prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import os from typing import List import numpy as np from numba import njit, float64, int64 from scipy.integrate import quad import VLEBinaryDiagrams from EOSParametersBehavior.ParametersBehaviorInterface import ( BiBehavior, DeltaiBehavior, ThetaiBehavior, EpsiloniBehavior, ) from MixtureRules.MixtureRulesInterface import ( DeltaMixtureRuleBehavior, EpsilonMixtureRuleBehavior, MixtureRuleBehavior, ) from Models.LiquidModel import UNIFAC, has_unifac_in_db from Properties import DeltaProp, Props from compounds import MixtureProp from compounds import SubstanceProp from constants import R_IG, DBL_EPSILON from polyEqSolver import solve_cubic from units import conv_unit x_vec_for_plot = [ 0, 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.50, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1, ] calc_options = { "Bubble-point Pressure": "bubbleP", "Dew-point Pressure": "dewP", "Bubble-point Temperature": "bubbleT", "Dew-point Temperature": "dewT", "Flash": "flash", } class EOSMixture: """ Main class for modeling a system with multiple substances, using a cubic equation of state. This is the main class of the software. It's responsable for calculating all properties, and all the vapor-liquid equilibrium data. It uses a generalized cubic equation of state for all its calculations. """ def __init__(self, _subs: List[SubstanceProp], _k): self.substances = _subs self.k = _k self.eosname = "" self.mixRuleBehavior = MixtureRuleBehavior() self.thetaiBehavior = ThetaiBehavior() self.biBehavior = BiBehavior() # TODO remove deltai and epsiloni? self.deltaiBehavior = DeltaiBehavior() self.epsiloniBehavior = EpsiloniBehavior() self.deltaMixBehavior = DeltaMixtureRuleBehavior() self.epsilonMixBehavior = EpsilonMixtureRuleBehavior() self.n = len(self.substances) self.Vcs = np.zeros(self.n) self.Pcs = np.zeros(self.n) self.Tcs = np.zeros(self.n) self.omegas = np.zeros(self.n) self.subs_ids = self.getSubstancesIDs() self.vle_method = "phi-phi" self.has_UNIFAC = self.hasUNIFAC() if self.has_UNIFAC: self.unifac_model = UNIFAC(self.subs_ids) for i in range(self.n): self.Vcs[i] = self.substances[i].Vc self.Tcs[i] = self.substances[i].Tc self.Pcs[i] = self.substances[i].Pc self.omegas[i] = self.substances[i].omega def hasUNIFAC(self): if len(self.subs_ids) < 2: return False return has_unifac_in_db(self.subs_ids) def getZfromPT(self, P: float, T: float, y): b = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances) theta = self.mixRuleBehavior.thetam( y, T, self.thetaiBehavior, self.substances, self.k ) delta = self.deltaMixBehavior.deltam( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilon = self.epsilonMixBehavior.epsilonm( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) return _getZfromPT_helper(b, theta, delta, epsilon, T, P, R_IG) def getPfromTV(self, T: float, V: float, y) -> float: b = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances) theta = self.mixRuleBehavior.thetam( y, T, self.thetaiBehavior, self.substances, self.k ) delta = self.deltaMixBehavior.deltam( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilon = self.epsilonMixBehavior.epsilonm( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) p = R_IG * T / (V - b) - theta / (V * (V + delta) + epsilon) return p def getPhi_i(self, i: int, y, P: float, T: float, Z: float): bm = self.mixRuleBehavior.bm(y, T, self.biBehavior, self.substances) thetam = self.mixRuleBehavior.thetam( y, T, self.thetaiBehavior, self.substances, self.k ) deltam = self.deltaMixBehavior.deltam( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilonm = self.epsilonMixBehavior.epsilonm( y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) # derivatives diffthetam = self.mixRuleBehavior.diffThetam( i, y, T, self.thetaiBehavior, self.substances, self.k ) diffbm = self.mixRuleBehavior.diffBm(i, y, T, self.biBehavior, self.substances) diffdeltam = self.deltaMixBehavior.diffDeltam( i, y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) diffepsilonm = self.epsilonMixBehavior.diffEpsilonm( i, y, T, self.biBehavior, self.mixRuleBehavior, self.substances ) return _getPhi_i_helper( P, T, Z, R_IG, bm, thetam, deltam, epsilonm, diffthetam, diffbm, diffdeltam, diffepsilonm, DBL_EPSILON, ) def getFugacity(self, y, _P: float, _T: float, _V: float, _Z: float) -> float: f = 0.0 for i in range(self.n): f += y[i] * self.getPhi_i(i, y, _P, _T, _Z) return f * _P def getAllProps( self, y, Tref: float, T: float, Pref: float, P: float ) -> (Props, Props): log = "" zs = self.getZfromPT(P, T, y) zliq, zvap = np.min(zs), np.max(zs) vliq, vvap = zliq * R_IG * T / P, zvap * R_IG * T / P MixSubs = MixtureProp(self.substances, y) avgMolWt = MixSubs.getMolWt() if avgMolWt: rholiq, rhovap = avgMolWt * 1e-3 / vliq, avgMolWt * 1e-3 / vvap else: rholiq, rhovap = 0, 0 if MixSubs.hasCp(): igprops = MixSubs.getIGProps(Tref, T, Pref, P) log += MixSubs.getCpLog(Tref, T) pliq, pvap = self.getCpHSGUA(y, Tref, T, Pref, P) else: igprops = 0 pliq, pvap = 0, 0 log += "Couldn't calculate properties: missing Cp paramaters" fl, fv = ( self.getFugacity(y, P, T, vliq, zliq), self.getFugacity(y, P, T, vvap, zvap), ) retPropsliq, retPropsvap = Props(), Props() retPropsliq.Z, retPropsvap.Z = zliq, zvap retPropsliq.V, retPropsvap.V = vliq, vvap retPropsliq.rho, retPropsvap.rho = rholiq, rhovap retPropsliq.P, retPropsvap.P = P, P retPropsliq.T, retPropsvap.T = T, T retPropsliq.Fugacity, retPropsvap.Fugacity = fl, fv retPropsliq.IGProps, retPropsvap.IGProps = igprops, igprops retPropsliq.Props, retPropsvap.Props = pliq, pvap retPropsliq.log, retPropsvap.log = log, log return retPropsliq, retPropsvap def getdZdT(self, P: float, T: float, y) -> [float, float]: h = 1e-5 z_plus_h = self.getZfromPT(P, T + h, y) z_minus_h = self.getZfromPT(P, T - h, y) zs = (z_plus_h - z_minus_h) / (2.0 * h) return np.min(zs), np.max(zs) # TODO speed up this part with numba def getDepartureProps(self, y, P, T, V, Z): def _Zfunc(v, t): bm = self.mixRuleBehavior.bm(y, t, self.biBehavior, self.substances) thetam = self.mixRuleBehavior.thetam( y, t, self.thetaiBehavior, self.substances, self.k ) delta = self.deltaMixBehavior.deltam( y, t, self.biBehavior, self.mixRuleBehavior, self.substances ) epsilon = self.epsilonMixBehavior.epsilonm( y, t, self.biBehavior, self.mixRuleBehavior, self.substances ) return v / (v - bm) - (thetam / (R_IG * t)) * v / ( v ** 2 + v * delta + epsilon ) def _dZdT(v, t): h = 1e-5 return (_Zfunc(v, t + h) - _Zfunc(v, t - h)) / (2.0 * h) def _URfunc(v, t): return t * _dZdT(v, t) / v def _ARfunc(v, t): return (1.0 - _Zfunc(v, t)) / v # calculate UR # nhau = _URfunc(V, T) UR_RT = quad(_URfunc, V, np.inf, args=(T,))[0] UR = UR_RT * T * R_IG # calculate AR AR_RT = quad(_ARfunc, V, np.inf, args=(T,))[0] + np.log(Z) AR = AR_RT * T * R_IG # calculate HR HR_RT = UR_RT + 1.0 - Z HR = HR_RT * R_IG * T # calculate SR SR_R = UR_RT - AR_RT SR = SR_R * R_IG # calculate GR GR_RT = AR_RT + 1 - Z GR = GR_RT * R_IG * T ret = DeltaProp(0, HR, SR, GR, UR, AR) return ret def getDeltaDepartureProps( self, y, _Pref: float, _Tref: float, _Vref: float, _Zref: float, _P: float, _T: float, _V: float, _Z: float, ) -> DeltaProp: ref = self.getDepartureProps(y, _Pref, _Tref, _Vref, _Zref) state = self.getDepartureProps(y, _P, _T, _V, _Z) delta = state.subtract(ref) return delta def getCpHSGUA(self, y, Tref: float, T: float, Pref: float, P: float): zs = self.getZfromPT(P, T, y) zsref = self.getZfromPT(Pref, Tref, y) zliq, zvap = np.min(zs), np.max(zs) zliqref, zvapref = np.min(zsref), np.max(zsref) vliq, vvap = zliq * R_IG * T / P, zvap * R_IG * T / P vliqref, vvapref = zliqref * R_IG * Tref / Pref, zvapref * R_IG * Tref / Pref MixSubs = MixtureProp(self.substances, y) igprop = MixSubs.getIGProps( Tref, T, Pref, P ) # make sure that mixture can handle single substances ddp_liq = self.getDeltaDepartureProps( y, Pref, Tref, vliqref, zliqref, P, T, vliq, zliq ) ddp_vap = self.getDeltaDepartureProps( y, Pref, Tref, vvapref, zvapref, P, T, vvap, zvap ) pliq = igprop.subtract(ddp_liq) pvap = igprop.subtract(ddp_vap) return pliq, pvap def _getPb_guess(self, x, T): return _helper_getPb_guess(x, T, self.Pcs, self.Tcs, self.omegas) def _getPd_guess(self, y, T): return _helper_getPd_guess(y, T, self.Pcs, self.Tcs, self.omegas) def getCapPhi_i(self, i: int, y, P: float, T: float) -> float: zv = np.max(self.getZfromPT(P, T, y)) return self.getPhi_i(i, y, P, T, zv) def getPSat_i(self, i: int, T: float) -> float: has_antoine = self.substances[i].hasAntoine() check_antoine_range = self.substances[i].checkAntoineRange(T) if has_antoine and check_antoine_range: P = self.substances[i].getPvpAntoine(T) else: P = self.substances[i].getPvpAW(T) from EOSPureSubstanceInterface import EOSPureSubstanceInterface system = EOSPureSubstanceInterface([self.substances[i]], self.eosname) P, it = system.getPvp(T, P) return P def getTSat_i(self, i: int, P: float) -> float: has_antoine = self.substances[i].hasAntoine() if has_antoine: t = self.substances[i].getAntoineTsat(P) else: t = 300.0 # check this! return t def getTsat(self, P: float): tsat = np.asarray([self.getTSat_i(i, P) for i in range(self.n)]) return tsat def getCapPhiSat_i(self, i: int, y, T: float) -> float: P = self.getPSat_i(i, T) zv = np.max(self.getZfromPT(P, T, y)) return self.getPhi_i(i, y, P, T, zv) def getDefCapPhi_i(self, i: int, y, P: float, T: float) -> float: return self.getCapPhi_i(i, y, P, T) / self.getCapPhiSat_i(i, y, T) def get_y_eq_12_9(self, x, gamma, Psat, CapPhi, P): return x * gamma * Psat / (CapPhi * P) def get_P_eq_12_11(self, x, gamma, Psat, CapPhi): return np.sum(x * gamma * Psat / CapPhi) def getPhiVap(self, y, P, T): phivap = np.zeros(self.n, dtype=np.float64) zsvap = self.getZfromPT(P, T, y) zvap = np.max(zsvap) for i in range(self.n): phivap[i] = self.getPhi_i(i, y, P, T, zvap) return phivap def getCapPhi(self, y, P, T): capphi = np.ones(self.n, dtype=np.float64) for i in range(self.n): capphi[i] = self.getCapPhi_i(i, y, P, T) return capphi def getBubblePointPressure(self, x, T: float, tol=1e3 * DBL_EPSILON, kmax=1000): if self.vle_method == "phi-phi": return self.getBubblePointPressure_phi_phi(x, T, tol=tol, kmax=kmax) elif self.vle_method == "UNIFAC": return self.getBubblePointPressure_UNIFAC(x, T, tol=tol, kmax=kmax) else: raise NotImplementedError("gamma-phi not implemented") def getSubstancesIDs(self): subs_ids = [s.getSubstanceID() for s in self.substances] return subs_ids def getPsat(self, T: float): Psat = np.asarray([self.getPSat_i(i, T) for i in range(self.n)]) return Psat def getBubblePointPressure_UNIFAC(self, x, T, tol=1e3 * DBL_EPSILON, kmax=100): assert len(x) == self.n assert np.sum(x) == 1.0 x = np.atleast_1d(x) gamma = self.unifac_model.getGamma(x, T) capphi = np.ones(self.n, dtype=np.float64) PSat = self.getPsat(T) pb = self.get_P_eq_12_11(x, gamma, PSat, capphi) err = 100 ite = 0 while err > tol and ite < kmax: ite += 1 y = self.get_y_eq_12_9(x, gamma, PSat, capphi, pb) capphi = self.getCapPhi(y, pb, T) pb_old = pb pb = self.get_P_eq_12_11(x, gamma, PSat, capphi) err = np.abs((pb - pb_old) / pb) phivap = self.getPhiVap(y, pb, T) k = self.get_k_gamma_phi(gamma, PSat, pb, capphi) return y, pb, phivap, gamma, k, ite def getBubblePointPressure_phi_phi(self, x, T, tol=1e3 * DBL_EPSILON, kmax=1000): assert len(x) == self.n assert np.sum(x) == 1.0 x = np.atleast_1d(x) pb = self._getPb_guess(x, T) k = np.exp( np.log(self.Pcs / pb) + 5.373 * (1 + self.omegas) * (1.0 - self.Tcs / T) ) y = x * k / np.sum(x * k) err = 100 ite = 0 phivap = np.empty(self.n, dtype=np.float64) philiq = np.empty(self.n, dtype=np.float64) while err > tol and ite < kmax: ite += 1 zsvap = self.getZfromPT(pb, T, y) zsliq = self.getZfromPT(pb, T, x) zvap = np.max(zsvap) zliq = np.min(zsliq) for i in range(self.n): phivap[i] = self.getPhi_i(i, y, pb, T, zvap) philiq[i] = self.getPhi_i(i, x, pb, T, zliq) k = philiq / phivap y = x * k yt = np.sum(y) pb = pb * yt err = np.abs(1.0 - yt) return y, pb, phivap, philiq, k, ite ####### DEW POINT ########### def getDewPointPressure(self, y, T: float, tol=1e3 * DBL_EPSILON, kmax=1000): if self.vle_method == "phi-phi": return self.getDewPointPressure_phi_phi(y, T, tol=tol, kmax=kmax) elif self.vle_method == "UNIFAC": return self.getDewPointPressure_UNIFAC(y, T, tol=tol, kmax=kmax) else: raise NotImplementedError("gamma-phi not implemented") def getDewPointPressure_phi_phi(self, y, T, tol=1e3 * DBL_EPSILON, kmax=1000): assert len(y) == self.n assert np.sum(y) == 1.0 y = np.atleast_1d(y) pd = self._getPd_guess(y, T) k = np.exp( np.log(self.Pcs / pd) + 5.373 * (1 + self.omegas) * (1.0 - self.Tcs / T) ) x = y / k x = x / np.sum(x) err = 100 ite = 0 phivap = np.empty(self.n, dtype=np.float64) philiq = np.empty(self.n, dtype=np.float64) while err > tol and ite < kmax: ite += 1 zsvap = self.getZfromPT(pd, T, y) zsliq = self.getZfromPT(pd, T, x) zvap = np.max(zsvap) zliq = np.min(zsliq) for i in range(self.n): phivap[i] = self.getPhi_i(i, y, pd, T, zvap) philiq[i] = self.getPhi_i(i, x, pd, T, zliq) k = philiq / phivap x = y / k xt = np.sum(x) pd = pd / xt err = np.abs(1.0 - xt) x = x / xt return x, pd, phivap, philiq, k, ite def getP_eq_12_12(self, y, gamma, Psat, capphi): return 1.0 / np.sum(y * capphi / (gamma * Psat)) def get_x_eq_12_10(self, y, gamma, Psat, capphi, p): return y * capphi * p / (gamma * Psat) def getDewPointPressure_UNIFAC(self, y, T: float, tol=1e3 * DBL_EPSILON, kmax=1000): assert len(y) == self.n assert np.sum(y) == 1.0 y = np.atleast_1d(y) Psat = self.getPsat(T) capphi = np.ones(self.n, dtype=np.float64) gamma = np.ones(self.n, dtype=np.float64) pd = self.getP_eq_12_12(y, gamma, Psat, capphi) x = self.get_x_eq_12_10(y, gamma, Psat, capphi, pd) x = x / np.sum(x) gamma = self.unifac_model.getGamma(x, T) pd = self.getP_eq_12_12(y, gamma, Psat, capphi) capphi = self.getCapPhi(y, pd, T) err = 100 ite = 0 while err > tol and ite < kmax: ite += 1 capphi = self.getCapPhi(y, pd, T) err2 = 100 ite2 = 0 while err2 > tol and ite2 < kmax: ite2 += 1 x = self.get_x_eq_12_10(y, gamma, Psat, capphi, pd) x = x / np.sum(x) gamma_old = gamma gamma = self.unifac_model.getGamma(x, T) err2 = np.max(np.abs(gamma_old - gamma)) pd_old = pd pd = self.getP_eq_12_12(y, gamma, Psat, capphi) err = np.abs((pd - pd_old) / pd) phivap = self.getPhiVap(y, pd, T) k = self.get_k_gamma_phi(gamma, Psat, pd, capphi) return x, pd, phivap, gamma, k, ite def getBubblePointTemperature(self, x, P: float, tol=1e3 * DBL_EPSILON, kmax=100): if self.vle_method == "phi-phi": return self.getBubblePointTemperature_phi_phi(x, P, tol=tol, kmax=kmax) elif self.vle_method == "UNIFAC": return self.getBubblePointTemperature_UNIFAC(x, P, tol=tol, kmax=kmax) else: raise NotImplementedError("gamma-phi not implemented") def get_k_gamma_phi(self, gamma, psat, P, capphi): k = gamma * psat / (P * capphi) return k def getBubblePointTemperature_UNIFAC(self, x, P, tol=1e3 * DBL_EPSILON, kmax=100): assert len(x) == self.n x = np.atleast_1d(x) assert np.sum(x) == 1.0 tsat = self.getTsat(P) tb = np.float(np.sum(x * tsat)) capphi = np.ones(self.n, dtype=np.float64) psat = self.getPsat(tb) gamma = self.unifac_model.getGamma(x, tb) k = self.get_k_gamma_phi(gamma, psat, P, capphi) tb2 = tb f2 = np.sum(x * k) - 1.0 tb1 = tb * 1.1 y = x * k / np.sum(x * k) capphi = self.getCapPhi(y, P, tb1) psat = self.getPsat(tb1) gamma = self.unifac_model.getGamma(x, tb1) k = self.get_k_gamma_phi(gamma, psat, P, capphi) f1 = np.sum(x * k) - 1.0 y = x * k / np.sum(x * k) err = 100 ite = 0 while err > tol and ite < kmax: ite += 1 tb = tb1 - f1 * ((tb1 - tb2) / (f1 - f2)) capphi = self.getCapPhi(y, P, tb) psat = self.getPsat(tb) gamma = self.unifac_model.getGamma(x, tb) k = self.get_k_gamma_phi(gamma, psat, P, capphi) y = x * k yt = np.sum(y) err = np.abs(1.0 - yt) y = y / yt tb2 = tb1 tb1 = tb f2 = f1 f1 = np.sum(k * x) - 1.0 phivap = self.getPhiVap(y, P, tb) return y, tb, phivap, gamma, k, ite # TODO optimize this! here, I used the secant method for Tb convergence. def getBubblePointTemperature_phi_phi(self, x, P, tol=1e3 * DBL_EPSILON, kmax=100): assert len(x) == self.n x = np.atleast_1d(x) assert np.sum(x) == 1.0 Tbi = np.empty(self.n) for i in range(self.n): if self.substances[i].Tb > 0: Tbi[i] = self.substances[i].Tb else: Tbi[i] = 100.0 tb = _helper_bubble_T_guess_from_wilson( x, P, np.sum(x * Tbi), self.Pcs, self.Tcs, self.omegas ) k = np.exp( np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) * (1.0 - self.Tcs / tb) ) err = 100 ite = 0 tb2 = tb f2 = np.sum(x * k) - 1.0 tb1 = tb * 1.1 k = np.exp( np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) * (1.0 - self.Tcs / tb1) ) f1 = np.sum(x * k) - 1.0 y = x * k / np.sum(x * k) phivap = np.empty(self.n, dtype=np.float64) philiq = np.empty(self.n, dtype=np.float64) while err > tol and ite < kmax: ite += 1 tb = tb1 - f1 * ((tb1 - tb2) / (f1 - f2)) zsvap = self.getZfromPT(P, tb, y) zsliq = self.getZfromPT(P, tb, x) zvap = np.max(zsvap) zliq = np.min(zsliq) for i in range(self.n): phivap[i] = self.getPhi_i(i, y, P, tb, zvap) philiq[i] = self.getPhi_i(i, x, P, tb, zliq) k = philiq / phivap y = x * k yt = np.sum(y) err = np.abs(1.0 - yt) y = y / yt tb2 = tb1 tb1 = tb f2 = f1 f1 = np.sum(k * x) - 1.0 return y, tb, phivap, philiq, k, ite def getDewPointTemperature(self, y, P: float, tol=1e3 * DBL_EPSILON, kmax=100): if self.vle_method == "phi-phi": return self.getDewPointTemperature_phi_phi(y, P, tol=tol, kmax=kmax) elif self.vle_method == "UNIFAC": return self.getDewPointTemperature_UNIFAC(y, P, tol=tol, kmax=kmax) else: raise NotImplementedError("gamma-phi not implemented") def getDewPointTemperature_UNIFAC( self, y, P: float, tol: float = 1e4 * DBL_EPSILON, kmax: int = 1000 ): assert len(y) == self.n y = np.atleast_1d(y) assert np.sum(y) == 1.0 td = float(np.sum(y * self.getTsat(P))) gamma = np.ones(self.n, dtype=np.float64) capphi = self.getCapPhi(y, P, td) psat = self.getPsat(td) x = self.get_x_eq_12_10(y, gamma, psat, capphi, P) k = self.get_k_gamma_phi(gamma, psat, P, capphi) x = x / np.sum(x) td2 = td f2 = np.sum(y / k) - 1.0 td1 = td * 1.1 capphi = self.getCapPhi(y, P, td1) psat = self.getPsat(td1) gamma = self.unifac_model.getGamma(x, td1) k = self.get_k_gamma_phi(gamma, psat, P, capphi) f1 = np.sum(y / k) - 1.0 x = self.get_x_eq_12_10(y, gamma, psat, capphi, P) x = x / np.sum(x) err = 100 ite = 0 while err > tol and ite < kmax: ite += 1 td = td1 - f1 * ((td1 - td2) / (f1 - f2)) capphi = self.getCapPhi(y, P, td) psat = self.getPsat(td) gamma = self.unifac_model.getGamma(x, td) k = self.get_k_gamma_phi(gamma, psat, P, capphi) x = self.get_x_eq_12_10(y, gamma, psat, capphi, P) xt = np.sum(x) err = np.abs(1.0 - xt) x = x / xt td2 = td1 td1 = td f2 = f1 f1 = np.sum(y / k) - 1.0 phivap = self.getPhiVap(y, P, td) return x, td, phivap, gamma, k, ite def getDewPointTemperature_phi_phi( self, y, P: float, tol: float = 1e4 * DBL_EPSILON, kmax: int = 1000 ): assert len(y) == self.n y = np.atleast_1d(y) assert np.sum(y) == 1.0 Tdi = np.empty(self.n) for i in range(self.n): if self.substances[i].Tb > 0: Tdi[i] = self.substances[i].Tb else: Tdi[i] = 100.0 td = np.sum(y * Tdi) k = np.exp( np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) * (1.0 - self.Tcs / td) ) td2 = td f2 = np.sum(y / k) - 1.0 td1 = td * 1.1 k = np.exp( np.log(self.Pcs / P) + 5.373 * (1 + self.omegas) * (1.0 - self.Tcs / td1) ) f1 = np.sum(y / k) - 1.0 err = 100 ite = 0 # x = np.full(self.n, 1.0 / self.n) x = (y / k) / np.sum(y / k) phivap = np.empty(self.n, dtype=np.float64) philiq = np.empty(self.n, dtype=np.float64) while err > tol and ite < kmax: ite += 1 td = td1 - f1 * ((td1 - td2) / (f1 - f2)) zsvap = self.getZfromPT(P, td, y) zsliq = self.getZfromPT(P, td, x) zvap = np.max(zsvap) zliq = np.min(zsliq) for i in range(self.n): phivap[i] = self.getPhi_i(i, y, P, td, zvap) philiq[i] = self.getPhi_i(i, x, P, td, zliq) k = philiq / phivap x = y / k xt = np.sum(x) err = np.abs(1.0 - xt) x = x / xt td2 = td1 td1 = td f2 = f1 f1 = np.sum(y / k) - 1.0 return x, td, phivap, philiq, k, ite def getFlash(self, z, P: float, T: float, tol=1e5 * DBL_EPSILON, kmax=1000): if self.vle_method == "phi-phi": return self.getFlash_phi_phi(z, P, T, tol=tol, kmax=kmax) elif self.vle_method == "UNIFAC": return self.getFlash_UNIFAC(z, P, T, tol=tol, kmax=kmax) else: raise NotImplementedError("gamma-phi not implemented") def getFlash_phi_phi(self, z, P: float, T: float, tol=1e5 * DBL_EPSILON, kmax=1000): assert self.n == len(z) z = np.atleast_1d(z) assert np.sum(z) == 1.0 # check if is flash problem y, pd, pv, pl, k, ite = self.getDewPointPressure(z, T) x, pb, pv, pl, k, ite = self.getBubblePointPressure(z, T) if not (pd <= P <= pb): raise ValueError("P is not between Pdew and Pbubble") v = (pb - P) / (pb - pd) err = 100 ite = 0 phivap = np.empty(self.n, dtype=np.float64) philiq = np.empty(self.n, dtype=np.float64) y = np.full(self.n, 1.0 / self.n) x = np.full(self.n, 1.0 / self.n) while err > tol and ite < kmax: ite += 1 zsvap = self.getZfromPT(P, T, y) zsliq = self.getZfromPT(P, T, x) zvap = np.max(zsvap) zliq = np.min(zsliq) for i in range(self.n): phivap[i] = self.getPhi_i(i, y, P, T, zvap) philiq[i] = self.getPhi_i(i, x, P, T, zliq) k = philiq / phivap vold = v v = _RachfordRice(v, k, z, tol=1e-8, kmax=500) x = z / (1.0 + v * (k - 1.0)) y = k * x err = np.abs(v - vold) return x, y, v, phivap, philiq, k, ite def getFlash_UNIFAC(self, z, P: float, T: float, tol=1e5 * DBL_EPSILON, kmax=1000): assert self.n == len(z) z = np.atleast_1d(z) assert np.sum(z) == 1.0 # check if is flash problem y, pd, pv, pl, k, ite = self.getDewPointPressure(z, T) x, pb, pv, pl, k, ite = self.getBubblePointPressure(z, T) if not (pd <= P <= pb): raise ValueError("P is not between Pdew and Pbubble") v = (pb - P) / (pb - pd) psat = self.getPsat(T) y = np.full(self.n, 1.0 / self.n) x = np.full(self.n, 1.0 / self.n) err = 100 ite = 0 while err > tol and ite < kmax: ite += 1 phivap = self.getPhiVap(y, P, T) gamma = self.unifac_model.getGamma(x, T) capphi = self.getCapPhi(y, P, T) k = self.get_k_gamma_phi(gamma, psat, P, capphi) vold = v v = _RachfordRice(v, k, z, tol=1e-8, kmax=500) x = z / (1.0 + v * (k - 1.0)) y = k * x err = np.abs(v - vold) return x, y, v, phivap, gamma, k, ite def isobaricBinaryMixtureGenData(self, P, x=None, Punit="Pa", Tunit="K"): assert self.n == 2 if x is None: x = x_vec_for_plot x = np.atleast_1d(x) xmix = np.empty(2, dtype=np.float64) y = np.empty(len(x), dtype=np.float64) T = np.empty(len(x), dtype=np.float64) kvec = np.empty(len(x), dtype=np.float64) phi_vap_vec = np.empty(len(x), dtype=np.float64) phi_liq_vec = np.empty(len(x), dtype=np.float64) pv = np.empty(len(x), dtype=np.float64) pl = np.empty(len(x), dtype=np.float64) k = np.empty(len(x), dtype=np.float64) for i in range(len(x)): xmix[0] = x[i] xmix[1] = 1.0 - x[i] try: yres, T[i], pv, pl, k, ite = self.getBubblePointTemperature(xmix, P) except: try: yres = [0, 0] yres[0] = y[i - 1] T[i] = T[i - 1] x[i] = x[i - 1] pv[0] = phi_vap_vec[i - 1] pl[0] = phi_liq_vec[i - 1] k[0] = kvec[i - 1] except: yres = [0, 0] yres[0] = y[i + 1] T[i] = T[i + 1] x[i] = x[i + 1] pv[0] = phi_vap_vec[i + 1] pl[0] = phi_liq_vec[i + 1] k[0] = kvec[i + 1] T[i] = conv_unit(T[i], "K", Tunit) y[i] = yres[0] phi_vap_vec[i] = pv[0] phi_liq_vec[i] = pl[0] kvec[i] = k[0] return x, y, T, phi_vap_vec, phi_liq_vec, kvec def isothermalBinaryMixtureGenData(self, T, x=None, Punit="Pa", Tunit="K"): assert self.n == 2 if x is None: x = x_vec_for_plot x = np.atleast_1d(x) xmix = np.empty(2, dtype=np.float64) y = np.empty(len(x), dtype=np.float64) P = np.empty(len(x), dtype=np.float64) kvec = np.empty(len(x), dtype=np.float64) phi_vap_vec = np.empty(len(x), dtype=np.float64) phi_liq_vec = np.empty(len(x), dtype=np.float64) phi_vap = np.empty(len(x), dtype=np.float64) phi_liq = np.empty(len(x), dtype=np.float64) kv = np.empty(len(x), dtype=np.float64) for i in range(len(x)): xmix[0] = x[i] xmix[1] = 1.0 - x[i] try: yres, P[i], phi_vap, phi_liq, kv, ite = self.getBubblePointPressure( xmix, T, tol=1e-5, kmax=100 ) except: try: yres = [0, 0] yres[0] = y[i - 1] P[i] = P[i - 1] x[i] = x[i - 1] phi_vap[0] = phi_vap_vec[i - 1] phi_liq[0] = phi_liq_vec[i - 1] kv[0] = kvec[i - 1] except: yres = [0, 0] yres[0] = y[i + 1] P[i] = P[i + 1] x[i] = x[i + 1] phi_vap[0] = phi_vap_vec[i + 1] phi_liq[0] = phi_liq_vec[i + 1] kv[0] = kv[i + 1] P[i] = conv_unit(P[i], "Pa", Punit) y[i] = yres[0] phi_vap_vec[i] = phi_vap[0] phi_liq_vec[i] = phi_liq[0] kvec[i] = kv[0] return x, y, P, phi_vap_vec, phi_liq_vec, kvec def isobaricBinaryMixturePlot( self, P, x=None, Punit="Pa", Tunit="K", expfilename="", plottype="both" ): assert self.n == 2 if x is None: x = x_vec_for_plot x, y, T, phiv, phil, kvec = self.isobaricBinaryMixtureGenData( P, x, Punit=Punit, Tunit=Tunit ) if self.vle_method == "UNIFAC": gamma_title = "UNIFAC + " else: gamma_title = "" title = "{} (1) / {} (2) at {:0.3f} {}\n{}Equation of state: {}".format( self.substances[0].Name, self.substances[1].Name, conv_unit(P, "Pa", Punit), Punit, gamma_title, self.eosname, ) vleplot = VLEBinaryDiagrams.VLEBinaryMixturePlot( "isobaric", T, x, y, Tunit, title, plottype ) if os.path.exists(expfilename): vleplot.expPlot(expfilename) vleplot.plot() def setVLEmethod(self, method: str): if not self.has_UNIFAC: self.vle_method = "phi-phi" return self.vle_method = method def isothermalBinaryMixturePlot( self, T, x=None, Punit="Pa", Tunit="K", expfilename="", plottype="both" ): assert self.n == 2 if x is None: x = x_vec_for_plot x, y, P, phiv, phil, kvec = self.isothermalBinaryMixtureGenData( T, x, Punit=Punit, Tunit=Tunit ) if self.vle_method == "UNIFAC": gamma_title = "UNIFAC + " else: gamma_title = "" title = "{} (1) / {} (2) at {:0.3f} {}\n{}Equation of state: {}".format( self.substances[0].Name, self.substances[1].Name, conv_unit(T, "K", Tunit), Tunit, gamma_title, self.eosname, ) vleplot = VLEBinaryDiagrams.VLEBinaryMixturePlot( "isothermal", P, x, y, Punit, title, plottype ) if os.path.exists(expfilename): vleplot.expPlot(expfilename) vleplot.plot() @njit(float64(float64, float64[:], float64[:], float64, int64), cache=True) def _RachfordRice(v, k, z, tol, kmax): v0 = v v1 = 999.0 err = 1000.0 iter = 0 while err > tol or iter > kmax: iter += 1 f = np.sum(z * (k - 1.0) / (1.0 + v0 * (k - 1.0))) dfdv = -np.sum(z * (k - 1.0) ** 2 / (1.0 + v0 * (k - 1.0)) ** 2) v1 = v0 - f / dfdv err = np.abs(v0 - v1) v0 = v1 return v1 @njit(float64(float64[:], float64, float64[:], float64[:], float64[:]), cache=True) def _helper_getPb_guess(x, T, Pcs, Tcs, omegas): x = np.atleast_1d(x) return np.sum(x * Pcs * np.exp(5.373 * (1.0 + omegas) * (1.0 - Tcs / T))) @njit(float64(float64[:], float64, float64[:], float64[:], float64[:]), cache=True) def _helper_getPd_guess(y, T, Pcs, Tcs, omegas): y = np.atleast_1d(y) return 1.0 / np.sum(y / (Pcs * np.exp(5.373 * (1.0 + omegas) * (1.0 - Tcs / T)))) @njit( float64(float64[:], float64, float64, float64[:], float64[:], float64[:]), cache=True, ) def _helper_f_for_temperature_bubble_point_guess(x, P, T, Pcs, Tcs, omegas): return -P + np.sum(Pcs * x * np.exp(5.373 * (1.0 + omegas) * (1.0 - Tcs / T))) @njit( float64(float64[:], float64, float64, float64[:], float64[:], float64[:]), cache=True, ) def _helper_diff_f_for_temperature_bubble_point_guess(x, P, T, Pcs, Tcs, omegas): h = 1e-3 f1 = _helper_f_for_temperature_bubble_point_guess(x, P, T + h, Pcs, Tcs, omegas) f2 = _helper_f_for_temperature_bubble_point_guess(x, P, T - h, Pcs, Tcs, omegas) return (f1 - f2) / (2.0 * h) @njit( float64(float64[:], float64, float64, float64[:], float64[:], float64[:]), cache=True, ) def _helper_bubble_T_guess_from_wilson(x, P, T, Pcs, Tcs, omegas): tol = 1e-8 kmax = 1000 k = 0 err = 999 while k < kmax and err < tol: k += 1 told = T - _helper_f_for_temperature_bubble_point_guess( x, P, T, Pcs, Tcs, omegas ) / _helper_diff_f_for_temperature_bubble_point_guess(x, P, T, Pcs, Tcs, omegas) err = np.abs(T - told) T = told return T from numba import njit, float64, jit @jit((float64, float64, float64, float64, float64, float64, float64), cache=True) def _getZfromPT_helper( b: float, theta: float, delta: float, epsilon: float, T: float, P: float, R_IG: float, ): Bl = b * P / (R_IG * T) deltal = delta * P / (R_IG * T) epsilonl = epsilon * np.power(P / (R_IG * T), 2) thetal = theta * P / np.power(R_IG * T, 2) _b = deltal - Bl - 1.0 _c = thetal + epsilonl - deltal * (1.0 + Bl) _d = -(epsilonl * (Bl + 1.0) + Bl * thetal) roots = np.array(solve_cubic(1.0, _b, _c, _d)) real_values = roots[roots >= 0] return real_values @njit( ( float64, float64, float64, float64, float64, float64, float64, float64, float64, float64, float64, float64, float64, ), cache=True, ) def _getPhi_i_helper( P: float, T: float, Z: float, R_IG: float, bm: float, thetam: float, deltam: float, epsilonm: float, diffthetam: float, diffbm: float, diffdeltam: float, diffepsilonm: float, DBL_EPSILON: float, ) -> float: RT = R_IG * T V = RT * Z / P deltam2_minus_4epislonm = deltam * deltam - 4.0 * epsilonm deltaN = deltam * diffdeltam * 2.0 - 4.0 * diffepsilonm if abs(deltam2_minus_4epislonm) < 100 * DBL_EPSILON: substitute_term = -1.0 / (V + deltam / 2.0) first_term = substitute_term * diffthetam / RT last_term = diffbm / (V - bm) -
