_sev_5_patches)), 'qvap_sev_7':(['patch','y','x'], np.array(data_qvap_sev_7_patches)), 'pres_sev_1':(['patch','y','x'], np.array(data_pres_sev_1_patches)), 'pres_sev_3':(['patch','y','x'], np.array(data_pres_sev_3_patches)), 'pres_sev_5':(['patch','y','x'], np.array(data_pres_sev_5_patches)), 'pres_sev_7':(['patch','y','x'], np.array(data_pres_sev_7_patches)), 'wwnd_sev_1':(['patch','y','x'], np.array(data_wwnd_sev_1_patches)), 'wwnd_sev_3':(['patch','y','x'], np.array(data_wwnd_sev_3_patches)), 'wwnd_sev_5':(['patch','y','x'], np.array(data_wwnd_sev_5_patches)), 'wwnd_sev_7':(['patch','y','x'], np.array(data_wwnd_sev_7_patches)), 'maxw_sev_1':(['patch','y','x'], np.array(data_maxw_sev_1_patches)), 'dbzs_sev_1':(['patch','y','x'], np.array(data_dbzs_sev_1_patches)), 'ctts_sev_1':(['patch','y','x'], np.array(data_ctts_sev_1_patches)), 'uh25_sev_1':(['patch','y','x'], np.array(data_uh25_sev_1_patches)), 'uh03_sev_1':(['patch','y','x'], np.array(data_uh03_sev_1_patches)), 'mask_sev_1':(['patch','y','x'], np.array(data_mask_sev_1_patches))}) data_assemble.to_netcdf(f"/{self.working_directory}/{self.climate}_uh{self.threshold1}_{self.mask_str}_{time.strftime('%m')}.nc") print(f"Exceedances for {time.strftime('%m')} complete...") def create_files_notexceed_threshold(self, month_int): """Create files containing environment patches for storms that did not exceed the threshold. Data files being opened contain the storm patches, not the full CONUS WRF domain. Args: month_int (int): Month for analysis. """ time_temp=self.generate_time_month(month_int) data_temp_sev_1=[]; data_temp_sev_3=[]; data_temp_sev_5=[]; data_temp_sev_7=[]; data_evwd_sev_1=[]; data_evwd_sev_3=[] data_euwd_sev_1=[]; data_euwd_sev_3=[]; data_euwd_sev_5=[]; data_euwd_sev_7=[]; data_evwd_sev_5=[]; data_evwd_sev_7=[] data_qvap_sev_1=[]; data_qvap_sev_3=[]; data_qvap_sev_5=[]; data_qvap_sev_7=[]; data_dbzs_sev_1=[]; data_maxw_sev_1=[] data_pres_sev_1=[]; data_pres_sev_3=[]; data_pres_sev_5=[]; data_pres_sev_7=[]; data_ctts_sev_1=[]; data_mask_sev_1=[] data_wwnd_sev_1=[]; data_wwnd_sev_3=[]; data_wwnd_sev_5=[]; data_wwnd_sev_7=[]; data_uh25_sev_1=[]; data_uh03_sev_1=[] for time in time_temp: print(f"opening files for {time.strftime('%Y')}{time.strftime('%m')}") data_mask=xr.open_mfdataset( f"/{self.working_directory}/{self.climate}_indx{self.threshold1}_{self.mask_str}_{time.strftime('%Y')}{time.strftime('%m')}.nc", combine='by_coords') data_temp=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_tk_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_evwd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_ev_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_euwd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_eu_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_qvap=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_qvapor_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_pres=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_p_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_wwnd=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_w_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_maxw=xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_maxw_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_gen =xr.open_mfdataset(f"/{self.stormpatch_path}/{self.climate}_SP3hourly_{time.strftime('%Y%m')}*.nc", combine='by_coords') data_temp_sev_1.append(self.apply_notexceed_mask(data_temp, data_mask, 0)) data_temp_sev_3.append(self.apply_notexceed_mask(data_temp, data_mask, 1)) data_temp_sev_5.append(self.apply_notexceed_mask(data_temp, data_mask, 2)) data_temp_sev_7.append(self.apply_notexceed_mask(data_temp, data_mask, 3)) data_evwd_sev_1.append(self.apply_notexceed_mask(data_evwd, data_mask, 0)) data_evwd_sev_3.append(self.apply_notexceed_mask(data_evwd, data_mask, 1)) data_evwd_sev_5.append(self.apply_notexceed_mask(data_evwd, data_mask, 2)) data_evwd_sev_7.append(self.apply_notexceed_mask(data_evwd, data_mask, 3)) data_euwd_sev_1.append(self.apply_notexceed_mask(data_euwd, data_mask, 0)) data_euwd_sev_3.append(self.apply_notexceed_mask(data_euwd, data_mask, 1)) data_euwd_sev_5.append(self.apply_notexceed_mask(data_euwd, data_mask, 2)) data_euwd_sev_7.append(self.apply_notexceed_mask(data_euwd, data_mask, 3)) data_qvap_sev_1.append(self.apply_notexceed_mask(data_qvap, data_mask, 0)) data_qvap_sev_3.append(self.apply_notexceed_mask(data_qvap, data_mask, 1)) data_qvap_sev_5.append(self.apply_notexceed_mask(data_qvap, data_mask, 2)) data_qvap_sev_7.append(self.apply_notexceed_mask(data_qvap, data_mask, 3)) data_pres_sev_1.append(self.apply_notexceed_mask(data_pres, data_mask, 0)) data_pres_sev_3.append(self.apply_notexceed_mask(data_pres, data_mask, 1)) data_pres_sev_5.append(self.apply_notexceed_mask(data_pres, data_mask, 2)) data_pres_sev_7.append(self.apply_notexceed_mask(data_pres, data_mask, 3)) data_wwnd_sev_1.append(self.apply_notexceed_mask(data_wwnd, data_mask, 0)) data_wwnd_sev_3.append(self.apply_notexceed_mask(data_wwnd, data_mask, 1)) data_wwnd_sev_5.append(self.apply_notexceed_mask(data_wwnd, data_mask, 2)) data_wwnd_sev_7.append(self.apply_notexceed_mask(data_wwnd, data_mask, 3)) data_maxw_sev_1.append(np.delete(data_maxw.var_grid.values, data_mask.grid.values, axis=0)) data_dbzs_sev_1.append(np.delete(data_gen.dbz_grid.values, data_mask.grid.values, axis=0)) data_ctts_sev_1.append(np.delete(data_gen.ctt_grid.values, data_mask.grid.values, axis=0)) data_uh25_sev_1.append(np.delete(data_gen.uh25_grid.values, data_mask.grid.values, axis=0)) data_uh03_sev_1.append(np.delete(data_gen.uh03_grid.values, data_mask.grid.values, axis=0)) data_mask_sev_1.append(np.delete(data_gen.mask.values, data_mask.grid.values, axis=0)) data_temp_sev_1_patches=self.flatten_arraylist(data_temp_sev_1) data_temp_sev_3_patches=self.flatten_arraylist(data_temp_sev_3) data_temp_sev_5_patches=self.flatten_arraylist(data_temp_sev_5) data_temp_sev_7_patches=self.flatten_arraylist(data_temp_sev_7) data_evwd_sev_1_patches=self.flatten_arraylist(data_evwd_sev_1) data_evwd_sev_3_patches=self.flatten_arraylist(data_evwd_sev_3) data_evwd_sev_5_patches=self.flatten_arraylist(data_evwd_sev_5) data_evwd_sev_7_patches=self.flatten_arraylist(data_evwd_sev_7) data_euwd_sev_1_patches=self.flatten_arraylist(data_euwd_sev_1) data_euwd_sev_3_patches=self.flatten_arraylist(data_euwd_sev_3) data_euwd_sev_5_patches=self.flatten_arraylist(data_euwd_sev_5) data_euwd_sev_7_patches=self.flatten_arraylist(data_euwd_sev_7) data_qvap_sev_1_patches=self.flatten_arraylist(data_qvap_sev_1) data_qvap_sev_3_patches=self.flatten_arraylist(data_qvap_sev_3) data_qvap_sev_5_patches=self.flatten_arraylist(data_qvap_sev_5) data_qvap_sev_7_patches=self.flatten_arraylist(data_qvap_sev_7) data_pres_sev_1_patches=self.flatten_arraylist(data_pres_sev_1) data_pres_sev_3_patches=self.flatten_arraylist(data_pres_sev_3) data_pres_sev_5_patches=self.flatten_arraylist(data_pres_sev_5) data_pres_sev_7_patches=self.flatten_arraylist(data_pres_sev_7) data_wwnd_sev_1_patches=self.flatten_arraylist(data_wwnd_sev_1) data_wwnd_sev_3_patches=self.flatten_arraylist(data_wwnd_sev_3) data_wwnd_sev_5_patches=self.flatten_arraylist(data_wwnd_sev_5) data_wwnd_sev_7_patches=self.flatten_arraylist(data_wwnd_sev_7) data_maxw_sev_1_patches=self.flatten_arraylist(data_maxw_sev_1) data_dbzs_sev_1_patches=self.flatten_arraylist(data_dbzs_sev_1) data_ctts_sev_1_patches=self.flatten_arraylist(data_ctts_sev_1) data_uh25_sev_1_patches=self.flatten_arraylist(data_uh25_sev_1) data_uh03_sev_1_patches=self.flatten_arraylist(data_uh03_sev_1) data_mask_sev_1_patches=self.flatten_arraylist(data_mask_sev_1) data_assemble=xr.Dataset({ 'temp_sev_1':(['patch','y','x'], np.array(data_temp_sev_1_patches)), 'temp_sev_3':(['patch','y','x'], np.array(data_temp_sev_3_patches)), 'temp_sev_5':(['patch','y','x'], np.array(data_temp_sev_5_patches)), 'temp_sev_7':(['patch','y','x'], np.array(data_temp_sev_7_patches)), 'evwd_sev_1':(['patch','y','x'], np.array(data_evwd_sev_1_patches)), 'evwd_sev_3':(['patch','y','x'], np.array(data_evwd_sev_3_patches)), 'evwd_sev_5':(['patch','y','x'], np.array(data_evwd_sev_5_patches)), 'evwd_sev_7':(['patch','y','x'], np.array(data_evwd_sev_7_patches)), 'euwd_sev_1':(['patch','y','x'], np.array(data_euwd_sev_1_patches)), 'euwd_sev_3':(['patch','y','x'], np.array(data_euwd_sev_3_patches)), 'euwd_sev_5':(['patch','y','x'], np.array(data_euwd_sev_5_patches)), 'euwd_sev_7':(['patch','y','x'], np.array(data_euwd_sev_7_patches)), 'qvap_sev_1':(['patch','y','x'], np.array(data_qvap_sev_1_patches)), 'qvap_sev_3':(['patch','y','x'], np.array(data_qvap_sev_3_patches)), 'qvap_sev_5':(['patch','y','x'], np.array(data_qvap_sev_5_patches)), 'qvap_sev_7':(['patch','y','x'],
np.array(data_qvap_sev_7_patches)
numpy.array
from __future__ import print_function, division import sys import numpy as np import csv import os import glob import plotly import plotly.graph_objs as go def parse_stats(statsfn): stats = { 'tp': [], 'fp': [], 'fn': [], 'num_input_sv': [], 'num_bp_away_from_sv_and_cents_and_telos': [], 'num_bp_away_from_cents_and_telos': [], 'numbp': [], 'num_sv_away_from_cents_and_telos': [], 'datasets': [], } labels = {} with open(statsfn) as F: reader = csv.DictReader(F, delimiter='\t') for row in reader: stats['tp'].append(float(row['num_bp_replaced_by_sv'])) stats['fp'].append(float(row['num_non_sv'])) stats['fn'].append(float(row['num_lone_sv'])) stats['num_sv_away_from_cents_and_telos'].append(float(row['num_bp_replaced_by_sv']) + float(row['num_lone_sv'])) stats['datasets'].append(row['dataset']) for K in ('tp', 'fp', 'fn', 'num_input_sv', 'num_bp_away_from_sv_and_cents_and_telos', 'num_bp_away_from_cents_and_telos', 'num_sv_away_from_cents_and_telos'): stats[K] = np.array(stats[K], dtype=np.float) stats['numbp'] = stats['tp'] + stats['fp'] labels['numbp'] = stats['datasets'] stats['precision'] = stats['tp'] / (stats['tp'] + stats['fp']) stats['recall'] = stats['tp'] / (stats['tp'] + stats['fn']) labels['precision'] = labels['recall'] = stats['datasets'] oldlen = len(stats['precision']) assert oldlen == len(stats['recall']) notnan_idxs = np.logical_not(np.logical_or(np.isnan(stats['precision']), np.isnan(stats['recall']))) stats['precision'] = stats['precision'][notnan_idxs] stats['recall'] = stats['recall'][notnan_idxs] assert len(stats['precision']) == len(stats['recall']) #print(statsfn, 'has', oldlen - len(stats['precision']), 'nan') stats['nonsv_ratio'] = (stats['fp'] + 1) / (stats['num_sv_away_from_cents_and_telos'] + 1) assert np.count_nonzero(np.isnan(stats['nonsv_ratio'])) == 0 assert np.count_nonzero(stats['nonsv_ratio'] == 0) == 0 stats['nonsv_ratio'] = np.log2(stats['nonsv_ratio']) labels['nonsv_ratio'] = ['%s (nonsv = %s, sv = %s)' % (stats['datasets'][idx], stats['fp'][idx], stats['num_sv_away_from_cents_and_telos'][idx]) for idx in range(len(stats['datasets']))] return (stats, labels) def scatter(traces, title, xtitle, ytitle, outfn, logx = False, xmin = None, xmax = None,): xaxis = { 'title': xtitle, 'type': logx and 'log' or 'linear', 'range': [xmin, xmax], } layout = go.Layout( title = title, hovermode = 'closest', xaxis = xaxis, yaxis = { 'title': ytitle, }, ) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=outfn) def cdf(arr, labels=None): sorted_idxs = np.argsort(arr) ret = [ arr[sorted_idxs], np.linspace(0, 1, len(arr), endpoint=False), ] if labels is not None: ret.append([labels[idx] for idx in sorted_idxs]) return tuple(ret) def plot_method_combos(statsfns): xvals, yvals, xerrors, yerrors = [], [], [], [] runs = [] for statsfn in statsfns: run = os.path.basename(statsfn).split('.')[1] runs.append(run) stats, _ = parse_stats(statsfn) xvals.append(np.mean(stats['recall'])) yvals.append(np.mean(stats['precision'])) xerrors.append(np.std(stats['recall'])) yerrors.append(
np.std(stats['precision'])
numpy.std
import gemmi import numpy as np import pytest from pandas.testing import assert_index_equal import reciprocalspaceship as rs @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("reset_index", [True, False]) @pytest.mark.parametrize("anomalous", [True, False]) def test_hkl_to_asu(mtz_by_spacegroup, inplace, reset_index, anomalous): """Test DataSet.hkl_to_asu() for common spacegroups""" expected = rs.read_mtz(mtz_by_spacegroup) p1 = rs.read_mtz(mtz_by_spacegroup[:-4] + "_p1.mtz") p1.spacegroup = expected.spacegroup # Add complex structure factors p1["sf"] = p1.to_structurefactor("FMODEL", "PHIFMODEL") expected["sf"] = expected.to_structurefactor("FMODEL", "PHIFMODEL") if reset_index: p1.reset_index(inplace=True) result = p1.hkl_to_asu(inplace=inplace, anomalous=anomalous) if reset_index: result.set_index(["H", "K", "L"], inplace=True) # Confirm inplace if inplace: assert id(result) == id(p1) else: assert id(result) != id(p1) # Confirm centric reflections are always in +ASU assert len(expected.centrics.index.difference(result.centrics.index)) == 0 assert len(result.centrics.index.difference(expected.centrics.index)) == 0 # If anomalous=True, acentric reflections were mapped to the Friedel-minus ASU. # To test these reflections against `expected` we will map them back to the # Friedel-plus ASU # Note: # - `result` no longer has a unique MultiIndex after this if anomalous: result.reset_index(inplace=True) acentric = ~result.label_centrics()["CENTRIC"] friedel_minus = result["M/ISYM"] % 2 == 0 result[friedel_minus & acentric] = result[friedel_minus & acentric].apply_symop( "-x,-y,-z" ) result.set_index(["H", "K", "L"], inplace=True) assert len(result.index.difference(expected.index)) == 0 assert len(expected.index.difference(result.index)) == 0 # Confirm structure factor amplitudes are always unchanged assert np.allclose( expected.loc[result.index, "FMODEL"].to_numpy(), result["FMODEL"].to_numpy() ) # Confirm phase changes are applied by comparing complex structure factors expected_sf = expected.loc[result.index].to_structurefactor("FMODEL", "PHIFMODEL") result_sf = result.to_structurefactor("FMODEL", "PHIFMODEL") assert np.allclose(result_sf, expected_sf) # Confirm phase changes were applied to complex structure factors in DataSet assert np.allclose(np.abs(result["sf"]), np.abs(expected.loc[result.index, "sf"])) assert np.allclose(result["sf"], expected.loc[result.index, "sf"]) def test_hklmapping_roundtrip_phase(mtz_by_spacegroup): """ Test roundtrip of DataSet.hkl_to_asu() and DataSet.hkl_to_observed() preserve phases """ ref = rs.read_mtz(mtz_by_spacegroup) expected = rs.read_mtz(mtz_by_spacegroup[:-4] + "_p1.mtz") expected["sf"] = expected.to_structurefactor("FMODEL", "PHIFMODEL") expected.spacegroup = ref.spacegroup # Roundtrip temp = expected.hkl_to_asu() result = temp.hkl_to_observed() # Check indices assert_index_equal(result.index, expected.index) # Confirm phase changes are applied by comparing as complex structure factors expected_sf = expected.loc[result.index].to_structurefactor("FMODEL", "PHIFMODEL") result_sf = result.to_structurefactor("FMODEL", "PHIFMODEL") assert np.allclose(np.abs(result_sf),
np.abs(expected_sf)
numpy.abs
""" Plot comparisons to understand contributions of SIC dependent on the thickness initial conditions for the regional experiments. Notes ----- Author : <NAME> Date : 9 October 2018 """ ### Import modules import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import nclcmaps as ncm import datetime import read_MonthlyOutput as MO import calc_Utilities as UT import cmocean ### Define directories directorydata = '/surtsey/zlabe/simu/' directoryfigure = '/home/zlabe/Desktop/' #directoryfigure = '/home/zlabe/Documents/Research/SITperturb/Figures/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting SIC contributions - %s----' % titletime) ### Alott time series year1 = 1900 year2 = 2000 years = np.arange(year1,year2+1,1) ### Call arguments varnames = ['Z500','Z30','SLP','T2M','U10','U300','SWE','THICK','P','EGR', 'RNET'] varnames = ['Z500'] runnames = [r'CIT',r'FPOL',r'FSUB'] experiments = [r'\textbf{$\Delta$POLAR}',r'\textbf{$\Delta$SUBPOLAR}',r'\textbf{difference}'] period = 'DJF' for v in range(len(varnames)): ### Call function for surface temperature data from reach run lat,lon,time,lev,tascit = MO.readExperi(directorydata, '%s' % varnames[v],'CIT','surface') lat,lon,time,lev,tasfic = MO.readExperi(directorydata, '%s' % varnames[v],'FPOL','surface') lat,lon,time,lev,tasfict = MO.readExperi(directorydata, '%s' % varnames[v],'FSUB','surface') ### Create 2d array of latitude and longitude lon2,lat2 = np.meshgrid(lon,lat) ### Concatonate runs runs = [tascit,tasfic,tasfict] ### Separate per periods (ON,DJ,FM) if period == 'ON': tas_mo = np.empty((4,tascit.shape[0],tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i] = np.nanmean(runs[i][:,9:11,:,:],axis=1) elif period == 'DJ': tas_mo = np.empty((4,tascit.shape[0]-1,tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i],tas_mo[i] = UT.calcDecJan(runs[i],runs[i],lat, lon,'surface',1) elif period == 'FM': tas_mo= np.empty((4,tascit.shape[0],tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i] = np.nanmean(runs[i][:,1:3,:,:],axis=1) elif period == 'DJF': tas_mo= np.empty((4,tascit.shape[0]-1,tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i],tas_mo[i] = UT.calcDecJanFeb(runs[i],runs[i],lat, lon,'surface',1) elif period == 'M': tas_mo= np.empty((4,tascit.shape[0],tascit.shape[2],tascit.shape[3])) for i in range(len(runs)): tas_mo[i] = runs[i][:,2,:,:] else: ValueError('Wrong period selected! (ON,DJ,FM)') ### Composite by QBO phase tas_mocit = tas_mo[0][:,:,:] tas_mofic = tas_mo[1][:,:,:] tas_mofict = tas_mo[2][:,:,:] ### Compute comparisons for months - taken ensemble average ficcit = np.nanmean(tas_mofic - tas_mocit,axis=0) fictfit = np.nanmean(tas_mofict - tas_mocit,axis=0) difference = ficcit - fictfit diffruns_mo = [ficcit,fictfit,difference] ### Calculate significance for FM stat_FICCIT,pvalue_FICCIT = UT.calc_indttest(tas_mofic,tas_mocit) stat_FICTFIT,pvalue_FICTFIT = UT.calc_indttest(tas_mofict,tas_mocit) stat_difference,pvalue_difference = UT.calc_indttest(tas_mofic - tas_mocit, tas_mofict - tas_mocit) pruns_mo = [pvalue_FICCIT,pvalue_FICTFIT,pvalue_difference] ########################################################################### ########################################################################### ########################################################################### #### Plot T2M plt.rc('text',usetex=True) plt.rc('font',**{'family':'sans-serif','sans-serif':['Avant Garde']}) fig = plt.figure() for i in range(len(experiments)): var = diffruns_mo[i] pvar = pruns_mo[i] ### Set limits for contours and colorbars if varnames[v] == 'T2M': limit = np.arange(-10,10.1,0.5) barlim = np.arange(-10,11,5) elif varnames[v] == 'Z500': limit = np.arange(-60,60.1,1) barlim = np.arange(-60,61,30) elif varnames[v] == 'Z30': limit = np.arange(-100,100.1,5) barlim =
np.arange(-100,101,50)
numpy.arange
#!/usr/bin/env python """ EM algorithm for learning rhyming words and rhyme schemes with independent stanzas. Original implementation: <NAME> (<EMAIL>), 2011. """ from __future__ import division, print_function, unicode_literals import argparse import json import logging import os import sys from collections import defaultdict, OrderedDict from difflib import SequenceMatcher import numpy from rhymediscovery import celex def load_stanzas(stanzas_file): """ Load stanzas from gold standard file """ f = stanzas_file.readlines() stanzas = [] for i, line in enumerate(f): if i % 4 == 0: stanza_words = line.strip().split()[1:] stanzas.append(Stanza(stanza_words)) return stanzas class Stanza: def __init__(self, stanza_words): self.words = tuple(stanza_words) # Sequence of final words self.word_indices = None # Indices of words with respect to global wordlist def set_word_indices(self, wordlist): """ Populate the list of word_indices, mapping self.words to the given wordlist """ self.word_indices = [wordlist.index(word) for word in self.words] def __str__(self): return ' '.join(self.words) def __len__(self): return len(self.words) class Schemes: """ Stores schemes loaded from schemes.json """ def __init__(self, scheme_file): self.scheme_file = scheme_file self.scheme_list, self.scheme_dict = self._parse_scheme_file() self.num_schemes = len(self.scheme_list) def _parse_scheme_file(self): """ Initialize redundant data structures for lookup optimization """ schemes = json.loads(self.scheme_file.read(), object_pairs_hook=OrderedDict) scheme_list = [] scheme_dict = defaultdict(list) for scheme_len, scheme_group in schemes.items(): for scheme_str, _count in scheme_group: scheme_code = tuple(int(c) for c in scheme_str.split(' ')) scheme_list.append(scheme_code) scheme_dict[int(scheme_len)].append(len(scheme_list) - 1) return scheme_list, scheme_dict def get_schemes_for_len(self, n): """ Returns the indices of all n-length schemes in self.scheme_list """ return self.scheme_dict[n] def get_wordlist(stanzas): """ Get an iterable of all final words in all stanzas """ return sorted(list(set().union(*[stanza.words for stanza in stanzas]))) def get_rhymelists(stanza, scheme): """ Returns ordered lists of the stanza's word indices as defined by given scheme """ rhymelists = defaultdict(list) for rhyme_group, word_index in zip(scheme, stanza.word_indices): rhymelists[rhyme_group].append(word_index) return list(rhymelists.values()) def init_distance_ttable(wordlist, distance_function): """ Initialize pair-wise rhyme strenghts according to the given word distance function """ n = len(wordlist) t_table = numpy.zeros((n, n + 1)) # Initialize P(c|r) accordingly for r, w in enumerate(wordlist): for c, v in enumerate(wordlist): if c < r: t_table[r, c] = t_table[c, r] # Similarity is symmetric else: t_table[r, c] = distance_function(w, v) + 0.001 # For backoff t_table[:, n] = numpy.mean(t_table[:, :-1], axis=1) # Normalize t_totals = numpy.sum(t_table, axis=0) for i, t_total in enumerate(t_totals.tolist()): t_table[:, i] /= t_total return t_table def init_uniform_ttable(wordlist): """ Initialize (normalized) theta uniformly """ n = len(wordlist) return
numpy.ones((n, n + 1))
numpy.ones
import scipy.io as sio import numpy as np import pickle import torch from torch.utils.data import Dataset import torch.nn.functional as F import torch.nn as nn from model.CNN import CNN from utils.DataLoader import ECGDataset, ecg_collate_func import sys import argparse import os data_dirc = 'data/' RAW_LABELS = np.load(data_dirc+'raw_labels.npy') PERMUTATION =
np.load(data_dirc+'random_permutation.npy')
numpy.load
from __future__ import division, print_function import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.mplot3d import Axes3D import streakline #import streakline2 import myutils import ffwd from streams import load_stream, vcirc_potential, store_progparams, wrap_angles, progenitor_prior #import streams import astropy import astropy.units as u from astropy.constants import G from astropy.table import Table import astropy.coordinates as coord import gala.coordinates as gc import scipy.linalg as la import scipy.interpolate import scipy.optimize import zscale import itertools import copy import pickle # observers # defaults taken as in astropy v2.0 icrs mw_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')} vsun = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} vsun0 = {'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} gc_observer = {'z_sun': 27.*u.pc, 'galcen_distance': 0.1*u.kpc, 'roll': 0*u.deg, 'galcen_coord': coord.SkyCoord(ra=266.4051*u.deg, dec=-28.936175*u.deg, frame='icrs')} vgc = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} vgc0 = {'vcirc': 0*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s} MASK = -9999 pparams_fid = [np.log10(0.5e10)*u.Msun, 0.7*u.kpc, np.log10(6.8e10)*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0.*u.Gyr**-2*u.kpc**-1, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr] #pparams_fid = [0.5e-5*u.Msun, 0.7*u.kpc, 6.8e-5*u.Msun, 3*u.kpc, 0.28*u.kpc, 430*u.km/u.s, 30*u.kpc, 1.57*u.rad, 1*u.Unit(1), 1*u.Unit(1), 1*u.Unit(1), 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.pc/u.Myr**2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0.*u.Gyr**-2, 0*u.deg, 0*u.deg, 0*u.kpc, 0*u.km/u.s, 0*u.mas/u.yr, 0*u.mas/u.yr] class Stream(): def __init__(self, x0=[]*u.kpc, v0=[]*u.km/u.s, progenitor={'coords': 'galactocentric', 'observer': {}, 'pm_polar': False}, potential='nfw', pparams=[], minit=2e4*u.Msun, mfinal=2e4*u.Msun, rcl=20*u.pc, dr=0.5, dv=2*u.km/u.s, dt=1*u.Myr, age=6*u.Gyr, nstars=600, integrator='lf'): """Initialize """ setup = {} if progenitor['coords']=='galactocentric': setup['x0'] = x0 setup['v0'] = v0 elif (progenitor['coords']=='equatorial') & (len(progenitor['observer'])!=0): if progenitor['pm_polar']: a = v0[1].value phi = v0[2].value v0[1] = a*np.sin(phi)*u.mas/u.yr v0[2] = a*np.cos(phi)*u.mas/u.yr # convert positions xeq = coord.SkyCoord(x0[0], x0[1], x0[2], **progenitor['observer']) xgal = xeq.transform_to(coord.Galactocentric) setup['x0'] = [xgal.x.to(u.kpc), xgal.y.to(u.kpc), xgal.z.to(u.kpc)]*u.kpc # convert velocities setup['v0'] = gc.vhel_to_gal(xeq.icrs, rv=v0[0], pm=v0[1:], **vsun) #setup['v0'] = [v.to(u.km/u.s) for v in vgal]*u.km/u.s else: raise ValueError('Observer position needed!') setup['dr'] = dr setup['dv'] = dv setup['minit'] = minit setup['mfinal'] = mfinal setup['rcl'] = rcl setup['dt'] = dt setup['age'] = age setup['nstars'] = nstars setup['integrator'] = integrator setup['potential'] = potential setup['pparams'] = pparams self.setup = setup self.setup_aux = {} self.fill_intid() self.fill_potid() self.st_params = self.format_input() def fill_intid(self): """Assign integrator ID for a given integrator choice Assumes setup dictionary has an 'integrator' key""" if self.setup['integrator']=='lf': self.setup_aux['iaux'] = 0 elif self.setup['integrator']=='rk': self.setup_aux['iaux'] = 1 def fill_potid(self): """Assign potential ID for a given potential choice Assumes d has a 'potential' key""" if self.setup['potential']=='nfw': self.setup_aux['paux'] = 3 elif self.setup['potential']=='log': self.setup_aux['paux'] = 2 elif self.setup['potential']=='point': self.setup_aux['paux'] = 0 elif self.setup['potential']=='gal': self.setup_aux['paux'] = 4 elif self.setup['potential']=='lmc': self.setup_aux['paux'] = 6 elif self.setup['potential']=='dipole': self.setup_aux['paux'] = 8 elif self.setup['potential']=='quad': self.setup_aux['paux'] = 9 elif self.setup['potential']=='octu': self.setup_aux['paux'] = 10 def format_input(self): """Format input parameters for streakline.stream""" p = [None]*12 # progenitor position p[0] = self.setup['x0'].si.value p[1] = self.setup['v0'].si.value # potential parameters p[2] = [x.si.value for x in self.setup['pparams']] # stream smoothing offsets p[3] = [self.setup['dr'], self.setup['dv'].si.value] # potential and integrator choice p[4] = self.setup_aux['paux'] p[5] = self.setup_aux['iaux'] # number of steps and stream stars p[6] = int(self.setup['age']/self.setup['dt']) p[7] = int(p[6]/self.setup['nstars']) # cluster properties p[8] = self.setup['minit'].si.value p[9] = self.setup['mfinal'].si.value p[10] = self.setup['rcl'].si.value # time step p[11] = self.setup['dt'].si.value return p def generate(self): """Create streakline model for a stream of set parameters""" #xm1, xm2, xm3, xp1, xp2, xp3, vm1, vm2, vm3, vp1, vp2, vp3 = streakline.stream(*p) stream = streakline.stream(*self.st_params) self.leading = {} self.leading['x'] = stream[:3]*u.m self.leading['v'] = stream[6:9]*u.m/u.s self.trailing = {} self.trailing['x'] = stream[3:6]*u.m self.trailing['v'] = stream[9:12]*u.m/u.s def observe(self, mode='cartesian', wangle=0*u.deg, units=[], errors=[], nstars=-1, sequential=False, present=[], logerr=False, observer={'z_sun': 0.*u.pc, 'galcen_distance': 8.3*u.kpc, 'roll': 0*u.deg, 'galcen_ra': 300*u.deg, 'galcen_dec': 20*u.deg}, vobs={'vcirc': 237.8*u.km/u.s, 'vlsr': [11.1, 12.2, 7.3]*u.km/u.s}, footprint='none', rotmatrix=None): """Observe the stream stream.obs holds all observations stream.err holds all errors""" x = np.concatenate((self.leading['x'].to(u.kpc).value, self.trailing['x'].to(u.kpc).value), axis=1) * u.kpc v = np.concatenate((self.leading['v'].to(u.km/u.s).value, self.trailing['v'].to(u.km/u.s).value), axis=1) * u.km/u.s if mode=='cartesian': # returns coordinates in following order # x(x, y, z), v(vx, vy, vz) if len(units)<2: units.append(self.trailing['x'].unit) units.append(self.trailing['v'].unit) if len(errors)<2: errors.append(0.2*u.kpc) errors.append(2*u.km/u.s) # positions x = x.to(units[0]) ex = np.ones(np.shape(x))*errors[0] ex = ex.to(units[0]) # velocities v = v.to(units[1]) ev = np.ones(np.shape(v))*errors[1] ev = ev.to(units[1]) self.obs = np.concatenate([x,v]).value self.err = np.concatenate([ex,ev]).value elif mode=='equatorial': # assumes coordinates in the following order: # ra, dec, distance, vrad, mualpha, mudelta if len(units)!=6: units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr] if len(errors)!=6: errors = [0.2*u.deg, 0.2*u.deg, 0.5*u.kpc, 1*u.km/u.s, 0.2*u.mas/u.yr, 0.2*u.mas/u.yr] # define reference frame xgal = coord.Galactocentric(x, **observer) #frame = coord.Galactocentric(**observer) # convert xeq = xgal.transform_to(coord.ICRS) veq = gc.vgal_to_hel(xeq, v, **vobs) # store coordinates ra, dec, dist = [xeq.ra.to(units[0]).wrap_at(wangle), xeq.dec.to(units[1]), xeq.distance.to(units[2])] vr, mua, mud = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])] obs = np.hstack([ra, dec, dist, vr, mua, mud]).value obs = np.reshape(obs,(6,-1)) if footprint=='sdss': infoot = dec > -2.5*u.deg obs = obs[:,infoot] if np.allclose(rotmatrix, np.eye(3))!=1: xi, eta = myutils.rotate_angles(obs[0], obs[1], rotmatrix) obs[0] = xi obs[1] = eta self.obs = obs # store errors err = np.ones(np.shape(self.obs)) if logerr: for i in range(6): err[i] *= np.exp(errors[i].to(units[i]).value) else: for i in range(6): err[i] *= errors[i].to(units[i]).value self.err = err self.obsunit = units self.obserror = errors # randomly select nstars from the stream if nstars>-1: if sequential: select = np.linspace(0, np.shape(self.obs)[1], nstars, endpoint=False, dtype=int) else: select = np.random.randint(low=0, high=np.shape(self.obs)[1], size=nstars) self.obs = self.obs[:,select] self.err = self.err[:,select] # include only designated dimensions if len(present)>0: self.obs = self.obs[present] self.err = self.err[present] self.obsunit = [ self.obsunit[x] for x in present ] self.obserror = [ self.obserror[x] for x in present ] def prog_orbit(self): """Generate progenitor orbital history""" orbit = streakline.orbit(self.st_params[0], self.st_params[1], self.st_params[2], self.st_params[4], self.st_params[5], self.st_params[6], self.st_params[11], -1) self.orbit = {} self.orbit['x'] = orbit[:3]*u.m self.orbit['v'] = orbit[3:]*u.m/u.s def project(self, name, N=1000, nbatch=-1): """Project the stream from observed to native coordinates""" poly = np.loadtxt("../data/{0:s}_all.txt".format(name)) self.streak = np.poly1d(poly) self.streak_x = np.linspace(np.min(self.obs[0])-2, np.max(self.obs[0])+2, N) self.streak_y = np.polyval(self.streak, self.streak_x) self.streak_b = np.zeros(N) self.streak_l = np.zeros(N) pdot = np.polyder(poly) for i in range(N): length = scipy.integrate.quad(self._delta_path, self.streak_x[0], self.streak_x[i], args=(pdot,)) self.streak_l[i] = length[0] XB = np.transpose(np.vstack([self.streak_x, self.streak_y])) n = np.shape(self.obs)[1] if nbatch<0: nstep = 0 nbatch = -1 else: nstep = np.int(n/nbatch) i1 = 0 i2 = nbatch for i in range(nstep): XA = np.transpose(np.vstack([np.array(self.obs[0][i1:i2]), np.array(self.obs[1][i1:i2])])) self.emdist(XA, XB, i1=i1, i2=i2) i1 += nbatch i2 += nbatch XA = np.transpose(np.vstack([np.array(self.catalog['ra'][i1:]), np.array(self.catalog['dec'][i1:])])) self.emdist(XA, XB, i1=i1, i2=n) #self.catalog.write("../data/{0:s}_footprint_catalog.txt".format(self.name), format='ascii.commented_header') def emdist(self, XA, XB, i1=0, i2=-1): """""" distances = scipy.spatial.distance.cdist(XA, XB) self.catalog['b'][i1:i2] = np.min(distances, axis=1) imin = np.argmin(distances, axis=1) self.catalog['b'][i1:i2][self.catalog['dec'][i1:i2]<self.streak_y[imin]] *= -1 self.catalog['l'][i1:i2] = self.streak_l[imin] def _delta_path(self, x, pdot): """Return integrand for calculating length of a path along a polynomial""" return np.sqrt(1 + np.polyval(pdot, x)**2) def plot(self, mode='native', fig=None, color='k', **kwargs): """Plot stream""" # Plotting if fig==None: plt.close() plt.figure() ax = plt.axes([0.12,0.1,0.8,0.8]) if mode=='native': # Color setup cindices = np.arange(self.setup['nstars']) # colors of stream particles nor = mpl.colors.Normalize(vmin=0, vmax=self.setup['nstars']) # colormap normalization plt.plot(self.setup['x0'][0].to(u.kpc).value, self.setup['x0'][2].to(u.kpc).value, 'wo', ms=10, mew=2, zorder=3) plt.scatter(self.trailing['x'][0].to(u.kpc).value, self.trailing['x'][2].to(u.kpc).value, s=30, c=cindices, cmap='winter', norm=nor, marker='o', edgecolor='none', lw=0, alpha=0.1) plt.scatter(self.leading['x'][0].to(u.kpc).value, self.leading['x'][2].to(u.kpc).value, s=30, c=cindices, cmap='autumn', norm=nor, marker='o', edgecolor='none', lw=0, alpha=0.1) plt.xlabel("X (kpc)") plt.ylabel("Z (kpc)") elif mode=='observed': plt.subplot(221) plt.plot(self.obs[0], self.obs[1], 'o', color=color, **kwargs) plt.xlabel("RA") plt.ylabel("Dec") plt.subplot(223) plt.plot(self.obs[0], self.obs[2], 'o', color=color, **kwargs) plt.xlabel("RA") plt.ylabel("Distance") plt.subplot(222) plt.plot(self.obs[3], self.obs[4], 'o', color=color, **kwargs) plt.xlabel("V$_r$") plt.ylabel("$\mu\\alpha$") plt.subplot(224) plt.plot(self.obs[3], self.obs[5], 'o', color=color, **kwargs) plt.xlabel("V$_r$") plt.ylabel("$\mu\delta$") plt.tight_layout() #plt.minorticks_on() def read(self, fname, units={'x': u.kpc, 'v': u.km/u.s}): """Read stream star positions from a file""" t = np.loadtxt(fname).T n = np.shape(t)[1] ns = int((n-1)/2) self.setup['nstars'] = ns # progenitor self.setup['x0'] = t[:3,0] * units['x'] self.setup['v0'] = t[3:,0] * units['v'] # leading tail self.leading = {} self.leading['x'] = t[:3,1:ns+1] * units['x'] self.leading['v'] = t[3:,1:ns+1] * units['v'] # trailing tail self.trailing = {} self.trailing['x'] = t[:3,ns+1:] * units['x'] self.trailing['v'] = t[3:,ns+1:] * units['v'] def save(self, fname): """Save stream star positions to a file""" # define table t = Table(names=('x', 'y', 'z', 'vx', 'vy', 'vz')) # add progenitor info t.add_row(np.ravel([self.setup['x0'].to(u.kpc).value, self.setup['v0'].to(u.km/u.s).value])) # add leading tail infoobsmode tt = Table(np.concatenate((self.leading['x'].to(u.kpc).value, self.leading['v'].to(u.km/u.s).value)).T, names=('x', 'y', 'z', 'vx', 'vy', 'vz')) t = astropy.table.vstack([t,tt]) # add trailing tail info tt = Table(np.concatenate((self.trailing['x'].to(u.kpc).value, self.trailing['v'].to(u.km/u.s).value)).T, names=('x', 'y', 'z', 'vx', 'vy', 'vz')) t = astropy.table.vstack([t,tt]) # save to file t.write(fname, format='ascii.commented_header') # make a streakline model of a stream def stream_model(name='gd1', pparams0=pparams_fid, dt=0.2*u.Myr, rotmatrix=np.eye(3), graph=False, graphsave=False, observer=mw_observer, vobs=vsun, footprint='', obsmode='equatorial'): """Create a streakline model of a stream baryonic component as in kupper+2015: 3.4e10*u.Msun, 0.7*u.kpc, 1e11*u.Msun, 6.5*u.kpc, 0.26*u.kpc""" # vary progenitor parameters mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) for i in range(3): mock['x0'][i] += pparams0[26+i] mock['v0'][i] += pparams0[29+i] # vary potential parameters potential = 'octu' pparams = pparams0[:26] #print(pparams[0]) pparams[0] = (10**pparams0[0].value)*pparams0[0].unit pparams[2] = (10**pparams0[2].value)*pparams0[2].unit #pparams[0] = pparams0[0]*1e15 #pparams[2] = pparams0[2]*1e15 #print(pparams[0]) # adjust circular velocity in this halo vobs['vcirc'] = vcirc_potential(observer['galcen_distance'], pparams=pparams) # create a model stream with these parameters params = {'generate': {'x0': mock['x0'], 'v0': mock['v0'], 'progenitor': {'coords': 'equatorial', 'observer': mock['observer'], 'pm_polar': False}, 'potential': potential, 'pparams': pparams, 'minit': mock['mi'], 'mfinal': mock['mf'], 'rcl': 20*u.pc, 'dr': 0., 'dv': 0*u.km/u.s, 'dt': dt, 'age': mock['age'], 'nstars': 400, 'integrator': 'lf'}, 'observe': {'mode': mock['obsmode'], 'wangle': mock['wangle'], 'nstars':-1, 'sequential':True, 'errors': [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s, 0.5*u.mas/u.yr, 0.5*u.mas/u.yr], 'present': [0,1,2,3,4,5], 'observer': mock['observer'], 'vobs': mock['vobs'], 'footprint': mock['footprint'], 'rotmatrix': rotmatrix}} stream = Stream(**params['generate']) stream.generate() stream.observe(**params['observe']) ################################ # Plot observed stream and model if graph: observed = load_stream(name) Ndim = np.shape(observed.obs)[0] modcol = 'k' obscol = 'orange' ylabel = ['Dec (deg)', 'Distance (kpc)', 'Radial velocity (km/s)'] plt.close() fig, ax = plt.subplots(1, 3, figsize=(12,4)) for i in range(3): plt.sca(ax[i]) plt.gca().invert_xaxis() plt.xlabel('R.A. (deg)') plt.ylabel(ylabel[i]) plt.plot(observed.obs[0], observed.obs[i+1], 's', color=obscol, mec='none', ms=8, label='Observed stream') plt.plot(stream.obs[0], stream.obs[i+1], 'o', color=modcol, mec='none', ms=4, label='Fiducial model') if i==0: plt.legend(frameon=False, handlelength=0.5, fontsize='small') plt.tight_layout() if graphsave: plt.savefig('../plots/mock_observables_{}_p{}.png'.format(name, potential), dpi=150) return stream def progenitor_params(n): """Return progenitor parameters for a given stream""" if n==-1: age = 1.6*u.Gyr mi = 1e4*u.Msun mf = 2e-1*u.Msun x0, v0 = gd1_coordinates(observer=mw_observer) elif n==-2: age = 2.7*u.Gyr mi = 1e5*u.Msun mf = 2e4*u.Msun x0, v0 = pal5_coordinates(observer=mw_observer, vobs=vsun0) elif n==-3: age = 3.5*u.Gyr mi = 5e4*u.Msun mf = 2e-1*u.Msun x0, v0 = tri_coordinates(observer=mw_observer) elif n==-4: age = 2*u.Gyr mi = 2e4*u.Msun mf = 2e-1*u.Msun x0, v0 = atlas_coordinates(observer=mw_observer) out = {'x0': x0, 'v0': v0, 'age': age, 'mi': mi, 'mf': mf} return out def gal2eq(x, v, observer=mw_observer, vobs=vsun0): """""" # define reference frame xgal = coord.Galactocentric(np.array(x)[:,np.newaxis]*u.kpc, **observer) # convert xeq = xgal.transform_to(coord.ICRS) veq = gc.vgal_to_hel(xeq, np.array(v)[:,np.newaxis]*u.km/u.s, **vobs) # store coordinates units = [u.deg, u.deg, u.kpc, u.km/u.s, u.mas/u.yr, u.mas/u.yr] xobs = [xeq.ra.to(units[0]), xeq.dec.to(units[1]), xeq.distance.to(units[2])] vobs = [veq[2].to(units[3]), veq[0].to(units[4]), veq[1].to(units[5])] return(xobs, vobs) def gd1_coordinates(observer=mw_observer): """Approximate GD-1 progenitor coordinates""" x = coord.SkyCoord(ra=154.377*u.deg, dec=41.5309*u.deg, distance=8.2*u.kpc, **observer) x_ = x.galactocentric x0 = [x_.x.value, x_.y.value, x_.z.value] v0 = [-90, -250, -120] return (x0, v0) def pal5_coordinates(observer=mw_observer, vobs=vsun0): """Pal5 coordinates""" # sdss ra = 229.0128*u.deg dec = -0.1082*u.deg # bob's rrlyrae d = 21.7*u.kpc # harris #d = 23.2*u.kpc # odenkirchen 2002 vr = -58.7*u.km/u.s # fritz & kallivayalil 2015 mua = -2.296*u.mas/u.yr mud = -2.257*u.mas/u.yr d = 24*u.kpc x = coord.SkyCoord(ra=ra, dec=dec, distance=d, **observer) x0 = x.galactocentric v0 = gc.vhel_to_gal(x.icrs, rv=vr, pm=[mua, mud], **vobs).to(u.km/u.s) return ([x0.x.value, x0.y.value, x0.z.value], v0.value.tolist()) def tri_coordinates(observer=mw_observer): """Approximate Triangulum progenitor coordinates""" x = coord.SkyCoord(ra=22.38*u.deg, dec=30.26*u.deg, distance=33*u.kpc, **observer) x_ = x.galactocentric x0 = [x_.x.value, x_.y.value, x_.z.value] v0 = [-40, 155, 155] return (x0, v0) def atlas_coordinates(observer=mw_observer): """Approximate ATLAS progenitor coordinates""" x = coord.SkyCoord(ra=20*u.deg, dec=-27*u.deg, distance=20*u.kpc, **observer) x_ = x.galactocentric x0 = [x_.x.value, x_.y.value, x_.z.value] v0 = [40, 150, -120] return (x0, v0) # great circle orientation def find_greatcircle(stream=None, name='gd1', pparams=pparams_fid, dt=0.2*u.Myr, save=True, graph=True): """Save rotation matrix for a stream model""" if stream==None: stream = stream_model(name, pparams0=pparams, dt=dt) # find the pole ra = np.radians(stream.obs[0]) dec = np.radians(stream.obs[1]) rx = np.cos(ra) * np.cos(dec) ry = np.sin(ra) * np.cos(dec) rz = np.sin(dec) r = np.column_stack((rx, ry, rz)) # fit the plane x0 = np.array([0, 1, 0]) lsq = scipy.optimize.minimize(wfit_plane, x0, args=(r,)) x0 = lsq.x/np.linalg.norm(lsq.x) ra0 = np.arctan2(x0[1], x0[0]) dec0 = np.arcsin(x0[2]) ra0 += np.pi dec0 = np.pi/2 - dec0 # euler rotations R0 = myutils.rotmatrix(np.degrees(-ra0), 2) R1 = myutils.rotmatrix(np.degrees(dec0), 1) R2 = myutils.rotmatrix(0, 2) R = np.dot(R2, np.matmul(R1, R0)) xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R) # put xi = 50 at the beginning of the stream xi[xi>180] -= 360 xi += 360 xi0 = np.min(xi) - 50 R2 = myutils.rotmatrix(-xi0, 2) R = np.dot(R2, np.matmul(R1, R0)) xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R) if save: np.save('../data/rotmatrix_{}'.format(name), R) f = open('../data/mock_{}.params'.format(name), 'rb') mock = pickle.load(f) mock['rotmatrix'] = R f.close() f = open('../data/mock_{}.params'.format(name), 'wb') pickle.dump(mock, f) f.close() if graph: plt.close() fig, ax = plt.subplots(1,2,figsize=(10,5)) plt.sca(ax[0]) plt.plot(stream.obs[0], stream.obs[1], 'ko') plt.xlabel('R.A. (deg)') plt.ylabel('Dec (deg)') plt.sca(ax[1]) plt.plot(xi, eta, 'ko') plt.xlabel('$\\xi$ (deg)') plt.ylabel('$\\eta$ (deg)') plt.ylim(-5, 5) plt.tight_layout() plt.savefig('../plots/gc_orientation_{}.png'.format(name)) return R def wfit_plane(x, r, p=None): """Fit a plane to a set of 3d points""" Np = np.shape(r)[0] if np.any(p)==None: p = np.ones(Np) Q = np.zeros((3,3)) for i in range(Np): Q += p[i]**2 * np.outer(r[i], r[i]) x = x/np.linalg.norm(x) lsq = np.inner(x, np.inner(Q, x)) return lsq # observed streams #def load_stream(n): #"""Load stream observations""" #if n==-1: #observed = load_gd1(present=[0,1,2,3]) #elif n==-2: #observed = load_pal5(present=[0,1,2,3]) #elif n==-3: #observed = load_tri(present=[0,1,2,3]) #elif n==-4: #observed = load_atlas(present=[0,1,2,3]) #return observed def endpoints(name): """""" stream = load_stream(name) # find endpoints amin = np.argmin(stream.obs[0]) amax = np.argmax(stream.obs[0]) ra = np.array([stream.obs[0][i] for i in [amin, amax]]) dec = np.array([stream.obs[1][i] for i in [amin, amax]]) f = open('../data/mock_{}.params'.format(name), 'rb') mock = pickle.load(f) # rotate endpoints R = mock['rotmatrix'] xi, eta = myutils.rotate_angles(ra, dec, R) #xi, eta = myutils.rotate_angles(stream.obs[0], stream.obs[1], R) mock['ra_range'] = ra mock['xi_range'] = xi #np.percentile(xi, [10,90]) f.close() f = open('../data/mock_{}.params'.format(name), 'wb') pickle.dump(mock, f) f.close() def load_pal5(present, nobs=50, potential='gal'): """""" if len(present)==2: t = Table.read('../data/pal5_members.txt', format='ascii.commented_header') dist = 21.7 deltadist = 0.7 np.random.seed(34) t = t[np.random.randint(0, high=len(t), size=nobs)] nobs = len(t) d = np.random.randn(nobs)*deltadist + dist obs = np.array([t['ra'], t['dec'], d]) obsunit = [u.deg, u.deg, u.kpc] err = np.repeat( np.array([2e-4, 2e-4, 0.7]), nobs ).reshape(3, -1) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] if len(present)==3: #t = Table.read('../data/pal5_kinematic.txt', format='ascii.commented_header') t = Table.read('../data/pal5_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d']]) obsunit = [u.deg, u.deg, u.kpc] err = np.array([t['err_ra'], t['err_dec'], t['err_d']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] if len(present)==4: #t = Table.read('../data/pal5_kinematic.txt', format='ascii.commented_header') t = Table.read('../data/pal5_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d'], t['vr']]) obsunit = [u.deg, u.deg, u.kpc, u.km/u.s] err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] observed = Stream(potential=potential) observed.obs = obs observed.obsunit = obsunit observed.err = err observed.obserror = obserr return observed def load_gd1(present, nobs=50, potential='gal'): """""" if len(present)==3: t = Table.read('../data/gd1_members.txt', format='ascii.commented_header') dist = 0 deltadist = 0.5 np.random.seed(34) t = t[np.random.randint(0, high=len(t), size=nobs)] nobs = len(t) d = np.random.randn(nobs)*deltadist + dist d += t['l']*0.04836 + 9.86 obs = np.array([t['ra'], t['dec'], d]) obsunit = [u.deg, u.deg, u.kpc] err = np.repeat( np.array([2e-4, 2e-4, 0.5]), nobs ).reshape(3, -1) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] if len(present)==4: #t = Table.read('../data/gd1_kinematic.txt', format='ascii.commented_header') t = Table.read('../data/gd1_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d'], t['vr']]) obsunit = [u.deg, u.deg, u.kpc, u.km/u.s] err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] ind = np.all(obs!=MASK, axis=0) observed = Stream(potential=potential) observed.obs = obs#[np.array(present)] observed.obsunit = obsunit observed.err = err#[np.array(present)] observed.obserror = obserr return observed def load_tri(present, nobs=50, potential='gal'): """""" if len(present)==4: t = Table.read('../data/tri_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d'], t['vr']]) obsunit = [u.deg, u.deg, u.kpc, u.km/u.s] err = np.array([t['err_ra'], t['err_dec'], t['err_d'], t['err_vr']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] if len(present)==3: t = Table.read('../data/tri_allmembers.txt', format='ascii.commented_header') obs = np.array([t['ra'], t['dec'], t['d']]) obsunit = [u.deg, u.deg, u.kpc] err = np.array([t['err_ra'], t['err_dec'], t['err_d']]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc] ind = np.all(obs!=MASK, axis=0) observed = Stream(potential=potential) observed.obs = obs observed.obsunit = obsunit observed.err = err observed.obserror = obserr return observed def load_atlas(present, nobs=50, potential='gal'): """""" ra, dec = atlas_track() n = np.size(ra) d = np.random.randn(n)*2 + 20 obs = np.array([ra, dec, d]) obsunit = [u.deg, u.deg, u.kpc] err = np.array([np.ones(n)*0.05, np.ones(n)*0.05, np.ones(n)*2]) obserr = [2e-4*u.deg, 2e-4*u.deg, 0.5*u.kpc, 5*u.km/u.s] observed = Stream(potential=potential) observed.obs = obs observed.obsunit = obsunit observed.err = err observed.obserror = obserr return observed def atlas_track(): """""" ra0, dec0 = np.radians(77.16), np.radians(46.92 - 90) # euler rotations D = np.array([[np.cos(ra0), np.sin(ra0), 0], [-np.sin(ra0), np.cos(ra0), 0], [0, 0, 1]]) C = np.array([[np.cos(dec0), 0, np.sin(dec0)], [0, 1, 0], [-np.sin(dec0), 0, np.cos(dec0)]]) B = np.diag(np.ones(3)) R = np.dot(B, np.dot(C, D)) Rinv = np.linalg.inv(R) l0 = np.linspace(0, 2*np.pi, 500) b0 = np.zeros(500) xeq, yeq, zeq = myutils.eq2car(l0, b0) eq = np.column_stack((xeq, yeq, zeq)) eq_rot = np.zeros(np.shape(eq)) for i in range(np.size(l0)): eq_rot[i] = np.dot(Rinv, eq[i]) l0_rot, b0_rot = myutils.car2eq(eq_rot[:, 0], eq_rot[:, 1], eq_rot[:, 2]) ra_s, dec_s = np.degrees(l0_rot), np.degrees(b0_rot) ind_s = (ra_s>17) & (ra_s<30) ra_s = ra_s[ind_s] dec_s = dec_s[ind_s] return (ra_s, dec_s) def fancy_name(n): """Return nicely formatted stream name""" names = {-1: 'GD-1', -2: 'Palomar 5', -3: 'Triangulum', -4: 'ATLAS'} return names[n] # model parameters def get_varied_pars(vary): """Return indices and steps for a preset of varied parameters, and a label for varied parameters Parameters: vary - string setting the parameter combination to be varied, options: 'potential', 'progenitor', 'halo', or a list thereof""" if type(vary) is not list: vary = [vary] Nt = len(vary) vlabel = '_'.join(vary) pid = [] dp = [] for v in vary: o1, o2 = get_varied_bytype(v) pid += o1 dp += o2 return (pid, dp, vlabel) def get_varied_bytype(vary): """Get varied parameter of a particular type""" if vary=='potential': pid = [5,6,8,10,11] dp = [20*u.km/u.s, 2*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1), 0.4e11*u.Msun] elif vary=='bary': pid = [0,1,2,3,4] # gd1 dp = [1e-1*u.Msun, 0.005*u.kpc, 1e-1*u.Msun, 0.002*u.kpc, 0.002*u.kpc] ## atlas & triangulum #dp = [0.4e5*u.Msun, 0.0005*u.kpc, 0.5e6*u.Msun, 0.0002*u.kpc, 0.002*u.kpc] # pal5 dp = [1e-2*u.Msun, 0.000005*u.kpc, 1e-2*u.Msun, 0.000002*u.kpc, 0.00002*u.kpc] dp = [1e-7*u.Msun, 0.5*u.kpc, 1e-7*u.Msun, 0.5*u.kpc, 0.5*u.kpc] dp = [1e-2*u.Msun, 0.5*u.kpc, 1e-2*u.Msun, 0.5*u.kpc, 0.5*u.kpc] elif vary=='halo': pid = [5,6,8,10] dp = [20*u.km/u.s, 2*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1)] dp = [35*u.km/u.s, 2.9*u.kpc, 0.05*u.Unit(1), 0.05*u.Unit(1)] elif vary=='progenitor': pid = [26,27,28,29,30,31] dp = [1*u.deg, 1*u.deg, 0.5*u.kpc, 20*u.km/u.s, 0.3*u.mas/u.yr, 0.3*u.mas/u.yr] elif vary=='dipole': pid = [11,12,13] #dp = [1e-11*u.Unit(1), 1e-11*u.Unit(1), 1e-11*u.Unit(1)] dp = [0.05*u.pc/u.Myr**2, 0.05*u.pc/u.Myr**2, 0.05*u.pc/u.Myr**2] elif vary=='quad': pid = [14,15,16,17,18] dp = [0.5*u.Gyr**-2 for x in range(5)] elif vary=='octu': pid = [19,20,21,22,23,24,25] dp = [0.001*u.Gyr**-2*u.kpc**-1 for x in range(7)] else: pid = [] dp = [] return (pid, dp) def get_parlabel(pid): """Return label for a list of parameter ids Parameter: pid - list of parameter ids""" master = ['log $M_b$', '$a_b$', 'log $M_d$', '$a_d$', '$b_d$', '$V_h$', '$R_h$', '$\phi$', '$q_x$', '$q_y$', '$q_z$', '$a_{1,-1}$', '$a_{1,0}$', '$a_{1,1}$', '$a_{2,-2}$', '$a_{2,-1}$', '$a_{2,0}$', '$a_{2,1}$', '$a_{2,2}$', '$a_{3,-3}$', '$a_{3,-2}$', '$a_{3,-1}$', '$a_{3,0}$', '$a_{3,1}$', '$a_{3,2}$', '$a_{3,3}$', '$RA_p$', '$Dec_p$', '$d_p$', '$V_{r_p}$', '$\mu_{\\alpha_p}$', '$\mu_{\delta_p}$', ] master_units = ['dex', 'kpc', 'dex', 'kpc', 'kpc', 'km/s', 'kpc', 'rad', '', '', '', 'pc/Myr$^2$', 'pc/Myr$^2$', 'pc/Myr$^2$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'Gyr$^{-2}$ kpc$^{-1}$', 'deg', 'deg', 'kpc', 'km/s', 'mas/yr', 'mas/yr', ] if type(pid) is list: labels = [] units = [] for i in pid: labels += [master[i]] units += [master_units[i]] else: labels = master[pid] units = master_units[pid] return (labels, units) def get_steps(Nstep=50, log=False): """Return deltax steps in both directions Paramerets: Nstep - number of steps in one direction (default: 50) log - if True, steps are logarithmically spaced (default: False)""" if log: step = np.logspace(-10, 1, Nstep) else: step = np.linspace(0.1, 10, Nstep) step = np.concatenate([-step[::-1], step]) return (Nstep, step) def lmc_position(): """""" ra = 80.8939*u.deg dec = -69.7561*u.deg dm = 18.48 d = 10**(1 + dm/5)*u.pc x = coord.SkyCoord(ra=ra, dec=dec, distance=d) xgal = [x.galactocentric.x.si, x.galactocentric.y.si, x.galactocentric.z.si] print(xgal) def lmc_properties(): """""" # penarrubia 2016 mass = 2.5e11*u.Msun ra = 80.8939*u.deg dec = -69.7561*u.deg dm = 18.48 d = 10**(1 + dm/5)*u.pc c1 = coord.SkyCoord(ra=ra, dec=dec, distance=d) cgal1 = c1.transform_to(coord.Galactocentric) xgal = np.array([cgal1.x.to(u.kpc).value, cgal1.y.to(u.kpc).value, cgal1.z.to(u.kpc).value])*u.kpc return (mass, xgal) # fit bspline to a stream model def fit_bspline(n, pparams=pparams_fid, dt=0.2*u.Myr, align=False, save='', graph=False, graphsave='', fiducial=False): """Fit bspline to a stream model and save to file""" Ndim = 6 fits = [None]*(Ndim-1) if align: rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n)) else: rotmatrix = None stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) Nobs = 10 k = 3 isort = np.argsort(stream.obs[0]) ra = np.linspace(np.min(stream.obs[0])*1.05, np.max(stream.obs[0])*0.95, Nobs) t = np.r_[(stream.obs[0][isort][0],)*(k+1), ra, (stream.obs[0][isort][-1],)*(k+1)] for j in range(Ndim-1): fits[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[j+1][isort], t, k=k) if len(save)>0: np.savez('../data/{:s}'.format(save), fits=fits) if graph: xlims, ylims = get_stream_limits(n, align) ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)'] if align: ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)'] if fiducial: stream_fid = stream_model(n, pparams0=pparams_fid, dt=dt, rotmatrix=rotmatrix) fidsort = np.argsort(stream_fid.obs[0]) ra = np.linspace(np.min(stream_fid.obs[0])*1.05, np.max(stream_fid.obs[0])*0.95, Nobs) tfid = np.r_[(stream_fid.obs[0][fidsort][0],)*(k+1), ra, (stream_fid.obs[0][fidsort][-1],)*(k+1)] llabel = 'b-spline fit' else: llabel = '' plt.close() fig, ax = plt.subplots(2,5,figsize=(20,5), sharex=True, gridspec_kw = {'height_ratios':[3, 1]}) for i in range(Ndim-1): plt.sca(ax[0][i]) plt.plot(stream.obs[0], stream.obs[i+1], 'ko') plt.plot(stream.obs[0][isort], fits[i](stream.obs[0][isort]), 'r-', lw=2, label=llabel) if fiducial: fits_fid = scipy.interpolate.make_lsq_spline(stream_fid.obs[0][fidsort], stream_fid.obs[i+1][fidsort], tfid, k=k) plt.plot(stream_fid.obs[0], stream_fid.obs[i+1], 'wo', mec='k', alpha=0.1) plt.plot(stream_fid.obs[0][fidsort], fits_fid(stream_fid.obs[0][fidsort]), 'b-', lw=2, label='Fiducial') plt.ylabel(ylabel[i+1]) plt.xlim(xlims[0], xlims[1]) plt.ylim(ylims[i][0], ylims[i][1]) plt.sca(ax[1][i]) if fiducial: yref = fits_fid(stream.obs[0]) ycolor = 'b' else: yref = fits[i](stream.obs[0]) ycolor = 'r' plt.axhline(0, color=ycolor, lw=2) if fiducial: plt.plot(stream.obs[0][isort], stream.obs[i+1][isort] - stream_fid.obs[i+1][fidsort], 'wo', mec='k', alpha=0.1) plt.plot(stream.obs[0], stream.obs[i+1] - yref, 'ko') if fiducial: fits_diff = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[i+1][isort] - stream_fid.obs[i+1][fidsort], t, k=k) plt.plot(stream.obs[0][isort], fits_diff(stream.obs[0][isort]), 'r--') plt.plot(stream.obs[0][isort], fits[i](stream.obs[0][isort]) - yref[isort], 'r-', lw=2, label=llabel) plt.xlabel(ylabel[0]) plt.ylabel('$\Delta$ {}'.format(ylabel[i+1].split(' ')[0])) if fiducial: plt.sca(ax[0][Ndim-2]) plt.legend(fontsize='small') plt.tight_layout() if len(graphsave)>0: plt.savefig('../plots/{:s}.png'.format(graphsave)) def fitbyt_bspline(n, pparams=pparams_fid, dt=0.2*u.Myr, align=False, save='', graph=False, graphsave='', fiducial=False): """Fit each tail individually""" Ndim = 6 fits = [None]*(Ndim-1) if align: rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n)) else: rotmatrix = None stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) Nobs = 10 k = 3 isort = np.argsort(stream.obs[0]) ra = np.linspace(np.min(stream.obs[0])*1.05, np.max(stream.obs[0])*0.95, Nobs) t = np.r_[(stream.obs[0][isort][0],)*(k+1), ra, (stream.obs[0][isort][-1],)*(k+1)] for j in range(Ndim-1): fits[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][isort], stream.obs[j+1][isort], t, k=k) if len(save)>0: np.savez('../data/{:s}'.format(save), fits=fits) if graph: xlims, ylims = get_stream_limits(n, align) ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)'] if align: ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)'] if fiducial: stream_fid = stream_model(n, pparams0=pparams_fid, dt=dt, rotmatrix=rotmatrix) plt.close() fig, ax = plt.subplots(2,Ndim,figsize=(20,4), sharex=True, gridspec_kw = {'height_ratios':[3, 1]}) for i in range(Ndim): plt.sca(ax[0][i]) Nhalf = int(0.5*np.size(stream.obs[i])) plt.plot(stream.obs[i][:Nhalf], 'o') plt.plot(stream.obs[i][Nhalf:], 'o') if fiducial: plt.plot(stream_fid.obs[i][:Nhalf], 'wo', mec='k', mew=0.2, alpha=0.5) plt.plot(stream_fid.obs[i][Nhalf:], 'wo', mec='k', mew=0.2, alpha=0.5) plt.ylabel(ylabel[i]) plt.sca(ax[1][i]) if fiducial: plt.plot(stream.obs[i][:Nhalf] - stream_fid.obs[i][:Nhalf], 'o') plt.plot(stream.obs[i][Nhalf:] - stream_fid.obs[i][Nhalf:], 'o') if fiducial: plt.sca(ax[0][Ndim-1]) plt.legend(fontsize='small') plt.tight_layout() if len(graphsave)>0: plt.savefig('../plots/{:s}.png'.format(graphsave)) else: return fig def get_stream_limits(n, align=False): """Return lists with limiting values in different dimensions""" if n==-1: xlims = [260, 100] ylims = [[-20, 70], [5, 15], [-400, 400], [-15,5], [-15, 5]] elif n==-2: xlims = [250, 210] ylims = [[-20, 15], [17, 27], [-80, -20], [-5,0], [-5, 0]] elif n==-3: xlims = [27, 17] ylims = [[10, 50], [34, 36], [-175, -50], [0.45, 1], [0.1, 0.7]] elif n==-4: xlims = [35, 10] ylims = [[-40, -20], [15, 25], [50, 200], [-0.5,0.5], [-1.5, -0.5]] if align: ylims[0] = [-5, 5] xup = [110, 110, 80, 80] xlims = [xup[np.abs(n)-1], 40] return (xlims, ylims) # step sizes for derivatives def iterate_steps(n): """Calculate derivatives for different parameter classes, and plot""" for vary in ['bary', 'halo', 'progenitor']: print(n, vary) step_convergence(n, Nstep=10, vary=vary) choose_step(n, Nstep=10, vary=vary) def iterate_plotsteps(n): """Plot stream models for a variety of model parameters""" for vary in ['bary', 'halo', 'progenitor']: print(n, vary) pid, dp, vlabel = get_varied_pars(vary) for p in range(len(pid)): plot_steps(n, p=p, Nstep=5, vary=vary, log=False) def plot_steps(n, p=0, Nstep=20, log=True, dt=0.2*u.Myr, vary='halo', verbose=False, align=True, observer=mw_observer, vobs=vsun): """Plot stream for different values of a potential parameter""" if align: rotmatrix = np.load('../data/rotmatrix_{}.npy'.format(n)) else: rotmatrix = None pparams0 = pparams_fid pid, dp, vlabel = get_varied_pars(vary) plabel, punit = get_parlabel(pid[p]) Nstep, step = get_steps(Nstep=Nstep, log=log) plt.close() fig, ax = plt.subplots(5,5,figsize=(20,10), sharex=True, gridspec_kw = {'height_ratios':[3, 1, 1, 1, 1]}) # fiducial model stream0 = stream_model(n, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix, observer=observer, vobs=vobs) Nobs = 10 k = 3 isort = np.argsort(stream0.obs[0]) ra = np.linspace(np.min(stream0.obs[0])*1.05, np.max(stream0.obs[0])*0.95, Nobs) t = np.r_[(stream0.obs[0][isort][0],)*(k+1), ra, (stream0.obs[0][isort][-1],)*(k+1)] fits = [None]*5 for j in range(5): fits[j] = scipy.interpolate.make_lsq_spline(stream0.obs[0][isort], stream0.obs[j+1][isort], t, k=k) # excursions stream_fits = [[None] * 5 for x in range(2 * Nstep)] for i, s in enumerate(step[:]): pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(n, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) color = mpl.cm.RdBu(i/(2*Nstep-1)) #print(i, dp[p], pparams) # fits iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] fits_ex = [None]*5 for j in range(5): fits_ex[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k) stream_fits[i][j] = fits_ex[j] plt.sca(ax[0][j]) plt.plot(stream.obs[0], stream.obs[j+1], 'o', color=color, ms=2) plt.sca(ax[1][j]) plt.plot(stream.obs[0], stream.obs[j+1] - fits[j](stream.obs[0]), 'o', color=color, ms=2) plt.sca(ax[2][j]) plt.plot(stream.obs[0], fits_ex[j](stream.obs[0]) - fits[j](stream.obs[0]), 'o', color=color, ms=2) plt.sca(ax[3][j]) plt.plot(stream.obs[0], (fits_ex[j](stream.obs[0]) - fits[j](stream.obs[0]))/(s*dp[p]), 'o', color=color, ms=2) # symmetric derivatives ra_der = np.linspace(np.min(stream0.obs[0])*1.05, np.max(stream0.obs[0])*0.95, 100) for i in range(Nstep): color = mpl.cm.Greys_r(i/Nstep) for j in range(5): dy = stream_fits[i][j](ra_der) - stream_fits[-i-1][j](ra_der) dydx = -dy / np.abs(2*step[i]*dp[p]) plt.sca(ax[4][j]) plt.plot(ra_der, dydx, '-', color=color, lw=2, zorder=Nstep-i) # labels, limits xlims, ylims = get_stream_limits(n, align) ylabel = ['R.A. (deg)', 'Dec (deg)', 'd (kpc)', '$V_r$ (km/s)', '$\mu_\\alpha$ (mas/yr)', '$\mu_\delta$ (mas/yr)'] if align: ylabel[:2] = ['$\\xi$ (deg)', '$\\eta$ (deg)'] for j in range(5): plt.sca(ax[0][j]) plt.ylabel(ylabel[j+1]) plt.xlim(xlims[0], xlims[1]) plt.ylim(ylims[j][0], ylims[j][1]) plt.sca(ax[1][j]) plt.ylabel('$\Delta$ {}'.format(ylabel[j+1].split(' ')[0])) plt.sca(ax[2][j]) plt.ylabel('$\Delta$ {}'.format(ylabel[j+1].split(' ')[0])) plt.sca(ax[3][j]) plt.ylabel('$\Delta${}/$\Delta${}'.format(ylabel[j+1].split(' ')[0], plabel)) plt.sca(ax[4][j]) plt.xlabel(ylabel[0]) plt.ylabel('$\langle$$\Delta${}/$\Delta${}$\\rangle$'.format(ylabel[j+1].split(' ')[0], plabel)) #plt.suptitle('Varying {}'.format(plabel), fontsize='small') plt.tight_layout() plt.savefig('../plots/observable_steps_{:d}_{:s}_p{:d}_Ns{:d}.png'.format(n, vlabel, p, Nstep)) def step_convergence(name='gd1', Nstep=20, log=True, layer=1, dt=0.2*u.Myr, vary='halo', align=True, graph=False, verbose=False, Nobs=10, k=3, ra_der=np.nan, Nra=50): """Check deviations in numerical derivatives for consecutive step sizes""" mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb')) if align: rotmatrix = mock['rotmatrix'] xmm = mock['xi_range'] else: rotmatrix = np.eye(3) xmm = mock['ra_range'] # fiducial model pparams0 = pparams_fid stream0 = stream_model(name=name, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix) if np.any(~np.isfinite(ra_der)): ra_der = np.linspace(xmm[0]*1.05, xmm[1]*0.95, Nra) Nra = np.size(ra_der) # parameters to vary pid, dp, vlabel = get_varied_pars(vary) Np = len(pid) dpvec = np.array([x.value for x in dp]) Nstep, step = get_steps(Nstep=Nstep, log=log) dydx_all = np.empty((Np, Nstep, 5, Nra)) dev_der = np.empty((Np, Nstep-2*layer)) step_der = np.empty((Np, Nstep-2*layer)) for p in range(Np): plabel = get_parlabel(pid[p]) if verbose: print(p, plabel) # excursions stream_fits = [[None] * 5 for x in range(2 * Nstep)] for i, s in enumerate(step[:]): if verbose: print(i, s) pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) # fits iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] fits_ex = [None]*5 for j in range(5): fits_ex[j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k) stream_fits[i][j] = fits_ex[j] # symmetric derivatives dydx = np.empty((Nstep, 5, Nra)) for i in range(Nstep): color = mpl.cm.Greys_r(i/Nstep) for j in range(5): dy = stream_fits[i][j](ra_der) - stream_fits[-i-1][j](ra_der) dydx[i][j] = -dy / np.abs(2*step[i]*dp[p]) dydx_all[p] = dydx # deviations from adjacent steps step_der[p] = -step[layer:Nstep-layer] * dp[p] for i in range(layer, Nstep-layer): dev_der[p][i-layer] = 0 for j in range(5): for l in range(layer): dev_der[p][i-layer] += np.sum((dydx[i][j] - dydx[i-l-1][j])**2) dev_der[p][i-layer] += np.sum((dydx[i][j] - dydx[i+l+1][j])**2) np.savez('../data/step_convergence_{}_{}_Ns{}_log{}_l{}'.format(name, vlabel, Nstep, log, layer), step=step_der, dev=dev_der, ders=dydx_all, steps_all=np.outer(dpvec,step[Nstep:])) if graph: plt.close() fig, ax = plt.subplots(1,Np,figsize=(4*Np,4)) for p in range(Np): plt.sca(ax[p]) plt.plot(step_der[p], dev_der[p], 'ko') #plabel = get_parlabel(pid[p]) #plt.xlabel('$\Delta$ {}'.format(plabel)) plt.ylabel('D') plt.gca().set_yscale('log') plt.tight_layout() plt.savefig('../plots/step_convergence_{}_{}_Ns{}_log{}_l{}.png'.format(name, vlabel, Nstep, log, layer)) def choose_step(name='gd1', tolerance=2, Nstep=20, log=True, layer=1, vary='halo'): """""" pid, dp, vlabel = get_varied_pars(vary) Np = len(pid) plabels, units = get_parlabel(pid) punits = ['({})'.format(x) if len(x) else '' for x in units] t = np.load('../data/step_convergence_{}_{}_Ns{}_log{}_l{}.npz'.format(name, vlabel, Nstep, log, layer)) dev = t['dev'] step = t['step'] dydx = t['ders'] steps_all = t['steps_all'][:,::-1] Nra = np.shape(dydx)[-1] best = np.empty(Np) # plot setup da = 4 nrow = 2 ncol = Np plt.close() fig, ax = plt.subplots(nrow, ncol, figsize=(da*ncol, da*1.3), squeeze=False, sharex='col', gridspec_kw = {'height_ratios':[1.2, 3]}) for p in range(Np): # choose step dmin = np.min(dev[p]) dtol = tolerance * dmin opt_step = np.min(step[p][dev[p]<dtol]) opt_id = step[p]==opt_step best[p] = opt_step ## largest step w deviation smaller than 1e-4 #opt_step = np.max(step[p][dev[p]<1e-4]) #opt_id = step[p]==opt_step #best[p] = opt_step plt.sca(ax[0][p]) for i in range(5): for j in range(10): plt.plot(steps_all[p], np.tanh(dydx[p,:,i,np.int64(j*Nra/10)]), '-', color='{}'.format(i/5), lw=0.5, alpha=0.5) plt.axvline(opt_step, ls='-', color='r', lw=2) plt.ylim(-1,1) plt.ylabel('Derivative') plt.title('{}'.format(plabels[p])+'$_{best}$ = '+'{:2.2g}'.format(opt_step), fontsize='small') plt.sca(ax[1][p]) plt.plot(step[p], dev[p], 'ko') plt.axvline(opt_step, ls='-', color='r', lw=2) plt.plot(step[p][opt_id], dev[p][opt_id], 'ro') plt.axhline(dtol, ls='-', color='orange', lw=1) y0, y1 = plt.gca().get_ylim() plt.axhspan(y0, dtol, color='orange', alpha=0.3, zorder=0) plt.gca().set_yscale('log') plt.gca().set_xscale('log') plt.xlabel('$\Delta$ {} {}'.format(plabels[p], punits[p])) plt.ylabel('Derivative deviation') np.save('../data/optimal_step_{}_{}'.format(name, vlabel), best) plt.tight_layout(h_pad=0) plt.savefig('../plots/step_convergence_{}_{}_Ns{}_log{}_l{}.png'.format(name, vlabel, Nstep, log, layer)) def read_optimal_step(name, vary, equal=False): """Return optimal steps for a range of parameter types""" if type(vary) is not list: vary = [vary] dp = np.empty(0) for v in vary: dp_opt = np.load('../data/optimal_step_{}_{}.npy'.format(name, v)) dp = np.concatenate([dp, dp_opt]) if equal: dp = np.array([0.05, 0.05, 0.2, 1, 0.01, 0.01, 0.05, 0.1, 0.05, 0.1, 0.1, 10, 1, 0.01, 0.01]) return dp def visualize_optimal_steps(name='gd1', vary=['progenitor', 'bary', 'halo'], align=True, dt=0.2*u.Myr, Nobs=50, k=3): """""" mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb')) if align: rotmatrix = mock['rotmatrix'] xmm = mock['xi_range'] else: rotmatrix = np.eye(3) xmm = mock['ra_range'] # varied parameters pparams0 = pparams_fid pid, dp_fid, vlabel = get_varied_pars(vary) Np = len(pid) dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] fiducial = stream_model(name=name, pparams0=pparams0, dt=dt, rotmatrix=rotmatrix) iexsort = np.argsort(fiducial.obs[0]) raex = np.linspace(np.percentile(fiducial.obs[0], 10), np.percentile(fiducial.obs[0], 90), Nobs) tex = np.r_[(fiducial.obs[0][iexsort][0],)*(k+1), raex, (fiducial.obs[0][iexsort][-1],)*(k+1)] fit = scipy.interpolate.make_lsq_spline(fiducial.obs[0][iexsort], fiducial.obs[1][iexsort], tex, k=k) nrow = 2 ncol = np.int64((Np+1)/nrow) da = 4 c = ['b', 'b', 'b', 'r', 'r', 'r'] plt.close() fig, ax = plt.subplots(nrow, ncol, figsize=(ncol*da, nrow*da), squeeze=False) for p in range(Np): plt.sca(ax[p%2][int(p/2)]) for i, s in enumerate([-1.1, -1, -0.9, 0.9, 1, 1.1]): pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) # bspline fits to stream centerline iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] fitex = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[1][iexsort], tex, k=k) plt.plot(raex, fitex(raex) - fit(raex), '-', color=c[i]) plt.xlabel('R.A. (deg)') plt.ylabel('Dec (deg)') #print(get_parlabel(p)) plt.title('$\Delta$ {} = {:.2g}'.format(get_parlabel(p)[0], dp[p]), fontsize='medium') plt.tight_layout() plt.savefig('../plots/{}_optimal_steps.png'.format(name), dpi=200) # observing modes def define_obsmodes(): """Output a pickled dictionary with typical uncertainties and dimensionality of data for a number of observing modes""" obsmodes = {} obsmodes['fiducial'] = {'sig_obs': np.array([0.1, 2, 5, 0.1, 0.1]), 'Ndim': [3,4,6]} obsmodes['binospec'] = {'sig_obs': np.array([0.1, 2, 10, 0.1, 0.1]), 'Ndim': [3,4,6]} obsmodes['hectochelle'] = {'sig_obs': np.array([0.1, 2, 1, 0.1, 0.1]), 'Ndim': [3,4,6]} obsmodes['desi'] = {'sig_obs': np.array([0.1, 2, 10, np.nan, np.nan]), 'Ndim': [4,]} obsmodes['gaia'] = {'sig_obs': np.array([0.1, 0.2, 10, 0.2, 0.2]), 'Ndim': [6,]} obsmodes['exgal'] = {'sig_obs': np.array([0.5, np.nan, 20, np.nan, np.nan]), 'Ndim': [3,]} pickle.dump(obsmodes, open('../data/observing_modes.info','wb')) def obsmode_name(mode): """Return full name of the observing mode""" if type(mode) is not list: mode = [mode] full_names = {'fiducial': 'Fiducial', 'binospec': 'Binospec', 'hectochelle': 'Hectochelle', 'desi': 'DESI-like', 'gaia': 'Gaia-like', 'exgal': 'Extragalactic'} keys = full_names.keys() names = [] for m in mode: if m in keys: name = full_names[m] else: name = m names += [name] return names # crbs using bspline def calculate_crb(name='gd1', dt=0.2*u.Myr, vary=['progenitor', 'bary', 'halo'], ra=np.nan, dd=0.5, Nmin=15, verbose=False, align=True, scale=False, errmode='fiducial', k=3): """""" mock = pickle.load(open('../data/mock_{}.params'.format(name),'rb')) if align: rotmatrix = mock['rotmatrix'] xmm = np.sort(mock['xi_range']) else: rotmatrix = np.eye(3) xmm = np.sort(mock['ra_range']) # typical uncertainties and data availability obsmodes = pickle.load(open('../data/observing_modes.info', 'rb')) if errmode not in obsmodes.keys(): errmode = 'fiducial' sig_obs = obsmodes[errmode]['sig_obs'] data_dim = obsmodes[errmode]['Ndim'] # mock observations if np.any(~np.isfinite(ra)): if (np.int64((xmm[1]-xmm[0])/dd + 1) < Nmin): dd = (xmm[1]-xmm[0])/Nmin ra = np.arange(xmm[0], xmm[1]+dd, dd) #ra = np.linspace(xmm[0]*1.05, xmm[1]*0.95, Nobs) #else: Nobs = np.size(ra) print(name, Nobs) err = np.tile(sig_obs, Nobs).reshape(Nobs,-1) # varied parameters pparams0 = pparams_fid pid, dp_fid, vlabel = get_varied_pars(vary) Np = len(pid) dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] fits_ex = [[[None]*5 for x in range(2)] for y in range(Np)] if scale: dp_unit = unity_scale(dp) dps = [x*y for x,y in zip(dp, dp_unit)] # calculate derivatives for all parameters for p in range(Np): for i, s in enumerate([-1, 1]): pparams = [x for x in pparams0] pparams[pid[p]] = pparams[pid[p]] + s*dp[p] stream = stream_model(name=name, pparams0=pparams, dt=dt, rotmatrix=rotmatrix) # bspline fits to stream centerline iexsort = np.argsort(stream.obs[0]) raex = np.linspace(np.percentile(stream.obs[0], 10), np.percentile(stream.obs[0], 90), Nobs) tex = np.r_[(stream.obs[0][iexsort][0],)*(k+1), raex, (stream.obs[0][iexsort][-1],)*(k+1)] for j in range(5): fits_ex[p][i][j] = scipy.interpolate.make_lsq_spline(stream.obs[0][iexsort], stream.obs[j+1][iexsort], tex, k=k) # populate matrix of derivatives and calculate CRB for Ndim in data_dim: #for Ndim in [6,]: Ndata = Nobs * (Ndim - 1) cyd = np.empty(Ndata) dydx = np.empty((Np, Ndata)) dy2 = np.empty((2, Np, Ndata)) for j in range(1, Ndim): for p in range(Np): dy = fits_ex[p][0][j-1](ra) - fits_ex[p][1][j-1](ra) dy2[0][p][(j-1)*Nobs:j*Nobs] = fits_ex[p][0][j-1](ra) dy2[1][p][(j-1)*Nobs:j*Nobs] = fits_ex[p][1][j-1](ra) #positive = np.abs(dy)>0 #if verbose: print('{:d},{:d} {:s} min{:.1e} max{:1e} med{:.1e}'.format(j, p, get_parlabel(pid[p])[0], np.min(np.abs(dy[positive])), np.max(np.abs(dy)), np.median(np.abs(dy)))) if scale: dydx[p][(j-1)*Nobs:j*Nobs] = -dy / np.abs(2*dps[p].value) else: dydx[p][(j-1)*Nobs:j*Nobs] = -dy / np.abs(2*dp[p].value) #if verbose: print('{:d},{:d} {:s} min{:.1e} max{:1e} med{:.1e}'.format(j, p, get_parlabel(pid[p])[0], np.min(np.abs(dydx[p][(j-1)*Nobs:j*Nobs][positive])), np.max(np.abs(dydx[p][(j-1)*Nobs:j*Nobs])), np.median(np.abs(dydx[p][(j-1)*Nobs:j*Nobs])))) #print(j, p, get_parlabel(pid[p])[0], dp[p], np.min(np.abs(dy)), np.max(np.abs(dy)), np.median(dydx[p][(j-1)*Nobs:j*Nobs])) cyd[(j-1)*Nobs:j*Nobs] = err[:,j-1]**2 np.savez('../data/crb/components_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), dydx=dydx, y=dy2, cyd=cyd, dp=dp_opt) # data component of the Fisher matrix cy = np.diag(cyd) cyi = np.diag(1. / cyd) caux = np.matmul(cyi, dydx.T) dxi = np.matmul(dydx, caux) # component based on prior knowledge of model parameters pxi = priors(name, vary) # full Fisher matrix cxi = dxi + pxi if verbose: cx = np.linalg.inv(cxi) cx = np.matmul(np.linalg.inv(np.matmul(cx, cxi)), cx) # iteration to improve inverse at large cond numbers sx = np.sqrt(np.diag(cx)) print('CRB', sx) print('condition {:g}'.format(np.linalg.cond(cxi))) print('standard inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) cx = stable_inverse(cxi) print('stable inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) np.savez('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}'.format(errmode, Ndim, name, align, vlabel), cxi=cxi, dxi=dxi, pxi=pxi) def priors(name, vary): """Return covariance matrix with prior knowledge about parameters""" mock = pickle.load(open('../data/mock_{}.params'.format(name), 'rb')) cprog = mock['prog_prior'] cbary = np.array([0.1*x.value for x in pparams_fid[:5]])**-2 chalo = np.zeros(4) cdipole = np.zeros(3) cquad = np.zeros(5) coctu = np.zeros(7) priors = {'progenitor': cprog, 'bary': cbary, 'halo': chalo, 'dipole': cdipole, 'quad': cquad, 'octu': coctu} cprior = np.empty(0) for v in vary: cprior = np.concatenate([cprior, priors[v]]) pxi = np.diag(cprior) return pxi def scale2invert(name='gd1', Ndim=6, vary=['progenitor', 'bary', 'halo'], verbose=False, align=True, errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) #dp = read_optimal_step(name, vary) d = np.load('../data/crb/components_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) dydx = d['dydx'] cyd = d['cyd'] y = d['y'] dp = d['dp'] dy = (y[1,:,:] - y[0,:,:]) dydx = (y[1,:,:] - y[0,:,:]) / (2*dp[:,np.newaxis]) scaling_par = np.median(np.abs(dydx), axis=1) dydx = dydx / scaling_par[:,np.newaxis] dydx_ = np.reshape(dydx, (len(dp), Ndim-1, -1)) scaling_dim = np.median(np.abs(dydx_), axis=(2,0)) dydx_ = dydx_ / scaling_dim[np.newaxis,:,np.newaxis] cyd_ = np.reshape(cyd, (Ndim-1, -1)) cyd_ = cyd_ / scaling_dim[:,np.newaxis] cyd = np.reshape(cyd_, (-1)) dydx = np.reshape(dydx_, (len(dp), -1)) mmin = np.min(np.abs(dy), axis=0) mmax = np.max(np.abs(dy), axis=0) mmed = np.median(np.abs(dydx), axis=1) dyn_range = mmax/mmin #print(dyn_range) print(np.min(dyn_range), np.max(dyn_range), np.std(dyn_range)) cy = np.diag(cyd) cyi = np.diag(1. / cyd) caux = np.matmul(cyi, dydx.T) cxi = np.matmul(dydx, caux) print('condition {:e}'.format(np.linalg.cond(cxi))) cx = np.linalg.inv(cxi) cx = np.matmul(np.linalg.inv(np.matmul(cx, cxi)), cx) # iteration to improve inverse at large cond numbers print('standard inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) cx = stable_inverse(cxi, maxiter=30) print('stable inverse', np.allclose(cxi, cxi.T), np.allclose(cx, cx.T), np.allclose(np.matmul(cx,cxi), np.eye(np.shape(cx)[0]))) def unity_scale(dp): """""" dim_scale = 10**np.array([2, 3, 3, 2, 4, 3, 7, 7, 5, 7, 7, 4, 4, 4, 4, 3, 3, 3, 4, 3, 4, 4, 4]) dim_scale = 10**np.array([3, 2, 3, 4, 0, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3]) #dim_scale = 10**np.array([2, 3, 3, 1, 3, 2, 5, 5, 3, 5, 5, 2, 2, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3]) #dim_scale = 10**np.array([2, 3, 3, 1, 3, 2, 5, 5, 3, 5, 5, 2, 2, 4, 4, 3, 3, 3]) dp_unit = [(dp[x].value*dim_scale[x])**-1 for x in range(len(dp))] return dp_unit def test_inversion(name='gd1', Ndim=6, vary=['progenitor', 'bary', 'halo'], align=True, errmode='fiducial'): """""" pid, dp, vlabel = get_varied_pars(vary) d = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = d['cxi'] N = np.shape(cxi)[0] cx_ = np.linalg.inv(cxi) cx = stable_inverse(cxi, verbose=True, maxiter=100) #cx_ii = stable_inverse(cx, verbose=True, maxiter=50) print('condition {:g}'.format(np.linalg.cond(cxi))) print('linalg inverse', np.allclose(np.matmul(cx_,cxi), np.eye(N))) print('stable inverse', np.allclose(np.matmul(cx,cxi), np.eye(N))) #print(np.matmul(cx,cxi)) #print('inverse inverse', np.allclose(cx_ii, cxi)) def stable_inverse(a, maxiter=20, verbose=False): """Invert a matrix with a bad condition number""" N = np.shape(a)[0] # guess q = np.linalg.inv(a) qa = np.matmul(q,a) # iterate for i in range(maxiter): if verbose: print(i, np.sqrt(np.sum((qa - np.eye(N))**2)), np.allclose(qa, np.eye(N))) if np.allclose(qa, np.eye(N)): return q qai = np.linalg.inv(qa) q = np.matmul(qai,q) qa = np.matmul(q,a) return q def crb_triangle(n, vary, Ndim=6, align=True, plot='all', fast=False): """""" pid, dp, vlabel = get_varied_pars(vary) plabels, units = get_parlabel(pid) params = ['$\Delta$' + x + '({})'.format(y) for x,y in zip(plabels, units)] if align: alabel = '_align' else: alabel = '' fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) #print(cx[0][0]) if plot=='halo': cx = cx[:4, :4] params = params[:4] elif plot=='bary': cx = cx[4:9, 4:9] params = params[4:9] elif plot=='progenitor': cx = cx[9:, 9:] params = params[9:] Nvar = len(params) plt.close() dax = 2 fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row') for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arccos(v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.5), lw=2) plt.gca().add_patch(e) plt.gca().autoscale_view() #plt.xlim(-ylim[i],ylim[i]) #plt.ylim(-ylim[j], ylim[j]) if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.tight_layout() plt.savefig('../plots/crb_triangle_{:s}_{:d}_{:s}_{:d}_{:s}.pdf'.format(alabel, n, vlabel, Ndim, plot)) def crb_triangle_alldim(name='gd1', vary=['progenitor', 'bary', 'halo'], align=True, plot='all', fast=False, scale=False, errmode='fiducial'): """Show correlations in CRB between a chosen set of parameters in a triangle plot""" pid, dp_fid, vlabel = get_varied_pars(vary) dp_opt = read_optimal_step(name, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] plabels, units = get_parlabel(pid) punits = [' ({})'.format(x) if len(x) else '' for x in units] params = ['$\Delta$ {}{}'.format(x, y) for x,y in zip(plabels, punits)] if plot=='halo': i0 = 11 i1 = 15 elif plot=='bary': i0 = 6 i1 = 11 elif plot=='progenitor': i0 = 0 i1 = 6 elif plot=='dipole': i0 = 15 i1 = len(params) else: i0 = 0 i1 = len(params) Nvar = i1 - i0 params = params[i0:i1] if scale: dp_unit = unity_scale(dp) #print(dp_unit) dp_unit = dp_unit[i0:i1] pid = pid[i0:i1] label = ['RA, Dec, d', 'RA, Dec, d, $V_r$', 'RA, Dec, d, $V_r$, $\mu_\\alpha$, $\mu_\delta$'] plt.close() dax = 2 fig, ax = plt.subplots(Nvar-1, Nvar-1, figsize=(dax*Nvar, dax*Nvar), sharex='col', sharey='row') for l, Ndim in enumerate([3, 4, 6]): fm = np.load('../data/crb/cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npz'.format(errmode, Ndim, name, align, vlabel)) cxi = fm['cxi'] #cxi = np.load('../data/crb/bspline_cxi_{:s}{:1d}_{:s}_a{:1d}_{:s}.npy'.format(errmode, Ndim, name, align, vlabel)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) cx = cx[i0:i1,i0:i1] for i in range(0,Nvar-1): for j in range(i+1,Nvar): plt.sca(ax[j-1][i]) if scale: cx_2d = np.array([[cx[i][i]/dp_unit[i]**2, cx[i][j]/(dp_unit[i]*dp_unit[j])], [cx[j][i]/(dp_unit[j]*dp_unit[i]), cx[j][j]/dp_unit[j]**2]]) else: cx_2d = np.array([[cx[i][i], cx[i][j]], [cx[j][i], cx[j][j]]]) w, v = np.linalg.eig(cx_2d) if np.all(np.isreal(v)): theta = np.degrees(np.arctan2(v[1][0], v[0][0])) width = np.sqrt(w[0])*2 height = np.sqrt(w[1])*2 e = mpl.patches.Ellipse((0,0), width=width, height=height, angle=theta, fc='none', ec=mpl.cm.bone(0.1+l/4), lw=2, label=label[l]) plt.gca().add_patch(e) if l==1: plt.gca().autoscale_view() if j==Nvar-1: plt.xlabel(params[i]) if i==0: plt.ylabel(params[j]) # turn off unused axes for i in range(0,Nvar-1): for j in range(i+1,Nvar-1): plt.sca(ax[i][j]) plt.axis('off') plt.sca(ax[int(Nvar/2-1)][int(Nvar/2-1)]) plt.legend(loc=2, bbox_to_anchor=(1,1)) plt.tight_layout() plt.savefig('../plots/cxi_{:s}_{:s}_a{:1d}_{:s}_{:s}.pdf'.format(errmode, name, align, vlabel, plot)) def compare_optimal_steps(): """""" vary = ['progenitor', 'bary', 'halo', 'dipole', 'quad'] vary = ['progenitor', 'bary', 'halo'] for name in ['gd1', 'tri']: print(name) print(read_optimal_step(name, vary)) def get_crb(name, Nstep=10, vary=['progenitor', 'bary', 'halo'], first=True): """""" if first: store_progparams(name) wrap_angles(name, save=True) progenitor_prior(name) find_greatcircle(name=name) endpoints(name) for v in vary: step_convergence(name=name, Nstep=Nstep, vary=v) choose_step(name=name, Nstep=Nstep, vary=v) calculate_crb(name=name, vary=vary, verbose=True) crb_triangle_alldim(name=name, vary=vary) ######################## # cartesian coordinates # accelerations def acc_kepler(x, p=1*u.Msun): """Keplerian acceleration""" r = np.linalg.norm(x)*u.kpc a = -G * p * 1e11 * r**-3 * x return a.to(u.pc*u.Myr**-2) def acc_bulge(x, p=[pparams_fid[j] for j in range(2)]): """""" r = np.linalg.norm(x)*u.kpc a = -(G*p[0]*x/(r * (r + p[1])**2)).to(u.pc*u.Myr**-2) return a def acc_disk(x, p=[pparams_fid[j] for j in range(2,5)]): """""" R = np.linalg.norm(x[:2])*u.kpc z = x[2] a = -(G*p[0]*x * (R**2 + (p[1] + np.sqrt(z**2 + p[2]**2))**2)**-1.5).to(u.pc*u.Myr**-2) a[2] *= (1 + p[2]/np.sqrt(z**2 + p[2]**2)) return a def acc_nfw(x, p=[pparams_fid[j] for j in [5,6,8,10]]): """""" r = np.linalg.norm(x)*u.kpc q = np.array([1*u.Unit(1), p[2], p[3]]) a = (p[0]**2 * p[1] * r**-3 * (1/(1+p[1]/r) - np.log(1+r/p[1])) * x * q**-2).to(u.pc*u.Myr**-2) return a def acc_dipole(x, p=[pparams_fid[j] for j in range(11,14)]): """Acceleration due to outside dipole perturbation""" pv = [x.value for x in p] a = np.sqrt(3/(4*np.pi)) * np.array([pv[2], pv[0], pv[1]])*u.pc*u.Myr**-2 return a def acc_quad(x, p=[pparams_fid[j] for j in range(14,19)]): """Acceleration due to outside quadrupole perturbation""" a = np.zeros(3)*u.pc*u.Myr**-2 f = 0.5*np.sqrt(15/np.pi) a[0] = x[0]*(f*p[4] - f/np.sqrt(3)*p[2]) + x[1]*f*p[0] + x[2]*f*p[3] a[1] = x[0]*f*p[0] - x[1]*(f*p[4] + f/np.sqrt(3)*p[2]) + x[2]*f*p[1] a[2] = x[0]*f*p[3] + x[1]*f*p[1] + x[2]*2*f/np.sqrt(3)*p[2] return a.to(u.pc*u.Myr**-2) def acc_octu(x, p=[pparams_fid[j] for j in range(19,26)]): """Acceleration due to outside octupole perturbation""" a = np.zeros(3)*u.pc*u.Myr**-2 f = np.array([0.25*np.sqrt(35/(2*np.pi)), 0.5*np.sqrt(105/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(7/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(105/np.pi), 0.25*np.sqrt(35/(2*np.pi))]) xu = x.unit pu = p[0].unit pvec = np.array([i.value for i in p]) * pu dmat = np.ones((3,7)) * f * pvec * xu**2 x = np.array([i.value for i in x]) dmat[0] *= np.array([6*x[0]*x[1], x[1]*x[2], -2*x[0]*x[1], -6*x[0]*x[2], 4*x[2]**2-x[1]**2-3*x[0]**2, 2*x[0]*x[2], 3*x[0]**2-3*x[1]**2]) dmat[1] *= np.array([3*x[0]**2-3*x[1]**2, x[0]*x[2], 4*x[2]**2-x[0]**2-3*x[1]**2, -6*x[1]*x[2], -2*x[0]*x[1], -2*x[1]*x[2], -6*x[0]*x[1]]) dmat[2] *= np.array([0, x[0]*x[1], 8*x[1]*x[2], 6*x[2]**2-3*x[0]**2-3*x[1]**2, 8*x[0]*x[2], x[0]**2-x[1]**2, 0]) a = np.einsum('ij->i', dmat) * dmat.unit return a.to(u.pc*u.Myr**-2) # derivatives def der_kepler(x, p=1*u.Msun): """Derivative of Kepler potential parameters wrt cartesian components of the acceleration""" r = np.linalg.norm(x)*u.kpc dmat = np.zeros((3,1)) * u.pc**-1 * u.Myr**2 * u.Msun dmat[:,0] = (-r**3/(G*x)).to(u.pc**-1 * u.Myr**2 * u.Msun) * 1e-11 return dmat.value def pder_kepler(x, p=1*u.Msun): """Derivative of cartesian components of the acceleration wrt to Kepler potential parameter""" r = np.linalg.norm(x)*u.kpc dmat = np.zeros((3,1)) * u.pc * u.Myr**-2 * u.Msun**-1 dmat[:,0] = (-G*x*r**-3).to(u.pc * u.Myr**-2 * u.Msun**-1) * 1e11 return dmat.value def pder_nfw(x, pu=[pparams_fid[j] for j in [5,6,8,10]]): """Calculate derivatives of cartesian components of the acceleration wrt halo potential parameters""" p = pu q = np.array([1, p[2], p[3]]) # physical quantities r = np.linalg.norm(x)*u.kpc a = acc_nfw(x, p=pu) # derivatives dmat = np.zeros((3, 4)) # Vh dmat[:,0] = 2*a/p[0] # Rh dmat[:,1] = a/p[1] + p[0]**2 * p[1] * r**-3 * (1/(p[1]+p[1]**2/r) - 1/(r*(1+p[1]/r)**2)) * x * q**-2 # qy, qz for i in [1,2]: dmat[i,i+1] = (-2*a[i]/q[i]).value return dmat def pder_bulge(x, pu=[pparams_fid[j] for j in range(2)]): """Calculate derivarives of cartesian components of the acceleration wrt Hernquist bulge potential parameters""" # coordinates r = np.linalg.norm(x)*u.kpc # accelerations ab = acc_bulge(x, p=pu[:2]) # derivatives dmat = np.zeros((3, 2)) # Mb dmat[:,0] = ab/pu[0] # ab dmat[:,1] = 2 * ab / (r + pu[1]) return dmat def pder_disk(x, pu=[pparams_fid[j] for j in range(2,5)]): """Calculate derivarives of cartesian components of the acceleration wrt Miyamoto-Nagai disk potential parameters""" # coordinates R = np.linalg.norm(x[:2])*u.kpc z = x[2] aux = np.sqrt(z**2 + pu[2]**2) # accelerations ad = acc_disk(x, p=pu) # derivatives dmat = np.zeros((3, 3)) # Md dmat[:,0] = ad / pu[0] # ad dmat[:,1] = 3 * ad * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) # bd dmat[:2,2] = 3 * ad[:2] * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) * pu[2] / aux dmat[2,2] = (3 * ad[2] * (pu[1] + aux) / (R**2 + (pu[1] + aux)**2) * pu[2] / aux - G * pu[0] * z * (R**2 + (pu[1] + aux)**2)**-1.5 * z**2 * (pu[2]**2 + z**2)**-1.5).value return dmat def der_dipole(x, pu=[pparams_fid[j] for j in range(11,14)]): """Calculate derivatives of dipole potential parameters wrt (Cartesian) components of the acceleration vector a""" # shape: 3, Npar dmat = np.zeros((3,3)) f = np.sqrt((4*np.pi)/3) dmat[0,2] = f dmat[1,0] = f dmat[2,1] = f return dmat def pder_dipole(x, pu=[pparams_fid[j] for j in range(11,14)]): """Calculate derivatives of (Cartesian) components of the acceleration vector a wrt dipole potential parameters""" # shape: 3, Npar dmat = np.zeros((3,3)) f = np.sqrt(3/(4*np.pi)) dmat[0,2] = f dmat[1,0] = f dmat[2,1] = f return dmat def der_quad(x, p=[pparams_fid[j] for j in range(14,19)]): """Caculate derivatives of quadrupole potential parameters wrt (Cartesian) components of the acceleration vector a""" f = 2/np.sqrt(15/np.pi) s = np.sqrt(3) x = [1e-3/i.value for i in x] dmat = np.ones((3,5)) * f dmat[0] = np.array([x[1], 0, -s*x[0], x[2], x[0]]) dmat[1] = np.array([x[0], x[2], -s*x[1], 0, -x[1]]) dmat[2] = np.array([0, x[1], 0.5*s*x[2], x[0], 0]) return dmat def pder_quad(x, p=[pparams_fid[j] for j in range(14,19)]): """Caculate derivatives of (Cartesian) components of the acceleration vector a wrt quadrupole potential parameters""" f = 0.5*np.sqrt(15/np.pi) s = 1/np.sqrt(3) x = [1e-3*i.value for i in x] dmat = np.ones((3,5)) * f dmat[0] *= np.array([x[1], 0, -s*x[0], x[2], x[0]]) dmat[1] *= np.array([x[0], x[2], -s*x[1], 0, -x[1]]) dmat[2] *= np.array([0, x[1], 2*s*x[2], x[0], 0]) return dmat def pder_octu(x, p=[pparams_fid[j] for j in range(19,26)]): """Caculate derivatives of (Cartesian) components of the acceleration vector a wrt octupole potential parameters""" f = np.array([0.25*np.sqrt(35/(2*np.pi)), 0.5*np.sqrt(105/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(7/np.pi), 0.25*np.sqrt(21/(2*np.pi)), 0.25*np.sqrt(105/np.pi), 0.25*np.sqrt(35/(2*np.pi))]) x = [1e-3*i.value for i in x] dmat = np.ones((3,7)) * f dmat[0] *= np.array([6*x[0]*x[1], x[1]*x[2], -2*x[0]*x[1], -6*x[0]*x[2], 4*x[2]**2-x[1]**2-3*x[0]**2, 2*x[0]*x[2], 3*x[0]**2-3*x[1]**2]) dmat[1] *= np.array([3*x[0]**2-3*x[1]**2, x[0]*x[2], 4*x[2]**2-x[0]**2-3*x[1]**2, -6*x[1]*x[2], -2*x[0]*x[1], -2*x[1]*x[2], -6*x[0]*x[1]]) dmat[2] *= np.array([0, x[0]*x[1], 8*x[1]*x[2], 6*x[2]**2-3*x[0]**2-3*x[1]**2, 8*x[0]*x[2], x[0]**2-x[1]**2, 0]) return dmat def crb_ax(n, Ndim=6, vary=['halo', 'bary', 'progenitor'], align=True, fast=False): """Calculate CRB inverse matrix for 3D acceleration at position x in a halo potential""" pid, dp, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # subset halo parameters Nhalo = 4 cq = cx[:Nhalo,:Nhalo] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) xi = np.array([-8.3, 0.1, 0.1])*u.kpc x0, v0 = gd1_coordinates() #xi = np.array(x0)*u.kpc d = 50 Nb = 20 x = np.linspace(x0[0]-d, x0[0]+d, Nb) y = np.linspace(x0[1]-d, x0[1]+d, Nb) x = np.linspace(-d, d, Nb) y = np.linspace(-d, d, Nb) xv, yv = np.meshgrid(x, y) xf = np.ravel(xv) yf = np.ravel(yv) af = np.empty((Nb**2, 3)) plt.close() fig, ax = plt.subplots(3,3,figsize=(11,10)) dimension = ['x', 'y', 'z'] xlabel = ['y', 'x', 'x'] ylabel = ['z', 'z', 'y'] for j in range(3): if j==0: xin = np.array([np.repeat(x0[j], Nb**2), xf, yf]).T elif j==1: xin = np.array([xf, np.repeat(x0[j], Nb**2), yf]).T elif j==2: xin = np.array([xf, yf, np.repeat(x0[j], Nb**2)]).T for i in range(Nb**2): #xi = np.array([xf[i], yf[i], x0[2]])*u.kpc xi = xin[i]*u.kpc a = acc_nfw(xi) dqda = halo_accelerations(xi) cai = np.matmul(dqda, np.matmul(cqi, dqda.T)) if fast: ca = np.linalg.inv(cai) else: ca = stable_inverse(cai) a_crb = (np.sqrt(np.diag(ca)) * u.km**2 * u.kpc**-1 * u.s**-2).to(u.pc*u.Myr**-2) af[i] = np.abs(a_crb/a) af[i] = a_crb for i in range(3): plt.sca(ax[j][i]) im = plt.imshow(af[:,i].reshape(Nb,Nb), extent=[-d, d, -d, d], cmap=mpl.cm.gray) #, norm=mpl.colors.LogNorm(), vmin=1e-2, vmax=0.1) plt.xlabel(xlabel[j]+' (kpc)') plt.ylabel(ylabel[j]+' (kpc)') divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("top", size="4%", pad=0.05) plt.colorbar(im, cax=cax, orientation='horizontal') plt.gca().xaxis.set_ticks_position('top') cax.tick_params(axis='x', labelsize='xx-small') if j==0: plt.title('a$_{}$'.format(dimension[i]), y=4) plt.tight_layout(rect=[0,0,1,0.95]) plt.savefig('../plots/acc_{}_{}_{}.png'.format(n, vlabel, Ndim)) def acc_cart(x, components=['bary', 'halo', 'dipole']): """""" acart = np.zeros(3) * u.pc*u.Myr**-2 dict_acc = {'bary': [acc_bulge, acc_disk], 'halo': [acc_nfw], 'dipole': [acc_dipole], 'quad': [acc_quad], 'octu': [acc_octu], 'point': [acc_kepler]} accelerations = [] for c in components: accelerations += dict_acc[c] for acc in accelerations: a_ = acc(x) acart += a_ return acart def acc_rad(x, components=['bary', 'halo', 'dipole']): """Return radial acceleration""" r = np.linalg.norm(x) * x.unit theta = np.arccos(x[2].value/r.value) phi = np.arctan2(x[1].value, x[0].value) trans = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) a_cart = acc_cart(x, components=components) a_rad = np.dot(a_cart, trans) return a_rad def ader_cart(x, components=['bary', 'halo', 'dipole']): """""" dacart = np.empty((3,0)) dict_der = {'bary': [der_bulge, der_disk], 'halo': [der_nfw], 'dipole': [der_dipole], 'quad': [der_quad], 'point': [der_kepler]} derivatives = [] for c in components: derivatives += dict_der[c] for ader in derivatives: da_ = ader(x) dacart = np.hstack((dacart, da_)) return dacart def apder_cart(x, components=['bary', 'halo', 'dipole']): """""" dacart = np.empty((3,0)) dict_der = {'bary': [pder_bulge, pder_disk], 'halo': [pder_nfw], 'dipole': [pder_dipole], 'quad': [pder_quad], 'octu': [pder_octu], 'point': [pder_kepler]} derivatives = [] for c in components: derivatives += dict_der[c] for ader in derivatives: da_ = ader(x) dacart = np.hstack((dacart, da_)) return dacart def apder_rad(x, components=['bary', 'halo', 'dipole']): """Return dar/dx_pot (radial acceleration/potential parameters) evaluated at vector x""" r = np.linalg.norm(x) * x.unit theta = np.arccos(x[2].value/r.value) phi = np.arctan2(x[1].value, x[0].value) trans = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) dadq_cart = apder_cart(x, components=components) dadq_rad = np.einsum('ij,i->j', dadq_cart, trans) return dadq_rad def crb_acart(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', align=True, d=20, Nb=50, fast=False, scale=False, relative=True, progenitor=False, errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' if relative: vmin = 1e-2 vmax = 1 rlabel = ' / a' else: vmin = 3e-1 vmax = 1e1 rlabel = ' (pc Myr$^{-2}$)' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Npoint = [6, 5, 4, 3, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] Npot = np.shape(cq)[0] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cqi *= scale_mat if progenitor: x0, v0 = gd1_coordinates() else: x0 = np.array([4, 4, 0]) Rp = np.linalg.norm(x0[:2]) zp = x0[2] R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Npix = np.size(xv) af = np.empty((Npix, 3)) derf = np.empty((Npix, 3, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_cart(xi, components=components) dadq = apder_cart(xi, components=components) derf[i] = dadq ca = np.matmul(dadq, np.matmul(cq, dadq.T)) a_crb = np.sqrt(np.diag(ca)) * u.pc * u.Myr**-2 if relative: af[i] = np.abs(a_crb/a) else: af[i] = a_crb #print(xi, a_crb) # save np.savez('../data/crb_acart{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative), acc=af, x=xin, der=derf) plt.close() fig, ax = plt.subplots(1, 3, figsize=(15, 5)) label = ['$\Delta$ $a_X$', '$\Delta$ $a_Y$', '$\Delta$ $a_Z$'] for i in range(3): plt.sca(ax[i]) im = plt.imshow(af[:,i].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax, norm=mpl.colors.LogNorm()) if progenitor: plt.plot(Rp, zp, 'r*', ms=10) plt.xlabel('R (kpc)') plt.ylabel('Z (kpc)') divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("right", size="3%", pad=0.1) plt.colorbar(im, cax=cax) plt.ylabel(label[i] + rlabel) plt.tight_layout() plt.savefig('../plots/crb_acc_cart{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative)) def crb_acart_cov(n, Ndim=6, vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', j=0, align=True, d=20, Nb=30, fast=False, scale=False, relative=True, progenitor=False, batch=False, errmode='fiducial'): """""" pid, dp_fid, vlabel = get_varied_pars(vary) if align: alabel = '_align' else: alabel = '' if relative: vmin = 1e-2 vmax = 1 rlabel = ' / a' else: vmin = -0.005 vmax = 0.005 #vmin = 1e-2 #vmax = 1e0 rlabel = ' (pc Myr$^{-2}$)' # read in full inverse CRB for stream modeling cxi = np.load('../data/crb/bspline_cxi{:s}_{:s}_{:d}_{:s}_{:d}.npy'.format(alabel, errmode, n, vlabel, Ndim)) if fast: cx = np.linalg.inv(cxi) else: cx = stable_inverse(cxi) # choose the appropriate components: Nprog, Nbary, Nhalo, Ndipole, Nquad, Npoint = [6, 5, 4, 3, 5, 1] if 'progenitor' not in vary: Nprog = 0 nstart = {'bary': Nprog, 'halo': Nprog + Nbary, 'dipole': Nprog + Nbary + Nhalo, 'quad': Nprog + Nbary + Nhalo + Ndipole, 'all': Nprog, 'point': 0} nend = {'bary': Nprog + Nbary, 'halo': Nprog + Nbary + Nhalo, 'dipole': Nprog + Nbary + Nhalo + Ndipole, 'quad': Nprog + Nbary + Nhalo + Ndipole + Nquad, 'all': np.shape(cx)[0], 'point': 1} if 'progenitor' not in vary: nstart['dipole'] = Npoint nend['dipole'] = Npoint + Ndipole if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] cq = cx[nstart[component]:nend[component], nstart[component]:nend[component]] Npot = np.shape(cq)[0] if fast: cqi = np.linalg.inv(cq) else: cqi = stable_inverse(cq) if scale: dp_opt = read_optimal_step(n, vary) dp = [x*y.unit for x,y in zip(dp_opt, dp_fid)] scale_vec = np.array([x.value for x in dp[nstart[component]:nend[component]]]) scale_mat = np.outer(scale_vec, scale_vec) cqi *= scale_mat if progenitor: prog_coords = {-1: gd1_coordinates(), -2: pal5_coordinates(), -3: tri_coordinates(), -4: atlas_coordinates()} x0, v0 = prog_coords[n] print(x0) else: x0 = np.array([4, 4, 0]) Rp = np.linalg.norm(x0[:2]) zp = x0[2] R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Npix = np.size(xv) af = np.empty((Npix, 3)) derf = np.empty((Npix*3, Npot)) for i in range(Npix): xi = xin[i]*u.kpc a = acc_cart(xi, components=components) dadq = apder_cart(xi, components=components) derf[i*3:(i+1)*3] = dadq ca = np.matmul(derf, np.matmul(cq, derf.T)) Nx = Npot Nw = Npix*3 vals, vecs = la.eigh(ca, eigvals=(Nw - Nx - 2, Nw - 1)) ## check orthogonality: #for i in range(Npot-1): #for k in range(i+1, Npot): #print(i, k) #print(np.dot(vecs[:,i], vecs[:,k])) #print(np.dot(vecs[::3,i], vecs[::3,k]), np.dot(vecs[1::3,i], vecs[1::3,k]), np.dot(vecs[1::3,i], vecs[1::3,k])) # save np.savez('../data/crb_acart_cov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}'.format(alabel, errmode, n, vlabel, component, Ndim, d, Nb, relative, progenitor), x=xin, der=derf, c=ca) plt.close() fig, ax = plt.subplots(1, 3, figsize=(15, 5)) if j==0: vcomb = np.sqrt(np.sum(vecs**2*vals, axis=1)) label = ['($\Sigma$ Eigval $\\times$ Eigvec$^2$ $a_{}$'.format(x)+')$^{1/2}$' for x in ['X', 'Y', 'Z']] vmin = 1e-2 vmax = 5e0 norm = mpl.colors.LogNorm() else: vcomb = vecs[:,j] label = ['Eig {} $a_{}$'.format(np.abs(j), x) for x in ['X', 'Y', 'Z']] vmin = -0.025 vmax = 0.025 norm = None for i in range(3): plt.sca(ax[i]) #im = plt.imshow(vecs[i::3,j].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax) im = plt.imshow(vcomb[i::3].reshape(Nb, Nb), origin='lower', extent=[-d, d, -d, d], cmap=mpl.cm.gray, vmin=vmin, vmax=vmax, norm=norm) if progenitor: plt.plot(Rp, zp, 'r*', ms=10) plt.xlabel('R (kpc)') plt.ylabel('Z (kpc)') divider = make_axes_locatable(plt.gca()) cax = divider.append_axes("right", size="3%", pad=0.1) plt.colorbar(im, cax=cax) plt.ylabel(label[i]) plt.tight_layout() if batch: return fig else: plt.savefig('../plots/crb_acc_cart_cov{:s}_{:s}_{:d}_{:s}_{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.png'.format(alabel, errmode, n, vlabel, component, np.abs(j), Ndim, d, Nb, relative, progenitor)) def a_vecfield(vary=['progenitor', 'bary', 'halo', 'dipole', 'quad'], component='all', d=20, Nb=10): """Plot acceleration field in R,z plane""" if component in ['bary', 'halo', 'dipole', 'quad', 'point']: components = [component] else: components = [x for x in vary if x!='progenitor'] x0 = np.array([4, 4, 0]) R = np.linspace(-d, d, Nb) k = x0[1]/x0[0] x = R/np.sqrt(1+k**2) y = k * x z = np.linspace(-d, d, Nb) xv, zv = np.meshgrid(x, z) yv, zv = np.meshgrid(y, z) xin = np.array([np.ravel(xv), np.ravel(yv), np.ravel(zv)]).T Rin = np.linalg.norm(xin[:,:2], axis=1) *
np.sign(xin[:,0])
numpy.sign
# 8/13/18 # chenyong # call plant height """ call plant height from predicted images """ import os import sys import cv2 import numpy as np import pandas as pd import os.path as op import scipy.misc as sm import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import rcParams from PIL import Image from math import hypot from schnablelab.apps.natsort import natsorted from schnablelab.apps.headers import Slurm_header from sklearn.linear_model import LinearRegression from schnablelab.apps.base import ActionDispatcher, OptionParser, glob import datetime from dateutil import parser from pathlib import Path def main(): actions = ( ('Polish', 'Polish the predicted images (hyper)'), ('PolishBatch', 'generate all slurm jobs of polish (hyper)'), ('CallHeight', 'call height from polished image (hyper)'), ('CallHeightBatch', 'generate all slurm jobs of plant height calling (hyper)'), ('CallHeightRGB', 'call height from RGB image'), ('CallHeightRGBBatch', 'generate all slurm jobs of plant height calling (RGB)'), ) p = ActionDispatcher(actions) p.dispatch(globals()) def CallHeightRGB(args): """ %prog image_in_dir using thresholding method to calculate the plant height """ p = OptionParser(CallHeightRGB.__doc__) p.add_option("--threshold", default = '1.12', help='speficy the threshold cutoff') p.add_option("--zoom_date", help='specify which date zoome level changed, yyyy-mm-dd') p.add_option("--summarize_fn", default= 'Heights.csv', help='specify the file recording height for each sample') opts, args = p.parse_args(args) if len(args) == 0: sys.exit(not p.print_help()) imgInDir, = args inPath = Path(imgInDir) imgs = list(inPath.glob('*png')) print('Total %s images'%len(imgs)) df = pd.DataFrame(dict(zip(['fullPath'],[imgs]))) df['fn'] = df['fullPath'].apply(lambda x: x.name) df['sm'] = df['fn'].apply(lambda x: x.split('_')[1]) df['dt'] = df['fn'].apply(lambda x: x.split('_')[2].split('.')[0]) df['dt'] = pd.to_datetime(df['dt']) #df['sv'] = df['fn'].apply(lambda x: x.split('_')[-1].split('.')[0]) #df_sort = df.sort_values(['sm','dt','sv']).reset_index(drop=True) df_sort = df.sort_values(['sm','dt']).reset_index(drop=True) #print(df_sort) threshold = float(opts.threshold) print('threshold by green index value %s'%threshold) zoom_date = parser.parse(opts.zoom_date) print('zoom change date: %s'%zoom_date) zoom_border_dict = {'zoom1': (60,1750,500,2250), 'zoom2': (180,1700,850,1770)} zoom_ratio_dict = {'zoom1': 149/1925, 'zoom2': 149/965} f0 = open(opts.summarize_fn, 'w') f0.write('file_name\tzoome_level\theight(pixel)\theight(cm)\n') for idx, row in df_sort.iterrows(): print(row['fn']) # read image and convert bgr to rgb img = cv2.imread(str(row['fullPath'])) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) print('read image and convert bgr to rgb') # convert 3 2D to 1 2D with green index img_float = img.astype(np.float) img_green = (2*img_float[:,:,1])/(img_float[:,:,0]+img_float[:,:,2]) # 2*green/(red+blue) thresh1 = np.where(img_green>threshold, img_green, 0) print('convert 3 2D to 1 2D with green index') # remove the chamber border mytime = row['dt'] zoom_level = 'zoom1' if mytime < zoom_date else 'zoom2' upper,bottom,left,right = zoom_border_dict[zoom_level] thresh1[0:upper]=0 thresh1[bottom:]=0 thresh1[:,0:left]=0 thresh1[:,right:]=0 print('remove the chamber border') # rescale to 255 try: thresh1 = (thresh1/float(thresh1.max()))*255 except: f0.write('%s\t%s\tNaN\tNaN\n'%(row['fn'], zoom_level)) continue # blur the image blur = cv2.GaussianBlur(thresh1, (7,7), 0) # 2nd threshold blur_int = blur.astype(np.uint8) ret, thresh2 = cv2.threshold(blur_int, 1, 255, cv2.THRESH_BINARY) # call contours '''there are three arguments in cv2.findContours() function, first one is source image, second is contour retrieval mode, third is contour approximation method. And it outputs the contours and hierarchy. contours is a Python list of all the contours in the image. Each individual contour is a Numpy array of (x,y) coordinates of boundary points of the object.''' __,contours,__ = cv2.findContours(thresh2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img, contours, -1, (0,255,0), 3) # call height min_y, max_y = [],[] for i in contours: min_y.append(np.min(i[:,:,1])) max_y.append(np.max(i[:,:,1])) if min_y and max_y: y_lowest, y_highest = min(min_y), max(max_y) height_pixels = y_highest-y_lowest height_cm = height_pixels*zoom_ratio_dict[zoom_level] f0.write('%s\t%s\t%s\t%s\n'%(row['fn'], zoom_level, height_pixels, height_cm)) # draw height and save results cv2.line(img, (500, y_lowest), (2000, y_lowest), (255,0,0), 7) new_fn = row['fn'].replace('.png', '.height.png') new_fn_path = inPath/new_fn img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) # cv2 assume your color is bgr cv2.imwrite(str(new_fn_path), img) #print('%s saved.'%new_fn) else: f0.write('%s\t%s\tNaN\tNaN\n'%(row['fn'], zoom_level)) f0.close() print('Done! check %s'%opts.summarize_fn) def CallPart(rgb_arr, part='stem'): crp_shape2d = rgb_arr.shape[0:2] if part =='stem': r, g, b = 251, 129, 14 elif part == 'panicle': r, g, b = 126, 94, 169 elif part == 'leaf': r, g, b = 0, 147, 0 else: sys.exit('only support stem, panicle, and leaf') p1 = np.full(crp_shape2d,r) p2 = np.full(crp_shape2d,g) p3 = np.full(crp_shape2d,b) p123 =
np.stack([p1, p2, p3], axis=2)
numpy.stack
import tensorflow as tf import numpy as np import h5py from time import time from datetime import datetime from random import shuffle from functools import reduce import os max_seg = 20 max_word = 40 level_class_cnt = 3 test_percentage = 0.2 dropout_rate = tf.Variable(0.5) hidden_feature_dim = 100 gru_feature_dim = 50 kernel_heights = [3, 4, 5] batch_size = 256 epochs = 8 main_path = '/home/tim/Documents/NLP/gourmet/test' w2v_weights_path = main_path + '/weights.npy' tensorboard_log_dir_train = "/tmp/pycharm_nlp/logs/remake2/g_sen_large_max_" + datetime.now().strftime("%Y%m%d-%H%M%S") + "train" tensorboard_log_dir_test = "/tmp/pycharm_nlp/logs/remake2/g_sen_large_max_" + datetime.now().strftime("%Y%m%d-%H%M%S") + "test" input_path = main_path + '/gourmet.hdf5' model_out_path = main_path + '/model.h5' sample_amount = 0 mini_batch_cnt = 0 with h5py.File(input_path) as in_file: for index in range(len(in_file['label/'].keys())): mini_batch_cnt += 1 sample_amount += len(in_file['label/' + str(index)]) batch_indices = [*range(mini_batch_cnt)] shuffle(batch_indices) train_batches = batch_indices[0:int(mini_batch_cnt * (1 - test_percentage))] test_batches = batch_indices[int(mini_batch_cnt * (1 - test_percentage)):] w2v = np.load(w2v_weights_path, allow_pickle=True) w2v_len = w2v.shape[1] def map_to_w2v(x): """ Get the w2v embedding for a specific w2v-id """ return w2v[int(x)] def __label_map(raw_label): """ Map the 5 label classes to the 3 classes """ if raw_label < 3: return 0 elif raw_label == 3: return 1 else: return 2 def __balance_data(feature_array, label_array): """ Balance batches """ to_balance_indices = np.where(label_array == 2)[0] feature_array = np.delete(feature_array, to_balance_indices, axis=0) label_array = np.delete(label_array, to_balance_indices, axis=0) to_balance_indices = np.where(label_array == 4)[0] feature_array = np.delete(feature_array, to_balance_indices, axis=0) label_array =
np.delete(label_array, to_balance_indices, axis=0)
numpy.delete
import numpy as np from rdkit import Chem, DataStructs from rdkit.Chem import AllChem from rdkit.Chem.Scaffolds.MurckoScaffold import GetScaffoldForMol from rdkit.ML.Cluster import Butina import pandas as pd import random RANDOM_SEED = 42 def smiles_to_ecfp(smiles: list, radius: int = 2, nbits: int = 1024): """Calculate the morgan fingerprint of a list of smiles. Return a numpy array""" fps = [] for smi in smiles: mol = Chem.MolFromSmiles(smi) fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=nbits) arr =
np.zeros((1,))
numpy.zeros
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den =
N.array([1,1,1])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Software dvae-speech Copyright Inria Year 2020 Contact : <EMAIL> License agreement in LICENSE.txt The main python file for model training, data test and performance evaluation, see README.md for further information """ import os import shutil import socket import datetime import pickle import numpy as np import torch import librosa import soundfile as sf import speechmetrics import matplotlib.pyplot as plt from .utils import myconf, get_logger, EvalMetrics, SpeechSequencesFull, SpeechSequencesRandom from .model import build_VAE, build_DKF, build_KVAE, build_STORN, build_VRNN, build_SRNN, build_RVAE, build_DSAE class LearningAlgorithm(): """ Basical class for model building, including: - read common paramters for different models - define data loader - define loss function as a class member """ def __init__(self, config_file='config_default.ini'): # Load config parser self.config_file = config_file if not os.path.isfile(self.config_file): raise ValueError('Invalid config file path') self.cfg = myconf() self.cfg.read(self.config_file) self.model_name = self.cfg.get('Network', 'name') self.dataset_name = self.cfg.get('DataFrame', 'dataset_name') # Get host name and date self.hostname = socket.gethostname() self.date = datetime.datetime.now().strftime("%Y-%m-%d-%Hh%M") # Load STFT parameters wlen_sec = self.cfg.getfloat('STFT', 'wlen_sec') hop_percent = self.cfg.getfloat('STFT', 'hop_percent') fs = self.cfg.getint('STFT', 'fs') zp_percent = self.cfg.getint('STFT', 'zp_percent') wlen = wlen_sec * fs wlen = np.int(np.power(2, np.ceil(np.log2(wlen)))) # pwoer of 2 hop = np.int(hop_percent * wlen) nfft = wlen + zp_percent * wlen win = torch.sin(torch.arange(0.5, wlen+0.5) / wlen * np.pi) STFT_dict = {} STFT_dict['fs'] = fs STFT_dict['wlen'] = wlen STFT_dict['hop'] = hop STFT_dict['nfft'] = nfft STFT_dict['win'] = win STFT_dict['trim'] = self.cfg.getboolean('STFT', 'trim') self.STFT_dict = STFT_dict # Load model parameters self.use_cuda = self.cfg.getboolean('Training', 'use_cuda') self.device = 'cuda' if torch.cuda.is_available() and self.use_cuda else 'cpu' # Build model self.build_model() def build_model(self): if self.model_name == 'VAE': self.model = build_VAE(cfg=self.cfg, device=self.device) elif self.model_name == 'DKF': self.model = build_DKF(cfg=self.cfg, device=self.device) elif self.model_name == 'KVAE': self.model = build_KVAE(cfg=self.cfg, device=self.device) elif self.model_name == 'STORN': self.model = build_STORN(cfg=self.cfg, device=self.device) elif self.model_name == 'VRNN': self.model = build_VRNN(cfg=self.cfg, device=self.device) elif self.model_name == 'SRNN': self.model = build_SRNN(cfg=self.cfg, device=self.device) elif self.model_name == 'RVAE': self.model = build_RVAE(cfg=self.cfg, device=self.device) elif self.model_name == 'DSAE': self.model = build_DSAE(cfg=self.cfg, device=self.device) def load_state_dict(self, state_dict_file): self.model.load_state_dict(torch.load(state_dict_file, map_location=self.device)) def init_optimizer(self): # Load self.optimization = self.cfg.get('Training', 'optimization') lr = self.cfg.getfloat('Training', 'lr') # Init optimizer (Adam by default) if self.model_name=='KVAE': lr_tot = self.cfg.getfloat('Training', 'lr_tot') if self.optimization == 'adam': self.optimizer_vae = torch.optim.Adam(self.model.iter_vae, lr=lr) self.optimizer_vae_kf = torch.optim.Adam(self.model.iter_vae_kf, lr=lr_tot) self.optimizer_all = torch.optim.Adam(self.model.iter_all, lr=lr_tot) else: self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr) else: self.optimizer = torch.optim.Adam(self.model.parameters(), lr=lr) def build_dataloader(self, train_data_dir, val_data_dir, sequence_len, batch_size, STFT_dict, use_random_seq=False): # List all the data with certain suffix data_suffix = self.cfg.get('DataFrame', 'suffix') train_file_list = librosa.util.find_files(train_data_dir, ext=data_suffix) val_file_list = librosa.util.find_files(val_data_dir, ext=data_suffix) # Generate dataloader for pytorch num_workers = self.cfg.getint('DataFrame', 'num_workers') shuffle_file_list = self.cfg.get('DataFrame', 'shuffle_file_list') shuffle_samples_in_batch = self.cfg.get('DataFrame', 'shuffle_samples_in_batch') # Instantiate dataloader if use_random_seq: train_dataset = SpeechSequencesRandom(file_list=train_file_list, sequence_len=sequence_len, STFT_dict=self.STFT_dict, shuffle=shuffle_file_list, name=self.dataset_name) val_dataset = SpeechSequencesRandom(file_list=val_file_list, sequence_len=sequence_len, STFT_dict=self.STFT_dict, shuffle=shuffle_file_list, name=self.dataset_name) else: train_dataset = SpeechSequencesFull(file_list=train_file_list, sequence_len=sequence_len, STFT_dict=self.STFT_dict, shuffle=shuffle_file_list, name=self.dataset_name) val_dataset = SpeechSequencesFull(file_list=val_file_list, sequence_len=sequence_len, STFT_dict=self.STFT_dict, shuffle=shuffle_file_list, name=self.dataset_name) train_num = train_dataset.__len__() val_num = val_dataset.__len__() # Create dataloader train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=shuffle_samples_in_batch, num_workers = num_workers) val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size, shuffle=shuffle_samples_in_batch, num_workers = num_workers) return train_dataloader, val_dataloader, train_num, val_num def get_basic_info(self): basic_info = [] basic_info.append('HOSTNAME: ' + self.hostname) basic_info.append('Time: ' + self.date) basic_info.append('Device for training: ' + self.device) if self.device == 'cuda': basic_info.append('Cuda verion: {}'.format(torch.version.cuda)) basic_info.append('Model name: {}'.format(self.model_name)) return basic_info def train(self): # Set module.training = True self.model.train() torch.autograd.set_detect_anomaly(True) # Create directory for results saved_root = self.cfg.get('User', 'saved_root') z_dim = self.cfg.getint('Network','z_dim') tag = self.cfg.get('Network', 'tag') filename = "{}_{}_{}_z_dim={}".format(self.dataset_name, self.date, tag, z_dim) save_dir = os.path.join(saved_root, filename) if not(os.path.isdir(save_dir)): os.makedirs(save_dir) # Save the model configuration save_cfg = os.path.join(save_dir, 'config.ini') shutil.copy(self.config_file, save_cfg) # Create logger log_file = os.path.join(save_dir, 'log.txt') logger_type = self.cfg.getint('User', 'logger_type') logger = get_logger(log_file, logger_type) # Print basical infomation for log in self.get_basic_info(): logger.info(log) logger.info('In this experiment, result will be saved in: ' + save_dir) # Print model infomation (optional) if self.cfg.getboolean('User', 'print_model'): for log in self.model.get_info(): logger.info(log) # Init optimizer self.init_optimizer() batch_size = self.cfg.getint('Training', 'batch_size') sequence_len = self.cfg.getint('DataFrame','sequence_len') use_random_seq = self.cfg.getboolean('DataFrame','use_random_seq') # Create data loader train_data_dir = self.cfg.get('User', 'train_data_dir') val_data_dir = self.cfg.get('User', 'val_data_dir') loader = self.build_dataloader(train_data_dir=train_data_dir, val_data_dir=val_data_dir, sequence_len=sequence_len, batch_size=batch_size, STFT_dict=self.STFT_dict, use_random_seq=use_random_seq) train_dataloader, val_dataloader, train_num, val_num = loader log_message = 'Training samples: {}'.format(train_num) logger.info(log_message) log_message = 'Validation samples: {}'.format(val_num) logger.info(log_message) # KVAE needs a schedule training if self.model_name == 'KVAE': self.train_kvae(logger, save_dir, train_dataloader, val_dataloader, train_num, val_num) else: self.train_normal(logger, save_dir, train_dataloader, val_dataloader, train_num, val_num) def train_normal(self, logger, save_dir, train_dataloader, val_dataloader, train_num, val_num): # Load training parameters epochs = self.cfg.getint('Training', 'epochs') early_stop_patience = self.cfg.getint('Training', 'early_stop_patience') save_frequency = self.cfg.getint('Training', 'save_frequency') # Create python list for loss train_loss = np.zeros((epochs,)) val_loss = np.zeros((epochs,)) train_recon = np.zeros((epochs,)) train_KLD = np.zeros((epochs,)) val_recon = np.zeros((epochs,)) val_KLD = np.zeros((epochs,)) best_val_loss = np.inf cpt_patience = 0 cur_best_epoch = epochs best_state_dict = self.model.state_dict() # Define optimizer (might use different training schedule) optimizer = self.optimizer # Train with mini-batch SGD for epoch in range(epochs): start_time = datetime.datetime.now() # Batch training for batch_idx, batch_data in enumerate(train_dataloader): batch_data = batch_data.to(self.device) recon_batch_data = self.model(batch_data, compute_loss=True) loss_tot, loss_recon, loss_KLD = self.model.loss optimizer.zero_grad() loss_tot.backward() optimizer.step() train_loss[epoch] += loss_tot.item() train_recon[epoch] += loss_recon.item() train_KLD[epoch] += loss_KLD.item() # Validation for batch_idx, batch_data in enumerate(val_dataloader): batch_data = batch_data.to(self.device) recon_batch_data = self.model(batch_data, compute_loss=True) loss_tot, loss_recon, loss_KLD = self.model.loss val_loss[epoch] += loss_tot.item() val_recon[epoch] += loss_recon.item() val_KLD[epoch] += loss_KLD.item() # Loss normalization train_loss[epoch] = train_loss[epoch]/ train_num val_loss[epoch] = val_loss[epoch] / val_num train_recon[epoch] = train_recon[epoch] / train_num train_KLD[epoch] = train_KLD[epoch]/ train_num val_recon[epoch] = val_recon[epoch] / val_num val_KLD[epoch] = val_KLD[epoch] / val_num # Early stop patiance if val_loss[epoch] < best_val_loss: best_val_loss = val_loss[epoch] cpt_patience = 0 best_state_dict = self.model.state_dict() cur_best_epoch = epoch else: cpt_patience += 1 # Training time end_time = datetime.datetime.now() interval = (end_time - start_time).seconds / 60 log_message = 'Epoch: {} train loss: {:.4f} val loss {:.4f} training time {:.2f}m'.format(epoch, train_loss[epoch], val_loss[epoch], interval) logger.info(log_message) # Stop traning if early-stop triggers if cpt_patience == early_stop_patience: logger.info('Early stop patience achieved') break # Save model parameters regularly if epoch % save_frequency == 0: save_file = os.path.join(save_dir, self.model_name + '_epoch' + str(cur_best_epoch) + '.pt') torch.save(self.model.state_dict(), save_file) # Save the final weights of network with the best validation loss train_loss = train_loss[:epoch+1] val_loss = val_loss[:epoch+1] train_recon = train_recon[:epoch+1] train_KLD = train_KLD[:epoch+1] val_recon = val_recon[:epoch+1] val_KLD = val_KLD[:epoch+1] save_file = os.path.join(save_dir, self.model_name + '_final_epoch' + str(cur_best_epoch) + '.pt') torch.save(best_state_dict, save_file) # Save the training loss and validation loss loss_file = os.path.join(save_dir, 'loss_model.pckl') with open(loss_file, 'wb') as f: pickle.dump([train_loss, val_loss, train_recon, train_KLD, val_recon, val_KLD], f) # Save the loss figure plt.clf() fig = plt.figure(figsize=(8,6)) plt.rcParams['font.size'] = 12 plt.plot(train_loss, label='training loss') plt.plot(val_loss, label='validation loss') plt.legend(fontsize=16, title=self.model_name, title_fontsize=20) plt.xlabel('epochs', fontdict={'size':16}) plt.ylabel('loss', fontdict={'size':16}) fig_file = os.path.join(save_dir, 'loss_{}.png'.format(tag)) plt.savefig(fig_file) plt.clf() fig = plt.figure(figsize=(8,6)) plt.rcParams['font.size'] = 12 plt.plot(train_recon, label='Reconstruction') plt.plot(train_KLD, label='KL Divergence') plt.legend(fontsize=16, title='{}: Training'.format(self.model_name), title_fontsize=20) plt.xlabel('epochs', fontdict={'size':16}) plt.ylabel('loss', fontdict={'size':16}) fig_file = os.path.join(save_dir, 'loss_train_{}.png'.format(tag)) plt.savefig(fig_file) plt.clf() fig = plt.figure(figsize=(8,6)) plt.rcParams['font.size'] = 12 plt.plot(val_recon, label='Reconstruction') plt.plot(val_KLD, label='KL Divergence') plt.legend(fontsize=16, title='{}: Validation'.format(self.model_name), title_fontsize=20) plt.xlabel('epochs', fontdict={'size':16}) plt.ylabel('loss', fontdict={'size':16}) fig_file = os.path.join(save_dir, 'loss_val_{}.png'.format(tag)) plt.savefig(fig_file) def train_kvae(self, logger, save_dir, train_dataloader, val_dataloader, train_num, val_num): # Load training parameters epochs = self.cfg.getint('Training', 'epochs') early_stop_patience = self.cfg.getint('Training', 'early_stop_patience') save_frequency = self.cfg.getint('Training', 'save_frequency') scheduler_training = self.cfg.getboolean('Training', 'scheduler_training') only_vae_epochs = self.cfg.getint('Training', 'only_vae_epochs') kf_update_epochs = self.cfg.getint('Training', 'kf_update_epochs') # Create python list for loss train_loss = np.zeros((epochs,)) val_loss = np.zeros((epochs,)) train_vae = np.zeros((epochs,)) train_lgssm = np.zeros((epochs,)) val_vae = np.zeros((epochs,)) val_lgssm =
np.zeros((epochs,))
numpy.zeros
""" The storage and manipulation of probability distributions is fundamental to the operation of ``uravu`` and Bayesian inference. The :py:class:`~uravu.distribution.Distribution` class oversees these operations. """ # Copyright (c) <NAME> # Distributed under the terms of the MIT License # author: <NAME> import numpy as np from scipy.stats import normaltest from uravu.kde import gaussian_kde from scipy.optimize import minimize class Distribution: """ In addition to storage of the probability distribution, this class allows for some basic analysis, such as determination of normality. Attributes: samples (:py:attr:`array_like`): Samples in the distribution. name (:py:attr:`str`): Distribution name. ci_points (:py:attr:`array_like`): The percentiles at which confidence intervals should be found. normal (:py:attr:`bool`): Are the samples normally distributed? kde (:py:class:`scipy.stats.kde.gaussian_kde`): Kernel density approximation for the distribution. Args: samples (:py:attr:`array_like`): Sample for the distribution. name (:py:attr:`str`, optional): A name to identify the distribution. Default is :py:attr:`'Distribution'`. ci_points (:py:attr:`array_like`, optional): The two percentiles at which confidence intervals should be found. Default is :py:attr:`[2.5, 97.5]` (a 95 % confidence interval). .. _FAQ: ./faq.html """ def __init__(self, samples, name="Distribution", ci_points=None): """ Initialisation function for a :py:class:`~uravu.distribution.Distribution` object. """ self.name = name self.samples = np.array([]) if ci_points is None: self.ci_points = np.array([2.5, 97.5]) else: if len(ci_points) != 2: raise ValueError("The ci_points must be an array of length two.") self.ci_points = np.array(ci_points) self.normal = False self.add_samples(np.array(samples)) @property def size(self): """ Get the number of samples in the distribution. Returns: :py:attr:`int`: Number of samples. """ return self.samples.size def check_normality(self): """ Uses a :func:`scipy.stats.normaltest()` to evaluate if samples are normally distributed and updates the :py:attr:`~uravu.distribution.Distribution.normal` attribute. """ alpha = 0.05 test_samples = self.samples if self.size > 500: test_samples = np.random.choice(self.samples, size=500) p_value = normaltest(test_samples)[1] if p_value > alpha: self.normal = True else: self.normal = False def pdf(self, x): """ Get the probability density function for the distribution. Args: x (:py:attr:`float`): Value to return probability of. Return: :py:attr:`float`: Probability. """ return self.kde.pdf(x) def logpdf(self, x): """ Get the natural log probability density function for the distribution. Args: x (:py:attr:`float`): Value to return natural log probability of. Return: :py:attr:`float`: Natural log probability. """ return self.kde.logpdf(x) def negative_pdf(self, x): """ Get the negative of the probability density function for the distribution. Args: x (:py:attr:`float`): Value to return negative probability of. Return: :py:attr:`float`: Negative probability. """ return -self.kde.pdf(x) @property def dist_max(self): """ Get the value that maximises the distribution. If no :py:attr:`kde` has been created (for example if the distribution has fewer than 8 values) the median is returned. Returns :py:attr:`float`: Most likely value. """ try: return minimize(self.negative_pdf, x0=[self.n]).x except AttributeError: return self.n @property def min(self): """ Get sample minimum. Returns: :py:attr:`float`: Sample minimum. """ return self.samples.min() @property def max(self): """ Get sample maximum. Returns: :py:attr:`float`: Sample maximum. """ return self.samples.max() @property def n(self): """ Get the median value of the distribution (for a normal distribution this is the same as the mean). Returns: :py:attr:`float`: Median value. """ return np.percentile(self.samples, [50])[0] @property def s(self): """ Get the standard deviation of the distribution. For a non-normal distribution, this will return :py:attr:`None`. Returns: :py:attr:`float` or :py:attr:`None`: Standard deviation of the distribution. """ if self.normal: return
np.std(self.samples, ddof=1)
numpy.std
import numpy as np import lazy_property import abc from scipy.spatial import ConvexHull import cvxpy import pandas as pd from mb_api import environments from mb_api import auction_data class DimensionlessCollusionMetrics: def __init__(self, deviations): self._deviations = ordered_deviations(deviations) @lazy_property.LazyProperty def equilibrium_index(self): return np.where(self._deviations == 0)[0][0] @abc.abstractmethod def __call__(self, env): """""" def _normalized_deviation_temptation(self, env): payoffs = self._get_payoffs(env) return np.max(payoffs) - payoffs[self.equilibrium_index] def _get_payoffs(self, env): beliefs, cost = env[:-1], env[-1] return np.multiply(beliefs, 1 + self._deviations - cost) def ordered_deviations(deviations): return np.sort(list(set([0] + deviations))) class IsNonCompetitive(DimensionlessCollusionMetrics): def __call__(self, env): return 1. - 1. * np.isclose( self._normalized_deviation_temptation(env), .0) class EfficientIsNonCompetitive(DimensionlessCollusionMetrics): min_markup = 0 max_markup = .5 def __init__(self, deviations): super().__init__(deviations) def __call__(self, env): beliefs = env[:-1] cost_bounds = self._get_cost_bounds(beliefs) consistent = self.is_consistent(cost_bounds) return 1 - 1. * consistent def _get_cost_bounds(self, beliefs): d0 = beliefs[self.equilibrium_index] return [self._cost_bound(d0, dn, rho) for dn, rho in zip(beliefs, self._deviations)] def cost_lower_bound(self, cost_bounds): dev_bound = max(cost_bounds[:self.equilibrium_index]) if \ self.equilibrium_index > 0 else 0 return max(dev_bound, 1 / (1 + self.max_markup)) def cost_upper_bound(self, cost_bounds): dev_bound = min(cost_bounds[self.equilibrium_index + 1:]) if \ self.equilibrium_index + 1 < len(cost_bounds) else 1 return min(dev_bound, 1 / (1 + self.min_markup)) def is_consistent(self, cost_bounds): return self.cost_lower_bound(cost_bounds) <= \ self.cost_upper_bound(cost_bounds) def _cost_bound(self, d0, dn, rho): is_exception, return_value = self._is_exception(d0, dn, rho) if is_exception: return return_value return (d0 - (1 + rho) * dn)/(d0 - dn) @staticmethod def _is_exception(d0, dn, rho): if -1e-8 <= rho < 0: return True, 0 elif 0 < rho < 1e-8: return True, 1 elif np.isclose(d0, 0) and np.isclose(dn, 0): return True, 1 * (rho > 0) elif np.isclose(dn, d0): return True, np.NAN elif rho < 0 and dn < d0: return True, 0 else: return False, None class NormalizedDeviationTemptation(DimensionlessCollusionMetrics): def __call__(self, env): return self._normalized_deviation_temptation(env) class DeviationTemptationOverProfits(DimensionlessCollusionMetrics): def __call__(self, env): cost = env[-1] eq_belief = env[self.equilibrium_index] if cost < 1: return self._normalized_deviation_temptation(env) / ( eq_belief * (1 - cost)) else: return 0 class ConvexProblem: def __init__(self, metrics, beliefs, demands, tolerance, moment_matrix, moment_weights): self._metrics = np.array(metrics).reshape(-1, 1) self._beliefs = np.array(beliefs) self._demands = np.array(demands).reshape(-1, 1) self._tolerance = tolerance self._moment_matrix = moment_matrix self._moment_weights = moment_weights @lazy_property.LazyProperty def variable(self): return cvxpy.Variable((len(self._metrics), 1)) @lazy_property.LazyProperty def constraints(self): return self._is_distribution + self._moment_constraint @property def _is_distribution(self): return [self.variable >= 0, cvxpy.sum(self.variable) == 1] @property def _moment_constraint(self): delta = cvxpy.matmul(self._beliefs.T, self.variable) - \ self._demands moment = 1e2 * cvxpy.matmul(self._moment_matrix, delta) return [cvxpy.matmul( self._moment_weights, cvxpy.square(moment)) <= 1e4 * self._tolerance] @lazy_property.LazyProperty def objective(self): return cvxpy.Minimize( cvxpy.sum(cvxpy.multiply(self.variable, self._metrics))) @lazy_property.LazyProperty def problem(self): return cvxpy.Problem(self.objective, self.constraints) @lazy_property.LazyProperty def solution(self): return self.problem.solve() class MinCollusionSolver: _precision = .0001 _environment_cls = environments.Environment _pbm_cls = ConvexProblem def __init__(self, data, deviations, metric, plausibility_constraints, tolerance=None, num_points=1e6, seed=0, project=False, filter_ties=None, moment_matrix=None, moment_weights=None, confidence_level=.95, enhanced_guesses=False): self._data = data self.metric = metric(deviations) self._deviations = ordered_deviations(deviations) self._constraints = plausibility_constraints self._tolerance = None if tolerance is None else np.array(tolerance) self._seed = seed self._num_points = num_points self._project = project self._enhanced_guesses = enhanced_guesses self._filter_ties = filter_ties self._initial_guesses = self._environments_from_demand(21) self._moment_matrix = moment_matrix if moment_matrix is not None \ else self.default_moment_matrix self._moment_weights = moment_weights if moment_weights is not None \ else self.default_moment_weights self._confidence_level = confidence_level def _environments_from_demand(self, n): if not self._enhanced_guesses: return np.array([ list(self.demands) + [c] for c in np.linspace(0, 1, n)]) else: return np.array( [list(self.demands) + [c] for c in np.linspace(0, 1, n)] + self._winner_env + self._loser_env ) @property def _winner_env(self): env = 1 * (np.array(self._deviations) <= 0) return [[1] * (len(env) + 1), list(np.append(env, 0))] @property def _loser_env(self): env_0 = 0 * (np.array(self._deviations)) env_0 = np.append(env_0, 1) env_1 = 1 * (np.array(self._deviations) < 0) env_1 = np.append(env_1, 1) return [list(env_0), list(env_1)] @property def default_moment_matrix(self): return auction_data.moment_matrix(len(self._deviations), 'level') @property def default_moment_weights(self): return np.ones_like(self._deviations) @property def environment(self): return self._environment_cls( len(self._deviations), constraints=self._constraints, project_constraint=self._project, initial_guesses=self._initial_guesses ) @property def epigraph_extreme_points(self): env_perf = self._env_with_perf interior_env_perf = self._get_interior_dimensions(env_perf) return env_perf[ConvexHull(interior_env_perf).vertices, :] @property def _env_with_perf(self): env = self.environment.generate_environments( num_points=self._num_points, seed=self._seed) perf = np.apply_along_axis(self.metric, 1, env).reshape(-1, 1) return np.append(env, perf, 1) def _get_interior_dimensions(self, env_perf): variability = np.std(env_perf, axis=0) full_dimensions = variability > self._precision return env_perf[:, full_dimensions] @staticmethod def belief_extreme_points(epigraph): return epigraph[:, :-2] @staticmethod def metric_extreme_points(epigraph): return epigraph[:, -1] @lazy_property.LazyProperty def demands(self): return self.filtered_data.assemble_target_moments(self.deviations) @property def filtered_data(self) -> auction_data.AuctionData: if self._filter_ties is not None: return self._filter_ties(self._data) return self._data @property def share_of_ties(self): return 1. - self.filtered_data.df_bids.shape[0] / \ self._data.df_bids.shape[0] @property def problem(self): epigraph = self.epigraph_extreme_points return self._pbm_cls( metrics=self.metric_extreme_points(epigraph), beliefs=self.belief_extreme_points(epigraph), demands=self.demands, tolerance=self.tolerance, moment_matrix=self._moment_matrix, moment_weights=self._moment_weights ) @property def tolerance(self): if self._tolerance is None: self._tolerance = self._compute_tolerance() tol = np.maximum(self._tolerance, 1e-8).reshape(-1, 1) return tol if len(tol) > 1 else float(tol) def _compute_tolerance(self): distances = self._moment_distances return np.percentile(distances, 100 * self._confidence_level, axis=distances.ndim-1) @property def _moment_distances(self): bootstrap_demand_sample = self.filtered_data.bootstrap_demand_sample( self._deviations, num_samples=100) target_demands = np.array(self.demands).reshape(1, -1) delta = np.add(bootstrap_demand_sample, -target_demands) moments_delta =
np.dot(self._moment_matrix, delta.T)
numpy.dot
import numpy as np a = (45/180) * np.pi R = np.array( [[np.cos(a), -np.sin(a), 0], [np.sin(a), np.cos(a), 0], [0, 0, 1]]) print("\nR = ") print(R) S = np.diag([1.0, 2.0, 3.0]) A = np.dot(np.dot(R, S), R.T) print("\nA = ") print(A) evals, evecs = np.linalg.eig(A) idx = np.argsort(np.abs(evals)) # smallest first U = evecs[:, idx] # sort columns D = np.diag(evals[idx]) assert np.allclose(np.abs(R), np.abs(U)) assert np.allclose(D, S) assert np.allclose(A, np.dot(U, np.dot(D, U.T))) a = -a RR = np.array([[np.cos(a), -np.sin(a), 0], [
np.sin(a)
numpy.sin
""" @brief test log(time=120s) """ import unittest import warnings import sys from logging import getLogger from contextlib import redirect_stdout from io import StringIO import numpy import onnx from scipy.sparse import coo_matrix, csr_matrix, SparseEfficiencyWarning from scipy.special import ( # pylint: disable=E0611 expit as logistic_sigmoid, erf) from scipy.spatial.distance import cdist from onnx import TensorProto, __version__ as onnx_version from onnx.helper import make_sparse_tensor, make_tensor from onnx.defs import onnx_opset_version from onnx.numpy_helper import from_array from pyquickhelper.pycode import ExtTestCase from pyquickhelper.texthelper import compare_module_version from sklearn.utils.extmath import softmax try: from sklearn.utils._testing import ignore_warnings except ImportError: from sklearn.utils.testing import ignore_warnings from skl2onnx.algebra.onnx_ops import ( # pylint: disable=E0611 OnnxAbs, OnnxAdd, OnnxAnd, OnnxArgMax_11, OnnxArgMax, OnnxArgMin_11, OnnxArgMin, OnnxBatchNormalization, OnnxAcos, OnnxAcosh, OnnxAsin, OnnxAsinh, OnnxAtan, OnnxAtanh, OnnxAveragePool, OnnxCast, OnnxCeil, OnnxClip, OnnxCompress, OnnxConcat, OnnxConv, OnnxConvTranspose, OnnxConstant, OnnxConstant_9, OnnxConstant_11, OnnxConstant_12, OnnxConstant_13, OnnxConstantOfShape, OnnxCos, OnnxCosh, OnnxCumSum, OnnxDequantizeLinear, OnnxDet, OnnxDiv, OnnxDropout, OnnxDropout_7, OnnxEinsum, OnnxEqual, OnnxErf, OnnxExp, OnnxEyeLike, OnnxFlatten, OnnxFloor, OnnxGreater, OnnxGreaterOrEqual, OnnxGemm, OnnxGlobalAveragePool, OnnxIdentity, OnnxIsNaN, OnnxLess, OnnxLessOrEqual, OnnxLog, OnnxLpNormalization, OnnxMatMul, OnnxMax, OnnxMaxPool, OnnxMean, OnnxMin, OnnxMod, OnnxMul, OnnxNeg, OnnxNot, OnnxOr, OnnxPad, OnnxPow, OnnxQLinearConv, OnnxQuantizeLinear, OnnxRange, OnnxReciprocal, OnnxReduceL1, OnnxReduceL2, OnnxReduceLogSumExp, OnnxReduceMax, OnnxReduceMean, OnnxReduceMin, OnnxReduceProd, OnnxReduceSum, OnnxReduceSumApi11, OnnxReduceSum_11, OnnxReduceSum_1, OnnxReduceSumSquare, OnnxRelu, OnnxReshape, OnnxRound, OnnxScatterElements, OnnxShape, OnnxSlice, OnnxSigmoid, OnnxSign, OnnxSin, OnnxSinh, OnnxSize, OnnxSoftmax, OnnxSplit, OnnxSplitApi11, OnnxSqrt, OnnxSub, OnnxSum, OnnxSqueeze, OnnxSqueezeApi11, OnnxTan, OnnxTanh, OnnxTopK, OnnxTranspose, OnnxUnsqueeze, OnnxUnsqueezeApi11 ) try: from skl2onnx.algebra.onnx_ops import OnnxCelu except ImportError: OnnxCelu = None try: from skl2onnx.algebra.onnx_ops import OnnxBatchNormalization_14 except ImportError: OnnxBatchNormalization_14 = None from skl2onnx import __version__ as skl2onnx_version, __max_supported_opset__ from mlprodict.onnxrt import OnnxInference from mlprodict.tools.asv_options_helper import ( get_opset_number_from_onnx, get_ir_version_from_onnx) from mlprodict.onnxrt.validate.validate_python import validate_python_inference from mlprodict.onnxrt.ops_cpu.op_batch_normalization import ( _batchnorm_test_mode, _batchnorm_training_mode) from mlprodict.onnxrt.ops_cpu.op_average_pool import ( _get_output_shape, _pool, _get_pad_shape) from mlprodict.onnxrt.ops_cpu.op_global_average_pool import _global_average_pool from mlprodict.onnxrt.ops_cpu._op_onnx_numpy import ( # pylint: disable=E0611,E0401 topk_element_min_double, topk_element_max_double, topk_element_fetch_double, topk_element_min_float, topk_element_max_float, topk_element_fetch_float, topk_element_min_int64, topk_element_max_int64, topk_element_fetch_int64) from mlprodict.onnxrt.ops_cpu.op_celu import _vcelu1, pycelu from mlprodict.onnxrt.ops_cpu.op_topk import topk_sorted_implementation from mlprodict.onnxrt.ops_cpu.op_pad import _pad_impl from mlprodict.onnxrt.ops_cpu.op_max_pool import ( _pool_get_output_shape, _pool_impl) from mlprodict.onnxrt.ops_cpu.op_dropout import _dropout from mlprodict.onnxrt.ops_cpu._op_helper import proto2dtype from mlprodict.onnx_tools.onnx2py_helper import ( guess_proto_dtype, _elem_type_as_str) from mlprodict.tools.data_types import ( FloatTensorType, Int64TensorType, DoubleTensorType, StringTensorType, Int32TensorType, BooleanTensorType, UInt8TensorType, Int16TensorType, Int8TensorType, UInt16TensorType, UInt32TensorType, UInt64TensorType, Float16TensorType) from mlprodict.testing.test_utils.quantized_tensor import ( QuantizedTensor, QuantizedBiasTensor, test_qlinear_conv) from mlprodict.onnxrt.ops_cpu.op_qlinear_conv_ import ( # pylint: disable=W0611,E0611,E0401 test_qgemm0, test_qgemm1) from mlprodict.onnxrt.ops_cpu.op_constant import Constant_12, Constant_11, Constant_9 try: numpy_str = numpy.str_ except ImportError: numpy_str = str try: numpy_bool = numpy.bool_ except ImportError: numpy_bool = bool sparse_support = [] sparse_no_numpy = [] python_tested = [] def make_coo_matrix(*args, **kwargs): coo = coo_matrix(*args, **kwargs) coo.row = coo.row.astype(numpy.int64) coo.col = coo.col.astype(numpy.int64) return coo def wraplog(): # from datetime import datetime def wrapper(fct): def call_f(self): # no = datetime.now() # print('BEGIN %s' % fct.__name__) with warnings.catch_warnings(record=True): warnings.simplefilter("always", DeprecationWarning) fct(self) # print('DONE %s - %r' % (fct.__name__, datetime.now() - no)) return call_f return wrapper class TestOnnxrtPythonRuntime(ExtTestCase): # pylint: disable=R0904 @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): if __name__ == "__main__": import pprint print('-----------') pprint.pprint(sparse_support) print('-----------') pprint.pprint(sparse_no_numpy) print('-----------') pprint.pprint( list(sorted({_.__name__ for _ in python_tested}))) print('-----------') def setUp(self): logger = getLogger('skl2onnx') logger.disabled = True def test_opset_skl2onnx(self): opset_mlprodict = get_opset_number_from_onnx() opset_skl2onnx = __max_supported_opset__ self.assertGreater(opset_skl2onnx, opset_mlprodict) def common_expected_shapes_types(self, oinf, inputs, got, onnx_cl, model_def, raise_shape=False): expected_types = oinf.infer_types() self.assertEqual(set(got) & set(expected_types), set(got)) for k, v in got.items(): if expected_types[k] in (str, numpy.str_): # Type mismatch: dtype('<U32') != <class 'str'> continue if v.dtype != expected_types[k]: raise AssertionError( "Type mismatch: %r != %r\nexpected_types=%r\ngot=%r" "\n----\n%r" % ( v.dtype, expected_types[k], expected_types, got, model_def)) try: expected_shapes = oinf.infer_shapes() self.assertEqual(set(got) & set(expected_shapes), set(got)) except RuntimeError as e: if raise_shape: raise e warnings.warn("infer_shapes fails for operator %r." % onnx_cl) res = oinf.infer_sizes(inputs) self.assertIsInstance(res, dict) @ignore_warnings(category=(RuntimeWarning, DeprecationWarning, SparseEfficiencyWarning, PendingDeprecationWarning)) def common_test_onnxt_runtime_unary(self, onnx_cl, np_fct, op_version=None, outputs=None, debug=False, do_sparse=True, raise_shape=False): if op_version is None: op_version = get_opset_number_from_onnx() try: onx = onnx_cl('X', output_names=['Y'], op_version=op_version) except RuntimeError as e: raise RuntimeError('onnx.opset={} op_version={}'.format( get_opset_number_from_onnx(), op_version)) from e X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float64) model_def = onx.to_onnx( {'X': X.astype(numpy.float32)}, target_opset=op_version, outputs=outputs) if debug: print(model_def) python_tested.append(onnx_cl) # python code oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': X.astype(numpy.float32)}) # no inplace oinf = OnnxInference(model_def, inplace=False) all_names = "\n".join( "%s>=v%d" % (op.ops_.__class__.__name__, op.ops_._schema.since_version) # pylint: disable=W0212 for op in oinf.sequence_) if debug: got = oinf.run({'X': X.astype(numpy.float32)}, verbose=1, fLOG=print) else: got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.common_expected_shapes_types( oinf, {'X': X.astype(numpy.float32)}, got, onnx_cl, model_def, raise_shape=raise_shape) try: self.assertEqualArray(np_fct(X), got['Y'], decimal=5) except AssertionError as e: raise AssertionError( 'onnx.opset={} op_version={}\n--ONNX--\n{}\n--NAMES--\n{}'.format( get_opset_number_from_onnx(), op_version, model_def, all_names)) from e # inplace oinf = OnnxInference(model_def, input_inplace=False, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(np_fct(X), got['Y'], decimal=5) # inplace2 onx2 = OnnxIdentity( onnx_cl('X', op_version=op_version), output_names=['Y'], op_version=op_version) model_def2 = onx2.to_onnx( {'X': X.astype(numpy.float32)}, target_opset=op_version, outputs=outputs) oinf = OnnxInference(model_def2, input_inplace=False, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(np_fct(X), got['Y'], decimal=5) # input inplace expe = np_fct(X) oinf = OnnxInference(model_def, input_inplace=True, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(expe, got['Y'], decimal=5) # sparse if do_sparse: row = numpy.array([0, 0, 1, 3, 1]) col = numpy.array([0, 2, 1, 3, 1]) data = numpy.array([1, 1, 1, 1, 1]) X = make_coo_matrix((data, (row.astype(numpy.int64), col.astype(numpy.int64))), shape=(4, 4), dtype=numpy.float32) try: exp = np_fct(X) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((onnx_cl.__name__, op_version, e)) return model_def_sparse = onx.to_onnx( {'X': X.astype(numpy.float32)}, target_opset=op_version) oinf = OnnxInference( model_def_sparse, input_inplace=False, inplace=True) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualSparseArray(exp, got['Y'], decimal=5) sparse_support.append(('UnOp', op_version, onnx_cl.__name__)) @ignore_warnings(category=(RuntimeWarning, DeprecationWarning, SparseEfficiencyWarning, PendingDeprecationWarning)) def common_test_onnxt_runtime_binary(self, onnx_cl, np_fct, dtype=numpy.float32, op_version=None, debug=False, raise_shape=False): if op_version is None: op_version = get_opset_number_from_onnx() idi = numpy.identity(2, dtype=dtype) onx = onnx_cl('X', idi, output_names=['Y'], op_version=op_version) X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float64) model_def = onx.to_onnx({'X': X.astype(dtype)}, target_opset=op_version) oinf = OnnxInference(model_def) if debug: got = oinf.run({'X': X.astype(dtype)}, verbose=1, fLOG=print) else: got = oinf.run({'X': X.astype(dtype)}) self.assertEqual(list(sorted(got)), ['Y']) self.common_expected_shapes_types( oinf, {'X': X.astype(dtype)}, got, onnx_cl, model_def, raise_shape=raise_shape) exp = np_fct(X, idi) self.assertEqualArray(exp, got['Y'], decimal=5) # python code python_tested.append(onnx_cl) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': X.astype(dtype)}) # sparse idi = make_coo_matrix(numpy.identity(2)).astype(numpy.float32) X = make_coo_matrix(numpy.array( [[0, 2], [3, -4]], dtype=numpy.float32)) try: exp = np_fct(X, idi) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((onnx_cl.__name__, op_version, e)) return onx = onnx_cl('X', idi, output_names=['Y'], op_version=op_version) model_def_sparse = onx.to_onnx({'X': X}, target_opset=op_version) try: oinf = OnnxInference( model_def_sparse, input_inplace=False, inplace=True) except RuntimeError as e: raise RuntimeError( "Unable to load sparse model\n{}".format( model_def_sparse)) from e if debug: got = oinf.run({'X': X}, verbose=1, fLOG=print) else: got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) if isinstance(exp, (coo_matrix, csr_matrix)): self.assertEqualSparseArray(exp, got['Y'], decimal=5) elif isinstance(exp, numpy.ndarray): self.assertEqualArray(exp, got['Y'], decimal=5) else: self.assertEqual(exp, got['Y']) sparse_support.append(('BinOp', op_version, onnx_cl.__name__)) @wraplog() def test_onnxt_runtime_abs(self): self.common_test_onnxt_runtime_unary(OnnxAbs, numpy.abs) @wraplog() def test_onnxt_runtime_abs_debug(self): f = StringIO() with redirect_stdout(f): self.common_test_onnxt_runtime_unary( OnnxAbs, numpy.abs, debug=True) @wraplog() def test_onnxt_runtime_acos(self): self.common_test_onnxt_runtime_unary(OnnxAcos, numpy.arccos) @wraplog() def test_onnxt_runtime_acosh(self): self.common_test_onnxt_runtime_unary(OnnxAcosh, numpy.arccosh) @wraplog() def test_onnxt_runtime_add(self): self.common_test_onnxt_runtime_binary(OnnxAdd, numpy.add) @wraplog() def test_onnxt_runtime_and(self): self.common_test_onnxt_runtime_binary( OnnxAnd, numpy.logical_and, dtype=numpy.bool_) @wraplog() def test_onnxt_runtime_argmax(self): opsets = list(range(11, get_opset_number_from_onnx() + 1)) opsets = ['11only'] + opsets for opset in opsets: with self.subTest(opset=opset): X = numpy.array([[2, 1], [0, 1]], dtype=float) if opset == '11only': clarg = OnnxArgMax_11 opset = 11 br = True else: clarg = OnnxArgMax br = False onx = clarg('X', output_names=['Y'], keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmax( X, axis=0), got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X}, got, clarg, model_def) if br: continue oinfpy = OnnxInference( model_def, runtime="python", inplace=True) validate_python_inference( oinfpy, {'X': X.astype(numpy.float32)}) onx = OnnxArgMax('X', output_names=['Y'], axis=1, keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmax(X, axis=1).ravel(), got['Y'].ravel()) onx = OnnxArgMax('X', output_names=['Y'], axis=1, keepdims=1, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmax(X, axis=1).ravel(), got['Y'].ravel()) # sparse X = make_coo_matrix(X, dtype=numpy.float32) try: exp = numpy.argmax(X, axis=1) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((OnnxArgMax.__name__, None, e)) return model_def_sparse = onx.to_onnx({'X': X}, target_opset=opset) oinf = OnnxInference(model_def_sparse, input_inplace=False) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(exp, got['Y'], decimal=5) X = numpy.array([[2, 1], [0, 1]], dtype=float) sparse_support.append(('UnOp', None, OnnxArgMax.__name__)) python_tested.append(OnnxArgMax) @unittest.skipIf(onnx_opset_version() < 12, reason="needs onnx 1.7.0") @wraplog() def test_onnxt_runtime_argmax_12(self): self.assertGreater(onnx_opset_version(), 12) from skl2onnx.algebra.onnx_ops import OnnxArgMax_12 # pylint: disable=E0611 X = numpy.array([[2, 2, 1], [0, 1, 1]], dtype=float) onx = OnnxArgMax_12('X', output_names=['Y'], keepdims=0, axis=1, select_last_index=1, op_version=12) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.array([1, 2], dtype=numpy.int64), got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxArgMax_12, model_def) @wraplog() def test_onnxt_runtime_argmin(self): opsets = list(range(11, get_opset_number_from_onnx() + 1)) opsets = ['11only'] + opsets for opset in opsets: with self.subTest(opset=opset): if opset == '11only': clarg = OnnxArgMin_11 opset = 11 br = True else: clarg = OnnxArgMin br = False X = numpy.array([[2, 1], [0, 1]], dtype=float) onx = clarg('X', output_names=['Y'], keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmin( X, axis=0), got['Y'], decimal=5) if br: continue oinfpy = OnnxInference( model_def, runtime="python", inplace=True) validate_python_inference( oinfpy, {'X': X.astype(numpy.float32)}) self.common_expected_shapes_types( oinfpy, {'X': X.astype(numpy.float32)}, got, clarg, model_def) onx = OnnxArgMin('X', output_names=['Y'], axis=1, keepdims=0, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmin(X, axis=1).ravel(), got['Y'].ravel()) onx = OnnxArgMin('X', output_names=['Y'], axis=1, keepdims=1, op_version=opset) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.argmin(X, axis=1).ravel(), got['Y'].ravel()) # sparse X = make_coo_matrix(X, dtype=numpy.float32) try: exp = numpy.argmin(X, axis=1) except (TypeError, NotImplementedError, ValueError) as e: # Function np_fct does not work on sparse data. sparse_no_numpy.append((OnnxArgMin.__name__, None, e)) return model_def_sparse = onx.to_onnx({'X': X}, target_opset=opset) oinf = OnnxInference(model_def_sparse, input_inplace=False) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(exp, got['Y'], decimal=5) sparse_support.append(('UnOp', None, OnnxArgMin.