np.log((V - bm) / V)
numpy.log
import matplotlib as mpl # mpl.use('Agg') import matplotlib.pyplot as plt from shutil import copyfile import fortranformat as ff from itertools import zip_longest from scipy.signal import argrelextrema, argrelmin import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import datetime from ast import literal_eval as make_tuple import pyshtools from scipy.io import loadmat from pathlib import Path from scipy.special import lpmn from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import copy import cartopy.feature as cfeature """ author: <NAME> contact: <EMAIL> description: A scipt containing tools to post-process the orbits, obtained from a forward simulation (and also recovery), from epos-oc. """ def create_element_lines(ffp, splitstring): #get titles with open(ffp) as f: LINES = f.readlines() starts = [] for i,line in enumerate(LINES): if line.startswith(splitstring): starts.append(i) ends=[] for i in range(len(starts)): ends.append(starts[i]+16) blocks = list(zip(starts,ends)) format_float = ff.FortranRecordWriter('(E19.13)') for block in blocks: with open(ffp) as fp: for i, line in enumerate(fp): if i in range(block[0],block[1]): if i==block[0]: outfile = open('%s_ELEMENTSnew.txt' %line.strip(),'w') outfile.write('\n') outfile.write(' --- Begin initial elements GRACE-C\n') if i>block[0]+1: if line.startswith('Sat'): outfile.write(' --- End initial elements GRACE-C\n') outfile.write('\n') outfile.write(' --- Begin initial elements GRACE-D\n') if line.startswith('ELEMENT'): val = line.strip().split() val[5] = str(format_float.write([np.float(val[5])])).replace('E','e') val[6] = str(format_float.write([np.float(val[6])])).replace('E', 'e') if val[7] == '0201201': val[7] = '1804701' if val[7] == '0201202': val[7] = '1804702' str_new2 = ('%7.7s' '%4.3s' '%2.1i' '%2.1i' '%2.1i' '%20.19s' '%20.19s' '%8.7s') \ % (val[0], val[1], int(val[2]), int(val[3]), int(val[4]), val[5], val[6], val[7]) outfile.write('%s\n' %str_new2) if i==block[1]-1: outfile.write(' --- End initial elements GRACE-D') break # # # def create_element_lines(ffp, splitstring): # #input: Unformatted file that contains orbit elements needed to start each of the runs for GRACE-FO simulation # #output: Orbit elements that can be used as input for prepare_EPOSIN_4_orbit_integration.sh (located at # #/GFZ/project/f_grace/NGGM_SIM/SIM_FORWARD ) # with open(ffp) as f: # lines = f.read().splitlines() # splits = [i for i in lines if i.startswith(splitstring)] # print(splits) # n = 2 # group size # m = 1 # overlap size # splits_grouped = [splits[i:i + n] for i in range(0, len(splits), n - m)] # print(splits_grouped) # # # # # print(lines) # # split = [i for i in lines if i.startswith('PP')] # for i in splits_grouped: # if len(i) > 1: # start = i[0] # end = i[1] # out = '%s_ELEMENT_lines.txt' % (start.strip()) # with open(ffp) as infile, open(out, 'w') as outfile: # copy = False # titlewritten0 = False # titlewritten1 = False # firsttime6 = False # linesread = 0 # outfile.write("\n") # # for line in infile: # if line.strip() == start.strip(): # copy = True # continue # elif line.strip() == end.strip(): # copy = False # continue # elif copy: # linesread += 1 # # if not titlewritten0: # outfile.write(' --- Begin initial elements GRACE-C\n') # titlewritten0 = True # if line.startswith( # 'ELEMENT') and titlewritten0: # if line starts with ELEMENT and the first title has been written # val = list(filter(None, line.strip().split(' ')))[0:-3] # format_float = ff.FortranRecordWriter('(E19.13)') # val5 = str(format_float.write([np.float(val[5])])) # val6 = str(format_float.write([np.float(val[6])])) # # val5 = val5.replace('E', 'e') # val6 = val6.replace('E', 'e') # # # if val[7] == '0201201': val[7] = '1804701' # if val[7] == '0201202': val[7] = '1804702' # str_new2 = ('%7.7s' '%4.3s' '%2.1i' '%2.1i' '%2.1i' '%20.19s' '%20.19s' '%8.7s') % (val[0], val[1], int(val[2]), int(val[3]), int(val[4]), val5, val6, val[7]) # # # # outfile.write("\n") # if int(val[2]) < 6: # outfile.write(str_new2) # outfile.write("\n") # # if int(val[ # 2]) == 6 and not titlewritten1: # if element six has been reached and no 'end1' has been written yet: # if not firsttime6: # titlewritten1 = True # # titlewritten2 = True # outfile.write(str_new2) # outfile.write("\n") # outfile.write(' --- End initial elements GRACE-C\n\n') # outfile.write(' --- Begin initial elements GRACE-D\n') # # if int(val[2]) == 6: # print(linesread) # if linesread > 7: # outfile.write(str_new2) # outfile.write("\n") # # outfile.write(' --- End initial elements GRACE-D') # outfile.write("\n") # outfile.write('\n') # outfile.close() # infile.close() def files(path): #input: path to a directory #output: files within the directory (omitting nested directories) for file in os.listdir(path): if os.path.isfile(os.path.join(path, file)): yield file def create_case_directories(fp, fp_out): #function to prepare the case directories for each of the simulations specified for the GRACE-FO project. #It will element_files = [] # current_dir = os.path.dirname(__file__) for file in files(fp): element_files.append(file) IDs = ['PP.1', 'PP.2'] altitudes = [490, 490] extens = [0, 0] angles = [89, 89] seperations = [200, 100] repeats = [30, 30] simdirs = ['FD', 'FD'] df = pd.DataFrame(columns=['id', 'altitude', 'extens', 'seperation', 'repeatvals', 'sim_direction']) df['id'] = IDs df['altitude'] = altitudes df['angles'] = angles df['extens'] = extens df['seperation'] = seperations df['repeatvals'] = repeats df['sim_direction'] = simdirs df.set_index('id', inplace=True) for idx in df.index: dirname = '%s_%i_%i_%i_%i_%id_%s' % (idx, df.loc[idx].altitude, df.loc[idx].angles, df.loc[idx].z, df.loc[idx].seperation, df.loc[idx].repeatvals, df.loc[idx].sim_direction ) if not os.path.exists(dirname): os.mkdir(dirname) ef = [f for f in element_files if f.startswith(idx)][0] dst = os.path.abspath(fp, dirname, 'ELEMENT_lines') src = os.path.abspath(os.path.join(os.path.dirname(__file__), ef)) copyfile(src, dst) def serial_date_to_string(srl_no): new_date = datetime.datetime(2000,1,1) + datetime.timedelta(srl_no+1) return new_date.strftime("%Y-%m-%d") def cart_2_kep_matrix(R, V, mu, Re): # step1 h_bar = np.cross(R, V) h = np.linalg.norm(h_bar, axis=1) # step2 r = np.linalg.norm(R, axis=1) v = np.linalg.norm(V, axis=1) # step3 E = 0.5 * (v ** 2) - mu / r # step4 a = -mu / (2 * E) return (a-Re)/1000.0 def cart_2_kep(r_vec, v_vec, t, mu, Re): # step1 h_bar = np.cross(r_vec, v_vec) h = np.linalg.norm(h_bar) # step2 r = np.linalg.norm(r_vec) v = np.linalg.norm(v_vec) # step3 E = 0.5 * (v ** 2) - mu / r # step4 a = -mu / (2 * E) # step5 e = np.sqrt(1 - (h ** 2) / (a * mu)) # step6 i = np.arccos(h_bar[2] / h) # step7 omega_LAN = np.arctan2(h_bar[0], -h_bar[1]) # step8 # beware of division by zero here lat = np.arctan2(np.divide(r_vec[2], (np.sin(i))), \ (r_vec[0] * np.cos(omega_LAN) + r_vec[1] * np.sin(omega_LAN))) # step9 p = a * (1 - e ** 2) nu = np.arctan2(np.sqrt(p / mu) * np.dot(r_vec, v_vec), p - r) # step10 omega_AP = lat - nu # step11 EA = 2 * np.arctan(np.sqrt((1 - e) / (1 + e)) * np.tan(nu / 2)) # step12 n = np.sqrt(mu / (a ** 3)) T = t - (1 / n) * (EA - e * np.sin(EA)) return a, e, i, omega_AP, omega_LAN, T, EA def orbit_altitude(satfile): mu = G.value * M_earth.value Re = R_earth.value with open(satfile) as infile: """read all lines from CIS files""" lines = infile.readlines() """set the start and end characters for splitting the lines into X,Y,Z, U,V,W coordinates""" start0, start1, start2, start3, start4, start5, end = 23, 41, 59, 77, 95, 113, 131 X = np.array([np.float(i[start0:start1]) for i in lines]) Y = np.array([np.float(i[start1:start2]) for i in lines]) Z = np.array([np.float(i[start2:start3]) for i in lines]) X = X.reshape(X.shape[0], 1) Y = Y.reshape(Y.shape[0], 1) Z = Z.reshape(Z.shape[0], 1) R = np.concatenate((X, Y, Z), axis=1) U = np.array([np.float(i[start3:start4]) for i in lines]) V = np.array([np.float(i[start4:start5]) for i in lines]) W = np.array([np.float(i[start5:end]) for i in lines]) U = U.reshape(U.shape[0], 1) V = V.reshape(V.shape[0], 1) W = W.reshape(W.shape[0], 1) V = np.concatenate((U, V, W), axis=1) """calculate orbit altitude and convert to km""" ALTITUDE_sec = cart_2_kep_matrix(R, V, mu, Re) """read the days and seconds """ daysStart, daysEnd, secondsStart, secondsEnd = 4, 11, 11, 23 seconds = np.array([np.float(i[secondsStart:secondsEnd]) for i in lines]) days = np.array([np.float(i[daysStart:daysEnd]) for i in lines]) """calculate the decimal format for the days and subtract 51.184 to convert to correct time format""" decimalDays = days + (seconds-51.184)/(24.0*60.*60.) """convert decimal days to a date""" YMDHMS = [datetime.datetime(2000, 1, 1, 12) + datetime.timedelta(day) for day in decimalDays] """create an empty Pandas dataframe, called df""" df = pd.DataFrame() """add the dates, decimal days and separation to the dataframe""" df['date'] = pd.to_datetime(YMDHMS) df['decimalDays'] = decimalDays df['altitude_raw'] = ALTITUDE_sec """set the index of the dataframe to the date values""" df.set_index('date', inplace=True) df.drop(df.tail(1).index, inplace=True) """calculate the daily average""" # df_daily = df.resample('D').mean() df_daily = df.resample('24H', base=0, closed='left').mean() print(df_daily.tail(10)) # print(df_daily.tail(1000)) # df_daily = df.resample('D').mean(min_count=200) # print(df_daily.tail(10)) """calculate extremas""" m = argrelextrema(df_daily['altitude_raw'].values, np.greater)[0] n = argrelextrema(df_daily['altitude_raw'].values, np.less)[0] rawsignal = df_daily['altitude_raw'].values extrema = np.empty(rawsignal.shape) extrema[:] = np.nan extrema1 = np.empty(rawsignal.shape) extrema1[:] = np.nan df_daily['extrema'] = extrema df_daily['extrema1'] = extrema1 for ind in m: df_daily['extrema'].iloc[ind] = rawsignal[ind] for ind in n: df_daily['extrema1'].iloc[ind] = rawsignal[ind] """interpolate extremas where they do not exist""" df_daily.interpolate(inplace=True) """calculate the average of the two extrema columns""" df_daily['altitude'] = df_daily[['extrema', 'extrema1']].mean(axis=1) df_daily.to_csv('%s.csv' %satfile) df_daily['altitude'].plot(figsize=(10,4)) # df_daily.drop(df_daily.tail(1).index, inplace=True) """set the x,y labels and x, y ticks to a readable fontsize and make layout tight""" plt.xlabel('Date', fontsize=18) plt.ylabel('Altitude [km]', fontsize=18) plt.xticks(fontsize=12, rotation=70) plt.yticks(fontsize=12) plt.legend(fontsize=14) plt.tight_layout() # plt.show() """save plot to file""" plt.savefig('altitude_%s.png' % (satfile)) plt.figure() ax = df_daily['altitude_raw'].plot(marker='.', figsize=(10, 3)) """set the x,y labels and x, y ticks to a readable fontsize and make layout tight""" plt.xlabel('Date', fontsize=18) plt.ylabel('Altitude [km]', fontsize=18) plt.xticks(fontsize=12, rotation=70) plt.yticks(fontsize=12) plt.legend(fontsize=14) ax.legend(['altitude']) # replacing legend entry 'altitude_raw' with 'altitude' plt.tight_layout() plt.savefig('altitude_raw%s.png' % (satfile)) # plt.show() def sat_separation(satA, satB): with open(satA) as infileA, open(satB) as infileB: """read all lines from CIS files""" linesA = infileA.readlines() linesB = infileB.readlines() """set the start and end characters for splitting the lines into X,Y,Z coordinates""" start0, start1, start2, end = 23, 41, 59, 77 Xa = np.array([np.float(i[start0:start1]) for i in linesA]) Ya = np.array([np.float(i[start1:start2]) for i in linesA]) Za = np.array([np.float(i[start2:end]) for i in linesA]) Xb = np.array([np.float(i[start0:start1]) for i in linesB]) Yb = np.array([np.float(i[start1:start2]) for i in linesB]) Zb = np.array([np.float(i[start2:end]) for i in linesB]) """calculate distance between satellites and convert to km""" SEP_AB = np.sqrt((Xa - Xb)**2. + (Ya - Yb)**2. + (Za - Zb)**2.)/1000. """read the days and seconds """ daysStart, daysEnd, secondsStart, secondsEnd = 4, 11, 11, 23 seconds = np.array([np.float(i[secondsStart:secondsEnd]) for i in linesA]) days = np.array([np.float(i[daysStart:daysEnd]) for i in linesA]) """calculate the decimal format for the days and subtract 51.184 to convert to correct time format""" decimalDays = days + (seconds-51.184)/(24.0*60.*60.) """convert decimal days to a date""" YMDHMS = [datetime.datetime(2000, 1, 1) + datetime.timedelta(day+1) for day in decimalDays] """create an empty Pandas dataframe, called df""" df = pd.DataFrame() """add the dates, decimal days and separation to the dataframe""" df['date'] = pd.to_datetime(YMDHMS) df['decimalDays'] = decimalDays df['separation'] = SEP_AB """set the index of the dataframe to the date values""" df.set_index('date', inplace=True) """calculate the daily average""" df_daily = df.resample('D').mean() """save the dataframe to file""" df_daily.to_csv('separation_AB.csv') """For plotting purposes, drop the decimalDays from the dataframe""" df_daily.drop(['decimalDays'], axis=1, inplace=True) """plot the dataframe""" df_daily.plot(figsize=(10,4)) """set the x,y labels and x, y ticks to a readable fontsize and make layout tight""" plt.xlabel('Date', fontsize=18) plt.ylabel('Separation [km]', fontsize=18) plt.xticks(fontsize=12, rotation=70) plt.yticks(fontsize=12) plt.legend(fontsize=14) plt.tight_layout() """save plot to file""" plt.savefig('separation_%s_%s.png' %(satA, satB)) def kep_2_cart(a, e, i, omega_AP, omega_LAN, T, EA): # step1 n = np.sqrt(mu / (a ** 3)) M = n * (t - T) # step2 MA = EA - e * np.sin(EA) # step3 # nu = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(EA / 2)) # step4 r = a * (1 - e * np.cos(EA)) # step5 h = np.sqrt(mu * a * (1 - e ** 2)) # step6 Om = omega_LAN w = omega_AP X = r * (np.cos(Om) * np.cos(w + nu) - np.sin(Om) * np.sin(w + nu) * np.cos(i)) Y = r * (
np.sin(Om)
numpy.sin
"""Base station positing calibration. Calibrating position and rotation for both base stations based on angle-data fom 4 point measrunments. """ # Importing dependencies import math import numpy as np # General Support Methods def norm(x): """Wrapp for numpy vector norm.""" return np.linalg.norm(x) def normVec(v): """Compute normal vector.""" return v/np.linalg.norm(v) def dot(x, y): """Wrapp for numpy dot product.""" return np.dot(x, y) # Rotation matrices def rotate_x(ang): """Return rotation matrix for given Euler rotation around x-axis.""" return np.array([[1, 0, 0], [0, np.cos(ang), -np.sin(ang)], [0, np.sin(ang), np.cos(ang)]]) def rotate_y(ang): """Return rotation matrix for given Euler rotation around y-axis.""" return np.array([[np.cos(ang), 0, np.sin(ang)], [0, 1, 0], [-np.sin(ang), 0, np.cos(ang)]]) def rotate_z(ang): """Return rotation matrix for given Euler rotation around z-axis.""" return np.array([[np.cos(ang), -np.sin(ang), 0], [np.sin(ang), np.cos(ang), 0], [0, 0, 1]]) def rotate_zyx(x, y, z): """Construct compound rotation matrix for given x, y, z rotations. Order of operation: z,y,x //TODO: Verify! """ return np.matmul(rotate_x(x), np.matmul(rotate_y(y), rotate_z(z))) def transform_vector_to_pose(vec, pose): """Rotate vector from i',j',k' coordinate system of base station to global i,j,k coordinates.""" return np.matmul(rotate_zyx(pose[3], pose[4], pose[5]), vec) def rotate_zyx_to_angles(R): """Extract Euler rotation angles about i,j,k from rotation matrix.""" x = -math.atan2(R[1, 2], R[2, 2]) y = math.asin(R[0, 2]) z = -math.atan2(R[0, 1], R[0, 0]) return np.array([x, y, z]) # Solving for Roots class ApplicationFunction(object): """Generate equations for lines and solves for multiple roots.""" # Parameters for rootfinding accuracy = 0.000000001 delta = 0.001 maxStep = 0.02 def __init__(self, b1, b2, b3): """Initialize function.""" self.b1 = b1 self.b2 = b2 self.b3 = b3 self.t1 = [] self.t2 = [] self.t3 = [] self.error = False self.findRoots() def tn(self, t1, bx, m=False): """Compute values for t2 and t3 given t1 and m. Parameters - t1: value of t1 - bx: b2 for computing t2 and b3 for computing t3 - m: minus, choice of root for second order polynomial """ a = norm(self.b1)**2 b = -2*t1*dot(self.b1, bx) c = t1**2 * norm(self.b1) - 1 d = b**2-4*a*c # Discriminant if d < 0: self.error = True return 0 self.error = False return (-b + np.sqrt(d))/(2*a) if m else (-b - np.sqrt(d))/(2*a) def t2f(self, t1, p): """Wrapp for comuting t2.""" return self.tn(t1, self.b2, p) def t3f(self, t1, p): """Wrapp for computing t3.""" return self.tn(t1, self.b3, p) def eq(self, t1, m2, m3): """Compute all three roots.""" t2 = self.t2f(t1, m2) er2 = self.error t3 = self.t3f(t1, m3) er3 = self.error if er2 or er3: self.error = True return 0 self.error = False return t2*t3*dot(self.b2, self.b3) - t2*t1*dot(self.b2, self.b1) - \ t3*t1*dot(self.b3, self.b1) + (t1*norm(self.b1))**2 # Generate all equation combinations def eq1(self, t1): """Wrapp for different root combinations.""" return self.eq(t1, True, True) def eq2(self, t1): """Wrapp for different root combinations.""" return self.eq(t1, True, False) def eq3(self, t1): """Wrapp for different root combinations.""" return self.eq(t1, False, True) def eq4(self, t1): """Wrapp for different root combinations.""" return self.eq(t1, False, False) def newtonsMethod(self, x, equation): """ Recursive method for determining root of equation. Parameters - x: evaluate function at this x-value - equation: function to be evaluated """ val = equation(x) err = self.error dVal = equation(x-self.delta) dErr = self.error if err or dErr: return 0 a = (val-dVal)/self.delta b = val - a*x intersept = -b/a movement = intersept - x xNew = intersept if movement < self.maxStep else x + self.maxStep * movement/abs(movement) return x if abs(val) < self.accuracy else self.newtonsMethod(xNew, equation) def findRoots(self): """Find both roots of function. Side-effects: stores t1Value and equaiton index """ # Determine zero of function using Newtons method: x0 = 2 t1Va = self.newtonsMethod(x0, self.eq1) t1Vb = self.newtonsMethod(x0, self.eq2) t1Vc = self.newtonsMethod(x0, self.eq3) t1Vd = self.newtonsMethod(x0, self.eq4) # print "t1Vs = ", t1Va, t1Vb, t1Vc, t1Vd if t1Va != 0: self.t1.append(t1Va) self.t2.append(self.t2f(t1Va, True)) self.t3.append(self.t3f(t1Va, True)) if t1Vb != 0: self.t1.append(t1Vb) self.t2.append(self.t2f(t1Vb, True)) self.t3.append(self.t3f(t1Vb, False)) if t1Vc != 0: self.t1.append(t1Vc) self.t2.append(self.t2f(t1Vc, False)) self.t3.append(self.t3f(t1Vc, True)) if t1Vd != 0: self.t1.append(t1Vd) self.t2.append(self.t2f(t1Vd, False)) self.t3.append(self.t3f(t1Vd, False)) # Application Main def measuredAnglesToVector(hAngle, vAngle): """Compute the vector along the line of intersection of the two planes. Angles 0,0 will correspond to a vector (0,0,1) -> along z axies """ y = np.sin(hAngle) x = np.sin(vAngle) z = (1-np.sin(hAngle)**2-
np.sin(vAngle)
numpy.sin
import numpy as np from .functional import * from .layers import Function class Sigmoid(Function): def forward(self, X): return sigmoid(X) def backward(self, dY): return dY * self.grad["X"] def local_grad(self, X): grads = {"X": sigmoid_prime(X)} return grads class ReLU(Function): def forward(self, X): return relu(X) def backward(self, dY): return dY * self.grad["X"] def local_grad(self, X): grads = {"X": relu_prime(X)} return grads class LeakyReLU(Function): def forward(self, X): return leaky_relu(X) def backward(self, dY): return dY * self.grad["X"] def local_grad(self, X): grads = {"X": leaky_relu_prime(X)} return grads class Softmax(Function): def forward(self, X): exp_x = np.exp(X) probs = exp_x /
np.sum(exp_x, axis=1, keepdims=True)
numpy.sum
import os import zipfile import argparse import numpy as np import _pickle as cp import urllib.request from io import BytesIO from pandas import Series NORM_MAX_THRESHOLDS = [ 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 250, 25, 200, 5000, 5000, 5000, 5000, 5000, 5000, 10000, 10000, 10000, 10000, 10000, 10000, 250, 250, 25, 200, 5000, 5000, 5000, 5000, 5000, 5000, 10000, 10000, 10000, 10000, 10000, 10000, 250 ] NORM_MIN_THRESHOLDS = [ -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -250, -100, -200, -5000, -5000, -5000, -5000, -5000, -5000, -10000, -10000, -10000, -10000, -10000, -10000, -250, -250, -100, -200, -5000, -5000, -5000, -5000, -5000, -5000, -10000, -10000, -10000, -10000, -10000, -10000, -250 ] IMU_MAX_THRESHOLDS = [ 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500, 3000, 3000, 3000, 10000, 10000, 10000, 1500, 1500, 1500 ] IMU_MIN_THRESHOLDS = [ -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000, -3000, -3000, -3000, -10000, -10000, -10000, -1000, -1000, -1000 ] def select_columns_opp(data,mode='fullsensor'): if mode == 'fullsensor': # included-excluded features_delete = np.arange(46, 50) features_delete = np.concatenate([features_delete,
np.arange(59, 63)
numpy.arange
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'cellPoseUI.ui' import numpy as np import sys, os, pathlib, warnings, datetime, tempfile, glob, time, threading from natsort import natsorted from PyQt5 import QtCore, QtGui, QtWidgets, Qt import pyqtgraph as pg import cv2 from scellseg.guis import guiparts, iopart, menus, plot from scellseg import models, utils, transforms, dynamics, dataset, io from scellseg.dataset import DatasetShot, DatasetQuery from scellseg.contrast_learning.dataset import DatasetPairEval from skimage.measure import regionprops from tqdm import trange from math import floor, ceil from torch.utils.data import DataLoader try: import matplotlib.pyplot as plt MATPLOTLIB = True except: MATPLOTLIB = False class Ui_MainWindow(QtGui.QMainWindow): """UI Widget Initialize and UI Layout Initialize, With any bug or problem, please do connact us from Github Issue""" def __init__(self, image=None): super(Ui_MainWindow, self).__init__() if image is not None: self.filename = image iopart._load_image(self, self.filename) self.now_pyfile_path = os.path.dirname(os.path.abspath(__file__)).replace('\\', '/') def setupUi(self, MainWindow, image=None): MainWindow.setObjectName("MainWindow") MainWindow.resize(1420, 800) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(self.now_pyfile_path + "/assets/logo.svg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) QtWidgets.QApplication.setOverrideCursor(QtCore.Qt.CrossCursor) menus.mainmenu(self) menus.editmenu(self) menus.helpmenu(self) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout_2.setContentsMargins(6, 6, 6, 6) self.verticalLayout_2.setSpacing(6) self.verticalLayout_2.setObjectName("verticalLayout_2") self.splitter = QtWidgets.QSplitter(self.centralwidget) self.splitter.setOrientation(QtCore.Qt.Horizontal) self.splitter.setObjectName("splitter") self.splitter2 = QtWidgets.QSplitter() self.splitter2.setOrientation(QtCore.Qt.Horizontal) self.splitter2.setObjectName("splitter2") self.scrollArea = QtWidgets.QScrollArea(self.splitter) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() # self.scrollAreaWidgetContents.setFixedWidth(500) self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 1500, 848)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") # self.TableModel = QtGui.QStandardItemModel(self.tableRow, self.tableCol) # self.TableModel.setHorizontalHeaderLabels(["INDEX", "NAME"]) # self.TableView = QtGui.QTableView() # self.TableView.setModel(self.TableModel) self.mainLayout = QtWidgets.QGridLayout(self.scrollAreaWidgetContents) self.mainLayout.setContentsMargins(0, 0, 0, 0) self.mainLayout.setSpacing(0) self.mainLayout.setObjectName("mainLayout") self.previous_button = QtWidgets.QPushButton("previous image [Ctrl + ←]") self.load_folder = QtWidgets.QPushButton("load image folder ") self.next_button = QtWidgets.QPushButton("next image [Ctrl + →]") self.previous_button.setShortcut(Qt.QKeySequence.MoveToPreviousWord) self.next_button.setShortcut(Qt.QKeySequence.MoveToNextWord) self.mainLayout.addWidget(self.previous_button, 1, 1, 1, 1) self.mainLayout.addWidget(self.load_folder, 1, 2, 1, 1) self.mainLayout.addWidget(self.next_button, 1, 3, 1, 1) self.previous_button.clicked.connect(self.PreImBntClicked) self.next_button.clicked.connect(self.NextImBntClicked) self.load_folder.clicked.connect(self.OpenDirBntClicked) # leftside cell list widget self.listView = QtWidgets.QTableView() self.myCellList = [] self.listmodel = Qt.QStandardItemModel(0,1) self.listmodel.setHorizontalHeaderLabels(["Annotation"]) # self.listmodel.setHorizontalHeaderItem(0, QtWidgets.QTableWidgetItem()) self.listView.horizontalHeader().setDefaultAlignment(QtCore.Qt.AlignLeft) # self.listView.horizontalHeader().setStyle("background-color: #F0F0F0") # self.listView.horizontalHeader().setVisible(False) self.listView.verticalHeader().setVisible(False) for i in range(len(self.myCellList)): self.listmodel.setItem(i,Qt.QStandardItem(self.myCellList[i])) self.listView.horizontalHeader().setDefaultSectionSize(140) self.listView.setMaximumWidth(120) self.listView.setModel(self.listmodel) self.listView.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) self.listView.AdjustToContents self.listView.customContextMenuRequested.connect(self.show_menu) # self.listView.setSelectionMode(QtWidgets.QAbstractItemView.SingleSelection) self.listView.clicked.connect(self.showChoosen) self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.toolBox = QtWidgets.QToolBox(self.splitter) self.toolBox.setObjectName("toolBox") self.toolBox.setMaximumWidth(340) self.page = QtWidgets.QWidget() self.page.setFixedWidth(340) self.page.setObjectName("page") self.gridLayout = QtWidgets.QGridLayout(self.page) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setSpacing(6) self.gridLayout.setObjectName("gridLayout") # cross-hair/Draw area self.vLine = pg.InfiniteLine(angle=90, movable=False) self.hLine = pg.InfiniteLine(angle=0, movable=False) self.layer_off = False self.masksOn = True self.win = pg.GraphicsLayoutWidget() self.state_label = pg.LabelItem("Scellseg has been initialized!") self.win.addItem(self.state_label, 3, 0) self.win.scene().sigMouseClicked.connect(self.plot_clicked) self.win.scene().sigMouseMoved.connect(self.mouse_moved) self.make_viewbox() bwrmap = make_bwr() self.bwr = bwrmap.getLookupTable(start=0.0, stop=255.0, alpha=False) self.cmap = [] # spectral colormap self.cmap.append(make_spectral().getLookupTable(start=0.0, stop=255.0, alpha=False)) # single channel colormaps for i in range(3): self.cmap.append(make_cmap(i).getLookupTable(start=0.0, stop=255.0, alpha=False)) if MATPLOTLIB: self.colormap = (plt.get_cmap('gist_ncar')(np.linspace(0.0, .9, 1000)) * 255).astype(np.uint8) else: self.colormap = ((np.random.rand(1000, 3) * 0.8 + 0.1) * 255).astype(np.uint8) self.is_stack = True # always loading images of same FOV # if called with image, load it # if image is not None: # self.filename = image # iopart._load_image(self, self.filename) self.setAcceptDrops(True) self.win.show() self.show() self.splitter2.addWidget(self.listView) self.splitter2.addWidget(self.win) self.mainLayout.addWidget(self.splitter2,0,1,1,3) self.label_2 = QtWidgets.QLabel(self.page) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 7, 0, 1, 1) self.brush_size = 3 self.BrushChoose = QtWidgets.QComboBox() self.BrushChoose.addItems(["1", "3", "5", "7", "9", "11", "13", "15", "17", "19"]) self.BrushChoose.currentIndexChanged.connect(self.brush_choose) self.gridLayout.addWidget(self.BrushChoose, 7, 1, 1, 1) # turn on single stroke mode self.sstroke_On = True self.SSCheckBox = QtWidgets.QCheckBox(self.page) self.SSCheckBox.setObjectName("SSCheckBox") self.SSCheckBox.setChecked(True) self.SSCheckBox.toggled.connect(self.toggle_sstroke) self.gridLayout.addWidget(self.SSCheckBox, 8, 0, 1, 1) self.eraser_button = QtWidgets.QCheckBox(self.page) self.eraser_button.setObjectName("Edit mask") self.eraser_button.setChecked(False) self.eraser_button.toggled.connect(self.eraser_model_change) self.eraser_button.setToolTip("Right-click to add pixels\nShift+Right-click to delete pixels") self.gridLayout.addWidget(self.eraser_button, 9, 0, 1, 1) self.CHCheckBox = QtWidgets.QCheckBox(self.page) self.CHCheckBox.setObjectName("CHCheckBox") self.CHCheckBox.toggled.connect(self.cross_hairs) self.gridLayout.addWidget(self.CHCheckBox, 10, 0, 1, 1) self.MCheckBox = QtWidgets.QCheckBox(self.page) self.MCheckBox.setChecked(True) self.MCheckBox.setObjectName("MCheckBox") self.MCheckBox.setChecked(True) self.MCheckBox.toggled.connect(self.toggle_masks) self.gridLayout.addWidget(self.MCheckBox, 11, 0, 1, 1) self.OCheckBox = QtWidgets.QCheckBox(self.page) self.outlinesOn = True self.OCheckBox.setChecked(True) self.OCheckBox.setObjectName("OCheckBox") self.OCheckBox.toggled.connect(self.toggle_masks) self.gridLayout.addWidget(self.OCheckBox, 12, 0, 1, 1) self.scale_on = True self.SCheckBox = QtWidgets.QCheckBox(self.page) self.SCheckBox.setObjectName("SCheckBox") self.SCheckBox.setChecked(True) self.SCheckBox.toggled.connect(self.toggle_scale) self.gridLayout.addWidget(self.SCheckBox, 13, 0, 1, 1) self.autosaveOn = True self.ASCheckBox = QtWidgets.QCheckBox(self.page) self.ASCheckBox.setObjectName("ASCheckBox") self.ASCheckBox.setChecked(True) self.ASCheckBox.toggled.connect(self.toggle_autosave) self.ASCheckBox.setToolTip("If ON, masks/npy/list will be autosaved") self.gridLayout.addWidget(self.ASCheckBox, 14, 0, 1, 1) spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem, 15, 0, 1, 2) # self.eraser_combobox = QtWidgets.QComboBox() # self.eraser_combobox.addItems(["Pixal delete", "Pixal add"]) # self.gridLayout.addWidget(self.eraser_combobox, 8, 1, 1, 1) self.RGBChoose = guiparts.RGBRadioButtons(self, 3, 1) self.RGBDropDown = QtGui.QComboBox() self.RGBDropDown.addItems(["rgb", "gray", "spectral", "red", "green", "blue"]) self.RGBDropDown.currentIndexChanged.connect(self.color_choose) self.gridLayout.addWidget(self.RGBDropDown, 3, 0, 1, 1) self.saturation_label = QtWidgets.QLabel("Saturation") self.gridLayout.addWidget(self.saturation_label, 0, 0, 1, 1) self.autobtn = QtGui.QCheckBox('Auto-adjust') self.autobtn.setChecked(True) self.autobtn.toggled.connect(self.toggle_autosaturation) self.gridLayout.addWidget(self.autobtn, 0, 1, 1, 1) self.currentZ = 0 self.zpos = QtGui.QLineEdit() self.zpos.setAlignment(QtCore.Qt.AlignRight | QtCore.Qt.AlignVCenter) self.zpos.setText(str(self.currentZ)) self.zpos.returnPressed.connect(self.compute_scale) self.zpos.setFixedWidth(20) # self.gridLayout.addWidget(self.zpos, 0, 2, 1, 1) self.slider = guiparts.RangeSlider(self) self.slider.setMaximum(255) self.slider.setMinimum(0) self.slider.setHigh(255) self.slider.setLow(0) self.gridLayout.addWidget(self.slider, 2, 0, 1, 4) self.slider.setObjectName("rangeslider") self.page_2 = QtWidgets.QWidget() self.page_2.setFixedWidth(340) self.page_2.setObjectName("page_2") self.gridLayout_2 = QtWidgets.QGridLayout(self.page_2) self.gridLayout_2.setContentsMargins(0, 0, 0, 0) self.gridLayout_2.setObjectName("gridLayout_2") page2_l = 0 self.useGPU = QtWidgets.QCheckBox(self.page_2) self.useGPU.setObjectName("useGPU") self.gridLayout_2.addWidget(self.useGPU, page2_l, 0, 1, 1) self.check_gpu() page2_l += 1 self.label_4 = QtWidgets.QLabel(self.page_2) self.label_4.setObjectName("label_4") self.gridLayout_2.addWidget(self.label_4, page2_l, 0, 1, 1) self.ModelChoose = QtWidgets.QComboBox(self.page_2) self.ModelChoose.setObjectName("ModelChoose") self.project_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) + os.path.sep + ".") self.model_dir = os.path.join(self.project_path, 'assets', 'pretrained_models') print('self.model_dir', self.model_dir) self.ModelChoose.addItem("") self.ModelChoose.addItem("") self.ModelChoose.addItem("") self.gridLayout_2.addWidget(self.ModelChoose, page2_l, 1, 1, 1) page2_l += 1 self.label_5 = QtWidgets.QLabel(self.page_2) self.label_5.setObjectName("label_5") self.gridLayout_2.addWidget(self.label_5, page2_l, 0, 1, 1) self.jCBChanToSegment = QtWidgets.QComboBox(self.page_2) self.jCBChanToSegment.setObjectName("jCBChanToSegment") self.jCBChanToSegment.addItems(["gray", "red", "green", "blue"]) self.jCBChanToSegment.setCurrentIndex(0) self.gridLayout_2.addWidget(self.jCBChanToSegment, page2_l, 1, 1, 1) page2_l += 1 self.label_6 = QtWidgets.QLabel(self.page_2) self.label_6.setObjectName("label_6") self.gridLayout_2.addWidget(self.label_6, page2_l, 0, 1, 1) self.jCBChan2 = QtWidgets.QComboBox(self.page_2) self.jCBChan2.setObjectName("jCBChan2") self.jCBChan2.addItems(["none", "red", "green", "blue"]) self.jCBChan2.setCurrentIndex(0) self.gridLayout_2.addWidget(self.jCBChan2, page2_l, 1, 1, 1) page2_l += 1 self.model_choose_btn = QtWidgets.QPushButton("Model file") self.model_choose_btn.clicked.connect(self.model_file_dir_choose) self.gridLayout_2.addWidget(self.model_choose_btn, page2_l, 0, 1, 1) self.model_choose_btn = QtWidgets.QPushButton("Reset pre-trained") self.model_choose_btn.clicked.connect(self.reset_pretrain_model) self.gridLayout_2.addWidget(self.model_choose_btn, page2_l, 1, 1, 1) page2_l += 1 self.label_null = QtWidgets.QLabel("") self.gridLayout_2.addWidget(self.label_null, page2_l, 0, 1, 1) slider_image_path = self.now_pyfile_path + '/assets/slider_handle.png' self.sliderSheet = [ 'QSlider::groove:vertical {', 'background-color: #D3D3D3;', 'position: absolute;', 'left: 4px; right: 4px;', '}', '', 'QSlider::groove:horizontal{', 'background-color:#D3D3D3;', 'position: absolute;', 'top: 4px; bottom: 4px;', '}', '', 'QSlider::handle:vertical {', 'height: 10px;', 'background-color: {0:s};'.format('#A9A9A9'), 'margin: 0 -4px;', '}', '', 'QSlider::handle:horizontal{', 'width: 10px;', 'border-image: url({0:s});'.format(slider_image_path), 'margin: -4px 0px -4px 0px;', '}', 'QSlider::sub-page:horizontal', '{', 'background-color: {0:s};'.format('#A9A9A9'), '}', '', 'QSlider::add-page {', 'background-color: {0:s};'.format('#D3D3D3'), '}', '', 'QSlider::sub-page {', 'background-color: {0:s};'.format('#D3D3D3'), '}', ] page2_l += 1 self.label_seg = QtWidgets.QLabel("Run seg for image in window") self.gridLayout_2.addWidget(self.label_seg, page2_l, 0, 1, 4) self.label_seg.setObjectName('label_seg') page2_l += 1 self.label_3 = QtWidgets.QLabel(self.page_2) self.label_3.setObjectName("label_3") self.gridLayout_2.addWidget(self.label_3, page2_l, 0, 1, 4) page2_l += 1 self.prev_selected = 0 self.diameter = 30 # self.Diameter = QtWidgets.QSpinBox(self.page_2) self.Diameter = QtWidgets.QLineEdit(self.page_2) self.Diameter.setObjectName("Diameter") self.Diameter.setText(str(self.diameter)) self.Diameter.setFixedWidth(100) self.Diameter.editingFinished.connect(self.compute_scale) self.gridLayout_2.addWidget(self.Diameter, page2_l, 0, 1, 2) self.SizeButton = QtWidgets.QPushButton(self.page_2) self.SizeButton.setObjectName("SizeButton") self.gridLayout_2.addWidget(self.SizeButton, page2_l, 1, 1, 1) self.SizeButton.clicked.connect(self.calibrate_size) self.SizeButton.setEnabled(False) page2_l += 1 self.label_mode = QtWidgets.QLabel("Inference mode") self.gridLayout_2.addWidget(self.label_mode, page2_l, 0, 1, 1) self.NetAvg = QtWidgets.QComboBox(self.page_2) self.NetAvg.setObjectName("NetAvg") self.NetAvg.addItems(["run 1 net (fast)", "+ resample (slow)"]) self.gridLayout_2.addWidget(self.NetAvg, page2_l, 1, 1, 1) page2_l += 1 self.invert = QtWidgets.QCheckBox(self.page_2) self.invert.setObjectName("invert") self.gridLayout_2.addWidget(self.invert, page2_l, 0, 1, 1) page2_l += 1 self.ModelButton = QtWidgets.QPushButton(' Run segmentation ') self.ModelButton.setObjectName("runsegbtn") self.ModelButton.clicked.connect(self.compute_model) self.gridLayout_2.addWidget(self.ModelButton, page2_l, 0, 1, 2) self.ModelButton.setEnabled(False) page2_l += 1 self.label_7 = QtWidgets.QLabel(self.page_2) self.label_7.setObjectName("label_7") self.gridLayout_2.addWidget(self.label_7, page2_l, 0, 1, 1) self.threshold = 0.4 self.threshslider = QtWidgets.QSlider(self.page_2) self.threshslider.setOrientation(QtCore.Qt.Horizontal) self.threshslider.setObjectName("threshslider") self.threshslider.setMinimum(1.0) self.threshslider.setMaximum(30.0) self.threshslider.setValue(31 - 4) self.threshslider.valueChanged.connect(self.compute_cprob) self.threshslider.setEnabled(False) self.threshslider.setStyleSheet('\n'.join(self.sliderSheet)) self.gridLayout_2.addWidget(self.threshslider, page2_l, 1, 1, 1) self.threshslider.setToolTip("Value: " + str(self.threshold)) page2_l += 1 self.label_8 = QtWidgets.QLabel(self.page_2) self.label_8.setObjectName("label_8") self.gridLayout_2.addWidget(self.label_8, page2_l, 0, 1, 1) self.probslider = QtWidgets.QSlider(self.page_2) self.probslider.setOrientation(QtCore.Qt.Horizontal) self.probslider.setObjectName("probslider") self.probslider.setStyleSheet('\n'.join(self.sliderSheet)) self.gridLayout_2.addWidget(self.probslider, page2_l, 1, 1, 1) self.probslider.setMinimum(-6.0) self.probslider.setMaximum(6.0) self.probslider.setValue(0.0) self.cellprob = 0.5 self.probslider.valueChanged.connect(self.compute_cprob) self.probslider.setEnabled(False) self.probslider.setToolTip("Value: " + str(self.cellprob)) page2_l += 1 self.label_batchseg = QtWidgets.QLabel("Batch segmentation") self.label_batchseg.setObjectName('label_batchseg') self.gridLayout_2.addWidget(self.label_batchseg, page2_l, 0, 1, 4) page2_l += 1 self.label_bz = QtWidgets.QLabel("Batch size") self.gridLayout_2.addWidget(self.label_bz, page2_l, 0, 1, 1) self.bz_line = QtWidgets.QLineEdit() self.bz_line.setPlaceholderText('Default: 8') self.bz_line.setFixedWidth(120) self.gridLayout_2.addWidget(self.bz_line, page2_l, 1, 1, 1) page2_l += 1 self.dataset_inference_bnt = QtWidgets.QPushButton("Data path") self.gridLayout_2.addWidget(self.dataset_inference_bnt, page2_l, 0, 1, 1) self.dataset_inference_bnt.clicked.connect(self.batch_inference_dir_choose) self.batch_inference_bnt = QtWidgets.QPushButton("Run batch") self.batch_inference_bnt.setObjectName("binferbnt") self.batch_inference_bnt.clicked.connect(self.batch_inference) self.gridLayout_2.addWidget(self.batch_inference_bnt, page2_l, 1, 1, 1) self.batch_inference_bnt.setEnabled(False) page2_l += 1 self.label_getsingle = QtWidgets.QLabel("Get single instance") self.label_getsingle.setObjectName('label_getsingle') self.gridLayout_2.addWidget(self.label_getsingle, page2_l,0,1,2) page2_l += 1 self.single_dir_bnt = QtWidgets.QPushButton("Data path") self.single_dir_bnt.clicked.connect(self.single_dir_choose) self.gridLayout_2.addWidget(self.single_dir_bnt, page2_l,0,1,1) self.single_cell_btn = QtWidgets.QPushButton("Run batch") self.single_cell_btn.setObjectName('single_cell_btn') self.single_cell_btn.clicked.connect(self.get_single_cell) self.gridLayout_2.addWidget(self.single_cell_btn, page2_l,1,1,1) self.single_cell_btn.setEnabled(False) page2_l += 1 spacerItem2 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_2.addItem(spacerItem2, page2_l, 0, 1, 2) self.page_3 = QtWidgets.QWidget() self.page_3.setFixedWidth(340) self.page_3.setObjectName("page_3") self.progress = QtWidgets.QProgressBar() self.progress.setProperty("value", 0) self.progress.setAlignment(QtCore.Qt.AlignCenter) self.progress.setObjectName("progress") self.gridLayout_3 = QtWidgets.QGridLayout(self.page_3) self.gridLayout_3.setContentsMargins(0, 0, 0, 0) self.gridLayout_3.setObjectName("gridLayout_3") self.ftuseGPU = QtWidgets.QCheckBox("Use GPU") self.ftuseGPU.setObjectName("ftuseGPU") self.gridLayout_3.addWidget(self.ftuseGPU, 0, 0, 1, 2) self.check_ftgpu() self.ftdirbtn = QtWidgets.QPushButton("Dataset path") self.ftdirbtn.clicked.connect(self.fine_tune_dir_choose) self.gridLayout_3.addWidget(self.ftdirbtn, 0, 2, 1, 2) self.label_10 = QtWidgets.QLabel("Model architecture") self.gridLayout_3.addWidget(self.label_10, 1, 0, 1, 2) self.ftmodelchooseBnt = QtWidgets.QComboBox() self.ftmodelchooseBnt.addItems(["scellseg", "cellpose", "hover"]) self.gridLayout_3.addWidget(self.ftmodelchooseBnt, 1, 2, 1, 2) self.label_11 = QtWidgets.QLabel("Chan to segment") self.gridLayout_3.addWidget(self.label_11, 2, 0, 1, 2) self.chan1chooseBnt = QtWidgets.QComboBox() self.chan1chooseBnt.addItems(["gray", "red", "green", "blue"]) self.chan1chooseBnt.setCurrentIndex(0) self.gridLayout_3.addWidget(self.chan1chooseBnt, 2, 2, 1, 2) self.label_12 = QtWidgets.QLabel("Chan2 (optional)") self.gridLayout_3.addWidget(self.label_12, 3, 0, 1, 2) self.chan2chooseBnt = QtWidgets.QComboBox() self.chan2chooseBnt.addItems(["none", "red", "green", "blue"]) self.chan2chooseBnt.setCurrentIndex(0) self.gridLayout_3.addWidget(self.chan2chooseBnt, 3, 2, 1, 2) self.label_13 = QtWidgets.QLabel("Fine-tune strategy") self.gridLayout_3.addWidget(self.label_13, 4, 0, 1, 2) self.stmodelchooseBnt = QtWidgets.QComboBox() self.stmodelchooseBnt.addItems(["contrastive", "classic"]) self.gridLayout_3.addWidget(self.stmodelchooseBnt, 4, 2, 1, 2) self.label_14 = QtWidgets.QLabel("Epoch") self.gridLayout_3.addWidget(self.label_14, 5, 0, 1, 2) self.epoch_line = QtWidgets.QLineEdit() self.epoch_line.setPlaceholderText('Default: 100') self.gridLayout_3.addWidget(self.epoch_line, 5, 2, 1, 2) self.label_ftbz = QtWidgets.QLabel("Batch size") self.gridLayout_3.addWidget(self.label_ftbz, 6, 0, 1, 2) self.ftbz_line = QtWidgets.QLineEdit() self.ftbz_line.setPlaceholderText('Default: 8') self.gridLayout_3.addWidget(self.ftbz_line, 6, 2, 1, 2) self.ftbnt = QtWidgets.QPushButton("Start fine-tuning") self.ftbnt.setObjectName('ftbnt') self.ftbnt.clicked.connect(self.fine_tune) self.gridLayout_3.addWidget(self.ftbnt, 7, 0, 1, 4) self.ftbnt.setEnabled(False) spacerItem3 = QtWidgets.QSpacerItem(20, 320, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_3.addItem(spacerItem3, 8, 0, 1, 1) #initialize scroll size self.scroll = QtGui.QScrollBar(QtCore.Qt.Horizontal) # self.scroll.setMaximum(10) # self.scroll.valueChanged.connect(self.move_in_Z) # self.gridLayout_3.addWidget(self.scroll) spacerItem2 = QtWidgets.QSpacerItem(20, 320, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout_3.addItem(spacerItem2) self.toolBox.addItem(self.page, "") self.toolBox.addItem(self.page_3, "") self.toolBox.addItem(self.page_2, "") self.verticalLayout_2.addWidget(self.splitter) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) self.toolBox.setCurrentIndex(2) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.centralwidget.setFocusPolicy(QtCore.Qt.StrongFocus) self.reset() def show_menu(self, point): # print(point.x()) # item = self.listView.itemAt(point) # print(item) temp_cell_idx = self.listView.rowAt(point.y()) self.list_select_cell(temp_cell_idx+1) # print(self.myCellList[temp_cell_idx]) if self.listView.rowAt(point.y()) >= 0: self.contextMenu = QtWidgets.QMenu() self.actionA = QtGui.QAction("Delete this cell", self) self.actionB = QtGui.QAction("Edit this cell", self) self.contextMenu.addAction(self.actionA) self.contextMenu.addAction(self.actionB) self.contextMenu.popup(QtGui.QCursor.pos()) self.actionA.triggered.connect(lambda: self.remove_cell(temp_cell_idx + 1)) self.actionB.triggered.connect(lambda: self.edit_cell(temp_cell_idx + 1)) self.contextMenu.show() def edit_cell(self, index): self.select_cell(index) self.eraser_button.setChecked(True) self.toolBox.setCurrentIndex(0) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Scellseg")) self.CHCheckBox.setText(_translate("MainWindow", "Crosshair on [C]")) self.MCheckBox.setText(_translate("MainWindow", "Masks on [X]")) self.label_2.setText(_translate("MainWindow", "Brush size")) self.OCheckBox.setText(_translate("MainWindow", "Outlines on [Z]")) # self.ServerButton.setText(_translate("MainWindow", "send manual seg. to server")) self.toolBox.setItemText(self.toolBox.indexOf(self.page), _translate("MainWindow", "View and Draw")) self.SizeButton.setText(_translate("MainWindow", "Calibrate diam")) self.label_3.setText(_translate("MainWindow", "Cell diameter (pixels):")) self.useGPU.setText(_translate("MainWindow", "Use GPU")) self.SCheckBox.setText(_translate("MainWindow", "Scale disk on [S]")) self.ASCheckBox.setText(_translate("MainWindow", "Autosave [P]")) self.SSCheckBox.setText(_translate("MainWindow", "Single stroke")) self.eraser_button.setText(_translate("MainWindow", "Edit mask [E]")) self.ModelChoose.setItemText(0, _translate("MainWindow", "scellseg")) self.ModelChoose.setItemText(1, _translate("MainWindow", "cellpose")) self.ModelChoose.setItemText(2, _translate("MainWindow", "hover")) self.invert.setText(_translate("MainWindow", "Invert grayscale")) self.label_4.setText(_translate("MainWindow", "Model architecture")) self.label_5.setText(_translate("MainWindow", "Chan to segment")) self.label_6.setText(_translate("MainWindow", "Chan2 (optional)")) self.toolBox.setItemText(self.toolBox.indexOf(self.page_2), _translate("MainWindow", "Inference")) self.label_7.setText(_translate("MainWindow", "Model match TH")) self.label_8.setText(_translate("MainWindow", "Cell prob TH")) self.toolBox.setItemText(self.toolBox.indexOf(self.page_3), _translate("MainWindow", "Fine-tune")) # self.menuFile.setTitle(_translate("MainWindow", "File")) # self.menuEdit.setTitle(_translate("MainWindow", "Edit")) # self.menuHelp.setTitle(_translate("MainWindow", "Help")) self.ImFolder = '' self.ImNameSet = [] self.CurImId = 0 self.CurFolder = os.getcwd() self.DefaultImFolder = self.CurFolder def setWinTop(self): print('get') def OpenDirDropped(self, curFile=None): # dir dropped callback func if self.ImFolder != '': self.ImNameSet = [] self.ImNameRowSet = os.listdir(self.ImFolder) # print(self.ImNameRowSet) for tmp in self.ImNameRowSet: ext = os.path.splitext(tmp)[-1] if ext in ['.png', '.jpg', '.jpeg', '.tif', '.tiff', '.jfif'] and '_mask' not in tmp: self.ImNameSet.append(tmp) self.ImNameSet.sort() self.ImPath = self.ImFolder + r'/' + self.ImNameSet[0] ImNameSetNosuffix = [os.path.splitext(imNameSeti)[0] for imNameSeti in self.ImNameSet] # pix = QtGui.QPixmap(self.ImPath) # self.ImShowLabel.setPixmap(pix) if curFile is not None: curFile = os.path.splitext(curFile)[0] try: self.CurImId = ImNameSetNosuffix.index(curFile) print(self.CurImId) except: curFile = curFile.replace('_cp_masks', '') curFile = curFile.replace('_masks', '') self.CurImId = ImNameSetNosuffix.index(curFile) print(self.CurImId) return # self.state_label.setText("", color='#FF6A56') else: self.CurImId = 0 iopart._load_image(self, filename=self.ImPath) self.initialize_listView() else: print('Please Find Another File Folder') def OpenDirBntClicked(self): # dir choosing callback function self.ImFolder = QtWidgets.QFileDialog.getExistingDirectory(None, "select folder", self.DefaultImFolder) if self.ImFolder != '': self.ImNameSet = [] self.ImNameRowSet = os.listdir(self.ImFolder) # print(self.ImNameRowSet) for tmp in self.ImNameRowSet: ext = os.path.splitext(tmp)[-1] if ext in ['.png', '.jpg', '.jpeg', '.tif', '.tiff', '.jfif'] and '_mask' not in tmp: self.ImNameSet.append(tmp) self.ImNameSet.sort() print(self.ImNameSet) self.ImPath = self.ImFolder + r'/' + self.ImNameSet[0] # pix = QtGui.QPixmap(self.ImPath) # self.ImShowLabel.setPixmap(pix) self.CurImId = 0 iopart._load_image(self, filename=self.ImPath) self.initialize_listView() else: print('Please Find Another File Folder') def PreImBntClicked(self): self.auto_save() # show previous image self.ImFolder = self.ImFolder self.ImNameSet = self.ImNameSet self.CurImId = self.CurImId self.ImNum = len(self.ImNameSet) print(self.ImFolder, self.ImNameSet) self.CurImId = self.CurImId - 1 if self.CurImId >= 0: # 第一张图片没有前一张 self.ImPath = self.ImFolder + r'/' + self.ImNameSet[self.CurImId] iopart._load_image(self, filename=self.ImPath) self.initialize_listView() if self.CurImId < 0: self.CurImId = 0 self.state_label.setText("This is the first image", color='#FF6A56') def NextImBntClicked(self): self.auto_save() # show next image self.ImFolder = self.ImFolder self.ImNameSet = self.ImNameSet self.CurImId = self.CurImId self.ImNum = len(self.ImNameSet) if self.CurImId < self.ImNum - 1: self.ImPath = self.ImFolder + r'/' + self.ImNameSet[self.CurImId + 1] iopart._load_image(self, filename=self.ImPath) self.initialize_listView() self.CurImId = self.CurImId + 1 else: self.state_label.setText("This is the last image", color='#FF6A56') def eraser_model_change(self): if self.eraser_button.isChecked() == True: self.outlinesOn = False self.OCheckBox.setChecked(False) # self.OCheckBox.setEnabled(False) QtWidgets.QApplication.setOverrideCursor(QtCore.Qt.CrossCursor) # self.cur_size = self.brush_size * 6 # cursor = Qt.QPixmap("./assets/eraser.png") # cursor_scaled = cursor.scaled(self.cur_size, self.cur_size) # cursor_set = Qt.QCursor(cursor_scaled, self.cur_size/2, self.cur_size/2) # QtWidgets.QApplication.setOverrideCursor(cursor_set) self.update_plot() else: QtWidgets.QApplication.setOverrideCursor(QtCore.Qt.CrossCursor) def showChoosen(self, item): temp_cell_idx = int(item.row()) self.list_select_cell(int(temp_cell_idx) + 1) def save_cell_list(self): self.listView.selectAll() self.myCellList = [] for item in self.listView.selectedIndexes(): data = item.data() self.myCellList.append(data) self.cell_list_name = os.path.splitext(self.filename)[0] + "_instance_list.txt" np.savetxt(self.cell_list_name, np.array(self.myCellList), fmt="%s") self.listView.clearSelection() def save_cell_list_menu(self): self.listView.selectAll() self.myCellList = [] for item in self.listView.selectedIndexes(): data = item.data() self.myCellList.append(data) self.cell_list_name = os.path.splitext(self.filename)[0] + "_instance_list.txt" np.savetxt(self.cell_list_name, np.array(self.myCellList), fmt="%s") self.state_label.setText("Saved outlines", color='#39B54A') self.listView.clearSelection() def help_window(self): HW = guiparts.HelpWindow(self) HW.show() def gui_window(self): EG = guiparts.ExampleGUI(self) EG.show() def toggle_autosave(self): if self.ASCheckBox.isChecked(): self.autosaveOn = True else: self.autosaveOn = False print('self.autosaveOn', self.autosaveOn) def toggle_sstroke(self): if self.SSCheckBox.isChecked(): self.sstroke_On = True else: self.sstroke_On = False print('self.sstroke_On', self.sstroke_On) def toggle_autosaturation(self): if self.autobtn.isChecked(): self.compute_saturation() self.update_plot() def cross_hairs(self): if self.CHCheckBox.isChecked(): self.p0.addItem(self.vLine, ignoreBounds=True) self.p0.addItem(self.hLine, ignoreBounds=True) else: self.p0.removeItem(self.vLine) self.p0.removeItem(self.hLine) def plot_clicked(self, event): if event.double(): if event.button() == QtCore.Qt.LeftButton: print("will initialize the range") if (event.modifiers() != QtCore.Qt.ShiftModifier and event.modifiers() != QtCore.Qt.AltModifier): try: self.p0.setYRange(0,self.Ly+self.pr) except: self.p0.setYRange(0,self.Ly) self.p0.setXRange(0,self.Lx) def mouse_moved(self, pos): # print('moved') items = self.win.scene().items(pos) for x in items: if x == self.p0: mousePoint = self.p0.mapSceneToView(pos) if self.CHCheckBox.isChecked(): self.vLine.setPos(mousePoint.x()) self.hLine.setPos(mousePoint.y()) # else: # QtWidgets.QApplication.restoreOverrideCursor() # QtWidgets.QApplication.setOverrideCursor(QtCore.Qt.DefaultCursor) def color_choose(self): self.color = self.RGBDropDown.currentIndex() self.view = 0 self.RGBChoose.button(self.view).setChecked(True) self.update_plot() def update_ztext(self): zpos = self.currentZ try: zpos = int(self.zpos.text()) except: print('ERROR: zposition is not a number') self.currentZ = max(0, min(self.NZ - 1, zpos)) self.zpos.setText(str(self.currentZ)) self.scroll.setValue(self.currentZ) def calibrate_size(self): model_type = self.ModelChoose.currentText() pretrained_model = os.path.join(self.model_dir, model_type) self.initialize_model(pretrained_model=pretrained_model, gpu=self.useGPU.isChecked(), model_type=model_type) diams, _ = self.model.sz.eval(self.stack[self.currentZ].copy(), invert=self.invert.isChecked(), channels=self.get_channels(), progress=self.progress) diams = np.maximum(5.0, diams) print('estimated diameter of cells using %s model = %0.1f pixels' % (self.current_model, diams)) self.state_label.setText('Estimated diameter of cells using %s model = %0.1f pixels' % (self.current_model, diams), color='#969696') self.Diameter.setText('%0.1f'%diams) self.diameter = diams self.compute_scale() self.progress.setValue(100) def enable_buttons(self): # self.X2Up.setEnabled(True) # self.X2Down.setEnabled(True) self.ModelButton.setEnabled(True) self.SizeButton.setEnabled(True) self.saveSet.setEnabled(True) self.savePNG.setEnabled(True) self.saveOutlines.setEnabled(True) self.saveCellList.setEnabled(True) self.saveAll.setEnabled(True) self.loadMasks.setEnabled(True) self.loadManual.setEnabled(True) self.loadCellList.setEnabled(True) self.toggle_mask_ops() self.update_plot() self.setWindowTitle('Scellseg @ ' + self.filename) def add_set(self): if len(self.current_point_set) > 0: # print(self.current_point_set) # print(np.array(self.current_point_set).shape) self.current_point_set = np.array(self.current_point_set) while len(self.strokes) > 0: self.remove_stroke(delete_points=False) if len(self.current_point_set) > 8: col_rand = np.random.randint(1000) color = self.colormap[col_rand, :3] median = self.add_mask(points=self.current_point_set, color=color) if median is not None: self.removed_cell = [] self.toggle_mask_ops() self.cellcolors.append(color) self.ncells += 1 self.add_list_item() self.ismanual = np.append(self.ismanual, True) # if self.NZ == 1: # # only save after each cell if single image # iopart._save_sets(self) self.current_stroke = [] self.strokes = [] self.current_point_set = [] self.update_plot() def add_mask(self, points=None, color=None): # loop over z values median = [] if points.shape[1] < 3: points = np.concatenate((np.zeros((points.shape[0], 1), np.int32), points), axis=1) zdraw = np.unique(points[:, 0]) zrange = np.arange(zdraw.min(), zdraw.max() + 1, 1, int) zmin = zdraw.min() pix = np.zeros((2, 0), np.uint16) mall = np.zeros((len(zrange), self.Ly, self.Lx), np.bool) k = 0 for z in zdraw: iz = points[:, 0] == z vr = points[iz, 1] vc = points[iz, 2] # get points inside drawn points mask = np.zeros((np.ptp(vr) + 4, np.ptp(vc) + 4), np.uint8) pts = np.stack((vc - vc.min() + 2, vr - vr.min() + 2), axis=-1)[:, np.newaxis, :] mask = cv2.fillPoly(mask, [pts], (255, 0, 0)) ar, ac = np.nonzero(mask) ar, ac = ar + vr.min() - 2, ac + vc.min() - 2 # get dense outline contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pvc, pvr = contours[-2][0].squeeze().T vr, vc = pvr + vr.min() - 2, pvc + vc.min() - 2 # concatenate all points ar, ac = np.hstack((np.vstack((vr, vc)), np.vstack((ar, ac)))) # if these pixels are overlapping with another cell, reassign them ioverlap = self.cellpix[z][ar, ac] > 0 if (~ioverlap).sum() < 8: print('ERROR: cell too small without overlaps, not drawn') return None elif ioverlap.sum() > 0: ar, ac = ar[~ioverlap], ac[~ioverlap] # compute outline of new mask mask = np.zeros((np.ptp(ar) + 4, np.ptp(ac) + 4), np.uint8) mask[ar - ar.min() + 2, ac - ac.min() + 2] = 1 contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pvc, pvr = contours[-2][0].squeeze().T vr, vc = pvr + ar.min() - 2, pvc + ac.min() - 2 self.draw_mask(z, ar, ac, vr, vc, color) median.append(np.array([np.median(ar), np.median(ac)])) mall[z - zmin, ar, ac] = True pix = np.append(pix, np.vstack((ar, ac)), axis=-1) mall = mall[:, pix[0].min():pix[0].max() + 1, pix[1].min():pix[1].max() + 1].astype(np.float32) ymin, xmin = pix[0].min(), pix[1].min() if len(zdraw) > 1: mall, zfill = interpZ(mall, zdraw - zmin) for z in zfill: mask = mall[z].copy() ar, ac = np.nonzero(mask) ioverlap = self.cellpix[z + zmin][ar + ymin, ac + xmin] > 0 if (~ioverlap).sum() < 5: print('WARNING: stroke on plane %d not included due to overlaps' % z) elif ioverlap.sum() > 0: mask[ar[ioverlap], ac[ioverlap]] = 0 ar, ac = ar[~ioverlap], ac[~ioverlap] # compute outline of mask outlines = utils.masks_to_outlines(mask) vr, vc = np.nonzero(outlines) vr, vc = vr + ymin, vc + xmin ar, ac = ar + ymin, ac + xmin self.draw_mask(z + zmin, ar, ac, vr, vc, color) self.zdraw.append(zdraw) return median def move_in_Z(self): if self.loaded: self.currentZ = min(self.NZ, max(0, int(self.scroll.value()))) self.zpos.setText(str(self.currentZ)) self.update_plot() def make_viewbox(self): # intialize the main viewport widget # print("making viewbox") self.p0 = guiparts.ViewBoxNoRightDrag( parent=self, lockAspect=True, name="plot1", border=[100, 100, 100], invertY=True ) # self.p0.setBackgroundColor(color='#292929') self.brush_size = 3 self.win.addItem(self.p0, 0, 0) self.p0.setMenuEnabled(False) self.p0.setMouseEnabled(x=True, y=True) self.img = pg.ImageItem(viewbox=self.p0, parent=self, axisOrder='row-major') self.img.autoDownsample = False # self.null_image = np.ones((200,200)) # self.img.setImage(self.null_image) self.layer = guiparts.ImageDraw(viewbox=self.p0, parent=self) self.layer.setLevels([0, 255]) self.scale = pg.ImageItem(viewbox=self.p0, parent=self) self.scale.setLevels([0, 255]) self.p0.scene().contextMenuItem = self.p0 # self.p0.setMouseEnabled(x=False,y=False) self.Ly, self.Lx = 512, 512 self.p0.addItem(self.img) self.p0.addItem(self.layer) self.p0.addItem(self.scale) # guiparts.make_quadrants(self) def get_channels(self): channels = [self.jCBChanToSegment.currentIndex(), self.jCBChan2.currentIndex()] return channels def compute_saturation(self): # compute percentiles from stack self.saturation = [] self.slider._low = np.percentile(self.stack[0].astype(np.float32), 1) self.slider._high = np.percentile(self.stack[0].astype(np.float32), 99) for n in range(len(self.stack)): print('n,', n) self.saturation.append([np.percentile(self.stack[n].astype(np.float32), 1), np.percentile(self.stack[n].astype(np.float32), 99)]) def keyReleaseEvent(self, event): # print('self.loaded', self.loaded) if self.loaded: # self.p0.setMouseEnabled(x=True, y=True) if (event.modifiers() != QtCore.Qt.ControlModifier and event.modifiers() != QtCore.Qt.ShiftModifier and event.modifiers() != QtCore.Qt.AltModifier) and not self.in_stroke: updated = False if len(self.current_point_set) > 0: if event.key() == QtCore.Qt.Key_Return: self.add_set() if self.NZ > 1: if event.key() == QtCore.Qt.Key_Left: self.currentZ = max(0, self.currentZ - 1) self.zpos.setText(str(self.currentZ)) elif event.key() == QtCore.Qt.Key_Right: self.currentZ = min(self.NZ - 1, self.currentZ + 1) self.zpos.setText(str(self.currentZ)) else: if event.key() == QtCore.Qt.Key_M: self.MCheckBox.toggle() if event.key() == QtCore.Qt.Key_O: self.OCheckBox.toggle() if event.key() == QtCore.Qt.Key_C: self.CHCheckBox.toggle() if event.key() == QtCore.Qt.Key_S: self.SCheckBox.toggle() if event.key() == QtCore.Qt.Key_E: self.eraser_button.toggle() self.toolBox.setCurrentIndex(0) if event.key() == QtCore.Qt.Key_P: self.ASCheckBox.toggle() if event.key() == QtCore.Qt.Key_PageDown: self.view = (self.view + 1) % (len(self.RGBChoose.bstr)) print('self.view ', self.view) self.RGBChoose.button(self.view).setChecked(True) elif event.key() == QtCore.Qt.Key_PageUp: self.view = (self.view - 1) % (len(self.RGBChoose.bstr)) print('self.view ', self.view) self.RGBChoose.button(self.view).setChecked(True) # can change background or stroke size if cell not finished if event.key() == QtCore.Qt.Key_Up: self.color = (self.color - 1) % (6) print('self.color', self.color) self.RGBDropDown.setCurrentIndex(self.color) elif event.key() == QtCore.Qt.Key_Down: self.color = (self.color + 1) % (6) print('self.color', self.color) self.RGBDropDown.setCurrentIndex(self.color) if (event.key() == QtCore.Qt.Key_BracketLeft or event.key() == QtCore.Qt.Key_BracketRight): count = self.BrushChoose.count() gci = self.BrushChoose.currentIndex() if event.key() == QtCore.Qt.Key_BracketLeft: gci = max(0, gci - 1) else: gci = min(count - 1, gci + 1) self.BrushChoose.setCurrentIndex(gci) self.brush_choose() self.state_label.setText("Brush size: %s"%(2*gci+1), color='#969696') if not updated: self.update_plot() elif event.modifiers() == QtCore.Qt.ControlModifier: if event.key() == QtCore.Qt.Key_Z: self.undo_action() if event.key() == QtCore.Qt.Key_0: self.clear_all() def keyPressEvent(self, event): if event.modifiers() == QtCore.Qt.ControlModifier: if event.key() == QtCore.Qt.Key_1: self.toolBox.setCurrentIndex(0) if event.key() == QtCore.Qt.Key_2: self.toolBox.setCurrentIndex(1) if event.key() == QtCore.Qt.Key_3: self.toolBox.setCurrentIndex(2) if event.key() == QtCore.Qt.Key_Minus or event.key() == QtCore.Qt.Key_Equal: self.p0.keyPressEvent(event) def chanchoose(self, image): if image.ndim > 2: if self.jCBChanToSegment.currentIndex() == 0: image = image.astype(np.float32).mean(axis=-1)[..., np.newaxis] else: chanid = [self.jCBChanToSegment.currentIndex() - 1] if self.jCBChan2.currentIndex() > 0: chanid.append(self.jCBChan2.currentIndex() - 1) image = image[:, :, chanid].astype(np.float32) return image def initialize_model(self, gpu=False, pretrained_model=False, model_type='scellseg', diam_mean=30., net_avg=False, device=None, nclasses=3, residual_on=True, style_on=True, concatenation=False, update_step=1, last_conv_on=True, attn_on=False, dense_on=False, style_scale_on=True, task_mode='cellpose', model=None): self.current_model = model_type self.model = models.sCellSeg(gpu=gpu, pretrained_model=pretrained_model, model_type=model_type, diam_mean=diam_mean, net_avg=net_avg, device=device, nclasses=nclasses, residual_on=residual_on, style_on=style_on, concatenation=concatenation, update_step=update_step, last_conv_on=last_conv_on, attn_on=attn_on, dense_on=dense_on, style_scale_on=style_scale_on, task_mode=task_mode, model=model) def set_compute_thread(self): self.seg_thread = threading.Thread(target = self.compute_model) self.seg_thread.setDeamon(True) self.seg_thread.start() def compute_model(self): self.progress.setValue(0) self.update_plot() self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui if True: tic = time.time() self.clear_all() self.flows = [[], [], []] pretrained_model = os.path.join(self.model_dir, self.ModelChoose.currentText()) self.initialize_model(pretrained_model=pretrained_model, gpu=self.useGPU.isChecked(), model_type=self.ModelChoose.currentText()) print('using model %s' % self.current_model) self.progress.setValue(10) do_3D = False if self.NZ > 1: do_3D = True data = self.stack.copy() else: data = self.stack[0].copy() channels = self.get_channels() # print(channels) self.diameter = float(self.Diameter.text()) self.update_plot() try: # net_avg = self.NetAvg.currentIndex() == 0 resample = self.NetAvg.currentIndex() == 1 # we need modify from here min_size = ((30. // 2) ** 2) * np.pi * 0.05 try: finetune_model = self.model_file_path[0] print('ft_model', finetune_model) except: finetune_model = None # inference masks, flows, _ = self.model.inference(finetune_model=finetune_model, net_avg=False, query_images=data, channel=channels, diameter=self.diameter, resample=resample, flow_threshold=self.threshold, cellprob_threshold=self.cellprob, min_size=min_size, eval_batch_size=8, postproc_mode=self.model.postproc_mode, progress=self.progress) self.state_label.setText( '%d cells found with scellseg net in %0.3fs' % ( len(np.unique(masks)[1:]), time.time() - tic), color='#39B54A') # self.state_label.setStyleSheet("color:green;") self.update_plot() self.progress.setValue(75) self.flows[0] = flows[0].copy() self.flows[1] = (np.clip(utils.normalize99(flows[2].copy()), 0, 1) * 255).astype(np.uint8) if not do_3D: masks = masks[np.newaxis, ...] self.flows[0] = transforms.resize_image(self.flows[0], masks.shape[-2], masks.shape[-1], interpolation=cv2.INTER_NEAREST) self.flows[1] = transforms.resize_image(self.flows[1], masks.shape[-2], masks.shape[-1]) if not do_3D: self.flows[2] = np.zeros(masks.shape[1:], dtype=np.uint8) self.flows = [self.flows[n][np.newaxis, ...] for n in range(len(self.flows))] else: self.flows[2] = (flows[1][0] / 10 * 127 + 127).astype(np.uint8) if len(flows) > 2: self.flows.append(flows[3]) self.flows.append(np.concatenate((flows[1], flows[2][np.newaxis, ...]), axis=0)) print() self.progress.setValue(80) z = 0 self.masksOn = True self.outlinesOn = True self.MCheckBox.setChecked(True) self.OCheckBox.setChecked(True) iopart._masks_to_gui(self, masks, outlines=None) self.progress.setValue(100) self.first_load_listView() # self.toggle_server(off=True) if not do_3D: self.threshslider.setEnabled(True) self.probslider.setEnabled(True) self.masks_for_save = masks except Exception as e: print('NET ERROR: %s' % e) self.progress.setValue(0) return else: # except Exception as e: print('ERROR: %s' % e) print('Finished inference') def batch_inference(self): self.progress.setValue(0) # print('threshold', self.threshold, self.cellprob) # self.update_plot() if True: tic = time.time() self.clear_all() model_type =self.ModelChoose.currentText() pretrained_model = os.path.join(self.model_dir, model_type) self.initialize_model(pretrained_model=pretrained_model, gpu=self.useGPU.isChecked(), model_type=model_type) print('using model %s' % self.current_model) self.progress.setValue(10) channels = self.get_channels() self.diameter = float(self.Diameter.text()) try: # net_avg = self.NetAvg.currentIndex() < 2 # resample = self.NetAvg.currentIndex() == 1 min_size = ((30. // 2) ** 2) * np.pi * 0.05 try: finetune_model = self.model_file_path[0] print('ft_model', finetune_model) except: finetune_model = None try: dataset_path = self.batch_inference_dir except: dataset_path = None # batch inference bz = 8 if self.bz_line.text() == '' else int(self.bz_line.text()) save_name = self.current_model + '_' + dataset_path.split('\\')[-1] utils.set_manual_seed(5) try: shotset = dataset.DatasetShot(eval_dir=dataset_path, class_name=None, image_filter='_img', mask_filter='_masks', channels=channels, task_mode=self.model.task_mode, active_ind=None, rescale=True) iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading1.png'), resize=self.resize, X2=0) self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui except: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Please choose right data path", color='#FF6A56') print("Please choose right data path") self.batch_inference_bnt.setEnabled(False) return queryset = dataset.DatasetQuery(dataset_path, class_name=None, image_filter='_img', mask_filter='_masks') query_image_names = queryset.query_image_names diameter = shotset.md print('>>>> mean diameter of this style,', round(diameter, 3)) self.model.net.save_name = save_name self.img.setImage(iopart.imread(self.now_pyfile_path + '/assets/Loading2.png'), autoLevels=False, lut=None) self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui # flow_threshold was set to 0.4, and cellprob_threshold was set to 0.5 try: masks, flows, _ = self.model.inference(finetune_model=finetune_model, net_avg=False, query_image_names=query_image_names, channel=channels, diameter=diameter, resample=False, flow_threshold=0.4, cellprob_threshold=0.5, min_size=min_size, eval_batch_size=bz, postproc_mode=self.model.postproc_mode, progress=self.progress) except RuntimeError: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Batch size is too big, please set smaller", color='#FF6A56') print("Batch size is too big, please set smaller") return # save output images diams = np.ones(len(query_image_names)) * diameter imgs = [io.imread(query_image_name) for query_image_name in query_image_names] io.masks_flows_to_seg(imgs, masks, flows, diams, query_image_names, [channels for i in range(len(query_image_names))]) io.save_to_png(imgs, masks, flows, query_image_names, labels=None, aps=None, task_mode=self.model.task_mode) self.masks_for_save = masks except: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Please choose right data path", color='#FF6A56') return else: # except Exception as e: print('ERROR: %s' % e) self.img.setImage(iopart.imread(self.now_pyfile_path + '/assets/Loading3.png'), autoLevels=False, lut=None) self.state_label.setText('Finished inference in %0.3fs!'%(time.time() - tic), color='#39B54A') self.batch_inference_bnt.setEnabled(False) def compute_cprob(self): rerun = False if self.cellprob != self.probslider.value(): rerun = True self.cellprob = self.probslider.value() if self.threshold != (31 - self.threshslider.value()) / 10.: rerun = True self.threshold = (31 - self.threshslider.value()) / 10. if not rerun: return if self.threshold == 3.0 or self.NZ > 1: thresh = None print('computing masks with cell prob=%0.3f, no flow error threshold' % (self.cellprob)) else: thresh = self.threshold print('computing masks with cell prob=%0.3f, flow error threshold=%0.3f' % (self.cellprob, thresh)) maski = dynamics.get_masks(self.flows[3].copy(), iscell=(self.flows[4][-1] > self.cellprob), flows=self.flows[4][:-1], threshold=thresh) if self.NZ == 1: maski = utils.fill_holes_and_remove_small_masks(maski) maski = transforms.resize_image(maski, self.cellpix.shape[-2], self.cellpix.shape[-1], interpolation=cv2.INTER_NEAREST) self.masksOn = True self.outlinesOn = True self.MCheckBox.setChecked(True) self.OCheckBox.setChecked(True) if maski.ndim < 3: maski = maski[np.newaxis, ...] print('%d cells found' % (len(np.unique(maski)[1:]))) iopart._masks_to_gui(self, maski, outlines=None) self.threshslider.setToolTip("Value: " + str(self.threshold)) self.probslider.setToolTip("Value: " + str(self.cellprob)) self.first_load_listView() self.show() def reset(self): # ---- start sets of points ---- # self.selected = 0 self.X2 = 0 self.resize = -1 self.onechan = False self.loaded = False self.channel = [0, 1] self.current_point_set = [] self.in_stroke = False self.strokes = [] self.stroke_appended = True self.ncells = 0 self.zdraw = [] self.removed_cell = [] self.cellcolors = [np.array([255, 255, 255])] # -- set menus to default -- # self.color = 0 self.RGBDropDown.setCurrentIndex(self.color) self.view = 0 self.RGBChoose.button(self.view).setChecked(True) self.BrushChoose.setCurrentIndex(1) self.CHCheckBox.setChecked(False) self.OCheckBox.setEnabled(True) self.SSCheckBox.setChecked(True) # -- zero out image stack -- # self.opacity = 128 # how opaque masks should be self.outcolor = [200, 200, 255, 200] self.NZ, self.Ly, self.Lx = 1, 512, 512 if self.autobtn.isChecked(): self.saturation = [[0, 255] for n in range(self.NZ)] self.currentZ = 0 self.flows = [[], [], [], [], [[]]] self.stack = np.zeros((1, self.Ly, self.Lx, 3)) # masks matrix self.layers = 0 * np.ones((1, self.Ly, self.Lx, 4), np.uint8) # image matrix with a scale disk self.radii = 0 * np.ones((self.Ly, self.Lx, 4), np.uint8) self.cellpix = np.zeros((1, self.Ly, self.Lx), np.uint16) self.outpix = np.zeros((1, self.Ly, self.Lx), np.uint16) self.ismanual = np.zeros(0, np.bool) self.update_plot() self.filename = [] self.loaded = False def first_load_listView(self): self.listmodel = Qt.QStandardItemModel(self.ncells,1) # self.listmodel = Qt.QStringListModel() self.listmodel.setHorizontalHeaderLabels(["Annotation"]) self.myCellList = ['instance_' + str(i) for i in range(1, self.ncells + 1)] for i in range(len(self.myCellList)): self.listmodel.setItem(i,Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) def