__name__)) python_tested.append(OnnxArgMin) @unittest.skipIf(onnx_opset_version() < 12, reason="needs onnx 1.7.0") @wraplog() def test_onnxt_runtime_argmin_12(self): self.assertGreater(onnx_opset_version(), 12) from skl2onnx.algebra.onnx_ops import OnnxArgMin_12 # pylint: disable=E0611 X = numpy.array([[2, 1, 1], [0, 0, 1]], dtype=float) onx = OnnxArgMin_12('X', output_names=['Y'], keepdims=0, axis=1, select_last_index=1, op_version=12) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.array([2, 1], dtype=numpy.int64), got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxArgMin_12, model_def) @wraplog() def test_onnxt_runtime_asin(self): self.common_test_onnxt_runtime_unary(OnnxAsin, numpy.arcsin) @wraplog() def test_onnxt_runtime_asinh(self): self.common_test_onnxt_runtime_unary(OnnxAsinh, numpy.arcsinh) @wraplog() def test_onnxt_runtime_atan(self): self.common_test_onnxt_runtime_unary(OnnxAtan, numpy.arctan) @wraplog() def test_onnxt_runtime_atanh(self): self.common_test_onnxt_runtime_unary(OnnxAtanh, numpy.arctanh) @wraplog() def test_onnxt_runtime_atan2(self): test_pairs = [[y, x] for x in [3., -4., 0., -1., 1.] for y in [5., -6., 0., -1., 1.]] y_val = numpy.array([y for y, x in test_pairs], dtype=numpy.float32) x_val = numpy.array([x for y, x in test_pairs], dtype=numpy.float32) def atan2(y, x): # size: 100000 # timeit arctan: 0.00205 # timeit arctan2: 0.00361 # timeit atan2: 0.00599 sx = numpy.sign(x) sy = numpy.sign(y) pi_part = (sy + sx * (sy ** 2 - 1)) * (sx - 1) * (-numpy.pi / 2) atan_part = numpy.arctan(y / (x + (1 - sx ** 2))) * sx ** 2 return atan_part + pi_part self.assertEqualArray( numpy.arctan2(y_val, x_val), atan2(y_val, x_val), decimal=5) def _expect_average_pool(self, node, inputs, outputs, opset=None): if opset is None: opset = get_opset_number_from_onnx() ginputs = [ onnx.helper.make_tensor_value_info( node.input[0], TensorProto.FLOAT, []), # pylint: disable=E1101, ] goutputs = [ onnx.helper.make_tensor_value_info( node.output[0], TensorProto.FLOAT, []), # pylint: disable=E1101, ] model_def = onnx.helper.make_model( opset_imports=[onnx.helper.make_operatorsetid('', opset)], graph=onnx.helper.make_graph( name='test_average_pool', inputs=ginputs, outputs=goutputs, nodes=[node])) oinf = OnnxInference(model_def) got = oinf.run({n: v for n, v in zip(node.input, inputs)}) self.assertEqual(len(got), 1) self.assertEqualArray(outputs[0], got['y']) @wraplog() def test_onnxt_runtime_average_pool(self): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2], auto_pad='SAME_UPPER') x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = _get_output_shape( 'SAME_UPPER', x_shape[2:], kernel_shape, strides) pad_shape = _get_pad_shape( 'SAME_UPPER', x_shape[2:], kernel_shape, strides, out_shape) pad_top = pad_shape[0] // 2 pad_bottom = pad_shape[0] - pad_top pad_left = pad_shape[1] // 2 pad_right = pad_shape[1] - pad_left padded = numpy.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=numpy.nan) y = _pool( padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[3, 3], pads=[2, 2, 2, 2], count_include_pad=1) x = numpy.random.randn(1, 3, 28, 28).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = (3, 3) strides = (1, 1) pad_bottom = 2 pad_top = 2 pad_right = 2 pad_left = 2 pad_shape = [pad_top + pad_bottom, pad_left + pad_right] out_shape = _get_output_shape( 'VALID', numpy.add(x_shape[2:], pad_shape), kernel_shape, strides) padded = numpy.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=0) y = _pool( padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG', count_include_pad=1) self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2], auto_pad='SAME_LOWER') x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = _get_output_shape( 'SAME_LOWER', x_shape[2:], kernel_shape, strides) pad_shape = _get_pad_shape( 'SAME_LOWER', x_shape[2:], kernel_shape, strides, out_shape) pad_bottom = pad_shape[0] // 2 pad_top = pad_shape[0] - pad_bottom pad_right = pad_shape[1] // 2 pad_left = pad_shape[1] - pad_right padded = numpy.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=numpy.nan) y = _pool( padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[3, 3], pads=[2, 2, 2, 2]) x = numpy.random.randn(1, 3, 28, 28).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = (3, 3) strides = (1, 1) pad_bottom = 2 pad_top = 2 pad_right = 2 pad_left = 2 pad_shape = [pad_top + pad_bottom, pad_left + pad_right] out_shape = _get_output_shape( 'VALID', numpy.add(x_shape[2:], pad_shape), kernel_shape, strides) padded = numpy.pad( x, ((0, 0), (0, 0), (pad_top, pad_bottom), (pad_left, pad_right)), mode='constant', constant_values=numpy.nan) y = _pool( padded, x_shape, kernel_shape, strides, out_shape, pad_shape, 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2]) x = numpy.random.randn(1, 3, 32).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = [2] strides = [1] out_shape = _get_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x y = _pool(padded, x_shape, kernel_shape, strides, out_shape, [0], 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2]) x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = (2, 2) strides = (1, 1) out_shape = _get_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x y = _pool( padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[5, 5], strides=[3, 3]) x = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = (5, 5) strides = (3, 3) out_shape = _get_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x y = _pool( padded, x_shape, kernel_shape, strides, out_shape, (0, 0), 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2, 2]) x = numpy.random.randn(1, 3, 32, 32, 32).astype(numpy.float32) x_shape = numpy.shape(x) kernel_shape = [2, 2, 2] strides = [1, 1, 1] out_shape = _get_output_shape( 'VALID', x_shape[2:], kernel_shape, strides) padded = x y = _pool( padded, x_shape, kernel_shape, strides, out_shape, [0, 0, 0], 'AVG') self._expect_average_pool(node, inputs=[x], outputs=[y]) python_tested.append(OnnxAveragePool) @wraplog() @unittest.skipIf(True, "not implemented yet") def test_onnxt_runtime_average_pool_ceil(self): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[3, 3], strides=[2, 2], ceil_mode=True) x = numpy.array([[[ [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]]]).astype(numpy.float32) y = numpy.array([[[ [6, 7.5], [12, 13.5]]]]).astype(numpy.float32) self._expect_average_pool(node, inputs=[x], outputs=[y]) @wraplog() def test_onnxt_runtime_average_pool_big(self): with self.subTest(name='test_averagepool_2d_precomputed_pads'): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[5, 5], pads=[2, 2, 2, 2]) x = numpy.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]]]).astype(numpy.float32) y = numpy.array([[[[7, 7.5, 8, 8.5, 9], [9.5, 10, 10.5, 11, 11.5], [12, 12.5, 13, 13.5, 14], [14.5, 15, 15.5, 16, 16.5], [17, 17.5, 18, 18.5, 19]]]]).astype(numpy.float32) self._expect_average_pool(node, inputs=[x], outputs=[y]) with self.subTest(name='test_averagepool_2d_precomputed_pads_count_include_pad'): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[5, 5], pads=[2, 2, 2, 2], count_include_pad=1) x = numpy.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]]]).astype(numpy.float32) y = numpy.array([[[[2.5200, 3.6000, 4.8000, 4.0800, 3.2400], [4.5600, 6.4000, 8.4000, 7.0400, 5.5200], [7.2000, 10.0000, 13.0000, 10.8000, 8.4000], [6.9600, 9.6000, 12.4000, 10.2400, 7.9200], [6.1200, 8.4000, 10.8000, 8.8800, 6.8400]]]]).astype(numpy.float32) self._expect_average_pool(node, inputs=[x], outputs=[y]) with self.subTest(name='test_averagepool_2d_precomputed_same_upper'): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[3, 3], strides=[2, 2], auto_pad='SAME_UPPER') x = numpy.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]]]).astype(numpy.float32) y = numpy.array([[[[4, 5.5, 7], [11.5, 13, 14.5], [19, 20.5, 22]]]]).astype(numpy.float32) self._expect_average_pool(node, inputs=[x], outputs=[y]) with self.subTest(name='test_averagepool_2d_precomputed_strides'): node = onnx.helper.make_node( 'AveragePool', inputs=['x'], outputs=['y'], kernel_shape=[2, 2], strides=[2, 2]) x = numpy.array([[[ [1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]]]).astype(numpy.float32) y = numpy.array([[[[4, 6], [14, 16]]]]).astype(numpy.float32) self._expect_average_pool(node, inputs=[x], outputs=[y]) @wraplog() def test_onnxt_runtime_batch_normalization(self): # input size: (1, 2, 1, 3) x = numpy.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(numpy.float32) s = numpy.array([1.0, 1.5]).astype(numpy.float32) bias = numpy.array([0, 1]).astype(numpy.float32) mean = numpy.array([0, 3]).astype(numpy.float32) var = numpy.array([1, 1.5]).astype(numpy.float32) y = _batchnorm_test_mode(x, s, bias, mean, var).astype(numpy.float32) onx = OnnxBatchNormalization( 'X', s, bias, mean, var, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y, got['Y']) self.common_expected_shapes_types( oinf, {'X': x}, got, OnnxBatchNormalization, model_def) # input size: (2, 3, 4, 5) x = numpy.random.randn(2, 3, 4, 5).astype(numpy.float32) s = numpy.random.randn(3).astype(numpy.float32) bias = numpy.random.randn(3).astype(numpy.float32) mean = numpy.random.randn(3).astype(numpy.float32) var = numpy.random.rand(3).astype(numpy.float32) epsilon = 1e-2 y = _batchnorm_test_mode( x, s, bias, mean, var, epsilon).astype(numpy.float32) onx = OnnxBatchNormalization( 'X', s, bias, mean, var, output_names=['Y'], epsilon=epsilon, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y, got['Y']) python_tested.append(OnnxBatchNormalization) @wraplog() def test_onnxt_runtime_batch_normalization_training_fct(self): x = numpy.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(numpy.float32) s = numpy.array([1.0, 1.5]).astype(numpy.float32) bias = numpy.array([0, 1]).astype(numpy.float32) mean = numpy.array([0, 3]).astype(numpy.float32) var = numpy.array([1, 1.5]).astype(numpy.float32) y, scale, bias, mean, var = ( _batchnorm_training_mode(x, s, bias, mean, var)) self.assertEqualArray( numpy.array([[[[-1.2247356, 0., 1.2247356]], [[-0.8371035, 1., 2.8371034]]]], dtype=numpy.float32), y) self.assertEqualArray( numpy.array([0., 3.], dtype=numpy.float32), scale) self.assertEqualArray( numpy.array([0.6666667, 0.6666667], dtype=numpy.float32), bias) self.assertEqualArray( numpy.array([0., 2.9999998], dtype=numpy.float32), mean) self.assertEqualArray( numpy.array([0.96666664, 1.4166666], dtype=numpy.float32), var) @wraplog() @unittest.skipIf(OnnxBatchNormalization_14 is None, reason="onnx too old") def test_onnxt_runtime_batch_normalization_training(self): # input size: (1, 2, 1, 3) x = numpy.array([[[[-1, 0, 1]], [[2, 3, 4]]]]).astype(numpy.float32) s = numpy.array([1.0, 1.5]).astype(numpy.float32) bias = numpy.array([0, 1]).astype(numpy.float32) mean = numpy.array([0, 3]).astype(numpy.float32) var = numpy.array([1, 1.5]).astype(numpy.float32) y, scale, bias, mean, var = ( _batchnorm_training_mode(x, s, bias, mean, var)) onx = OnnxBatchNormalization_14( 'X', s, bias, mean, var, output_names=['Y', 'scale', 'bias', 'mean', 'var'], training_mode=1, op_version=14) try: model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=14) except RuntimeError as e: if "Shape inference fails" in str(e): warnings.warn(str(e)) return raise e oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual( list(sorted(got)), ['Y', 'bias', 'mean', 'scale', 'var']) self.assertEqualArray(scale, got['scale']) self.assertEqualArray(bias, got['bias']) self.assertEqualArray(mean, got['mean']) # self.assertEqualArray(var, got['var']) # self.assertEqualArray(y, got['Y']) self.assertNotEmpty(y) self.assertNotEmpty(var) @wraplog() def test_onnxt_runtime_cast_out(self): x = numpy.array([1., 2., 3., 4., 5., 6.]).astype( numpy.float32) # pylint: disable=E1101 dest = [(TensorProto.FLOAT, numpy.float32, FloatTensorType), # pylint: disable=E1101 (TensorProto.DOUBLE, numpy.float64, # pylint: disable=E1101 DoubleTensorType), # pylint: disable=E1101 (TensorProto.INT32, numpy.int32, # pylint: disable=E1101 Int32TensorType), # pylint: disable=E1101 (TensorProto.INT64, numpy.int64, # pylint: disable=E1101 Int64TensorType), # pylint: disable=E1101 (TensorProto.INT8, numpy.int8, # pylint: disable=E1101 Int8TensorType), # pylint: disable=E1101 (TensorProto.INT16, numpy.int16, # pylint: disable=E1101 Int16TensorType), # pylint: disable=E1101 (TensorProto.UINT8, numpy.uint8, # pylint: disable=E1101 UInt8TensorType), # pylint: disable=E1101 (TensorProto.UINT32, numpy.uint32, # pylint: disable=E1101 UInt32TensorType), # pylint: disable=E1101 (TensorProto.UINT16, numpy.uint16, # pylint: disable=E1101 UInt16TensorType), # pylint: disable=E1101 (TensorProto.UINT64, numpy.uint64, # pylint: disable=E1101 UInt64TensorType), # pylint: disable=E1101 (TensorProto.FLOAT16, numpy.float16, # pylint: disable=E1101 Float16TensorType), # pylint: disable=E1101 (TensorProto.BOOL, numpy.bool_, # pylint: disable=E1101 BooleanTensorType), # pylint: disable=E1101 (TensorProto.STRING, numpy.str_, StringTensorType), ] # pylint: disable=E1101 for opset in range(9, get_opset_number_from_onnx() + 1): for to, nptp, outp in dest: if nptp == numpy.bool_: self.assertIn(proto2dtype(to), (nptp, bool)) elif nptp == numpy.str_: self.assertIn(proto2dtype(to), (nptp, str)) else: self.assertEqual(proto2dtype(to), nptp) self.assertEqual(to, guess_proto_dtype(nptp)) self.assertNotEmpty(_elem_type_as_str(to)) with self.subTest(opset=opset, to=to): onx = OnnxCast('X', to=to, output_names=['Y'], op_version=opset) model_def = onx.to_onnx( {'X': x}, outputs=[('Y', outp())], target_opset=opset) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) if nptp == numpy.str_: self.assertEqual( x.astype(nptp).tolist(), got['Y'].tolist()) else: self.assertEqualArray(x.astype(nptp), got['Y']) self.common_expected_shapes_types( oinf, {'X': x}, got, OnnxCast, model_def) python_tested.append(OnnxCast) @wraplog() def test_onnxt_runtime_cast_in(self): x = numpy.array([1., 2., 3., 4., 5., 6.]).astype( numpy.float32) # pylint: disable=E1101 dest = [(TensorProto.FLOAT, numpy.float32, FloatTensorType), # pylint: disable=E1101 (TensorProto.DOUBLE, numpy.float64, # pylint: disable=E1101 DoubleTensorType), # pylint: disable=E1101 (TensorProto.INT32, numpy.int32, # pylint: disable=E1101 Int32TensorType), # pylint: disable=E1101 (TensorProto.INT64, numpy.int64, # pylint: disable=E1101 Int64TensorType), # pylint: disable=E1101 (TensorProto.INT8, numpy.int8, # pylint: disable=E1101 Int8TensorType), # pylint: disable=E1101 (TensorProto.INT16, numpy.int16, # pylint: disable=E1101 Int16TensorType), # pylint: disable=E1101 (TensorProto.UINT8, numpy.uint8, # pylint: disable=E1101 UInt8TensorType), # pylint: disable=E1101 (TensorProto.UINT32, numpy.uint32, # pylint: disable=E1101 UInt32TensorType), # pylint: disable=E1101 (TensorProto.UINT16, numpy.uint16, # pylint: disable=E1101 UInt16TensorType), # pylint: disable=E1101 (TensorProto.UINT64, numpy.uint64, # pylint: disable=E1101 UInt64TensorType), # pylint: disable=E1101 (TensorProto.FLOAT16, numpy.float16, # pylint: disable=E1101 Float16TensorType), # pylint: disable=E1101 (TensorProto.BOOL, numpy.bool_, # pylint: disable=E1101 BooleanTensorType), # pylint: disable=E1101 (TensorProto.STRING, numpy.str_, StringTensorType), ] # pylint: disable=E1101 for opset in range(9, get_opset_number_from_onnx() + 1): for to, nptp, _ in dest: if nptp == numpy.bool_: self.assertIn(proto2dtype(to), (nptp, bool)) elif nptp == numpy.str_: self.assertIn(proto2dtype(to), (nptp, str)) else: self.assertEqual(proto2dtype(to), nptp) self.assertEqual(to, guess_proto_dtype(nptp)) self.assertNotEmpty(_elem_type_as_str(to)) with self.subTest(opset=opset, to=to): xi = x.astype(nptp) onx = OnnxCast('X', to=TensorProto.STRING, # pylint: disable=E1101 output_names=['Y'], op_version=opset) model_def = onx.to_onnx( {'X': xi}, outputs=[('Y', StringTensorType())], target_opset=opset) got = OnnxInference(model_def).run({'X': xi}) self.assertEqual( xi.astype(str).tolist(), got['Y'].tolist()) python_tested.append(OnnxCast) @wraplog() def test_onnxt_runtime_ceil(self): self.common_test_onnxt_runtime_unary(OnnxCeil, numpy.ceil) @unittest.skipIf(OnnxCelu is None, reason="onnx too recent") @wraplog() def test_onnxt_runtime_celu1(self): self.common_test_onnxt_runtime_unary( OnnxCelu, _vcelu1, op_version=12, outputs=[('Y', FloatTensorType([None, 2]))]) @unittest.skipIf(OnnxCelu is None, reason="onnx too recent") @wraplog() def test_onnxt_runtime_celu2(self): _vcelu2 = numpy.vectorize( lambda x: pycelu(x, 1.), otypes=[numpy.float]) self.common_test_onnxt_runtime_unary( OnnxCelu, _vcelu2, op_version=12, outputs=[('Y', FloatTensorType([None, 2]))]) @unittest.skipIf(onnx_opset_version() < 11, reason="Explicitely tests Clip >= 11") @wraplog() def test_onnxt_runtime_clip(self): self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=None: OnnxClip( x, numpy.array([0], dtype=numpy.float32), output_names=output_names, op_version=op_version), lambda x: numpy.clip(x, 0, 1e5)) self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=None: OnnxClip( x, numpy.array([-1000], dtype=numpy.float32), numpy.array([0], dtype=numpy.float32), op_version=op_version, output_names=output_names), lambda x: numpy.clip(x, -1e5, 0)) self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=None: OnnxClip( x, numpy.array([0.1], dtype=numpy.float32), numpy.array([2.1], dtype=numpy.float32), output_names=output_names, op_version=op_version), lambda x: numpy.clip(x, 0.1, 2.1)) python_tested.append(OnnxClip) @wraplog() def test_onnxt_runtime_compress(self): # axis is None x = numpy.array([1., 2., 3., 4., 5., 6.]).astype(numpy.float32) x = x.reshape((-1, 2)) cond = numpy.array([False, True, False]) onx = OnnxCompress('X', 'cond', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'cond': cond}, outputs=[('Y', FloatTensorType())], target_opset=get_opset_number_from_onnx()) exp = numpy.compress(cond, x) oinf = OnnxInference(model_def) got = oinf.run({'X': x, 'cond': cond}) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'X': x, 'cond': cond}, got, OnnxCompress, model_def) python_tested.append(OnnxCompress) @wraplog() def test_onnxt_runtime_clip_10(self): from skl2onnx.algebra.onnx_ops import OnnxClip_6 # pylint: disable=E0611 self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=10: OnnxClip_6( x, min=1e-5, max=1e5, output_names=output_names, op_version=10), lambda x: numpy.clip(x, 1e-5, 1e5), op_version=10) self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=10: OnnxClip( x, min=1e-5, max=1e5, output_names=output_names, op_version=10), lambda x: numpy.clip(x, 1e-5, 1e5), op_version=10) self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=10: OnnxClip( x, max=1e-5, output_names=output_names, op_version=10), lambda x: numpy.clip(x, -1e5, 1e-5), op_version=10) self.common_test_onnxt_runtime_unary( lambda x, output_names=None, op_version=10: OnnxClip( x, min=0.1, max=2.1, output_names=output_names, op_version=10), lambda x: numpy.clip(x, 0.1, 2.1), op_version=10) @wraplog() def test_onnxt_runtime_concat(self): cst = numpy.array([[1, 2]], dtype=numpy.float32) onx = OnnxConcat('X', 'Y', cst, output_names=['Z'], op_version=get_opset_number_from_onnx()) X = numpy.array([[1, 2], [3, 4]], dtype=numpy.float64) Y = numpy.array([[8, 9], [10, 11], [12, 13]], dtype=numpy.float64) model_def = onx.to_onnx({'X': X.astype(numpy.float32), 'Y': Y.astype(numpy.float32)}, outputs=[('Z', FloatTensorType([2]))], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X.astype(numpy.float32), 'Y': Y.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Z']) self.assertEqual(got['Z'].shape, (6, 2)) exp = numpy.vstack([X, Y, cst]) self.assertEqualArray(exp, got['Z']) self.common_expected_shapes_types( oinf, {'X': X.astype(numpy.float32), 'Y': Y.astype(numpy.float32)}, got, OnnxConcat, model_def) python_tested.append(OnnxConstantOfShape) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference( oinfpy, {'X': X.astype(numpy.float32), 'Y': Y.astype(numpy.float32)}) python_tested.append(OnnxConcat) @wraplog() def test_onnxt_runtime_constant_of_shape(self): x = numpy.array([2, 2], dtype=numpy.int64) y = numpy.zeros((2, 2), dtype=numpy.float32) onx = OnnxConstantOfShape('X', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.int64)}, outputs=[('Y', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x.astype(numpy.int64)}) self.assertEqualArray(y, got['Y']) self.common_expected_shapes_types( oinf, {'X': x.astype(numpy.int64)}, got, OnnxConstantOfShape, model_def) python_tested.append(OnnxConstantOfShape) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': x}) @wraplog() def test_onnxt_runtime_conv0(self): x = numpy.array([[[[0., 1., 2., 3., 4.], # (1, 1, 5, 5) input tensor [5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.], [20., 21., 22., 23., 24.]]]]).astype(numpy.float32) W = numpy.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights [1., 1., 1.], [1., 1., 1.]]]]).astype(numpy.float32) # test 1 y_with_padding = numpy.array([[[[12., 21., 27., 33., 24.], # (1, 1, 5, 5) output tensor [33., 54., 63., 72., 51.], [63., 99., 108., 117., 81.], [93., 144., 153., 162., 111.], [72., 111., 117., 123., 84.]]]]).astype(numpy.float32) onx = OnnxConv( 'X', W, output_names=['Y'], kernel_shape=[3, 3], pads=[1, 1, 1, 1], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) for rt in ['python', 'onnxruntime1']: with self.subTest(runtime=rt): oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) # test 2 y_without_padding = numpy.array([[[[54., 63., 72.], # (1, 1, 3, 3) output tensor [99., 108., 117.], [144., 153., 162.]]]]).astype(numpy.float32) onx = OnnxConv( 'X', W, output_names=['Y'], kernel_shape=[3, 3], pads=[0, 0, 0, 0], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) for rt in ['python', 'onnxruntime1']: with self.subTest(runtime=rt): oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_without_padding, got['Y']) if rt == 'python': self.common_expected_shapes_types( oinf, {'X': x}, got, OnnxConv, model_def) else: self.assertRaise( lambda: self.common_expected_shapes_types( oinf, {'X': x}, got, OnnxConv, model_def), RuntimeError) # test 3 y = numpy.array([[[[12., 27., 24.], [63., 108., 81.], [72., 117., 84.]]]]).astype(numpy.float32) onx = OnnxConv( 'X', W, output_names=['Y'], kernel_shape=[3, 3], auto_pad='SAME_LOWER', strides=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) for rt in ['python', 'onnxruntime1']: with self.subTest(runtime=rt): oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y, got['Y']) python_tested.append(OnnxConv) @wraplog() def test_onnxt_runtime_conv1(self): x = numpy.array([[[[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.], [10., 11., 12., 13., 14.], [15., 16., 17., 18., 19.], [20., 21., 22., 23., 24.], [25., 26., 27., 28., 29.], [30., 31., 32., 33., 34.]]]]).astype(numpy.float32) W = numpy.array([[[[1., 1., 1.], # (1, 1, 3, 3) tensor for convolution weights [1., 1., 1.], [1., 1., 1.]]]]).astype(numpy.float32) # test 1 y_with_padding = numpy.array([[[[12., 27., 24.], # (1, 1, 4, 3) output tensor [63., 108., 81.], [123., 198., 141.], [112., 177., 124.]]]]).astype(numpy.float32) onx = OnnxConv( 'X', W, output_names=['Y'], kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) for rt in ['python', 'onnxruntime1']: with self.subTest(runtime=rt): oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) # test 2 y_without_padding = numpy.array([[[[54., 72.], # (1, 1, 3, 2) output tensor [144., 162.], [234., 252.]]]]).astype(numpy.float32) onx = OnnxConv( 'X', W, output_names=['Y'], kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) for rt in ['python', 'onnxruntime1']: with self.subTest(runtime=rt): oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_without_padding, got['Y']) # test 3 y_with_asymmetric_padding = numpy.array([[[[21., 33.], # (1, 1, 4, 2) output tensor [99., 117.], [189., 207.], [171., 183.]]]]).astype(numpy.float32) onx = OnnxConv( 'X', W, output_names=['Y'], kernel_shape=[3, 3], pads=[1, 0, 1, 0], strides=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) for rt in ['python', 'onnxruntime1']: with self.subTest(runtime=rt): oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_asymmetric_padding, got['Y']) @wraplog() def test_onnxt_runtime_conv2_B(self): x = numpy.random.rand(1, 3, 5, 4).astype(numpy.float32) W = numpy.random.rand(4, 3, 3, 3).astype(numpy.float32) B = numpy.array([100, 700, 1000, 7000], dtype=numpy.float32) onx = OnnxConv( 'X', 'W', 'B', output_names=['Y'], kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'W': W, 'B': B}, target_opset=get_opset_number_from_onnx()) ys = [] for rt in ['python', 'onnxruntime1']: oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x, 'W': W, 'B': B}) ys.append(got['Y']) self.assertEqualArray(ys[0], ys[1], decimal=4) @wraplog() def test_onnxt_runtime_conv_transpose(self): x = numpy.array([[[[0., 1., 2.], # (1, 1, 3, 3) [3., 4., 5.], [6., 7., 8.]]]]).astype(numpy.float32) W = numpy.array([[[[1., 1., 1.], # (1, 2, 3, 3) [1., 1., 1.], [1., 1., 1.]], [[1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]]]).astype(numpy.float32) y_with_padding = numpy.array([[[[0., 1., 3., 3., 2.], # (1, 2, 5, 5) [3., 8., 15., 12., 7.], [9., 21., 36., 27., 15.], [9., 20., 33., 24., 13.], [6., 13., 21., 15., 8.]], [[0., 1., 3., 3., 2.], [3., 8., 15., 12., 7.], [9., 21., 36., 27., 15.], [9., 20., 33., 24., 13.], [6., 13., 21., 15., 8.]]]]).astype(numpy.float32) onx = OnnxConvTranspose( 'X', W, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) python_tested.append(OnnxConv) @wraplog() def test_onnxt_runtime_conv_transpose_B(self): x = numpy.random.rand(1, 3, 5, 4).astype(numpy.float32) W = numpy.random.rand(3, 4, 3, 3).astype(numpy.float32) B = numpy.array([100, 700, 1000, 7000], dtype=numpy.float32) onx = OnnxConvTranspose( 'X', 'W', 'B', output_names=['Y'], kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'W': W, 'B': B}, target_opset=get_opset_number_from_onnx()) ys = [] for rt in ['python', 'onnxruntime1']: oinf = OnnxInference(model_def, runtime=rt) got = oinf.run({'X': x, 'W': W, 'B': B}) ys.append(got['Y']) self.assertEqual(len(ys), 2) # self.assertEqualArray(ys[0], ys[1]) @wraplog() def test_onnxt_runtime_conv_transpose_1d(self): x = numpy.array([[[0., 1., 2.]]]).astype(numpy.float32) W = numpy.array([[[1., 1., 1.], # (1, 2, 3) [1., 1., 1.]]]).astype(numpy.float32) y_with_padding = numpy.array( [[[0., 1., 3., 3., 2.], # (1, 2, 5) [0., 1., 3., 3., 2.]]]).astype(numpy.float32) onx = OnnxConvTranspose( 'X', W, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def, runtime="onnxruntime1") got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) python_tested.append(OnnxConvTranspose) @wraplog() def test_onnxt_runtime_conv_transpose_3d(self): x = numpy.arange(60).reshape((1, 1, 3, 4, 5)).astype(numpy.float32) W = numpy.ones((1, 2, 3, 3, 3)).astype(numpy.float32) y_with_padding = numpy.array( [[[[[0., 1., 3., 6., 9., 7., 4.], # (1, 2, 5, 6, 7) [5., 12., 21., 27., 33., 24., 13.], [15., 33., 54., 63., 72., 51., 27.], [30., 63., 99., 108., 117., 81., 42.], [25., 52., 81., 87., 93., 64., 33.], [15., 31., 48., 51., 54., 37., 19.]], [[20., 42., 66., 72., 78., 54., 28.], [50., 104., 162., 174., 186., 128., 66.], [90., 186., 288., 306., 324., 222., 114.], [120., 246., 378., 396., 414., 282., 144.], [90., 184., 282., 294., 306., 208., 106.], [50., 102., 156., 162., 168., 114., 58.]], [[60., 123., 189., 198., 207., 141., 72.], [135., 276., 423., 441., 459., 312., 159.], [225., 459., 702., 729., 756., 513., 261.], [270., 549., 837., 864., 891., 603., 306.], [195., 396., 603., 621., 639., 432., 219.], [105., 213., 324., 333., 342., 231., 117.]], [[60., 122., 186., 192., 198., 134., 68.], [130., 264., 402., 414., 426., 288., 146.], [210., 426., 648., 666., 684., 462., 234.], [240., 486., 738., 756., 774., 522., 264.], [170., 344., 522., 534., 546., 368., 186.], [90., 182., 276., 282., 288., 194., 98.]], [[40., 81., 123., 126., 129., 87., 44.], [85., 172., 261., 267., 273., 184., 93.], [135., 273., 414., 423., 432., 291., 147.], [150., 303., 459., 468., 477., 321., 162.], [105., 212., 321., 327., 333., 224., 113.], [55., 111., 168., 171., 174., 117., 59.]]], [[[0., 1., 3., 6., 9., 7., 4.], [5., 12., 21., 27., 33., 24., 13.], [15., 33., 54., 63., 72., 51., 27.], [30., 63., 99., 108., 117., 81., 42.], [25., 52., 81., 87., 93., 64., 33.], [15., 31., 48., 51., 54., 37., 19.]], [[20., 42., 66., 72., 78., 54., 28.], [50., 104., 162., 174., 186., 128., 66.], [90., 186., 288., 306., 324., 222., 114.], [120., 246., 378., 396., 414., 282., 144.], [90., 184., 282., 294., 306., 208., 106.], [50., 102., 156., 162., 168., 114., 58.]], [[60., 123., 189., 198., 207., 141., 72.], [135., 276., 423., 441., 459., 312., 159.], [225., 459., 702., 729., 756., 513., 261.], [270., 549., 837., 864., 891., 603., 306.], [195., 396., 603., 621., 639., 432., 219.], [105., 213., 324., 333., 342., 231., 117.]], [[60., 122., 186., 192., 198., 134., 68.], [130., 264., 402., 414., 426., 288., 146.], [210., 426., 648., 666., 684., 462., 234.], [240., 486., 738., 756., 774., 522., 264.], [170., 344., 522., 534., 546., 368., 186.], [90., 182., 276., 282., 288., 194., 98.]], [[40., 81., 123., 126., 129., 87., 44.], [85., 172., 261., 267., 273., 184., 93.], [135., 273., 414., 423., 432., 291., 147.], [150., 303., 459., 468., 477., 321., 162.], [105., 212., 321., 327., 333., 224., 113.], [55., 111., 168., 171., 174., 117., 59.]]]]]).astype(numpy.float32) onx = OnnxConvTranspose( 'X', W, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) @unittest.skipIf(True, reason="fails with output_shape") @wraplog() def test_onnxt_runtime_conv_transpose_output_shape(self): x = numpy.arange(9).reshape((1, 1, 3, 3)).astype(numpy.float32) W = numpy.ones((1, 2, 3, 3)).astype(numpy.float32) y_with_padding = numpy.array( [[[[0., 0., 1., 1., 3., 2., 2., 0.], # (1, 2, 10, 8) [0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]]]]).astype(numpy.float32) with self.subTest(part="output_shape"): onx = OnnxConvTranspose( 'X', W, output_names=['Y'], strides=[3, 2], output_shape=[10, 8], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def, runtime="onnxruntime1") got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) @wraplog() def test_onnxt_runtime_conv_transpose_attributes(self): x = numpy.arange(9).reshape((1, 1, 3, 3)).astype(numpy.float32) W = numpy.ones((1, 2, 3, 3)).astype(numpy.float32) y_with_padding = numpy.array( [[[[0., 0., 1., 1., 3., 2., 2., 0.], # (1, 2, 10, 8) [0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]], [[0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [0., 0., 1., 1., 3., 2., 2., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [3., 3., 7., 4., 9., 5., 5., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [6., 6., 13., 7., 15., 8., 8., 0.], [0., 0., 0., 0., 0., 0., 0., 0.]]]]).astype(numpy.float32) with self.subTest(part="output_padding"): onx = OnnxConvTranspose( 'X', W, output_names=['Y'], strides=[3, 2], output_padding=[1, 1], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) with self.subTest(part="kernel_shape"): onx = OnnxConvTranspose( 'X', W, output_names=['Y'], strides=[3, 2], output_shape=[10, 8], kernel_shape=[3, 3], output_padding=[1, 1], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) @wraplog() def test_onnxt_runtime_conv_transpose_dilation(self): x = numpy.array([[[[3., 8., 1.], # (1, 1, 3, 3) [9., 5., 7.], [3., 2., 6.]]]]).astype(numpy.float32) W = numpy.array([[[[7., 2.], # (1, 1, 2, 2) [1., 9.]]]]).astype(numpy.float32) y_with_padding = numpy.array( [[[[21., 56., 13., 16., 2.], # [1, 1, 5, 5] [63., 35., 67., 10., 14.], [24., 22., 76., 76., 21.], [9., 5., 88., 45., 63.], [3., 2., 33., 18., 54.]]]]).astype(numpy.float32) onx = OnnxConvTranspose( 'X', W, output_names=['Y'], dilations=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) @wraplog() def test_onnxt_runtime_conv_transpose_pads(self): x = numpy.arange(9).reshape((1, 1, 3, 3)).astype(numpy.float32) W = numpy.ones((1, 2, 3, 3)).astype(numpy.float32) y_with_padding = numpy.array( [[[[1., 1., 3.], # (1, 2, 7, 3) [1., 1., 3.], [7., 4., 9.], [7., 4., 9.], [7., 4., 9.], [13., 7., 15.], [13., 7., 15.]], [[1., 1., 3.], [1., 1., 3.], [7., 4., 9.], [7., 4., 9.], [7., 4., 9.], [13., 7., 15.], [13., 7., 15.]]]]).astype(numpy.float32) onx = OnnxConvTranspose( 'X', W, output_names=['Y'], strides=[3, 2], pads=[1, 2, 1, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y_with_padding, got['Y']) @wraplog() def test_onnxt_runtime_cos(self): self.common_test_onnxt_runtime_unary(OnnxCos, numpy.cos) @wraplog() def test_onnxt_runtime_cosh(self): self.common_test_onnxt_runtime_unary(OnnxCosh, numpy.cosh) @wraplog() def test_onnxt_runtime_cum_sum(self): x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64) axis = numpy.array([0]).astype(numpy.int32) exp = numpy.array([1., 3., 6., 10., 15.]).astype(numpy.float64) onx = OnnxCumSum('X', 'axis', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'axis': axis}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x.astype(numpy.float64), 'axis': axis}) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'X': x.astype(numpy.float64), 'axis': axis}, got, OnnxCumSum, model_def) python_tested.append(OnnxCumSum) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': x, 'axis': axis}) # reverse = 1 x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64) axis = numpy.array([0]).astype(numpy.int32) exp = numpy.array([15., 14., 12., 9., 5.]).astype(numpy.float64) onx = OnnxCumSum('X', 'axis', output_names=['Y'], reverse=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'axis': axis}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) try: got = OnnxInference(model_def).run({'X': x, 'axis': axis}) self.assertEqualArray(exp, got['Y']) except NotImplementedError: pass # exclusive = 1 x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64) axis = numpy.array([0]).astype(numpy.int32) exp = numpy.array([0., 1., 3., 6., 10.]).astype(numpy.float64) onx = OnnxCumSum('X', 'axis', output_names=['Y'], exclusive=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'axis': axis}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) try: got = OnnxInference(model_def).run({'X': x, 'axis': axis}) self.assertEqualArray(exp, got['Y']) except NotImplementedError: pass # 2d axis = 0 x = numpy.array([1., 2., 3., 4., 5., 6.]).astype( numpy.float64).reshape((2, 3)) axis = numpy.array([0]).astype(numpy.int32) exp = numpy.array([1., 2., 3., 5., 7., 9.]).astype( numpy.float64).reshape((2, 3)) onx = OnnxCumSum('X', 'axis', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'axis': axis}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) got = OnnxInference(model_def).run({'X': x, 'axis': axis}) self.assertEqualArray(exp, got['Y']) # 2d axis = 1 x = numpy.array([1., 2., 3., 4., 5., 6.]).astype( numpy.float64).reshape((2, 3)) axis = numpy.array([-1]).astype(numpy.int32) exp = numpy.array([1., 3., 6., 4., 9., 15.]).astype( numpy.float64).reshape((2, 3)) onx = OnnxCumSum('X', 'axis', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'axis': axis}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) got = OnnxInference(model_def).run({'X': x, 'axis': axis}) self.assertEqualArray(exp, got['Y']) # 2d axis = 1, reverse x = numpy.array([1., 2., 3., 4., 5., 6.]).astype( numpy.float64).reshape((2, 3)) axis = numpy.array([-1]).astype(numpy.int32) exp = numpy.array([1., 3., 6., 4., 9., 15.]).astype( numpy.float64).reshape((2, 3)) onx = OnnxCumSum('X', 'axis', output_names=['Y'], reverse=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x, 'axis': axis}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) try: got = OnnxInference(model_def).run({'X': x, 'axis': axis}) self.assertEqualArray(exp, got['Y']) except NotImplementedError: pass # no axis x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64) axis = numpy.array([0]).astype(numpy.int32) exp = numpy.array([1., 3., 6., 10., 15.]).astype(numpy.float64) try: onx = OnnxCumSum('X', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': x}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) got = OnnxInference(model_def).run({'X': x}) self.assertEqualArray(exp, got['Y']) except RuntimeError: pass # reverse = 1 x = numpy.array([1., 2., 3., 4., 5.]).astype(numpy.float64) axis = numpy.array([0]).astype(numpy.int32) exp = numpy.array([15., 14., 12., 9., 5.]).astype(numpy.float64) try: onx = OnnxCumSum('X', output_names=['Y'], reverse=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': x}, outputs=[('Y', DoubleTensorType())], target_opset=get_opset_number_from_onnx()) got = OnnxInference(model_def).run({'X': x}) self.assertEqualArray(exp, got['Y']) except RuntimeError: pass @wraplog() def test_onnxt_runtime_det(self): self.common_test_onnxt_runtime_unary( OnnxDet, lambda x: numpy.array([numpy.linalg.det(x)]), do_sparse=False) @wraplog() def test_onnxt_runtime_dequantize_linear(self): X = numpy.array([[[[3, 89], [34, 200], [74, 59]], [[5, 24], [24, 87], [32, 13]], [[245, 99], [4, 142], [121, 102]], ], ], dtype=numpy.uint8) x_scale = numpy.array([2, 4, 5], dtype=numpy.float32) x_zero_point = numpy.array([84, 24, 196], dtype=numpy.uint8) exp = ((X.astype(numpy.float32) - x_zero_point.reshape( (1, 3, 1, 1)).astype(numpy.float32)) * x_scale.reshape((1, 3, 1, 1))) onx = OnnxDequantizeLinear( 'X', x_scale, x_zero_point, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxDequantizeLinear, model_def) X = numpy.array([0, 3, 128, 255]).astype(numpy.uint8) x_scale = numpy.array([2], dtype=numpy.float32) x_zero_point = numpy.array([128], dtype=numpy.uint8) exp = numpy.array([-256, -250, 0, 254], dtype=numpy.float32) onx = OnnxDequantizeLinear( 'X', x_scale, x_zero_point, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) python_tested.append(OnnxDequantizeLinear) @wraplog() def test_onnxt_runtime_div(self): self.common_test_onnxt_runtime_binary(OnnxDiv, lambda x, y: x / y) @wraplog() def test_onnxt_runtime_dropout_10(self): seed = numpy.int64(0) X = numpy.random.randn(3, 4, 5).astype(numpy.float32) onx = OnnxDropout_7('X', output_names=['Y'], op_version=10) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, outputs=[('Y', FloatTensorType())], target_opset=10) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqual(got['Y'].shape, X.shape) self.assertEqualArray(got['Y'], _dropout(X, seed=seed)[0]) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxDropout_7, model_def) python_tested.append(OnnxDropout) @wraplog() def test_onnxt_runtime_dropout(self): seed = numpy.int64(0) X = numpy.random.randn(3, 4, 5).astype(numpy.float32) onx = OnnxDropout('X', output_names=['Y'], seed=seed, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, outputs=[('Y', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqual(got['Y'].shape, X.shape) self.assertEqualArray(got['Y'], _dropout(X, seed=seed)[0]) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxDropout, model_def) onx = OnnxDropout('X', output_names=['Y', 'Z'], seed=seed, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, outputs=[('Y', FloatTensorType()), ('Z', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y', 'Z']) self.assertEqual(got['Y'].shape, X.shape) res = _dropout(X, seed=seed, return_mask=True) self.assertEqualArray(got['Y'], res[0]) self.assertEqualArray(got['Z'], res[1]) R = numpy.array([0.1], dtype=numpy.float32) onx = OnnxDropout('X', 'R', output_names=['Y'], seed=seed, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32), 'R': R.astype(numpy.float32)}, outputs=[('Y', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X, 'R': R}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqual(got['Y'].shape, X.shape) self.assertEqualArray( got['Y'], _dropout(X, seed=seed, drop_probability=0.1)[0]) R = numpy.array([0.75], dtype=numpy.float32) B = numpy.array([True]) onx = OnnxDropout('X', 'R', 'B', output_names=['Y'], seed=seed, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32), 'R': R, 'B': B}, outputs=[('Y', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X, 'R': R, 'B': B}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqual(got['Y'].shape, X.shape) self.assertEqualArray( got['Y'], _dropout(X, seed=seed, drop_probability=0.75, training_mode=True)[0]) python_tested.append(OnnxDropout) @wraplog() def test_onnxt_runtime_einsum(self): X = numpy.random.randn(5, 2, 3).astype(numpy.float32) Y = numpy.random.randn(5, 3, 4).astype(numpy.float32) equation = 'bij,bjk->bik' onx = OnnxEinsum( 'X', 'Y', equation=equation, output_names=['Z'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32), 'Y': Y.astype(numpy.float32)}, outputs=[('Z', FloatTensorType([2]))], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X, 'Y': Y}) exp = numpy.einsum(equation, X, Y) self.assertEqualArray(exp, got['Z']) self.common_expected_shapes_types( oinf, {'X': X, 'Y': Y}, got, OnnxEinsum, model_def) python_tested.append(OnnxEinsum) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': X.astype(numpy.float32), 'Y': Y.astype(numpy.float32)}) @wraplog() def test_onnxt_runtime_eyelike(self): onx = OnnxEyeLike('X', k=0, output_names=['Y']) X = numpy.array([2, 2], dtype=numpy.int64) model_def = onx.to_onnx({'X': X.astype(numpy.int64)}, target_opset=get_opset_number_from_onnx(), outputs=[('Y', FloatTensorType())]) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual(list(sorted(got)), ['Y']) exp = numpy.eye(*X, k=0) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxEyeLike, model_def) oinfpy = OnnxInference(model_def, runtime="python") validate_python_inference(oinfpy, {'X': X.astype(numpy.int64)}) python_tested.append(OnnxEyeLike) @wraplog() def test_onnxt_runtime_equal(self): self.common_test_onnxt_runtime_binary(OnnxEqual, numpy.equal) @wraplog() def test_onnxt_runtime_erf(self): self.common_test_onnxt_runtime_unary(OnnxErf, erf) @wraplog() def test_onnxt_runtime_exp(self): self.common_test_onnxt_runtime_unary(OnnxExp, numpy.exp) @wraplog() def test_onnxt_runtime_flatten(self): shape = (2, 3, 4, 5) x = numpy.random.random_sample(shape).astype( # pylint: disable=E1101 numpy.float32) # pylint: disable=E1101 for i in range(len(shape)): node = OnnxFlatten('X', axis=i, output_names='Y', op_version=get_opset_number_from_onnx()) model_def = node.to_onnx( {'X': x}, outputs=[('Y', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) new_shape = ((1, -1) if i == 0 else (numpy.prod(shape[0:i]).astype(int), -1)) exp = numpy.reshape(x, new_shape) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'X': x}, got, OnnxFlatten, model_def) python_tested.append(OnnxFlatten) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': x}) @wraplog() def test_onnxt_runtime_floor(self): self.common_test_onnxt_runtime_unary(OnnxFloor, numpy.floor) @wraplog() def test_onnxt_runtime_gather_elements0(self): from skl2onnx.algebra.onnx_ops import OnnxGatherElements # pylint: disable=E0611 # ex 1 data = numpy.array([[1, 2], [3, 4]], dtype=numpy.float32) indices = numpy.array([], dtype=numpy.int64) onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': data, 'Y': indices}, outputs=[('Z', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': data, 'Y': indices}) self.assertEqual(got['Z'].size, 0) self.common_expected_shapes_types( oinf, {'X': data, 'Y': indices}, got, OnnxGatherElements, model_def) @wraplog() def test_onnxt_runtime_gather_elements0_fortran(self): from skl2onnx.algebra.onnx_ops import OnnxGatherElements # pylint: disable=E0611 # ex 1 data = numpy.array([[1, 2], [3, 4]], dtype=numpy.float32, order='F') indices = numpy.array([], dtype=numpy.int64, order='F') onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': data, 'Y': indices}, outputs=[('Z', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': data, 'Y': indices}) self.assertEqual(got['Z'].size, 0) @wraplog() def test_onnxt_runtime_gather_elements(self): from skl2onnx.algebra.onnx_ops import OnnxGatherElements # pylint: disable=E0611 # ex 1 data = numpy.array([[1, 2], [3, 4]], dtype=numpy.float32) indices = numpy.array([[0, 0], [1, 0]], dtype=numpy.int64) onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=1, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': data, 'Y': indices}, outputs=[('Z', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': data, 'Y': indices}) exp = numpy.array([[1, 1], [4, 3]], dtype=numpy.float32) self.assertEqual(exp, got['Z']) python_tested.append(OnnxGatherElements) oinfpy = OnnxInference(model_def, runtime="python", inplace=True) validate_python_inference(oinfpy, {'X': data, 'Y': indices}) # ex 2 data = numpy.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=numpy.float32) indices = numpy.array([[1, 2, 0], [2, 0, 0]], dtype=numpy.int32) onx = OnnxGatherElements('X', 'Y', output_names=['Z'], axis=0, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': data, 'Y': indices}, outputs=[('Z', FloatTensorType())], target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': data, 'Y': indices}) exp = numpy.array([[4, 8, 3], [7, 2, 3]], dtype=numpy.float32) self.assertEqual(exp, got['Z']) @wraplog() def test_onnxt_runtime_gemm_python(self): self.do_test_onnxt_runtime_gemm("python") python_tested.append(OnnxGemm) @wraplog() def test_onnxt_runtime_gemm_onnxruntime(self): self.do_test_onnxt_runtime_gemm("onnxruntime1") def do_test_onnxt_runtime_gemm(self, runtime): idi = numpy.array([[1, 0], [1, 1]], dtype=numpy.float32) cst = numpy.array([4, 5], dtype=numpy.float32) X = numpy.array([[1, 2], [3, 4]], dtype=numpy.float32) onx = OnnxGemm('X', idi, cst, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) if 'onnxruntime' in runtime: model_def.ir_version = get_ir_version_from_onnx() try: oinf = OnnxInference(model_def, runtime=runtime) except RuntimeError as e: raise RuntimeError( "Unable to instantiate (runtime='{}')\n{}".format( runtime, model_def)) from e got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.dot(X, idi) + cst, got['Y'], decimal=5) onx = OnnxGemm('X', idi, cst, transA=1, transB=1, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) if 'onnxruntime' in runtime: model_def.ir_version = get_ir_version_from_onnx() try: oinf = OnnxInference(model_def, runtime=runtime) except RuntimeError as e: raise RuntimeError( "Unable to instantiate (runtime='{}')\n{}".format( runtime, model_def)) from e got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.dot(X.T, idi.T) + cst, got['Y'], decimal=5) onx = OnnxGemm('X', idi, cst, transA=1, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) model_def.ir_version = get_ir_version_from_onnx() oinf = OnnxInference(model_def, runtime=runtime) got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.dot(X.T, idi) + cst, got['Y'], decimal=5) onx = OnnxGemm('X', idi, cst, transB=1, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) if 'onnxruntime' in runtime: model_def.ir_version = get_ir_version_from_onnx() oinf = OnnxInference(model_def, runtime=runtime) got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.dot(X, idi.T) + cst, got['Y'], decimal=5) onx = OnnxGemm('X', idi, cst, transB=1, output_names=['Y'], alpha=numpy.float32(1.), op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) if 'onnxruntime' in runtime: model_def.ir_version = get_ir_version_from_onnx() oinf = OnnxInference(model_def, runtime=runtime) got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.dot(X, idi.T) + cst, got['Y'], decimal=5) if runtime != 'onnxruntime1': onx = OnnxGemm('X', idi, cst, transB=1, output_names=['Y'], alpha=numpy.float32(1.), op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float64)}, target_opset=get_opset_number_from_onnx()) if 'onnxruntime' in runtime: model_def.ir_version = get_ir_version_from_onnx() oinf = OnnxInference(model_def, runtime=runtime) got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(numpy.dot(X, idi.T) + cst, got['Y'], decimal=5) @wraplog() def test_onnxt_runtime_global_average_pool(self): x = x = numpy.random.randn(1, 3, 5, 5).astype(numpy.float32) y = _global_average_pool(x).astype(numpy.float32) onx = OnnxGlobalAveragePool( 'X', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y, got['Y']) self.common_expected_shapes_types( oinf, {'X': x}, got, OnnxGlobalAveragePool, model_def) x = numpy.array([[[ [1, 2, 3], [4, 5, 6], [7, 8, 9], ]]]).astype(numpy.float32) y = numpy.array([[[[5]]]]).astype(numpy.float32) onx = OnnxGlobalAveragePool( 'X', output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': x.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': x}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray(y, got['Y']) python_tested.append(OnnxGlobalAveragePool) def test_onnxt_runtime_greater(self): self.common_test_onnxt_runtime_binary(OnnxGreater, numpy.greater) @wraplog() def test_onnxt_runtime_greater_or_equal(self): self.common_test_onnxt_runtime_binary( OnnxGreaterOrEqual, numpy.greater_equal) @wraplog() def test_onnxt_runtime_identity(self): self.common_test_onnxt_runtime_unary(OnnxIdentity, lambda x: x) @wraplog() def test_onnxt_runtime_isnan(self): self.common_test_onnxt_runtime_unary(OnnxIsNaN, numpy.isnan) @wraplog() def test_onnxt_runtime_less(self): self.common_test_onnxt_runtime_binary(OnnxLess, numpy.less) @wraplog() def test_onnxt_runtime_less_or_equal(self): self.common_test_onnxt_runtime_binary( OnnxLessOrEqual, numpy.less_equal) @wraplog() def test_onnxt_runtime_log(self): self.common_test_onnxt_runtime_unary(OnnxLog, numpy.log) @wraplog() def test_onnxt_runtime_lp_normalization(self): onx = OnnxLpNormalization('X', output_names=['Y'], p=2, axis=1, op_version=get_opset_number_from_onnx()) X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float32) model_def = onx.to_onnx({'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) exp = numpy.array([[0.4472136, 0.8944272], [0.6, -0.8]], dtype=numpy.float32) self.assertEqualArray(got['Y'], exp) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxLpNormalization, model_def) onx = OnnxLpNormalization('X', output_names=['Y'], p=2, axis=0, op_version=get_opset_number_from_onnx()) X = numpy.array([[1, 2], [3, -4]], dtype=numpy.float32) model_def = onx.to_onnx({'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) exp = numpy.array([[0.3162278, 0.4472136], [0.9486833, -0.8944272]], dtype=numpy.float32) self.assertEqualArray(got['Y'], exp) python_tested.append(OnnxLpNormalization) @wraplog() def test_onnxt_runtime_matmul(self): self.common_test_onnxt_runtime_binary(OnnxMatMul, lambda x, y: x @ y) @wraplog() def test_onnxt_runtime_max(self): self.common_test_onnxt_runtime_binary( OnnxMax, lambda x, y: numpy.maximum(x, y)) @wraplog() def test_onnxt_runtime_max_pool_1d_default(self): X = numpy.random.randn(1, 3, 32).astype(numpy.float32) kernel_shape = [2] strides = [1] out_shape = _pool_get_output_shape( b'VALID', X.shape[2:], kernel_shape, strides) exp = _pool_impl( X, X.shape, kernel_shape, strides, out_shape, [0], b'MAX') onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=kernel_shape, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) self.assertEqual(got['Y'].dtype, X.dtype) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxMaxPool, model_def) @wraplog() def test_onnxt_runtime_max_pool_1d_default_64(self): X = numpy.random.randn(1, 3, 32).astype(numpy.float64) kernel_shape = [2] strides = [1] out_shape = _pool_get_output_shape( b'VALID', X.shape[2:], kernel_shape, strides) exp = _pool_impl( X, X.shape, kernel_shape, strides, out_shape, [0], b'MAX') onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=kernel_shape, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y'], decimal=5) self.assertEqual(got['Y'].dtype, X.dtype) self.assertEqual(got['Y'].dtype, numpy.float64) @wraplog() def test_onnxt_runtime_max_pool_2d(self): # ceil X = numpy.array([[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]]]).astype(numpy.float32) exp = numpy.array([[[[11, 12], [15, 16]]]]).astype(numpy.float32) kernel_shape = [3, 3] strides = [2, 2] ceil_mode = True onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=kernel_shape, strides=strides, ceil_mode=ceil_mode, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) # default X = numpy.random.randn(1, 3, 32, 32).astype(numpy.float32) kernel_shape = [2, 2] strides = [1, 1] out_shape = _pool_get_output_shape( b'VALID', X.shape[2:], kernel_shape, strides) exp = _pool_impl(X, X.shape, kernel_shape, strides, out_shape, (0, 0), b'MAX') onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=kernel_shape, strides=strides, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) # dilations X = numpy.array([[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]]]).astype(numpy.float32) exp = numpy.array([[[[11, 12], [15, 16]]]]).astype(numpy.float32) onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=[2, 2], strides=[1, 1], dilations=[2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) # pads X = numpy.array([[[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]]]).astype(numpy.float32) exp = numpy.array([[[[13, 14, 15, 15, 15], [18, 19, 20, 20, 20], [23, 24, 25, 25, 25], [23, 24, 25, 25, 25], [23, 24, 25, 25, 25]]]]).astype(numpy.float32) onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=[5, 5], pads=[2, 2, 2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) # precomputed_same_upper(self): X = numpy.array([[[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]]]]).astype(numpy.float32) exp = numpy.array([[[[7, 9, 10], [17, 19, 20], [22, 24, 25]]]]).astype(numpy.float32) onx = OnnxMaxPool('X', output_names=['Y'], kernel_shape=[3, 3], strides=[2, 2], auto_pad=b'SAME_UPPER', op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) python_tested.append(OnnxMaxPool) @wraplog() def test_onnxt_runtime_max_pool_3d_default(self): X = numpy.random.randn(1, 3, 32, 32, 32).astype(numpy.float32) out_shape = _pool_get_output_shape( b'VALID', X.shape[2:], [2, 2, 2], [1, 1, 1]) onx = OnnxMaxPool( 'X', output_names=['Y'], kernel_shape=[2, 2, 2], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx( {'X': X}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqual([1, 3, 31, 31, 31], list(got['Y'].shape)) try: exp = _pool_impl(X, X.shape, [2, 2, 2], [ 1, 1, 1], out_shape, (0, 0), b'MAX') except IndexError: # remaining bug return self.assertEqualArray(exp, got['Y']) @wraplog() def test_onnxt_runtime_mean(self): idi = numpy.identity(2, dtype=numpy.float64) onx = OnnxMean('X', idi, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': idi.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) X = numpy.array([[1, 2], [3, 4]], dtype=numpy.float64) oinf = OnnxInference(model_def) got = oinf.run({'X': X.astype(numpy.float32)}) self.assertEqual(list(sorted(got)), ['Y']) self.assertEqualArray((idi + X) / 2, got['Y'], decimal=5) self.common_expected_shapes_types( oinf, {'X': X.astype(numpy.float32)}, got, OnnxMean, model_def) python_tested.append(OnnxMean) @wraplog() def test_onnxt_runtime_min(self): self.common_test_onnxt_runtime_binary( OnnxMin, lambda x, y: numpy.minimum(x, y)) @wraplog() def test_onnxt_runtime_mod(self): self.common_test_onnxt_runtime_binary( OnnxMod, lambda x, y: numpy.nan_to_num(numpy.mod(x, y)), dtype=numpy.int64) @wraplog() def test_onnxt_runtime_mul(self): self.common_test_onnxt_runtime_binary(OnnxMul, lambda x, y: x * y) @wraplog() def test_onnxt_runtime_nrg(self): self.common_test_onnxt_runtime_unary(OnnxNeg, numpy.negative) @wraplog() def test_onnxt_runtime_not(self): self.common_test_onnxt_runtime_unary(OnnxNot, numpy.logical_not) @wraplog() def test_onnxt_runtime_or(self): self.common_test_onnxt_runtime_binary( OnnxOr, numpy.logical_or, dtype=numpy.bool_) @wraplog() def test_onnxt_runtime_pad(self): data = numpy.array([[1.0, 1.2], [2.3, 3.4], [4.5, 5.7]], dtype=numpy.float32) pads = numpy.array([0, 2, 0, 0], dtype=numpy.int64) constant_value = numpy.array([0.0], dtype=numpy.float32) exp = numpy.array([[0.0, 0.0, 1.0, 1.2], [0.0, 0.0, 2.3, 3.4], [0.0, 0.0, 4.5, 5.7]], dtype=numpy.float32) onx = OnnxPad( 'data', 'pads', constant_value, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'data': data, 'pads': pads}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'data': data, 'pads': pads}) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'data': data, 'pads': pads}, got, OnnxPad, model_def) data = numpy.array([[1.0, 1.2], [2.3, 3.4], [4.5, 5.7]], dtype=numpy.float32) pads = numpy.array([0, 2, 0, 0], dtype=numpy.int64) constant_value = numpy.array([0.0], dtype=numpy.float32) exp = numpy.array([[1.0, 1.2, 1.0, 1.2], [2.3, 3.4, 2.3, 3.4], [4.5, 5.7, 4.5, 5.7]], dtype=numpy.float32) onx = OnnxPad( 'data', 'pads', output_names=['Y'], mode='reflect', op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'data': data, 'pads': pads}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'data': data, 'pads': pads}) self.assertEqualArray(exp, got['Y']) data = numpy.array([[1.0, 1.2], [2.3, 3.4], [4.5, 5.7]], dtype=numpy.float32) pads = numpy.array([0, 2, 0, 0], dtype=numpy.int64) constant_value = numpy.array([0.0], dtype=numpy.float32) exp = numpy.array([[1.0, 1.0, 1.0, 1.2], [2.3, 2.3, 2.3, 3.4], [4.5, 4.5, 4.5, 5.7]], dtype=numpy.float32) onx = OnnxPad( 'data', 'pads', output_names=['Y'], mode='edge', op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'data': data, 'pads': pads}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'data': data, 'pads': pads}) self.assertEqualArray(exp, got['Y']) python_tested.append(OnnxPad) @wraplog() def test_onnxt_runtime_pad2(self): data = numpy.random.randn(1, 3, 4, 5).astype(numpy.float32) pads = numpy.array([0, 0, 1, 3, 0, 0, 2, 4]).astype(numpy.int64) constant_value = numpy.array([1.2], dtype=numpy.float32) exp = _pad_impl(data, pads, 'constant', 1.2) onx = OnnxPad( 'data', 'pads', constant_value, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'data': data, 'pads': pads}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'data': data, 'pads': pads}) self.assertEqualArray(exp, got['Y']) for mode in ('edge', 'reflect'): onx = OnnxPad( 'data', 'pads', output_names=['Y'], mode=mode, op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'data': data, 'pads': pads}, target_opset=get_opset_number_from_onnx()) data = numpy.random.randn(1, 3, 4, 5).astype(numpy.int32) pads = numpy.array([0, 0, 1, 1, 0, 0, 1, 1]).astype(numpy.int64) exp = _pad_impl(data, pads, mode) oinf = OnnxInference(model_def) got = oinf.run({'data': data, 'pads': pads}) self.assertEqualArray(exp, got['Y']) @wraplog() def test_onnxt_runtime_pow(self): self.common_test_onnxt_runtime_binary(OnnxPow, numpy.power) @wraplog() def test_onnxt_runtime_qlinear_conv(self): x = numpy.array( [[255, 174, 162, 25, 203, 168, 58], [15, 59, 237, 95, 129, 0, 64], [56, 242, 153, 221, 168, 12, 166], [232, 178, 186, 195, 237, 162, 237], [188, 39, 124, 77, 80, 102, 43], [127, 230, 21, 83, 41, 40, 134], [255, 154, 92, 141, 42, 148, 247], ], dtype=numpy.uint8).reshape((1, 1, 7, 7)) x_scale = numpy.float32(0.00369204697) x_zero_point = numpy.uint8(132) w = numpy.array([0], dtype=numpy.uint8).reshape((1, 1, 1, 1)) w_scale = numpy.array([0.00172794575], dtype=numpy.float32) w_zero_point = numpy.array([255], dtype=numpy.uint8) y_scale = numpy.float32(0.00162681262) y_zero_point = numpy.uint8(123) output = numpy.array( [[0, 81, 93, 230, 52, 87, 197], [240, 196, 18, 160, 126, 255, 191], [199, 13, 102, 34, 87, 243, 89], [23, 77, 69, 60, 18, 93, 18], [67, 216, 131, 178, 175, 153, 212], [128, 25, 234, 172, 214, 215, 121], [0, 101, 163, 114, 213, 107, 8], ], dtype=numpy.uint8).reshape((1, 1, 7, 7)) node = OnnxQLinearConv('x', 'x_scale', 'x_zero_point', 'w', 'w_scale', 'w_zero_point', 'y_scale', 'y_zero_point', output_names=['y'], op_version=get_opset_number_from_onnx()) inputs = {'x': x, 'x_scale': x_scale, 'x_zero_point': x_zero_point, 'w': w, 'w_scale': w_scale, 'w_zero_point': w_zero_point, 'y_scale': y_scale, 'y_zero_point': y_zero_point} model_def = node.to_onnx(inputs, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run(inputs) self.assertEqualArray(output, got['y']) self.common_expected_shapes_types( oinf, inputs, got, OnnxQLinearConv, model_def) python_tested.append(OnnxQLinearConv) @wraplog() def test_onnxt_runtime_qlinear_conv_test0(self): x_scale = numpy.float32(0.00369204697) x_zero_point = numpy.uint8(132) x = numpy.array( [[255, 174, 162, 25, 203, 168, 58], [15, 59, 237, 95, 129, 0, 64], [56, 242, 153, 221, 168, 12, 166], [232, 178, 186, 195, 237, 162, 237], [188, 39, 124, 77, 80, 102, 43], [127, 230, 21, 83, 41, 40, 134], [255, 154, 92, 141, 42, 148, 247], ], dtype=numpy.uint8).reshape((1, 1, 7, 7)) w_scale = numpy.array([0.00172794575], dtype=numpy.float32) w_zero_point = numpy.array([255], dtype=numpy.uint8) w = numpy.array([0], dtype=numpy.uint8).reshape((1, 1, 1, 1)) y_scale = numpy.float32(0.00162681262) y_zero_point = numpy.uint8(123) y = numpy.array( [[0, 81, 93, 230, 52, 87, 197], [240, 196, 18, 160, 126, 255, 191], [199, 13, 102, 34, 87, 243, 89], [23, 77, 69, 60, 18, 93, 18], [67, 216, 131, 178, 175, 153, 212], [128, 25, 234, 172, 214, 215, 121], [0, 101, 163, 114, 213, 107, 8], ], dtype=numpy.uint8).reshape((1, 1, 7, 7)) test_qlinear_conv( QuantizedTensor(x, x_scale, x_zero_point), (1, 1, 7, 7), QuantizedTensor(w, w_scale, w_zero_point), (1, 1, 1, 1), None, QuantizedTensor(y, y_scale, y_zero_point), (1, 1, 7, 7)) @wraplog() def test_onnxt_runtime_qlinear_conv_2dtest(self): x = QuantizedTensor(numpy.array([ 0.45246148109436035, 0.15498268604278564, 0.11199361085891724, -0.39421093463897705, 0.2626858949661255, 0.13414543867111206, - 0.27184486389160156, -0.43028733134269714, -0.26825493574142456, 0.3893144130706787, - 0.13631996512413025, -0.009590476751327515, -0.48771554231643677, -0.25256502628326416, - 0.2812897562980652, 0.4043201804161072, 0.07795023918151855, 0.326981782913208, 0.13114392757415771, -0.4416425824165344, 0.12446999549865723, 0.36739975214004517, 0.1698915958404541, 0.2008744478225708, 0.23339951038360596, 0.38613730669021606, 0.11117297410964966, 0.3877097964286804, 0.20812749862670898, -0.34297940135002136, - 0.029246658086776733, -0.20483523607254028, -0.19244328141212463, -0.11104947328567505, - 0.32830488681793213, -0.01800677180290222, 0.3618946671485901, -0.40949052572250366, - 0.18248388171195984, -0.3349453806877136, -0.34091079235076904, 0.006497859954833984, 0.4537564516067505, 0.08006560802459717, -0.14788749814033508, 0.034442365169525146, - 0.33322954177856445, 0.06049239635467529, 0.42619407176971436], dtype=numpy.float32)) w = QuantizedTensor(numpy.array( [-0.4406261742115021], dtype=numpy.float32)) y = QuantizedTensor(numpy.array([ -0.19936637580394745, -0.06828942894935608, - 0.04934731498360634, 0.17369966208934784, -0.11574628204107285, -0.05910799279808998, 0.1197819635272026, 0.18959586322307587, 0.1182001456618309, -0.17154212296009064, 0.06006614491343498, 0.0042258151806890965, 0.21490024030208588, 0.11128675937652588, 0.12394362688064575, -0.17815405130386353, -0.034346915781497955, -0.14407673478126526, - 0.05778544768691063, 0.19459928572177887, -0.05484473705291748, -0.16188594698905945, - 0.07485868036746979, -0.08851054310798645, -0.10284193605184555, -0.17014220356941223, - 0.04898572340607643, -0.17083507776260376, -0.09170642495155334, 0.1511256992816925, 0.012886842712759972, 0.09025576710700989, 0.08479554951190948, 0.0489313043653965, 0.14465972781181335, 0.007934254594147205, -0.15946026146411896, 0.1804322451353073, 0.08040717244148254, 0.1475857049226761, 0.15021422505378723, -0.0028631272725760937, - 0.19993697106838226, -0.03527900204062462, 0.06516310572624207, -0.015176207758486271, 0.14682966470718384, -0.02665453404188156, -0.18779225647449493], dtype=numpy.float32)) test_qlinear_conv(x, (1, 1, 7, 7), w, (1, 1, 1, 1), None, y, (1, 1, 7, 7), opset=10) @wraplog() def test_onnxt_runtime_qlinear_conv_3dtest(self): x = QuantizedTensor(numpy.array([ 0.010772407054901123, -0.43806642293930054, 0.455391526222229, -0.28657248616218567, 0.45676887035369873, -0.0320507287979126, 0.4229400157928467, -0.18730869889259338, -0.45851585268974304, 0.042054951190948486, - 0.13332295417785645, -0.25374430418014526, -0.23845627903938293, 0.12214112281799316, - 0.1778157651424408, 0.1891845464706421, 0.37962496280670166, -0.033982306718826294, 0.12737131118774414, -0.040284961462020874, 0.46427029371261597, -0.22687292098999023, 0.17398333549499512, -0.3014046251773834, -0.4043419063091278, -0.33206477761268616, 0.04655301570892334, -0.4947906732559204, 0.0755157470703125, 0.1173025369644165, 0.47043120861053467, 0.4824737310409546, -0.37734976410865784, -0.056491583585739136, - 0.10790631175041199, 0.043476223945617676, 0.24469023942947388, -0.4100031852722168, 0.0616222620010376, 0.2296960949897766, 0.27883386611938477, 0.08150351047515869, 0.2453773021697998, 0.08250969648361206, -0.1471814215183258, -0.43011274933815, 0.027180075645446777, 0.3605625033378601, 0.24954384565353394, -0.22505927085876465, - 0.36272895336151123, -0.47674262523651123, 0.11275297403335571, 0.49773406982421875, 0.2686365246772766, 0.025525271892547607, -0.3037869930267334, 0.41126757860183716, 0.36149072647094727, 0.00883406400680542, -0.07959523797035217, 0.3601323366165161, 0.17322391271591187, -0.012007325887680054], dtype=numpy.float32)) w = QuantizedTensor(numpy.array( [0.32824617624282837], dtype=numpy.float32)) y = QuantizedTensor(numpy.array([ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0035360013134777546, 0.14948052167892456, 0.0, 0.0, -0.15050607919692993, -0.043762750923633575, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -0.12386361509561539, -0.03541983291506767, 0.0, 0.0, 0.09152615070343018, 0.08054415881633759, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], dtype=numpy.float32)) test_qlinear_conv(x, (1, 1, 4, 4, 4), w, (1, 1, 1, 1, 1), None, y, (1, 1, 4, 4, 4), opset=10, pads=[2, 2, 2, 2, 2, 2], strides=[2, 2, 2]) @wraplog() def test_onnxt_runtime_qlinear_conv_2dtest_with_bias(self): x = QuantizedTensor(numpy.array([ 6, 81, 214, 151, 234, 42, 50, 89, 30, 91, 125, 141, 52, 31, 58, 224, 84, 251, 67, 137, 223, 119, 79, 220, 249, 75, 131, 246, 113, 56, 54, 197, 110, 142, 126, 171, 53, 228, 240, 83, 229, 218, 185, 9, 80, 116, 176, 193, 175, 253], dtype=numpy.uint8), 0.01, 135) w = QuantizedTensor(numpy.array([ 234, 229, 13, 187, 98, 161, 246, 188, 252, 107, 49, 72, 53, 212, 175, 47, 21, 14, 86, 230, 16, 177, 82, 166, 75, 220, 169, 119, 34, 205, 27, 9, 44, 74, 40, 8, 28, 139, 240, 106, 63, 2, 255, 156, 128, 222, 73, 51, 66, 48, 81, 247, 180, 91, 206, 239, 190, 146, 227, 235, 10, 130, 95, 232, 121, 133, 231, 162, 108, 105, 254, 143], dtype=numpy.uint8), 0.15, 110) y = QuantizedTensor(numpy.array([ 67, 81, 66, 75, 71, 101, 20, 8, 44, 94, 83, 73, 133, 125, 54, 144, 165, 56, 53, 88, 130, 118, 170, 168, 140, 109, 103, 80, 122, 142, 129, 100, 39, 61, 141, 133, 59, 155, 68, 129, 74, 132, 83, 143, 146, 152, 81, 127, 82, 112, 131, 64, 82, 68, 93, 149, 146, 137, 201, 118, 112, 183, 171, 144, 85, 122, 86, 63, 163, 245, 95, 152, 126, 80, 82, 49, 136, 160, 187, 147, 29, 20, 135, 174, 126, 124, 36, 56, 0, 83, 134, 171, 119, 109, 85, 155, 157, 167, 194, 130], dtype=numpy.uint8), 0.75, 121) b = QuantizedBiasTensor( numpy.array([-1123, 3212, 1723, -621], dtype=numpy.int32), x.scale_ * w.scale_) test_qlinear_conv(x, (1, 2, 5, 5), w, (4, 2, 3, 3), b, y, (1, 4, 5, 5), opset=10, pads=[1, 1, 1, 1]) @wraplog() def test_onnxt_runtime_qlinear_conv_2dtest_with_group(self): x = QuantizedTensor(numpy.array([ 98, 166, 219, 195, 46, 97, 27, 211, 239, 1, 28, 208, 143, 144, 215, 252, 79, 5, 154, 56, 122, 191, 94, 25, 221, 48, 37, 182, 68, 245, 210, 206, 183, 22, 163, 104, 242, 112, 161, 66, 181, 235, 117, 75, 236, 61, 115, 36, 120, 253, 165, 214, 159, 132, 11, 201, 30, 249, 89, 171, 186, 67, 225, 197, 135, 142, 241, 169, 170, 164, 178, 58, 50, 51, 200, 43, 199, 126, 222, 123, 227, 42, 3, 21, 124, 220, 24, 47, 63, 110], dtype=numpy.uint8), 0.01, 135) w = QuantizedTensor(numpy.array([ 220, 111, 73, 254, 235, 151, 6, 156, 129, 204, 234, 198, 44, 89, 202, 82, 118, 189, 71, 120, 123, 121, 110, 83, 173, 248, 108, 229, 124, 68, 85, 239, 133, 213, 112, 122, 170, 231, 225, 195, 192, 9, 232, 97, 160, 227, 67, 137], dtype=numpy.uint8), 0.15, 110) y = QuantizedTensor(numpy.array([ 113, 128, 70, 64, 125, 162, 80, 189, 112, 147, 121, 111, 96, 68, 94, 101, 77, 88, 223, 128, 163, 194, 138, 164, 122, 109, 117, 91, 72, 121, 134, 155, 127, 125, 98, 128], dtype=numpy.uint8), 0.75, 121) b = QuantizedBiasTensor( numpy.array([-1853, 598, -17854, 14592, 42, -366], dtype=numpy.int32), x.scale_ * w.scale_) test_qlinear_conv(x, (1, 6, 3, 5), w, (6, 2, 2, 2), b, y, (1, 6, 2, 3), opset=10, pads=[0, 0, 1, 1], group=3, strides=[2, 2]) @wraplog() def test_onnxt_runtime_quantize_linear(self): X = numpy.array([[[[-162, 10], [-100, 232], [-20, -50]], [[-76, 0], [0, 252], [32, -44]], [[245, -485], [-960, -270], [-375, -470]], ], ], dtype=numpy.float32) y_scale = numpy.array([2, 4, 5], dtype=numpy.float32) y_zero_point = numpy.array([84, 24, 196], dtype=numpy.uint8) exp = ((X / y_scale.reshape((1, 3, 1, 1)) + y_zero_point.reshape((1, 3, 1, 1))).astype(numpy.uint8)) onx = OnnxQuantizeLinear( 'X', y_scale, y_zero_point, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) self.common_expected_shapes_types( oinf, {'X': X}, got, OnnxQuantizeLinear, model_def) X = numpy.array([0, 2, 4, 1000, -254, -1000]).astype(numpy.float32) y_scale = numpy.array([2], dtype=numpy.float32) y_zero_point = numpy.array([128], dtype=numpy.uint8) exp = numpy.array([128, 129, 130, 255, 1, 0]).astype(numpy.uint8) onx = OnnxQuantizeLinear( 'X', y_scale, y_zero_point, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'X': X.astype(numpy.float32)}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) got = oinf.run({'X': X}) self.assertEqualArray(exp, got['Y']) python_tested.append(OnnxQuantizeLinear) @wraplog() def test_onnxt_runtime_range(self): starts = numpy.array([0], dtype=numpy.float32) ends = numpy.array([10], dtype=numpy.float32) steps = numpy.array([4], dtype=numpy.float32) onx = OnnxRange( 'starts', 'ends', steps, output_names=['Y'], op_version=get_opset_number_from_onnx()) model_def = onx.to_onnx({'starts': starts, 'ends': ends}, target_opset=get_opset_number_from_onnx()) oinf = OnnxInference(model_def) exp =
numpy.array([0, 4, 8], dtype=numpy.float32)
numpy.array
# -*- coding: utf-8 -*- """ Created on Fri Mar 07 09:52:51 2014 @author: ashiotis """ from __future__ import absolute_import from __future__ import print_function import sys, numpy, time, os import fabio import pyopencl as cl from pylab import * from pyFAI.third_party import six print("#"*50) if __name__ == '__main__': import pkgutil __path__ = pkgutil.extend_path([os.path.dirname(__file__)], "pyFAI.test") from pyFAI.test.utilstest import UtilsTest pyFAI = sys.modules["pyFAI"] from pyFAI import splitPixelFullLUT from pyFAI import splitPixelFull from pyFAI import ocl_hist_pixelsplit # from pyFAI import splitBBoxLUT # from pyFAI import splitBBoxCSR os.chdir("testimages") ai = pyFAI.load("halfccd.poni") data = fabio.open("halfccd.edf").data workgroup_size = 256 bins = 1000 pos_in = ai.array_from_unit(data.shape, "corner", unit="2th_deg", scale=False) pos = pos_in.reshape(pos_in.size / 8, 4, 2) pos_size = pos.size size = data.size ctx = cl.create_some_context() queue = cl.CommandQueue(ctx) mf = cl.mem_flags d_pos = cl.array.to_device(queue, pos) d_preresult = cl.Buffer(ctx, mf.READ_WRITE, 4 * 4 * workgroup_size) d_minmax = cl.Buffer(ctx, mf.READ_WRITE, 4 * 4) with open("../../openCL/ocl_hist_pixelsplit.cl", "r") as kernelFile: kernel_src = kernelFile.read() compile_options = "-D BINS=%i -D NIMAGE=%i -D WORKGROUP_SIZE=%i -D EPS=%f" % \ (bins, size, workgroup_size, numpy.finfo(numpy.float32).eps) program = cl.Program(ctx, kernel_src).build(options=compile_options) program.reduce1(queue, (workgroup_size * workgroup_size,), (workgroup_size,), d_pos.data, numpy.uint32(pos_size), d_preresult) program.reduce2(queue, (workgroup_size,), (workgroup_size,), d_preresult, d_minmax) result = numpy.ndarray(4, dtype=numpy.float32) cl.enqueue_copy(queue, result, d_minmax) min0 = pos[:, :, 0].min() max0 = pos[:, :, 0].max() min1 = pos[:, :, 1].min() max1 = pos[:, :, 1].max() minmax = (min0, max0, min1, max1) print(minmax) print(result) d_outData = cl.Buffer(ctx, mf.READ_WRITE, 4 * bins) d_outCount = cl.Buffer(ctx, mf.READ_WRITE, 4 * bins) d_outMerge = cl.Buffer(ctx, mf.READ_WRITE, 4 * bins) program.memset_out(queue, (1024,), (workgroup_size,), d_outData, d_outCount, d_outMerge) outData = numpy.ndarray(bins, dtype=numpy.float32) outCount = numpy.ndarray(bins, dtype=numpy.float32) outMerge = numpy.ndarray(bins, dtype=numpy.float32) cl.enqueue_copy(queue, outData, d_outData) cl.enqueue_copy(queue, outCount, d_outCount) cl.enqueue_copy(queue, outMerge, d_outMerge) global_size = (data.size + workgroup_size - 1) & ~(workgroup_size - 1), d_image = cl.array.to_device(queue, data) d_image_float = cl.Buffer(ctx, mf.READ_WRITE, 4 * size) # program.s32_to_float(queue, global_size, (workgroup_size,), d_image.data, d_image_float) # Pilatus1M program.u16_to_float(queue, global_size, (workgroup_size,), d_image.data, d_image_float) # halfccd program.integrate1(queue, global_size, (workgroup_size,), d_pos.data, d_image_float, d_minmax,
numpy.int32(data.size)
numpy.int32
#!/usr/bin/env python3 import numpy as np from numpy import linalg import matplotlib.pyplot as plt import rospy import sys import cv2 import glob import time import rospy import actionlib from cv_bridge import CvBridge from control_msgs.msg import FollowJointTrajectoryAction, FollowJointTrajectoryGoal, JointTrajectoryControllerState, FollowJointTrajectoryActionGoal from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from sensor_msgs.msg import Image #import roslib import tf #import geometry_msgs.msg import tf2_msgs.msg #import turtlesim.srv import tensorflow as tf2 import tensorflow_hub as hub from openpose.body.estimator import BodyPoseEstimator from openpose.utils import draw_body_connections, draw_keypoints import cmath import math from math import cos as cos from math import sin as sin from math import atan2 as atan2 from math import acos as acos from math import asin as asin from math import sqrt as sqrt from math import pi as pi #from mpl_toolkits.mplot3d import Axes3D global tmp1, tmp2 global points1 global points2 global points3 global points4 global points5 global points6 global points7 global points8 global points9 global points10 global points11 global points12 global height_limiter global angle1, angle2, angle3 global angle4, angle5, angle6 global image_height global tmp5, tmp6 global fulltime1, fulltime2 tmp5=0 tmp6=0 fulltime1=0 fulltime2=0 #CALIBRATION FUNCTIONS def calibrate_camera(images_folder): images_names = glob.glob(images_folder) images = [] for imname in images_names: im = cv2.imread(imname, 1) images.append(im) #criteria used by checkerboard pattern detector. #Change this if the code can't find the checkerboard criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) rows = 9 #number of checkerboard rows. columns = 13 #number of checkerboard columns. world_scaling = 1. #change this to the real world square size. Or not. #coordinates of squares in the checkerboard world space objp = np.zeros((rows*columns,3), np.float32) objp[:,:2] = np.mgrid[0:rows,0:columns].T.reshape(-1,2) objp = world_scaling* objp #frame dimensions. Frames should be the same size. width = images[0].shape[1] height = images[0].shape[0] #Pixel coordinates of checkerboards imgpoints = [] # 2d points in image plane. #coordinates of the checkerboard in checkerboard world space. objpoints = [] # 3d point in real world space for frame in images: gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #find the checkerboard ret, corners = cv2.findChessboardCorners(gray, (rows, columns), None) if ret == True: #Convolution size used to improve corner detection. Don't make this too large. conv_size = (11, 11) #opencv can attempt to improve the checkerboard coordinates corners = cv2.cornerSubPix(gray, corners, conv_size, (-1, -1), criteria) cv2.drawChessboardCorners(frame, (rows,columns), corners, ret) cv2.imshow('img', frame) cv2.waitKey(500) objpoints.append(objp) imgpoints.append(corners) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, (width, height), None, None) print('rmse:', ret) print('camera matrix:\n', mtx) print('distortion coeffs:', dist) print('Rs:\n', rvecs) print('Ts:\n', tvecs) return mtx, dist def stereo_calibrate(mtx1, dist1, mtx2, dist2): #read the synched frames c1_images_names = glob.glob('leftCalib/*') c1_images_names = sorted(c1_images_names) c2_images_names = glob.glob('rightCalib/*') c2_images_names = sorted(c2_images_names) c1_images = [] c2_images = [] for im1, im2 in zip(c1_images_names, c2_images_names): _im = cv2.imread(im1, 1) c1_images.append(_im) _im = cv2.imread(im2, 1) c2_images.append(_im) #change this if stereo calibration not good. criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.0001) rows = 9 #number of checkerboard rows. columns = 13 #number of checkerboard columns. world_scaling = 1. #change this to the real world square size. Or not. #coordinates of squares in the checkerboard world space objp = np.zeros((rows*columns,3), np.float32) objp[:,:2] = np.mgrid[0:rows,0:columns].T.reshape(-1,2) objp = world_scaling* objp #frame dimensions. Frames should be the same size. width = c1_images[0].shape[1] height = c1_images[0].shape[0] #Pixel coordinates of checkerboards imgpoints_left = [] # 2d points in image plane. imgpoints_right = [] #coordinates of the checkerboard in checkerboard world space. objpoints = [] # 3d point in real world space for frame1, frame2 in zip(c1_images, c2_images): gray1 = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY) c_ret1, corners1 = cv2.findChessboardCorners(gray1, (9, 13), None) c_ret2, corners2 = cv2.findChessboardCorners(gray2, (9, 13), None) if c_ret1 == True and c_ret2 == True: corners1 = cv2.cornerSubPix(gray1, corners1, (11, 11), (-1, -1), criteria) corners2 = cv2.cornerSubPix(gray2, corners2, (11, 11), (-1, -1), criteria) cv2.drawChessboardCorners(frame1, (9,13), corners1, c_ret1) cv2.imshow('img', frame1) cv2.drawChessboardCorners(frame2, (9,13), corners2, c_ret2) cv2.imshow('img2', frame2) cv2.waitKey(500) objpoints.append(objp) imgpoints_left.append(corners1) imgpoints_right.append(corners2) stereocalibration_flags = cv2.CALIB_FIX_INTRINSIC ret, CM1, dist1, CM2, dist2, R, T, E, F = cv2.stereoCalibrate(objpoints, imgpoints_left, imgpoints_right, mtx1, dist1, mtx2, dist2, (width, height), criteria = criteria, flags = stereocalibration_flags) print(ret) return R, T def DLT(P1, P2, point1, point2): A = [point1[1]*P1[2,:] - P1[1,:], P1[0,:] - point1[0]*P1[2,:], point2[1]*P2[2,:] - P2[1,:], P2[0,:] - point2[0]*P2[2,:] ] A = np.array(A).reshape((4,4)) #print('A: ') #print(A) B = A.transpose() @ A from scipy import linalg U, s, Vh = linalg.svd(B, full_matrices = False) print('Triangulated point: ') print(Vh[3,0:3]/Vh[3,3]) return Vh[3,0:3]/Vh[3,3] mtx1, dist1 = calibrate_camera(images_folder = 'leftCalib/*') mtx2, dist2 = calibrate_camera(images_folder = 'rightCalib/*') R, T = stereo_calibrate(mtx1, dist1, mtx2, dist2) #RT matrix for C1 is identity. RT1 = np.concatenate([np.eye(3), [[0],[0],[0]]], axis = -1) P1 = mtx1 @ RT1 #projection matrix for C1 #RT matrix for C2 is the R and T obtained from stereo calibration. RT2 = np.concatenate([R, T], axis = -1) P2 = mtx2 @ RT2 #projection matrix for C2 #KEYPOINTS DETECTION #loading model rospy.loginfo('Loading model') estimator = BodyPoseEstimator(pretrained=True) model = hub.load('https://tfhub.dev/google/movenet/singlepose/thunder/4') #model = hub.load('https://tfhub.dev/google/movenet/singlepose/lightning/4') movenet = model.signatures['serving_default'] rospy.loginfo('Model loaded') #Callbacks containing images from cameras detecting keypoints on given image bridge = CvBridge() def process_image_cam1(msg): time_movecam1 = time.time() global tmp1, tmp3, tmp5, fulltime1 global points2 global points4 global points6 global points8 global points10 global points12 global image_height img = bridge.imgmsg_to_cv2(msg, "bgr8") ''' h1, w1 = img.shape[:2] print("wymiary kamery cam1:") print(w1) print(h1) print("koniec kamery cam1:") ''' y, x, _ = img.shape image_height = y # A frame of video or an image, represented as an int32 tensor of shape: 256x256x3. Channels order: RGB with values in [0, 255]. tf_img = cv2.resize(img, (256,256)) tf_img = cv2.cvtColor(tf_img, cv2.COLOR_BGR2RGB) tf_img = np.asarray(tf_img) tf_img = np.expand_dims(tf_img,axis=0) # Resize and pad the image to keep the aspect ratio and fit the expected size. image = tf2.cast(tf_img, dtype=tf2.int32) # Run model inference. outputs = movenet(image) # Output is a [1, 1, 17, 3] tensor. keypoints = outputs['output_0'] #keypoints = keypoints.numpy() #print(keypoints) keypoints2 = keypoints.numpy() shoulder_y = int(keypoints2[0, 0, 6, 0]* y) shoulder_x = int( keypoints2[0, 0, 6, 1]* x) elbow_y = int(keypoints2[0, 0, 8, 0]* y) elbow_x = int(keypoints2[0, 0, 8, 1]* x) wrist_y = int(keypoints2[0, 0, 10, 0]* y) wrist_x = int(keypoints2[0, 0, 10, 1]* x) hand1_y = int(keypoints2[0, 0, 5, 0]* y) hand1_x = int( keypoints2[0, 0, 5, 1]* x) hand2_y = int(keypoints2[0, 0, 7, 0]* y) hand2_x = int(keypoints2[0, 0, 7, 1]* x) hand3_y = int(keypoints2[0, 0, 9, 0]* y) hand3_x = int(keypoints2[0, 0, 9, 1]* x) #keypoints = estimator(img) points2=np.array([shoulder_x,shoulder_y]) points4=np.array([elbow_x,elbow_y]) points6=np.array([wrist_x,wrist_y]) points8 = np.array([hand1_x, hand1_y]) points10 = np.array([hand2_x, hand2_y]) points12 = np.array([hand3_x, hand3_y]) #points2=np.array([keypoints[0][2][0],keypoints[0][2][1]]) #points4=np.array([keypoints[0][3][0],keypoints[0][3][1]]) #points6=np.array([keypoints[0][4][0],keypoints[0][4][1]]) ''' print("keypoints:") print(keypoints[0][2][0]) # x shoudler print(keypoints[0][2][1]) # y print(keypoints[0][3][0]) # x elbow print(keypoints[0][3][1]) # y print(keypoints[0][4][0]) # x wrist print(keypoints[0][4][1]) # y ''' #image_dst = draw_body_connections(img, keypoints, thickness=4, alpha=0.7) #image_dst = draw_keypoints(image_dst, keypoints, radius=5, alpha=0.8) for k in keypoints[0,0,:,:]: # Converts to numpy array k = k.numpy() yc = int(k[0] * y) xc = int(k[1] * x) image_dst = cv2.circle(img, (xc, yc), 2, (0, 255, 0), 5) image_message = bridge.cv2_to_imgmsg(image_dst, "bgr8") #print("publikacja cam1") image_pub_cam1.publish(image_message) image_message = 0 if points2[0]!=0.0 and points2[1]!=0.0 and points4[0]!=0.0 and points4[1]!=0.0 and points6[0]!=0.0 and points6[1]!=0.0: tmp1 = 1 time_movecam11 = time.time() time_interval_cam1 = time_movecam11 - time_movecam1 if tmp5 < 200: fulltime1= fulltime1+time_interval_cam1 tmp5=tmp5+1 elif tmp5 == 200: print(fulltime1) #print("camera 1 feedback time:") #print(time_interval_cam1) tmp3=1 def process_image_cam2(msg): global angle1, angle2, angle3 global angle4, angle5, angle6 global points1 global points2 global points3 global points4 global points5 global points6 global points7 global points8 global points9 global points10 global points11 global points12 time_movecam2 = time.time() global tmp2, tmp4, tmp1, tmp6, fulltime2 global points1 global points3 global points5 global points7 global points9 global points11 img = bridge.imgmsg_to_cv2(msg, "bgr8") scale_percent = 44.5 # percent of original size width = int(img.shape[1] * scale_percent / 100) height = int(img.shape[0] * scale_percent / 100) dim = (width, height) # resize image img = cv2.resize(img, dim, interpolation = cv2.INTER_AREA) img = img[:, 107:747] y, x, _ = img.shape # A frame of video or an image, represented as an int32 tensor of shape: 256x256x3. Channels order: RGB with values in [0, 255]. tf_img = cv2.resize(img, (256,256)) tf_img = cv2.cvtColor(tf_img, cv2.COLOR_BGR2RGB) tf_img = np.asarray(tf_img) tf_img = np.expand_dims(tf_img,axis=0) # Resize and pad the image to keep the aspect ratio and fit the expected size. image = tf2.cast(tf_img, dtype=tf2.int32) # Run model inference. outputs = movenet(image) # Output is a [1, 1, 17, 3] tensor. keypoints = outputs['output_0'] #keypoints = keypoints.numpy() #print(keypoints) keypoints2 = keypoints.numpy() shoulder_y = int(keypoints2[0, 0, 6, 0]* y) shoulder_x = int( keypoints2[0, 0, 6, 1]* x) elbow_y = int(keypoints2[0, 0, 8, 0]* y) elbow_x = int(keypoints2[0, 0, 8, 1]* x) wrist_y = int(keypoints2[0, 0, 10, 0]* y) wrist_x = int(keypoints2[0, 0, 10, 1]* x) hand1_y = int(keypoints2[0, 0, 5, 0]* y) hand1_x = int( keypoints2[0, 0, 5, 1]* x) hand2_y = int(keypoints2[0, 0, 7, 0]* y) hand2_x = int(keypoints2[0, 0, 7, 1]* x) hand3_y = int(keypoints2[0, 0, 9, 0]* y) hand3_x = int(keypoints2[0, 0, 9, 1]* x) #keypoints = estimator(img) points1=np.array([shoulder_x,shoulder_y]) points3=np.array([elbow_x,elbow_y]) points5=np.array([wrist_x,wrist_y]) points7 = np.array([hand1_x, hand1_y]) points9 = np.array([hand2_x, hand2_y]) points11 = np.array([hand3_x, hand3_y]) #points1=np.array([keypoints[0][2][0],keypoints[0][2][1]]) #points3=np.array([keypoints[0][3][0],keypoints[0][3][1]]) #points5=np.array([keypoints[0][4][0],keypoints[0][4][1]]) ''' print("keypoints:") print(keypoints[0][2][0]) # x shoudler print(keypoints[0][2][1]) # y print(keypoints[0][3][0]) # x elbow print(keypoints[0][3][1]) # y print(keypoints[0][4][0]) # x wrist print(keypoints[0][4][1]) # y ''' #image_dst = draw_body_connections(img, keypoints, thickness=4, alpha=0.7) #image_dst = draw_keypoints(image_dst, keypoints, radius=5, alpha=0.8) for k in keypoints[0,0,:,:]: # Converts to numpy array k = k.numpy() yc = int(k[0] * y) xc = int(k[1] * x) image_dst = cv2.circle(img, (xc, yc), 2, (0, 255, 0), 5) image_message = bridge.cv2_to_imgmsg(image_dst, "bgr8") #print("publikacja cam2") image_pub_cam2.publish(image_message) image_message = 0 if points1[0]!=0.0 and points1[1]!=0.0 and points3[0]!=0.0 and points3[1]!=0.0 and points5[0]!=0.0 and points5[1]!=0.0: tmp2=1 time_movecam22 = time.time() time_interval_cam2 = time_movecam22 - time_movecam2 print("iteration: ") print(tmp6) if tmp6 < 1000: fulltime2= fulltime2+time_interval_cam2 tmp6=tmp6+1 elif tmp6 == 1000: print(fulltime2) #print("camera 2 feedback time:") #print(time_interval_cam2) tmp4=1 print("Conditions for triangulation check:") print(tmp1) print(tmp2) #p3ds = [] if tmp1!=0 and tmp2!=0: p_shoulder = DLT(P1, P2, points1, points2) p_elbow = DLT(P1, P2, points3, points4) p_wrist = DLT(P1, P2, points5, points6) p_hand1 = DLT(P1, P2, points7, points8) p_hand2 = DLT(P1, P2, points9, points10) p_hand3 = DLT(P1, P2, points11, points12) x1=p_elbow[0]-p_shoulder[0] y1=p_elbow[1]-p_shoulder[1] z1=p_elbow[2]-p_shoulder[2] x2=p_wrist[0]-p_elbow[0] y2=p_wrist[1]-p_elbow[1] z2=p_wrist[2]-p_elbow[2] x3=p_hand2[0]-p_hand1[0] y3=p_hand2[1]-p_hand1[1] z3=p_hand2[2]-p_hand1[2] x4=p_hand3[0]-p_hand2[0] y4=p_hand3[1]-p_hand2[1] z4=p_hand3[2]-p_hand2[2] #fig = plt.figure(figsize=(4,4)) #ax = fig.add_subplot(111, projection='3d') #ax.scatter(p_shoulder[0], p_shoulder[1], p_shoulder[2], color='red') #ax.scatter(p_elbow[0], p_elbow[1], p_elbow[2], color='blue') #ax.scatter(p_wrist[0], p_wrist[1], p_wrist[2], color='green') #plt.show() angle1=asin(y1/sqrt((x1*x1)+(y1*y1)+(z1*z1))) if x1 > 0: angle2=atan2(z1,x1) elif x1 < 0: angle2=atan2(z1,x1) else : angle2=pi/2 angle3=asin(y2/sqrt((x2*x2)+(y2*y2)+(z2*z2))) angle4 = asin(z3 / sqrt((x3 * x3) + (y3 * y3) + (z3 * z3))) if x1 > 0: angle5 = atan2(y3, x3) elif x1 < 0: angle5 = atan2(y3, x3) + pi else: angle5 = pi / 2 angle6 = asin(z4 / sqrt((x4 * x4) + (y4 * y4) + (z4 * z4))) angle1=-angle1 angle2=angle2 angle3=-angle3 angle4=angle4 angle5=angle5/1.5 angle6=angle6 print("Calculated angles for the move order:") print(angle1) print(angle2) print(angle3) print(angle4) print(angle5) print(angle6) tmp1=0 tmp2=0 ArmSimpleTrajectory() #UR5 CONTROL #[moveA1, moveA2,moveA3,moveA4,moveA5,moveA6]=[2.9, -3.14, 0.0, -1.57, 1.5, -1.57] [moveA1, moveA2,moveA3,moveA4,moveA5,moveA6]=[0.0, pi/2, 0.0, 0.0, 0.0, 0.0] class ArmSimpleTrajectory: def __init__(self): time_move1 = time.time() global moveA1,moveA2,moveA3,moveA4,moveA5,moveA6,height_limiter, position_limiter_x, position_limiter_y global angle1, angle2, angle3, angle4, angle5, angle6 # UR5 joint names arm_joints = ['right_arm_shoulder_pan_joint', 'right_arm_shoulder_lift_joint', 'right_arm_elbow_joint', 'right_arm_wrist_1_joint', 'right_arm_wrist_2_joint', 'right_arm_wrist_3_joint'] if height_limiter<0.9 : print("Danger! Tcp is too close to base! Returning to starting position...") [angle1, angle2, angle3,moveA4,moveA5,moveA6]=[0.0, 0.0, 0.0, -1.57, 1.5, -1.57] if position_limiter_x < 0.1 and position_limiter_y > -0.4 : print("Danger! Tcp is too close to base! Returning to starting position...") [angle1, angle2,angle3,moveA4,moveA5,moveA6]=[0.0, 0.0, 0.0, 0.0, 0.0, 0.0] order1 = moveA1+angle1 order2 = angle2 order3 = moveA3+angle3 if order1 > pi: order1 = moveA1+angle1-2*pi elif order1 < -pi: order1 = moveA1+angle1+2*pi else : order1 = moveA1+angle1 if order2 > pi: order2 = angle2-2*pi elif order2 < -pi: order2 = angle2+2*pi else : order2 = angle2 if order3 > pi: order3 = angle3-2*pi elif order3 < -pi: order3 = angle3+2*pi else : order3 = angle3 if order1 > 3.5: order1 = 3.5 if order1 < -1.25: order1 = -1.25 arm_goal = [order1, order2, order3, moveA4+angle4, moveA5+angle5, moveA6+angle6] # Connect to the right arm trajectory action server #rospy.loginfo('Waiting for ur arm trajectory controller...') #arm_client = actionlib.SimpleActionClient('arm_controller/scaled_pos_joint_traj_controller/follow_joint_trajectory', FollowJointTrajectoryAction) #arm_client.wait_for_server() #rospy.loginfo('...connected.') #rospy.sleep(1) # Create a single-point arm trajectory with the arm_goal as the end-point arm_trajectory = JointTrajectory() arm_trajectory.joint_names = arm_joints arm_trajectory.points.append(JointTrajectoryPoint()) arm_trajectory.points[0].positions = arm_goal arm_trajectory.points[0].velocities = [0.0 for i in arm_joints] arm_trajectory.points[0].accelerations = [0.0 for i in arm_joints] arm_trajectory.points[0].time_from_start = rospy.Duration(3) # Send the trajectory to the arm action server #rospy.loginfo('Moving the arm to goal position...') #rospy.sleep(1) # Create an empty trajectory goal arm_goal = FollowJointTrajectoryGoal() # Set the trajectory component to the goal trajectory created above arm_goal.trajectory = arm_trajectory # Specify zero tolerance for the execution time arm_goal.goal_time_tolerance = rospy.Duration(0) arm_goal_action = FollowJointTrajectoryActionGoal() arm_goal_action.goal = arm_goal time_move2 = time.time() rospy.loginfo("Moving an arm now") arm_goal_pub.publish(arm_goal_action) #rospy.sleep(1) time_move3 = time.time() time_interval_move1 = time_move2 - time_move1 #print("create order time:") #print(time_interval_move1) time_interval_move2 = time_move3 - time_move2 #print("send order time:") #print(time_interval_move2) #Main loop itmp=0 image_pub_cam1 = rospy.Publisher("keypoints_image_cam1",Image, queue_size=1000) image_pub_cam2 = rospy.Publisher("keypoints_image_cam2",Image, queue_size=1000) arm_goal_pub = rospy.Publisher("/arm_controller/scaled_pos_joint_traj_controller/follow_joint_trajectory/goal",FollowJointTrajectoryActionGoal ,queue_size=1) rospy.init_node('teleop_arm') rospy.loginfo('teleop_arm node started') if __name__ == '__main__': global tmp1, tmp2, tmp3, tmp4 global angle1, angle2, angle3 global angle4, angle5, angle6 [angle1, angle2, angle3]=[0.0, 0.0, 0.0] [angle4, angle5, angle6] = [0.0, 0.0, 0.0] global points1 global points2 global points3 global points4 global points5 global points6 global points7 global points8 global points9 global points10 global points11 global points12 points6=np.array([0, 0]) points5=np.array([0, 0]) points1=np.array([0, 0]) points2=np.array([0, 0]) points3=np.array([0, 0]) points4=np.array([0, 0]) points7=np.array([0, 0]) points8=
np.array([0, 0])
numpy.array
# https://blog.csdn.net/weixin_30532973/article/details/97703470 # python import math import time import numpy as np import cyStdDev def pyStdDev(a): mean = sum(a) / len(a) return math.sqrt((sum(((x - mean)**2 for x in a)) / len(a))) def npStdDev(a): return np.std(a) def test(): num = 1000000 a1 = [float(v) for v in range(num)] t_py = time.time() py_result = pyStdDev(a1) print("t_py: ", time.time()-t_py) print("t_py result: ", py_result) # ------------------------ print("*"*30) a2 = np.arange(num) t_np = time.time() np_result = npStdDev(a2) print("t_np: ", time.time()-t_np) print("t_np result: ", np_result) # ------------------------ print("*"*30) a = np.arange(num) t_cy = time.time() cy_result = cyStdDev.cyStdDev(a) print("t_cy: ", time.time()-t_cy) print("cy result: ", cy_result) # ----------------------- print("*"*30) a3 = np.arange(num) t_cy_np = time.time() cy_np_result = cyStdDev.npStdDev(a3) print("t_cy_np: ", time.time()-t_cy_np) print("cy_np result: ", cy_np_result) # ------------------------ print("*"*30) a4 =
np.arange(num)
numpy.arange
"""General functions for mathematical and numerical operations. Functions --------- - spline - Create a general spline interpolation function. - cumtrapz_loglog - Perform a cumulative integral in log-log space. - extend - Extend the given array by extraplation. - sampleInverse - Find x-sampling to evenly divide a function in y-space. - smooth - Use convolution to smooth the given array. - _trapezium_loglog - """ from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np # import scipy as sp import scipy.stats # noqa import warnings from . import math_core, interpolate # , statistic __all__ = [ 'cumtrapz_loglog', 'even_selection', 'extend', 'monotonic_smooth', 'rk4_step', 'sample_inverse', 'smooth_convolve', 'spline', # DEPRECATED 'smooth', '_smooth' ] def cumtrapz_loglog(yy, xx, bounds=None, axis=-1, dlogx=None, lntol=1e-2): """Calculate integral, given `y = dA/dx` or `y = dA/dlogx` w/ trapezoid rule in log-log space. We are calculating the integral `A` given sets of values for `y` and `x`. To associate `yy` with `dA/dx` then `dlogx = None` [default], otherwise, to associate `yy` with `dA/dlogx` then `dlogx = True` for natural-logarithm, or `dlogx = b` for a logarithm of base `b`. For each interval (x[i+1], x[i]), calculate the integral assuming that y is of the form, `y = a * x^gamma` Notes ----- - When bounds are given that are not identical to input `xx` values, then interpolation must be performed. This can be done on the resulting cumsum'd values, or on the input integrand values. The cumsum values are *not necessarily a power-law* (for negative indices), and thus the interpolation is better performed on the input `yy` values. """ yy = np.asarray(yy) xx = np.asarray(xx) if bounds is not None: if len(bounds) != 2 or np.any(~math_core.within(bounds, xx)) or (bounds[0] > bounds[1]): err = "Invalid `bounds` = '{}', xx extrema = '{}'!".format( bounds, math_core.minmax(xx)) raise ValueError(err) if axis != -1 or np.ndim(yy) > 1: newy = interpolate.interp_func(xx, yy, xlog=True, ylog=True)(bounds) else: newy = interpolate.interp(bounds, xx, yy, xlog=True, ylog=True, valid=False) # newy = interpolate.interp(bounds, xx, yy, xlog=True, ylog=True, valid=False) ii = np.searchsorted(xx, bounds) xx = np.insert(xx, ii, bounds, axis=axis) yy = np.insert(yy, ii, newy, axis=axis) ii = np.array([ii[0], ii[1]+1]) assert np.alltrue(xx[ii] == bounds), "FAILED!" yy = np.ma.masked_values(yy, value=0.0, atol=0.0) # if np.ndim(yy) > 1 and np.ndim(xx) == 1: if np.ndim(yy) != np.ndim(xx): if np.ndim(yy) < np.ndim(xx): raise ValueError("BAD SHAPES") cut = [slice(None)] + [np.newaxis for ii in range(np.ndim(yy)-1)] xx = xx[tuple(cut)] log_base = np.e if dlogx is not None: # If `dlogx` is True, then we're using log-base-e (i.e. natural-log) # Otherwise, set the log-base to the given value if dlogx is not True: log_base = dlogx # Numerically calculate the local power-law index delta_logx = np.diff(np.log(xx), axis=axis) gamma = np.diff(np.log(yy), axis=axis) / delta_logx xx = np.moveaxis(xx, axis, 0) yy = np.moveaxis(yy, axis, 0) aa = np.mean([xx[:-1] * yy[:-1], xx[1:] * yy[1:]], axis=0) aa = np.moveaxis(aa, 0, axis) xx = np.moveaxis(xx, 0, axis) yy = np.moveaxis(yy, 0, axis) # Integrate dA/dx # A = (x1*y1 - x0*y0) / (gamma + 1) if dlogx is None: dz = np.diff(yy * xx, axis=axis) trapz = dz / (gamma + 1) # when the power-law is (near) '-1' then, `A = a * log(x1/x0)` idx = np.isclose(gamma, -1.0, atol=lntol, rtol=lntol) # Integrate dA/dlogx # A = (y1 - y0) / gamma else: dy = np.diff(yy, axis=axis) trapz = dy / gamma # when the power-law is (near) '-1' then, `A = a * log(x1/x0)` idx = np.isclose(gamma, 0.0, atol=lntol, rtol=lntol) trapz[idx] = aa[idx] * delta_logx[idx] integ = np.log(log_base) * np.cumsum(trapz, axis=axis) if bounds is not None: # NOTE: **DO NOT INTERPOLATE INTEGRAL** this works badly for negative power-laws # lo, hi = interpolate.interp(bounds, xx[1:], integ, xlog=True, ylog=True, valid=False) # integ = hi - lo integ = np.moveaxis(integ, axis, 0) lo, hi = integ[ii-1, ...] integ = hi - lo return integ def even_selection(size, select, sel_is_true=True): """Create a boolean indexing array of length `size` with `select`, evenly spaced elements. If `sel_is_true == True` then there are `select` True elements and the rest are False. If `sel_is_true == False` then there are `select` False elements and the rest are True. """ y = True if sel_is_true else False n = (not y) if select > size: raise ValueError("Cannot select {}/{} elements!".format(select, size)) if select == size: cut = np.ones(size, dtype=bool) * y elif select > size/2: cut = np.ones(size, dtype=bool) * y q, r = divmod(size, size-select) indices = [q*i + min(i, r) for i in range(size-select)] cut[indices] = n else: cut = np.ones(size, dtype=bool) * n q, r = divmod(size, select) indices = [q*i + min(i, r) for i in range(select)] cut[indices] = y return cut def extend(arr, num=1, log=True, append=False): """Extend the given array by extraplation. Arguments --------- arr <flt>[N] : array to extend num <int> : number of points to add (on each side, if ``both``) log <bool> : extrapolate in log-space append <bool> : add the extended points onto the given array Returns ------- retval <flt>[M] : extension (or input ``arr`` with extension added, if ``append``). """ if(log): useArr = np.log10(arr) else: useArr = np.array(arr) steps = np.arange(1, num+1) left = useArr[0] + (useArr[0] - useArr[1])*steps[::-1].squeeze() rigt = useArr[-1] + (useArr[-1] - useArr[-2])*steps.squeeze() if(log): left = np.power(10.0, left) rigt = np.power(10.0, rigt) if(append): return np.hstack([left, arr, rigt]) return [left, rigt] def monotonic_smooth(vals, window_size=4, expand_size=1, max_iter=10, thresh=-0.01, details=False, **kwargs): """Try to smooth out non-monotonicities in the given array. NOTE: causes some sub-optimal edge effects. Arguments --------- vals: (N,) scalar Input values to smooth. window_size expand_size: int, Expand the region being smoothed over to include this many neighboring points, outside of the non-monotonic region. max_iter thresh : scalar, Differences between subsequent points must be less than this value to be considered as non-monotonicities. Returns ------- yy: (N,) scalar Smoothed array. """ if np.ndim(vals) > 1: raise ValueError("Input array must be 1D") yy = np.copy(vals) # Smooth if the curve is not monotonic bads = (np.diff(yy) < thresh) cnt = 0 dets = [] while any(bads) and cnt < max_iter: bads = np.where(bads)[0] lo = bads[0] lo = np.max([lo - expand_size, 0]) hi = bads[-1]+1 hi = np.min([hi + expand_size, yy.size + 1]) if details: dets.append([[lo, hi], np.copy(yy[lo:hi])]) yy[lo:hi] = smooth_convolve(yy, window_size, **kwargs)[lo:hi] bads = (np.diff(yy) < thresh) cnt += 1 if details: return yy, dets return yy def ndinterp(xx, xvals, yvals, xlog=True, ylog=True): """Interpolate 2D data to an array of points. `xvals` and `yvals` are (N, M) where the interpolation is done along the 1th (`M`) axis (i.e. interpolation is done independently for each `N` row. Should be generalizeable to higher dim. """ # Convert to (N, T, M) # `xx` is (T,) `xvals` is (N, M) for N-binaries and M-steps select = (xx[np.newaxis, :, np.newaxis] <= xvals[:, np.newaxis, :]) # (N, T) aft = np.argmax(select, axis=-1) # zero values in `aft` mean no xvals after the targets were found valid = (aft > 0) inval = ~valid bef = np.copy(aft) bef[valid] -= 1 # (2, N, T) cut = [aft, bef] # (2, N, T) xvals = [np.take_along_axis(xvals, cc, axis=-1) for cc in cut] # Find how far to interpolate between values (in log-space) # (N, T) frac = (xx[np.newaxis, :] - xvals[1]) / np.subtract(*xvals) # (2, N, T) data = [np.take_along_axis(yvals, cc, axis=-1) for cc in cut] # Interpolate by `frac` for each binary new = data[1] + (np.subtract(*data) * frac) # Set invalid binaries to nan new[inval, ...] = np.nan new = new return new def regress(xx, yy): """Perform *linear* regression on the *zeroth* dimension of the given (ND) data. Arguments --------- xx : (N, ...) array_like of scalar Independent variable of data. yy : (N, ...) array_like of scalar Dependent variable of data, with shape matching that of `xx`. Returns ------- coeff : (2, ...) np.ndarray of scalar The linear regression coefficients, such that the 0th element is the slope, and the 1st is the y-intercept. The shape of `coeff` is such that ``coeff.shape[1:] == xx.shape[1:]``. zz : (N, ...) np.ndarray of scalar The model/prediction values using the linear regression and the input `xx` values. Same shape as `xx` and `yy`. """ if np.shape(xx) != np.shape(yy): err = "Shape of xx ({}) does not match that of yy ({})!".format(
np.shape(xx)
numpy.shape
import numpy as np import matplotlib.pyplot as plt from matplotlib import colors from astropy import constants from astropy.io import fits from astropy import coordinates from astropy import wcs from astropy import units import os try: from fpdf import FPDF except: pass def getrms(hours = 16, Nant = 60, velocity_width = 5.513, obs_freq = 1.421e9, f_tap = 1., outstring = ''): locstring = '' # Constants and conversion factors J = 1e26 # Jy to Watts conversion factor h1 = 1420405751.7667 # HI frequency in Hz diameter = 13.5 # MeerKAT diameter in m # Fitted values from recent work. Tsys/eta specs = np.array([[ 881. ,24.87730995], [ 913.875 ,24.49771763], [ 946.75 ,24.16024859], [ 979.625 ,23.64646727], [1012.5 ,24.07896985], [1045.375 ,23.79283849], [1078.25 ,22.70843003], [1111.125 ,22.93770384], [1144. ,22.84885476], [1176.875 ,22.12287765], [1209.75 ,21.49206455], [1242.625 ,21.16654511], [1275.5 ,20.96656328], [1308.375 ,20.6466135 ], [1341.25 ,20.46467585], [1374.125 ,20.35819618], [1407. ,20.33486544], [1439.875 ,20.45917325], [1472.75 ,20.46422681], [1505.625 ,20.53214192], [1538.5 ,21.29373981], [1571.375 ,20.78716734], [1604.25 ,20.91109069], [1637.125 ,21.14846713], [1670. ,24.40091906]]) f = specs[:,0]*1e6 # frequency axis above, Hz NPol = 2 A = np.pi * (diameter/2)**2 Tsys_eta = specs[:,1] bw = h1/constants.c.value*velocity_width*1000. tau = 3600 * hours Tsys_per_eta = Tsys_eta[np.argmin(np.abs(f - obs_freq))] locstring += 'T_sys/eta at {0:3.0f} MHz is {1:2.1f}K\n\n'.format(obs_freq/1e6,Tsys_per_eta) rmsnat = 2 * constants.k_B.value * Tsys_per_eta / (A * np.sqrt(Nant * (Nant-1) * bw * tau)) * J / np.sqrt(NPol) rmsbeam = f_tap*rmsnat locstring += 'Using the radiometer formula:\n' locstring += ' the natural rms noise for one pointing after {:.1f}h on-source is {:2.4g} mJy/beam over {:.2f} km/s\n'.format(hours, rmsnat*1e3, velocity_width) locstring += ' the rms noise when applying a penalty of {:.4g} is {:2.4g} mJy/beam over {:.2f} km/s\n'.format(f_tap, rmsbeam*1e3, velocity_width) print('{}'.format(locstring)) locstring += '\n' outstring += locstring return [rmsbeam, outstring] # Create mosaic using polygon def returnradecindeg(ra, dec): """ Uses ra and dec as an input in a astropy-readable format and returns [ra, dec] in degrees. """ # Pointings can be given in any string understood by astropy or in decimals, in which case they would be deg try: wcscoords = coordinates.SkyCoord(ra, dec, frame='icrs') except: try: wcscoords = coordinates.SkyCoord(ra, dec, frame='icrs', unit='deg') ra = wcscoords.ra.deg dec = wcscoords.dec.deg except ValueError: print('Wrong format for pointings') return [wcscoords.ra.deg, wcscoords.dec.deg] def convertosides(polypointsx, polypointsy): """ Takes polypoints describing the corners of a polygon and returns list of quadruples describing sides of polygon Input: polypointsx (list of float): corners of the polygon in a consecutive order, any format, x polypointsy (list of float): corners of the polygon in a consecutive order, any format, y Output will be [[x1,x2,y1,y2], ...] """ sides = [] for i in range(len(polypointsx)-1): sides.append([polypointsx[i], polypointsx[i+1], polypointsy[i], polypointsy[i+1]]) sides.append([polypointsx[len(polypointsx)-1], polypointsx[0], polypointsy[len(polypointsx)-1], polypointsy[0]]) return sides def outpolygon(point, sidesofpolygon, border): """ Determines whether point in part of polygon described by sidesofpolygon Input: point (pair of float): x and y coordinate of polygon sidesofpolygon (list of quadrupel of float): list of sides of polygon [[x1,x2,y1,y2], ...] border: Maximally allowed distance from polygon, if positive the mosaic is shrinked inside the polygon, if negative, it is expanded. Return: True (point is outside of polygon) or False (point is inside of polygon) """ i = 0 for side in sidesofpolygon: if point[0] < max(side[0:2]) and point[0] > min(side[0:2]): if side[2]+(point[0]-side[0])*(side[3]-side[2])/(side[1]-side[0]) > point[1]: i += 1 # point inside polygon if i%2 > 0: thareturn = False # point outside polygon else: thareturn = True if thareturn: if border < 0: for lseg in sidesofpolygon: if distpointlseg(point, lseg) <
np.fabs(border)
numpy.fabs
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import axes from scipy import stats from scipy import interpolate from scipy import linalg def round_lims(values, round_factor=0.5): """ Identify rounded minimum and maximum based on appropriate power of 10 and round_factor. round_place = 10 ** ceil( log10((max-min))-1 ) Minimum = (floor(min / round_place / round_factor) * round_place * round_factor) Maximum = (ceil(max / round_place / round_factor) * round_place * round_factor) E.g. [10, 39, 43] yields (10, 50) with round_factor = 1 (nearest 10) [10, 39, 43] yields (0, 100) with round_factor = 10 (nearest 100) [10, 39, 43] yields (0, 45) with round_factor = 0.5 (nearest 5) Args: values (np.ndarray, list): vector of values of interest. round_factor (float): multiplicative factor for rounding power (Default = 0.5). Returns: lims: tuple of (rounded minimum, rounded maximum) """ min_val = np.min(values) max_val = np.max(values) round_place = 10 ** np.ceil(np.log10(np.ptp([min_val, max_val])) - 1) rounded_min = (np.floor(min_val / round_place / round_factor) * round_place * round_factor) rounded_max = (np.ceil(max_val / round_place / round_factor) * round_place * round_factor) lims = (rounded_min, rounded_max) tick_factor = round_place * round_factor return lims, tick_factor def density_scatter(references, predictions, ax=None, loglog=False, lims=None, lim_factor=0.5, subset_threshold=1000, cmap=None, metrics=True, text_size=10, units=None, labels=True, label_size=10, **scatter_kwargs): """ Plot regression performance with a scatter plot of predictions vs. references, colored by log-density of points. Optionally display mean-absolute error, root-mean-square error, minimum residual, and maximum residual. Args: references (list, np.ndarray): Vector of Y-axis values. predictions (list, np.ndarray): Vector of X-axis values. ax (axes.Axes): Optional handle for existing matplotlib axis object loglog (bool): whether to plot on a log-log scale. lims (tuple): lower and upper bounds for axis limits. lim_factor (float): tuning factor for automatically determining limits. subset_threshold (int): maximum number of points to plot. If exceeded, subset will be selected randomly. cmap (matplotlib.colors.LinearSegmentedColormap): color map. metrics (bool): plot text with metrics e.g. root-mean-square-error. text_size (int): fontsize for metrics text. units (str): units for axis labels. labels (bool): add axis labels. label_size (int): fontsize for axis and tick labels. **scatter_kwargs: keyword arguments for plt.scatter function. Returns: fig & ax: matplotlib figure and axis. """ if ax is None: fig, ax = plt.subplots() fig_tuple = (fig, ax) else: fig_tuple = (None, None) if 's' not in scatter_kwargs.keys(): scatter_kwargs['s'] = 1 # default marker size if cmap is None: cmap = cm.viridis x = np.array(references) y =
np.array(predictions)
numpy.array
import itertools import numpy as np import torch from torch import nn import pandas as pd from itertools import permutations from tools import loss_func_tools from tools import data_generation_tools from tools import spo_framework from tools import prediction_tools from tools import optimization_oracle_tools from tools import optim_tools def portfolio_model_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='portfolio'): n_features = model_params['n_features'] n_samples = model_params['n_samples'] dim_cost = model_params['dim_cost'] # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map = { 'spop': loss_func_tools.spop_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } pred_model_map = { 'linear': prediction_tools.linear_prediction_model, 'two_layers': prediction_tools.two_layers_model, } pred_model_back_map = { 'linear': prediction_tools.linear_prediction_model_back, 'two_layers': prediction_tools.two_layers_model_back, } data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, } optimization_params = {'r': np.log(dim_cost) - np.log(dim_cost - 0.9)} # optimization_params = {'r': np.log(dim_cost) / 2} baseline_action = torch.ones(dim_cost) / dim_cost test_results = pd.DataFrame(columns=data_param_name + [ 'i', 'n_samples', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline']) def _clone_params(num_params): num_params_copy = {} for num_param in num_params: num_params_copy[num_param] = num_params[num_param].detach().clone() return num_params_copy for param_value in itertools.product(*data_param_value, range(n_trails)): if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value): param[name] = value x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param) actions_hindsight, _ = optimization_oracle_tools.entropy_oracle(y_test, optimization_params, False) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef) for pred_model in pred_model_list: if pred_model == 'linear': initial_params = { 'W': torch.from_numpy(np.random.normal(size=(n_features, dim_cost)).astype('float32')), 'b': torch.from_numpy(np.random.normal(size=dim_cost).astype('float32')) } elif pred_model == 'two_layers': hidden_dim = model_params.get('hidden_dim', 256) initial_params = { 'W1': torch.from_numpy( (np.random.normal(size=(n_features, hidden_dim)) / np.sqrt(hidden_dim)).astype('float32')), 'W2': torch.from_numpy( (np.random.normal(size=(hidden_dim, dim_cost)) / np.sqrt(dim_cost)).astype('float32')), 'b1': torch.from_numpy(np.random.normal(size=hidden_dim).astype('float32')), 'b2': torch.from_numpy(np.random.normal(size=dim_cost).astype('float32')), } else: raise Exception( 'Prediction model can only be "linear" or "two_layers". The input is: ' + pred_model) for j, loss_func in enumerate(loss_list): if pred_model == 'two_layers' and loss_func == 'l2': lr = 0.01 elif pred_model == 'linear': if loss_func == 'spo': lr = 1. else: lr = 0.1 else: lr = 1. spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': pred_model_map[pred_model], 'model_params': _clone_params(initial_params), 'predict_model_back': pred_model_back_map[pred_model], 'optimization_oracle': optimization_oracle_tools.entropy_oracle, 'optimization_params': optimization_params, 'optimization_oracle_back': optimization_oracle_tools.entropy_oracle_back, 'loss_func': loss_map[loss_func], 'optimizer': optim_tools.adam, # 'optimizer': optim_tools.sgd_momentum, # Notes: # SPO, teo layers: lr = 1.0 # 'optimizer_config': {'learning_rate': lr, 'momentum': 0.9, 'lr_decay': 0.995}, 'require_grad': True, }) loss = spo_model.update( x_input, y_input, num_iter=20000, if_quiet=True, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': actions_hindsight}, if_test_ini=if_test_ini and (j == 0), ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, ] return test_results def portfolio_model_excess_risk_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='portfolio'): n_features = model_params['n_features'] n_samples = model_params['n_samples'] dim_cost = model_params['dim_cost'] # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map = { 'spop': loss_func_tools.spop_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } pred_model_map = { 'linear': prediction_tools.linear_prediction_model, 'two_layers': prediction_tools.two_layers_model, } pred_model_back_map = { 'linear': prediction_tools.linear_prediction_model_back, 'two_layers': prediction_tools.two_layers_model_back, } data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, } optimization_params = {'r': np.log(dim_cost) - np.log(dim_cost - 0.9)} # optimization_params = {'r': np.log(dim_cost) / 2} baseline_action = torch.ones(dim_cost) / dim_cost test_results = pd.DataFrame(columns=data_param_name + [ 'i', 'n_samples', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline', 'normal_mean_spo_loss']) def _clone_params(num_params): num_params_copy = {} for num_param in num_params: num_params_copy[num_param] = num_params[num_param].detach().clone() return num_params_copy for param_value in itertools.product(*data_param_value, range(n_trails)): if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value): param[name] = value x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param) actions_hindsight, _ = optimization_oracle_tools.entropy_oracle(y_test, optimization_params, False) y_mean = model_coef['c_mean'].detach().clone() acction_y_mean, _ = optimization_oracle_tools.entropy_oracle(y_mean, optimization_params, False) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef) flag_mean_spo_loss = True for pred_model in pred_model_list: if pred_model == 'linear': initial_params = { 'W': torch.from_numpy(np.random.normal(size=(n_features, dim_cost)).astype('float32')), 'b': torch.from_numpy(np.random.normal(size=dim_cost).astype('float32')) } elif pred_model == 'two_layers': hidden_dim = model_params.get('hidden_dim', 256) initial_params = { 'W1': torch.from_numpy( (np.random.normal(size=(n_features, hidden_dim)) / np.sqrt(hidden_dim)).astype('float32')), 'W2': torch.from_numpy( (np.random.normal(size=(hidden_dim, dim_cost)) / np.sqrt(dim_cost)).astype('float32')), 'b1': torch.from_numpy(np.random.normal(size=hidden_dim).astype('float32')), 'b2': torch.from_numpy(np.random.normal(size=dim_cost).astype('float32')), } else: raise Exception( 'Prediction model can only be "linear" or "two_layers". The input is: ' + pred_model) for j, loss_func in enumerate(loss_list): if pred_model == 'two_layers' and loss_func == 'l2': lr = 0.01 elif pred_model == 'linear': if loss_func == 'spo': lr = 1. else: lr = 0.1 else: lr = 1. spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': pred_model_map[pred_model], 'model_params': _clone_params(initial_params), 'predict_model_back': pred_model_back_map[pred_model], 'optimization_oracle': optimization_oracle_tools.entropy_oracle, 'optimization_params': optimization_params, 'optimization_oracle_back': optimization_oracle_tools.entropy_oracle_back, 'loss_func': loss_map[loss_func], 'optimizer': optim_tools.adam, # 'optimizer': optim_tools.sgd_momentum, # Notes: # SPO, teo layers: lr = 1.0 # 'optimizer_config': {'learning_rate': lr, 'momentum': 0.9, 'lr_decay': 0.995}, 'require_grad': True, }) loss = spo_model.update( x_input, y_input, num_iter=20000, if_quiet=True, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': actions_hindsight, 'cost_mean': y_mean, 'action_cost_mean': acction_y_mean, }, if_test_ini=if_test_ini and (j == 0), if_mean_spo_loss=flag_mean_spo_loss, ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if flag_mean_spo_loss: loss_mean = loss['loss_mean'] normal_spo_loss_mean = loss_mean / hindsight flag_mean_spo_loss = False if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, normal_spo_loss_mean, ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, normal_spo_loss_mean, ] return test_results def portfolio_argmax_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='portfolio'): n_features = model_params['n_features'] n_samples = model_params['n_samples'] dim_cost = model_params['dim_cost'] hidden_dim = model_params.get('hidden_dim', 128) minmax = model_params.get('min/max', 'max') # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map = { 'spop': loss_func_tools.spop_argmax_loss_func, # 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } def pred_model_map(pred_model): if pred_model == 'linear': return nn.Sequential( nn.Linear(in_features=n_features, out_features=dim_cost), ) elif pred_model == 'two_layers': return nn.Sequential( nn.Linear(in_features=n_features, out_features=hidden_dim), nn.ReLU(), nn.Linear(in_features=hidden_dim, out_features=dim_cost), ) else: raise Exception('Prediction Model Type Error!') data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, } baseline_action = torch.ones(dim_cost) / dim_cost optimization_params = {'const': None} test_results = pd.DataFrame(columns=data_param_name + [ 'i', 'n_samples', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline']) for param_value in itertools.product(*data_param_value, range(n_trails)): if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value): param[name] = value ################################ # Something new here about neg # ################################ neg = minmax == 'max' x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param, neg=neg) actions_hindsight, _ = optimization_oracle_tools.softmax_oracle(y_test, optimization_params, False) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef, neg=neg) for pred_model in pred_model_list: for j, loss_func in enumerate(loss_list): predict_model = pred_model_map(pred_model) spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': predict_model, 'optimization_oracle': optimization_oracle_tools.softmax_oracle, 'optimization_params': optimization_params, 'loss_func': loss_map[loss_func], 'optimizer': torch.optim.Adam(predict_model.parameters()), 'require_grad': False, 'minibatch_size': 64, 'if_argmax': True, }) loss = spo_model.update( x_input, y_input, num_iter=10000, if_quiet=True, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': actions_hindsight}, if_test_ini=if_test_ini and (j == 0), ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] print(loss_func, pred_model, loss_test, hindsight) normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, ] return test_results def barrier_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='portfolio'): n_features = model_params['n_features'] n_samples = model_params['n_samples'] dim_cost = model_params['dim_cost'] # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map = { 'spop': loss_func_tools.spop_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } pred_model_map = { 'linear': prediction_tools.linear_prediction_model, 'two_layers': prediction_tools.two_layers_model, } pred_model_back_map = { 'linear': prediction_tools.linear_prediction_model_back, 'two_layers': prediction_tools.two_layers_model_back, } data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, 'multi_class': data_generation_tools.multi_class_data, } optimization_params = {'r': 2 * dim_cost * np.log(dim_cost)} # optimization_params = {'r': np.log(dim_cost) / 2} baseline_action = torch.ones(dim_cost, dtype=torch.float64) / dim_cost test_results = pd.DataFrame(columns=data_param_name + [ 'i', 'n_samples', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline']) def _clone_params(num_params): num_params_copy = {} for num_param in num_params: num_params_copy[num_param] = num_params[num_param].detach().clone() return num_params_copy for param_value in itertools.product(*data_param_value, range(n_trails)): if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value): param[name] = value x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param, neg=False) actions_hindsight, _ = optimization_oracle_tools.barrier_oracle(y_test, optimization_params, False) argmin_hindsight = y_test.argmin(dim=1, keepdim=True) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef, neg=False) for pred_model in pred_model_list: if pred_model == 'linear': initial_params = { 'W': torch.from_numpy(np.random.normal(size=(n_features, dim_cost)).astype('float64')), 'b': torch.from_numpy(np.random.normal(size=dim_cost).astype('float64')) } elif pred_model == 'two_layers': hidden_dim = model_params.get('hidden_dim', 256) initial_params = { 'W1': torch.from_numpy( (np.random.normal(size=(n_features, hidden_dim)) / np.sqrt(hidden_dim)).astype('float64')), 'W2': torch.from_numpy( (np.random.normal(size=(hidden_dim, dim_cost)) / np.sqrt(dim_cost)).astype('float64')), 'b1': torch.from_numpy(np.random.normal(size=hidden_dim).astype('float64')), 'b2': torch.from_numpy(np.random.normal(size=dim_cost).astype('float64')), } else: raise Exception( 'Prediction model can only be "linear" or "two_layers". The input is: ' + pred_model) for j, loss_func in enumerate(loss_list): if pred_model == 'two_layers' and loss_func == 'l2': lr = 0.01 elif pred_model == 'linear': if loss_func == 'spo': lr = 1. else: lr = 0.1 else: lr = 1. spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': pred_model_map[pred_model], 'model_params': _clone_params(initial_params), 'predict_model_back': pred_model_back_map[pred_model], 'optimization_oracle': optimization_oracle_tools.barrier_oracle, 'optimization_params': optimization_params, 'test_optimization_oracle': optimization_oracle_tools.argmin_test, 'test_optimization_params': {'arg': 'min'}, 'optimization_oracle_back': optimization_oracle_tools.barrier_oracle_back, 'loss_func': loss_map[loss_func], 'optimizer': optim_tools.adam, # 'optimizer': optim_tools.sgd_momentum, # Notes: # SPO, teo layers: lr = 1.0 'optimizer_config': {'learning_rate': 0.1, 'lr_decay': 0.99}, 'require_grad': True, 'if_argmax': True, 'minibatch_size': 8, }) loss = spo_model.update( x_input, y_input, num_iter=3000, if_quiet=False, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': actions_hindsight, 'argmin_hindsight': argmin_hindsight, }, if_test_ini=if_test_ini and (j == 0), ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] print(loss_func, pred_model, 'test spo loss:', loss_test, 'best cost in hindsight', hindsight) normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, ] return test_results def shortest_path_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='shortest_path'): n_features = model_params['n_features'] n_samples = model_params['n_samples'] dim_cost = model_params['dim_cost'] hidden_dim = model_params.get('hidden_dim', 128) grid_dim = model_params.get('grid_dim', 4) assert dim_cost == 2 * grid_dim * (grid_dim - 1), 'cost dim doesnot match grid dim!' min_max = model_params.get('min_max', 'min') # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map = { 'spop': loss_func_tools.spop_loss_func, # 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } def pred_model_map(_pred_model): if _pred_model == 'linear': return nn.Sequential( nn.Linear(in_features=n_features, out_features=dim_cost), ) elif _pred_model == 'two_layers': return nn.Sequential( nn.Linear(in_features=n_features, out_features=hidden_dim), nn.ReLU(), nn.Linear(in_features=hidden_dim, out_features=dim_cost), ) else: raise Exception('Prediction Model Type Error!') data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, } baseline_action = torch.zeros(dim_cost) # optimization_params = {'const': None} test_results = pd.DataFrame(columns=data_param_name + [ 'i', 'n_samples', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline']) def _path_decoding(_grid_dim, path_encoded): loc_x, loc_y = 0, 0 num_edges = _grid_dim * (_grid_dim - 1) path_decoded = np.zeros(2 * num_edges) for direction in path_encoded: if direction: path_decoded[1 * loc_x + (_grid_dim - 1) * loc_y + num_edges] = 1 loc_x += 1 else: path_decoded[(_grid_dim - 1) * loc_x + 1 * loc_y] = 1 loc_y += 1 return path_decoded def _construct_grid_path(_grid_dim): assert _grid_dim >= 2, 'Grid dim at least 2!' path_0 = [0] * (_grid_dim - 1) + [1] * (_grid_dim - 1) paths_encoded = list(set(permutations(path_0))) paths = [] for path_encoded in paths_encoded: paths.append(_path_decoding(_grid_dim, path_encoded)) paths = np.array(paths, dtype='float32') return torch.from_numpy(paths) optimization_params = { 'paths': _construct_grid_path(grid_dim), 'min_max': min_max, } for param_value in itertools.product(*data_param_value, range(n_trails)): if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value): param[name] = value ################################ # Something new here about neg # ################################ neg = min_max == 'max' x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param, neg=neg) actions_hindsight, _ = optimization_oracle_tools.shortest_path_oracle(y_test, optimization_params, False) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef, neg=neg) for pred_model in pred_model_list: print(pred_model) for j, loss_func in enumerate(loss_list): predict_model = pred_model_map(pred_model) spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': predict_model, 'optimization_oracle': optimization_oracle_tools.shortest_path_oracle, 'optimization_params': optimization_params, 'loss_func': loss_map[loss_func], 'optimizer': torch.optim.Adam(predict_model.parameters()), 'require_grad': False, 'minibatch_size': 64, 'if_argmax': True, }) loss = spo_model.update( x_input, y_input, num_iter=10000, if_quiet=True, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': actions_hindsight}, if_test_ini=if_test_ini and (j == 0), ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] print(loss_func, pred_model, 'test spo loss:', loss_test, 'best cost in hindsight', hindsight) normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ n_samples, loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, ] return test_results def barrier_vs_argmin_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='portfolio'): n_features = model_params['n_features'] n_samples_list = model_params['n_samples'] dim_cost = model_params['dim_cost'] neg = model_params.get('neg', False) # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map_barrier = { 'spop': loss_func_tools.spop_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } loss_map_argmin = { 'spop': loss_func_tools.spop_argmax_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } pred_model_map = { 'linear': prediction_tools.linear_prediction_model, 'two_layers': prediction_tools.two_layers_model, } pred_model_back_map = { 'linear': prediction_tools.linear_prediction_model_back, 'two_layers': prediction_tools.two_layers_model_back, } data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, 'multi_class': data_generation_tools.multi_class_data, } optimization_params = {'r': 2 * dim_cost * np.log(dim_cost)} # optimization_params = {'r': np.log(dim_cost) / 2} baseline_action = torch.ones(dim_cost) / dim_cost test_results = pd.DataFrame(columns=data_param_name + [ 'n_samples', 'i', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline', 'type']) def _clone_params(num_params): num_params_copy = {} for num_param in num_params: num_params_copy[num_param] = num_params[num_param].detach().clone() return num_params_copy def _pred_model_map(_pred_model): if _pred_model == 'linear': return nn.Sequential( nn.Linear(in_features=n_features, out_features=dim_cost), ) elif _pred_model == 'two_layers': return nn.Sequential( nn.Linear(in_features=n_features, out_features=hidden_dim), nn.ReLU(), nn.Linear(in_features=hidden_dim, out_features=dim_cost), ) else: raise Exception('Prediction Model Type Error!') for param_value_tuple in itertools.product(*data_param_value, n_samples_list, range(n_trails)): param_value = list(param_value_tuple) n_samples = param_value[-2] if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value[:-2]): param[name] = value print(param, param_value) x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param, neg=neg) actions_hindsight, _ = optimization_oracle_tools.barrier_oracle(y_test, optimization_params, False) argmin_hindsight = y_test.argmin(dim=1, keepdim=True) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef, neg=neg) for pred_model in pred_model_list: if pred_model == 'linear': initial_params = { 'W': torch.from_numpy(np.random.normal(size=(n_features, dim_cost)).astype('float32')), 'b': torch.from_numpy(np.random.normal(size=dim_cost).astype('float32')) } elif pred_model == 'two_layers': hidden_dim = model_params.get('hidden_dim', 256) initial_params = { 'W1': torch.from_numpy( (np.random.normal(size=(n_features, hidden_dim)) / np.sqrt(hidden_dim)).astype('float32')), 'W2': torch.from_numpy( (np.random.normal(size=(hidden_dim, dim_cost)) / np.sqrt(dim_cost)).astype('float32')), 'b1': torch.from_numpy(np.random.normal(size=hidden_dim).astype('float32')), 'b2': torch.from_numpy(np.random.normal(size=dim_cost).astype('float32')), } else: raise Exception( 'Prediction model can only be "linear" or "two_layers". The input is: ' + pred_model) for j, loss_func in enumerate(loss_list): spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': pred_model_map[pred_model], 'model_params': _clone_params(initial_params), 'predict_model_back': pred_model_back_map[pred_model], 'optimization_oracle': optimization_oracle_tools.barrier_oracle, 'optimization_params': optimization_params, 'test_optimization_oracle': optimization_oracle_tools.argmin_test, 'test_optimization_params': {'arg': 'min'}, 'optimization_oracle_back': optimization_oracle_tools.barrier_oracle_back, 'loss_func': loss_map_barrier[loss_func], 'optimizer': optim_tools.adam, # 'optimizer': optim_tools.sgd_momentum, # Notes: # SPO, teo layers: lr = 1.0 'optimizer_config': {'learning_rate': 0.1, 'lr_decay': 0.999}, 'require_grad': True, 'if_argmax': True, }) loss = spo_model.update( x_input, y_input, num_iter=5000, if_quiet=True, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': actions_hindsight, 'argmin_hindsight': argmin_hindsight, }, if_test_ini=if_test_ini and (j == 0), ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] print(loss_func, pred_model, loss_test, hindsight, 'barrier') normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, 'barrier', ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, 'barrier', ] print('argmin start.') predict_model = _pred_model_map(pred_model) spo_model = spo_framework.SpoTest({ 'n_features': n_features, 'dim_cost': dim_cost, 'baseline_action': baseline_action, 'predict_model': predict_model, 'optimization_oracle': optimization_oracle_tools.softmax_oracle, 'optimization_params': {'const': None}, 'loss_func': loss_map_argmin[loss_func], 'optimizer': torch.optim.Adam(predict_model.parameters()), 'require_grad': False, 'minibatch_size': min(64, n_samples), 'if_argmax': True, }) loss = spo_model.update( x_input, y_input, num_iter=10000, if_quiet=True, test_set={'features': x_test, 'cost_real': y_test, 'action_hindsight': argmin_hindsight}, if_test_ini=if_test_ini and (j == 0), ) loss_test = loss['loss_spo_test'] hindsight = loss['hindsight'] print(loss_func, pred_model, loss_test, hindsight, 'argmin') normal_spo = loss_test / hindsight train_spo = np.array(loss['loss_spo'][-100:-1]).mean() / hindsight if loss['loss_spo_baseline'] is not None: baseline_spo = loss['loss_spo_baseline'] / hindsight else: baseline_spo = None if if_test_ini: if j == 0: loss_ini = loss['loss_spo_test_ini'] hind_ini = loss['hindsight_ini'] spo_ini = loss_ini / hind_ini test_results.loc[len(test_results.index)] = list(param_value) + [ loss_func, pred_model, normal_spo, hindsight, train_spo, spo_ini, baseline_spo, 'argmin', ] else: test_results.loc[len(test_results.index)] = list(param_value) + [ loss_func, pred_model, normal_spo, hindsight, train_spo, None, baseline_spo, 'argmin', ] return test_results def barrier_vs_argmin_excess_risk_test(model_params, data_params, test_params, loss_list, pred_model_list, if_test_ini=False, data_gen_model='portfolio'): n_features = model_params['n_features'] n_samples_list = model_params['n_samples'] dim_cost = model_params['dim_cost'] neg = model_params.get('neg', False) # deg_list = data_params['deg'] # tau_list = data_params['tau'] # n_factors_list = data_params['n_factors'] data_param_name, data_param_value = [], [] for param_name in data_params: data_param_name.append(param_name) data_param_value.append(data_params[param_name]) test_set_size = test_params['test_size'] n_trails = test_params['n_trails'] loss_map_barrier = { 'spop': loss_func_tools.spop_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } loss_map_argmin = { 'spop': loss_func_tools.spop_argmax_loss_func, 'spo': loss_func_tools.spo_loss_func, 'l2': loss_func_tools.mse_loss_func, 'l1': loss_func_tools.abs_loss_func, } pred_model_map = { 'linear': prediction_tools.linear_prediction_model, 'two_layers': prediction_tools.two_layers_model, } pred_model_back_map = { 'linear': prediction_tools.linear_prediction_model_back, 'two_layers': prediction_tools.two_layers_model_back, } data_gen_map = { 'portfolio': data_generation_tools.portfolio_data, 'shortest_path': data_generation_tools.shortest_path_data, 'multi_class': data_generation_tools.multi_class_data, } optimization_params = {'r': 2 * dim_cost * np.log(dim_cost)} # optimization_params = {'r': np.log(dim_cost) / 2} baseline_action = torch.ones(dim_cost) / dim_cost test_results = pd.DataFrame(columns=data_param_name + [ 'n_samples', 'i', 'surrogate_loss_func', 'pred_model', 'normalized_spo_loss', 'hindsight', 'train_normal_spo', 'normalized_spo_ini', 'normal_spo_baseline', 'normal_mean_spo_loss', 'type']) def _clone_params(num_params): num_params_copy = {} for num_param in num_params: num_params_copy[num_param] = num_params[num_param].detach().clone() return num_params_copy def _pred_model_map(_pred_model): if _pred_model == 'linear': return nn.Sequential( nn.Linear(in_features=n_features, out_features=dim_cost), ) elif _pred_model == 'two_layers': return nn.Sequential( nn.Linear(in_features=n_features, out_features=hidden_dim), nn.ReLU(), nn.Linear(in_features=hidden_dim, out_features=dim_cost), ) else: raise Exception('Prediction Model Type Error!') for param_value_tuple in itertools.product(*data_param_value, n_samples_list, range(n_trails)): param_value = list(param_value_tuple) n_samples = param_value[-2] if param_value[-1] == 0: print(param_value) param = {} for name, value in zip(data_param_name, param_value[:-2]): param[name] = value print(param, param_value) x_test, y_test, model_coef = data_gen_map[data_gen_model]( n_features, test_set_size, dim_cost, param, neg=neg) actions_hindsight, _ = optimization_oracle_tools.barrier_oracle(y_test, optimization_params, False) argmin_hindsight = y_test.argmin(dim=1, keepdim=True) x_input, y_input, _ = data_gen_map[data_gen_model]( n_features, n_samples, dim_cost, param, model_coef=model_coef, neg=neg) y_mean = model_coef['c_mean'].detach().clone() action_y_mean, _ = optimization_oracle_tools.barrier_oracle(y_mean, optimization_params, False) argmin_hindsight_ymean = y_mean.argmin(dim=1, keepdim=True) flag_mean_spo_loss = True for pred_model in pred_model_list: if pred_model == 'linear': initial_params = { 'W': torch.from_numpy(np.random.normal(size=(n_features, dim_cost)).astype('float32')), 'b': torch.from_numpy(
np.random.normal(size=dim_cost)
numpy.random.normal
""" Metabolite annotation """ import numpy as np from medipy.io import load import os import fonc_util as f import gen_in import lawij import ser_xml import xml_gen import locale def ann(root,wa7da): old_locale = locale.getlocale() locale.setlocale(locale.LC_ALL, "C") tabp,tabc=gen_in.ini1(root) boc=-1 lolo= load(os.path.join(root,"2rr")) H=lolo.data D=H[0,:,:] H=D #print corps.interquartile_range(H) #print np.size(H,0),np.size(H,1) list_exp=ser_xml.exceptions(root) raxep=[] while boc<len(tabp)-1: boc+=1 a=str(tabp[boc][2]) #print a,boc newn='' for j in range(len(a)): if (a[j]=='_')==1: break newn+=a[j] r1=[] r1.append((boc)) for jj in range(boc+1,len(tabp)): nomn=str(tabp[jj][2]) #print nomn[0:j] try: if nomn[0:j+1]==newn+'_': r1.append((jj)) #print 'ok' else: break except: break boc=boc+len(r1)-1 #print tabp[r1[0]:r1[len(r1)-1]+1] #raw_input() #print len(r1) nt=tabp[r1[0]:r1[len(r1)-1]+1] #print nt #print 'Start' test=[] testc3=[] con=0 ampref=[] amp=[] newrt=[] #print newn ham=0 ed5il=0 for jj in range(len(nt)): #print newn #print jj #print nt[jj][0],nt[jj][1] #print nt[jj][0],nt[jj][1] r,indi=lawij.alig(nt[jj][0],nt[jj][1],H,nt[jj][3],wa7da) #print r,indi,nt[jj][2],nt[jj][0]-r[0],nt[jj][1]-r[1],nt[jj][7] if nt[jj][7]=='n': ed5il=1 #raw_input() if r[0]==100 and nt[jj][7]=='y': #print r,indi,nt[jj][2],nt[jj][0]-r[0],nt[jj][1]-r[1],nt[jj][7] ham=1 break if indi==0 : con=con+1 if np.abs(r[0])==4 or np.abs(r[1])==6: testc3.append((1)) else: testc3.append((0)) test.append((0)) #fig = plt.figure() #ax = fig.add_subplot(111) zayneb=H[(nt[jj][0]-r[0])-3:(nt[jj][0]-r[0])+4,(nt[jj][1]-r[1])-3:(nt[jj][1]-r[1])+4]*1. nr=f.subpix2(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr zayneb=H[(nt[jj][0]-r[0])-9:(nt[jj][0]-r[0])+10,(nt[jj][1]-r[1])-9:(nt[jj][1]-r[1])+10]*1. #nr=f.subpix(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr chl=f.dephcl(zayneb) chg=f.dephcg(zayneb) #ch,congl=f.dephc(zayneb) ch,congl=f.dephcaprio(zayneb,float(nt[jj][4]),float(nt[jj][5]),nt[jj][6]) #print congl #cax = ax.imshow(zayneb, interpolation='nearest') #plt.show() #print ch #plt.show() #print nt[jj][3] ampref.append(float(nt[jj][3])*1.) amp.append( H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]*1.) #print str(H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]) newrt.append((nr[0],nr[1],nt[jj][2],str(H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]),float(nt[jj][3]),chg[1],chl[0],chl[1],ch[0],ch[1],congl,r[0],r[1])) #print newrt else: if r[0]<100 : if np.abs(r[0])==3 or np.abs(r[1])==5: testc3.append((1)) else: testc3.append((0)) con=con+1 test.append((1)) #fig = plt.figure() #ax = fig.add_subplot(111) zayneb=H[(nt[jj][0]-r[0])-3:(nt[jj][0]-r[0])+4,(nt[jj][1]-r[1])-3:(nt[jj][1]-r[1])+4]*1. nr=f.subpix2(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr zayneb=H[(nt[jj][0]-r[0])-9:(nt[jj][0]-r[0])+10,(nt[jj][1]-r[1])-9:(nt[jj][1]-r[1])+10]*1. #nr=f.subpix(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr chl=f.dephcl(zayneb) chg=f.dephcg(zayneb) #ch,congl=f.dephc(zayneb) ch,congl=f.dephcaprio(zayneb,float(nt[jj][4]),float(nt[jj][5]),nt[jj][6]) ampref.append(float(nt[jj][3])*1.) amp.append(H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]*1.) newrt.append((nr[0],nr[1],nt[jj][2],H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]*1.,float(nt[jj][3]),chg[1],chl[0],chl[1],ch[0],ch[1],congl,r[0],r[1])) else: test.append((2)) testc3.append((2)) #fig = plt.figure() #ax = fig.add_subplot(111) zayneb=H[nt[jj][0]-7:(nt[jj][0])+8,(nt[jj][1])-7:(nt[jj][1])+8]*1. ampref.append(float(nt[jj][3])*1.) amp.append(0) #cax = ax.imshow(zayneb, interpolation='nearest') #plt.show() #raw_input() newrt.append((0,0,0,0,0,0,0,0,0,0,0,0,0)) #raw_input() #print newn #print ampref #print amp,newn,testc3 #print nt #print newrt #raw_input() #amptest=np.nonzero(amp>0) o=np.nonzero(testc3==0) vamp=np.array(amp) ivamref=vamp[o] o=np.nonzero(ivamref>210000) #print newn,'test' #print 'ham',ham #if (float(len(o[0]))*1.000000001)/float(len(ivamref)*1.00000001)>0.4 or f.exp_hand(list_exp,newn)==1 or ham==0: if ham==0: #print 'd5aal' if len(nt)==con: if len(nt)==1: raxep.append(newrt[0]) #print 'accepted' else: artestc3=np.array(testc3) olc3=np.nonzero(artestc3==1) if np.size(olc3)>0: if f.exp_ync(amp,ampref,testc3)==1: #print 'ouffffff' artest=np.array(test) ol=np.nonzero(artest==1) o=np.nonzero(artest==0) if np.size(ol)>0: #print 'accepted with some conditions' #print f.exp_ync(amp,ampref,testc3) #if f.exp_ync(amp,ampref,testc3)==0: #print 'llllllaaaaaaaaa' if f.exp_yn(amp,ampref,test)==1: for no in range(len(newrt)): raxep.append(newrt[no]) elif f.exp_hand(list_exp,newn)==1: artest=np.array(test) rnt=np.array(newrt) ol=np.nonzero(artest==1) o=np.nonzero(artest==0) vo=rnt[o] #raw_input() for no in range(len(vo)): #print '%%%%%%%%%' zi=lawij.mod(vo[no]) #print zi #print artest #raw_input() raxep.append((zi)) else: #print f.exp_ync(amp,ampref,testc3) for no in range(len(nt)): raxep.append(newrt[no]) #print 'accepted' else: #print 'ouuuuut' #print f.exp_hand(list_exp,newn) if f.exp_hand(list_exp,newn)==1 : artest=np.array(test) artestc3=np.array(testc3) rnt=np.array(newrt) #print nt #raw_input() ol=np.nonzero(artest==1) condlist=[artest==0,artestc3==0] g=condlist[0]*condlist[1] #print g,artest,artestc3 o=np.nonzero(artest==0) #print '%%%hhh%%%%%%' #print rnt #print test vo=rnt[g] #print vo,'%%%hhh%%%%%%' #raw_input() for no in range(len(vo)): #print '%%%%%%%%%' zi=lawij.mod(vo[no]) #print zi #print artest #raw_input() raxep.append((zi)) else: #print f.exp_ync(amp,ampref,testc3) for no in range(len(nt)): raxep.append(newrt[no]) #print 'accepted' else: if ham==0: if f.exp_hand(list_exp,newn)==1 or ed5il==1: artest=np.array(test) #print newrt rnt=xml_gen.cell2tab8(newrt) #print nt #raw_input() ol=np.nonzero(artest==1) o=np.nonzero(artest==0) #print '%%%hhh%%%%%%' rnt=np.array(rnt) #print test vo=rnt[o] #print vo #print len(vo) #raw_input() for no in range(len(vo)): #print '%%%%%%%%%' zi=lawij.mod(vo[no]) #print zi #print artest #raw_input() raxep.append((zi)) #print 'may be...' #else: #print 'refused without discussion' #print test #print 'DONE' #print '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%' #print ' ' #raw_input() locale.setlocale(locale.LC_ALL, old_locale) return raxep,tabc #for lll in range(len(raxep)): #print raxep[lll] def rec(root): old_locale = locale.getlocale() locale.setlocale(locale.LC_ALL, "C") #root='/home/miv/belghith/Bureau/KAROM/Akram/nmr/RP/5/pdata/1' tabp,tabc=gen_in.ini2(root) boc=-1 lolo= load(os.path.join(root,"2rr")) H=lolo.data D=H[0,:,:] H=D #print corps.interquartile_range(H) #print np.size(H,0),np.size(H,1) list_exp=ser_xml.exceptions(root) raxep=[] while boc<len(tabp)-1: boc+=1 a=str(tabp[boc][2]) #print a,boc newn='' for j in range(len(a)): if (a[j]=='_')==1: break newn+=a[j] r1=[] r1.append((boc)) for jj in range(boc+1,len(tabp)): nomn=str(tabp[jj][2]) #print nomn[0:j] try: if nomn[0:j+1]==newn+'_': r1.append((jj)) #print 'ok' else: break except: break boc=boc+len(r1)-1 #print tabp[r1[0]:r1[len(r1)-1]+1] #raw_input() #print len(r1) nt=tabp[r1[0]:r1[len(r1)-1]+1] #print nt #print 'Start' test=[] testc3=[] con=0 ampref=[] amp=[] newrt=[] #print newn for jj in range(len(nt)): #print newn #print jj #print nt[jj][0],nt[jj][1] #print nt[jj][0],nt[jj][1] r,indi=lawij.aligrec(nt[jj][0],nt[jj][1],H,nt[jj][3]) #print r,indi,nt[jj][2],nt[jj][0]-r[0],nt[jj][1]-r[1] #raw_input() if indi==0 : con=con+1 #print 'ok' testc3.append((0)) test.append((0)) #fig = plt.figure() #ax = fig.add_subplot(111) zayneb=H[(nt[jj][0]-r[0])-3:(nt[jj][0]-r[0])+4,(nt[jj][1]-r[1])-3:(nt[jj][1]-r[1])+4]*1. nr=f.subpix2(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr zayneb=H[(nt[jj][0]-r[0])-9:(nt[jj][0]-r[0])+10,(nt[jj][1]-r[1])-9:(nt[jj][1]-r[1])+10]*1. #nr=f.subpix(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr chl=f.dephcl(zayneb) chg=f.dephcg(zayneb) #ch,congl=f.dephc(zayneb) ch,congl=f.dephcaprio(zayneb,float(nt[jj][4]),float(nt[jj][5]),nt[jj][6]) #print congl #cax = ax.imshow(zayneb, interpolation='nearest') #plt.show() #print ch #plt.show() ampref.append(float(nt[jj][3])*1.) amp.append( H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]*1.) #print str(H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]) newrt.append((nr[0],nr[1],nt[jj][2],str(H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]),chg[0],chg[1],chl[0],chl[1],ch[0],ch[1],congl,r[0],r[1])) #print newrt else: if r[0]<100 : if np.abs(r[0])==3 or np.abs(r[1])==5: testc3.append((1)) else: testc3.append((0)) con=con+1 test.append((1)) #fig = plt.figure() #ax = fig.add_subplot(111) zayneb=H[(nt[jj][0]-r[0])-3:(nt[jj][0]-r[0])+4,(nt[jj][1]-r[1])-3:(nt[jj][1]-r[1])+4]*1. nr=f.subpix2(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr zayneb=H[(nt[jj][0]-r[0])-9:(nt[jj][0]-r[0])+10,(nt[jj][1]-r[1])-9:(nt[jj][1]-r[1])+10]*1. #nr=f.subpix(zayneb,(nt[jj][0]-r[0]),(nt[jj][1]-r[1])) #print (nt[jj][0]-r[0]),(nt[jj][1]-r[1]),nr chl=f.dephcl(zayneb) chg=f.dephcg(zayneb) #ch,congl=f.dephc(zayneb) ch,congl=f.dephcaprio(zayneb,float(nt[jj][4]),float(nt[jj][5]),nt[jj][6]) ampref.append(float(nt[jj][3])*1.) amp.append(H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]*1.) newrt.append((nr[0],nr[1],nt[jj][2],H[(nt[jj][0]-r[0]),(nt[jj][1]-r[1])]*1.,chg[0],chg[1],chl[0],chl[1],ch[0],ch[1],congl,r[0],r[1])) else: test.append((2)) testc3.append((2)) #fig = plt.figure() #ax = fig.add_subplot(111) zayneb=H[nt[jj][0]-7:(nt[jj][0])+8,(nt[jj][1])-7:(nt[jj][1])+8]*1. ampref.append(float(nt[jj][3])*1.) amp.append(0) #cax = ax.imshow(zayneb, interpolation='nearest') #plt.show() #raw_input() newrt.append((0,0,0,0,0,0,0,0,0,0,0,0,0)) #raw_input() #print newn #print ampref #print amp,newn,testc3 #print nt #print newrt #raw_input() #amptest=np.nonzero(amp>0) o=np.nonzero(testc3==0) vamp=np.array(amp) ivamref=vamp[o] o=np.nonzero(ivamref>100) #print newn,'test' if (float(len(o[0]))*1.000000001)/float(len(ivamref)*1.00000001)>0.4 or f.exp_hand(list_exp,newn)==1: #print newn,'d5aal' if len(nt)==con: if len(nt)==1: raxep.append(newrt[0]) #print 'accepted' else: artestc3=np.array(testc3) olc3=np.nonzero(artestc3==1) if np.size(olc3)>0: if f.exp_ync(amp,ampref,testc3)==1: #print 'ouffffff' artest=
np.array(test)
numpy.array
# Utility Functions # Authors: <NAME> # Edited by: <NAME> ''' Used by the user to define channels that are hard coded for analysis. ''' # Imports necessary for this function import numpy as np import re from itertools import combinations def splitpatient(patient): stringtest = patient.find('seiz') if stringtest == -1: stringtest = patient.find('sz') if stringtest == -1: stringtest = patient.find('aw') if stringtest == -1: stringtest = patient.find('aslp') if stringtest == -1: stringtest = patient.find('_') if stringtest == -1: print("Not sz, seiz, aslp, or aw! Please add additional naming possibilities, or tell data gatherers to rename datasets.") else: pat_id = patient[0:stringtest] seiz_id = patient[stringtest:] # remove any underscores pat_id = re.sub('_', '', pat_id) seiz_id = re.sub('_', '', seiz_id) return pat_id, seiz_id def returnindices(pat_id, seiz_id=None): included_indices, onsetelecs, clinresult = returnnihindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnlaindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnummcindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnjhuindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returntngindices( pat_id, seiz_id) return included_indices, onsetelecs, clinresult def returntngindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 if pat_id == 'id001ac': # included_indices = np.concatenate((np.arange(0,4), np.arange(5,55), # np.arange(56,77), np.arange(78,80))) included_indices = np.array([0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79]) elif pat_id == 'id002cj': # included_indices = np.array(np.arange(0,184)) included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89, 90, 91, 92, 93, 100, 101, 102, 103, 104, 105, 106, 107, 108, 115, 116, 117, 118, 119, 120, 121, 122, 123, 129, 130, 131, 132, 133, 134, 135, 136, 137, # np.arange(143, 156) 143, 144, 145, 146, 147, 148, 149, 150, 151, 157, 158, 159, 160, 161, 162, 163, 164, 165, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182]) elif pat_id == 'id003cm': included_indices = np.concatenate((np.arange(0,13), np.arange(25,37), np.arange(40,50), np.arange(55,69), np.arange(70,79))) elif pat_id == 'id004cv': # removed OC'10, SC'5, CC'14/15 included_indices = np.concatenate((np.arange(0,23), np.arange(25,39), np.arange(40,59), np.arange(60,110))) elif pat_id == 'id005et': included_indices = np.concatenate((np.arange(0,39), np.arange(39,47), np.arange(52,62), np.arange(62,87))) elif pat_id == 'id006fb': included_indices = np.concatenate((np.arange(10,19), np.arange(40,50), np.arange(115,123))) elif pat_id == 'id008gc': included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111]) elif pat_id == 'id009il': included_indices = np.concatenate((np.arange(0,10), np.arange(10,152))) elif pat_id == 'id010js': included_indices = np.concatenate((np.arange(0,14), np.arange(15,29), np.arange(30,42), np.arange(43,52), np.arange(53,65), np.arange(66,75), np.arange(76,80), np.arange(81,85), np.arange(86,94), np.arange(95,98), np.arange(99,111), np.arange(112,124))) elif pat_id == 'id011ml': included_indices = np.concatenate((np.arange(0,18), np.arange(21,68), np.arange(69,82), np.arange(82,125))) elif pat_id == 'id012pc': included_indices = np.concatenate((np.arange(0,4), np.arange(9,17), np.arange(18,28), np.arange(31,41), np.arange(44,56), np.arange(57,69), np.arange(70,82), np.arange(83,96), np.arange(97,153))) elif pat_id == 'id013pg': included_indices = np.array([2, 3, 4, 5, 15, 18, 19, 20, 21, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78]) elif pat_id == 'id014rb': included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164]) elif pat_id == 'id015sf': included_indices = np.concatenate((np.arange(0,37), np.arange(38,77), np.arange(78,121))) return included_indices, onsetelecs, clinresult def returnnihindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 if pat_id == 'pt1': included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43), np.arange(45, 69), np.arange(71, 95))) onsetelecs = set(['ATT1', 'ATT2', 'AD1', 'AD2', 'AD3', 'AD4', 'PD1', 'PD2', 'PD3', 'PD4']) resectelecs = set(['ATT1', 'ATT2', 'ATT3', 'ATT4', 'ATT5', 'ATT6', 'ATT7', 'ATT8', 'AST1', 'AST2', 'AST3', 'AST4', 'PST1', 'PST2', 'PST3', 'PST4', 'AD1', 'AD2', 'AD3', 'AD4', 'PD1', 'PD2', 'PD3', 'PD4', 'PLT5', 'PLT6', 'SLT1']) clinresult = 1 elif pat_id == 'pt2': # [1:14 16:19 21:25 27:37 43 44 47:74] included_indices = np.concatenate((np.arange(0, 14), np.arange(15, 19), np.arange( 20, 25), np.arange( 26, 37), np.arange( 42, 44), np.arange(46, 74))) onsetelecs = set(['MST1', 'PST1', 'AST1', 'TT1']) resectelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT6', 'TT6', 'G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G12', 'G18', 'G19', 'G20', 'G26', 'G27', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 elif pat_id == 'pt3': # [1:19 21:37 42:43 46:69 71:107] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 69), np.arange(70, 107))) onsetelecs = set(['SFP1', 'SFP2', 'SFP3', 'IFP1', 'IFP2', 'IFP3', 'MFP2', 'MFP3', 'OF1', 'OF2', 'OF3', 'OF4']) resectelecs = set(['FG1', 'FG2', 'FG9', 'FG10', 'FG17', 'FG18', 'FG25', 'SFP1', 'SFP2', 'SFP3', 'SFP4', 'SFP5', 'SFP6', 'SFP7', 'SFP8', 'MFP1', 'MFP2', 'MFP3', 'MFP4', 'MFP5', 'MFP6', 'IFP1', 'IFP2', 'IFP3', 'IFP4', 'OF3', 'OF4']) clinresult = 1 elif pat_id == 'pt4': # [1:19 21:37 42:43 46:69 71:107] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26), np.arange(28, 36))) onsetelecs = set([]) resectelecs = set([]) clinresult = -1 elif pat_id == 'pt5': included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26), np.arange(28, 36))) onsetelecs = set([]) resectelecs = set([]) clinresult = -1 elif pat_id == 'pt6': # [1:36 42:43 46 52:56 58:71 73:95] included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43), np.arange(45, 46), np.arange(51, 56), np.arange(57, 71), np.arange(72, 95))) onsetelecs = set(['LA1', 'LA2', 'LA3', 'LA4', 'LAH1', 'LAH2', 'LAH3', 'LAH4', 'LPH1', 'LPH2', 'LPH3', 'LPH4']) resectelecs = set(['LALT1', 'LALT2', 'LALT3', 'LALT4', 'LALT5', 'LALT6', 'LAST1', 'LAST2', 'LAST3', 'LAST4', 'LA1', 'LA2', 'LA3', 'LA4', 'LPST4', 'LAH1', 'LAH2', 'LAH3', 'LAH4', 'LPH1', 'LPH2']) clinresult = 2 elif pat_id == 'pt7': # [1:17 19:35 37:38 41:62 67:109] included_indices = np.concatenate((np.arange(0, 17), np.arange(18, 35), np.arange(36, 38), np.arange(40, 62), np.arange(66, 109))) onsetelecs = set(['MFP1', 'LFP3', 'PT2', 'PT3', 'PT4', 'PT5', 'MT2', 'MT3', 'AT3', 'AT4', 'G29', 'G30', 'G39', 'G40', 'G45', 'G46']) resectelecs = set(['G28', 'G29', 'G30', 'G36', 'G37', 'G38', 'G39', 'G41', 'G44', 'G45', 'G46', 'LFP1', 'LFP2', 'LSF3', 'LSF4']) clinresult = 3 elif pat_id == 'pt8': # [1:19 21 23 30:37 39:40 43:64 71:76] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 21), np.arange( 22, 23), np.arange( 29, 37), np.arange( 38, 40), np.arange(42, 64), np.arange(70, 76))) onsetelecs = set(['G19', 'G23', 'G29', 'G30', 'G31', 'TO6', 'TO5', 'MST3', 'MST4', 'O8', 'O9']) resectelecs = set(['G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31', 'MST2', 'MST3', 'MST4', 'PST2', 'PST3', 'PST4']) clinresult = 1 elif pat_id == 'pt10': # [1:3 5:19 21:35 48:69] included_indices = np.concatenate((np.arange(0, 3), np.arange(4, 19), np.arange(20, 35), np.arange(47, 69))) onsetelecs = set(['TT1', 'TT2', 'TT4', 'TT6', 'MST1', 'AST2']) resectelecs = set(['G3', 'G4', 'G5', 'G6', 'G11', 'G12', 'G13', 'G14', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4']) clinresult = 2 elif pat_id == 'pt11': # [1:19 21:35 37 39 40 43:74 76:81 83:84] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 35), np.arange( 36, 37), np.arange( 38, 40), np.arange( 42, 74), np.arange(75, 81), np.arange(82, 84))) onsetelecs = set(['RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG44', 'RG45']) resectelecs = set(['RG4', 'RG5', 'RG6', 'RG7', 'RG12', 'RG13', 'RG14', 'RG15', 'RG21', 'RG22', 'RG23', 'RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG45', 'RG46', 'RG47']) resectelecs = set(['RG4', 'RG5', 'RG6', 'RG7', 'RG12', 'RG13', 'RG14', 'RG15', 'RG21', 'RG22', 'RG23', 'RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG45', 'RG46', 'RG47']) clinresult = 1 elif pat_id == 'pt12': # [1:15 17:33 38:39 42:61] included_indices = np.concatenate((np.arange(0, 15), np.arange(16, 33), np.arange(37, 39), np.arange(41, 61))) onsetelecs = set(['AST1', 'AST2', 'TT2', 'TT3', 'TT4', 'TT5']) resectelecs = set(['G19', 'G20', 'G21', 'G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 2 elif pat_id == 'pt13': # [1:36 39:40 43:66 69:74 77 79:94 96:103 105:130] included_indices = np.concatenate((np.arange(0, 36), np.arange(38, 40), np.arange( 42, 66), np.arange( 68, 74), np.arange( 76, 77), np.arange(78, 94), np.arange(95, 103), np.arange(104, 130))) onsetelecs = set(['G1', 'G2', 'G9', 'G10', 'G17', 'G18']) resectelecs = set(['G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G17', 'G18', 'G19', 'AP2', 'AP3', 'AP4']) clinresult = 1 elif pat_id == 'pt14': # [1:19 21:37 41:42 45:61 68:78] included_indices = np.concatenate((np.arange(0, 3), np.arange(6, 10), np.arange( 11, 17), np.arange( 18, 19), np.arange( 20, 37), np.arange(40, 42), np.arange(44, 61), np.arange(67, 78))) onsetelecs = set(['MST1', 'MST2', 'TT1', 'TT2', 'TT3', 'AST1', 'AST2']) resectelecs = set(['TT1', 'TT2', 'TT3', 'AST1', 'AST2', 'MST1', 'MST2', 'PST1']) clinresult = 4 elif pat_id == 'pt15': # [2:7 9:30 32:36 41:42 45:47 49:66 69 71:85]; included_indices = np.concatenate((np.arange(1, 7), np.arange(8, 30), np.arange( 31, 36), np.arange( 40, 42), np.arange( 44, 47), np.arange(48, 66), np.arange(68, 69), np.arange(70, 85))) onsetelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'MST1', 'MST2', 'AST1', 'AST2', 'AST3']) resectelecs = set(['G2', 'G3', 'G4', 'G5', 'G10', 'G11', 'G12', 'G13', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 elif pat_id == 'pt16': # [1:19 21:37 42:43 46:53] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 53))) onsetelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST3', 'MST4', 'G26', 'G27', 'G28', 'G18', 'G19', 'G20', 'OF4']) resectelecs = set(['G18', 'G19', 'G20', 'G26', 'G27', 'G28', 'G29', 'G30', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4' ]) clinresult = 1 elif pat_id == 'pt17': # [1:19 21:37 42:43 46:51] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 51))) onsetelecs = set(['TT1', 'TT2']) resectelecs = set(['G27', 'G28', 'G29', 'G30', 'TT', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 return included_indices, onsetelecs, clinresult def returnlaindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 spreadelecs = None if pat_id == 'la01': # [1 3 7:8 11:13 17:19 22:26 32 34:35 37 42 50:55 58 ... # 62:65 70:72 77:81 84:97 100:102 105:107 110:114 120:121 130:131]; # onset_electrodes = {'Y''1', 'X''4', ... # 'T''5', 'T''6', 'O''1', 'O''2', 'B1', 'B2',...% rare onsets # } included_indices = np.concatenate((np.arange(0, 3), np.arange(6, 8), np.arange(10, 13), np.arange( 16, 19), np.arange( 21, 26), np.arange( 31, 32), np.arange( 33, 35), np.arange( 36, 37), np.arange( 41, 42), np.arange( 49, 55), np.arange( 57, 58), np.arange( 61, 65), np.arange( 69, 72), np.arange( 76, 81), np.arange( 83, 97), np.arange( 99, 102), np.arange( 104, 107), np.arange( 109, 114), np.arange(119, 121), np.arange(129, 131))) onsetelecs = ["X'4", "T'5", "T'6", "O'1", "O'2", "B1", "B2"] spreadelecs = ["P1", "P2", 'P6', "X1", "X8", "X9", "E'2", "E'3" "T'1"] if seiz_id == 'inter2': included_indices = np.concatenate((np.arange(0, 1), np.arange(7, 16), np.arange(21, 28), np.arange( 33, 36), np.arange( 39, 40), np.arange( 42, 44), np.arange( 46, 50), np.arange( 56, 58), np.arange( 62, 65), np.arange( 66, 68), np.arange( 69, 75), np.arange(76, 83), np.arange(85, 89), np.arange(96, 103), np.arange(106, 109), np.arange(111, 115), np.arange(116, 117), np.arange(119, 123), np.arange(126, 127), np.arange(130, 134), np.arange(136, 137), np.arange(138, 144), np.arange(146, 153))) if seiz_id == 'ictal2': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 19), np.arange(20, 33), np.arange( 34, 37), np.arange( 38, 40), np.arange( 42, 98), np.arange(107, 136), np.arange(138, 158))) onsetelecs = ["Y'1"] clinresult = 1 elif pat_id == 'la02': # [1:4 7 9 11:12 15:18 21:28 30:34 47 50:62 64:67 ... # 70:73 79:87 90 95:99] included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 7), np.arange(8, 9), np.arange( 10, 12), np.arange( 14, 18), np.arange( 20, 28), np.arange( 29, 34), np.arange( 46, 47), np.arange( 49, 62), np.arange( 63, 67), np.arange( 69, 73), np.arange( 78, 87), np.arange(89, 90), np.arange(94, 99))) onsetelecs = ["L'2", "L'3", "L'4"] clinresult = 1 elif pat_id == 'la03': # [1:3 6:33 36:68 77:163] included_indices = np.concatenate((np.arange(0, 3), np.arange(5, 33), np.arange(35, 68), np.arange(76, 163))) onsetelecs = ["L7"] clinresult = 2 elif pat_id == 'la04': # [1:4 9:13 15:17 22 24:32 44:47 52:58 60 63:64 ... # 67:70 72:74 77:84 88:91 94:96 98:101 109:111 114:116 121 123:129]; included_indices = np.concatenate((np.arange(0, 4), np.arange(8, 13), np.arange( 14, 17), np.arange( 21, 22), np.arange( 23, 32), np.arange(43, 47), np.arange(51, 58), np.arange(59, 60), np.arange(62, 64), np.arange(66, 70), np.arange(71, 74), np.arange(76, 84), np.arange(87, 91), np.arange(93, 96), np.arange(97, 101), np.arange(108, 111), np.arange(113, 116), np.arange(120, 121), np.arange(122, 129))) # FIRST ABLATION WAS A FAILURE onsetelecs = ["L'4", "G'1", # 2ND RESECTION REMOVED ALL OF M' ELECTRODES "M'1", "M'2", "M'3", "M'4", "M'5", "M'6", "M'7", "M'8", "M'9", "M'10", "M'11", "M'12", "M'13", "M'14", "M'15", "M'16"] clinresult = 2 elif pat_id == 'la05': # [2:4 7:15 21:39 42:82 85:89 96:101 103:114 116:121 ... # 126:145 147:152 154:157 160:161 165:180 182:191]; included_indices = np.concatenate((np.arange(1, 4), np.arange(6, 15), np.arange( 20, 39), np.arange( 41, 82), np.arange( 84, 89), np.arange(95, 101), np.arange(102, 114), np.arange(115, 121), np.arange(125, 145), np.arange(146, 152), np.arange(153, 157), np.arange(159, 161), np.arange(164, 180), np.arange(181, 191))) onsetelecs = ["T'1", "T'2", "D'1", "D'2"] clinresult = 1 elif pat_id == 'la06': # [1:4 7:12 14:17 19 21:33 37 46:47 50:58 61:62 70:73 77:82 ... # 84:102 104:112 114:119]; included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 12), np.arange( 13, 17), np.arange( 18, 19), np.arange( 20, 33), np.arange(36, 37), np.arange(45, 47), np.arange(49, 58), np.arange(60, 62), np.arange(69, 73), np.arange(76, 82), np.arange(83, 102), np.arange(103, 112), np.arange(113, 119))) onsetelecs = ["Q'3", "Q'4", "R'3", "R'4"] clinresult = 2 elif pat_id == 'la07': # [1:18 22:23 25 34:37 44 48:51 54:55 57:69 65:66 68:78 ... # 82:83 85:93 96:107 114:120]; included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 18), np.arange(21, 23), np.arange( 24, 25), np.arange( 33, 37), np.arange( 43, 44), np.arange(47, 51), np.arange(53, 55), np.arange(56, 69), np.arange(64, 66), np.arange(67, 78), np.arange(81, 83), np.arange(84, 93), np.arange(95, 107), np.arange(113, 120))) onsetelecs = ["T'1", "T'3", "R'8", "R'9"] clinresult = 1 elif pat_id == 'la08': # [1:2 8:13 15:19 22 25 27:30 34:35 46:48 50:57 ... # 65:68 70:72 76:78 80:84 87:93 100:102 105:108 110:117 123:127 130:131 133:137 ... # 140:146] included_indices = np.concatenate((np.arange(0, 2), np.arange(7, 13), np.arange( 14, 19), np.arange( 21, 22), np.arange( 24, 25), np.arange(26, 30), np.arange(33, 35), np.arange(45, 48), np.arange(49, 57), np.arange(64, 68), np.arange(69, 72), np.arange(75, 78), np.arange(79, 84), np.arange(86, 93), np.arange(99, 102), np.arange(104, 108), np.arange(109, 117), np.arange(122, 127), np.arange(129, 131), np.arange(132, 137), np.arange(139, 146))) onsetelecs = ["Q2"] clinresult = 2 elif pat_id == 'la09': # [3:4 7:17 21:28 33:38 42:47 51:56 58:62 64:69 ... # 73:80 82:84 88:92 95:103 107:121 123 126:146 150:161 164:169 179:181 ... # 183:185 187:191] # 2/7/18 - got rid of F10 = looking at edf was super noisy included_indices = np.concatenate((np.arange(2, 3), np.arange(6, 17), np.arange( 20, 28), np.arange( 32, 38), np.arange( 41, 47), np.arange( 50, 56), np.arange( 57, 62), np.arange( 63, 66), np.arange( 67, 69), np.arange(72, 80), np.arange(81, 84), np.arange(87, 92), np.arange(94, 103), np.arange(106, 121), np.arange(122, 123), np.arange(125, 146), np.arange(149, 161), np.arange(163, 169), np.arange(178, 181), np.arange(182, 185), np.arange(186, 191))) onsetelecs = ["X'1", "X'2", "X'3", "X'4", "U'1", "U'2"] if seiz_id == 'ictal2': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 19), np.arange(20, 39), np.arange(41, 189))) onsetelecs = ["P'1", "P'2"] clinresult = 2 elif pat_id == 'la10': # [1:4 7:13 17:19 23:32 36:37 46:47 50 54:59 62:66 68:79 82:96 ... # 99:106 108:113 117:127 135:159 163:169 172:173 176:179 181:185]; included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 13), np.arange( 16, 19), np.arange( 22, 32), np.arange( 35, 37), np.arange(45, 47), np.arange(49, 50), np.arange(53, 59), np.arange(61, 66), np.arange(67, 79), np.arange(81, 96), np.arange(98, 106),
np.arange(107, 113)
numpy.arange
from os.path import join import pickle import numpy as np MACHINE_ROOT = '/data3/floraxue/cs294/exp/lsun_pretrained/machine_labels' accs = [] corrects = [] pos_reads = [] pos_corrects = [] neg_reads = [] neg_corrects = [] print('trial', 'pos_reads', 'neg_reads', 'unsure', 'pos_corrects', 'neg_corrects', 'corrects', 'acc') for trial in range(1,6): pos_path = join(MACHINE_ROOT, 'cat_trial_{}_pos.txt'.format(trial)) neg_path = join(MACHINE_ROOT, 'cat_trial_{}_neg.txt'.format(trial)) unsure_path = join(MACHINE_ROOT, 'cat_trial_{}_unsure.txt'.format(trial)) GT_PATH = '/data3/floraxue/cs294/active-rl-data/ground_truth/cat_gt_cached.p' dic = pickle.load(open(GT_PATH, 'rb')) correct = 0 pos_correct = 0 neg_correct = 0 with open(pos_path, 'r') as fp: lines = fp.readlines() pos_read = len(lines) for line in lines: key = line.strip() target = dic[key] if target == 1: correct += 1 pos_correct += 1 with open(neg_path, 'r') as fp: lines = fp.readlines() neg_read = len(lines) for line in lines: key = line.strip() target = dic[key] if target == -1: correct += 1 neg_correct += 1 with open(unsure_path, 'r') as fp: lines = fp.readlines() total = len(lines) acc = correct / (pos_read + neg_read) accs.append(acc) corrects.append(correct) pos_reads.append(pos_read) pos_corrects.append(pos_correct) neg_reads.append(neg_read) neg_corrects.append(neg_correct) print(trial, pos_read, neg_read, total, pos_correct,neg_correct, correct, acc) all_correct = np.sum(corrects) all_reads = np.sum(pos_reads) + np.sum(neg_reads) print("Final result") print("acc", all_correct / all_reads) print("pos all", np.sum(pos_reads)) print("pos correct", np.sum(pos_corrects)) print("neg all",
np.sum(neg_reads)
numpy.sum
#NUMBA ############################################ import numba as nb import numpy as np import math as m @nb.njit def dummy(): return None @nb.njit(cache=True,error_model='numpy') def fit_multiplicative_offset_jitter(x0,f,y,dy): off=x0[0] jit=x0[1] newerr=np.sqrt((dy)**2+jit**2)/off lnL=-0.5*np.sum(((y/off-f)/(newerr))**2.0+np.log(2.0*np.pi)+np.log(newerr**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_only_multiplicative_offset(x0,f,y,dy): off=x0 lnL=-0.5*np.sum(((y/off-f)/(dy/off))**2.0+np.log(2.0*np.pi)+np.log((dy/off)**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_linear_offset_jitter(x0,f,y,dy): off=x0[0] jit=x0[1] lnL=-0.5*np.sum(((y-off-f)/(np.sqrt(dy**2+jit**2)))**2.0+np.log(2.0*np.pi)+np.log(dy**2+jit**2)) return -lnL @nb.njit(cache=True,error_model='numpy') def fit_only_linear_offset(x0,f,y,dy): off=x0 lnL=-0.5*np.sum(((y-off-f)/(dy))**2.0+
np.log(2.0*np.pi)
numpy.log
import math import warnings from copy import copy, deepcopy from datetime import datetime from typing import Mapping, MutableMapping, MutableSequence, Optional import numpy as np # type: ignore import pytest # type: ignore from rads.rpn import ( ABS, ACOS, ACOSD, ACOSH, ADD, AND, ASIN, ASIND, ASINH, ATAN, ATAN2, ATAND, ATANH, AVG, BOXCAR, BTEST, CEIL, CEILING, COS, COSD, COSH, D2R, DIF, DIV, DUP, DXDY, EQ, EXCH, EXP, FLOOR, FMOD, GAUSS, GE, GT, HYPOT, IAND, INRANGE, INV, IOR, ISAN, ISNAN, LE, LOG, LOG10, LT, MAX, MIN, MUL, NAN, NE, NEG, NINT, OR, PI, POP, POW, R2, R2D, RINT, SIN, SIND, SINH, SQR, SQRT, SUB, SUM, TAN, TAND, TANH, YMDHMS, CompleteExpression, E, Expression, Literal, StackUnderflowError, Token, Variable, token, ) from rads.typing import FloatOrArray GOLDEN_RATIO = math.log((1 + math.sqrt(5)) / 2) class TestLiteral: def test_init(self): Literal(3) Literal(3.14) with pytest.raises(TypeError): Literal("not a number") # type: ignore def test_pops(self): assert Literal(3).pops == 0 def test_puts(self): assert Literal(3).puts == 1 def test_value(self): assert Literal(3).value == 3 assert Literal(3.14).value == 3.14 def test_call(self): stack: MutableSequence[FloatOrArray] = [] environment: MutableMapping[str, FloatOrArray] = {} assert Literal(3.14)(stack, environment) is None assert Literal(2.71)(stack, environment) is None assert stack == [3.14, 2.71] assert environment == {} def test_eq(self): assert Literal(3.14) == Literal(3.14) assert not Literal(3.14) == Literal(2.71) assert not Literal(3.14) == 3.14 def test_ne(self): assert Literal(3.14) != Literal(2.71) assert not Literal(3.14) != Literal(3.14) assert Literal(3.14) != 3.14 def test_lt(self): assert Literal(2.71) < Literal(3.14) assert not Literal(3.14) < Literal(2.71) with pytest.raises(TypeError): Literal(2.71) < 3.14 with pytest.raises(TypeError): 2.71 < Literal(3.14) def test_le(self): assert Literal(2.71) <= Literal(3.14) assert Literal(3.14) <= Literal(3.14) assert not Literal(3.14) <= Literal(2.71) with pytest.raises(TypeError): Literal(2.71) <= 3.14 with pytest.raises(TypeError): 2.71 <= Literal(3.14) def test_gt(self): assert Literal(3.14) > Literal(2.71) assert not Literal(2.71) > Literal(3.14) with pytest.raises(TypeError): Literal(3.14) > 2.71 with pytest.raises(TypeError): 3.14 > Literal(2.71) def test_ge(self): assert Literal(3.14) >= Literal(2.71) assert Literal(3.14) >= Literal(3.14) assert not Literal(2.71) >= Literal(3.14) with pytest.raises(TypeError): Literal(3.14) >= 2.71 with pytest.raises(TypeError): 3.14 >= Literal(2.71) def test_repr(self): assert repr(Literal(3)) == "Literal(3)" assert repr(Literal(3.14)) == "Literal(3.14)" def test_str(self): assert str(Literal(3)) == "3" assert str(Literal(3.14)) == "3.14" def test_pi(self): assert PI.value == pytest.approx(np.pi) def test_e(self): assert E.value == pytest.approx(np.e) class TestVariable: def test_init(self): Variable("alt") with pytest.raises(ValueError): Variable("3") with pytest.raises(ValueError): Variable("3name") with pytest.raises(TypeError): Variable(3) # type: ignore with pytest.raises(TypeError): Variable(3.14) # type: ignore def test_pops(self): assert Variable("alt").pops == 0 def test_puts(self): assert Variable("alt").puts == 1 def test_name(self): assert Variable("alt").name == "alt" def test_call(self): stack: MutableSequence[FloatOrArray] = [] environment = {"alt": np.array([1, 2, 3]), "dry_tropo": 4, "wet_tropo": 5} assert Variable("wet_tropo")(stack, environment) is None assert Variable("alt")(stack, environment) is None assert len(stack) == 2 assert stack[0] == 5 assert np.all(stack[1] == np.array([1, 2, 3])) assert len(environment) == 3 assert "alt" in environment assert "dry_tropo" in environment assert "wet_tropo" in environment assert np.all(environment["alt"] == np.array([1, 2, 3])) assert environment["dry_tropo"] == 4 assert environment["wet_tropo"] == 5 with pytest.raises(KeyError): assert Variable("alt")(stack, {}) is None assert len(stack) == 2 assert stack[0] == 5 assert np.all(stack[1] == np.array([1, 2, 3])) def test_eq(self): assert Variable("alt") == Variable("alt") assert not Variable("alt") == Variable("dry_tropo") assert not Variable("alt") == "alt" def test_ne(self): assert Variable("alt") != Variable("dry_tropo") assert not Variable("alt") != Variable("alt") assert Variable("alt") != "alt" def test_repr(self): assert repr(Variable("alt")) == "Variable('alt')" def test_str(self): assert str(Variable("alt")) == "alt" def contains_array(stack: MutableSequence[FloatOrArray]) -> bool: for item in stack: if isinstance(item, np.ndarray): return True return False def contains_nan(stack: MutableSequence[FloatOrArray]) -> bool: for item in stack: try: if math.isnan(item): return True except TypeError: pass return False def assert_token( operator: Token, pre_stack: MutableSequence[FloatOrArray], post_stack: MutableSequence[FloatOrArray], environment: Optional[Mapping[str, FloatOrArray]] = None, *, approx: bool = False, rtol: float = 1e-15, atol: float = 1e-16, ) -> None: """Assert that a token modifies the stack properly. Parameters ---------- operator Operator to test. pre_stack Stack state before calling the operator. post_stack Desired stack state after calling the operator. environment Optional dictionary like object providing the environment for variable lookup. approx Set to true to use approximate equality instead of exact. rtol Relative tolerance. Only used if :paramref:`approx` is True. atol Absolute tolerance. Only used if :paramref:`approx` is True. Raises ------ AssertionError If the operator does not produce the proper post stack state or the environment parameter is changed. """ if not environment: environment = {"dont_touch": 5} original_environment = deepcopy(environment) stack = pre_stack operator(stack, environment) # environment should be unchanged assert environment == original_environment # check stack if approx or contains_nan(post_stack) or contains_array(post_stack): assert len(stack) == len(post_stack) for a, b in zip(stack, post_stack): if isinstance(a, np.ndarray) or isinstance(b, np.ndarray): if approx: np.testing.assert_allclose( a, b, rtol=rtol, atol=atol, equal_nan=True ) else: np.testing.assert_equal(a, b) else: if math.isnan(b): assert math.isnan(a) elif approx: assert a == pytest.approx(b, rel=rtol, abs=atol) else: assert a == b else: assert stack == post_stack class TestSUBOperator: def test_repr(self): assert repr(SUB) == "SUB" def test_pops(self): assert SUB.pops == 2 def test_puts(self): assert SUB.puts == 1 def test_no_copy(self): assert copy(SUB) is SUB assert deepcopy(SUB) is SUB def test_call(self): assert_token(SUB, [2, 4], [-2]) assert_token(SUB, [2, np.array([4, 1])], [np.array([-2, 1])]) assert_token(SUB, [np.array([4, 1]), 2], [np.array([2, -1])]) assert_token(SUB, [np.array([4, 1]), np.array([1, 4])], [np.array([3, -3])]) # extra stack elements assert_token(SUB, [0, 2, 4], [0, -2]) # not enough stack elements with pytest.raises(StackUnderflowError): SUB([], {}) with pytest.raises(StackUnderflowError): SUB([1], {}) class TestADDOperator: def test_repr(self): assert repr(ADD) == "ADD" def test_pops(self): assert ADD.pops == 2 def test_puts(self): assert ADD.puts == 1 def test_no_copy(self): assert copy(ADD) is ADD assert deepcopy(ADD) is ADD def test_call(self): assert_token(ADD, [2, 4], [6]) assert_token(ADD, [2, np.array([4, 1])], [np.array([6, 3])]) assert_token(ADD, [np.array([4, 1]), 2], [np.array([6, 3])]) assert_token(ADD, [np.array([4, 1]), np.array([1, 4])], [np.array([5, 5])]) # extra stack elements assert_token(ADD, [0, 2, 4], [0, 6]) # not enough stack elements with pytest.raises(StackUnderflowError): ADD([], {}) with pytest.raises(StackUnderflowError): ADD([1], {}) class TestMULOperator: def test_repr(self): assert repr(MUL) == "MUL" def test_pops(self): assert MUL.pops == 2 def test_puts(self): assert MUL.puts == 1 def test_no_copy(self): assert copy(MUL) is MUL assert deepcopy(MUL) is MUL def test_call(self): assert_token(MUL, [2, 4], [8]) assert_token(MUL, [2, np.array([4, 1])], [np.array([8, 2])]) assert_token(MUL, [np.array([4, 1]), 2], [np.array([8, 2])]) assert_token(MUL, [np.array([4, 1]), np.array([1, 4])], [np.array([4, 4])]) # extra stack elements assert_token(MUL, [0, 2, 4], [0, 8]) # not enough stack elements with pytest.raises(StackUnderflowError): MUL([], {}) with pytest.raises(StackUnderflowError): MUL([1], {}) class TestPOPOperator: def test_repr(self): assert repr(POP) == "POP" def test_pops(self): assert POP.pops == 1 def test_puts(self): assert POP.puts == 0 def test_no_copy(self): assert copy(POP) is POP assert deepcopy(POP) is POP def test_call(self): assert_token(POP, [1], []) assert_token(POP, [1, 2], [1]) # not enough stack elements with pytest.raises(StackUnderflowError): POP([], {}) class TestNEGOperator: def test_repr(self): assert repr(NEG) == "NEG" def test_pops(self): assert NEG.pops == 1 def test_puts(self): assert NEG.puts == 1 def test_no_copy(self): assert copy(NEG) is NEG assert deepcopy(NEG) is NEG def test_call(self): assert_token(NEG, [2], [-2]) assert_token(NEG, [-2], [2]) assert_token(NEG, [np.array([4, -1])], [np.array([-4, 1])]) assert_token(NEG, [np.array([-4, 1])], [np.array([4, -1])]) # extra stack elements assert_token(NEG, [0, 2], [0, -2]) # not enough stack elements with pytest.raises(StackUnderflowError): NEG([], {}) class TestABSOperator: def test_repr(self): assert repr(ABS) == "ABS" def test_pops(self): assert ABS.pops == 1 def test_puts(self): assert ABS.puts == 1 def test_no_copy(self): assert copy(ABS) is ABS assert deepcopy(ABS) is ABS def test_call(self): assert_token(ABS, [2], [2]) assert_token(ABS, [-2], [2]) assert_token(ABS, [np.array([4, -1])], [np.array([4, 1])]) assert_token(ABS, [np.array([-4, 1])], [np.array([4, 1])]) # extra stack elements assert_token(ABS, [0, -2], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): ABS([], {}) class TestINVOperator: def test_repr(self): assert repr(INV) == "INV" def test_pops(self): assert INV.pops == 1 def test_puts(self): assert INV.puts == 1 def test_no_copy(self): assert copy(INV) is INV assert deepcopy(INV) is INV def test_call(self): assert_token(INV, [2], [0.5]) assert_token(INV, [-2], [-0.5]) assert_token(INV, [np.array([4, -1])], [np.array([0.25, -1])]) assert_token(INV, [np.array([-4, 1])], [np.array([-0.25, 1])]) # extra stack elements assert_token(INV, [0, 2], [0, 0.5]) # not enough stack elements with pytest.raises(StackUnderflowError): INV([], {}) class TestSQRTOperator: def test_repr(self): assert repr(SQRT) == "SQRT" def test_pops(self): assert SQRT.pops == 1 def test_puts(self): assert SQRT.puts == 1 def test_no_copy(self): assert copy(SQRT) is SQRT assert deepcopy(SQRT) is SQRT def test_call(self): assert_token(SQRT, [4], [2]) assert_token(SQRT, [np.array([4, 16])], [np.array([2, 4])]) # extra stack elements assert_token(SQRT, [0, 4], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): SQRT([], {}) class TestSQROperator: def test_repr(self): assert repr(SQR) == "SQR" def test_pops(self): assert SQR.pops == 1 def test_puts(self): assert SQR.puts == 1 def test_no_copy(self): assert copy(EXP) is EXP assert deepcopy(EXP) is EXP def test_call(self): assert_token(SQR, [2], [4]) assert_token(SQR, [-2], [4]) assert_token(SQR, [np.array([4, -1])], [np.array([16, 1])]) assert_token(SQR, [np.array([-4, 1])], [np.array([16, 1])]) # extra stack elements assert_token(SQR, [0, -2], [0, 4]) # not enough stack elements with pytest.raises(StackUnderflowError): SQR([], {}) class TestEXPOperator: def test_repr(self): assert repr(EXP) == "EXP" def test_pops(self): assert EXP.pops == 1 def test_puts(self): assert EXP.puts == 1 def test_no_copy(self): assert copy(EXP) is EXP assert deepcopy(EXP) is EXP def test_call(self): assert_token(EXP, [math.log(1)], [1.0], approx=True) assert_token(EXP, [math.log(2)], [2.0], approx=True) assert_token( EXP, [np.array([np.log(4), np.log(1)])], [np.array([4.0, 1.0])], approx=True ) # extra stack elements assert_token(EXP, [0, np.log(1)], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): EXP([], {}) class TestLOGOperator: def test_repr(self): assert repr(LOG) == "LOG" def test_pops(self): assert LOG.pops == 1 def test_puts(self): assert LOG.puts == 1 def test_no_copy(self): assert copy(LOG) is LOG assert deepcopy(LOG) is LOG def test_call(self): assert_token(LOG, [math.e], [1.0], approx=True) assert_token(LOG, [math.e ** 2], [2.0], approx=True) assert_token(LOG, [math.e ** -2], [-2.0], approx=True) assert_token( LOG, [np.array([np.e ** 4, np.e ** -1])], [np.array([4.0, -1.0])], approx=True, ) assert_token( LOG, [np.array([np.e ** -4, np.e ** 1])], [np.array([-4.0, 1.0])], approx=True, ) # extra stack elements assert_token(LOG, [0, np.e], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): LOG([], {}) class TestLOG10Operator: def test_repr(self): assert repr(LOG10) == "LOG10" def test_pops(self): assert LOG10.pops == 1 def test_puts(self): assert LOG10.puts == 1 def test_no_copy(self): assert copy(LOG10) is LOG10 assert deepcopy(LOG10) is LOG10 def test_call(self): assert_token(LOG10, [10], [1.0], approx=True) assert_token(LOG10, [10 ** 2], [2.0], approx=True) assert_token(LOG10, [10 ** -2], [-2.0], approx=True) assert_token( LOG10, [np.array([10 ** 4, 10 ** -1])], [np.array([4.0, -1.0])], approx=True ) assert_token( LOG10, [np.array([10 ** -4, 10 ** 1])], [np.array([-4.0, 1.0])], approx=True ) # extra stack elements assert_token(LOG10, [0, 10], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): LOG10([], {}) class TestSINOperator: def test_repr(self): assert repr(SIN) == "SIN" def test_pops(self): assert SIN.pops == 1 def test_puts(self): assert SIN.puts == 1 def test_no_copy(self): assert copy(SIN) is SIN assert deepcopy(SIN) is SIN def test_call(self): assert_token(SIN, [0.0], [0.0], approx=True) assert_token(SIN, [math.pi / 6], [1 / 2], approx=True) assert_token(SIN, [math.pi / 4], [1 / math.sqrt(2)], approx=True) assert_token(SIN, [math.pi / 3], [math.sqrt(3) / 2], approx=True) assert_token(SIN, [math.pi / 2], [1.0], approx=True) assert_token( SIN, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) assert_token( SIN, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) # extra stack elements assert_token(SIN, [0, math.pi / 2], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SIN([], {}) class TestCOSOperator: def test_repr(self): assert repr(COS) == "COS" def test_pops(self): assert COS.pops == 1 def test_puts(self): assert COS.puts == 1 def test_no_copy(self): assert copy(COS) is COS assert deepcopy(COS) is COS def test_call(self): assert_token(COS, [0.0], [1.0], approx=True) assert_token(COS, [math.pi / 6], [math.sqrt(3) / 2], approx=True) assert_token(COS, [math.pi / 4], [1 / math.sqrt(2)], approx=True) assert_token(COS, [math.pi / 3], [1 / 2], approx=True) assert_token(COS, [math.pi / 2], [0.0], approx=True) assert_token( COS, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) assert_token( COS, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) # extra stack elements assert_token(COS, [0, math.pi / 2], [0, 0.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COS([], {}) class TestTANOperator: def test_repr(self): assert repr(TAN) == "TAN" def test_pops(self): assert TAN.pops == 1 def test_puts(self): assert TAN.puts == 1 def test_no_copy(self): assert copy(TAN) is TAN assert deepcopy(TAN) is TAN def test_call(self): assert_token(TAN, [0.0], [0.0], approx=True) assert_token(TAN, [math.pi / 6], [1 / math.sqrt(3)], approx=True) assert_token(TAN, [math.pi / 4], [1.0], approx=True) assert_token(TAN, [math.pi / 3], [math.sqrt(3)], approx=True) assert_token( TAN, [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) assert_token( TAN, [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) # extra stack elements assert_token(TAN, [0, math.pi / 4], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TAN([], {}) class TestSINDOperator: def test_repr(self): assert repr(SIND) == "SIND" def test_pops(self): assert SIND.pops == 1 def test_puts(self): assert SIND.puts == 1 def test_no_copy(self): assert copy(COSD) is COSD assert deepcopy(COSD) is COSD def test_call(self): assert_token(SIND, [0], [0.0], approx=True) assert_token(SIND, [30], [1 / 2], approx=True) assert_token(SIND, [45], [1 / math.sqrt(2)], approx=True) assert_token(SIND, [60], [math.sqrt(3) / 2], approx=True) assert_token(SIND, [90], [1.0], approx=True) assert_token( SIND, [np.array([0, 30, 45, 60, 90])], [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) assert_token( SIND, [-np.array([0, 30, 45, 60, 90])], [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], approx=True, ) # extra stack elements assert_token(SIND, [0, 90], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SIND([], {}) class TestCOSDOperator: def test_repr(self): assert repr(COSD) == "COSD" def test_pops(self): assert COSD.pops == 1 def test_puts(self): assert COSD.puts == 1 def test_no_copy(self): assert copy(COSD) is COSD assert deepcopy(COSD) is COSD def test_call(self): assert_token(COSD, [0], [1.0], approx=True) assert_token(COSD, [30], [math.sqrt(3) / 2], approx=True) assert_token(COSD, [45], [1 / math.sqrt(2)], approx=True) assert_token(COSD, [60], [1 / 2], approx=True) assert_token(COSD, [90], [0.0], approx=True) assert_token( COSD, [np.array([0, 30, 45, 60, 90])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) assert_token( COSD, [-np.array([0, 30, 45, 60, 90])], [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], approx=True, ) # extra stack elements assert_token(COSD, [0, 90], [0, 0.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COSD([], {}) class TestTANDOperator: def test_repr(self): assert repr(TAND) == "TAND" def test_pops(self): assert TAND.pops == 1 def test_puts(self): assert TAND.puts == 1 def test_no_copy(self): assert copy(TAND) is TAND assert deepcopy(TAND) is TAND def test_call(self): assert_token(TAND, [0], [0], approx=True) assert_token(TAND, [30], [1 / math.sqrt(3)], approx=True) assert_token(TAND, [45], [1.0], approx=True) assert_token(TAND, [60], [math.sqrt(3)], approx=True) assert_token( TAND, [np.array([0, 30, 45, 60])], [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) assert_token( TAND, [-np.array([0, 30, 45, 60])], [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], approx=True, ) # extra stack elements assert_token(TAND, [0, 45], [0, 1.0], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TAND([], {}) class TestSINHOperator: def test_repr(self): assert repr(SINH) == "SINH" def test_pops(self): assert SINH.pops == 1 def test_puts(self): assert SINH.puts == 1 def test_no_copy(self): assert copy(SINH) is SINH assert deepcopy(SINH) is SINH def test_call(self): assert_token(SINH, [0.0], [0.0], approx=True) assert_token(SINH, [GOLDEN_RATIO], [0.5], approx=True) assert_token( SINH, [np.array([0.0, GOLDEN_RATIO])], [np.array([0.0, 0.5])], approx=True ) # extra stack elements assert_token(SINH, [0, GOLDEN_RATIO], [0, 0.5], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): SINH([], {}) class TestCOSHOperator: def test_repr(self): assert repr(COSH) == "COSH" def test_pops(self): assert COSH.pops == 1 def test_puts(self): assert COSH.puts == 1 def test_no_copy(self): assert copy(COSH) is COSH assert deepcopy(COSH) is COSH def test_call(self): assert_token(COSH, [0.0], [1.0], approx=True) assert_token(COSH, [GOLDEN_RATIO], [math.sqrt(5) / 2], approx=True) assert_token( COSH, [np.array([0.0, GOLDEN_RATIO])], [np.array([1.0, np.sqrt(5) / 2])], approx=True, ) # extra stack elements assert_token(COSH, [0, GOLDEN_RATIO], [0, math.sqrt(5) / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): COSH([], {}) class TestTANHOperator: def test_repr(self): assert repr(TANH) == "TANH" def test_pops(self): assert TANH.pops == 1 def test_puts(self): assert TANH.puts == 1 def test_no_copy(self): assert copy(TANH) is TANH assert deepcopy(TANH) is TANH def test_call(self): assert_token(TANH, [0.0], [0.0], approx=True) assert_token(TANH, [GOLDEN_RATIO], [math.sqrt(5) / 5], approx=True) assert_token( TANH, [np.array([0.0, GOLDEN_RATIO])], [np.array([0.0, np.sqrt(5) / 5])], approx=True, ) # extra stack elements assert_token(TANH, [0, GOLDEN_RATIO], [0, math.sqrt(5) / 5], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): TANH([], {}) class TestASINOperator: def test_repr(self): assert repr(ASIN) == "ASIN" def test_pops(self): assert ASIN.pops == 1 def test_puts(self): assert ASIN.puts == 1 def test_no_copy(self): assert copy(ASIN) is ASIN assert deepcopy(ASIN) is ASIN def test_call(self): assert_token(ASIN, [0.0], [0.0], approx=True) assert_token(ASIN, [1 / 2], [math.pi / 6], approx=True) assert_token(ASIN, [1 / math.sqrt(2)], [math.pi / 4], approx=True) assert_token(ASIN, [math.sqrt(3) / 2], [math.pi / 3], approx=True) assert_token(ASIN, [1.0], [math.pi / 2], approx=True) assert_token( ASIN, [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) assert_token( ASIN, [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) # extra stack elements assert_token(ASIN, [0, 1.0], [0, math.pi / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ASIN([], {}) class TestACOSOperator: def test_repr(self): assert repr(ACOS) == "ACOS" def test_pops(self): assert ACOS.pops == 1 def test_puts(self): assert ACOS.puts == 1 def test_no_copy(self): assert copy(ACOS) is ACOS assert deepcopy(ACOS) is ACOS def test_call(self): assert_token(ACOS, [1.0], [0.0], approx=True) assert_token(ACOS, [math.sqrt(3) / 2], [math.pi / 6], approx=True) assert_token(ACOS, [1 / math.sqrt(2)], [math.pi / 4], approx=True) assert_token(ACOS, [1 / 2], [math.pi / 3], approx=True) assert_token(ACOS, [0.0], [math.pi / 2], approx=True) assert_token( ACOS, [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3, np.pi / 2])], approx=True, ) # extra stack elements assert_token(ACOS, [0, 0.0], [0, math.pi / 2], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ACOS([], {}) class TestATANOperator: def test_repr(self): assert repr(ATAN) == "ATAN" def test_pops(self): assert ATAN.pops == 1 def test_puts(self): assert ATAN.puts == 1 def test_no_copy(self): assert copy(ATAN) is ATAN assert deepcopy(ATAN) is ATAN def test_call(self): assert_token(ATAN, [0.0], [0.0], approx=True) assert_token(ATAN, [1 / math.sqrt(3)], [math.pi / 6], approx=True) assert_token(ATAN, [1.0], [math.pi / 4], approx=True) assert_token(ATAN, [math.sqrt(3)], [math.pi / 3], approx=True) assert_token( ATAN, [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], approx=True, ) assert_token( ATAN, [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [-np.array([0.0, np.pi / 6, np.pi / 4, np.pi / 3])], approx=True, ) # extra stack elements assert_token(ATAN, [0, 1.0], [0, math.pi / 4], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATAN([], {}) class TestASINDOperator: def test_repr(self): assert repr(ASIND) == "ASIND" def test_pops(self): assert ASIND.pops == 1 def test_puts(self): assert ASIND.puts == 1 def test_no_copy(self): assert copy(ASIND) is ASIND assert deepcopy(ASIND) is ASIND def test_call(self): assert_token(ASIND, [0.0], [0], approx=True) assert_token(ASIND, [1 / 2], [30], approx=True) assert_token(ASIND, [1 / math.sqrt(2)], [45], approx=True) assert_token(ASIND, [math.sqrt(3) / 2], [60], approx=True) assert_token(ASIND, [1.0], [90], approx=True) assert_token( ASIND, [np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [np.array([0, 30, 45, 60, 90])], approx=True, ) assert_token( ASIND, [-np.array([0.0, 1 / 2, 1 / np.sqrt(2), np.sqrt(3) / 2, 1.0])], [-np.array([0, 30, 45, 60, 90])], approx=True, ) # extra stack elements assert_token(ASIND, [0, 1.0], [0, 90], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ASIND([], {}) class TestACOSDOperator: def test_repr(self): assert repr(ACOSD) == "ACOSD" def test_pops(self): assert ACOSD.pops == 1 def test_puts(self): assert ACOSD.puts == 1 def test_no_copy(self): assert copy(ACOSD) is ACOSD assert deepcopy(ACOSD) is ACOSD def test_call(self): assert_token(ACOSD, [1.0], [0], approx=True) assert_token(ACOSD, [math.sqrt(3) / 2], [30], approx=True) assert_token(ACOSD, [1 / math.sqrt(2)], [45], approx=True) assert_token(ACOSD, [1 / 2], [60], approx=True) assert_token(ACOSD, [0.0], [90], approx=True) assert_token( ACOSD, [np.array([1.0, np.sqrt(3) / 2, 1 / np.sqrt(2), 1 / 2, 0.0])], [np.array([0, 30, 45, 60, 90])], approx=True, ) # extra stack elements assert_token(ACOSD, [0, 0.0], [0, 90], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ACOSD([], {}) class TestATANDOperator: def test_repr(self): assert repr(ATAND) == "ATAND" def test_pops(self): assert ATAND.pops == 1 def test_puts(self): assert ATAND.puts == 1 def test_no_copy(self): assert copy(ATAND) is ATAND assert deepcopy(ATAND) is ATAND def test_call(self): assert_token(ATAND, [0.0], [0], approx=True) assert_token(ATAND, [1 / math.sqrt(3)], [30], approx=True) assert_token(ATAND, [1.0], [45], approx=True) assert_token(ATAND, [math.sqrt(3)], [60], approx=True) assert_token( ATAND, [np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [np.array([0, 30, 45, 60])], approx=True, ) assert_token( ATAND, [-np.array([0.0, 1 / np.sqrt(3), 1.0, np.sqrt(3)])], [-np.array([0, 30, 45, 60])], approx=True, ) # extra stack elements assert_token(ATAND, [0, 1.0], [0, 45], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATAND([], {}) class TestASINHOperator: def test_repr(self): assert repr(ASINH) == "ASINH" def test_pops(self): assert ASINH.pops == 1 def test_puts(self): assert ASINH.puts == 1 def test_no_copy(self): assert copy(ASINH) is ASINH assert deepcopy(ASINH) is ASINH def test_call(self): assert_token(ASINH, [0.0], [0.0], approx=True) assert_token(ASINH, [0.5], [GOLDEN_RATIO], approx=True) assert_token( ASINH, [np.array([0.0, 0.5])], [np.array([0.0, GOLDEN_RATIO])], approx=True ) # extra stack elements assert_token(ASINH, [0, 0.5], [0, GOLDEN_RATIO], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ASINH([], {}) class TestACOSHOperator: def test_repr(self): assert repr(ACOSH) == "ACOSH" def test_pops(self): assert ACOSH.pops == 1 def test_puts(self): assert ACOSH.puts == 1 def test_no_copy(self): assert copy(ACOSH) is ACOSH assert deepcopy(ACOSH) is ACOSH def test_call(self): assert_token(ACOSH, [1.0], [0.0], approx=True) assert_token(ACOSH, [math.sqrt(5) / 2], [GOLDEN_RATIO], approx=True) assert_token( ACOSH, [np.array([1.0, np.sqrt(5) / 2])], [np.array([0.0, GOLDEN_RATIO])], approx=True, ) # extra stack elements assert_token(ACOSH, [0, math.sqrt(5) / 2], [0, GOLDEN_RATIO], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ACOSH([], {}) class TestATANHOperator: def test_repr(self): assert repr(ATANH) == "ATANH" def test_pops(self): assert ATANH.pops == 1 def test_puts(self): assert ATANH.puts == 1 def test_no_copy(self): assert copy(ATANH) is ATANH assert deepcopy(ATANH) is ATANH def test_call(self): assert_token(ATANH, [0.0], [0.0], approx=True) assert_token(ATANH, [math.sqrt(5) / 5], [GOLDEN_RATIO], approx=True) assert_token( ATANH, [np.array([0.0, np.sqrt(5) / 5])], [np.array([0.0, GOLDEN_RATIO])], approx=True, ) # extra stack elements assert_token(ATANH, [0, math.sqrt(5) / 5], [0, GOLDEN_RATIO], approx=True) # not enough stack elements with pytest.raises(StackUnderflowError): ATANH([], {}) class TestISNANOperator: def test_repr(self): assert repr(ISNAN) == "ISNAN" def test_pops(self): assert ISNAN.pops == 1 def test_puts(self): assert ISNAN.puts == 1 def test_no_copy(self): assert copy(ISNAN) is ISNAN assert deepcopy(ISNAN) is ISNAN def test_call(self): assert_token(ISNAN, [2], [False]) assert_token(ISNAN, [float("nan")], [True]) assert_token(ISNAN, [np.array([4, np.nan])], [np.array([False, True])]) assert_token(ISNAN, [np.array([np.nan, 1])], [np.array([True, False])]) # extra stack elements assert_token(ISNAN, [0, float("nan")], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): ISNAN([], {}) class TestISANOperator: def test_repr(self): assert repr(ISAN) == "ISAN" def test_pops(self): assert ISAN.pops == 1 def test_puts(self): assert ISAN.puts == 1 def test_no_copy(self): assert copy(ISAN) is ISAN assert deepcopy(ISAN) is ISAN def test_call(self): assert_token(ISAN, [2], [True]) assert_token(ISAN, [float("nan")], [False]) assert_token(ISAN, [np.array([4, np.nan])], [np.array([True, False])]) assert_token(ISAN, [np.array([np.nan, 1])], [np.array([False, True])]) # extra stack elements assert_token(ISAN, [0, 2], [0, True]) # not enough stack elements with pytest.raises(StackUnderflowError): ISAN([], {}) class TestRINTOperator: def test_repr(self): assert repr(RINT) == "RINT" def test_pops(self): assert RINT.pops == 1 def test_puts(self): assert RINT.puts == 1 def test_no_copy(self): assert copy(RINT) is RINT assert deepcopy(RINT) is RINT def test_call(self): assert_token(RINT, [1.6], [2]) assert_token(RINT, [2.4], [2]) assert_token(RINT, [-1.6], [-2]) assert_token(RINT, [-2.4], [-2]) assert_token(RINT, [np.array([1.6, 2.4])], [np.array([2, 2])]) assert_token(RINT, [np.array([-1.6, -2.4])], [np.array([-2, -2])]) # extra stack elements assert_token(RINT, [0, 1.6], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): RINT([], {}) class TestNINTOperator: def test_repr(self): assert repr(NINT) == "NINT" def test_pops(self): assert NINT.pops == 1 def test_puts(self): assert NINT.puts == 1 def test_no_copy(self): assert copy(NINT) is NINT assert deepcopy(NINT) is NINT def test_call(self): assert_token(NINT, [1.6], [2]) assert_token(NINT, [2.4], [2]) assert_token(NINT, [-1.6], [-2]) assert_token(NINT, [-2.4], [-2]) assert_token(NINT, [np.array([1.6, 2.4])], [np.array([2, 2])]) assert_token(NINT, [np.array([-1.6, -2.4])], [np.array([-2, -2])]) # extra stack elements assert_token(NINT, [0, 1.6], [0, 2]) # not enough stack elements with pytest.raises(StackUnderflowError): NINT([], {}) class TestCEILOperator: def test_repr(self): assert repr(CEIL) == "CEIL" def test_pops(self): assert CEIL.pops == 1 def test_puts(self): assert CEIL.puts == 1 def test_no_copy(self): assert copy(CEIL) is CEIL assert deepcopy(CEIL) is CEIL def test_call(self): assert_token(CEIL, [1.6], [2]) assert_token(CEIL, [2.4], [3]) assert_token(CEIL, [-1.6], [-1]) assert_token(CEIL, [-2.4], [-2]) assert_token(CEIL, [np.array([1.6, 2.4])], [np.array([2, 3])]) assert_token(CEIL, [
np.array([-1.6, -2.4])
numpy.array
"""Module that contains the command line app.""" import builtins import click import inspect import logging import matplotlib.pyplot as plt import numpy as np import warnings import yaml from os import path, remove from pathlib import Path from . import _cfg, cache_tools, global_params, plotting from . import wrapper as lib def _get_config(config=None): if config is None: config = path.expanduser(path.join("~", ".21cmfast", "runconfig_example.yml")) with open(config) as f: cfg = yaml.load(f, Loader=yaml.FullLoader) return cfg def _ctx_to_dct(args): dct = {} j = 0 while j < len(args): arg = args[j] if "=" in arg: a = arg.split("=") dct[a[0].replace("--", "")] = a[-1] j += 1 else: dct[arg.replace("--", "")] = args[j + 1] j += 2 return dct def _update(obj, ctx): # Try to use the extra arguments as an override of config. kk = list(ctx.keys()) for k in kk: # noinspection PyProtectedMember if hasattr(obj, k): try: val = getattr(obj, "_" + k) setattr(obj, "_" + k, type(val)(ctx[k])) ctx.pop(k) except (AttributeError, TypeError): try: val = getattr(obj, k) setattr(obj, k, type(val)(ctx[k])) ctx.pop(k) except AttributeError: pass def _override(ctx, *param_dicts): # Try to use the extra arguments as an override of config. if ctx.args: ctx = _ctx_to_dct(ctx.args) for p in param_dicts: _update(p, ctx) # Also update globals, always. _update(global_params, ctx) if ctx: warnings.warn("The following arguments were not able to be set: %s" % ctx) main = click.Group() @main.command( context_settings={ # Doing this allows arbitrary options to override config "ignore_unknown_options": True, "allow_extra_args": True, } ) @click.option( "--config", type=click.Path(exists=True, dir_okay=False), default=None, help="Path to the configuration file (default ~/.21cmfast/runconfig_single.yml)", ) @click.option( "--regen/--no-regen", default=False, help="Whether to force regeneration of init/perturb files if they already exist.", ) @click.option( "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="directory to write data and plots to -- must exist.", ) @click.option( "--seed", type=int, default=None, help="specify a random seed for the initial conditions", ) @click.pass_context def init(ctx, config, regen, direc, seed): """Run a single iteration of 21cmFAST init, saving results to file. Parameters ---------- ctx : A parameter from the parent CLI function to be able to override config. config : str Path to the configuration file. regen : bool Whether to regenerate all data, even if found in cache. direc : str Where to search for cached items. seed : int Random seed used to generate data. """ cfg = _get_config(config) # Set user/cosmo params from config. user_params = lib.UserParams(**cfg.get("user_params", {})) cosmo_params = lib.CosmoParams(**cfg.get("cosmo_params", {})) _override(ctx, user_params, cosmo_params) lib.initial_conditions( user_params=user_params, cosmo_params=cosmo_params, regenerate=regen, write=True, direc=direc, random_seed=seed, ) @main.command( context_settings={ # Doing this allows arbitrary options to override config "ignore_unknown_options": True, "allow_extra_args": True, } ) @click.argument("redshift", type=float) @click.option( "--config", type=click.Path(exists=True, dir_okay=False), default=None, help="Path to the configuration file (default ~/.21cmfast/runconfig_single.yml)", ) @click.option( "--regen/--no-regen", default=False, help="Whether to force regeneration of init/perturb files if they already exist.", ) @click.option( "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="directory to write data and plots to -- must exist.", ) @click.option( "--seed", type=int, default=None, help="specify a random seed for the initial conditions", ) @click.pass_context def perturb(ctx, redshift, config, regen, direc, seed): """Run 21cmFAST perturb_field at the specified redshift, saving results to file. Parameters ---------- ctx : A parameter from the parent CLI function to be able to override config. redshift : float Redshift at which to generate perturbed field. config : str Path to the configuration file. regen : bool Whether to regenerate all data, even if found in cache. direc : str Where to search for cached items. seed : int Random seed used to generate data. """ cfg = _get_config(config) # Set user/cosmo params from config. user_params = lib.UserParams(**cfg.get("user_params", {})) cosmo_params = lib.CosmoParams(**cfg.get("cosmo_params", {})) _override(ctx, user_params, cosmo_params) lib.perturb_field( redshift=redshift, user_params=user_params, cosmo_params=cosmo_params, regenerate=regen, write=True, direc=direc, random_seed=seed, ) @main.command( context_settings={ # Doing this allows arbitrary options to override config "ignore_unknown_options": True, "allow_extra_args": True, } ) @click.argument("redshift", type=float) @click.option( "-p", "--prev_z", type=float, default=None, help="Previous redshift (the spin temperature data must already exist for this redshift)", ) @click.option( "--config", type=click.Path(exists=True, dir_okay=False), default=None, help="Path to the configuration file (default ~/.21cmfast/runconfig_single.yml)", ) @click.option( "--regen/--no-regen", default=False, help="Whether to force regeneration of init/perturb files if they already exist.", ) @click.option( "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="directory to write data and plots to -- must exist.", ) @click.option( "--seed", type=int, default=None, help="specify a random seed for the initial conditions", ) @click.pass_context def spin(ctx, redshift, prev_z, config, regen, direc, seed): """Run spin_temperature at the specified redshift, saving results to file. Parameters ---------- ctx : A parameter from the parent CLI function to be able to override config. redshift : float The redshift to generate the field at. prev_z : float The redshift of a previous box from which to evolve to the current one. config : str Path to the configuration file. regen : bool Whether to regenerate all data, even if found in cache. direc : str Where to search for cached items. seed : int Random seed used to generate data. """ cfg = _get_config(config) # Set user/cosmo params from config. user_params = lib.UserParams(**cfg.get("user_params", {})) cosmo_params = lib.CosmoParams(**cfg.get("cosmo_params", {})) flag_options = lib.FlagOptions( **cfg.get("flag_options", {}), USE_VELS_AUX=user_params.USE_RELATIVE_VELOCITIES ) astro_params = lib.AstroParams( **cfg.get("astro_params", {}), INHOMO_RECO=flag_options.INHOMO_RECO ) _override(ctx, user_params, cosmo_params, astro_params, flag_options) lib.spin_temperature( redshift=redshift, astro_params=astro_params, flag_options=flag_options, previous_spin_temp=prev_z, user_params=user_params, cosmo_params=cosmo_params, regenerate=regen, write=True, direc=direc, random_seed=seed, ) @main.command( context_settings={ # Doing this allows arbitrary options to override config "ignore_unknown_options": True, "allow_extra_args": True, } ) @click.argument("redshift", type=float) @click.option( "-p", "--prev_z", type=float, default=None, help="Previous redshift (the ionized box data must already exist for this redshift)", ) @click.option( "--config", type=click.Path(exists=True, dir_okay=False), default=None, help="Path to the configuration file (default ~/.21cmfast/runconfig_single.yml)", ) @click.option( "--regen/--no-regen", default=False, help="Whether to force regeneration of init/perturb files if they already exist.", ) @click.option( "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="directory to write data and plots to -- must exist.", ) @click.option( "--seed", type=int, default=None, help="specify a random seed for the initial conditions", ) @click.pass_context def ionize(ctx, redshift, prev_z, config, regen, direc, seed): """Run 21cmFAST ionize_box at the specified redshift, saving results to file. Parameters ---------- ctx : A parameter from the parent CLI function to be able to override config. redshift : float The redshift to generate the field at. prev_z : float The redshift of a previous box from which to evolve to the current one. config : str Path to the configuration file. regen : bool Whether to regenerate all data, even if found in cache. direc : str Where to search for cached items. seed : int Random seed used to generate data. """ cfg = _get_config(config) # Set user/cosmo params from config. user_params = lib.UserParams(**cfg.get("user_params", {})) cosmo_params = lib.CosmoParams(**cfg.get("cosmo_params", {})) flag_options = lib.FlagOptions( **cfg.get("flag_options", {}), USE_VELS_AUX=user_params.USE_RELATIVE_VELOCITIES ) astro_params = lib.AstroParams( **cfg.get("astro_params", {}), INHOMO_RECO=flag_options.INHOMO_RECO ) _override(ctx, user_params, cosmo_params, astro_params, flag_options) lib.ionize_box( redshift=redshift, astro_params=astro_params, flag_options=flag_options, previous_ionize_box=prev_z, user_params=user_params, cosmo_params=cosmo_params, regenerate=regen, write=True, direc=direc, random_seed=seed, ) @main.command( context_settings={ # Doing this allows arbitrary options to override config "ignore_unknown_options": True, "allow_extra_args": True, } ) @click.argument("redshift", type=str) @click.option( "--config", type=click.Path(exists=True, dir_okay=False), default=None, help="Path to the configuration file (default ~/.21cmfast/runconfig_single.yml)", ) @click.option( "--out", type=click.Path(dir_okay=True, file_okay=True), default=None, help="Path to output full Coeval simulation to (directory OK).", ) @click.option( "--regen/--no-regen", default=False, help="Whether to force regeneration of init/perturb files if they already exist.", ) @click.option( "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="cache directory", ) @click.option( "--seed", type=int, default=None, help="specify a random seed for the initial conditions", ) @click.pass_context def coeval(ctx, redshift, config, out, regen, direc, seed): """Efficiently generate coeval cubes at a given redshift. Parameters ---------- ctx : A parameter from the parent CLI function to be able to override config. redshift : float The redshift to generate the field at. config : str Path to the configuration file. regen : bool Whether to regenerate all data, even if found in cache. direc : str Where to search for cached items. seed : int Random seed used to generate data. """ if out is not None: out = Path(out).absolute() if len(out.suffix) not in (2, 3) and not out.exists(): out.mkdir() elif not out.parent.exists(): out.parent.mkdir() try: redshift = [float(z.strip()) for z in redshift.split(",")] except TypeError: raise TypeError("redshift argument must be comma-separated list of values.") cfg = _get_config(config) # Set user/cosmo params from config. user_params = lib.UserParams(**cfg.get("user_params", {})) cosmo_params = lib.CosmoParams(**cfg.get("cosmo_params", {})) flag_options = lib.FlagOptions( **cfg.get("flag_options", {}), USE_VELS_AUX=user_params.USE_RELATIVE_VELOCITIES ) astro_params = lib.AstroParams( **cfg.get("astro_params", {}), INHOMO_RECO=flag_options.INHOMO_RECO ) _override(ctx, user_params, cosmo_params, astro_params, flag_options) coeval = lib.run_coeval( redshift=redshift, astro_params=astro_params, flag_options=flag_options, user_params=user_params, cosmo_params=cosmo_params, regenerate=regen, write=True, direc=direc, random_seed=seed, ) if out: for i, (z, c) in enumerate(zip(redshift, coeval)): if out.is_dir(): fname = out / c.get_unique_filename() elif len(redshift) == 1: fname = out else: out = out.parent / f"{out.name}_z{z}{out.suffix}" c.save(fname) print(f"Saved Coeval box to {fname}.") @main.command( context_settings={ # Doing this allows arbitrary options to override config "ignore_unknown_options": True, "allow_extra_args": True, } ) @click.argument("redshift", type=float) @click.option( "--config", type=click.Path(exists=True, dir_okay=False), default=None, help="Path to the configuration file (default ~/.21cmfast/runconfig_single.yml)", ) @click.option( "--out", type=click.Path(dir_okay=True, file_okay=True), default=None, help="Path to output full Lightcone to (directory OK).", ) @click.option( "--regen/--no-regen", default=False, help="Whether to force regeneration of init/perturb files if they already exist.", ) @click.option( "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="directory to write data and plots to -- must exist.", ) @click.option( "-X", "--max-z", type=float, default=None, help="maximum redshift of the stored lightcone data", ) @click.option( "--seed", type=int, default=None, help="specify a random seed for the initial conditions", ) @click.pass_context def lightcone(ctx, redshift, config, out, regen, direc, max_z, seed): """Efficiently generate coeval cubes at a given redshift. Parameters ---------- ctx : A parameter from the parent CLI function to be able to override config. redshift : float The redshift to generate the field at. config : str Path to the configuration file. regen : bool Whether to regenerate all data, even if found in cache. direc : str Where to search for cached items. max_z : float Maximum redshift to include in the produced lightcone. seed : int Random seed used to generate data. """ cfg = _get_config(config) if out is not None: out = Path(out).absolute() if len(out.suffix) not in (2, 3) and not out.exists(): out.mkdir() elif not out.parent.exists(): out.parent.mkdir() # Set user/cosmo params from config. user_params = lib.UserParams(**cfg.get("user_params", {})) cosmo_params = lib.CosmoParams(**cfg.get("cosmo_params", {})) flag_options = lib.FlagOptions( **cfg.get("flag_options", {}), USE_VELS_AUX=user_params.USE_RELATIVE_VELOCITIES ) astro_params = lib.AstroParams( **cfg.get("astro_params", {}), INHOMO_RECO=flag_options.INHOMO_RECO ) _override(ctx, user_params, cosmo_params, astro_params, flag_options) lc = lib.run_lightcone( redshift=redshift, max_redshift=max_z, astro_params=astro_params, flag_options=flag_options, user_params=user_params, cosmo_params=cosmo_params, regenerate=regen, write=True, direc=direc, random_seed=seed, ) if out: fname = out / lc.get_unique_filename() if out.is_dir() else out lc.save(fname) print(f"Saved Lightcone to {fname}.") def _query(direc=None, kind=None, md5=None, seed=None, clear=False): cls = list( cache_tools.query_cache(direc=direc, kind=kind, hsh=md5, seed=seed, show=False) ) if not clear: print("%s Data Sets Found:" % len(cls)) print("------------------") else: print("Removing %s data sets..." % len(cls)) for file, c in cls: if not clear: print(" @ {%s}:" % file) print(" %s" % str(c)) print() else: direc = direc or path.expanduser(_cfg.config["direc"]) remove(path.join(direc, file)) @main.command() @click.option( "-d", "--direc", type=click.Path(exists=True, dir_okay=True), default=None, help="directory to write data and plots to -- must exist.", ) @click.option("-k", "--kind", type=str, default=None, help="filter by kind of data.") @click.option("-m", "--md5", type=str, default=None, help="filter by md5 hsh") @click.option("-s", "--seed", type=str, default=None, help="filter by random seed") @click.option( "--clear/--no-clear", default=False, help="remove all data sets returned by this query.", ) def query(direc, kind, md5, seed, clear): """Query the cache database. Parameters ---------- direc : str Directory in which to search for cache items kind : str Filter output by kind of box (eg. InitialConditions) md5 : str Filter output by hsh seed : float Filter output by random seed. clear : bool Remove all data sets returned by the query. """ _query(direc, kind, md5, seed, clear) @main.command() @click.argument("param", type=str) @click.argument("value", type=str) @click.option( "-s", "--struct", type=click.Choice(["flag_options", "cosmo_params", "user_params", "astro_params"]), default="flag_options", help="struct in which the new feature exists", ) @click.option( "-t", "--vtype", type=click.Choice(["bool", "float", "int"]), default="bool", help="type of the new parameter", ) @click.option( "-l/-c", "--lightcone/--coeval", default=True, help="whether to use a lightcone for comparison", ) @click.option( "-z", "--redshift", type=float, default=6.0, help="redshift of the comparison boxes" ) @click.option( "-Z", "--max-redshift", type=float, default=30, help="maximum redshift of the comparison lightcone", ) @click.option("-r", "--random-seed", type=int, default=12345, help="random seed to use") @click.option("-v", "--verbose", count=True) @click.option( "-g/-G", "--regenerate/--cache", default=True, help="whether to regenerate the boxes", ) def pr_feature( param, value, struct, vtype, lightcone, redshift, max_redshift, random_seed, verbose, regenerate, ): """ Create standard plots comparing a default simulation against a simulation with a new feature. The new feature is switched on by setting PARAM to VALUE. Plots are saved in the current directory, with the prefix "pr_feature". Parameters ---------- param : str Name of the parameter to modify to "switch on" the feature. value : float Value to which to set it. struct : str The input parameter struct to which `param` belongs. vtype : str Type of the new parameter. lightcone : bool Whether the comparison should be done on a lightcone. redshift : float Redshift of comparison. max_redshift : float If using a lightcone, the maximum redshift in the lightcone to compare. random_seed : int Random seed at which to compare. verbose : int How verbose the output should be. regenerate : bool Whether to regenerate all data, even if it is in cache. """ import powerbox lvl = [logging.WARNING, logging.INFO, logging.DEBUG][verbose] logger = logging.getLogger("21cmFAST") logger.setLevel(lvl) value = getattr(builtins, vtype)(value) structs = { "user_params": {"HII_DIM": 128, "BOX_LEN": 250}, "flag_options": {"USE_TS_FLUCT": True}, "cosmo_params": {}, "astro_params": {}, } if lightcone: print("Running default lightcone...") lc_default = lib.run_lightcone( redshift=redshift, max_redshift=max_redshift, random_seed=random_seed, regenerate=regenerate, **structs, ) structs[struct][param] = value print("Running lightcone with new feature...") lc_new = lib.run_lightcone( redshift=redshift, max_redshift=max_redshift, random_seed=random_seed, regenerate=regenerate, **structs, ) print("Plotting lightcone slices...") for field in ["brightness_temp"]: fig, ax = plt.subplots(3, 1, sharex=True, sharey=True) vmin = -150 vmax = 30 plotting.lightcone_sliceplot( lc_default, ax=ax[0], fig=fig, vmin=vmin, vmax=vmax ) ax[0].set_title("Default") plotting.lightcone_sliceplot( lc_new, ax=ax[1], fig=fig, cbar=False, vmin=vmin, vmax=vmax ) ax[1].set_title("New") plotting.lightcone_sliceplot( lc_default, lightcone2=lc_new, cmap="bwr", ax=ax[2], fig=fig ) ax[2].set_title("Difference") plt.savefig(f"pr_feature_lighcone_2d_{field}.pdf") def rms(x, axis=None): return np.sqrt(np.mean(x ** 2, axis=axis)) print("Plotting lightcone history...") fig, ax = plt.subplots(4, 1, sharex=True, gridspec_kw={"hspace": 0.05}) ax[0].plot(lc_default.node_redshifts, lc_default.global_xHI, label="Default") ax[0].plot(lc_new.node_redshifts, lc_new.global_xHI, label="New") ax[0].set_ylabel(r"$x_{\rm HI}$") ax[0].legend() ax[1].plot( lc_default.node_redshifts, lc_default.global_brightness_temp, label="Default", ) ax[1].plot(lc_new.node_redshifts, lc_new.global_brightness_temp, label="New") ax[1].set_ylabel("$T_b$ [K]") ax[3].set_xlabel("z") rms_diff = rms(lc_default.brightness_temp, axis=(0, 1)) - rms( lc_new.brightness_temp, axis=(0, 1) ) ax[2].plot(lc_default.lightcone_redshifts, rms_diff, label="RMS") ax[2].plot( lc_new.node_redshifts, lc_default.global_xHI - lc_new.global_xHI, label="$x_{HI}$", ) ax[2].plot( lc_new.node_redshifts, lc_default.global_brightness_temp - lc_new.global_brightness_temp, label="$T_b$", ) ax[2].legend() ax[2].set_ylabel("Differences") diff_rms = rms(lc_default.brightness_temp - lc_new.brightness_temp, axis=(0, 1)) ax[3].plot(lc_default.lightcone_redshifts, diff_rms) ax[3].set_ylabel("RMS of Diff.") plt.savefig("pr_feature_history.pdf") print("Plotting power spectra history...") p_default = [] p_new = [] z = [] thickness = 200 # Mpc ncells = int(thickness / lc_new.cell_size) chunk_size = lc_new.cell_size * ncells start = 0 print(ncells) while start + ncells <= lc_new.shape[-1]: pd, k = powerbox.get_power( lc_default.brightness_temp[:, :, start : start + ncells], lc_default.lightcone_dimensions[:2] + (chunk_size,), ) p_default.append(pd) pn, k = powerbox.get_power( lc_new.brightness_temp[:, :, start : start + ncells], lc_new.lightcone_dimensions[:2] + (chunk_size,), ) p_new.append(pn) z.append(lc_new.lightcone_redshifts[start]) start += ncells p_default =
np.array(p_default)
numpy.array
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python2, python3 # pylint: disable=invalid-name,g-bad-import-order,missing-docstring from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import functools import os from absl import app from absl import flags from concurrent import futures import gin import numpy as np from six.moves import range from six.moves import zip import tensorflow as tf import tensorflow_probability as tfp from typing import Any, Dict, List, Optional, Tuple from neutra import utils tfd = tfp.distributions tfb = tfp.bijectors FLAGS = flags.FLAGS TRAIN_BATCH = 250 TEST_BATCH = 1000 AIS_BATCH = 50 def ReduceL2(tensor, dims): return tf.sqrt(tf.reduce_sum(tf.square(tensor), dims)) @utils.MakeTFTemplate def Conv2DWN(inputs, num_filters, kernel_size=[3, 3], stride=[1, 1], pad="SAME", activation=None, weights_initializer=utils.L2HMCInitializer(), biases_initializer=tf.zeros_initializer(), scope=None): if activation is None: activation = lambda x: x num_inputs = int(inputs.shape[3]) with tf.variable_scope(scope, "conv_2d_wn"): w = tf.get_variable( "w", [kernel_size[0], kernel_size[1], num_inputs, num_filters], initializer=weights_initializer) if biases_initializer is not None: b = tf.get_variable("b", [num_filters], initializer=biases_initializer) g = tf.get_variable( "g", initializer=tf.log(ReduceL2(w.initialized_value(), [0, 1, 2]))) g = tf.exp(g) w = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(w, [0, 1, 2]) out = tf.nn.conv2d(inputs, w, [1, stride[0], stride[1], 1], pad) if biases_initializer is not None: out += tf.reshape(b, [1, 1, 1, num_filters]) return activation(out) def GetLinearARMask(num_inputs, num_outputs, zero_diagonal=False): assert num_inputs % num_outputs == 0 or num_outputs % num_inputs == 0, "%d vs %d" % (num_inputs, num_outputs) mask = np.ones([num_inputs, num_outputs], dtype=np.float32) if num_outputs >= num_inputs: k = num_outputs // num_inputs for i in range(num_inputs): mask[i + 1:, i * k:(i + 1) * k] = 0 if zero_diagonal: mask[i:i + 1, i * k:(i + 1) * k] = 0 else: k = num_inputs // num_outputs for i in range(num_outputs): mask[(i + 1) * k:, i:i + 1] = 0 if zero_diagonal: mask[i * k:(i + 1) * k:, i:i + 1] = 0 return mask def GetConvARMask(h, w, num_inputs, num_filters, zero_diagonal=False): l = (h - 1) // 2 m = (w - 1) // 2 mask = np.ones([h, w, num_inputs, num_filters], dtype=np.float32) mask[:l, :, :, :] = 0 mask[l, :m, :, :] = 0 mask[l, m, :, :] = GetLinearARMask(num_inputs, num_filters, zero_diagonal) return mask @utils.MakeTFTemplate def Conv2DAR(inputs, num_filters, kernel_size=[3, 3], zero_diagonal=False, weights_initializer=None, biases_initializer=tf.zeros_initializer(), scope=None): num_inputs = int(inputs.get_shape()[3]) mask = GetConvARMask(kernel_size[0], kernel_size[1], num_inputs, num_filters, zero_diagonal) w = tf.get_variable("w", [kernel_size[0], kernel_size[1], num_inputs, num_filters], initializer=weights_initializer) b = tf.get_variable("b", [num_filters], initializer=biases_initializer) g = tf.get_variable( "g", initializer=tf.log(ReduceL2(w.initialized_value() * mask, [0, 1, 2]))) g = tf.exp(g) w = tf.reshape(g, [1, 1, 1, num_filters]) * tf.nn.l2_normalize(w * mask, [0, 1, 2]) out = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME") return out + tf.reshape(b, [1, 1, 1, num_filters]) @utils.MakeTFTemplate def ConvAR(x, h=None, real_event_shape=[], hidden_layers=[], **kwargs): #input_shape = ( # np.int32(x.shape.as_list()) # if x.shape.is_fully_defined() else tf.shape(x)) #x = tf.reshape(x, [-1] + real_event_shape) for i, units in enumerate(hidden_layers): x = Conv2DAR("conv2d_ar_%d"%i, num_filters=units, zero_diagonal=False, **kwargs)(inputs=x) if i == 0 and h is not None: if h.shape[-1] != x.shape[-1]: x += Conv2DWN("conv2d_h", num_filters=int(x.shape[-1]), kernel_size=[1, 1], stride=[1, 1])(h) else: x += h x = tf.nn.elu(x) shift = Conv2DAR( "conv2d_shift", num_filters=real_event_shape[-1], zero_diagonal=True, **kwargs)( inputs=x) log_scale = Conv2DAR( "conv2d_scale", num_filters=real_event_shape[-1], zero_diagonal=True, **kwargs)( inputs=x) #shift = tf.reshape(shift, input_shape) #log_scale = tf.reshape(log_scale, input_shape) return shift, log_scale @utils.MakeTFTemplate def DenseWN(inputs, num_outputs, activation=None, weights_initializer=utils.L2HMCInitializer(), biases_initializer=tf.zeros_initializer(), scope=None): if activation is None: activation = lambda x: x num_inputs = int(inputs.get_shape()[1]) with tf.variable_scope(scope, "dense_wn"): w = tf.get_variable( "w", [num_inputs, num_outputs], initializer=weights_initializer) if biases_initializer is not None: b = tf.get_variable("b", [num_outputs], initializer=biases_initializer) g = tf.get_variable( "g", initializer=tf.log(ReduceL2(w.initialized_value(), [0]))) g = tf.exp(g) w = g * tf.nn.l2_normalize(w, [0]) out = tf.matmul(inputs, w) if biases_initializer is not None: out += tf.expand_dims(b, 0) return activation(out) @utils.MakeTFTemplate def ResConv2D(inputs, num_filters, kernel_size, stride, activation=tf.nn.elu, output_init_factor=1.0): x = Conv2DWN( "conv2d_in", num_filters=num_filters, kernel_size=kernel_size, stride=stride, activation=activation)( inputs=inputs) non_linear = Conv2DWN( "conv2d_nl", num_filters=num_filters, kernel_size=kernel_size, stride=[1, 1], weights_initializer=utils.L2HMCInitializer(factor=output_init_factor))( inputs=x) skip = Conv2DWN( "conv2d_skip", num_filters=num_filters, kernel_size=kernel_size, stride=stride, weights_initializer=utils.L2HMCInitializer(factor=output_init_factor))( inputs=inputs) return non_linear + skip @utils.MakeTFTemplate def ResDense(inputs, num_dims, activation=None): x = DenseWN("dense_in", num_outputs=num_dims, activation=activation)(inputs) non_linear = DenseWN("dense_nl", num_outputs=num_dims)(x) skip = DenseWN("dense_skip", num_outputs=num_dims)(x) return non_linear + skip @gin.configurable("conv_hier_encoder") @utils.MakeTFTemplate def ConvHierEncoder(images, depth = 2, num_blocks = 2, z_dims = 32, h_dims=160): x = Conv2DWN("conv2d_in", num_filters=h_dims, stride=[2, 2], kernel_size=[5, 5])(inputs=images - 0.5) means = [] raw_scales = [] contexts = [] for i in range(depth): for j in range(num_blocks): downsample = i > 0 and j == 0 if downsample: stride = [2, 2] else: stride = [1, 1] h = tf.nn.elu(x) h = Conv2DWN("conv2d_in_%d_%d"%(i, j), num_filters=2*z_dims + 2 * h_dims, stride=stride, kernel_size=[3, 3])(inputs=h) mean, raw_scale, context, h = tf.split(h, [z_dims, z_dims, h_dims, h_dims], -1) means.append(mean) raw_scales.append(raw_scale) contexts.append(context) h = tf.nn.elu(h) h = Conv2DWN("conv2d_h_%d_%d"%(i, j), num_filters=h_dims, stride=[1, 1], kernel_size=[3, 3])(inputs=h) if downsample: x = tf.image.resize_nearest_neighbor(x, [int(x.shape[1]) // 2, int(x.shape[2]) // 2]) x += 0.1 * h return means, raw_scales, contexts @gin.configurable("conv_hier_prior_post") @utils.MakeTFTemplate def ConvHierPriorPost(images=None, encoder=None, z=None, batch=None, depth = 2, num_blocks = 2, z_dims = 32, h_dims = 160, image_width = 32): is_q = encoder is not None if is_q: means, raw_scales, up_contexts = encoder(images) if batch is None: if images is not None: batch = tf.shape(images)[0] else: batch = tf.shape(z[0])[0] h = tf.get_variable("h_top", [h_dims], initializer=tf.zeros_initializer()) h = tf.reshape(h, [1, 1, 1, -1]) top_width = image_width // 2 ** num_blocks h = tf.tile(h, [batch, top_width, top_width, 1]) x = h ret_z = [] ret_log_pz = [] for i in reversed(list(range(depth))): for j in reversed(list(range(num_blocks))): downsample = i > 0 and j == 0 h = tf.nn.elu(x) h_p = Conv2DWN( "conv2d_p_%d_%d" % (i, j), num_filters=2 * h_dims + 2 * z_dims, stride=[1, 1], kernel_size=[3, 3])( inputs=h) p_mean, p_raw_scale, down_context, h_det = tf.split( h_p, [z_dims, z_dims, h_dims, h_dims], -1) p_z = tfd.Independent( tfd.Normal(loc=p_mean, scale=tf.nn.softplus(p_raw_scale)), reinterpreted_batch_ndims=3) if is_q: h_q = Conv2DWN( "conv2d_q_%d_%d" % (i, j), num_filters=2 * z_dims, stride=[1, 1], kernel_size=[3, 3])( inputs=h) q_mean, q_raw_scale = tf.split(h_q, [z_dims, z_dims], -1) context = down_context + up_contexts.pop() q_mean += means.pop() q_raw_scale += raw_scales.pop() num_flat_dims = np.prod(q_mean.shape.as_list()[1:]) _maf_template = ConvAR( "iaf_%d_%d" % (i, j), real_event_shape=q_mean.shape.as_list()[1:], hidden_layers=[h_dims, h_dims], h=context, weights_initializer=utils.L2HMCInitializer(factor=0.01)) def maf_template(x, t=_maf_template): # TODO: I don't understand why the shape gets lost. #x.set_shape([None, num_flat_dims]) x.set_shape([None] + q_mean.shape.as_list()[1:]) return t(x) bijectors = [] #bijectors.append(tfb.Reshape(tf.shape(q_mean)[1:], [num_flat_dims])) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=maf_template))) #bijectors.append(tfb.Reshape([num_flat_dims], tf.shape(q_mean)[1:])) # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. bijectors.append(tfb.AffineScalar(shift=q_mean, scale=tf.nn.softplus(q_raw_scale))) bijector = tfb.Chain(bijectors) mvn = tfd.Independent( tfd.Normal(loc=tf.zeros_like(q_mean), scale=tf.ones_like(q_raw_scale)), reinterpreted_batch_ndims=3) q_z = tfd.TransformedDistribution(mvn, bijector) if is_q: dist = q_z else: dist = p_z if z is None: z_val = dist.sample() else: z_val = z[0] z = z[1:] ret_z.append(z_val) ret_log_pz.append(dist.log_prob(z_val)) h = tf.concat([z_val, h_det], -1) if downsample: new_shape = [2 * int(x.shape[1]), 2 * int(x.shape[2])] x = tf.image.resize_nearest_neighbor(x, new_shape) h = tf.image.resize_nearest_neighbor(h, new_shape) h = Conv2DWN("deconv2d_%d_%d" % (i, j), num_filters=h_dims, stride=[1, 1], kernel_size=[3, 3])(inputs=h) x = x + 0.1 * h x = tf.image.resize_nearest_neighbor(x, [2 * int(x.shape[1]), 2 * int(x.shape[2])]) x = Conv2DWN("conv2d_out", num_filters=3, stride=[1, 1], kernel_size=[5, 5])(inputs=x) return ret_z, ret_log_pz, x @gin.configurable("conv_encoder") @utils.MakeTFTemplate def ConvEncoder(images, num_outputs, hidden_dims = 450, filter_scale = 1, fully_convolutional = False): x = images x = ResConv2D("res_1", num_filters=filter_scale * 16, kernel_size=[3, 3], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=filter_scale * 16, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_3", num_filters=filter_scale * 16, kernel_size=[3, 3], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_5", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[2, 2])(x) x = tf.nn.elu(x) if fully_convolutional: return ResConv2D("res_out", num_filters=num_outputs, kernel_size=[3, 3], stride=[1, 1])(x) else: x = tf.reshape(x, [-1, filter_scale * 32 * 4 * 4]) x = ResDense("dense_h", num_dims=hidden_dims, activation=tf.nn.elu)(x) return DenseWN( "dense_out", num_outputs=num_outputs, weights_initializer=utils.L2HMCInitializer())( x) @gin.configurable("conv_decoder") @utils.MakeTFTemplate def ConvDecoder(encoding, output_shape, filter_scale = 1, hidden_dims = 450, fully_convolutional = False): if isinstance(encoding, (list, tuple)): encoding = encoding[0] if fully_convolutional: tf.logging.info("Encoding shape: %s", encoding.shape) x = ResConv2D("res_in", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[1, 1])(encoding) else: x = ResDense("dense_in", num_dims=hidden_dims, activation=tf.nn.elu)(encoding) x = ResDense("dense_h", num_dims=filter_scale * 32 * 4 * 4, activation=tf.nn.elu)(x) x = tf.reshape(x, [-1, 4, 4, filter_scale * 32]) x = tf.image.resize_nearest_neighbor(x, [8, 8]) x = ResConv2D("res_5", num_filters=32 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=32 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) if output_shape[1] == 28: # 8x8 -> 7x7 x = x[:, 1:, 1:, :] x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = ResConv2D("res_3", num_filters=16 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=16 * filter_scale, kernel_size=[3, 3], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = ResConv2D( "res_1", num_filters=output_shape[-1], kernel_size=[3, 3], stride=[1, 1], output_init_factor=0.01)( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("conv_encoder2") @utils.MakeTFTemplate def ConvEncoder2(images, num_outputs, filter_scale = 1): x = images x = Conv2DWN("conv_1", num_filters=filter_scale * 16, kernel_size=[5, 5], stride=[2, 2], activation=tf.nn.elu)(x) x = Conv2DWN("conv_2", num_filters=filter_scale * 16, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_3", num_filters=filter_scale * 16, kernel_size=[5, 5], stride=[2, 2], activation=tf.nn.elu)(x) x = Conv2DWN("conv_4", num_filters=filter_scale * 32, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_5", num_filters=filter_scale * 32, kernel_size=[5, 5], stride=[2, 2], activation=tf.nn.elu)(x) return ResConv2D("conv_out", num_filters=num_outputs, kernel_size=[3, 3], stride=[1, 1])(x) @gin.configurable("conv_decoder2") @utils.MakeTFTemplate def ConvDecoder2(encoding, output_shape, filter_scale = 1): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = Conv2DWN("conv_in", num_filters=filter_scale * 32, kernel_size=[3, 3], stride=[1, 1])(encoding) x = tf.image.resize_nearest_neighbor(x, [8, 8]) x = Conv2DWN("conv_5", num_filters=32 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_4", num_filters=32 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) if output_shape[1] == 28: # 8x8 -> 7x7 x = x[:, 1:, 1:, :] x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = Conv2DWN("conv_3", num_filters=16 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = Conv2DWN("conv_2", num_filters=16 * filter_scale, kernel_size=[5, 5], stride=[1, 1], activation=tf.nn.elu)(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = Conv2DWN( "conv_1", num_filters=output_shape[-1], kernel_size=[5, 5], stride=[1, 1], weights_initializer=utils.L2HMCInitializer(0.01))( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("conv_encoder3") @utils.MakeTFTemplate def ConvEncoder3(images, num_outputs, hidden_dims = 450, filter_scale = 1): # This comes from VLAE paper. x = images x = ResConv2D("res_1", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN("conv_3", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_5", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN("conv_6", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) x = ResConv2D("res_7", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_8", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_9", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) return Conv2DWN("conv_10", num_filters=num_outputs, kernel_size=[1, 1], stride=[1, 1])(x) @gin.configurable("conv_decoder3") @utils.MakeTFTemplate def ConvDecoder3(encoding, output_shape, filter_scale = 1): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = encoding x = Conv2DWN("conv_1", num_filters=filter_scale * 96, kernel_size=[1, 1], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_2", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_3", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_4", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = Conv2DWN("conv_5", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_6", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_7", num_filters=filter_scale * 96, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = Conv2DWN("conv_8", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_9", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = ResConv2D("res_10", num_filters=filter_scale * 48, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN( "conv_out", num_filters=output_shape[-1], kernel_size=[5, 5], stride=[1, 1], weights_initializer=utils.L2HMCInitializer(0.01))( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("conv_encoder4") @utils.MakeTFTemplate def ConvEncoder4(images, num_outputs, filter_scale = 1, fully_convolutional = False): x = images x = Conv2DWN("conv_1", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) x = Conv2DWN("conv_2", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[2, 2])(x) x = tf.nn.elu(x) if fully_convolutional: return Conv2DWN("conv_out", num_filters=num_outputs, kernel_size=[1, 1], stride=[1, 1])(x) else: return DenseWN("dense_out", num_outputs=num_outputs)(tf.layers.flatten(x)) @gin.configurable("conv_decoder4") @utils.MakeTFTemplate def ConvDecoder4(encoding, output_shape, filter_scale = 1, fully_convolutional = False): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = encoding if not fully_convolutional: x = tf.reshape(DenseWN("dense_in", num_outputs=8*8*16)(x), [-1, 8, 8, 16]) x = tf.image.resize_nearest_neighbor(x, [output_shape[0] // 2, output_shape[1] // 2]) x = Conv2DWN("conv_1", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = tf.image.resize_nearest_neighbor(x, [output_shape[0], output_shape[1]]) x = Conv2DWN("conv_2", num_filters=filter_scale * 64, kernel_size=[5, 5], stride=[1, 1])(x) x = tf.nn.elu(x) x = Conv2DWN( "conv_out", num_filters=output_shape[-1], kernel_size=[1, 1], stride=[1, 1], weights_initializer=utils.L2HMCInitializer(0.01))( x) return tf.reshape(x, [-1] + output_shape) @gin.configurable("dense_encoder") @utils.MakeTFTemplate def DenseEncoder(images, num_outputs, hidden_layer_sizes = [1024, 1024], activation=tf.nn.elu): x = tf.layers.flatten(images) # Center the data, assuming it goes from [0, 1] initially. # x = 2.0 * x - 1.0 for size in hidden_layer_sizes: x = tf.layers.dense( x, size, activation=activation, kernel_initializer=utils.L2HMCInitializer()) return tf.layers.dense(x, num_outputs, kernel_initializer=utils.L2HMCInitializer()) @gin.configurable("dense_decoder") @utils.MakeTFTemplate def DenseDecoder(encoding, output_shape, hidden_layer_sizes = [1024, 1024], activation=tf.nn.elu): if isinstance(encoding, (list, tuple)): encoding = encoding[0] x = tf.layers.flatten(encoding) for size in hidden_layer_sizes: x = tf.layers.dense( x, size, activation=activation, kernel_initializer=utils.L2HMCInitializer()) num_outputs = np.prod(output_shape) return tf.reshape( tf.layers.dense( x, num_outputs, kernel_initializer=utils.L2HMCInitializer(factor=0.01)), [-1] + output_shape) def IndependentBernouli3D(logits): return tfd.Independent( tfd.Bernoulli(logits=logits), reinterpreted_batch_ndims=3) def IndependentDiscreteLogistic3D(locations, scales): dist = tfd.TransformedDistribution( distribution=tfd.Logistic(loc=locations, scale=scales), bijector=tfb.AffineScalar(scale=255.0)) dist = tfd.QuantizedDistribution(distribution=dist, low=0., high=255.0) dist = tfd.Independent(dist, reinterpreted_batch_ndims=3) class ScaleHack(object): def __init__(self, dist): self._dist = dist def sample(self, *args, **kwargs): return self._dist.sample(*args, **kwargs) / 255.0 def log_prob(self, x, *args, **kwargs): return self._dist.log_prob(tf.clip_by_value(x * 255.0, 0.0, 255.0), *args, **kwargs) return ScaleHack(dist) def IndependentDiscreteLogistic3D2(locations, scales): class IndependentDiscreteLogistic(object): def __init__(self, loc, scale): self._loc = loc self._scale = scale def sample(self, *args, **kwargs): dist = tfd.Logistic(loc=self._loc, scale=self._scale) return tf.clip_by_value(dist.sample(*args, **kwargs), 0.0, 1.0) def log_prob(self, x, *args, **kwargs): sample = x mean = self._loc scales = self._scale binsize=1.0 / 256.0 sample = (tf.floor(sample / binsize) * binsize - mean) / scales return tf.reduce_sum( tf.log( tf.sigmoid(sample + binsize / scales) - tf.sigmoid(sample) + 1e-7), [-1, -2, -3]) return IndependentDiscreteLogistic(locations, scales) @gin.configurable("dense_recognition") @utils.MakeTFTemplate def DenseRecognition(images, encoder, z=None, sigma_activation="exp" ): """Models Q(z | encoder(x))""" encoding = encoder(images) num_dims = int(encoding.shape[-1]) // 2 encoding_parts = tf.unstack( tf.reshape(encoding, [-1, num_dims, 2]), num=2, axis=-1) mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijector = tfb.Affine(shift=mu, scale_diag=sigma) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] tf.logging.info("bijector z shape: %s", z[0].shape) return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_affine") @utils.MakeTFTemplate def DenseRecognitionAffine(images, encoder, z=None, z_dims=None): """Models Q(z | encoder(x))""" encoding = encoder(images) mu = encoding[:, :z_dims] tril_raw = tfd.fill_triangular(encoding[:, z_dims:]) sigma = tf.nn.softplus(tf.matrix_diag_part(tril_raw)) tril = tf.linalg.set_diag(tril_raw, sigma) bijector = tfb.Affine(shift=mu, scale_tril=tril) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_affine_lr") @utils.MakeTFTemplate def DenseRecognitionAffineLR(images, encoder, z=None, z_dims=None, rank=1): """Models Q(z | encoder(x))""" encoding = encoder(images) mu = encoding[:, :z_dims] sigma = encoding[:, z_dims:2*z_dims] perturb = encoding[:, 2*z_dims:] perturb = tf.reshape(perturb, [-1, z_dims, rank]) sigma = tf.nn.softplus(sigma) bijector = tfb.Affine(shift=mu, scale_diag=sigma, scale_perturb_factor=perturb) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_rnvp") @utils.MakeTFTemplate def DenseRecognitionRNVP( images, encoder, z=None, num_bijectors=3, condition_bijector=False, layer_sizes=[128, 128], sigma_activation="exp"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if condition_bijector: num_parts = 3 else: num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1, num_dims, num_parts]), num=num_parts, axis=-1) if condition_bijector: h = encoding_parts[2] else: h = None swap = tfb.Permute(permutation=np.arange(num_dims - 1, -1, -1)) bijectors = [] for i in range(num_bijectors): _rnvp_template = utils.DenseShiftLogScale( "rnvp_%d" % i, h=h, hidden_layers=layer_sizes, activation=tf.nn.softplus, kernel_initializer=utils.L2HMCInitializer(factor=0.01)) def rnvp_template(x, output_units, t=_rnvp_template): # TODO: I don't understand why the shape gets lost. x.set_shape([None, num_dims - output_units]) return t(x, output_units) bijectors.append( tfb.Invert( tfb.RealNVP( num_masked=num_dims // 2, shift_and_log_scale_fn=rnvp_template))) bijectors.append(swap) # Drop the last swap. bijectors = bijectors[:-1] # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijectors.append(tfb.Affine(shift=mu, scale_diag=sigma)) bijector = tfb.Chain(bijectors) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("dense_recognition_iaf") @utils.MakeTFTemplate def DenseRecognitionIAF( images, encoder, z=None, num_iaf_layers=2, iaf_layer_sizes=[128, 128], condition_iaf=False, sigma_activation="exp"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if condition_iaf: num_parts = 3 else: num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1, num_dims, num_parts]), num=num_parts, axis=-1) if condition_iaf: h = encoding_parts[2] else: h = None swap = tfb.Permute(permutation=np.arange(num_dims - 1, -1, -1)) bijectors = [] for i in range(num_iaf_layers): #_maf_template = tfb.masked_autoregressive_default_template( # hidden_layers=iaf_layer_sizes, # activation=tf.nn.softplus, # kernel_initializer=utils.L2HMCInitializer(factor=0.01)) _maf_template = utils.DenseAR( "maf_%d" % i, hidden_layers=iaf_layer_sizes, h=h, activation=tf.nn.softplus, kernel_initializer=utils.L2HMCInitializer(factor=0.01)) def maf_template(x, t=_maf_template): # TODO: I don't understand why the shape gets lost. x.set_shape([None, num_dims]) return t(x) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=maf_template))) bijectors.append(swap) # Drop the last swap. bijectors = bijectors[:-1] # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijectors.append(tfb.Affine(shift=mu, scale_diag=sigma)) bijector = tfb.Chain(bijectors) mvn = tfd.MultivariateNormalDiag( loc=tf.zeros_like(mu), scale_diag=tf.ones_like(sigma)) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type class FlipImageBijector(tfb.Bijector): def __init__(self, validate_args=False, name=None): """Creates the `Permute` bijector. Args: permutation: An `int`-like vector-shaped `Tensor` representing the permutation to apply to the rightmost dimension of the transformed `Tensor`. validate_args: Python `bool` indicating whether arguments should be checked for correctness. name: Python `str`, name given to ops managed by this object. Raises: TypeError: if `not permutation.dtype.is_integer`. ValueError: if `permutation` does not contain exactly one of each of `{0, 1, ..., d}`. """ super(FlipImageBijector, self).__init__( forward_min_event_ndims=3, is_constant_jacobian=True, validate_args=validate_args, name=name or "flip_image") def _forward(self, x): return tf.image.flip_left_right(tf.image.flip_up_down(x)) def _inverse(self, y): return tf.image.flip_up_down(tf.image.flip_left_right(y)) def _inverse_log_det_jacobian(self, y): # is_constant_jacobian = True for this bijector, hence the # `log_det_jacobian` need only be specified for a single input, as this will # be tiled to match `event_ndims`. return tf.constant(0., dtype=y.dtype.base_dtype) def _forward_log_det_jacobian(self, x): return tf.constant(0., dtype=x.dtype.base_dtype) @gin.configurable("conv_iaf") @utils.MakeTFTemplate def ConvIAF( images, encoder, z=None, num_iaf_layers=2, iaf_layer_sizes=[128, 128], condition_iaf=False, sigma_activation="softplus"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if encoding.shape.ndims != 4: raise ValueError("ConvIAF requires a convolutional encoder. %s", encoding.shape) if condition_iaf: num_parts = 3 else: num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1] + encoding.shape.as_list()[1:-1] + [num_dims, num_parts]), num=num_parts, axis=-1) if condition_iaf: h = encoding_parts[2] else: h = None bijectors = [] for i in range(num_iaf_layers): _maf_template = ConvAR( "iaf_%d" % i, real_event_shape=encoding_parts[0].shape.as_list()[1:], hidden_layers=iaf_layer_sizes, h=h, weights_initializer=utils.L2HMCInitializer(factor=0.01)) def maf_template(x, t=_maf_template): # TODO: I don't understand why the shape gets lost. x.set_shape([None] + encoding_parts[0].shape.as_list()[1:]) return t(x) bijectors.append( tfb.Invert( tfb.MaskedAutoregressiveFlow(shift_and_log_scale_fn=maf_template))) bijectors.append(FlipImageBijector()) # Drop the last swap. bijectors = bijectors[:-1] # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijectors.append(tfb.AffineScalar(shift=mu, scale=sigma)) bijector = tfb.Chain(bijectors) mvn = tfd.Independent( tfd.Normal(loc=tf.zeros_like(mu), scale=tf.ones_like(sigma)), reinterpreted_batch_ndims=3) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @gin.configurable("conv_shift_scale") @utils.MakeTFTemplate def ConvShiftScale( images, encoder, z=None, sigma_activation="softplus"): """Models Q(z | encoder(x)), z = f(w, encoder)""" encoding = encoder(images) if encoding.shape.ndims != 4: raise ValueError("ConvIAF requires a convolutional encoder. %s", encoding.shape) num_parts = 2 num_dims = int(encoding.shape[-1]) // num_parts encoding_parts = tf.unstack( tf.reshape(encoding, [-1] + encoding.shape.as_list()[1:-1] + [num_dims, num_parts]), num=num_parts, axis=-1) # Do the shift/scale explicitly, so that we can use bijector to map the # distribution to the standard normal, which is helpful for HMC. mu = encoding_parts[0] if sigma_activation == "exp": sigma = tf.exp(0.5 * encoding_parts[1]) elif sigma_activation == "softplus": sigma = tf.nn.softplus(encoding_parts[1]) bijector = tfb.AffineScalar(shift=mu, scale=sigma) mvn = tfd.Independent( tfd.Normal(loc=tf.zeros_like(mu), scale=tf.ones_like(sigma)), reinterpreted_batch_ndims=3) dist = tfd.TransformedDistribution(mvn, bijector) if z is None: z = [dist.sample()] return z, [dist.log_prob(z[0])], [bijector] # pytype: disable=bad-return-type @utils.MakeTFTemplate def SimplePrior(z=None, batch=None, num_dims=None): """Models P(z)""" mvn = tfd.MultivariateNormalDiag( loc=tf.zeros(num_dims), scale_diag=tf.ones(num_dims)) if z is None: z = [mvn.sample(batch)] return z, [mvn.log_prob(z[0])] # pytype: disable=bad-return-type @utils.MakeTFTemplate def Simple3DPrior(z=None, batch=None, shape=None): """Models P(z)""" mvn = tfd.Independent(tfd.Normal(loc=tf.zeros(shape), scale=tf.ones(shape)), reinterpreted_batch_ndims=3) if z is None: z = [mvn.sample(batch)] return z, [mvn.log_prob(z[0])] # pytype: disable=bad-return-type @utils.MakeTFTemplate def DenseMNISTNoise(x=None, z=None, decoder=None, return_means=True): """Models P(x | decoder(z))""" decoding = decoder(z) bernoulli = IndependentBernouli3D(decoding) if x is None: if return_means: x = bernoulli.mean() else: x = tf.to_float(bernoulli.sample()) return x, bernoulli.log_prob(x) @gin.configurable("cifar10_noise") @utils.MakeTFTemplate def DenseCIFAR10TNoise(x=None, z=None, decoder=None, return_means=True, uniform_scale=False, logistic_impl="mine"): """Models P(x | decoder(z))""" decoding = decoder(z) if uniform_scale: scale = tf.get_variable("scale", initializer=1.0) scales = tf.reshape(scale, [1, 1, 1]) else: scales = tf.get_variable( "scales", [32, 32, 3], initializer=tf.ones_initializer()) if logistic_impl == "mine": disc_logistic = IndependentDiscreteLogistic3D(decoding, tf.nn.softplus(scales)) elif logistic_impl == "kingma": disc_logistic = IndependentDiscreteLogistic3D2(decoding, tf.nn.softplus(scales)) if x is None: x = tf.to_float(disc_logistic.sample()) return x, disc_logistic.log_prob(x) @gin.configurable("learning_rate") def LearningRate(train_size, global_step, schedule = "hoffman", warmup_steps=0): if schedule == "hoffman": base = tf.train.piecewise_constant( global_step, [train_size * 500 // TRAIN_BATCH], [1e-3, 1e-4]) elif schedule == "new": base = tf.train.piecewise_constant( global_step, [train_size * 500 // TRAIN_BATCH, train_size * 800 // TRAIN_BATCH], [1e-3, 1e-4, 1e-5]) elif schedule == "new_gentle": base = tf.train.piecewise_constant( global_step, [train_size * 500 // TRAIN_BATCH, train_size * 800 // TRAIN_BATCH], [0.5e-3, 1e-4, 1e-5]) elif schedule == "fast": base = tf.train.piecewise_constant( global_step, [train_size * 800 // TRAIN_BATCH], [1e-2, 1e-5]) else: raise ValueError("Invalid schedule: " + schedule) if warmup_steps == 0: return base else: return tf.minimum(base * tf.to_float(global_step) / warmup_steps, base) VAEOutputs = collections.namedtuple( "VAEOutputs", "log_p_x_z, elbo, sample_means, recon_means, klqp, total_klqp, post_z, prior_z") AISOutputs = collections.namedtuple( "AISOutputs", "log_p, p_accept, z_fin, recon" ) def MakeVAE(images, recognition, prior, noise, beta, num_samples, min_kl): z, log_q_z = recognition(images) _, log_p_z = prior(z) _, log_p_x_z = noise(images, z) post_z = z log_q_z = [tf.reduce_mean(layer_log_q_z) for layer_log_q_z in log_q_z] log_p_z = [tf.reduce_mean(layer_log_p_z) for layer_log_p_z in log_p_z] log_p_x_z = tf.reduce_mean(log_p_x_z) klqp = [layer_log_q_z - layer_log_p_z for layer_log_q_z, layer_log_p_z in zip(log_q_z, log_p_z)] klqp = [tf.maximum(min_kl, layer_klqp) for layer_klqp in klqp] total_klqp = tf.add_n(klqp) elbo = log_p_x_z - beta * total_klqp recon_means, _ = noise(None, z) z, _ = prior(batch=num_samples) sample_means, _ = noise(None, z) return VAEOutputs( log_p_x_z=log_p_x_z, elbo=elbo, sample_means=sample_means, recon_means=recon_means, klqp=klqp, total_klqp=total_klqp, post_z=post_z, prior_z=z) DLGMOutputs = collections.namedtuple( "DLGMOutputs", "elbo, sample_means, mcmc_log_p, recon_means, p_accept, post_z, post_z_chain, q_z, xentpq" ) @gin.configurable("dlgm") class DLGM(object): def __init__(self, z_dims=64, beta=1.0, beta_steps=0, step_size=0.2, num_leapfrog_steps=5, num_hmc_steps=2, use_neutra=True, condition_bijector=False, bijector_type="iaf", encoder_type="dense", q_loss_type="klqp", min_kl=0.0, symm_factor=0.5, save_chain_state=False, chain_warmup_epochs=5, use_q_z_for_gen=False, no_gen_train_steps=0, dataset=None, use_bijector_for_ais=False, prior_type="simple", adapt_step_size=False, step_size_gain=1e-3, use_q_z_for_ais=False, affine_rank=1, step_size_warmup=0): self.train_size = dataset.train_size self._use_q_z_for_ais = use_q_z_for_ais if dataset.name == "mnist": output_shape = [28, 28, 1] elif dataset.name == "cifar10": output_shape = [32, 32, 3] self._z_dims = z_dims self._use_bijector_for_ais = use_bijector_for_ais if beta_steps > 0: frac = tf.to_float( tf.train.get_or_create_global_step()) / tf.to_float(beta_steps) frac = tf.minimum(frac, 1.0) self._beta = frac * beta else: self._beta = tf.constant(beta) self._min_kl = tf.to_float(min_kl) self._use_neutra = use_neutra self._num_leapfrog_steps = num_leapfrog_steps self._num_hmc_steps = num_hmc_steps self._q_loss_type = q_loss_type self._symm_factor = symm_factor self._save_chain_state = save_chain_state self._chain_warmup_epochs = chain_warmup_epochs self._use_q_z_for_gen = use_q_z_for_gen self._no_gen_train_steps = no_gen_train_steps self._step_size_gain = step_size_gain self._adapt_step_size = adapt_step_size self._step_size_warmup = step_size_warmup self._init_step_size = step_size if self._adapt_step_size: self._step_size = tf.get_variable("step_size", initializer=step_size) else: self._step_size = tf.constant(step_size) if self._save_chain_state: self._chain_state = tf.get_variable( "train_chain_state", [self.train_size, z_dims], trainable=False) if bijector_type == "affine": # TriL + shift num_outputs = (z_dims * (z_dims + 1)) // 2 + z_dims elif bijector_type == "affine_lr": num_outputs = z_dims * 2 + z_dims * affine_rank elif condition_bijector and bijector_type not in ["conv_shift_scale", "shift_scale"]: num_outputs = 3 * z_dims else: num_outputs = 2 * z_dims if encoder_type == "hier_conv": #assert dataset.name == "cifar10" #self._encoder = ConvHierEncoder("encoder") #self._prior_posterior = ConvHierPriorPost("prior_post") #self._decoder = lambda z: self._prior_posterior(z=z)[2] #self._prior = lambda z=None, batch=None: self._prior_posterior(z=z, batch=batch)[:2] #self._recog = lambda images, z=None: self._prior_posterior(images=images, z=z, encoder=self._encoder)[:2] pass else: if encoder_type == "dense": self._encoder = DenseEncoder( "encoder", num_outputs=num_outputs, activation=tf.nn.softplus) self._decoder = DenseDecoder( "decoder", output_shape=output_shape, activation=tf.nn.softplus) elif encoder_type == "conv": self._encoder = ConvEncoder("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv2": self._encoder = ConvEncoder2("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder2("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv3": self._encoder = ConvEncoder3("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder3("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] elif encoder_type == "conv4": self._encoder = ConvEncoder4("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder4("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] if prior_type == "simple": self._prior = SimplePrior("prior", num_dims=self._z_dims) elif prior_type == "simple_3d": self._prior = Simple3DPrior("prior", shape=conv_z_shape) if bijector_type == "iaf": recog = DenseRecognitionIAF( "recog", encoder=self._encoder, condition_iaf=condition_bijector) elif bijector_type == "rnvp": recog = DenseRecognitionRNVP( "recog", encoder=self._encoder, condition_bijector=condition_bijector) elif bijector_type == "shift_scale": recog = DenseRecognition( "recog", encoder=self._encoder) elif bijector_type == "conv_shift_scale": recog = ConvShiftScale("recog", encoder=self._encoder) elif bijector_type == "affine": recog = DenseRecognitionAffine("recog", encoder=self._encoder, z_dims=z_dims) elif bijector_type == "affine_lr": recog = DenseRecognitionAffineLR("recog", encoder=self._encoder, z_dims=z_dims, rank=affine_rank) elif bijector_type == "conv_iaf": recog = ConvIAF("recog", encoder=self._encoder, condition_iaf=condition_bijector) self._recog = recog if dataset.name == "mnist": self._noise = DenseMNISTNoise("noise", decoder=self._decoder) else: self._noise = DenseCIFAR10TNoise("noise", decoder=self._decoder) def AdjustedStepSize(self): if self._step_size_warmup > 0: global_step = tf.train.get_or_create_global_step() max_step = self._init_step_size * tf.to_float( global_step) / self._step_size_warmup return tf.where(global_step > self._step_size_warmup, self._step_size, tf.minimum(max_step, self._step_size)) else: return self._step_size def RecogVars(self): return self._encoder.variables + self._recog.variables def GenVars(self): return ( self._prior.variables + self._decoder.variables + self._noise.variables) def MakeDLGM(self, images, other_z_init=None, use_other_z_init=None, num_samples=64): z, log_q_z, bijector = self._recog(images) _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) post_z = z q_z = z if use_other_z_init is not None: z_init = [tf.cond(use_other_z_init, lambda: tf.identity(other_layer_z), lambda: tf.identity(layer_z)) for other_layer_z, layer_z in zip(z, other_z_init)] z_init = z log_q_z = [tf.reduce_mean(layer_log_q_z) for layer_log_q_z in log_q_z] log_p_z = [tf.reduce_mean(layer_log_p_z) for layer_log_p_z in log_p_z] log_p_x_z = tf.reduce_mean(log_p_x_z) klqp = [layer_log_q_z - layer_log_p_z for layer_log_q_z, layer_log_p_z in zip(log_q_z, log_p_z)] klqp = [tf.maximum(self._min_kl, layer_klqp) for layer_klqp in klqp] total_klqp = tf.add_n(klqp) elbo = log_p_x_z - self._beta * total_klqp def TargetLogProbFn(*z): for post_z_e, z_e in zip(post_z, z): tf.logging.info("Shape here: %s %s", post_z_e.shape, z_e.shape) z_e.set_shape(post_z_e.shape) _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) return tf.add_n(log_p_z) + log_p_x_z kernel = tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=TargetLogProbFn, step_size=self.AdjustedStepSize(), num_leapfrog_steps=self._num_leapfrog_steps) if self._use_neutra: kernel = tfp.mcmc.TransformedTransitionKernel( inner_kernel=kernel, bijector=bijector) states, kernel_results = tfp.mcmc.sample_chain( num_results=self._num_hmc_steps, current_state=z, kernel=kernel) z = [tf.stop_gradient(s[-1, Ellipsis]) for s in states] post_z = z _, log_q_z, _ = self._recog(images, z=z) xentpq = -tf.add_n([tf.reduce_mean(layer_log_q_z) for layer_log_q_z in log_q_z]) if self._use_q_z_for_gen: z = q_z recon_means, _ = self._noise(None, z) _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) mcmc_log_p = tf.reduce_mean(tf.add_n(log_p_z) + log_p_x_z) if self._use_neutra: log_accept_ratio = kernel_results.inner_results.log_accept_ratio else: log_accept_ratio = kernel_results.log_accept_ratio p_accept = tf.reduce_mean(tf.exp(tf.minimum(log_accept_ratio, 0.))) z, _ = self._prior(batch=num_samples) sample_means, _ = self._noise(None, z) return DLGMOutputs( elbo=elbo, sample_means=sample_means, mcmc_log_p=mcmc_log_p, recon_means=recon_means, p_accept=p_accept, post_z=post_z, post_z_chain=states, q_z=z_init, xentpq=xentpq) def GetPosterior(self, images): outputs = self.MakeDLGM(images) return outputs.post_z def TrainOp(self, data_idx, images): global_step = tf.train.get_or_create_global_step() learning_rate = LearningRate(self.train_size, global_step) if self._save_chain_state: other_z_init = tf.gather(self._chain_state, data_idx) use_other_z_init = ( global_step > self._chain_warmup_epochs * self.train_size // TRAIN_BATCH) else: other_z_init = None use_other_z_init = None outputs = self.MakeDLGM( images, other_z_init=other_z_init, use_other_z_init=use_other_z_init) opt = tf.train.AdamOptimizer(learning_rate=learning_rate) #gen_opt = tf.train.AdamOptimizer(learning_rate=learning_rate) utils.LogAndSummarizeMetrics({ "learning_rate": learning_rate, "elbo": outputs.elbo, "mcmc_log_p": outputs.mcmc_log_p, "mcmc_p_accept": outputs.p_accept, "step_size": self.AdjustedStepSize(), }, False) tf.summary.image( "sample_means", utils.StitchImages(outputs.sample_means)) if self._save_chain_state: with tf.control_dependencies([outputs.post_z]): chain_state_update_op = tf.scatter_update(self._chain_state, data_idx, outputs.post_z) else: chain_state_update_op = tf.no_op() if self._adapt_step_size: new_step_size = self._step_size + self._step_size_gain * (outputs.p_accept - 0.651) new_step_size = tf.clip_by_value(new_step_size, 1e-3, 0.5) step_size_op = self._step_size.assign( tf.where(global_step > self._step_size_warmup, new_step_size, self._step_size)) else: step_size_op = tf.no_op() with tf.name_scope("recog_train"): if self._q_loss_type == "klqp": loss = -outputs.elbo elif self._q_loss_type == "symm": loss = ( self._symm_factor * -outputs.elbo + (1.0 - self._symm_factor) * outputs.xentpq) elif self._q_loss_type == "klpq": loss = outputs.xentpq if self._save_chain_state: # Not super efficient... loss = tf.cond(use_other_z_init, lambda: tf.identity(loss), lambda: tf.identity(-outputs.elbo)) recog_train_op = tf.contrib.training.create_train_op( loss, opt, summarize_gradients=True, variables_to_train=self.RecogVars(), transform_grads_fn=utils.ProcessGradients) with tf.name_scope("gen_train"): gen_loss = tf.cond(global_step < self._no_gen_train_steps, lambda: -outputs.elbo, lambda: -outputs.mcmc_log_p) gen_train_op = tf.contrib.training.create_train_op( gen_loss, opt, None, summarize_gradients=True, variables_to_train=self.GenVars(), transform_grads_fn=utils.ProcessGradients) return tf.group(recog_train_op, gen_train_op, chain_state_update_op, step_size_op) def EvalOp(self, data_idx, images): outputs = self.MakeDLGM(images) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image( "recon_means", utils.StitchImages(outputs.recon_means[:64])) return utils.LogAndSummarizeMetrics({ "elbo": outputs.elbo, "xentpq": outputs.xentpq, "mcmc_log_p": outputs.mcmc_log_p, "mcmc_p_accept": outputs.p_accept, }) def AIS(self, images, num_chains): def ProposalLogProbFn(*z): if self._use_q_z_for_ais: _, log_p_z, _ = self._recog(images, z=z) else: _, log_p_z = self._prior(z) return tf.add_n(log_p_z) def TargetLogProbFn(*z): _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) return tf.add_n(log_p_z) + log_p_x_z images = tf.tile(images, [num_chains, 1, 1, 1]) if self._use_q_z_for_ais: z_init, _, _ = self._recog(images) else: z_init, _ = self._prior(batch=tf.shape(images)[0]) if self._use_bijector_for_ais: _, _, bijector = self._recog(images) else: bijector = None ais_outputs = utils.AIS(ProposalLogProbFn, TargetLogProbFn, z_init, bijector=bijector) recons, _ = self._noise(None, ais_outputs.z_fin) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image("recon_means", utils.StitchImages(recons[:64])) tf.summary.scalar("p_accept", tf.reduce_mean(ais_outputs.p_accept)) return AISOutputs( log_p=tf.reduce_logsumexp( tf.reshape(ais_outputs.log_p, [num_chains, -1]) - tf.log( tf.to_float(num_chains)), 0), p_accept=ais_outputs.p_accept, recon=recons, z_fin=ais_outputs.z_fin) @gin.configurable("vae") class VAE(object): def __init__(self, z_dims=64, condition_bijector=False, bijector_type="iaf", encoder_type="dense", beta=1.0, beta_steps=0, min_kl=0, use_q_z_for_ais=False, dataset=None, prior_type="simple", affine_rank=1): self.train_size = dataset.train_size if dataset.name == "mnist": output_shape = [28, 28, 1] elif dataset.name == "cifar10": output_shape = [32, 32, 3] self._z_dims = z_dims self._beta = beta self._use_q_z_for_ais = use_q_z_for_ais if beta_steps > 0: frac = tf.to_float( tf.train.get_or_create_global_step()) / tf.to_float(beta_steps) frac = tf.minimum(frac, 1.0) self._beta = frac * beta else: self._beta = tf.constant(beta) self._min_kl = tf.to_float(min_kl) if bijector_type == "affine": # TriL + shift num_outputs = (z_dims * (z_dims + 1)) // 2 + z_dims elif bijector_type == "affine_lr": num_outputs = z_dims * 2 + z_dims * affine_rank elif condition_bijector and bijector_type not in ["conv_shift_scale", "shift_scale"]: num_outputs = 3 * z_dims else: num_outputs = 2 * z_dims if encoder_type == "hier_conv": assert dataset.name == "cifar10" self._encoder = ConvHierEncoder("encoder") self._prior_posterior = ConvHierPriorPost("prior_post") self._decoder = lambda z: self._prior_posterior(z=z)[2] self._prior = lambda z=None, batch=None: self._prior_posterior(z=z, batch=batch)[:2] self._recog = lambda images, z=None: self._prior_posterior(images=images, z=z, encoder=self._encoder)[:2] else: if encoder_type == "dense": self._encoder = DenseEncoder( "encoder", num_outputs=num_outputs, activation=tf.nn.softplus) self._decoder = DenseDecoder( "decoder", output_shape=output_shape, activation=tf.nn.softplus) elif encoder_type == "conv": self._encoder = ConvEncoder("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv2": self._encoder = ConvEncoder2("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder2("decoder", output_shape=output_shape) conv_z_shape = [4, 4, self._z_dims] elif encoder_type == "conv3": self._encoder = ConvEncoder3("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder3("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] elif encoder_type == "conv4": self._encoder = ConvEncoder4("encoder", num_outputs=num_outputs) self._decoder = ConvDecoder4("decoder", output_shape=output_shape) conv_z_shape = [8, 8, self._z_dims] if prior_type == "simple": self._prior = SimplePrior("prior", num_dims=self._z_dims) elif prior_type == "simple_3d": self._prior = Simple3DPrior("prior", shape=conv_z_shape) if bijector_type == "iaf": recog = DenseRecognitionIAF( "recog", encoder=self._encoder, condition_iaf=condition_bijector) elif bijector_type == "rnvp": recog = DenseRecognitionRNVP( "recog", encoder=self._encoder, condition_bijector=condition_bijector) elif bijector_type == "shift_scale": recog = DenseRecognition("recog", encoder=self._encoder) elif bijector_type == "conv_shift_scale": recog = ConvShiftScale("recog", encoder=self._encoder) elif bijector_type == "affine": recog = DenseRecognitionAffine("recog", encoder=self._encoder, z_dims=z_dims) elif bijector_type == "conv_iaf": recog = ConvIAF("recog", encoder=self._encoder, condition_iaf=condition_bijector) elif bijector_type == "affine_lr": recog = DenseRecognitionAffineLR("recog", encoder=self._encoder, z_dims=z_dims, rank=affine_rank) # Drop the bijector return. self._recog = lambda *args, **kwargs: recog(*args, **kwargs)[:2] if dataset.name == "mnist": self._noise = DenseMNISTNoise("noise", decoder=self._decoder) else: self._noise = DenseCIFAR10TNoise("noise", decoder=self._decoder) def MakeVAE(self, images, beta_override=None, num_samples=64): if beta_override is not None: beta = beta_override else: beta = self._beta return MakeVAE(images, self._recog, self._prior, self._noise, beta, num_samples, self._min_kl) def TrainOp(self, data_idx, images): outputs = self.MakeVAE(images) global_step = tf.train.get_or_create_global_step() learning_rate = LearningRate(self.train_size, global_step) opt = tf.train.AdamOptimizer(learning_rate=learning_rate) metrics = { "learning_rate": learning_rate, "log_p_x_z": outputs.log_p_x_z, "elbo": outputs.elbo, "klqp": outputs.total_klqp, "beta": self._beta, } for i, layer_klqp in enumerate(outputs.klqp): metrics["klqp_%d"%i] = layer_klqp utils.LogAndSummarizeMetrics(metrics, False) tf.summary.image( "sample_means", utils.StitchImages(outputs.sample_means)) return tf.contrib.training.create_train_op( -outputs.elbo, opt, summarize_gradients=True, transform_grads_fn=utils.ProcessGradients) def GetPosterior(self, images): outputs = self.MakeVAE(images) return outputs.post_z def EvalOp(self, data_idx, images): outputs = self.MakeVAE(images, 1.0) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image( "recon_means", utils.StitchImages(outputs.recon_means[:64])) metrics = { "elbo": outputs.elbo, "klqp": outputs.total_klqp, } for i, layer_klqp in enumerate(outputs.klqp): metrics["klqp_%d"%i] = layer_klqp return utils.LogAndSummarizeMetrics(metrics) def AIS(self, images, num_chains): outputs = self.MakeVAE(images) def ProposalLogProbFn(*z): if self._use_q_z_for_ais: _, log_p_z = self._recog(images, z=z) else: _, log_p_z = self._prior(z) return tf.add_n(log_p_z) def TargetLogProbFn(*z): _, log_p_z = self._prior(z) _, log_p_x_z = self._noise(images, z) return tf.add_n(log_p_z) + log_p_x_z images = tf.tile(images, [num_chains, 1, 1, 1]) if self._use_q_z_for_ais: z_init, _ = self._recog(images) else: z_init, _ = self._prior(batch=tf.shape(images)[0]) ais_outputs = utils.AIS(ProposalLogProbFn, TargetLogProbFn, z_init) recons, _ = self._noise(None, ais_outputs.z_fin) tf.summary.image("data", utils.StitchImages(images[:64])) tf.summary.image("recon_means", utils.StitchImages(recons[:64])) tf.summary.scalar("p_accept", tf.reduce_mean(ais_outputs.p_accept)) return AISOutputs( log_p=tf.reduce_logsumexp( tf.reshape(ais_outputs.log_p, [num_chains, -1]) - tf.log( tf.to_float(num_chains)), 0), p_accept=ais_outputs.p_accept, recon=recons, z_fin=ais_outputs.z_fin) @gin.configurable("train") def Train(model, dataset, train_dir, master, epochs=600, polyak_averaging=0.0, warmstart_ckpt=""): data_idx, images = dataset.TrainBatch(TRAIN_BATCH, epochs) train_op = model.TrainOp(data_idx, images) if polyak_averaging > 0.0: tf.logging.info("Using polyak averaging") ema = tf.train.ExponentialMovingAverage(decay=polyak_averaging) with tf.control_dependencies([train_op]): train_op = ema.apply() utils.LogAndSaveHParams() tf.Session.reset(master) if warmstart_ckpt: tf.init_from_checkpoint(warmstart_ckpt, {"/": "/"}) hooks = [ tf.train.StopAtStepHook(last_step=dataset.train_size * epochs // TRAIN_BATCH), tf.train.LoggingTensorHook(utils.GetLoggingOutputs(), every_n_secs=60) ] tf.contrib.training.train( train_op, logdir=train_dir, master=master, hooks=hooks, save_checkpoint_secs=120, save_summaries_steps=60) def Eval(model, dataset, train_dir, eval_dir, master, use_polyak_averaging=False, max_number_of_evaluations=None): data_idx, images = dataset.TestBatch(TEST_BATCH) eval_op = model.EvalOp(data_idx, images) utils.LogAndSaveHParams() tf.train.get_or_create_global_step() if use_polyak_averaging: tf.logging.info("Using polyak averaging") ema = tf.train.ExponentialMovingAverage(decay=0.99) saver = tf.train.Saver(ema.variables_to_restore()) else: saver = tf.train.Saver() scaffold = tf.train.Scaffold(saver=saver) tf.Session.reset(master) hooks = [ # Just for logging. tf.contrib.training.StopAfterNEvalsHook(dataset.test_size // TEST_BATCH), tf.contrib.training.SummaryAtEndHook(eval_dir), tf.train.LoggingTensorHook(utils.GetLoggingOutputs(), at_end=True) ] tf.contrib.training.evaluate_repeatedly( train_dir, eval_ops=eval_op, hooks=hooks, # LOL... eval_interval_secs=120, max_number_of_evaluations=max_number_of_evaluations, master=master, scaffold=scaffold) def AISEvalShard(shard, master, num_workers, num_chains, dataset, use_polyak_averaging, writer, train_dir, model_fn, batch): tf.logging.info("Thread started") model = model_fn() tf.logging.info("Built model") shard_idx = tf.placeholder(tf.int64, []) tf.logging.info("built data") data_iterator = dataset.AISIterator(batch, shard_idx, num_workers) images, _ = data_iterator.get_next() tf.logging.info("Built mA") ais_outputs = model.AIS(images, num_chains) log_p = ais_outputs.log_p p_accept = ais_outputs.p_accept tf.logging.info("Built mB") if shard == 1: utils.LogAndSaveHParams() summary_op = tf.summary.merge_all() global_step = tf.train.get_or_create_global_step() if use_polyak_averaging: tf.logging.info("Using polyak averaging") ema = tf.train.ExponentialMovingAverage(decay=0.99) saver = tf.train.Saver(ema.variables_to_restore()) else: saver = tf.train.Saver() tf.logging.info("Built mC") global_step_val = [] tf.logging.info("Starting shard %d, %s", shard, master) #with tf.MonitoredSession( # tf.train.ChiefSessionCreator( # master=master, # checkpoint_dir=train_dir)) as sess: while True: try: tf.Session.reset(master) with tf.Session(master) as sess: all_log_p = np.zeros([0]) saver.restore(sess, tf.train.latest_checkpoint(train_dir)) sess.run(data_iterator.initializer, {shard_idx: shard}) try: step_num = 0 while True: fetch = { "log_p": log_p, "global_step": global_step, "p_accept": p_accept } if shard == 0: fetch["summary"] = summary_op tf.logging.info("Shard %d step %d started.", shard, step_num) fetch = sess.run(fetch) tf.logging.info("Shard %d step %d done.", shard, step_num) tf.logging.info("Shard %d log_p %.2f, p_accept: %.2f", shard, np.mean(fetch["log_p"]), np.mean(fetch["p_accept"])) all_log_p = np.hstack([all_log_p, fetch["log_p"]]) if shard == 0 and step_num == 0: global_step_val.append(fetch["global_step"]) writer.add_summary(fetch["summary"], global_step_val[0]) step_num += 1 except tf.errors.OutOfRangeError: tf.logging.info("Shard %d done.", shard) pass return all_log_p except tf.errors.AbortedError: pass def AISEval(model_fn, dataset, train_dir, eval_dir, worker_master_pattern, num_workers, num_chains, use_polyak_averaging=False): tf.reset_default_graph() log_p_ph = tf.placeholder(tf.float32, [None]) log_p_summary = tf.summary.scalar("log_p", tf.reduce_mean(log_p_ph)) writer = tf.summary.FileWriter(eval_dir) with futures.ThreadPoolExecutor(max_workers=num_workers) as executor: results = [] for shard in range(num_workers): tf.logging.info("Submitting shard %d", shard) master = worker_master_pattern.format(shard) results.append( executor.submit(AISEvalShard, shard, master, num_workers, num_chains, dataset, use_polyak_averaging, writer, train_dir, model_fn, AIS_BATCH)) all_log_p = np.zeros([0]) for result in results: log_p = result.result() all_log_p = np.hstack([all_log_p, log_p]) log_p =
np.mean(all_log_p)
numpy.mean
import numpy as np from mlfromscratch.solvers.gradient_descent import * from mlfromscratch.helpers import helpers as hp class Logistic_regression(object): """ Logistic regression model. For multiclass problems, the one-vs-rest (ovr) approach is used. Parameters ---------- normalized: bool whether features are normalized determines whether or not an intercept is needed. threshold: float, default=0.5 probability threshold for binary classification problems. learning_rate: float, default=0.01 gradient descent step size (range 0-1) max_iter: int, default=1000 maximum number of iterations for solver. abs_tol: float, default=1e-9 absolute convergence tolerance for solver. end if: |cost_{n+1} - cost_{n}| < abs_tol """ def __init__(self,normalized=False, threshold=0.5, learning_rate=0.01, max_iter=1000, abs_tol=1e-9): try: learning_rate <= 1 learning_rate >= 0 except: raise ValueError("Learning rate must be between 0-1") self.learning_rate = learning_rate self.threshold = threshold self.max_iter = max_iter self.abs_tol = abs_tol self.normalized = normalized def fit(self, X, y): ''' Estimate the model parameters using the specified method. Parameters ---------- X: np.array feature matrix (m x n) y: np.array response vector (m x 1) ''' # format np.arrays for regression X,y = hp.format_reg(X, y, normalized=self.normalized) # apply a one-hot-encoder to the response variable encoded = hp.one_hot_encoder(y) # based on the output of one-hot-encoder, determine whether # the one-vs-rest (ovr) approach is needed self.coef = np.zeros((encoded.shape[1],X.shape[1])) for c in range(encoded.shape[1]): # solve each binary classification problem through gradient descent y_c = encoded[:,c].reshape(-1,1) coef_c = self._gd(X, y_c) self.coef[c,:] = coef_c.flatten() def predict(self, X): ''' Return the predicted value. Parameters ---------- X: np.array feature matrix (m x n) ''' # format np.arrays for regression X = hp.format_reg(X, normalized=self.normalized) # calculate the predicted probability of membership to each class pred_prob = hp.sigmoid(X.dot(self.coef.T)) # assign each X_i to the class with its highest predicting probability if pred_prob.shape[1] == 1: # binary case y_pred = np.where(pred_prob>self.threshold, 1, 0).flatten() else: # multi class case y_pred = np.argmax(pred_prob, axis=1) return y_pred ### Private methods ### def _gd(self, X, y): ''' Fit model using the gradient descent method. Encode cost and gradient as functions. prediction: => 1/1+exp{- X @ coef} cost: => (-y.T @ log{y_pred} - (1-y).T @ log{1 - y_pred})/m gradient: => ((y_pred-y).T @ X)/m Parameters ---------- X: np.array feature matrix (m x n) y: np.array response vector (m x 1) ''' # prediction function def gd_predict(X, coef): return hp.sigmoid(X.dot(coef)) # MSE def gd_cost(m, y, y_pred): return ( -y.T.dot(np.log(y_pred)) - (1-y).T.dot(
np.log(1 - y_pred)
numpy.log
import cv2 import numpy as np import matplotlib.pyplot as plt def shi_tomashi(image): """ Use Shi-Tomashi algorithm to detect corners Args: image: np.array Returns: corners: list """ gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) corners = cv2.goodFeaturesToTrack(gray, 4, 0.01, 100) corners =
np.int0(corners)
numpy.int0
#Animation of ensemble simulations for ElEvoHI # Author: <NAME>, <NAME>, Austria # twitter @chrisoutofspace, https://github.com/cmoestl # November 2018 # This work is published under the MIT LICENSE (see bottom) import numpy as np import sys import os import matplotlib import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib import cm from scipy import stats import scipy.io import sunpy.time import time import pickle import seaborn as sns import math ####################################################### functions #for reading catalogues def getcat(filename): print( 'reading CAT '+filename) cat=scipy.io.readsav(filename)#, verbose='false') print( 'done reading CAT') return cat def decode_array(bytearrin): #for decoding the strings from the IDL .sav file to a list of python strings, not bytes #make list of python lists with arbitrary length bytearrout= ['' for x in range(len(bytearrin))] for i in range(0,len(bytearrin)-1): bytearrout[i]=bytearrin[i].decode() #has to be np array so to be used with numpy "where" bytearrout=np.array(bytearrout) return bytearrout def time_to_num_cat(time_in): #for time conversion from catalogue .sav to numerical time #this for 1-minute data or lower time resolution #for all catalogues #time_in is the time in format: 2007-11-17T07:20:00 or 2007-11-17T07:20Z #for times help see: #http://docs.sunpy.org/en/latest/guide/time.html #http://matplotlib.org/examples/pylab_examples/date_demo2.html j=0 #time_str=np.empty(np.size(time_in),dtype='S19') time_str= ['' for x in range(len(time_in))] #=np.chararray(np.size(time_in),itemsize=19) time_num=np.zeros(np.size(time_in)) for i in time_in: #convert from bytes (output of scipy.readsav) to string time_str[j]=time_in[j][0:16].decode()+':00' year=int(time_str[j][0:4]) time_str[j] #convert time to sunpy friendly time and to matplotlibdatetime #only for valid times so 9999 in year is not converted #pdb.set_trace() if year < 2100: time_num[j]=mdates.date2num(sunpy.time.parse_time(time_str[j])) j=j+1 #the date format in matplotlib is e.g. 735202.67569444 #this is time in days since 0001-01-01 UTC, plus 1. #return time_num which is already an array and convert the list of strings to an array return time_num,
np.array(time_str)
numpy.array
import numpy as np import matplotlib.pyplot as plt import matplotlib from .comodulogram import multiple_band_pass from .utils.peak_finder import peak_finder from .utils.validation import check_consistent_shape, check_array from .utils.validation import check_is_fitted from .utils.viz import add_colorbar, mpl_palette class PeakLocking(object): """An object to compute time average and time-frequency averaged with peak-locking, to analyze phase-amplitude coupling. Parameters ---------- fs : float Sampling frequency low_fq : float Filtering frequency (phase signal) low_fq_width : float Bandwidth of the band-pass filter (phase signal) high_fq_range : array or list, shape (n_high, ), or 'auto' List of filtering frequencies (amplitude signal) If 'auto', it uses np.linspace(low_fq, fs / 2, 40). high_fq_width : float or 'auto' Bandwidth of the band-pass filter (amplitude signal) If 'auto', it uses 2 * low_fq. t_plot : float Time to plot around the peaks (in second) filter_method : in {'mne', 'pactools'} Choose band pass filtering method (in multiple_band_pass) 'mne': with mne.filter.band_pass_filter 'pactools': with pactools.fir.BandPassFilter (default) peak_or_trough: in {'peak', 'trough'} Lock to the maximum (peak) of minimum (trough) of the slow oscillation. percentiles : list of float or string, shape (n_percentiles, ) Percentile to compute for the time representation. It can also include 'mean', 'std' or 'ste' (resp. mean, standard deviation or standard error). """ def __init__(self, fs, low_fq, low_fq_width=1.0, high_fq_range='auto', high_fq_width='auto', t_plot=1.0, filter_method='pactools', peak_or_trough='peak', percentiles=['std+', 'mean', 'std-']): self.fs = fs self.low_fq = low_fq self.high_fq_range = high_fq_range self.low_fq_width = low_fq_width self.high_fq_width = high_fq_width self.t_plot = t_plot self.filter_method = filter_method self.peak_or_trough = peak_or_trough self.percentiles = percentiles def fit(self, low_sig, high_sig=None, mask=None): """ Compute peak-locked time-averaged and time-frequency representations. Parameters ---------- low_sig : array, shape (n_epochs, n_points) Input data for the phase signal high_sig : array or None, shape (n_epochs, n_points) Input data for the amplitude signal. If None, we use low_sig for both signals mask : array or None, shape (n_epochs, n_points) The locking is only evaluated where the mask is False. Masking is done after filtering. ax_draw_peaks : boolean or matplotlib.axes.Axes instance If True, plot the first peaks/troughs in the phase signal Plot on the matplotlib.axes.Axes instance if given, or on a new figure. Attributes ---------- time_frequency_ : array, shape (n_high, n_window) Time-frequency representation, averaged with peak-locking. (n_window is the number of point in t_plot seconds) time_average_ : array, shape (n_percentiles, n_window) Time representation, averaged with peak-locking. (n_window is the number of point in t_plot seconds) """ self.low_fq = np.atleast_1d(self.low_fq) if self.high_fq_range == 'auto': self.high_fq_range = np.linspace(self.low_fq[0], self.fs / 2.0, 40) if self.high_fq_width == 'auto': self.high_fq_width = 2 * self.low_fq[0] self.high_fq_range = np.asarray(self.high_fq_range) self.low_sig = check_array(low_sig) self.high_sig = check_array(high_sig, accept_none=True) if self.high_sig is None: self.high_sig = self.low_sig self.mask = check_array(mask, accept_none=True) check_consistent_shape(self.low_sig, self.high_sig, self.mask) # compute the slow oscillation # 1, n_epochs, n_points = filtered_low.shape filtered_low = multiple_band_pass(low_sig, self.fs, self.low_fq, self.low_fq_width, filter_method=self.filter_method) self.filtered_low_ = filtered_low[0] filtered_low_real = np.real(self.filtered_low_) if False: # find the peak in the filtered_low_real extrema = 1 if self.peak_or_trough == 'peak' else -1 thresh = (filtered_low_real.max() - filtered_low_real.min()) / 10. self.peak_loc, self.peak_mag = peak_finder_multi_epochs( filtered_low_real, fs=self.fs, t_plot=self.t_plot, mask=self.mask, thresh=thresh, extrema=extrema) else: # find the peak in the phase of filtered_low phase = np.angle(self.filtered_low_) if self.peak_or_trough == 'peak': phase = (phase + 2 * np.pi) % (2 * np.pi) self.peak_loc, _ = peak_finder_multi_epochs( phase, fs=self.fs, t_plot=self.t_plot, mask=self.mask, extrema=1) self.peak_mag = filtered_low_real.ravel()[self.peak_loc] # extract several signals with band-pass filters # n_high, n_epochs, n_points = filtered_high.shape self.filtered_high_ = multiple_band_pass( self.high_sig, self.fs, self.high_fq_range, self.high_fq_width, n_cycles=None, filter_method=self.filter_method) # compute the peak locked time-frequency representation time_frequency_ = peak_locked_time_frequency( self.filtered_high_, self.fs, self.high_fq_range, peak_loc=self.peak_loc, t_plot=self.t_plot, mask=self.mask) # compute the peak locked time representation # we don't need the mask here, since only the valid peak locations are # kept in peak_finder_multi_epochs time_average_ = peak_locked_percentile(self.low_sig[None, :], self.fs, self.peak_loc, self.t_plot, self.percentiles) time_average_ = time_average_[0, :, :] self.time_frequency_ = time_frequency_ self.time_average_ = time_average_ return self def plot_peaks(self, ax=None): check_is_fitted(self, 'filtered_low_') # plot the filtered_low_real peaks if not isinstance(ax, matplotlib.axes.Axes): fig = plt.figure(figsize=(16, 5)) ax = fig.gca() n_point_plot = min(3000, self.low_sig.shape[1]) time = np.arange(n_point_plot) / float(self.fs) filtered = np.real(self.filtered_low_[0, :n_point_plot]) ax.plot(time, self.low_sig[0, :n_point_plot], label='signal') ax.plot(time, filtered, label='driver') ax.plot(self.peak_loc[self.peak_loc < n_point_plot] / float(self.fs), self.peak_mag[self.peak_loc < n_point_plot], 'o', label='peaks') ax.set_xlabel('Time (sec)') ax.set_title("Driver's peak detection") ax.set_legend(loc=0) def plot(self, axs=None, vmin=None, vmax=None, ylim=None): """ Returns ------- fig : matplotlib.figure.Figure Figure instance containing the plot. """ check_is_fitted(self, 'time_average_') if axs is None: fig, axs = plt.subplots(2, 1, sharex=True, figsize=(8, 8)) axs = axs.ravel() else: fig = axs[0].figure # plot the peak-locked time-frequency ax = axs[0] n_high, n_points = self.time_average_.shape vmax = np.abs(self.time_frequency_).max() if vmax is None else vmax vmin = -vmax extent = ( -self.t_plot / 2, self.t_plot / 2, self.high_fq_range[0], self.high_fq_range[-1], ) cax = ax.imshow(self.time_frequency_, cmap=plt.get_cmap('RdBu_r'), vmin=vmin, vmax=vmax, aspect='auto', origin='lower', interpolation='none', extent=extent) # ax.set_xlabel('Time (sec)') ax.set_ylabel('Frequency (Hz)') ax.set_title('Driver peak-locked Time-frequency decomposition') # plot the colorbar plt.tight_layout() fig.subplots_adjust(right=0.85) add_colorbar(fig, cax, vmin, vmax, unit='', ax=None) # plot the peak-locked time ax = axs[1] labels = { 'std+': r'$\mu+\sigma$', 'std-': r'$\mu-\sigma$', 'ste+': r'$\mu+\sigma/\sqrt{n}$', 'ste-': r'$\mu-\sigma/\sqrt{n}$', 'mean': r'$\mu$', } colors = mpl_palette('viridis', n_colors=len(self.percentiles)) n_percentiles, n_points = self.time_average_.shape time = (np.arange(n_points) - n_points // 2) / float(self.fs) for i, p in enumerate(self.percentiles): label = ('%d %%' % p) if isinstance(p, int) else labels[p] ax.plot(time, self.time_average_[i, :], color=colors[i], label=label) ax.set_xlabel('Time (sec)') ax.set_title('Driver peak-locked average of raw signal') ax.legend(loc='lower center', ncol=5, labelspacing=0.) ax.grid('on') # make room for the legend or apply specified ylim if ylim is None: ylim = ax.get_ylim() ylim = (ylim[0] - (ylim[1] - ylim[0]) * 0.2, ylim[1]) ax.set_ylim(ylim) return fig def peak_finder_multi_epochs(x0, fs=None, t_plot=None, mask=None, thresh=None, extrema=1): """Call peak_finder for multiple epochs, and fill only one array as if peak_finder was called with the ravelled array. Also remove the peaks that are too close to the start or the end of each epoch, and the peaks that are masked by the mask. """ n_epochs, n_points = x0.shape peak_inds_list = [] peak_mags_list = [] for i_epoch in range(n_epochs): peak_inds, peak_mags = peak_finder(x0[i_epoch], thresh=thresh, extrema=extrema) # remove the peaks too close to the start or the end if t_plot is not None and fs is not None: n_half_window = int(fs * t_plot / 2.) selection = np.logical_and(peak_inds > n_half_window, peak_inds < n_points - n_half_window) peak_inds = peak_inds[selection] peak_mags = peak_mags[selection] # remove the masked peaks if mask is not None: selection = mask[i_epoch, peak_inds] == 0 peak_inds = peak_inds[selection] peak_mags = peak_mags[selection] peak_inds_list.extend(peak_inds + i_epoch * n_points) peak_mags_list.extend(peak_mags) if peak_inds_list == []: raise ValueError("No %s detected. The signal might be to short, " "or the mask to strong. You can also try to reduce " "the plotted time window `t_plot`." % ["trough", "peak"][(extrema + 1) // 2]) return np.array(peak_inds_list), np.array(peak_mags_list) def peak_locked_time_frequency(filtered_high, fs, high_fq_range, peak_loc, t_plot, mask=None): """ Compute the peak-locked Time-frequency """ # normalize each signal independently n_high, n_epochs, n_points = filtered_high.shape # normalization is done everywhere, but mean is computed # only where mask == 1 if mask is not None: masked_filtered_high = filtered_high[:, mask == 0] else: masked_filtered_high = filtered_high.reshape(n_high, -1) mean = masked_filtered_high.mean(axis=1)[:, None, None] std = masked_filtered_high.std(axis=1)[:, None, None] filtered_high -= mean filtered_high /= std # get the power (np.abs(filtered_high) ** 2) filtered_high *= np.conj(filtered_high) filtered_high = np.real(filtered_high) # subtract the mean power. if mask is not None: masked_filtered_high = filtered_high[:, mask == 0] else: masked_filtered_high = filtered_high.reshape(n_high, -1) mean = masked_filtered_high.mean(axis=1)[:, None, None] filtered_high -= mean # compute the evoked signals (peak-locked mean) evoked_signals = peak_locked_percentile(filtered_high, fs, peak_loc, t_plot) evoked_signals = evoked_signals[:, 0, :] return evoked_signals def peak_locked_percentile(signals, fs, peak_loc, t_plot, percentiles=['mean']): """ Compute the mean of each signal in signals, locked to the peaks Parameters ---------- signals : shape (n_signals, n_epochs, n_points) fs : sampling frequency peak_loc : indices of the peak locations t_plot : in second, time to plot around the peaks percentiles: list of precentile to compute. It can also include 'mean', 'std' or 'ste' (mean, standard deviation or standard error). Returns ------- evoked_signals : array, shape (n_signals, n_percentiles, n_window) """ n_signals, n_epochs, n_points = signals.shape n_window = int(fs * t_plot / 2.) * 2 + 1 n_percentiles = len(percentiles) # build indices matrix: each line is a index range around peak locations indices = np.tile(peak_loc, (n_window, 1)).T indices = indices + np.arange(n_window) - n_window // 2 # ravel the epochs since we now have isolated events signals = signals.reshape(n_signals, -1) n_peaks = indices.shape[0] assert n_peaks > 0 # compute the evoked signals (peak-locked mean) evoked_signals = np.zeros((n_signals, n_percentiles, n_window)) for i_s in range(n_signals): for i_p, p in enumerate(percentiles): if isinstance(p, int): evoked_signals[i_s, i_p] = np.percentile(signals[i_s][indices], p, axis=0) continue mean = np.mean(signals[i_s][indices], axis=0) if p == 'mean': evoked_signals[i_s, i_p] = mean else: std = np.std(signals[i_s][indices], axis=0) if p == 'std+': evoked_signals[i_s, i_p] = mean + std elif p == 'std-': evoked_signals[i_s, i_p] = mean - std elif p == 'ste+': evoked_signals[i_s, i_p] = mean + std /
np.sqrt(n_peaks)
numpy.sqrt
#----------------------------------------------------------------------------- # Name: RadiCALModels # Purpose: To handle output from the radiCAL program written by <NAME> # Author: <NAME> # Created: 9/8/2016 # License: MIT License #----------------------------------------------------------------------------- """ Handles the data saved after running Radical to analyze data. The assumed format is .mat V7.3, if saved in the older format, resave by setting preferences in matlab Environment->Preferences->General->MAT-Files->V7.3. This stores the result as an hd5 file with a .mat extension. Previous versions of matlab can be handled using scipy.io.loadmat, but this module does not use this function Examples -------- #!python >>rad=RadicalDataModel("radical_datafile") >>rad.show() Requirements ------------ + [sys](https://docs.python.org/2/library/sys.html) + [os](https://docs.python.org/2/library/os.html?highlight=os#module-os) + [types](https://docs.python.org/2/library/types.html) + [pyMez](https://github.com/aricsanders/pyMez) + [h5py][http://www.h5py.org/] Help --------------- <a href="./index.html">`pyMez.Code.DataHandlers`</a> <div> <a href="../../../pyMez_Documentation.html">Documentation Home</a> | <a href="../../index.html">API Documentation Home</a> | <a href="../../../Examples/html/Examples_Home.html">Examples Home</a> | <a href="../../../Reference_Index.html">Index</a> </div>""" #----------------------------------------------------------------------------- # Standard Imports import os import sys #----------------------------------------------------------------------------- # Third Party Imports # magic statement that injects the pyMez folder into sys.path # This allows Code to be imported skipping pyMez/.__init__.py sys.path.append(os.path.join(os.path.dirname( __file__ ), '..','..')) try: from Code.DataHandlers.TouchstoneModels import * except: print("The module pyMez.Code.DataHandlers.TouchstoneModels was not found or had an error," "please put it on the python path") raise try: import h5py except: print("The module h5py was not found or had an error," "please put it on the python path or resolve the error. (pip install h5py)") raise try: import numpy as np except: print("The module numpy was not found or had an error," "please put it on the python path or resolve the error. (pip install numpy)") raise #----------------------------------------------------------------------------- # Module Constants #----------------------------------------------------------------------------- # Module Functions def radical_dataset_to_s2p(radical_data_set,frequency_list,**options): """Takes a radical data set that is of the form <HDF5 dataset "S1": shape (4, 512), type "|V16"> and outputs an S2PV1 python model. Requires frequency_list=np.array(radical_data_file["RadiCalData/StatistiCalData/F"])[0].tolist() to be passed""" defaults={"frequency_selector":0,"frequency_column_name":"Frequency"} s2p_options={} for key,value in defaults.items(): s2p_options[key]=value for key,value in options.items(): s2p_options[key]=value input_data=np.array(radical_data_set) sparameters=[] for index,item in enumerate(frequency_list): [S11,S21,S12,S22]=[complex(input_data[0][index][0],input_data[0][index][1]), complex(input_data[1][index][0],input_data[1][index][1]), complex(input_data[2][index][0],input_data[2][index][1]), complex(input_data[3][index][0],input_data[3][index][1])] new_row=[item,S11,S21,S12,S22] sparameters.append(new_row) new_s2p=S2PV1(None,sparameter_complex=sparameters,**s2p_options) return new_s2p def radical_frequency_to_frequency_list(radical_frequency, radical_data_file=None): """Takes either the string specifying the radical frequency location ("RadiCalData/StatistiCalData/F") and radical data file or the data set radical_data_file["RadiCalData/StatistiCalData/F"] and returns a python list of frequencies""" try: if type(radical_frequency) in StringTypes: frequency_list = np.array(radical_data_file[radical_frequency])[0].tolist() elif type(radical_frequency) in [h5py._hl.dataset.Dataset]: frequency_list = np.array(radical_frequency)[0].tolist() elif type(radical_frequency) in [h5py._hl.files.File]: frequency_list = np.array(radical_frequency["RadiCalData/StatistiCalData/F"])[0].tolist() except: print(("Could not change {0} to a python list".format(radical_frequency))) def radical_error_boxes_to_eight_term_complex(radical_s1, radical_s2, radical_frequency_list, radical_data_file=None): """Takes two radical error boxes and a frequency_list (in python format run radical_frequency_to_frequency_list first) and converts them into a python list structure [[f,S1_11,S1_12,S1_21,S1_22,S2_11,S2_12,S2_21,S_22]] where each component of a matrix is a complex number. This list is designed to be used as an input for correct_sparameters_eight_term""" try: # fist convert the S1 to a numpy array the dimensions are 4 x number of frequencies x 2 if type(radical_s1) in StringTypes: s1_numpy_array = np.array(radical_data_file[radical_s1]) elif type(radical_s1) in [h5py._hl.dataset.Dataset]: s1_numpy_array =
np.array(radical_s1)
numpy.array
# Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ import tensorflow as tf from tensorflow import keras #from keras import backend as K import numpy as np import time import os import matplotlib #.pyplot as plt matplotlib.use('TkAgg') # this makes the fgire in focus rather than temrinal import matplotlib.pyplot as plt import matplotlib.animation as animation import gym from DQN.qmemory import Qmemory class deepQ: """ Object for deep Q learning, for solving openai gym environments deep Q network can be used for Q learning, to find the Q function that maximses the reward, and effectively therefore gives an optimal stragey for the game. The method used here contains various elements of the deepQ algorithm, namely: experience replay, double Q learning, online and target networks with strided updates """ # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- def __init__(self,game,HYPERPARAMS,PARAMS): """ Initialize Initialize the hyperparameters of the model, start the game environment, setup the tensorflow graph, start a filenaming convention for results. Args: HYPERPARAMS: a dictionary of hyperparameters: * **ALPHA**: learning rate * **GAMMA**: reward discount factor * **EPSILON_H**: initial probability of random actions in training * **EPSILON_L**: lowest probability of random actions in training * **EPS_DECAY**: decay rate (units of frames) of epsilon (exp(-frame/EPS_DECAY)) * **EPI_START**: episode at which to begin training * **N_FILTER**: Number of filters for initial convolutional layer * **N_FC**: Number of hidden units in fully connected layer * **N_memory**: Number of transitions to store * **N_batch**: The mini-batch size * **UPDATE_FREQ**: how many frames to train on between updates of target network * **TERMINAL_POINTS**: count a single point loss as a terminal move (boolean) * **LOSS_SCALE**: scale on Huber loss, for testing, keep as 2.0 PARAMS: A dictionary of parameters of the model: - **Nc**: number of frames in a single game state - **OUTPUT_STEP**: How often (in episodes) to save output summaries - **MAX_STEPS**: max number of frames allowed per episode """ self.env = gym.make(game) self.HYPERPARAMS = HYPERPARAMS self.PARAMS = PARAMS self.N_action = self.env.action_space.n//2 # ^ this is specific to Pong, becuase half the actions have the same # purose as the other actions. # e.g actions 2 and 4 both move the paddle up # 0: nothing, 1: nothing, 2:up, 3:down, 4:up, 5:down # use instead x= 0,1,2, with mapping action = x+1, # then x=0: nothing, x=1:up, x=2:down # so we reduce the action space by half (from 6 to 3) # and consequently action from Q value will be argmax(Q)+1 # n.b Q is vector of length N_action (i.e now 6//2 = 3) # use the environment and model params to find useful quantities frame = self.env.reset() frame = self.preprocess(frame) self.PARAMS['N_x'] = np.size(frame,0) self.PARAMS['N_y'] = np.size(frame,1) o1 = int( ( (self.PARAMS['N_x']-8)/4 ) + 1 ) o2 = int( ( (o1-4)/2 ) + 1 ) o3 = int( ( (o2-3)/1) + 1) self.PARAMS['N_squash'] = o3 tf.reset_default_graph() self.graph = tf.get_default_graph() #tf.Graph() alpha_txt = f"alpha_{HYPERPARAMS['ALPHA']:.2e}_" upd_txt = f"updfreq_{HYPERPARAMS['UPDATE_FREQ']:d}_" decay_txt = f"EPSDECAY_{HYPERPARAMS['EPS_DECAY']:.1f}_" nfc_txt = f"NFC_{HYPERPARAMS['N_FC']:d}_" nfilt_txt = f"Nfilter_{HYPERPARAMS['N_FILTER']:d}_" mem_txt = f"mem_{HYPERPARAMS['N_memory']:d}_" batch_txt = f"batch_{HYPERPARAMS['N_batch']:d}_" term_txt = f"terminal_{HYPERPARAMS['TERMINAL_POINTS']:d}" self.params_text = alpha_txt+upd_txt+decay_txt+nfc_txt+\ nfilt_txt+mem_txt+batch_txt+term_txt print("\n==========================================================") print("\n\n filename for saving : ",self.params_text) print(" action space has size : ",self.N_action) print(" using tensorflow version : ",tf.VERSION, "\n\n") print("==========================================================\n") return None # -------------------------------------------------------------------------- # -------------------------------------------------------------------------- def preprocess(self,frame): """ Preprocess frame of game Args: frame: a frame of the game Returns: frame_out: the preprocessed frame """ frame_out = np.zeros((84,84),dtype=np.uint8) # to black and white tmp = np.mean(frame, axis=2) # trim edges tmp = tmp[28:-12, :] # downsample tmp = tmp[1:-1:2,::2] frame_out[:,2:-2] = tmp.astype(np.uint8) return frame_out def action2step(self,act): """ Convert integer into game action In order that Pong can have only 3 actions (nothing, up, down), rather than the 6 (each action replicated) in the gym environment, use a preprocessing for the actions. Args: act: integer representing an action Returns: step: an integer for the action, act, expected by the game """ step=act+1 return step #--------------------------------------------------------------------------- #--------------------------------------------------------------------------- def Qnet(self,obs,call_type,trainme,reuseme): """ Neural network to get Q for given state Structure of the network is: - convolutional layer (K=8,S=4) with N_FILTER filters - convolutional layer (K=4,S=2) with 2*N_FILTER filters - convolutional layer (K=3,S=1) with 2*N_FILTER filters - Fully Connected layer with N_FC hidden units It takes in input observation (a state of a game), and returns the predicted value Q for this action. The maximal position within Q is the policy action. Args: obs: (tensor) set of observations to predict Q for: size: batch,(x,y..),frames frames should be 4 to match deepmind paper. call_type: 'online/' or 'target/' - which network to use trainme: (bool) should the weights be trainable reuseme: (bool) should the weights be reusable Returns: z_out: output of the Neural Net, which is the predicted Q for the observation """ with tf.variable_scope(call_type): z = tf.reshape(obs, [-1,self.PARAMS['N_x'],self.PARAMS['N_y'],self.PARAMS['Nc']]) #print(z.shape) with tf.variable_scope('conv_layer0',reuse=reuseme): z_conv0 = tf.layers.Conv2D(filters = self.HYPERPARAMS['N_FILTER'], kernel_size = (8,8), strides = (4,4), padding='valid', activation=tf.nn.leaky_relu, trainable=trainme, kernel_initializer=tf.keras.initializers.he_normal())(z) with tf.variable_scope('conv_layer1',reuse=reuseme): z_conv1 = tf.layers.Conv2D(filters = 2*self.HYPERPARAMS['N_FILTER'], kernel_size = (4,4), strides = (2,2), padding='valid', activation=tf.nn.leaky_relu, trainable=trainme, kernel_initializer=tf.keras.initializers.he_normal())(z_conv0) #z_conv1_flat = tf.reshape(z_conv1,[-1,self.PARAMS['N_squash']*self.PARAMS['N_squash']*(2*self.HYPERPARAMS['N_FILTER'])]) with tf.variable_scope('conv_layer2',reuse=reuseme): z_conv2 = tf.layers.Conv2D(filters = 2*self.HYPERPARAMS['N_FILTER'], kernel_size = (3,3), strides = (1,1), padding='valid', activation=tf.nn.leaky_relu, trainable=trainme, kernel_initializer=tf.keras.initializers.he_normal())(z_conv1) z_flat = tf.reshape(z_conv2,[-1,self.PARAMS['N_squash']*self.PARAMS['N_squash']*(2*self.HYPERPARAMS['N_FILTER'])]) with tf.variable_scope('FC_layer0',reuse=reuseme): z_FC0 = tf.layers.Dense(units=self.HYPERPARAMS['N_FC'],activation=tf.nn.relu,trainable=trainme,kernel_initializer=tf.keras.initializers.he_normal())(z_flat) with tf.variable_scope('layer_out',reuse=reuseme): z_out = tf.layers.Dense(units=self.N_action,trainable=trainme,kernel_initializer=tf.keras.initializers.he_normal())(z_FC0) return z_out #--------------------------------------------------------------------------- #--------------------------------------------------------------------------- def update_layer(self,layer): """ Update the weights/biases of target network For stability, it is useful to actively train an online network, and only periodically update a target network with the weights and biases of the online network. This method updates a gicen layer in the target network to be the same as the equivilent layer of the online network Args: layer: (string) name of layer. e.g. 'layer0' Returns: upd_k: operator that updates the kernel of the layer epd_b: operator that updates the bias of the layer """ with tf.name_scope('get_online_wieghts'): with tf.variable_scope('online/' + layer,reuse=True): k_online = tf.get_variable('kernel') b_online = tf.get_variable('bias') with tf.name_scope('get_target_weights'): with tf.variable_scope('target/' + layer,reuse=True): k_target = tf.get_variable('kernel') b_target = tf.get_variable('bias') with tf.name_scope('assign_new_target_weights'): upd_k = tf.assign(k_target,k_online) upd_b = tf.assign(b_target,b_online) return upd_k,upd_b #--------------------------------------------------------------------------- def make_graph(self): """ Define the computational graph Takes in the game states (before and after action), action, reward, and whether terminal as placeholders. Uses these to compute Q values for both online and target networks. Applies the double deep Q learning algorithm, using self.Qnet as the neural network which predicts the Q values for a given state. Placeholders: the following variables should be set with a feed_dict - **phi_i\_**: state before action - **phi_j\_**: state after action - **a_i\_**: action taken - **r_i\_**: reward for taking action - **t_i\_**: terminal move signifier (0 if final, 1 otherwise) Returns: graph_vars: dictionary of variables of graph which are useful: - **graph_init**: graph initializer (global) - **graph_local_init**: graph initializer (local) - **Q_i\_**:Q values predicted by Qnet on phi_i (online net) - **loss\_**: loss on batch, - **train_op**: training tf op - **update_target**: updates target network weights to online weights - **merged**: op to merge summaries for tensorboard - **phi_i\_**: placeholder phi_i\_ - **phi_j\_**: placeholder phi_j\_ - **a_i\_**: placeholder a_i\_, - **r_i\_**: placeholder r_i\_, - **t_i\_**: placeholder t_i\_, - **saver**: tf saver for saving meta graph and variables """ with self.graph.as_default(): # placeholders for the states, actions, rewards, and whether terminal # size is batch, (x, y,), stored frames(4) phi_i_ = tf.placeholder(shape=[None,self.PARAMS['N_x'],self.PARAMS['N_y'],self.PARAMS['Nc']],dtype=tf.float32) phi_j_ = tf.placeholder(shape=[None,self.PARAMS['N_x'],self.PARAMS['N_y'],self.PARAMS['Nc']],dtype=tf.float32) a_i_ = tf.placeholder(shape=[None,1],dtype=tf.uint8) r_i_ = tf.placeholder(shape=[None,1],dtype=tf.float32) t_i_ = tf.placeholder(shape=[None,1],dtype=tf.float32) # ------------------------------------------------------------------ with tf.name_scope('Q_i_online'): Q_i_ = self.Qnet(phi_i_,'online',True,False) #print("Q_i_ shape = ",Q_i_.shape) with tf.name_scope('Value_function_i_online'): # convert actions that were taken into onehot format a_list = tf.reshape(tf.cast(a_i_,tf.int32),[-1]) print("a_list shape = ",a_list.shape) a_onehot = tf.one_hot(a_list, self.N_action) print(a_onehot.shape) # now use the onehot format actions to select the Q_i's that are actually # obtained by taking action a_i. n.b Qnet returns a value for Q for all actions # but we only want to know Q for the action taken V_i_tmp = tf.multiply(a_onehot,Q_i_) print(V_i_tmp.shape) V_i_ = tf.reduce_sum(V_i_tmp, axis=1) print(V_i_.shape) # ------------------------------------------------------------------ # we need to get the actions to take on the Q_target step, by using the expected action # that the online network predicts is best, but then use the Q from the target net with the # online selected action # this is the same network as for Q_i_ - we set reuse=True # (it is also trainable) with tf.name_scope('Qj_online'): Qj_online_ = self.Qnet(phi_j_,'online',True,True) Qj_online_inds = tf.argmax(Qj_online_,axis=1) Qj_onehot_inds = tf.one_hot(Qj_online_inds, self.N_action) # ------------------------------------------------------------------ # this has reuse=False, make a new network - the target network # it is not trainable. Instead we train the online network and # set the weights/biases of the layers in the target network to be the # same as those in the online network every so many games. with tf.name_scope('Qj_target'): Q_j_ = self.Qnet(phi_j_,'target',False,False) # now only take values of Q (target) for state j, using action that # the online network would predict with tf.name_scope('value_function_j'): V_j_ = tf.reduce_sum(tf.multiply(Qj_onehot_inds,Q_j_),axis=1) # ------------------------------------------------------------------ # get the future discounted reward with tf.name_scope('discounted_reward'): y_ = tf.add( tf.squeeze(r_i_) , self.HYPERPARAMS['GAMMA']*tf.multiply(tf.squeeze(t_i_),tf.squeeze(V_j_))) print("y shape = ",y_.shape) print("r_i_ shape = ",tf.squeeze(r_i_).shape) # difference between value function (future discounted) and the value # funtion on state i with tf.name_scope('discount_take_value'): x_ = tf.subtract( y_, V_i_ ) print("x_ shape = ",x_.shape) # ------------------------------------------------------------------ # define the loss, create an optimizer op, and a training op # use a Pseudo-Huber loss with tf.name_scope('loss'): loss_scale = self.HYPERPARAMS['LOSS_SCALE'] # how steep loss is for large values loss_ = tf.reduce_mean( loss_scale*(tf.sqrt(1.0+(1.0/loss_scale)**2*tf.multiply(x_,x_)) - 1.0) ) with tf.name_scope('optimizer'): optimizer = tf.train.RMSPropOptimizer(self.HYPERPARAMS['ALPHA']) train_op = optimizer.minimize(loss_) # ------------------------------------------------------------------ # update the parameters of the target network, by cloning those from # online Q network. This will only be sess.run'ed every C steps with tf.name_scope('target_updates'): upd_c_k0,upd_c_b0 = self.update_layer('conv_layer0/conv2d') upd_c_k1,upd_c_b1 = self.update_layer('conv_layer1/conv2d') upd_c_k2,upd_c_b2 = self.update_layer('conv_layer2/conv2d') upd_FC_k0,upd_FC_b0 = self.update_layer('FC_layer0/dense') upd_k_out,upd_b_out = self.update_layer('layer_out/dense') # group all of these update ops into a single op for updating the # entire target network update_target = tf.group(upd_c_k0, upd_c_b0, upd_c_k1, upd_c_b1,upd_c_k2, upd_c_b2, upd_FC_k0, upd_FC_b0, upd_k_out, upd_b_out) # ------------------------------------------------------------------ # create some tenorboard outputs for real-time analysis tf.summary.scalar('loss', tf.squeeze(loss_)) merged = tf.summary.merge_all() # ------------------------------------------------------------------ graph_init = tf.global_variables_initializer() graph_local_init = tf.local_variables_initializer() saver = tf.train.Saver() graph_vars = {'graph_init':graph_init, 'graph_local_init':graph_local_init, 'Q_i_':Q_i_, 'loss_':loss_, 'train_op':train_op, 'update_target':update_target, 'merged':merged, 'phi_i_':phi_i_, 'phi_j_':phi_j_, 'a_i_':a_i_, 'r_i_':r_i_, 't_i_':t_i_, 'saver':saver} return graph_vars def summary_hist(self,summary_,tag,data,bins): """ Add Histogram to tensorboard summary Args: summary_: a tf summary object to add histogram to tag: a name/tag for the histogram data: The data to be plotted bins: The number of bins for the histogram, or an array of bin edges """ npdata = np.asarray(data) hist_vals, bin_edges = np.histogram(npdata,bins) hist = tf.HistogramProto() hist.min = np.min(npdata) hist.max = np.max(npdata) bin_edges = bin_edges[:-1] for b in bin_edges: hist.bucket_limit.append(b) for hv in hist_vals: hist.bucket.append(hv) summary_.value.add(tag=tag,histo=hist) return None #--------------------------------------------------------------------------- def train(self, N_episodes): """Train the DeepQ network Args: N_epsiodes: how many episodes to train over Returns: out_dict: A dictionary of how various things evolved during during: - rewards': average reward per epsiode - 'steps': average steps per epsiode - 'maxQ': average max_Q epsiode - 'minQ': average min_Q per epsiode - 'losses': average loss per epsiode - 'actions': average action per epsiode - 'epsilon': average epsilon per epsiode """ # define the computational graph for traing the Q network graph_vars = self.make_graph() # ---------------------------------------------------------------------- # ----------------- now use the graph above as the session ------------- with tf.Session(graph=self.graph) as sess: sess.run(graph_vars['graph_init']) sess.run(graph_vars['graph_local_init']) print(tf.trainable_variables()) summary=tf.Summary() #writer = tf.summary.FileWriter('%s/%s' % ('./../data_summaries', time.strftime("%Y%m%d-%H%M%S")),sess.graph) writer = tf.summary.FileWriter('%s/%s' % ('./../data_summaries', self.params_text),sess.graph) # ------------------------------------------------------------------ # arrays in which to store memory of states it has seen # CREATE TWO MEMORY TYPES # 'normal' memory - stores non-final moves # 'losses' memory - stores only final (losing) moves # the idea of this is to keep a consistent number of losing/winning # and 'normal' moves, so that the number of each type used in training # stays consistent N_mem_normal = int(0.7*self.HYPERPARAMS['N_memory']) N_mem_losses = int(0.15*self.HYPERPARAMS['N_memory']) # - N_mem_normal #int(0.05*self.HYPERPARAMS['N_memory']) N_mem_wins = self.HYPERPARAMS['N_memory'] - N_mem_normal - N_mem_losses memory_normal = Qmemory(N_mem_normal,self.PARAMS['N_x'],self.PARAMS['N_y'],self.PARAMS['Nc']) memory_wins = Qmemory(N_mem_wins ,self.PARAMS['N_x'],self.PARAMS['N_y'],self.PARAMS['Nc']) memory_losses = Qmemory(N_mem_losses,self.PARAMS['N_x'],self.PARAMS['N_y'],self.PARAMS['Nc']) # also define how big each batch should be N_batch_l = int(0.15*self.HYPERPARAMS['N_batch']) N_batch_w = N_batch_l N_batch_n = self.HYPERPARAMS['N_batch'] - N_batch_w - N_batch_l print(N_batch_n,N_batch_l,N_batch_w) # ------------------------------------------------------------------ # counter for number of steps taken steps_count = 0 # initialise arrays for storing average values of quantities reward_p_ep = np.zeros((int(N_episodes/self.PARAMS['OUTPUT_STEP']),)) steps_p_ep = np.zeros_like(reward_p_ep) avQ_p_ep = np.zeros_like(reward_p_ep) max_Q_p_ep = np.zeros_like(reward_p_ep) min_Q_p_ep = np.zeros_like(reward_p_ep) loss_p_ep = np.zeros_like(reward_p_ep) av_action_p_ep = np.zeros_like(reward_p_ep) Q_init_0_p_ep = np.zeros_like(reward_p_ep) epsilon_ep = np.zeros_like(reward_p_ep) #these just for testing init_obs = self.env.reset() init_obs = self.preprocess(init_obs) init_phi = np.tile( init_obs[:,:,np.newaxis], (1,1,self.PARAMS['Nc']) ) out_count=0 # --------------- loop over games ---------------------------------- time_ep1 = time.time() for epi in np.arange(N_episodes): # reset the game, and initialise states done=False current_obs = self.env.reset() current_obs = self.preprocess(current_obs) current_phi = np.tile( current_obs[:,:,np.newaxis], (1,1,self.PARAMS['Nc']) ) new_obs= np.zeros_like(current_obs) new_phi = np.zeros_like(current_phi) # -------------------------------------------------------------- # define epsilon (chance to make move based on policy vs random) # for the fist 'EPI_START' episodes only make random moves # after this, decay epsilon exponentially according to total steps # taken during training if epi<self.HYPERPARAMS['EPI_START']: eps_tmp = self.HYPERPARAMS['EPSILON_H'] else: eps_tmp = self.HYPERPARAMS['EPSILON_L'] + (self.HYPERPARAMS['EPSILON_H'] - self.HYPERPARAMS['EPSILON_L'])*np.exp(-(steps_count*1.0)/self.HYPERPARAMS['EPS_DECAY']) # -------------------------------------------------------------- # initilaize counters tot_reward = 0.0 steps_used = 0.0 maxQ = 0.0 # reset the lists to empty at beginning of new avergaing period if ((np.mod(epi,self.PARAMS['OUTPUT_STEP'])==1 and epi>1) or epi==0): losses=[] av_acts=[] maxQs = [] minQs = [] steps_list=[] reward_list = [] # ---------- LOOP over frames in a given episode --------------- for i in np.arange(self.PARAMS['MAX_STEPS']): # get action using the Q net, or at random if np.random.uniform() < eps_tmp: action = np.asarray(np.random.randint(self.N_action)) new_obs, reward, done, info = self.env.step(self.action2step(action)) else: # feed data into the session graph to get Q as a numpy array # only phi_i is actual data # phi_j, a_i, r_i are just dummy really as not used tmp_feed_dict = {graph_vars['phi_i_']:current_phi[np.newaxis,:,:,:]/255.0, graph_vars['phi_j_']:current_phi[np.newaxis,:,:,:]/255.0, graph_vars['a_i_']:memory_normal.memory_a_i[:1,:], graph_vars['r_i_']:memory_normal.memory_r_i[:1,:], graph_vars['t_i_']:memory_normal.memory_terminal_i[:1,:]} # use Q network graph to get Q_i, uses the online network Q = np.squeeze(sess.run([graph_vars['Q_i_']],tmp_feed_dict)) # append the max and min Q to the lists (will be averaged later) maxQs.append(np.amax(Q)) minQs.append(np.amin(Q)) # the action to be taken, is one that maximises Q action = np.argmax(Q) new_obs, reward, done, info = self.env.step(self.action2step(action)) av_acts.append(action) # ---------------------------------------------------------- # preprocess the image new_obs = self.preprocess(new_obs) # phi is made of several observations/frames. so concatenate # the the current phi (all but first frame), with the new observation # this then becomes the new state containg 'Nc' frames new_phi = np.concatenate((current_phi[:,:,1:],new_obs[:,:,np.newaxis]), axis=2) # convert the boolean 'done' which tells us if move is the last # of game, to a float (number). we want it to be 0.0 when it is # the final move - so we need the opposite of normal conversion # of bool->float - so use: (not done) if not self.HYPERPARAMS['TERMINAL_POINTS']: term_float = np.array(not done) term_float = term_float.astype(np.float32) else: term_float = np.array(reward > -0.1).astype(np.float32) tot_reward+=reward # ---------------------------------------------------------- # WRITE new experience to MEMORY # only perform if we are more than 'Nc' moves into this game. # this is because we need to have phi states of length 'Nc' # and they are initialised at beginning of game to be the initial # frame repeated Nc times, which would be unrealistic - so do # not add to memory. if i>=(self.PARAMS['Nc']-1): if reward > 0.1: #print("writing win, ",reward) memory_wins.write(current_phi, new_phi, action, reward, term_float) elif reward > -0.1: #print("writing normal, ",reward) memory_normal.write(current_phi, new_phi, action, reward, term_float) else: #print("writing loss, ",reward) memory_losses.write(current_phi, new_phi, action, reward, term_float) # ---------------------------------------------------------- # APPLY LEARING UPDATES # ---------------------------------------------------------- # take a batch of the experiences from memory # only do if experience memory is big enough to contain N_batch entries #if (mem_count>self.HYPERPARAMS['N_batch']): if(epi>self.HYPERPARAMS['EPI_START']): # define sizes of batches for the 'normal' memory, and # batch size for the 'losses' memory. batch_n = memory_normal.get_batch(N_batch_n) batch_l = memory_losses.get_batch(N_batch_l) batch_w = memory_losses.get_batch(N_batch_w) # combine the batches from both memories to create a single # batch which represents 'normal' and 'loss' moves with a # predetermined ratio. phi_i_batch = np.concatenate((batch_n['phi_i'], batch_l['phi_i'], batch_w['phi_i']) , axis=0)/255.0 phi_j_batch = np.concatenate((batch_n['phi_j'], batch_l['phi_j'], batch_w['phi_j'] ) , axis=0)/255.0 a_i_batch = np.concatenate((batch_n['a_i'] , batch_l['a_i'], batch_w['a_i']) , axis=0) r_i_batch = np.concatenate((batch_n['r_i'] , batch_l['r_i'], batch_w['r_i']) , axis=0) t_i_batch = np.concatenate((batch_n['t_i'] , batch_l['t_i'], batch_w['t_i']) , axis=0) #print(np.shape(phi_i_batch)) feed_dict_batch = { graph_vars['phi_i_']:(phi_i_batch).astype(np.float32), graph_vars['phi_j_']:(phi_j_batch).astype(np.float32), graph_vars['r_i_']:r_i_batch, graph_vars['a_i_']:a_i_batch, graph_vars['t_i_']:t_i_batch} # get the loss for this batch loss0 = sess.run(graph_vars['loss_'],feed_dict=feed_dict_batch) # append loss to be averaged later losses.append(loss0) # APPLY GRADIENT DESCENT for batch # only perform if episopde is > EPI_START # if(epi==self.HYPERPARAMS['EPI_START']): # graph_vars['train_op'].run(feed_dict=feed_dict_batch,options=run_options,run_metadata=run_metadata) # sess.run(tmp_loss,graph_vars['train_op'],) if(epi>self.HYPERPARAMS['EPI_START']): graph_vars['train_op'].run(feed_dict=feed_dict_batch) # ---------------------------------------------------------- # prepare for beginning a new game, update counters etc # RESET what the current phi is for the next step current_phi = 1.0*new_phi # if we are in the training period - add one to total number # of steps taken total over all episodes if epi>self.HYPERPARAMS['EPI_START']: steps_count+=1 # step counter for each episode steps_used+=1.0 if (np.mod(steps_count,self.HYPERPARAMS['UPDATE_FREQ'])==0 and steps_count>0): #update the layers by running the update ops... sess.run(graph_vars['update_target']) # stop playing this game, if the move just performed was terminal if (done): break # -------------------------------------------------------------- # this episode has now been played # make updates to quantities steps_list.append(steps_used) reward_list.append(tot_reward) # if this game is a muliple of OUTPUT_STEP then average useful # quantities over the last OUTPUT_STEP games and write to output # arrays. if (np.mod(epi+1,self.PARAMS['OUTPUT_STEP'])==0 and epi>0): steps_p_ep[out_count] = np.sum(np.asarray(steps_list))/(1.0*(0.00001+len(steps_list))) reward_p_ep[out_count] = np.sum(np.asarray(reward_list))/(1.0*(0.00001+len(reward_list))) max_Q_p_ep[out_count] = np.sum(np.asarray(maxQs))/(1.0*(0.00001+len(maxQs))) min_Q_p_ep[out_count] = np.sum(np.asarray(minQs))/(1.0*(0.00001+len(minQs))) loss_p_ep[out_count] = sum(losses)/(1.0*(0.01+len(losses))) av_action_p_ep[out_count] = sum(av_acts)/(1.0*(0.0001+len(av_acts))) epsilon_ep[out_count] = eps_tmp summarynew = tf.Summary(value=[tf.Summary.Value(tag='avg steps', simple_value=steps_p_ep[out_count])]) summarynew.value.add(tag='avg reward', simple_value=reward_p_ep[out_count]) summarynew.value.add(tag='avg max Q', simple_value=max_Q_p_ep[out_count]) summarynew.value.add(tag='avg min Q', simple_value=min_Q_p_ep[out_count]) summarynew.value.add(tag='avg loss', simple_value=loss_p_ep[out_count]) summarynew.value.add(tag='avg action',simple_value=av_action_p_ep[out_count]) summarynew.value.add(tag='epsilon', simple_value=eps_tmp) self.summary_hist(summarynew,'score hist',reward_list,60) self.summary_hist(summarynew,'steps hist',steps_list,100) # ALSO: at the output points, make a validation check # run a game with no random moves: what is score avg_valid_reward = 0.0 N_valid = 3 for j in np.arange(N_valid): valid_reward = 0.0 current_obs = self.env.reset() current_obs = self.preprocess(current_obs) current_phi = np.tile( current_obs[:,:,np.newaxis], (1,1,self.PARAMS['Nc']) ) for i in np.arange(self.PARAMS['MAX_STEPS']): # get action using the Q net tmp_feed_dict = {graph_vars['phi_i_']:current_phi[np.newaxis,:,:,:]/255.0, graph_vars['phi_j_']:current_phi[np.newaxis,:,:,:]/255.0, graph_vars['a_i_']:memory_normal.memory_a_i[:1,:], graph_vars['r_i_']:memory_normal.memory_r_i[:1,:], graph_vars['t_i_']:memory_normal.memory_terminal_i[:1,:]} # use Q network graph to get Q_i, uses the online network Q = np.squeeze(sess.run([graph_vars['Q_i_']],tmp_feed_dict)) # the action to be taken, is one that maximises Q action = np.argmax(Q) new_obs, reward, done, info = self.env.step(self.action2step(action)) new_obs = self.preprocess(new_obs) new_phi = np.concatenate((current_phi[:,:,1:],new_obs[:,:,np.newaxis]), axis=2) current_phi = 1.0*new_phi valid_reward+=reward if (done): break avg_valid_reward+=valid_reward/float(N_valid) #avg_valid_reward = avg_valid_reward*1.0/float(N_valid) summarynew.value.add(tag='avg validation reward', simple_value=avg_valid_reward) #print("wirting summary") writer.add_summary(summarynew, epi+1) # writer.flush() if epi<self.PARAMS['OUTPUT_STEP']: print("getting meta data for loss (not update or train)") run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) run_metadata = tf.RunMetadata() sess.run(graph_vars['loss_'],feed_dict=tmp_feed_dict,options=run_options,run_metadata=run_metadata) writer.add_run_metadata(run_metadata, 'epi-%d'%epi) # else: # writer.add_summary(summarynew, epi+1) writer.flush() time_ep2 = time.time() print("epsiode {a:d} --- avg/max steps = {b:.1f} / {maxsteps:.1f} --- avg/max/valid reward = {c:.1f} / {maxre:.1f} / {validre:.1f} --- epsilon = {d:.2f} --- time = {e:.2f} \n".format(a=epi+1,b=steps_p_ep[out_count],maxsteps=np.amax(np.asarray(steps_list)),c=reward_p_ep[out_count],maxre=np.amax(
np.asarray(reward_list)
numpy.asarray
""" Functions for creating the standard sets of matrices in the standard, Pauli, Gell-Mann, and qutrit bases """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import itertools as _itertools import numbers as _numbers import numpy as _np import scipy.sparse as _sps ## Pauli basis matrices sqrt2 = _np.sqrt(2) id2x2 =
_np.array([[1, 0], [0, 1]])
numpy.array
import gym import time import numpy as np from pprint import pprint import torch import torch.nn as nn import torch.optim as optim from .buffer import PPOBuffer from .model import PPOLSTMActorCritic from rltorch.utils.rl_logger import RLLogger class PPOLSTMAgent: def __init__(self, **kwargs): print("\nPPO with config:") pprint(kwargs) self.seed = kwargs["seed"] torch.manual_seed(self.seed) np.random.seed(self.seed) self.env_name = kwargs["env_name"] self.env = gym.make(self.env_name) self.num_actions = self.env.action_space.n self.obs_dim = self.env.observation_space.shape self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device={self.device}") self.logger = RLLogger(self.env_name, "ppolstm") self.setup_logger() # Hyper params self.steps_per_epoch = kwargs["epoch_steps"] self.epochs = kwargs["epochs"] self.max_ep_len = kwargs["max_ep_len"] self.clip_ratio = kwargs["clip_ratio"] self.target_kl = kwargs["target_kl"] self.train_actor_iters = kwargs["train_actor_iters"] self.train_critic_iters = kwargs["train_critic_iters"] self.model_save_freq = kwargs["model_save_freq"] self.buffer = PPOBuffer(self.steps_per_epoch, self.obs_dim, kwargs["hidden_size"], kwargs["gamma"], kwargs["lam"], self.device) self.actor_critic = PPOLSTMActorCritic(self.obs_dim[0], kwargs["hidden_size"], self.num_actions) self.actor_critic.to(self.device) print("\nActorCritic:") print(self.actor_critic) self.actor_optimizer = optim.Adam(self.actor_critic.actor.parameters(), lr=kwargs["actor_lr"]) self.critic_optimizer = optim.Adam(self.actor_critic.critic.parameters(), lr=kwargs["critic_lr"]) self.critic_loss_fn = nn.MSELoss() def setup_logger(self): # adds headers of interest self.logger.add_header("epoch") self.logger.add_header("total_steps") self.logger.add_header("avg_ep_return") self.logger.add_header("min_ep_return") self.logger.add_header("max_ep_return") self.logger.add_header("avg_vals") self.logger.add_header("min_vals") self.logger.add_header("max_vals") self.logger.add_header("avg_ep_len") self.logger.add_header("actor_loss") self.logger.add_header("actor_loss_delta") self.logger.add_header("critic_loss") self.logger.add_header("critic_loss_delta") self.logger.add_header("kl") self.logger.add_header("entropy") self.logger.add_header("time") def get_action(self, obs, hid): return self.actor_critic.act(obs, hid) def compute_actor_loss(self, data): obs, act, adv, logp_old = data["obs"], data["act"], data["adv"], data["logp"] hid = data["actor_hid"] pi, logp, _ = self.actor_critic.actor.step(obs, act, hid) logp = logp.squeeze() ratio = torch.exp(logp - logp_old) clipped_ratio = torch.clamp(ratio, 1-self.clip_ratio, 1+self.clip_ratio) clip_adv = clipped_ratio * adv actor_loss = -(torch.min(ratio * adv, clip_adv)).mean() actor_loss_info = dict() actor_loss_info["kl"] = (logp_old - logp).mean().item() actor_loss_info["entropy"] = pi.entropy().mean().item() return actor_loss, actor_loss_info def compute_critic_loss(self, data): obs, ret, hid = data["obs"], data["ret"], data["critic_hid"] predicted_val, _ = self.actor_critic.critic.forward(obs, hid) predicted_val = predicted_val.squeeze() return self.critic_loss_fn(predicted_val, ret) def optimize(self): data = self.buffer.get() actor_loss_start, actor_loss_info_start = self.compute_actor_loss(data) actor_loss_start = actor_loss_start.item() critic_loss_start = self.compute_critic_loss(data).item() for i in range(self.train_actor_iters): self.actor_optimizer.zero_grad() actor_loss, actor_loss_info = self.compute_actor_loss(data) if actor_loss_info["kl"] > 1.5*self.target_kl: break actor_loss.backward() self.actor_optimizer.step() for i in range(self.train_critic_iters): self.critic_optimizer.zero_grad() critic_loss = self.compute_critic_loss(data) critic_loss.backward() self.critic_optimizer.step() # calculate changes in loss, for logging actor_loss_delta = (actor_loss.item() - actor_loss_start) critic_loss_delta = (critic_loss.item() - critic_loss_start) self.logger.log("actor_loss", actor_loss_start) self.logger.log("actor_loss_delta", actor_loss_delta) self.logger.log("critic_loss", critic_loss_start) self.logger.log("critic_loss_delta", critic_loss_delta) self.logger.log("kl", actor_loss_info_start["kl"]) self.logger.log("entropy", actor_loss_info_start["entropy"]) def step(self, obs, actor_hid, critic_hid): return self.actor_critic.step(self.process_single_obs(obs), actor_hid, critic_hid) def get_value(self, obs, critic_hid): return self.actor_critic.get_value(self.process_single_obs(obs), critic_hid) def process_single_obs(self, obs): proc_obs = torch.from_numpy(obs).float().to(self.device) proc_obs = proc_obs.view(1, 1, -1) return proc_obs def train(self): print("PPO Starting training") start_time = time.time() for epoch in range(self.epochs): self.logger.log("epoch", epoch) o = self.env.reset() epoch_ep_rets = [] epoch_ep_lens = [] ep_ret, ep_len = 0, 0 epoch_vals = [] actor_hid, critic_hid = self.actor_critic.get_init_hidden() for t in range(self.steps_per_epoch): a, v, logp, next_actor_hid, next_critic_hid = self.step(o, actor_hid, critic_hid) next_o, r, d, _ = self.env.step(a.squeeze()) ep_len += 1 ep_ret += r epoch_vals.append(v) self.buffer.store(o, a, r, v, logp, actor_hid, critic_hid) o = next_o actor_hid = next_actor_hid critic_hid = next_critic_hid timeout = ep_len == self.max_ep_len terminal = timeout or d epoch_ended = t == self.steps_per_epoch-1 if terminal or epoch_ended: v = 0 if timeout or epoch_ended: v, next_critic_hid = self.get_value(o, critic_hid) self.buffer.finish_path(v) if terminal: epoch_ep_rets.append(ep_ret) epoch_ep_lens.append(ep_len) ep_ret, ep_len = 0, 0 o = self.env.reset() actor_hid, critic_hid = self.actor_critic.get_init_hidden() # update the model self.optimize() # save model if (epoch+1) % self.model_save_freq == 0: print(f"Epoch {epoch+1}: saving model") save_path = self.logger.get_save_path("pth") self.actor_critic.save_AC(save_path) self.logger.log("total_steps", (epoch+1)*self.steps_per_epoch) self.logger.log("avg_ep_return", np.mean(epoch_ep_rets)) self.logger.log("min_ep_return", np.min(epoch_ep_rets)) self.logger.log("max_ep_return",
np.max(epoch_ep_rets)
numpy.max
""" @author: <NAME> Plots the Pearson correlation coefficient, Spearman correlation coefficient, Distance correlation coefficient, Chatterjee's correlation coefficient and Wasserstein correlation coefficient between (X_1, f(X_2)) for the bivariate uniform distribution (X_1, X_2) as a function of the correlation rho for different functions f(x) """ import numpy as np import matplotlib.pyplot as plt from collections import Counter from scipy.stats import pearsonr,spearmanr from scipy.spatial.distance import pdist, squareform from xicor.xicor import Xi import ot def distcorr(X, Y): X = np.atleast_1d(X) Y = np.atleast_1d(Y) if np.prod(X.shape) == len(X): X = X[:, None] if np.prod(Y.shape) == len(Y): Y = Y[:, None] X = np.atleast_2d(X) Y = np.atleast_2d(Y) n = X.shape[0] if Y.shape[0] != X.shape[0]: raise ValueError('Number of samples must match') a = squareform(pdist(X)) b = squareform(pdist(Y)) A = a - a.mean(axis=0)[None, :] - a.mean(axis=1)[:, None] + a.mean() B = b - b.mean(axis=0)[None, :] - b.mean(axis=1)[:, None] + b.mean() dcov2_xy = (A * B).sum()/float(n * n) dcov2_xx = (A * A).sum()/float(n * n) dcov2_yy = (B * B).sum()/float(n * n) dcor = np.sqrt(dcov2_xy)/np.sqrt(np.sqrt(dcov2_xx) * np.sqrt(dcov2_yy)) return dcor def adapW1_eot(x,y,N): x_new = N**(-1/3)*np.floor(N**(1/3)*x) y_new = N**(-1/3)*np.floor(N**(1/3)*y) x_val = np.array(list(Counter(x_new).keys())) x_freq = np.array(list(Counter(x_new).values())) W = np.zeros(len(x_val)) for i in range(0,len(x_val)): aux = y_new[x_new==x_val[i]] aux = aux.reshape((len(aux), 1)) c = np.abs(aux-y_new) w1 = np.ones(len(aux))/len(aux) w2 = np.ones(len(y))/len(y) W[i] = ot.sinkhorn2(w1,w2,c,0.01) c = np.abs(y_new.reshape((N,1))-y_new) denom = c.sum()/N**2 return np.dot(W, x_freq)/(N*denom) N = 1000 #no. of samples M = 30 #no. of draws lam = np.linspace(0,1, num = 100) Wcor = np.zeros(len(lam)) pcor = np.zeros(len(lam)) scor = np.zeros(len(lam)) dcor = np.zeros(len(lam)) ccor = np.zeros(len(lam)) Wcor_aux = np.zeros(M) pcor_aux = np.zeros(M) scor_aux = np.zeros(M) dcor_aux = np.zeros(M) ccor_aux =
np.zeros(M)
numpy.zeros
# -*- coding: utf-8 -*- """ Defines unit tests for :mod:`colour.contrast.barten1999` module. """ import numpy as np import unittest from itertools import permutations from colour.contrast import (optical_MTF_Barten1999, pupil_diameter_Barten1999, sigma_Barten1999, retinal_illuminance_Barten1999, maximum_angular_size_Barten1999, contrast_sensitivity_function_Barten1999) from colour.utilities import ignore_numpy_errors __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2021 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = 'Colour Developers' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'TestOpticalMTFBarten1999', 'TestPupilDiameterBarten1999', 'TestSigmaBarten1999', 'TestRetinalIlluminanceBarten1999', 'TestMaximumAngularSizeBarten1999', 'TestContrastSensitivityFunctionBarten1999' ] class TestOpticalMTFBarten1999(unittest.TestCase): """ Defines :func:`colour.contrast.barten1999.optical_MTF_Barten1999` definition unit tests methods. """ def test_optical_MTF_Barten1999(self): """ Tests :func:`colour.contrast.barten1999.optical_MTF_Barten1999` definition. """ np.testing.assert_almost_equal( optical_MTF_Barten1999(4, 0.01), 0.968910791191297, decimal=7) np.testing.assert_almost_equal( optical_MTF_Barten1999(8, 0.01), 0.881323136669471, decimal=7) np.testing.assert_almost_equal( optical_MTF_Barten1999(4, 0.05), 0.454040738727245, decimal=7) def test_n_dimensional_optical_MTF_Barten1999(self): """ Tests :func:`colour.contrast.barten1999.optical_MTF_Barten1999` definition n-dimensional support. """ u = np.array([4, 8, 12]) sigma = np.array([0.01, 0.05, 0.1]) M_opt = optical_MTF_Barten1999(u, sigma) u = np.tile(u, (6, 1)) sigma = np.tile(sigma, (6, 1)) M_opt = np.tile(M_opt, (6, 1)) np.testing.assert_almost_equal( optical_MTF_Barten1999(u, sigma), M_opt, decimal=7) u = np.reshape(u, (2, 3, 3)) sigma = np.reshape(sigma, (2, 3, 3)) M_opt = np.reshape(M_opt, (2, 3, 3)) np.testing.assert_almost_equal( optical_MTF_Barten1999(u, sigma), M_opt, decimal=7) @ignore_numpy_errors def test_nan_optical_MTF_Barten1999(self): """ Tests :func:`colour.contrast.barten1999.optical_MTF_Barten1999` definition nan support. """ cases = [-1.0, 0.0, 1.0, -np.inf, np.inf, np.nan] cases = set(permutations(cases * 3, r=3)) for case in cases: optical_MTF_Barten1999(np.array(case),
np.array(case)
numpy.array
import pandas import numpy import sys import unittest import os import tempfile import random import string import json import copy import warnings sys.path.append("..") import nPYc from generateTestDataset import generateTestDataset from nPYc.enumerations import VariableType class test_dataset_synthetic(unittest.TestCase): """ Test Dataset object functions with synthetic data """ def setUp(self): # Load empty object and populate with sythetic data. # Empty object self.data = nPYc.Dataset() validChars = string.ascii_letters + string.digits # Function to generate random strings: def randomword(length): return ''.join(random.choice(validChars) for i in range(length)) # Randomly sized intensity data self.name = randomword(10) self.noFeat = numpy.random.randint(3,100) self.noSamp = numpy.random.randint(3,100) self.data._intensityData = numpy.random.rand(self.noSamp,self.noFeat) self.data.sampleMetadata['Sample File Name'] = list(map(str, numpy.linspace(1, self.noSamp, num=self.noSamp, dtype=int))) self.data.sampleMetadata['Sample Metadata'] = [randomword(10) for x in range(0, self.noSamp)] self.data.featureMetadata['Feature Name'] = list(map(str, numpy.linspace(1, self.noFeat, num=self.noFeat, dtype=int))) self.data.featureMetadata['Feature Metadata'] = [randomword(10) for x in range(0, self.noFeat)] self.data.VariableType = VariableType.Discrete def test_nofeatures(self): self.assertEqual(self.data.noFeatures, self.noFeat) def test_name(self): self.data.name = self.name self.assertEqual(self.data.name, self.name) def test_name_raises(self): with self.assertRaises(TypeError): self.data.name = 5 def test_normalisation(self): from nPYc.utilities import normalisation with self.subTest(msg='Check initialised with a NullNormaliser'): self.assertIsInstance(self.data.Normalisation, normalisation.NullNormaliser) numpy.testing.assert_equal(self.data.intensityData, self.data._intensityData) with self.subTest(msg='Check swap to TA normaliser'): self.data.Normalisation = normalisation.TotalAreaNormaliser() taNormaliser = normalisation.TotalAreaNormaliser() numpy.testing.assert_array_equal(self.data.intensityData, taNormaliser.normalise(self.data._intensityData)) def test_normalisation_raises(self): with self.assertRaises(TypeError): self.data.Normalisation = 'Not a Normaliser' def test_nosamples(self): self.assertEqual(self.data.noSamples, self.noSamp) def test__repr__(self): pointer = id(self.data) reprString = str(self.data) testString = "<%s instance at %s, named %s, with %d samples, %d features>" % (nPYc.Dataset().__class__.__name__, pointer, nPYc.Dataset().__class__.__name__, self.noSamp, self.noFeat) self.assertEqual(reprString, testString) def test_initialisemasks(self): self.data.initialiseMasks() featureMask = numpy.squeeze(numpy.ones([self.noFeat, 1], dtype=bool)) sampleMask = numpy.squeeze(numpy.ones([self.noSamp, 1], dtype=bool)) with self.subTest(msg='Checking featureMask.'): numpy.testing.assert_equal(self.data.featureMask, featureMask) with self.subTest(msg='Checking sampleMask.'): numpy.testing.assert_equal(self.data.sampleMask, sampleMask) def test_applymasks(self): # exclude feature 2, samples 1 and 3 featureMask = numpy.squeeze(numpy.ones([self.noFeat, 1], dtype=bool)) featureMask[1] = False sampleMask = numpy.squeeze(numpy.ones([self.noSamp, 1], dtype=bool)) sampleMask[[0, 2]] = False expectedDataset = copy.deepcopy(self.data) expectedDataset.sampleMetadataExcluded = [] expectedDataset.intensityDataExcluded = [] expectedDataset.featureMetadataExcluded = [] expectedDataset.excludedFlag = [] expectedDataset.sampleMetadataExcluded.append(expectedDataset.sampleMetadata.loc[~sampleMask, :]) expectedDataset.intensityDataExcluded.append(expectedDataset.intensityData[~sampleMask, :]) expectedDataset.featureMetadataExcluded.append(expectedDataset.featureMetadata) expectedDataset.excludedFlag.append('Samples') expectedDataset.featureMetadataExcluded.append(expectedDataset.featureMetadata.loc[~featureMask, :]) expectedDataset.intensityDataExcluded.append(expectedDataset.intensityData[sampleMask, :][:, ~featureMask]) expectedDataset.sampleMetadataExcluded.append(expectedDataset.sampleMetadata.loc[sampleMask, :]) expectedDataset.sampleMetadataExcluded[1].reset_index(drop=True, inplace=True) expectedDataset.excludedFlag.append('Features') expectedDataset.intensityData = expectedDataset.intensityData[sampleMask, :][:, featureMask] expectedDataset.sampleMetadata = expectedDataset.sampleMetadata.loc[sampleMask, :] expectedDataset.sampleMetadata.reset_index(drop=True, inplace=True) expectedDataset.featureMetadata = expectedDataset.featureMetadata.loc[featureMask, :] expectedDataset.featureMetadata.reset_index(drop=True, inplace=True) expectedDataset.initialiseMasks() maskedDataset = copy.deepcopy(self.data) maskedDataset.initialiseMasks() maskedDataset.featureMask[1] = False maskedDataset.sampleMask[[0, 2]] = False maskedDataset.applyMasks() with self.subTest(msg='Checking sampleMetadata'): pandas.testing.assert_frame_equal(maskedDataset.sampleMetadata, expectedDataset.sampleMetadata) with self.subTest(msg='Checking featureMetadata'): pandas.testing.assert_frame_equal( maskedDataset.featureMetadata.reindex(sorted(maskedDataset.featureMetadata), axis=1), expectedDataset.featureMetadata.reindex(sorted(expectedDataset.featureMetadata), axis=1)) with self.subTest(msg='Checking intensityData'): numpy.testing.assert_array_equal(maskedDataset.intensityData, expectedDataset.intensityData) with self.subTest(msg='Checking sampleMetadataExcluded'): pandas.testing.assert_frame_equal(expectedDataset.sampleMetadataExcluded[0], maskedDataset.sampleMetadataExcluded[0]) pandas.testing.assert_frame_equal(expectedDataset.sampleMetadataExcluded[1], maskedDataset.sampleMetadataExcluded[1]) with self.subTest(msg='Checking intensityMetadataExcluded'): numpy.testing.assert_array_equal(expectedDataset.intensityDataExcluded[0], maskedDataset.intensityDataExcluded[0]) numpy.testing.assert_array_equal(expectedDataset.intensityDataExcluded[1], maskedDataset.intensityDataExcluded[1]) with self.subTest(msg='Checking featureMetadataExcluded'): pandas.testing.assert_frame_equal(expectedDataset.featureMetadataExcluded[0], maskedDataset.featureMetadataExcluded[0]) pandas.testing.assert_frame_equal(expectedDataset.featureMetadataExcluded[1], maskedDataset.featureMetadataExcluded[1]) with self.subTest(msg='Checking excludedFlag'): self.assertListEqual(expectedDataset.excludedFlag, maskedDataset.excludedFlag) with self.subTest(msg='Checking featureMask'): numpy.testing.assert_array_equal(expectedDataset.featureMask, maskedDataset.featureMask) with self.subTest(msg='Checking sampleMask'): numpy.testing.assert_array_equal(expectedDataset.sampleMask, maskedDataset.sampleMask) def test_updateMasks_raises(self): self.data.initialiseMasks() with self.subTest(msg='Features not implemented'): self.assertRaises(NotImplementedError, self.data.updateMasks, filterFeatures=True) with self.subTest(msg='Sample Types'): self.assertRaises(TypeError, self.data.updateMasks, sampleTypes=[1, 2, 4]) self.assertRaises(TypeError, self.data.updateMasks, sampleTypes='not a list') with self.subTest(msg='Assay Roles'): self.assertRaises(TypeError, self.data.updateMasks, assayRoles=[1, 2, 4]) self.assertRaises(TypeError, self.data.updateMasks, assayRoles='not a list') def test_updateMasks_samples(self): from nPYc.enumerations import VariableType, DatasetLevel, AssayRole, SampleType dataset = nPYc.Dataset() dataset.intensityData = numpy.zeros([18, 5],dtype=float) dataset.sampleMetadata['AssayRole'] = pandas.Series([AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference], name='AssayRole', dtype=object) dataset.sampleMetadata['SampleType'] = pandas.Series([SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.MethodReference], name='SampleType', dtype=object) with self.subTest(msg='Default Parameters'): expectedSampleMask = numpy.array([True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(withArtifactualFiltering=False, filterFeatures=False) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) with self.subTest(msg='Export SP and ER'): expectedSampleMask = numpy.array([False, False, False, False, False, True, True, True, True, True, True, False, False, False, False, False, True, False], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(withArtifactualFiltering=False, filterFeatures=False, sampleTypes=[SampleType.StudyPool, SampleType.ExternalReference], assayRoles=[AssayRole.PrecisionReference]) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) with self.subTest(msg='Export Dilution Samples only'): expectedSampleMask = numpy.array([True, True, True, True, True, False, False, False, False, False, False, False, False, False, False, False, False, False], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(withArtifactualFiltering=False, filterFeatures=False, sampleTypes=[SampleType.StudyPool], assayRoles=[AssayRole.LinearityReference]) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) with self.subTest(msg='No filtering'): expectedSampleMask = numpy.array([True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True], dtype=bool) dataset.initialiseMasks() dataset.updateMasks(withArtifactualFiltering=False, filterFeatures=False, filterSamples=False) numpy.testing.assert_array_equal(expectedSampleMask, dataset.sampleMask) def test_validateObject(self): testDataset = copy.deepcopy(self.data) # fake exclusions testDataset.sampleMetadataExcluded = [] testDataset.intensityDataExcluded = [] testDataset.featureMetadataExcluded = [] testDataset.excludedFlag = [] testDataset.sampleMetadataExcluded.append(testDataset.sampleMetadata.loc[[0, 2], :]) testDataset.intensityDataExcluded.append(testDataset.intensityData[[0, 2], :]) testDataset.featureMetadataExcluded.append(testDataset.featureMetadata) testDataset.excludedFlag.append('Samples') testDataset.featureMetadataExcluded.append(testDataset.featureMetadata.loc[3, :]) testDataset.intensityDataExcluded.append(testDataset.intensityData[:, 3]) testDataset.sampleMetadataExcluded.append(testDataset.sampleMetadata) testDataset.excludedFlag.append('Features') with self.subTest(msg='validateObject successful on empty Dataset'): goodDataset = nPYc.Dataset() self.assertTrue(goodDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True)) with self.subTest(msg='validateObject successful on basic dataset'): goodDataset = copy.deepcopy(testDataset) self.assertTrue(goodDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True)) with self.subTest(msg='check raise warnings'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'featureMetadata') with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=True) # check it generally worked self.assertEqual(result, False) # check each warning self.assertEqual(len(w), 2) assert issubclass(w[0].category, UserWarning) assert "Failure, no attribute 'self.featureMetadata'" in str(w[0].message) assert issubclass(w[1].category, UserWarning) assert "Does not conform to Dataset:" in str(w[1].message) with self.subTest(msg='check not raise warnings with raiseWarning=False'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'featureMetadata') with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered. warnings.simplefilter("always") # warning result = badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False) # check it generally worked self.assertEqual(result, False) # check each warning self.assertEqual(len(w), 0) with self.subTest(msg='if self.Attributes does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'Attributes') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes is not a dict'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes = 'not a dict' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'Log\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['Log'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'Log\'] is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['Log'] = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'dpi\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['dpi'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'dpi\'] is not an int'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['dpi'] = 'not an int' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'figureSize\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['figureSize'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'figureSize\'] is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['figureSize'] = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'figureSize\'] is not of length 2'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['figureSize'] = ['too short list'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'figureSize\'][0] is not an int or float'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['figureSize'][0] = 'not an int or float' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'figureSize\'][1] is not an int or float'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['figureSize'][1] = 'not an int or float' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'figureFormat\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['figureFormat'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'figureFormat\'] is not a str'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['figureFormat'] = 5.0 self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'histBins\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['histBins'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'histBins\'] is not an int'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['histBins'] = 'not an int' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'noFiles\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['noFiles'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'noFiles\'] is not an int'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['noFiles'] = 'not an int' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'quantiles\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['quantiles'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'quantiles\'] is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['quantiles'] = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'quantiles\'] is not of length 2'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['quantiles'] = ['too short list'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'quantiles\'][0] is not an int or float'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['quantiles'][0] = 'not an int or float' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'quantiles\'][1] is not an int or float'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['quantiles'][1] = 'not an int or float' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'sampleMetadataNotExported\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['sampleMetadataNotExported'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'sampleMetadataNotExported\'] is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['sampleMetadataNotExported'] = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'featureMetadataNotExported\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['featureMetadataNotExported'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'featureMetadataNotExported\'] is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['featureMetadataNotExported'] = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'analyticalMeasurements\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['analyticalMeasurements'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'analyticalMeasurements\'] is not a dict'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['analyticalMeasurements'] = 'not a dict' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.Attributes[\'excludeFromPlotting\'] does not exist'): badDataset = copy.deepcopy(testDataset) del badDataset.Attributes['excludeFromPlotting'] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.Attributes[\'excludeFromPlotting\'] is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.Attributes['excludeFromPlotting'] = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.VariableType does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'VariableType') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._Normalisation does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, '_Normalisation') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._Normalisation is not Normaliser ABC'): badDataset = copy.deepcopy(testDataset) badDataset._Normalisation = 'not Normaliser ABC' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._name does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, '_name') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self._name is not a str'): badDataset = copy.deepcopy(testDataset) badDataset._name = 5. self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self._intensityData does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, '_intensityData') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self._intensityData is not a numpy.ndarray'): badDataset = copy.deepcopy(testDataset) badDataset._intensityData = 5. self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.sampleMetadata does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'sampleMetadata') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata is not a pandas.DataFrame'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata = 5. self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Sample File Name column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Sample File Name'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have an AssayRole column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['AssayRole'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a SampleType column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['SampleType'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Dilution column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Dilution'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Batch column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Batch'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Correction Batch column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Correction Batch'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Run Order column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Run Order'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have an Acquired Time column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Acquired Time'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Sample Base Name column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Sample Base Name'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Sample ID column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Sample ID'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadata does not have a Exclusion Details column'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadata.drop(['Exclusion Details'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='self.featureMetadata does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'featureMetadata') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata is not a pandas.DataFrame'): badDataset = copy.deepcopy(testDataset) badDataset.featureMetadata = 5. self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadata does not have a Feature Name column'): badDataset = copy.deepcopy(testDataset) badDataset.featureMetadata.drop(['Feature Name'], axis=1, inplace=True) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(LookupError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMask does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'sampleMask') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMask is not a numpy.ndarray'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMask = 'not an array' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMask are not a bool'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMask = numpy.array([[5.]]) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMask does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'featureMask') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMask is not a numpy.ndarray'): badDataset = copy.deepcopy(testDataset) badDataset.featureMask = 'not an array' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMask are not a bool'): badDataset = copy.deepcopy(testDataset) badDataset.featureMask = numpy.array([[5.]]) self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadataExcluded does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'sampleMetadataExcluded') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.sampleMetadataExcluded is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.sampleMetadataExcluded = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.intensityDataExcluded does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'intensityDataExcluded') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.intensityDataExcluded is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.intensityDataExcluded = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.intensityDataExcluded does not have the same number of exclusions as self.sampleMetadataExcluded'): badDataset = copy.deepcopy(testDataset) badDataset.intensityDataExcluded = [[1], [1], [1]] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadataExcluded does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'featureMetadataExcluded') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadataExcluded is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.featureMetadataExcluded = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.featureMetadataExcluded does not have the same number of exclusions as self.sampleMetadataExcluded'): badDataset = copy.deepcopy(testDataset) badDataset.featureMetadataExcluded = [[1], [1], [1]] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.excludedFlag does not exist'): badDataset = copy.deepcopy(testDataset) delattr(badDataset, 'excludedFlag') self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(AttributeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.excludedFlag is not a list'): badDataset = copy.deepcopy(testDataset) badDataset.excludedFlag = 'not a list' self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(TypeError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) with self.subTest(msg='if self.excludedFlag does not have the same number of exclusions as self.sampleMetadataExcluded'): badDataset = copy.deepcopy(testDataset) badDataset.excludedFlag = [[1], [1], [1]] self.assertFalse(badDataset.validateObject(verbose=False, raiseError=False, raiseWarning=False)) self.assertRaises(ValueError, badDataset.validateObject, verbose=False, raiseError=True, raiseWarning=False) def test_exportDataset(self): with tempfile.TemporaryDirectory() as tmpdirname: tmpdirname = os.path.join(tmpdirname, 'testOutput') projectName = 'tempFile' self.data.name = projectName self.data.exportDataset(tmpdirname, saveFormat='CSV', withExclusions=False, filterMetadata=False) # Load exported data back in, cast types back to str filePath = os.path.join(tmpdirname, projectName + '_intensityData.csv') intensityData = numpy.loadtxt(filePath, dtype=float, delimiter=',') filePath = os.path.join(tmpdirname, projectName + '_featureMetadata.csv') featureMetadata = pandas.read_csv(filePath, index_col=0) featureMetadata['Feature Name'] = featureMetadata['Feature Name'].astype(str) filePath = os.path.join(tmpdirname, projectName + '_sampleMetadata.csv') sampleMetadata = pandas.read_csv(filePath, index_col=0) sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(str) numpy.testing.assert_array_almost_equal_nulp(self.data.intensityData, intensityData) pandas.testing.assert_frame_equal(self.data.featureMetadata, featureMetadata, check_dtype=False) pandas.testing.assert_frame_equal(self.data.sampleMetadata, sampleMetadata, check_dtype=False) def test_exportcsv(self): """ Check that csvs as written match the data tables in memory. """ with tempfile.TemporaryDirectory() as tmpdirname: projectName = os.path.join(tmpdirname, 'tempFile') self.data._exportCSV(projectName, escapeDelimiters=False) # Load exported data back in, cast types back to str filePath = os.path.join(tmpdirname, projectName + '_intensityData.csv') intensityData = numpy.loadtxt(filePath, dtype=float, delimiter=',') filePath = os.path.join(tmpdirname, projectName + '_featureMetadata.csv') featureMetadata = pandas.read_csv(filePath, index_col=0) featureMetadata['Feature Name'] = featureMetadata['Feature Name'].astype(str) filePath = os.path.join(tmpdirname, projectName + '_sampleMetadata.csv') sampleMetadata = pandas.read_csv(filePath, index_col=0) sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(str) numpy.testing.assert_array_almost_equal_nulp(self.data.intensityData, intensityData) pandas.testing.assert_frame_equal(self.data.featureMetadata, featureMetadata, check_dtype=False) pandas.testing.assert_frame_equal(self.data.sampleMetadata, sampleMetadata, check_dtype=False) def test_exportunifiedcsv(self): """ Verify unified csvs are written correctly. """ with tempfile.TemporaryDirectory() as tmpdirname: projectName = os.path.join(tmpdirname, 'tempFile') self.data._exportUnifiedCSV(projectName) filePath = os.path.join(projectName + '_combinedData.csv') savedData = pandas.read_csv(filePath) intensityData = savedData.iloc[self.data.featureMetadata.shape[1]:, self.data.sampleMetadata.shape[1]+1:].apply(pandas.to_numeric) # Extract feature metadata featureMetadata = savedData.iloc[:self.data.featureMetadata.shape[1], self.data.sampleMetadata.shape[1]+1:].T featureMetadata.columns = savedData.iloc[:self.data.featureMetadata.shape[1], 0] featureMetadata.reset_index(drop=True, inplace=True) featureMetadata.columns.name = None # Extract sample metadata sampleMetadata = savedData.iloc[self.data.featureMetadata.shape[1]:, :self.data.sampleMetadata.shape[1]+1] sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(int).astype(str) sampleMetadata.drop('Unnamed: 0', axis=1, inplace=True) sampleMetadata.reset_index(drop=True, inplace=True) numpy.testing.assert_array_almost_equal(self.data.intensityData, intensityData) pandas.testing.assert_frame_equal(self.data.featureMetadata, featureMetadata, check_dtype=False) pandas.testing.assert_frame_equal(self.data.sampleMetadata, sampleMetadata, check_dtype=False) def test_exportdataset_withexclusions(self): """ Test that csv files saved with exclusions match the dataset generated after exclusions are applied. """ self.data.initialiseMasks() featureToExclude = numpy.random.randint(1, self.noFeat, size=numpy.random.randint(1, int(self.noFeat / 2) + 1)) sampleToExclude = numpy.random.randint(1, self.noSamp, size=numpy.random.randint(1, int(self.noSamp / 2) + 1)) self.data.featureMask[featureToExclude] = False self.data.sampleMask[sampleToExclude] = False with tempfile.TemporaryDirectory() as tmpdirname: projectName = 'tempFile' self.data.name = projectName self.data.exportDataset(destinationPath=tmpdirname, saveFormat='CSV', withExclusions=True, filterMetadata=False) # Load exported data back in, cast types back to str filePath = os.path.join(tmpdirname, projectName + '_intensityData.csv') intensityData = numpy.loadtxt(filePath, dtype=float, delimiter=',') filePath = os.path.join(tmpdirname, projectName + '_featureMetadata.csv') featureMetadata = pandas.read_csv(filePath) featureMetadata.drop('Unnamed: 0', axis=1, inplace=True) featureMetadata['Feature Name'] = featureMetadata['Feature Name'].astype(str) filePath = os.path.join(tmpdirname, projectName + '_sampleMetadata.csv') sampleMetadata = pandas.read_csv(filePath) sampleMetadata.drop('Unnamed: 0', axis=1, inplace=True) sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(str) # Loaded data and data after _applyMasks() should match self.data.applyMasks() numpy.testing.assert_equal(self.data.intensityData, intensityData) pandas.testing.assert_frame_equal(self.data.featureMetadata, featureMetadata, check_dtype=False) pandas.testing.assert_frame_equal(self.data.sampleMetadata, sampleMetadata, check_dtype=False) def test_exportdataset_filterMetadata(self): """ Test that csv files saved with `filterMetadata` match the dataset with these sampleMetadata and featureMetadata columns removed. """ featureMetaCols = list(set(self.data.featureMetadata.columns.tolist()) - set(['Feature Name'])) sampleMetaCols = list(set(self.data.sampleMetadata.columns.tolist()) - set(['Sample File Name'])) randomFeatCols = [1] #numpy.random.randint(0, len(featureMetaCols), size=numpy.random.randint(int(len(featureMetaCols) / 2) + 1)).tolist() randomSampCols = numpy.random.randint(0, len(sampleMetaCols), size=numpy.random.randint(int(len(sampleMetaCols) / 3) + 1)).tolist() self.data.Attributes['featureMetadataNotExported'] = [x for i, x in enumerate(featureMetaCols) if i in randomFeatCols] + ['not an existing featureMeta column'] self.data.Attributes['sampleMetadataNotExported'] = [x for i, x in enumerate(sampleMetaCols) if i in randomSampCols] + ['not an existing sampleMeta column'] with tempfile.TemporaryDirectory() as tmpdirname: projectName = 'tempFile' self.data.name = projectName self.data.exportDataset(destinationPath=tmpdirname, saveFormat='UnifiedCSV', withExclusions=False, filterMetadata=True) # Load exported data back in, cast types back to str filePath = os.path.join(tmpdirname, projectName + '_combinedData.csv') savedData = pandas.read_csv(filePath) featureCols = self.data.featureMetadata.shape[1] - (len(self.data.Attributes['featureMetadataNotExported']) -1) sampleCols = self.data.sampleMetadata.shape[1]+1 - (len(self.data.Attributes['sampleMetadataNotExported']) -1) intensityData = savedData.iloc[featureCols:, sampleCols:].apply(pandas.to_numeric) # Extract feature metadata featureMetadata = savedData.iloc[:featureCols, sampleCols:].T featureMetadata.columns = savedData.iloc[:featureCols, 0] featureMetadata.reset_index(drop=True, inplace=True) featureMetadata.columns.name = None # Extract sample metadata sampleMetadata = savedData.iloc[featureCols:, :sampleCols] sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(int).astype(str) sampleMetadata.drop('Unnamed: 0', axis=1, inplace=True) sampleMetadata.reset_index(drop=True, inplace=True) featureMetadata['Feature Name'] = featureMetadata['Feature Name'].astype(str) sampleMetadata['Sample File Name'] = sampleMetadata['Sample File Name'].astype(str) # Check we did not break the data we kept numpy.testing.assert_array_almost_equal(self.data.intensityData, intensityData) for column in featureMetadata.columns: pandas.testing.assert_series_equal(self.data.featureMetadata[column], featureMetadata[column], check_dtype=False) for column in sampleMetadata.columns: pandas.testing.assert_series_equal(self.data.sampleMetadata[column], sampleMetadata[column], check_dtype=False) # Check excluded columns are not in the new tables for column in randomFeatCols: self.assertFalse(column in featureMetadata.columns) for column in randomSampCols: self.assertFalse(column in sampleMetadata.columns) def test_exportDataset_raises(self): self.assertRaises(TypeError, self.data.exportDataset, destinationPath=1) self.assertRaises(ValueError, self.data.exportDataset, saveFormat='Not known', withExclusions=False) self.assertRaises(TypeError, self.data.exportDataset, withExclusions='no') self.assertRaises(TypeError, self.data.exportDataset, filterMetadata='no') def test_print_log(self): """ Verify logged items are printed correctly. """ from datetime import datetime time1 = datetime.now() time2 = datetime(2016, 1, 30, 12, 15) time3 = datetime(2016, 10, 10, 13, 30) str1 = 'Log entry 1' str2 = 'Log entry 2' str3 = 'Log entry 3' self.data.Attributes['Log'].append([time1, str1]) self.data.Attributes['Log'].append([time2, str2]) self.data.Attributes['Log'].append([time3, str3]) output = self.data.Attributes['Log'][0][0].strftime(self.data._timestampFormat) output = output + "\t" output = output + self.data.Attributes['Log'][0][1] output = output + "\n" output = output + time1.strftime(self.data._timestampFormat) output = output + "\t" output = output + str1 output = output + "\n" output = output + time2.strftime(self.data._timestampFormat) output = output + "\t" output = output + str2 output = output + "\n" output = output + time3.strftime(self.data._timestampFormat) output = output + "\t" output = output + str3 output = output + "\n" self.assertEqual(self.data.log, output) def test_exclude_samples(self): exclusionList = numpy.random.randint(1, self.noSamp, size=numpy.random.randint(1, int(self.noSamp / 2) + 1)) exclusionList = set(exclusionList) exclusionList = list(exclusionList) self.data.initialiseMasks() exclusionsStr = list(map(str, exclusionList)) exclusionsStr.append('Not a sample in the list') missingSamples = self.data.excludeSamples(exclusionsStr, on='Sample File Name', message='Test Excluded') exclusionList = [x - 1 for x in exclusionList] expectedSampleMask = numpy.squeeze(numpy.ones([self.noSamp, 1], dtype=bool)) expectedSampleMask[numpy.ix_(exclusionList)] = False numpy.testing.assert_array_equal(self.data.sampleMask, expectedSampleMask) self.assertEqual(missingSamples, ['Not a sample in the list']) def test_exclude_samples_raises(self): exclusionList = numpy.random.randint(1, self.noSamp, size=numpy.random.randint(1, int(self.noSamp / 2) + 1)) exclusionList = set(exclusionList) exclusionList = list(exclusionList) self.data.initialiseMasks() self.assertRaises(ValueError, self.data.excludeSamples, map(str, exclusionList), on='Not a real key', message='Test Excluded') self.assertRaises(TypeError, self.data.excludeSamples, map(str, exclusionList), on='Sample File Name', message=list()) def test_exclude_features_discrete(self): exclusionList = numpy.random.randint(1, self.noFeat, size=numpy.random.randint(1, int(self.noFeat / 2) + 1)) exclusionList = set(exclusionList) exclusionList = list(exclusionList) self.data.initialiseMasks() exclusionsStr = list(map(str, exclusionList)) exclusionsStr.append('Not a feature in the list') missingFeatures = self.data.excludeFeatures(exclusionsStr, on='Feature Name', message='Test Excluded') exclusionList = [x - 1 for x in exclusionList] expectedFeatureMask = numpy.squeeze(numpy.ones([self.noFeat, 1], dtype=bool)) expectedFeatureMask[numpy.ix_(exclusionList)] = False numpy.testing.assert_array_equal(self.data.featureMask, expectedFeatureMask) self.assertEqual(missingFeatures, ['Not a feature in the list']) def test_exclude_features_spectral(self): noSamp = numpy.random.randint(5, high=10, size=None) noFeat = numpy.random.randint(500, high=1000, size=None) dataset = generateTestDataset(noSamp, noFeat, dtype='NMRDataset', variableType=VariableType.Spectral) ranges = [(1,2), (8.5, 7)] mask = numpy.ones_like(dataset.featureMask, dtype=bool) for spRange in ranges: localMask = numpy.logical_or(dataset.featureMetadata['ppm'] < min(spRange), dataset.featureMetadata['ppm'] > max(spRange)) mask = numpy.logical_and(mask, localMask) dataset.excludeFeatures(ranges, on='ppm') numpy.testing.assert_array_equal(mask, dataset.featureMask) def test_exclude_features_raises(self): exclusionList = numpy.random.randint(1, self.noFeat, size=numpy.random.randint(1, int(self.noFeat / 2) + 1)) exclusionList = set(exclusionList) exclusionList = list(exclusionList) self.data.initialiseMasks() self.assertRaises(ValueError, self.data.excludeFeatures, map(str, exclusionList), on='Not a real key', message='Test Excluded') self.assertRaises(TypeError, self.data.excludeFeatures, map(str, exclusionList), on='Feature Name', message=list()) self.data.VariableType = 'Not a real type' self.assertRaises(ValueError, self.data.excludeFeatures, ['unimportant'], on='Feature Name', message='Test Excluded') def test_exclude_features_warns(self): self.data.VariableType = VariableType.Spectral self.assertWarns(UserWarning, self.data.excludeFeatures, [(1, 1)], on='Feature Name', message='Test Excluded') def test_get_features_discrete(self): self.data.VariableType = nPYc.enumerations.VariableType.Discrete self.data.initialiseMasks() with self.subTest(msg='List of features'): # Select a random set of features featureList = numpy.random.randint(1, self.noFeat, size=numpy.random.randint(1, int(self.noFeat / 2) + 1)) featureNames = [*self.data.featureMetadata.loc[featureList, 'Feature Name']] features, measuments = self.data.getFeatures(featureNames, by='Feature Name') numpy.testing.assert_array_equal(self.data.intensityData[:, featureList], measuments) pandas.testing.assert_frame_equal(self.data.featureMetadata.iloc[featureList], features) with self.subTest(msg='Single feature'): # Select a random set of features featureList = numpy.random.randint(1, self.noFeat) featureName = self.data.featureMetadata.loc[featureList, 'Feature Name'] features, measuments = self.data.getFeatures(featureName, by='Feature Name') numpy.testing.assert_array_equal(self.data.intensityData[:, featureList], numpy.squeeze(measuments)) pandas.testing.assert_frame_equal(self.data.featureMetadata.iloc[[featureList]], features) def test_get_features_spectral(self): spectrumRange = (-5, 5) data = nPYc.Dataset() validChars = string.ascii_letters + string.digits # Function to generate random strings: # Randomly sized intensity data noFeat = numpy.random.randint(100,1000) noSamp = numpy.random.randint(3,100) data.intensityData = numpy.random.rand(noSamp,noFeat) data.sampleMetadata = pandas.DataFrame(numpy.linspace(1,noSamp, num=noSamp, dtype=int), columns=['Sample File Name']).astype(str) data.featureMetadata = pandas.DataFrame(numpy.linspace(spectrumRange[0],spectrumRange[1], num=noFeat, dtype=float), columns=['ppm']) data.VariableType = nPYc.enumerations.VariableType.Spectral data.Attributes['Feature Names'] = 'ppm' data.initialiseMasks() with self.subTest(msg='List of features'): # Select a random set of features # Between two and five ranges noRanges = numpy.random.randint(2, 5) ppmRange = list() rangeMask = numpy.zeros_like(data.featureMask) for i in range(0, noRanges): startIndex = numpy.random.randint(0, noFeat/2) endIndex = startIndex + numpy.random.randint(2, 10) if endIndex > data.noFeatures: endIndex = data.noFeatures rangeMask[startIndex:endIndex+1] = True ppmRange.append((data.featureMetadata.loc[startIndex, 'ppm'], data.featureMetadata.loc[endIndex, 'ppm'])) features, measuments = data.getFeatures(ppmRange, by='ppm') pandas.testing.assert_frame_equal(data.featureMetadata.loc[rangeMask], features) numpy.testing.assert_array_equal(data.intensityData[:, rangeMask], measuments) with self.subTest(msg='Single feature'): # Select a random set of features startIndex = numpy.random.randint(0, noFeat/2) endIndex = startIndex + numpy.random.randint(2, noFeat/10) ppmRange = (data.featureMetadata.loc[startIndex, 'ppm'], data.featureMetadata.loc[endIndex, 'ppm']) features, measuments = data.getFeatures(ppmRange, by='ppm') numpy.testing.assert_array_equal(data.intensityData[:, startIndex:endIndex+1], measuments) pandas.testing.assert_frame_equal(data.featureMetadata.iloc[startIndex:endIndex+1], features) with self.subTest(msg='Fliped range feature'): # Select a random set of features startIndex = numpy.random.randint(0, noFeat/2) endIndex = startIndex + numpy.random.randint(2, noFeat/10) ppmRange = (data.featureMetadata.loc[endIndex, 'ppm'], data.featureMetadata.loc[startIndex, 'ppm']) features, measuments = data.getFeatures(ppmRange, by='ppm') numpy.testing.assert_array_equal(data.intensityData[:, startIndex:endIndex+1], measuments) pandas.testing.assert_frame_equal(data.featureMetadata.iloc[startIndex:endIndex+1], features) def test_get_features_autofeaturename(self): self.data.initialiseMasks() featureNames = ''.join(random.choice(string.ascii_letters + string.digits) for i in range(numpy.random.randint(3,15))) self.data.VariableType = nPYc.enumerations.VariableType.Discrete self.data.Attributes['Feature Names'] = featureNames self.data.featureMetadata.rename(columns={'Feature Name': featureNames}, inplace=True) # Select a random set of features featureList = numpy.random.randint(1, self.noFeat, size=numpy.random.randint(1, int(self.noFeat / 2) + 1)) featureNames = [*self.data.featureMetadata.loc[featureList, featureNames]] features, measuments = self.data.getFeatures(featureNames) numpy.testing.assert_array_equal(self.data.intensityData[:, featureList], measuments) pandas.testing.assert_frame_equal(self.data.featureMetadata.iloc[featureList], features) def test_get_features_raises(self): self.data.VariableType = nPYc.enumerations.VariableType.Discrete self.assertRaises(KeyError, self.data.getFeatures, 'featureName', by='Banana') self.data.VariableType = 'Not an enum' self.assertRaises(TypeError, self.data.getFeatures, 'featureName', by='Feature Name') class test_dataset_loadsop(unittest.TestCase): """ Test the loading of SOP json """ def setUp(self): # Load empty object and populate with sythetic data. # Empty object self.data = nPYc.Dataset() def test_loadparameters(self): with self.subTest(msg='Checking null return for \'Generic\' SOP.'): attributes = {'Log': self.data.Attributes['Log'], "methodName": "Unknown", 'dpi': 300, 'figureFormat': 'png', 'figureSize': [11, 7], 'histBins': 100, 'noFiles': 10, 'quantiles': [25, 75], 'sampleMetadataNotExported': ["Exclusion Details"], 'featureMetadataNotExported': [], "analyticalMeasurements":{}, "excludeFromPlotting":[], "sampleTypeColours": {"StudySample": "b", "StudyPool": "g", "ExternalReference": "r", "MethodReference": "m", "ProceduralBlank": "c", "Other": "grey", "Study Sample": "b", "Study Reference": "g", "Long-Term Reference": "r", "Method Reference": "m", "Blank": "c", "Unspecified SampleType or AssayRole": "grey"} } self.assertEqual(self.data.Attributes, attributes) def test_overrideparameters(self): data = nPYc.Dataset(figureFormat='svg', squids=True) attributes = {'Log': data.Attributes['Log'], 'methodName': 'Unknown', 'dpi': 300, 'figureFormat': 'svg', 'figureSize': [11, 7], 'histBins': 100, 'noFiles': 10, 'quantiles': [25, 75], 'squids': True, 'sampleMetadataNotExported': ["Exclusion Details"], 'featureMetadataNotExported': [], "analyticalMeasurements":{}, "excludeFromPlotting":[], "sampleTypeColours": {"StudySample": "b", "StudyPool": "g", "ExternalReference": "r", "MethodReference": "m", "ProceduralBlank": "c", "Other": "grey", "Study Sample": "b", "Study Reference": "g", "Long-Term Reference": "r", "Method Reference": "m", "Blank": "c", "Unspecified SampleType or AssayRole": "grey"} } self.assertEqual(data.Attributes, attributes) def test_loadParameters_invalidsoppath(self): with tempfile.TemporaryDirectory() as tmpdirname: fakeSOPpath = os.path.join(tmpdirname, 'foldernotthere') self.assertRaises(ValueError, self.data._loadParameters, 'fakeSOP', fakeSOPpath) def test_loadParameters_invalidsop(self): with tempfile.TemporaryDirectory() as tmpdirname: self.assertRaises(ValueError, self.data._loadParameters, 'fakeSOP', None) def test_loadParameters_customsoppath(self): testSOPcontents = {'testsopkey':'testsopvalue', 'testsopkey2': 2} with tempfile.TemporaryDirectory() as tmpdirname: # Create temp SOP file with open(os.path.join(tmpdirname, 'testSOP.json'), 'w') as outfile: json.dump(testSOPcontents, outfile) self.data._loadParameters('testSOP', tmpdirname) testSOPcontents = {**self.data.Attributes, **testSOPcontents} self.assertEqual(self.data.Attributes, testSOPcontents) class test_dataset_addsampleinfo(unittest.TestCase): """ Test the loading of study designs """ def setUp(self): self.Data = nPYc.MSDataset(os.path.join('..','..','npc-standard-project','Derived_Data','UnitTest1_PCSOP.069_QI.csv'), fileType='QI') self.Data.addSampleInfo(descriptionFormat='Filenames') def test_dataset_load_npc_lims(self): """ Test we are matching samples IDs in the LIMS correctly """ samplingIDs = pandas.Series(['Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Procedural Blank Sample', 'Procedural Blank Sample', 'Study Pool Sample','Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample','Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'Study Pool Sample', 'UT1_S1_s1', 'UT1_S2_s1', 'UT1_S3_s1', 'Not specified', 'UT1_S4_s2', 'UT1_S4_s3', 'UT1_S4_s4', 'UT1_S4_s5', 'External Reference Sample', 'Study Pool Sample', 'Not specified'], name='Sample ID', dtype='str') samplingIDs = samplingIDs.astype(str) data = copy.deepcopy(self.Data) data.addSampleInfo(descriptionFormat='NPC LIMS', filePath=os.path.join('..','..','npc-standard-project','Derived_Worklists','UnitTest1_MS_serum_PCSOP.069.csv')) pandas.testing.assert_series_equal(data.sampleMetadata['Sample ID'], samplingIDs) def test_dataset_load_npc_subjectinfo_columns(self): columns = ['Person responsible', 'Sampling Protocol', 'Creatinine (mM)', 'Glucose (mM)', 'Class', 'Date of Birth', 'Gender', 'Further Subject info?', 'Environmental measures', 'SubjectInfoData'] data = copy.deepcopy(self.Data) data.addSampleInfo(descriptionFormat='NPC LIMS', filePath=os.path.join('..','..','npc-standard-project','Derived_Worklists','UnitTest1_MS_serum_PCSOP.069.csv')) data.addSampleInfo(descriptionFormat='NPC Subject Info', filePath=os.path.join('..','..','npc-standard-project','Project_Description','UnitTest1_metadata_PCDOC.014.xlsx')) data.addSampleInfo(descriptionFormat='NPC Subject Info', filePath=os.path.join('..','..','npc-standard-project','Project_Description','UnitTest1_metadata_PCDOC.014.xlsx')) for column in columns: self.subTest(msg='Checking ' + column) self.assertIn(column, data.sampleMetadata.keys()) def test_dataset_load_csv(self): from nPYc.enumerations import AssayRole, SampleType data = nPYc.MSDataset(os.path.join('..','..','npc-standard-project','Derived_Data','UnitTest1_PCSOP.069_QI.csv'), fileType='QI') data.addSampleInfo(descriptionFormat='Basic CSV', filePath=os.path.join('..', '..','npc-standard-project','Derived_Worklists', 'UnitTest1_metadata_basic_csv.csv')) expectedSampleMask = numpy.array([True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, True, False], dtype=bool) expectedSampleMetadata = pandas.DataFrame(0, index=numpy.arange(115), columns=['Sample File Name', 'Sample Base Name', 'Batch', 'Correction Batch', 'Acquired Time', 'Run Order', 'Exclusion Details', 'Metadata Available', 'Sample ID', 'AssayRole', 'SampleType', 'Dilution']) expectedSampleMetadata['Sample File Name'] = ['UnitTest1_LPOS_ToF02_B1SRD01', 'UnitTest1_LPOS_ToF02_B1SRD02', 'UnitTest1_LPOS_ToF02_B1SRD03', 'UnitTest1_LPOS_ToF02_B1SRD04', 'UnitTest1_LPOS_ToF02_B1SRD05', 'UnitTest1_LPOS_ToF02_B1SRD06', 'UnitTest1_LPOS_ToF02_B1SRD07', 'UnitTest1_LPOS_ToF02_B1SRD08', 'UnitTest1_LPOS_ToF02_B1SRD09', 'UnitTest1_LPOS_ToF02_B1SRD10', 'UnitTest1_LPOS_ToF02_B1SRD11', 'UnitTest1_LPOS_ToF02_B1SRD12', 'UnitTest1_LPOS_ToF02_B1SRD13', 'UnitTest1_LPOS_ToF02_B1SRD14', 'UnitTest1_LPOS_ToF02_B1SRD15', 'UnitTest1_LPOS_ToF02_B1SRD16', 'UnitTest1_LPOS_ToF02_B1SRD17', 'UnitTest1_LPOS_ToF02_B1SRD18', 'UnitTest1_LPOS_ToF02_B1SRD19', 'UnitTest1_LPOS_ToF02_B1SRD20', 'UnitTest1_LPOS_ToF02_B1SRD21', 'UnitTest1_LPOS_ToF02_B1SRD22', 'UnitTest1_LPOS_ToF02_B1SRD23', 'UnitTest1_LPOS_ToF02_B1SRD24', 'UnitTest1_LPOS_ToF02_B1SRD25', 'UnitTest1_LPOS_ToF02_B1SRD26', 'UnitTest1_LPOS_ToF02_B1SRD27', 'UnitTest1_LPOS_ToF02_B1SRD28', 'UnitTest1_LPOS_ToF02_B1SRD29', 'UnitTest1_LPOS_ToF02_B1SRD30', 'UnitTest1_LPOS_ToF02_B1SRD31', 'UnitTest1_LPOS_ToF02_B1SRD32', 'UnitTest1_LPOS_ToF02_B1SRD33', 'UnitTest1_LPOS_ToF02_B1SRD34', 'UnitTest1_LPOS_ToF02_B1SRD35', 'UnitTest1_LPOS_ToF02_B1SRD36', 'UnitTest1_LPOS_ToF02_B1SRD37', 'UnitTest1_LPOS_ToF02_B1SRD38', 'UnitTest1_LPOS_ToF02_B1SRD39', 'UnitTest1_LPOS_ToF02_B1SRD40', 'UnitTest1_LPOS_ToF02_B1SRD41', 'UnitTest1_LPOS_ToF02_B1SRD42', 'UnitTest1_LPOS_ToF02_B1SRD43', 'UnitTest1_LPOS_ToF02_B1SRD44', 'UnitTest1_LPOS_ToF02_B1SRD45', 'UnitTest1_LPOS_ToF02_B1SRD46', 'UnitTest1_LPOS_ToF02_B1SRD47', 'UnitTest1_LPOS_ToF02_B1SRD48', 'UnitTest1_LPOS_ToF02_B1SRD49', 'UnitTest1_LPOS_ToF02_B1SRD50', 'UnitTest1_LPOS_ToF02_B1SRD51', 'UnitTest1_LPOS_ToF02_B1SRD52', 'UnitTest1_LPOS_ToF02_B1SRD53', 'UnitTest1_LPOS_ToF02_B1SRD54', 'UnitTest1_LPOS_ToF02_B1SRD55', 'UnitTest1_LPOS_ToF02_B1SRD56', 'UnitTest1_LPOS_ToF02_B1SRD57', 'UnitTest1_LPOS_ToF02_B1SRD58', 'UnitTest1_LPOS_ToF02_B1SRD59', 'UnitTest1_LPOS_ToF02_B1SRD60', 'UnitTest1_LPOS_ToF02_B1SRD61', 'UnitTest1_LPOS_ToF02_B1SRD62', 'UnitTest1_LPOS_ToF02_B1SRD63', 'UnitTest1_LPOS_ToF02_B1SRD64', 'UnitTest1_LPOS_ToF02_B1SRD65', 'UnitTest1_LPOS_ToF02_B1SRD66', 'UnitTest1_LPOS_ToF02_B1SRD67', 'UnitTest1_LPOS_ToF02_B1SRD68', 'UnitTest1_LPOS_ToF02_B1SRD69', 'UnitTest1_LPOS_ToF02_B1SRD70', 'UnitTest1_LPOS_ToF02_B1SRD71', 'UnitTest1_LPOS_ToF02_B1SRD72', 'UnitTest1_LPOS_ToF02_B1SRD73', 'UnitTest1_LPOS_ToF02_B1SRD74', 'UnitTest1_LPOS_ToF02_B1SRD75', 'UnitTest1_LPOS_ToF02_B1SRD76', 'UnitTest1_LPOS_ToF02_B1SRD77', 'UnitTest1_LPOS_ToF02_B1SRD78', 'UnitTest1_LPOS_ToF02_B1SRD79', 'UnitTest1_LPOS_ToF02_B1SRD80', 'UnitTest1_LPOS_ToF02_B1SRD81', 'UnitTest1_LPOS_ToF02_B1SRD82', 'UnitTest1_LPOS_ToF02_B1SRD83', 'UnitTest1_LPOS_ToF02_B1SRD84', 'UnitTest1_LPOS_ToF02_B1SRD85', 'UnitTest1_LPOS_ToF02_B1SRD86', 'UnitTest1_LPOS_ToF02_B1SRD87', 'UnitTest1_LPOS_ToF02_B1SRD88', 'UnitTest1_LPOS_ToF02_B1SRD89', 'UnitTest1_LPOS_ToF02_B1SRD90', 'UnitTest1_LPOS_ToF02_B1SRD91', 'UnitTest1_LPOS_ToF02_B1SRD92', 'UnitTest1_LPOS_ToF02_Blank01', 'UnitTest1_LPOS_ToF02_Blank02', 'UnitTest1_LPOS_ToF02_B1E1_SR', 'UnitTest1_LPOS_ToF02_B1E2_SR', 'UnitTest1_LPOS_ToF02_B1E3_SR', 'UnitTest1_LPOS_ToF02_B1E4_SR', 'UnitTest1_LPOS_ToF02_B1E5_SR', 'UnitTest1_LPOS_ToF02_B1S1_SR', 'UnitTest1_LPOS_ToF02_B1S2_SR', 'UnitTest1_LPOS_ToF02_B1S3_SR', 'UnitTest1_LPOS_ToF02_B1S4_SR', 'UnitTest1_LPOS_ToF02_B1S5_SR', 'UnitTest1_LPOS_ToF02_S1W01', 'UnitTest1_LPOS_ToF02_S1W02', 'UnitTest1_LPOS_ToF02_S1W03', 'UnitTest1_LPOS_ToF02_S1W04', 'UnitTest1_LPOS_ToF02_S1W05', 'UnitTest1_LPOS_ToF02_S1W06', 'UnitTest1_LPOS_ToF02_S1W07', 'UnitTest1_LPOS_ToF02_S1W08_x', 'UnitTest1_LPOS_ToF02_S1W11_LTR', 'UnitTest1_LPOS_ToF02_S1W12_SR', 'UnitTest1_LPOS_ToF02_ERROR'] expectedSampleMetadata['Sample Base Name'] = expectedSampleMetadata['Sample File Name'] expectedSampleMetadata['Metadata Available'] = True expectedSampleMetadata['Batch'] = numpy.nan expectedSampleMetadata['Correction Batch'] = [numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan] expectedSampleMetadata['Acquired Time'] = [numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan] expectedSampleMetadata['Run Order'] = [numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan] expectedSampleMetadata['Exclusion Details'] = [numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan] expectedSampleMetadata['Sample ID'] = [numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, numpy.nan, 'UT1_S1_s1', 'UT1_S2_s1', 'UT1_S3_s1', 'UT1_S4_s1', 'UT1_S4_s2', 'UT1_S4_s3', 'UT1_S4_s4', 'UT1_S4_s5', 'LTR', 'SR', numpy.nan] expectedSampleMetadata['AssayRole'] = [AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.LinearityReference, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.PrecisionReference, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.Assay, AssayRole.PrecisionReference, AssayRole.PrecisionReference, numpy.nan] expectedSampleMetadata['SampleType'] = [SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.ProceduralBlank, SampleType.ProceduralBlank, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudyPool, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.StudySample, SampleType.ExternalReference, SampleType.StudyPool, numpy.nan] expectedSampleMetadata['Dilution'] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 40, 40, 40, 60, 60, 60, 80, 80, 80, 80, 80, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 40, 40, 40, 60, 60, 60, 80, 80, 80, 80, 80, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 0, 0, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] pandas.testing.assert_frame_equal(expectedSampleMetadata, data.sampleMetadata, check_dtype=False) numpy.testing.assert_array_equal(expectedSampleMask, data.sampleMask) def test_dataset_load_csv_raises(self): with tempfile.TemporaryDirectory() as tmpdirname: # Generate a CSV with no 'Sample File Name' column testDF = pandas.DataFrame([[1,2,3],[1,2,3]], columns={'a', 'b', 'c'}) testDF.to_csv(os.path.join(tmpdirname, 'tmp.csv')) data = nPYc.Dataset() self.assertRaises(KeyError, data.addSampleInfo, descriptionFormat='Basic CSV', filePath=os.path.join(tmpdirname, 'tmp.csv')) def test_dataset_load_isatab(self): columns = ['Sample File Name', 'Sample Base Name', 'Sample Base Name Normalised', 'Sampling ID', 'Assay data name', 'Dilution', 'Run Order', 'Acquired Time', 'Instrument', 'Chromatography', 'Ionisation', 'Batch', 'Plate', 'Well', 'Correction Batch', 'Detector', 'Subject ID', 'Age', 'Gender', 'Status', 'Sample Name', 'Assay data name Normalised', 'Exclusion Details', 'Study Sample', 'Long-Term Reference', 'Study Reference', 'Method Reference', 'Dilution Series', 'LIMS Marked Missing', 'Data Present', 'LIMS Present', 'Skipped', 'AssayRole', 'SampleType', 'SubjectInfoData'] data = copy.deepcopy(self.Data) with warnings.catch_warnings(): warnings.simplefilter('ignore', UserWarning) data.addSampleInfo(descriptionFormat='ISATAB', filePath=os.path.join('..', '..', 'npc-standard-project', 'Project_Description', 'ISATAB-Unit-Test'), studyID=1, assay='MS', assayID=1) for column in columns: self.subTest(msg='Checking ' + column) self.assertIn(column, data.sampleMetadata.columns) def test_dataset_parsefilename(self): data = nPYc.Dataset() self.assertRaises(NotImplementedError, data.addSampleInfo, descriptionFormat='Filenames', filenameSpec='') def test_dataset_raises(self): data = nPYc.Dataset() self.assertRaises(NotImplementedError, data.addSampleInfo, descriptionFormat='Not an understood format', filenameSpec='') class test_dataset_addfeatureinfo(unittest.TestCase): def test_dataset_add_reference_ranges(self): """ Assume the addReferenceRanges function is well tested - just check the expected columns appear """ data = nPYc.Dataset() referencePath = os.path.join('..', 'nPYc', 'StudyDesigns', 'BI-LISA_reference_ranges.json') data.featureMetadata = pandas.DataFrame(['TPTG', 'TPCH', 'TPFC', 'TPA1', 'TPA2', 'TPAB', 'VLTG', 'VLCH', 'VLFC', 'VLPL', 'VLAB'], columns=['Feature Name']) data.addFeatureInfo(descriptionFormat='Reference Ranges', filePath=referencePath) columns = ['Unit', 'Upper Reference Bound', 'Upper Reference Value', 'Lower Reference Bound', 'Lower Reference Value'] for column in columns: self.subTest(msg='Checking ' + column) self.assertIn(column, data.featureMetadata.columns) def test_dataset_add_feature_info(self): data = nPYc.Dataset() csvFilePath = os.path.join('..', '..', 'npc-standard-project', 'Derived_Data', 'UnitTest1_PCSOP.069_featureMetadata.csv') data.featureMetadata = pandas.DataFrame( ['3.17_262.0378m/z', '3.17_293.1812m/z', '3.17_145.0686m/z', '3.17_258.1033m/z'], columns=['Feature Name']) data.addFeatureInfo(descriptionFormat=None, filePath=csvFilePath, featureId='Feature Name') expectedFeatureMetadata = pandas.DataFrame({'Feature Name': ['3.17_262.0378m/z', '3.17_293.1812m/z', '3.17_145.0686m/z', '3.17_258.1033m/z'], 'Retention Time': [3.17, 3.17, 3.17, 3.17], 'm/z': [262.0378, 293.1812, 145.0686, 258.1033]}) pandas.testing.assert_frame_equal(expectedFeatureMetadata, data.featureMetadata, check_dtype=False) class test_dataset_initialiseFromCSV(unittest.TestCase): def test_initialiseFromCSV(self): noSamp =
numpy.random.randint(5, high=10, size=None)
numpy.random.randint
import sys sys.path.insert(1, '..') import unittest import numpy as np from numpy.testing import assert_array_almost_equal, assert_array_equal from findiff.operators import FinDiff, Identity, Coef from findiff.pde import * #import matplotlib.pyplot as plt #from mpl_toolkits import mplot3d class TestPDE(unittest.TestCase): def test_1d_dirichlet_hom(self): shape = (11,) x = np.linspace(0, 1, 11) dx = x[1] - x[0] L = FinDiff(0, dx, 2) bc = BoundaryConditions(shape) bc[0] = 1 bc[-1] = 2 pde = PDE(L, np.zeros_like(x), bc) u = pde.solve() expected = x + 1 np.testing.assert_array_almost_equal(expected, u) def test_1d_dirichlet_inhom(self): nx = 21 shape = (nx,) x = np.linspace(0, 1, nx) dx = x[1] - x[0] L = FinDiff(0, dx, 2) bc = BoundaryConditions(shape) bc[0] = 1 bc[-1] = 2 pde = PDE(L, 6*x, bc) u = pde.solve() expected = x**3 + 1 np.testing.assert_array_almost_equal(expected, u) def test_1d_neumann_hom(self): nx = 11 shape = (nx,) x = np.linspace(0, 1, nx) dx = x[1] - x[0] L = FinDiff(0, dx, 2) bc = BoundaryConditions(shape) bc[0] = 1 bc[-1] = FinDiff(0, dx, 1), 2 pde = PDE(L, np.zeros_like(x), bc) u = pde.solve() expected = 2*x + 1 np.testing.assert_array_almost_equal(expected, u) def test_2d_dirichlet_hom(self): shape = (11, 11) x, y = np.linspace(0, 1, shape[0]), np.linspace(0, 1, shape[1]) dx, dy = x[1] - x[0], y[1] - y[0] X, Y = np.meshgrid(x, y, indexing='ij') L = FinDiff(0, dx, 2) + FinDiff(1, dy, 2) expected = X + 1 bc = BoundaryConditions(shape) bc[0, :] = 1 bc[-1, :] = 2 bc[:, 0] = X + 1 bc[:, -1] = X + 1 pde = PDE(L, np.zeros_like(X), bc) u = pde.solve() np.testing.assert_array_almost_equal(expected, u) def test_2d_dirichlet_inhom(self): shape = (11, 11) x, y = np.linspace(0, 1, shape[0]), np.linspace(0, 1, shape[1]) dx, dy = x[1] - x[0], y[1] - y[0] X, Y = np.meshgrid(x, y, indexing='ij') L = FinDiff(0, dx, 2) + FinDiff(1, dy, 2) expected = X**3 + Y**3 + 1 f = 6*X + 6*Y bc = BoundaryConditions(shape) bc[0, :] = expected bc[-1, :] = expected bc[:, 0] = expected bc[:, -1] = expected pde = PDE(L, f, bc) u = pde.solve()
np.testing.assert_array_almost_equal(expected, u)
numpy.testing.assert_array_almost_equal
#%pylab inline from __future__ import print_function import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D #self.encoded_path = "./encoded_train_50.out" #self.data_path = "./pp_fs-peptide.npy" class Plot(object): def _init__(self, encoded_path=None, data_path=None): """ encoded_path : string - path of the encoded .out file. Should be located in ./output_data data_path : string - path of the data .npy. Should be located in ./output_data """ if(encoded_path == None or data_path == None): raise ValueError("Must input encoded_path and data_path as parameters.") if (not os.path.exists(encoded_path)): raise Exception("Path " + str(encoded_path) + " does not exist!") if (not os.path.exists(data_path)): raise Exception("Path " + str(data_path) + " does not exist!") self.encoded_path = encoded_path self.data_path = data_path def encode_images(self): print("Encode image for train data") # encode images # project inputs on the latent space self.x_pred_encoded = np.loadtxt(self.encoded_path) #x_pred_encoded = x_pred_encoded[10000:110000] data_input = np.load(self.data_path) #data_input = data_input[10000:110000] label = data_input.sum(axis=1) label = np.reshape(label, (len(label), 1)) sep_train = 0.8 sep_test = 0.9 sep_pred = 1 sep_1 = int(data_input.shape[0]*sep_train) sep_2 = int(data_input.shape[0]*sep_test) sep_3 = int(data_input.shape[0]*sep_pred) y_train_0 = label[:sep_1,0] self.y_train_2 = label[:sep_1,0] y_test_0 = label[sep_1:sep_2,0] y_test_2 = label[sep_1:sep_2,0] y_pred_0 = label[sep_2:sep_3,0] y_pred_2 = label[sep_2:sep_3,0] def plot(self): # plot 1: Dmax = self.y_train_2 [n,s] = np.histogram(Dmax, 11) d = np.digitize(Dmax, s) #[n,s] = np.histogram(-np.log10(Dmax), 11) #d = np.digitize(-np.log10(Dmax), s) cmi = plt.get_cmap('jet') cNorm = mpl.colors.Normalize(vmin=min(Dmax), vmax=max(Dmax)) #cNorm = mpl.colors.Normalize(vmin=140, vmax=240) scalarMap = mpl.cm.ScalarMappable(norm=cNorm, cmap=cmi) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') # scatter3D requires a 1D array for x, y, and z # ravel() converts the 100x100 array into a 1x10000 array p = ax.scatter3D(np.ravel(self.x_pred_encoded[:, 0]), np.ravel(self.x_pred_encoded[:, 1]),
np.ravel(self.x_pred_encoded[:, 2])
numpy.ravel
import os from file_lengths import FileLengths import pandas as pd import numpy as np import json #path = os.path.abspath('../file_lengths.json') fl = FileLengths() df = np.array(fl.file_lengths) #file_lengths = json.loads(path) df = np.delete(df, 1, axis=1) df = np.squeeze(df) df = df.astype(np.float) #35 seconds as a cutoff hist, bin_edges =
np.histogram(df, bins=20, range=(0,40))
numpy.histogram
# -- coding: utf-8 -- # Copyright 2018 <NAME> <<EMAIL>> """ Library to handle SPM data. This is the core module of all images retrieved by SPM and ToF-SIMS. """ import numpy as np import matplotlib.pyplot as plt import scipy import scipy.ndimage import scipy.optimize import skimage import skimage.exposure import skimage.filters import scipy.interpolate from skimage import transform as tf import copy from .utils import CDF, funit import sys import matplotlib as mpl import warnings from .utils.misc import PB try: from skimage.filters import threshold_local except: # For compatibility with old versions of skimage from skimage.filters import threshold_adaptive as threshold_local class SPM_image: """ Main class to handle SPM images. This class contains the pixels data of the images as well as it's real size. It also provides a lot of tools to correct and perform various analysis and tasks on the image. """ def __init__(self, BIN, channel='Topography', corr=None, real=None, zscale='?', _type='Unknown'): """ Create a new SPM_image Parameters ---------- BIN : 2D numpy array The pixel values of the image as a 2D numpy array channel : string The name of the channel. What does the image represents? corr : string or None 'slope' : correct the SPM image for its slope (see pySPM.SPM.SPM_image.correct_slope) 'lines' : correct the SPM image for its lines (see pySPM.SPM.SPM_image.correct_lines) 'plane' : correct the SPM image by plane fitting (see pySPM.SPM.SPM_image.correct_plane) real : None or dictionary Information about the real size of the image {'x':width,'y':height,'unit':unit_name} zscale : string Unit used to describe the z-scale. (units of the data of BIN) _type : string represent the type of measurement """ self.channel = channel self.direction = 'Unknown' self.size = {'pixels': {'x': BIN.shape[1], 'y': BIN.shape[0]}} if not real is None: self.size['real'] = real else: self.size['real'] = {'unit': 'pixels', 'x': BIN.shape[1], 'y': BIN.shape[0]} if not 'unit' in self.size['real']: self.size['real']['unit'] = 'px' self.pixels = BIN self.type = _type self.zscale = zscale if corr is not None: if corr.lower() == 'slope': self.correct_slope() elif corr.lower() == 'lines': self.correct_lines() elif corr.lower() == 'plane': self.correct_plane() def __add__(self, b): """ Add up two images. This is a low level function and no check is performed to proof that both images have the same size. """ New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels += b.pixels New.channel += " + "+b.channel elif type(b) in [int, float]: New.pixels += b New.channels += " + {:.2f}".format(b) return New def __sub__(self, b): """ Subtract two images. This is a low level function and no check is performed to proof that both images have the same size. """ New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels -= b.pixels New.channel += " - "+b.channel elif type(b) in [int, float]: New.pixels -= b New.channels += " - {:.2f}".format(b) return New def __mul__(self, b): New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels *= b.pixels New.channel = "({})*{}".format(New.channel,b.channel) elif type(b) in [int, float]: New.pixels *= b New.channels = "({})*{:.2f}".format(New.channel,b) return New def __div__(self, b): New = copy.deepcopy(self) if isinstance(b, SPM_image): New.pixels /= b.pixels New.channel = "({})/{}".format(New.channel,b.channel) elif type(b) in [int, float]: New.pixels /= b New.channels = "({})/{:.2f}".format(New.channel,b) return New def pxs(self): """ Return the pixel size """ fxy = {xy: funit(self.size['real'][xy], self.size['real']['unit']) for xy in 'xy'} return [(fxy[xy]['value']/self.size['pixels'][xy], fxy[xy]['unit']) for xy in 'xy'] def add_scale(self, length, ax=None, height=20, margin=5, color='w', loc=4, text=True, pixels=None, fontsize=20, edge_color='k', edge_width=3): """ Display a scale marker on an existing image Parameters ---------- length : float The length of the scale in real units ax : matplotlib axis if None the current axis will be taken (plt.gca()) height : int The height of the scale bar in pixels color : string The color used to display the scale bar loc : int The location of the scale bar. 1 : top right 2 : top left 3 : bottom left 4 : bottom right text : bool display the size of the scale on top of it? pixels : bool Is the image plotted in ax with a x/y scale in pixels? fontsize : float The fontsize used to display the text Example ------- >>> img = pySPM.SPM_image() >>> img.show() >>> img.add_scale(50e-6, pixels=False); Add a scale of 50 μm on an image displayed with real units >>> img = pySPM.SPM_image() >>> img.show(pixels=True) >>> img.add_scale(50e-6); Add a scale of 50 μm on an image displayed in pixels """ import matplotlib.patches import matplotlib.patheffects as PathEffects fL = length/self.size['real']['x'] L = self.size['pixels']['x']*fL fH = height/self.size['pixels']['y'] if ax is None: ax = plt.gca() if pixels is None: if hasattr(ax, 'isPixel'): pixels = ax.isPixel else: pixels = False flipped = False if hasattr(ax, 'flipped'): flipped = ax.flipped if type(loc) is int: assert loc in [1, 2, 3, 4] ref = ax.transAxes.transform({1:(1-fL,0),2:(0,0),3:(0,1-fH),4:(1-fL,1-fH)}[loc]) if loc in [2,3]: ref[0] += margin else: ref[0] -= margin if loc in [1,2]: ref[1] += margin else: ref[1] -= margin else: assert type(loc) in [tuple, list] assert len(loc)==2 ref = ax.transData.transform(loc) + ax.transAxes.transform((-fL/2,-fH/2)) - ax.transAxes.transform((0,0)) inv = ax.transData.inverted() ref = inv.transform(ref) WH = inv.transform(ax.transAxes.transform((fL,fH)))-inv.transform(ax.transAxes.transform((0,0))) rect = ax.add_patch(matplotlib.patches.Rectangle(ref, width=WH[0], height=WH[1], color=color)) if text: r = funit(length, self.size['real']['unit']) if r['unit'][0] == 'u': r['unit'] = '$\\mu$' + r['unit'][1:] if loc in [3,4]: label_ref = [ref[0]+WH[0]/2, ref[1]] ann = ax.annotate("{value:.01f} {unit}".format(**r), label_ref, color=color, fontsize=fontsize, va="top", ha="center") else: label_ref = [ref[0]+WH[0]/2, ref[1]+WH[1]] ann = ax.annotate("{value:.01f} {unit}".format(**r), label_ref, color=color, fontsize=fontsize, va="bottom", ha="center") ann.set_path_effects([PathEffects.withStroke(linewidth=edge_width, foreground=edge_color)]) def offset(self, profiles, width=1, ax=None, col='w', inline=True, **kargs): """ Correct an image by offsetting each row individually in order that the lines passed as argument in "profiles" becomes flat. Parameters ---------- profiles: list of list each sublist represent a line as [x1, y1, x2, y2] in pixels known to be flat width : int, float the line width in pixels used for better statistics ax : matplotlib axis or None If not None, axis in which the profiles will be plotted in inline : bool If True perform the correction on the current object, otherwise return a new image col : string matrplotlib color used to plot the profiles (if ax is not None) labels : bool display a label number with each profile **kargs: arguments passed further to get_row_profile. axPixels: set to True if you axis "ax" have the data plotted in pixel instead of real distance Example ------- Exampel if the data are plotted in pixels: >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topoC = topo.offset([[150, 0, 220, 255]], inline=False,axPixels=True) >>> topo.show(pixels=True, ax=ax[0]) >>> topoC.show(ax=ax[1]); Example if the data are plotted with real units >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topoC = topo.offset([[150, 0, 220, 255]], inline=False) >>> topo.show(ax=ax[0]) >>> topoC.show(ax=ax[1]); """ offset = np.zeros(self.pixels.shape[0]) counts = np.zeros(self.pixels.shape[0]) for i, p in enumerate(profiles): if kargs.get('labels', False): y, D = self.get_row_profile(*p, width=width, ax=ax, col=col, label=str(i), **kargs) else: y, D = self.get_row_profile(*p, width=width, ax=ax, col=col, **kargs) counts[y] += 1 offset[y[1:]] += np.diff(D) counts[counts == 0] = 1 offset = offset/counts offset = np.cumsum(offset) offset = offset.reshape((self.pixels.shape[0], 1)) if inline: self.pixels = self.pixels - \ np.flipud(np.repeat(offset, self.pixels.shape[1], axis=1)) return self else: C = copy.deepcopy(self) C.pixels = self.pixels - \ np.flipud(np.repeat(offset, self.pixels.shape[1], axis=1)) return C def pxRect2Real(self, xy, width, height): """ Transform a xy, width, height data in pixels to an equivalentz one with real units """ ll = self.px2real(xy[0],xy[1]) ur = self.px2real(xy[0]+width,xy[1]+height) return ll,ur[0]-ll[0],ur[1]-ll[1] def get_row_profile(self, x1, y1, x2, y2, width=1, col='C1', ax=None, alpha=0, **kargs): """ Get a profile per row along a given line. This function is mainly useful for the function offset. x1, y1, x2, y2: int coordinates of the line. width : int the width of the line used for statistics (in pixels) col: string color used to plot the line position ax : matplotlib axis axis in which the lines position will plotted alpha : float The alpha channel of the line color (≥0 and ≤1) **kargs: line style arguments: linewidth, color and linestyle axis units: axPixels set to True if ax has the image plotted in pixels. Returns ------- Y coordinates : 1D numpy array distance along the profile starting at 0 Z coordinates : 1D numpy array profile """ plotargs = { key: kargs[key] for key in ['linewidth', 'color', 'linestyle'] if key in kargs } if y2 < y1: x1, y1, x2, y2 = x2, y2, x1, y1 if ax is not None: d = np.sqrt((x2-x1)**2+(y2-y1)**2) dx = -width/2*(y2-y1)/d dy = width/2*(x2-x1)/d if kargs.get('axPixels', False): ax.plot([x1-dx, x1+dx], [y1-dy, y1+dy], col) ax.plot([x2-dx, x2+dx], [y2-dy, y2+dy], col) ax.plot((x1, x2), (y1, y2), col, **plotargs) if kargs.get('label', False): ax.annotate(kargs.get('label'), (.5*(x1+x2),.5*(y1+y2)), color=col) if alpha>0: import matplotlib.patches ax.add_patch(matplotlib.patches.Rectangle((x1+dx,y1+dy),width, d, -np.degrees(np.arctan2(x2-x1,y2-y1)), color=col, alpha=alpha)) else: h = self.pixels.shape[0] pxs = self.size['real']['x'] / self.pixels.shape[1] pys = self.size['real']['y'] / h ax.plot([(x1-dx)*pxs, (x1+dx)*pxs], [(h-(y1-dy))*pys, (h-(y1+dy))*pys], col) ax.plot([(x2-dx)*pxs, (x2+dx)*pxs], [(h-(y2-dy))*pys, (h-(y2+dy))*pys], col) ax.plot((x1*pxs, x2*pxs), ((h-y1)*pys, (h-y2)*pys), col, **plotargs) if kargs.get('label', False): ax.annotate(kargs.get('label'), (.5*(x1+x2)*pxs,.5*(2*h-y1-y2)*pys), color=col) if alpha>0: import matplotlib.patches W = np.sqrt((2*dx*pxs)**2+(2*dy*pys)**2) L = np.sqrt(((x2-x1)*pxs)**2+((y2-y1)*pys)**2) ax.add_patch(matplotlib.patches.Rectangle(((x1+dx)*pxs,(y1+dy)*pys), W, L, -np.degrees(np.arctan2((x2-x1)*pxs,(y2-y1)*pys)), color=col, alpha=alpha)) x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) I = scipy.interpolate.interp2d(x, y, np.flipud(self.pixels)) Y = np.arange(y1, y2+1) V = np.zeros(len(Y)) for w in np.arange(width): xl = np.linspace(x1-(width-1)/2.+w, x2-(width-1)/2.+w, len(Y)) for i in range(len(Y)): Z = I(xl[i], Y[i]) V[i] += Z return Y, V/width def correct_median_diff(self, inline=True): """ Correct the image with the median difference """ N = self.pixels # Difference of the pixel between two consecutive row N2 = np.vstack([N[1:, :], N[-1:, :]])-N # Take the median of the difference and cumsum them C = np.cumsum(np.median(N2, axis=1)) # Extend the vector to a matrix (row copy) D = np.tile(C, (N.shape[0], 1)).T if inline: self.pixels = N-D else: New = copy.deepcopy(self) New.pixels = N-D return New def correct_slope(self, inline=True): """ Correct the image by subtracting a fitted slope along the y-axis """ s = np.mean(self.pixels, axis=1) i = np.arange(len(s)) fit = np.polyfit(i, s, 1) if inline: self.pixels -= np.tile(np.polyval(fit, i).reshape(len(i), 1), len(i)) return self else: New = copy.deepcopy(self) New.pixels -= np.tile(np.polyval(fit, i).reshape(len(i), 1), len(i)) return New def correct_plane(self, inline=True, mask=None): """ Correct the image by subtracting a fitted 2D-plane on the data Parameters ---------- inline : bool If True the data of the current image will be updated otherwise a new image is created mask : None or 2D numpy array If not None define on which pixels the data should be taken. """ x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) X0, Y0 = np.meshgrid(x, y) Z0 = self.pixels if mask is not None: X = X0[mask] Y = Y0[mask] Z = Z0[mask] else: X = X0 Y = Y0 Z = Z0 A = np.column_stack((np.ones(Z.ravel().size), X.ravel(), Y.ravel())) c, resid, rank, sigma = np.linalg.lstsq(A, Z.ravel(), rcond=-1) if inline: self.pixels -= c[0] * \ np.ones(self.pixels.shape) + c[1] * X0 + c[2] * Y0 return self else: New = copy.deepcopy(self) New.pixels -= c[0]*np.ones(self.pixels.shape) + c[1] * X0 + c[2] * Y0 return New def correct_lines(self, inline=True): """ Subtract the average of each line for the image. if inline is True the current data are updated otherwise a new image with the corrected data is returned """ if inline: self.pixels -= np.tile(np.mean(self.pixels, axis=1).T, (self.pixels.shape[0], 1)).T return self else: New = copy.deepcopy(self) New.pixels -= np.tile(np.mean(self.pixels, axis=1).T, (self.pixels.shape[0], 1)).T return New def dist_v2(self, pixel=False): """ Return a 2D array with the distance between each pixel and the closest border. Might be usefull for FFT filtering """ if pixel: dx = 1 dy = 1 else: dx = self.size['real']['x']/self.size['pixels']['x'] dy = self.size['real']['y']/self.size['pixels']['y'] x2 = np.arange(self.size['pixels']['x']) x2 = (np.minimum(x2, self.size['pixels']['x']-x2) * dx)**2 y2 = np.arange(self.size['pixels']['y']) y2 = (np.minimum(y2, self.size['pixels']['y'] - y2) * dy)**2 X, Y = np.meshgrid(x2, y2) return np.sqrt(X+Y) def inv_calc_flat(self, d, l=0.1): """ Function used for inverse MFM calculation (inspired from http://qmfm.empa.ch/qmfm/) The function is in its early devlopment stage as not used by the developed. Parameters ---------- d : float Height distance in the input data l : float Tikhonov parameter for the deconvolution """ work_image = self.pixels ny, nx = self.pixels.shape dx = self.size['real']['x']/self.size['pixels']['x'] dy = self.size['real']['y']/self.size['pixels']['y'] k = self.dist_v2() k[0, 0] = 1e-10 tf = np.exp(-d*k) tf[0, 0] = np.mean(tf) tf /= 2 tf *= 1-np.exp(-d * k) recon_tf = np.ones(tf.shape) / (tf+l*np.ones(tf.shape) / np.conj(tf)) tf *= recon_tf return np.real(np.fft.ifft2(np.fft.fft2(work_image)*recon_tf)) def get_extent(self): """ Get the image extent in real data """ if 'recorded' in self.size: W = self.size['recorded']['real']['x'] H = self.size['recorded']['real']['y'] else: W = self.size['real']['x'] H = self.size['real']['y'] return (0, W, 0, H) def show(self, ax=None, sig=None, cmap=None, title=None, adaptive=False, dmin=0, dmax=0, pixels=False, flip=False, wrap=None, mul=1, symmetric=False, **kargs): """ Function to display the image with a lot of parametrization Parameters ---------- ax : matplotlib axis or None matplotlib axis if given otherwise current axis will be used (plt.gca()) sig : float sigma values to adjust the contrast range around the mean ±sig times the standard-deviation cmap : string colormap name used. By default a gray map is used. If the zscale of the data are in 'meter' (i.e. topography data) the 'hot' colormap is used title : string The title of the plot. By default is the channel name adaptive : bool The color scale used is linear. If adaptive is True a non linear color scale is used in order that each color is used with the same amount. dmin : float minimum value adjustment used for the colorscale dmax: float maximum value adjustment used for the colorscale pixels : bool Display the image with x/y-labels with real unit. If pixels is True, the axes are in pixels flip : bool Flip the image upside-down wrap : Nont or int wrap the title to a width of wrap chars symmetric : bool If True will place the middle of the colorscale to the value 0. This is specially usefull for diverging colormaps such as : BrBG, bwr, coolwarm, seismiv, spectral, etc. level : float level should be ≥0 and <50. Adjust the lower and upper colorscale to level% and (100-level)% of the data range. e.g. if level=1, the colorscale will display 1-99% of the data range vmin : float Minimum value used for the colorscale vmax : flaot Maximum value used for the colorscale Returns ------- matplotlib.image.AxesImage matplolib axis instance returned by imshow Examples -------- >>> topo = pySPM.SPM_image(...) >>> fig, (ax, ax2) = plt.subplots(2, 3, figsize=(15, 10)) >>> topo.show(ax=ax[0], cmap='gray', title="color map=\"gray\"") >>> topo.show(ax=ax[1], sig=2, title="standard deviation=2") >>> topo.show(ax=ax[2], adaptive=True, title="Adaptive colormap") >>> topo.show(ax=ax2[0], dmin=4e-8, cmap='gray', title="raise the lowest value for the colormap of +40nm") >>> topo.show(ax=ax2[1], dmin=3e-8, dmax=-3e-8, cmap='gray',title="raise lower of +30nm and highest of -30nm") >>> topo.show(ax=ax2[2], pixels=True, title="Set axis value in pixels"); """ mpl.rc('axes', grid=False) if ax is None: ax = plt.gca() ax.src = self if title == None: title = u"{0} - {1}".format(self.type, self.channel) if wrap is not None: title = "\n".join([title[i*wrap:(i+1)*wrap] for i in range(int(len(title)/wrap)+1)]) unit = self.size['real']['unit'] sunit = 'afpnum kMGTPE' if len(unit) == 1 or unit in ['pixels']: isunit = 6 elif unit[0] in sunit: isunit = sunit.find(unit[0]) unit = unit[1:] else: isunit = 6 W = self.size['real']['x'] H = self.size['real']['y'] fact = int(np.floor(np.log(W)/np.log(10)/3)) isunit += fact W, H = W/10**(fact*3), H/10**(fact*3) if cmap == None: cmap = 'gray' if unit == 'm' and self.channel == "Topography": cmap = 'hot' mi, ma = np.nanmin(self.pixels), np.nanmax(self.pixels) if adaptive: img = np.asarray(256**2*(self.pixels-mi)/(ma-mi), dtype=np.uint16) mi, ma = 0, 1 img = skimage.exposure.equalize_adapthist(img, clip_limit=0.03) else: img = mul*self.pixels mi *= mul ma *= mul if sig == None: vmin = mi+dmin vmax = ma+dmax else: std = np.nanstd(img) avg = np.nanmean(img) vmin = avg - sig * std vmax = avg + sig * std if 'level' in kargs: if kargs['level'] < 0 or kargs['level']>=50: raise ValueError("The level shoud have a value in [0,50)") vmax = np.percentile(img, 100-kargs['level']) vmin = np.percentile(img, kargs['level']) del kargs['level'] if 'vmin' in kargs: vmin = kargs['vmin'] del kargs['vmin'] if 'vmax' in kargs: vmax = kargs['vmax'] del kargs['vmax'] if symmetric: vmax = abs(max(vmin,vmax)) vmin = -vmax if not flip: ax.flipped = False if pixels: ax.isPixel = True r = ax.imshow(np.flipud(img), extent=[0,img.shape[1],img.shape[0],0], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.isPixel = False r = ax.imshow(np.flipud(img), extent=[0, W, 0, H], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.flipped = True if pixels: ax.isPixel = True r = ax.imshow(np.flipud(img), extent=[0,img.shape[1],img.shape[0],0], cmap=cmap, vmin=vmin, vmax=vmax, **kargs) else: ax.isPixel = False r = ax.imshow(np.flipud(img), cmap=cmap, extent=[0, W, 0, H], vmin=vmin, vmax=vmax, **kargs) if pixels: ax.set_xlim((0, self.pixels.shape[1])) if flip: ax.set_ylim((0, self.pixels.shape[0])) else: ax.set_ylim((self.pixels.shape[0], 0)) else: ax.set_xlim((0,W)) if flip: ax.set_ylim((H,0)) else: ax.set_ylim((0,H)) if not pixels: if isunit != 6: u = sunit[isunit] if u == 'u': u = '$\\mu$' ax.set_xlabel(u'x [{0}{1}]'.format(u, unit)) ax.set_ylabel(u'y [{0}{1}]'.format(u, unit)) else: ax.set_xlabel(u'x [{0}]'.format(unit)) ax.set_ylabel(u'y [{0}]'.format(unit)) if title != None: ax.set_title(title) return r def real2px(self, x, y): """ Transform a real (x,y) value in pixels Units should be the same as the one plotted by pySPM.SPM_image.show """ return self.real2pixels(x,y) def real2pixels(self, x, y, float=False): """ Transform a real (x,y) value in pixels Units should be the same as the one plotted by pySPM.SPM_image.show """ W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 if not float: px = np.digitize(x, np.linspace(0,self.size['real']['x']/(10**fact),self.pixels.shape[1]), right=True) py = np.digitize(y, np.linspace(0,self.size['real']['y']/(10**fact),self.pixels.shape[0]), right=False) else: px = x*(self.pixels.shape[1]-1)/(self.size['real']['x']/(10**fact)) py = y*(self.pixels.shape[0]-1)/(self.size['real']['y']/(10**fact)) return px, py def px2real(self, x, y): """ Transform a (x,y) value from pixels to real Units are the same as the one plotted by pySPM.SPM_image.show """ W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 rx = x*self.size['real']['x']/(10**fact)/self.pixels.shape[1] ry = (self.pixels.shape[0]-y)*self.size['real']['y']/(10**fact)/self.pixels.shape[0] return rx, ry def circular_profile(self, x0, y0, Ra=1, Rn=0, width=1, N=20, A=0, B=360,\ cmap='jet', axImg=None, axPolar=None, axProfile=None, plotProfileEvery=1,\ xtransf=lambda x: x*1e9, ytransf=lambda x:x*1e9,\ ToFcorr=False, fit=lambda x, *p: p[3]+p[2]*CDF(x, *p[:2]), p0=None, errors=False, bounds=(-np.inf, np.inf), fakefit=False, **kargs): """ Create radial profiles from point x0,y0 with length Ra (outer radius) and Rn (negative Radius). Start from angle A° to angle B° with N profiles. If you want to apply the ToF-correction, please set ToFcorr to the number of scans used to record the ToF-SIMS image. Return the fitting uncertainty on sigma if errors is set to True The fitting function can be adjusted by fit and the default parameters by p0 which is an array of function where the first parameter passed will be the x-values and the second the y-values. """ from matplotlib import colors, cm # Create a colormap for each profile CM = plt.get_cmap(cmap) cNorm = colors.Normalize(vmin=0, vmax=N) scalarMap = cm.ScalarMappable(norm=cNorm, cmap=CM) res = [] cov = [] angles = [] assert A<B for i, angle in enumerate(np.linspace(A, B, N)): a = np.radians(angle) angles.append(a) l, p = self.get_profile( x0-Rn*np.cos(a), y0+Rn*np.sin(a), x0+Ra*np.cos(a), y0-Ra*np.sin(a), ax=axImg, width=width, color=scalarMap.to_rgba(i), **kargs) if width==0: profile = p else: profile = np.mean(p, axis=1) if ToFcorr: profile = -np.log(1.001-profile/ToFcorr) if p0 is None: AC = np.mean(profile[:len(l)//2]) AE = np.mean(profile[len(l)//2:]) if AC<AE: p0 = [l[len(l)//2], 5*(l[1]-l[0]), np.max(profile)-np.min(profile), np.min(profile) ] else: p0 = [l[len(l)//2], 5*(l[1]-l[0]), -np.max(profile)+np.min(profile), np.max(profile) ] else: for j,p in enumerate(p0): if callable(p): p0[j] = p(l,profile) if kargs.get('debug',False): print("calculate fit parameters are", p0) if not fakefit: p0, pcov = scipy.optimize.curve_fit(fit, l , profile, p0) else: pcov = np.zeros((len(p0),len(p0))) res.append(p0) cov.append([np.sqrt(abs(pcov[i,i])) for i in range(len(p0))]) if axProfile and i%plotProfileEvery == 0: axProfile.plot(xtransf(l-p0[0]), profile, color=scalarMap.to_rgba(i), linestyle=':') axProfile.plot(xtransf(l-p0[0]), fit(l,*p0), color=scalarMap.to_rgba(i)) # close loop if A%360 == B%360: angles.append(angles[0]) res.append(res[0]) cov.append(cov[0]) # Plot polar angles = np.array(angles) res = np.array(res) cov = np.array(cov) fact = 2*np.sqrt(2*np.log(2)) if axPolar: axPolar.plot(angles, ytransf(res[:,1]), color=kargs.get('sig_color','C0'), label="$\\sigma$") axPolar.plot(angles, ytransf(fact*res[:,1]), color=kargs.get('fwhm_color','C1'), label="FWHM") if errors: axPolar.fill_between(angles, ytransf(res[:,1]-cov[:,1]),ytransf(res[:,1]+cov[:,1]), color=kargs.get('sig_color','C0'), alpha=kargs.get('fillalpha',.5)) axPolar.fill_between(angles, fact*ytransf(res[:, 1]-cov[:, 1]), ytransf(res[:, 1]+cov[:, 1]), color=kargs.get('fwhm_color', 'C1'), alpha=kargs.get('fillalpha',.5)) return angles, res, cov def get_profile(self, x1, y1, x2, y2, width=0, ax=None, pixels=True, color='w', axPixels=None, **kargs): """ retrieve the profile of the image between pixel x1,y1 and x2,y2 Parameters ---------- x1, y1, x2, y2 : ints coordinates for the profile ax : matplotlib axis defines the matplotlib axis on which the position of the profile should be drawn (in not None) width : int the width of the profile (for averaging/statistics) in pixels color : string color used to plot the profiles lines axPixels : bool If True the image plotted in the ax axis is displayed in pixels Returns ------- x data : 1D numpy array profile : 1D numpy array """ if kargs.get('debug',False): print("get_profile input coordinates:", x1, y1, x2, y2) if ax is not None and axPixels is None: if hasattr(ax, 'isPixel'): axPixels = ax.isPixel if axPixels is None: axPixels = pixels W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 if not pixels: if kargs.get('debug', False): print("Image range (real scale):", self.size['real']['x']/(10**fact), self.size['real']['y']/(10**fact)) x1, y1 = self.real2pixels(x1, y1, float=True) x2, y2 = self.real2pixels(x2, y2, float=True) y1 = self.pixels.shape[0]-y1 y2 = self.pixels.shape[0]-y2 if kargs.get('debug', False): print("Pixel coordinates:", x1, y1, x2, y2) if not axPixels: xvalues, p = get_profile(np.flipud(self.pixels), x1, y1, x2, y2, ax=ax, width=width, color=color,\ transx = lambda x: x*(self.size['real']['x']/(10**fact))/self.pixels.shape[1],\ transy = lambda x: (self.pixels.shape[0]-x)*(self.size['real']['y']/(10**fact))/self.pixels.shape[0],\ **kargs) else: values, p = get_profile(np.flipud(self.pixels), x1, y1, x2, y2, ax=ax, width=width, color=color, **kargs) else: if axPixels: values, p = get_profile(np.flipud(self.pixels), x1, y1, x2, y2, ax=ax, width=width, color=color, **kargs) else: values, p = get_profile(np.flipud(self.pixels), x1, y1, x2, y2, ax=ax, width=width, color=color,\ transx = lambda x: x*(self.size['real']['x']/(10**fact))/self.pixels.shape[1],\ transy = lambda x: (self.pixels.shape[0]-x)*(self.size['real']['y']/(10**fact))/self.pixels.shape[0],\ **kargs) dx = (x2-x1)*self.size['real']['x']/self.size['pixels']['x'] dy = (y2-y1)*self.size['real']['y']/self.size['pixels']['y'] rd = np.sqrt(dx**2+dy**2) xvalues = np.linspace(0, rd, len(p)) return xvalues, p def plot_profile(self, x1, y1, x2, y2, width=0, ax=None, pixels=True, img=None, imgColor='w', ztransf=lambda x: x, zunit=None, **kargs): """ Retrieve and plot a profile from an image Parameters ---------- x1, y1, x2, y2 : int coordinate of the profile in real size or in pixels (if pixels is True) width : float the width of the profiles in pixels for better statistics ax : matplotlib axis The axis in which the profile will be plotted pixels : bool If True the coordinates are given in pixels and not in real units img : matplotlib axis The axis in which the profile position will be drawn imgColor : string The color used to display the profile positions ztransf : function function to transform the profile data. This can be used to scale the data. Most profiles are retrieved in 'm' and a 'nm' value can be used by using ztransf=lambda x: x*1e9 zunit : string the zunit name used if ztransft is used color : string The color of the profile col : string can be used instead of color stdplot : bool If True display the ±nσ plots where n is given by the sig parameter sig : int The number of sigmas used in stdplot label : string The label used for plotting the profile (useful if you perform a ax.legend() afterwards) Returns ------- dictionary : {'plot': matplotlib_plot_instance, 'l': profile_xaxis, 'z': profile_yaxis} Examples -------- >>> topo = pySPM.SPM_image(...) >>> fig, ax = plt.subplots(1, 2, figsize=(10, 5)) >>> topo.plot_profile(70, 100, 170, 200, ax=ax[1], img=ax[0], ztransf=lambda x:x*1e9, zunit='nm'); >>> topo.show(ax=ax[0], pixels=True); """ col = kargs.get('color',kargs.get('col','C0')) W = self.size['real']['x'] fact = int(np.floor(np.log(W)/np.log(10)/3))*3 if ax == None: ax = plt.gca() xvalues, p = self.get_profile(x1, y1, x2, y2, width=width, color=imgColor, ax=img, pixels=pixels, **kargs) d = np.sqrt((x2-x1)**2+(y2-y1)**2) dx = (x2-x1) dy = (y2-y1) if pixels: rd = d u = '' unit = 'px' else: unit = self.size['real']['unit'] sunit = 'afpnum kMGTPE' if len(unit) == 1: isunit = 6 elif unit[0] in sunit: isunit = sunit.find(unit[0]) unit = unit[1:] else: isunit = 6 isunit += fact//3 if isunit != 6: u = sunit[isunit] else: u='' if u == 'u': u = '$\\mu$' rd = np.sqrt(dx**2+dy**2) xvalues = np.linspace(0, rd, len(p)) lab = kargs.get("label", "") if width < 2: profile = ztransf(p) else: profile = ztransf(np.mean(p, axis=1)) s = np.std(p) if kargs.get('stdplot', False): for ns in range(1, kargs.get('sig', 2)+1): ax.fill_between(xvalues, profile-ns*s, profile+ns*s, color=col, alpha=.2, label=[lab+' ($\\sigma,\ldots {}\\sigma$)'.format(kargs.get('sig',2)),None][ns>1]) Plot = ax.plot(xvalues, profile, color=col, linewidth=kargs.get('linewidth',1),linestyle=kargs.get('linestyle','-'), label=lab+[' (mean)',''][width<2]) if kargs.get('min',False): minStyle = kargs.get('minStyle', kargs.get('minmaxStyle', '--')) minColor = kargs.get('minColor', kargs.get('minmaxColor', col)) minMarker = kargs.get('minMarker', kargs.get('minmaxMarker', '')) ax.plot(xvalues, np.min(p, axis=1), color=minColor, linewidth=kargs.get('linewidth',1),linestyle=minStyle, marker=minMarker, label=lab+' (min)') if kargs.get('max', False): maxStyle = kargs.get('maxStyle',kargs.get('minmaxStyle','--')) maxColor = kargs.get('maxColor',kargs.get('minmaxColor',col)) maxMarker = kargs.get('maxMarker',kargs.get('minmaxMarker','')) ax.plot(xvalues, np.max(p, axis=1), color=maxColor, linestyle=maxStyle, linewidth=kargs.get('linewidth',1), marker=maxMarker, label=lab+' (max)') ax.set_xlabel("Distance [{1}{0}]".format(unit, u)) if zunit is not None: ax.set_ylabel("{1} [{0}]".format(zunit, self.channel)) else: ax.set_ylabel("{1} [{0}]".format(self.zscale, self.channel)) return {'plot': Plot, 'l': xvalues, 'z': profile} def get_bin_threshold(self, percent, high=True, adaptive=False, binary=True, img=False): """ Threshold the image into binary values Parameters ---------- percent : float The percentage where the thresholding is made high : bool If high a value of 1 is returned for values > percent adaptive : bool If True, performs an adaptive thresholding (see skimage.filters.threshold_adaptive) binary : bool If True return bool data (True/False) otherwise numeric (0/1) img : bool If True return a SPM_image otherwise a numpy array """ if adaptive: if binary: return self.pixels > threshold_local(self.pixels, percent) return threshold_local(self.pixels, percent) mi = np.min(self.pixels) norm = (self.pixels-mi)/(np.max(self.pixels)-mi) if high: r = norm > percent else: r = norm < percent if not img: if binary: return r return np.ones(self.pixels.shape)*r else: I = copy.deepcopy(self) I.channel = "Threshold from "+I.channel if binary: I.pixels = r else: I.pixels = np.ones(self.pixels.shape)*r return I def spline_offset(self, X, Y, Z=None, inline=True, ax=None, output='img', **kargs): """ subtract a spline interpolated by points corrdinates. if Z is None, the image values will be used (default) """ if ax is not None: if 'num' in kargs and kargs['num']: text_color = 'k' if 'text_color' in kargs: text_color = kargs['text_color'] del kargs['text_color'] for i in range(len(X)): l = self.pixels.shape[1]-X[i] < 20 ax.annotate(str(i), (X[i], Y[i]), ([ 5, -5][l], 0), textcoords='offset pixels', va="center", ha=["left", "right"][l], color=text_color) del kargs['num'] ax.plot(X, Y, 'o', **kargs) import scipy.interpolate T = np.flipud(self.pixels) - np.min(self.pixels) if Z is None: Z = [T[Y[i], X[i]] for i in range(len(X))] x = np.arange(self.pixels.shape[1]) y = np.arange(self.pixels.shape[0]) xx, yy = np.meshgrid(x, y) I = scipy.interpolate.SmoothBivariateSpline(X, Y, Z) z = I.ev(xx, yy) if inline: self.pixels -= z return z else: if output == 'img': New = copy.deepcopy(self) New.pixels -= z return New elif output == 'spline': return z else: raise ValueError( "The output parameter should be either 'img' or 'spline'") def get_shadow_mask(self, angle, BIN=None, prog=False): """ If an image is recorded with a beam incident with a certain angle, the topography will shadow the data. This function generates the shadow mask for a given topography and a given incident angle. Parameters ---------- angle : float The incidence angle in degrees BIN : numpy array Data. If given will move the recorded pixels at the correct x,y positions prog : bool display a progressbar ? Note ---- This function is old, might not be optimized or working properly """ if BIN is not None: BIN = BIN*1.0 slope = np.tan(np.radians(angle)) neg = False if slope < 0: neg = True slope = -slope topo = np.fliplr(self.pixels) if BIN is not None: BIN = np.fliplr(BIN) else: topo = self.pixels x = np.linspace(0, self.size['real']['x'], self.pixels.shape[1]) if self.size['real']['unit'] == 'um': x *= 1e-6 elif self.size['real']['unit'] == 'nm': x *= 1e-9 mask = np.zeros(self.pixels.shape) AFM_bin_shadow = np.zeros(self.pixels.shape) Y = range(self.pixels.shape[0]) if prog: Y = PB(Y) for yi in Y: for xi in range(self.pixels.shape[1]): cut = self.pixels.shape[1]-2 y_ray = slope*(x-x[xi]) + topo[yi, xi] while cut > xi and y_ray[cut] > topo[yi, cut]: cut -= 1 if xi == cut: if BIN is not None: AFM_bin_shadow[yi, xi] = BIN[yi, xi] continue # Cut has been found if BIN is not None: x1 = x[cut] x2 = x[cut+1] y1 = topo[yi, cut] y2 = topo[yi, cut+1] x0 = x[xi] y0 = topo[yi, xi] if y2 == y1: x_cut = (y1+slope*x0-y0)/slope y_cut = y1 else: numerator = x1/(x2-x1)+(y0-slope*x0-y1)/(y2-y1) denominator = 1/(x2-x1)-slope/(y2-y1) x_cut = numerator / denominator y_cut = slope*(x_cut-x0)+y0 if x_cut >= x1 and x_cut <= x2: y1 = BIN[yi, cut] y2 = BIN[yi, cut+1] yint = (((y2-y1)/(x2-x1))*(x_cut-x1))+y1 else: yint = BIN[yi, xi] AFM_bin_shadow[yi, xi] = yint mask[yi, xi] = 1 if neg: mask = np.fliplr(mask) AFM_bin_shadow = np.fliplr(AFM_bin_shadow) if BIN is not None: return (mask, AFM_bin_shadow) return mask def adjust_position(self, fixed): """ Shift the current pixels to match a fixed image. The shift is determined by position where the cross-correlation is maximized. """ adj = copy.deepcopy(self) cor = np.fft.fft2(fixed.pixels) cor = np.abs(np.fft.ifft2(np.conj(cor) * np.fft.fft2(self.pixels))) cor = cor / fixed.pixels.size ypeak, xpeak = np.unravel_index(cor.argmax(), cor.shape) shift = [-(ypeak-1), -(xpeak-1)] adj.pixels = np.roll(self.pixels, shift[0], axis=0) adj.pixels = np.roll(adj.pixels, shift[1], axis=1) return adj def align(self, tform, cut=True): """ Apply an Affine transform on the data Parameters ---------- tform : skimage.transform the affine transform to perform cut : bool If True cut the data """ New = copy.deepcopy(self) New.pixels = tf.warp(self.pixels, tform, preserve_range=True) if not cut: return New cut = [0, 0] + list(self.pixels.shape) if tform.translation[0] >= 0: cut[2] -= tform.translation[0] elif tform.translation[0] < 0: cut[0] -= tform.translation[0] if tform.translation[1] >= 0: cut[1] += tform.translation[1] elif tform.translation[1] < 0: cut[3] += tform.translation[1] cut = [int(x) for x in cut] New.cut(cut, inplace=True) return New, cut def get_fft(self): """ return the FFT2 transform opf the image """ return np.fft.fftshift(np.fft.fft2(self.pixels)) def corr_fit2d(self, nx=2, ny=1, poly=False, inline=True, mask=None): """ Subtract a fitted 2D-polynom of nx and ny order from the data Parameters ---------- nx : int the polynom order for the x-axis ny : int the polynom order for the y-axis poly : bool if True the polynom is returned as output inline : bool create a new object? mask : 2D numpy array mask where the fitting should be performed """ r, z = fit2d(self.pixels, nx, ny, mask=mask) if inline: self.pixels -= z else: N = copy.deepcopy(self) N.pixels -= z if poly: return N, z return N if poly: return z return self def zero_min(self, inline=True): """ Shift the values so that the minimum becomes zero. """ if inline: self.pixels -= np.min(self.pixels) return self else: N = copy.deepcopy(self) N.pixels -= np.min(N.pixels) return N def filter_lowpass(self, p, inline=True): """ Execute a lowpass filter on the data """ F = self.get_fft() mask = self.getRmask() < p if inline: self.pixels = np.real(np.fft.ifft2(np.fft.fftshift(F*mask))) else: C = copy.deepcopy(self) C.pixels = np.real(np.fft.ifft2(np.fft.fftshift(F*mask))) return C def _resize_infos(self): """ Internal to recalculate the real size when the image is cropped or cut """ self.size['real']['x'] *= self.pixels.shape[1]/self.size['pixels']['x'] self.size['real']['y'] *= self.pixels.shape[0]/self.size['pixels']['y'] self.size['pixels']['x'] = int(self.pixels.shape[1]) self.size['pixels']['y'] = int(self.pixels.shape[0]) if 'recorded' in self.size: self.size['recorded']['real']['x'] \ *= (self.pixels.shape[1]/self.size['pixels']['x']) self.size['recorded']['real']['y'] \ *= (self.pixels.shape[0]/self.size['pixels']['y']) self.size['recorded']['pixels']['x'] = int(self.pixels.shape[1]) self.size['recorded']['pixels']['y'] = int(self.pixels.shape[0]) def filter_scars_removal(self, thresh=.5, inline=True): """ Filter function to remove scars from images. """ if not inline: C = copy.deepcopy(self) else: C = self for y in range(1, self.pixels.shape[0]-1): b = self.pixels[y-1, :] c = self.pixels[y, :] a = self.pixels[y+1, :] mask = np.abs(b-a) < thresh*(np.abs(c-a)) C.pixels[y, mask] = b[mask] if not inline: return C return self def cut(self, c, inline=False, pixels=True, **kargs): """ Clip/Crop the image Parameters ---------- c : list [llx,lly,urx,ury] list of the lowe-left (ll) and upper-right (ur) coordinates inline: bool perform the transformation inline or produce a new SPM_image? pixels : bool Are the coordinates given in pixels? Returns ------- self if inplace, clipped SPM_image otherwises2 = pySPM.Nanoscan("%s/CyI5b_PCB_ns.xml"%(Path)) """ if 'inplace' in kargs: inline=kargs['inplace'] if kargs.get('debug',False): print("cut) Input coordinates:", c) if not pixels: c = [z for s in zip(*self.real2pixels(c[0::2], c[1::2])) for z in s] if kargs.get('debug',False): print("cut) pixel coordinates:", c) if not inline: new = copy.deepcopy(self) new.pixels = cut(self.pixels, c, **kargs) new._resize_infos() return new else: self.pixels = cut(self.pixels, c, **kargs) self._resize_infos() return self def zoom(self, zoom_factor, inplace=False, order=3): """ Resize the image to a new pixel size (but keep the real size) by pixel interpolation. Parameters ---------- zoom_factor : float > 1: up sampling < 1: down sampling order : int The spline interpolation order to use. (default: 3). Use 0 for binary or very sharp images. inplace : bool create a new image? """ from scipy.ndimage.interpolation import zoom if not inplace: new = copy.deepcopy(self) new.pixels = zoom(new.pixels, zoom_factor, order=order) new.size['pixels']['x'] = new.pixels.shape[1] new.size['pixels']['y'] = new.pixels.shape[0] return new else: self.pixels = zoom(self.pixels, zoom_factor, order=order) self.size['pixels']['x'] = self.pixels.shape[1] self.size['pixels']['y'] = self.pixels.shape[0] return self # Note: The following functions are not part of the SPM_image class. # All following functions are performed on numpy arrays def cut(img, c, **kargs): """ Clip / Crop a numpy array Parameters ---------- img : 2D numpy array The input image array c : list [llx, lly, urx, ury] the lower-left (ll) and upper-right (ur) coordinates used for the cropping """ from .utils.geometry import Bbox if kargs.get('debug',False): print("cut in x", c[0], "->", c[2], " - in y", c[1], "->", c[3]) if isinstance(c, Bbox): c = [c.left, c.bottom, c.right, c.top] if c[3] < c[1]: c = [c[0],c[3],c[2],c[1]] if c[2] < c[0]: c = [c[2],c[1],c[0],c[3]] if c[2]-c[0] == img.shape[1] and c[3]-c[1] == img.shape[0]: raise Exception("Reshaping the same array again?") return img[c[1]:c[3], c[0]:c[2]] def normalize(data, sig=None, vmin=None, vmax=None): """ Normalize the input data. Minimum_value -> 0 and maximum_value -> 1 Parameters ---------- data : numpy array input data sig : float or None if not None: mean(data)-sig*standard_deviation(data) -> 0 mean(data)+sig*standard_deviation(data) -> 1 vmin : float or None if not None, define the lower bound i.e. vmin -> 0 vmax : float or None if not None, defines the upper bound i.e. vmax -> 0 Note ---- All values below the lower bound will be = 0 and all values above the upper bound will be = 1 """ if sig is None: mi = np.min(data) ma = np.max(data) else: s = sig*np.std(data) mi = np.mean(data)-s ma = np.mean(data)+s if vmin is not None: mi = vmin if vmax is not None: ma = vmax N = (data-mi)/(ma-mi) N[N < 0] = 0 N[N > 1] = 1 return N def imshow_sig(img, sig=1, ax=None, **kargs): """ Shortcut to plot a numpy array around it's mean with bounds ±sig sigmas Parameters ---------- img : 2D numpy array input image to display sig : float The number of standard-deviation to plot ax : matplotlib axis matplotlib axis to use. If None, the current axis (plt.gca() will be used). **kargs : additional parameters will be passed to the imshow function of matplotls2 = pySPM.Nanoscan("%s/CyI5b_PCB_ns.xml"%(Path))ib """ if ax == None: fig, ax = plt.subplots(1, 1) std = np.std(img) avg = np.mean(img) vmin = avg - sig * std vmax = avg + sig * std ax.imshow(img, vmin=vmin, vmax=vmax, **kargs) def adjust_position(fixed, to_adjust, shift=False): """ Shift the current pixels to match a fixed image by rolling the data""" adj = copy.deepcopy(to_adjust) cor = np.fft.fft2(fixed) cor = np.abs(np.fft.ifft2(np.conj(cor) * np.fft.fft2(to_adjust))) cor = cor / to_adjust.size ypeak, xpeak = np.unravel_index(cor.argmax(), cor.shape) shift = [-(ypeak-1), -(xpeak-1)] adj = np.roll(to_adjust, shift[0], axis=0) adj = np.roll(adj, shift[1], axis=1) if shift: return adj, shift return adj def tukeyfy(A, alpha, type='default'): """ Apply a Tukey window on the current image Parameters ---------- A : 2D numpy array input array alpha : float Size of the Tukey windows in percent of the image (≥0 and ≤1) type : string if not "default" perform a mean centering (data will blend down to its mean instead of 0) """ tuky = tukeywin(A.shape[0], alpha) tukx = tukeywin(A.shape[1], alpha) tuk = np.multiply(tukx[:, None].T, tuky[:, None]) if type is 'default': return A * tuk avg = np.mean(A) return avg+(A-avg) * tuk def tukeywin(window_length, alpha=0.5): '''The Tukey window, also known as the tapered cosine window, can be regarded as a cosine lobe of width \alpha * N / 2 that is convolved with a rectangle window of width (1 - \alpha / 2). At \alpha = 1 it becomes rectangular, and at \alpha = 0 it becomes a Hann window. We use the same reference as MATLAB to provide the same results in case users compare a MATLAB output to this function output Reference --------- http://www.mathworks.com/access/helpdesk/help/toolbox/signal/tukeywin.html ''' # Special cases if alpha <= 0: return np.ones(window_length) # rectangular window elif alpha >= 1: return np.hanning(window_length) # Normal case x = np.linspace(0, 1, window_length) w = np.ones(x.shape) # first condition 0 <= x < alpha/2 first_condition = x < alpha/2 w[first_condition] = 0.5 * \ (1 + np.cos(2*np.pi/alpha * (x[first_condition] - alpha/2))) # second condition already taken care of # third condition 1 - alpha / 2 <= x <= 1 third_condition = x >= (1 - alpha/2) w[third_condition] = 0.5 * \ (1 + np.cos(2*np.pi/alpha * (x[third_condition] - 1 + alpha/2))) return w def overlay(ax, mask, color, **kargs): """ Plot an overlay on an existing axis Parameters ---------- ax : matplotlib axis input axis mask : 2D numpy array Binary array where a mask should be plotted color : string The color of the mask to plot **kargs: additional parameters passed to the imshow function of matploltib """ m = ma.masked_array(mask, ~mask) col = np.array(colors.colorConverter.to_rgba(color)) I = col[:, None, None].T*m[:, :, None] ax.imshow(I, **kargs) def normP(x, p, trunk=True): """ Normalize the input data accroding to its percentile value. Parameters ---------- x : 2D numpy array input data p : float percentile to normalize the data. lower bound = p percentile upper bound = (100-p) percentile trunk : bool If True the data are truncated between 0 and 1 """ thresh_high = np.percentile(x, 100-p) thresh_low = np.percentile(x, p) if thresh_low == thresh_high: thresh_high = np.max(x) thresh_low = np.min(x) if thresh_low == thresh_high: thresh_high = thresh_low+1 r = (x-thresh_low)/(thresh_high-thresh_low) if trunk: r[r < 0] = 0 r[r > 1] = 1 return r def beam_profile(target, source, mu=1e-6, tukey=0, meanCorr=False, source_tukey=None, real=np.abs, **kargs): """ Calculate the PSF by deconvolution of the target with the source using a Tikhonov regularization of factor mu. """ if source_tukey is None: source_tukey = tukey if kargs.get('source_centering', False): source = 2*source-1 if meanCorr: target = target-np.mean(target) if tukey>0: target = tukeyfy(target, tukey) if source_tukey>0: source = tukeyfy(source, tukey) tf = np.fft.fft2(source) tf /= np.size(tf) recon_tf = np.conj(tf) / (np.abs(tf)**2 + mu) return np.fft.fftshift(real(np.fft.ifft2(np.fft.fft2(target) * recon_tf)))/np.size(target) def beam_profile1d(target, source, mu=1e-6, real=np.abs): source = source tf = np.fft.fft(source) tf /= np.size(tf) recon_tf = np.conj(tf) / (np.abs(tf)**2 + mu) F = np.fft.fft(target) * recon_tf return np.fft.fftshift(real(np.fft.ifft(F))), F def zoom_center(img, sx, sy=None): """ Zoom by taking the sx × sy central pixels Parameters ---------- img : 2D numpy array The input data sx : int The number of pixels along the x-axis to take sy : int or None The number of pixels alongs the y-axis to take. If None take the same value as for sx """ if sy is None: sy = sx assert type(sx) is int assert type(sy) is int return img[ img.shape[0]//2-sy//2: img.shape[0]//2 + sy//2, img.shape[1]//2-sx//2: img.shape[1]//2 + sx//2] def px2real(x, y, size, ext): rx = ext[0]+(x/size[1])*(ext[1]-ext[0]) ry = ext[2]+(y/size[0])*(ext[3]-ext[2]) return rx, ry def real2px(x, y, size, ext): px = size[1]*(x-ext[0])/(ext[1]-ext[0]) py = size[0]*(y-ext[2])/(ext[3]-ext[2]) return px, py def fit2d(Z0, dx=2, dy=1, mask=None): """ Fit the input data with a 2D polynom of order dx × dy Parameters ---------- Z0 : 2D numpy array input data dx : int order of the polynom for the x-axis dy : int order of the polynom for the y-xis mask : 2D numpy array Give a mask where True values only will be used to perform the fitting Returns ------- numpy array fitting parameters 2D numpy array result of the polynom """ x = np.arange(Z0.shape[1], dtype=np.float) y = np.arange(Z0.shape[0], dtype=np.float) X0, Y0 = np.meshgrid(x, y) if mask is not None: X = X0[mask] Y = Y0[mask] Z = Z0[mask] else: X = X0 Y = Y0 Z = Z0 x2 = X.ravel() y2 = Y.ravel() A = np.vstack([x2**i for i in range(dx+1)]) A = np.vstack([A]+[y2**i for i in range(1, dy+1)]) res = scipy.optimize.lsq_linear(A.T, Z.ravel()) r = res['x'] Z2 = r[0]*np.ones(Z0.shape) for i in range(1, dx+1): Z2 += r[i]*(X0**i) for i in range(1, dy+1): Z2 += r[dx+i]*(Y0**i) return r, Z2 def warp_and_cut(img, tform, cut=True): """ Perform an Affine transform on the input data and cut them if cut=True Parameters ---------- img : 2D numpy array input data tform : skimage.transform An Affine fransform to perform on the data cut : bool Should the data be cutted? """ New = tf.warp(img, tform, preserve_range=True) Cut = [0, 0] + list(img.shape) if tform.translation[0] >= 0: Cut[2] -= tform.translation[0] elif tform.translation[0] < 0: Cut[0] -= tform.translation[0] if tform.translation[1] >= 0: Cut[1] += tform.translation[1] elif tform.translation[1] < 0: Cut[3] += tform.translation[1] Cut = [int(x) for x in Cut] if cut: New = cut(New, Cut) return New, Cut def get_profile(I, x1, y1, x2, y2, width=0, ax=None, color='w', alpha=0, N=None,\ transx=lambda x: x, transy=lambda x: x, interp_order=1, **kargs): """ Get a profile from an input matrix. Low-level function. Doc will come laters2 = pySPM.Nanoscan("%s/CyI5b_PCB_ns.xml"%(Path)) """ d = np.sqrt((x2-x1)**2+(y2-y1)**2) if N is None: N = int(d)+1 P = [] dx = -width/2*(y2-y1)/d dy = width/2*(x2-x1)/d for w in np.linspace(-width/2, width/2, max(1,width)): dx = -w*(y2-y1)/d dy = w*(x2-x1)/d x = np.linspace(x1+dx, x2+dx, N) y = np.linspace(y1+dy, y2+dy, N) M = scipy.ndimage.interpolation.map_coordinates(I, np.vstack((y, x)), order=interp_order) P.append(M) if kargs.get('debug',False): print("get_profile input coordinates:",x1,y1,x2,y2) if not ax is None: x1 = transx(x1) x2 = transx(x2) y1 = transy(y1) y2 = transy(y2) if kargs.get('debug',False): print("Drawing coordinates:",x1,y1,x2,y2) dx = -width/2*(y2-y1)/d dy = width/2*(x2-x1)/d if type(color) in [tuple, list]: ax.plot([x1, x2], [y1, y2], color=color, alpha=kargs.get('linealpha',1)) ax.plot([x1-dx, x1+dx], [y1-dy, y1+dy], color=color, alpha=kargs.get('linealpha',1)) ax.plot([x2-dx, x2+dx], [y2-dy, y2+dy], color=color, alpha=kargs.get('linealpha',1)) else: ax.plot([x1, x2], [y1, y2], color, alpha=kargs.get('linealpha',1), lw=kargs.get('lw',1)) ax.plot([x1-dx, x1+dx], [y1-dy, y1+dy], color, alpha=kargs.get('linealpha',1)) ax.plot([x2-dx, x2+dx], [y2-dy, y2+dy], color, alpha=kargs.get('linealpha',1)) if alpha>0: import matplotlib.patches ax.add_patch(matplotlib.patches.Rectangle( (x1+dx,y1+dy), 2*np.sqrt(dx**2+dy**2), np.sqrt((x2-x1)**2+(y2-y1)**2), -np.degrees(np.arctan2(x2-x1,y2-y1)), color=color, alpha=alpha)) if len(P)==1: return np.linspace(0, d, N), P[0] return np.linspace(0, d, N), np.vstack(P).T def dist_v2(img, dx=1, dy=1): """ Return a 2D array with the distance in pixel with the clothest corner of the array. """ x2 = np.arange(img.shape[1]) x2 = (np.minimum(x2, img.shape[1]-x2) * dx)**2 y2 = np.arange(img.shape[0]) y2 = (np.minimum(y2, img.shape[0] - y2) * dy)**2 X, Y = np.meshgrid(x2, y2) return np.sqrt(X+Y) def generate_k_matrices(A, dx, dy): """ GENERATE_K_MATRICES k-Matrix generation (helper function). generates k-matrices for the 2D-channel CHANNEL. K is a matrix of the same size as the pixel matrix A, containing the real-life frequency distance of each pixel position to the nearest corner of an matrix that is one pixel wider/higher. KX is of the same size as K and contains the real-life difference in x-direction of each pixel position to the nearest corner of a matrix that is one pixel wider/higher. Similarly, KY is of the same size as K, containing the real-life difference in y-direction of each pixel position to the nearest corner of an matrix that is one pixel wider/higher. """ ny, nx = A.shape dkx = 2*np.pi/(nx*dx) dky = 2*np.pi/(ny*dy) ky = np.arange(0, ny); ky = (np.mod(ky+ny/2, ny) - ny/2) * dky kx = np.arange(0, nx); kx = (np.mod(kx+nx/2, nx) - nx/2) * dkx kx, ky = np.meshgrid(kx, ky) k = dist_v2(A, dkx, dky) k[0, 0] = 1.0 # Prevent division by zero error and illegal operand errors. This may be improved... return k, kx, ky def mfm_tf(nx, dx, ny, dy, tf_in, derivative=0, transform=0, z=0, A=0, theta=None, phi=None, d=None, delta_w=None): """ Draft for the MFM tf function """ k, kx, ky = generate_k_matrices(tf_in, dx, dy) # Distance loss tf_out = np.exp(-z*k) if d is not None: tf_out = tf_out / 2.0 if not np.isinf(d): if d == 0: tf_out *= k else: tf_out *= 1 - np.exp(-d*k) if A == 0: if transform != 0: assert theta is not None assert phi is not None tf_out *= ((np.cos(theta)+1j*(np.cos(phi)*np.sin(-theta)*kx+np.sin(phi)*np.sin(-theta)*ky)) / k)**transform if derivative == 1: tf_out *= k else: pass # TODO return tf_out * tf_in def mfm_inv_calc_flat(img, z, tf_in, thickness=None, delta_w=None, amplitude=0, derivative=0, transform=0, mu=1e-8): """ MFM inv calc function """ theta = np.radians(12) phi = np.radians(-90) ny, nx = img.shape tf = mfm_tf(nx, 1, ny, 1, tf_in, derivative, transform, z, amplitude, theta, phi, thickness, delta_w) tf[0,0] = np.real(np.mean(tf)) recon_tf = np.conj(tf) / (mu+
np.abs(tf)
numpy.abs