initialize_listView(self): if self.filename != []: if os.path.isfile(os.path.splitext(self.filename)[0] + '_instance_list.txt'): self.list_file_name = str(os.path.splitext(self.filename)[0] + '_instance_list.txt') self.myCellList_array = np.loadtxt(self.list_file_name, dtype=str) self.myCellList = self.myCellList_array.tolist() if len(self.myCellList) == self.ncells: self.listmodel = Qt.QStandardItemModel(self.ncells, 1) self.listmodel.setHorizontalHeaderLabels(["Annotation"]) for i in range(len(self.myCellList)): self.listmodel.setItem(i,Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) else: self.listmodel = Qt.QStandardItemModel(self.ncells, 1) # self.listmodel = Qt.QStringListModel() self.listmodel.setHorizontalHeaderLabels(["Annotation"]) self.myCellList = ['instance_' + str(i) for i in range(1, self.ncells + 1)] for i in range(len(self.myCellList)): self.listmodel.setItem(i,Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) else: self.myCellList = ['instance_' + str(i) for i in range(1, self.ncells + 1)] self.listmodel = Qt.QStandardItemModel(self.ncells, 1) # self.listmodel = Qt.QStringListModel() self.listmodel.setHorizontalHeaderLabels(["Annotation"]) for i in range(len(self.myCellList)): self.listmodel.setItem(i,Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) def initinal_p0(self): # self.p0.removeItem(self.img) self.p0.removeItem(self.layer) self.p0.removeItem(self.scale) # self.img.deleteLater() self.layer.deleteLater() self.scale.deleteLater() # self.img = pg.ImageItem(viewbox=self.p0, parent=self, axisOrder='row-major') # self.img.autoDownsample = False self.layer = guiparts.ImageDraw(viewbox=self.p0, parent=self) self.layer.setLevels([0, 255]) self.scale = pg.ImageItem(viewbox=self.p0, parent=self) self.scale.setLevels([0, 255]) self.p0.scene().contextMenuItem = self.p0 # self.p0.addItem(self.img) self.p0.addItem(self.layer) self.p0.addItem(self.scale) def add_list_item(self): # print(self.ncells) # self.myCellList = self.listmodel.data() self.listView.selectAll() self.myCellList = [] for item in self.listView.selectedIndexes(): data = item.data() self.myCellList.append(data) temp_nums = [] for celli in self.myCellList: if 'instance_' in celli: temp_nums.append(int(celli.split('instance_')[-1])) if len(temp_nums) == 0: now_cellIdx = 0 else: now_cellIdx = np.max(np.array(temp_nums)) self.myCellList.append('instance_' + str(now_cellIdx+1)) # self.myCellList.append('instance_' + str(self.ncells)) self.listmodel = Qt.QStandardItemModel(self.ncells, 1) # self.listmodel = Qt.QStringListModel() self.listmodel.setHorizontalHeaderLabels(["Annotation"]) for i in range(len(self.myCellList)): self.listmodel.setItem(i, Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) def delete_list_item(self, index): # self.myCellList = self.listmodel.data() self.listView.selectAll() self.myCellList = [] for item in self.listView.selectedIndexes(): data = item.data() self.myCellList.append(data) self.last_remove_index = index self.last_remove_item = self.myCellList.pop(index - 1) self.listmodel = Qt.QStandardItemModel(self.ncells, 1) # self.listmodel = Qt.QStringListModel() self.listmodel.setHorizontalHeaderLabels(["Annotation"]) for i in range(len(self.myCellList)): self.listmodel.setItem(i, Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) def check_gpu(self, torch=True): # also decide whether or not to use torch self.useGPU.setChecked(False) self.useGPU.setEnabled(False) if models.use_gpu(): self.useGPU.setEnabled(True) self.useGPU.setChecked(True) def check_ftgpu(self, torch=True): # also decide whether or not to use torch self.ftuseGPU.setChecked(False) self.ftuseGPU.setEnabled(False) if models.use_gpu(): self.ftuseGPU.setEnabled(True) self.ftuseGPU.setChecked(True) def clear_all(self): self.prev_selected = 0 self.selected = 0 # self.layers_undo, self.cellpix_undo, self.outpix_undo = [],[],[] self.layers = 0 * np.ones((self.NZ, self.Ly, self.Lx, 4), np.uint8) self.cellpix = np.zeros((self.NZ, self.Ly, self.Lx), np.uint16) self.outpix = np.zeros((self.NZ, self.Ly, self.Lx), np.uint16) self.cellcolors = [np.array([255, 255, 255])] self.ncells = 0 self.initialize_listView() print('removed all cells') self.toggle_removals() self.update_plot() def list_select_cell(self, idx): self.prev_selected = self.selected self.selected = idx # print(idx) # print(self.prev_selected) if self.selected > 0: self.layers[self.cellpix == idx] = np.array([255, 255, 255, 255]) if idx < self.ncells + 1 and self.prev_selected > 0 and self.prev_selected != idx: self.layers[self.cellpix == self.prev_selected] = np.append(self.cellcolors[self.prev_selected], self.opacity) # if self.outlinesOn: # self.layers[self.outpix == idx] = np.array(self.outcolor).astype(np.uint8) self.update_plot() def select_cell(self, idx): self.prev_selected = self.selected self.selected = idx self.listView.selectRow(idx - 1) # print('the prev-selected is ', self.prev_selected) if self.selected > 0: self.layers[self.cellpix == idx] = np.array([255, 255, 255, self.opacity]) print('idx', self.prev_selected, idx) if idx < self.ncells + 1 and self.prev_selected > 0 and self.prev_selected != idx: self.layers[self.cellpix == self.prev_selected] = np.append(self.cellcolors[self.prev_selected], self.opacity) # if self.outlinesOn: # self.layers[self.outpix==idx] = np.array(self.outcolor) self.update_plot() def unselect_cell(self): if self.selected > 0: idx = self.selected if idx < self.ncells + 1: self.layers[self.cellpix == idx] = np.append(self.cellcolors[idx], self.opacity) if self.outlinesOn: self.layers[self.outpix == idx] = np.array(self.outcolor).astype(np.uint8) # [0,0,0,self.opacity]) self.update_plot() self.selected = 0 def remove_cell(self, idx): # remove from manual array # self.selected = 0 for z in range(self.NZ): cp = self.cellpix[z] == idx op = self.outpix[z] == idx # remove from mask layer self.layers[z, cp] = np.array([0, 0, 0, 0]) # remove from self.cellpix and self.outpix self.cellpix[z, cp] = 0 self.outpix[z, op] = 0 # reduce other pixels by -1 self.cellpix[z, self.cellpix[z] > idx] -= 1 self.outpix[z, self.outpix[z] > idx] -= 1 self.update_plot() if self.NZ == 1: self.removed_cell = [self.ismanual[idx - 1], self.cellcolors[idx], np.nonzero(cp), np.nonzero(op)] self.redo.setEnabled(True) # remove cell from lists self.ismanual = np.delete(self.ismanual, idx - 1) del self.cellcolors[idx] del self.zdraw[idx - 1] self.ncells -= 1 print('removed cell %d' % (idx - 1)) self.delete_list_item(index=idx) if self.ncells == 0: self.ClearButton.setEnabled(False) if self.NZ == 1: iopart._save_sets(self) # self.select_cell(0) def merge_cells(self, idx): self.prev_selected = self.selected self.selected = idx if self.selected != self.prev_selected: for z in range(self.NZ): ar0, ac0 = np.nonzero(self.cellpix[z] == self.prev_selected) ar1, ac1 = np.nonzero(self.cellpix[z] == self.selected) touching = np.logical_and((ar0[:, np.newaxis] - ar1) == 1, (ac0[:, np.newaxis] - ac1) == 1).sum() print(touching) ar = np.hstack((ar0, ar1)) ac = np.hstack((ac0, ac1)) if touching: mask = np.zeros((np.ptp(ar) + 4, np.ptp(ac) + 4), np.uint8) mask[ar - ar.min() + 2, ac - ac.min() + 2] = 1 contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) pvc, pvr = contours[-2][0].squeeze().T vr, vc = pvr + ar.min() - 2, pvc + ac.min() - 2 else: vr0, vc0 = np.nonzero(self.outpix[z] == self.prev_selected) vr1, vc1 = np.nonzero(self.outpix[z] == self.selected) vr = np.hstack((vr0, vr1)) vc = np.hstack((vc0, vc1)) color = self.cellcolors[self.prev_selected] self.draw_mask(z, ar, ac, vr, vc, color, idx=self.prev_selected) self.remove_cell(self.selected) print('merged two cells') self.update_plot() iopart._save_sets(self) self.undo.setEnabled(False) self.redo.setEnabled(False) def undo_remove_cell(self): if len(self.removed_cell) > 0: z = 0 ar, ac = self.removed_cell[2] vr, vc = self.removed_cell[3] color = self.removed_cell[1] self.draw_mask(z, ar, ac, vr, vc, color) self.toggle_mask_ops() self.cellcolors.append(color) self.ncells += 1 self.add_list_item() self.ismanual = np.append(self.ismanual, self.removed_cell[0]) self.zdraw.append([]) print('added back removed cell') self.update_plot() iopart._save_sets(self) self.removed_cell = [] self.redo.setEnabled(False) def fine_tune(self): tic = time.time() dataset_dir = self.fine_tune_dir self.state_label.setText("%s"%(dataset_dir), color='#969696') if not isinstance(dataset_dir, str): # TODO: 改成警告 print('dataset_dir is not provided') train_epoch = 100 if self.epoch_line.text() == '' else int(self.epoch_line.text()) ft_bz = 8 if self.ftbz_line.text() == '' else int(self.ftbz_line.text()) contrast_on = 1 if self.stmodelchooseBnt.currentText() == 'contrastive' else 0 model_type = self.ftmodelchooseBnt.currentText() task_mode, postproc_mode, attn_on, dense_on, style_scale_on = utils.process_different_model(model_type) # task_mode mean different instance representation pretrained_model = os.path.join(self.model_dir, model_type) channels = [self.chan1chooseBnt.currentIndex(), self.chan2chooseBnt.currentIndex()] print(dataset_dir, train_epoch, channels) utils.set_manual_seed(5) try: print('ft_bz', ft_bz) shotset = DatasetShot(eval_dir=dataset_dir, class_name=None, image_filter='_img', mask_filter='_masks', channels=channels, train_num=train_epoch * ft_bz, task_mode=task_mode, rescale=True) iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading1.png'), resize=self.resize, X2=0) self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui except ValueError: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Please choose right data path", color='#FF6A56') print("Please choose right data path") self.ftbnt.setEnabled(False) return shot_gen = DataLoader(dataset=shotset, batch_size=ft_bz, num_workers=0, pin_memory=True) diameter = shotset.md print('>>>> mean diameter of this style,', round(diameter, 3)) lr = {'downsample': 0.001, 'upsample': 0.001, 'tasker': 0.001, 'alpha': 0.1} lr_schedule_gamma = {'downsample': 0.5, 'upsample': 0.5, 'tasker': 0.5, 'alpha': 0.5} step_size = int(train_epoch * 0.25) print('step_size', step_size) self.initialize_model(pretrained_model=pretrained_model, gpu=self.ftuseGPU.isChecked(), model_type=model_type) self.model.net.pretrained_model = pretrained_model save_name = model_type + '_' + os.path.basename(dataset_dir) self.model.net.contrast_on = contrast_on if contrast_on: self.model.net.pair_gen = DatasetPairEval(positive_dir=dataset_dir, use_negative_masks=False, gpu=self.ftuseGPU.isChecked(), rescale=True) self.model.net.save_name = save_name + '-cft' else: self.model.net.save_name = save_name + '-ft' try: print('Now is fine-tuning...Please Wait') self.img.setImage(iopart.imread(self.now_pyfile_path + '/assets/Loading2.png'), autoLevels=False, lut=None) self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui self.model.finetune(shot_gen=shot_gen, lr=lr, lr_schedule_gamma=lr_schedule_gamma, step_size=step_size, savepath=dataset_dir) except RuntimeError: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Batch size is too big, please set smaller", color='#FF6A56') print("Batch size is too big, please set smaller") return print('Finished fine-tuning') self.img.setImage(iopart.imread(self.now_pyfile_path + '/assets/Loading3.png'), autoLevels=False, lut=None) self.state_label.setText("Finished in %0.3fs, model saved at %s/fine-tune/%s" %(time.time()-tic, dataset_dir, self.model.net.save_name), color='#39B54A') self.ftbnt.setEnabled(False) self.fine_tune_dir = '' def get_single_cell(self): tic = time.time() try: data_path = self.single_cell_dir except: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Please choose right data path", color='#FF6A56') print(data_path) try: image_names = io.get_image_files(data_path, '_masks', imf='_img') mask_names, _ = io.get_label_files(image_names, '_img_cp_masks', imf='_img') iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading1.png'), resize=self.resize, X2=0) self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui except: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/Loading4.png'), resize=self.resize, X2=0) self.state_label.setText("Please choose right data path", color='#FF6A56') print("Please choose right data path") self.single_cell_btn.setEnabled(False) return sta = 256 save_dir = os.path.join(os.path.dirname(data_path), 'single') utils.make_folder(save_dir) imgs = [io.imread(os.path.join(data_path, image_name)) for image_name in image_names] masks = [io.imread(os.path.join(data_path, mask_name)) for mask_name in mask_names] self.img.setImage(iopart.imread(self.now_pyfile_path + '/assets/Loading2.png'), autoLevels=False, lut=None) self.state_label.setText("Running...", color='#969696') QtWidgets.qApp.processEvents() # force update gui for n in trange(len(masks)): maskn = masks[n] props = regionprops(maskn) i_max = maskn.max() + 1 for i in range(1, i_max): maskn_ = np.zeros_like(maskn) maskn_[maskn == i] = 1 bbox = props[i - 1]['bbox'] if imgs[n].ndim == 3: imgn_single = imgs[n][bbox[0]:bbox[2], bbox[1]:bbox[3]] * maskn_[bbox[0]:bbox[2], bbox[1]:bbox[3], np.newaxis] else: imgn_single = imgs[n][bbox[0]:bbox[2], bbox[1]:bbox[3]] * maskn_[bbox[0]:bbox[2], bbox[1]:bbox[3]] shape = imgn_single.shape shape_x = shape[0] shape_y = shape[1] add_x = sta - shape_x add_y = sta - shape_y add_x_l = int(floor(add_x / 2)) add_x_r = int(ceil(add_x / 2)) add_y_l = int(floor(add_y / 2)) add_y_r = int(ceil(add_y / 2)) if add_x > 0 and add_y > 0: if imgn_single.ndim == 3: imgn_single = np.pad(imgn_single, ((add_x_l, add_x_r), (add_y_l, add_y_r), (0, 0)), 'constant', constant_values=(0, 0)) else: imgn_single = np.pad(imgn_single, ((add_x_l, add_x_r), (add_y_l, add_y_r)), 'constant', constant_values=(0, 0)) save_name = os.path.join(save_dir, image_names[n].split('query')[-1].split('.')[0][1:] + '_' + str( i) + '.tif') cv2.imwrite(save_name, imgn_single) print('Finish getting single instance') self.img.setImage(iopart.imread(self.now_pyfile_path + '/assets/Loading3.png'), autoLevels=False, lut=None) self.state_label.setText("Finished in %0.3fs, saved at %s"%(time.time()-tic, os.path.dirname(data_path)+'/single') , color='#39B54A') self.single_cell_btn.setEnabled(False) def fine_tune_dir_choose(self): self.fine_tune_dir = QtWidgets.QFileDialog.getExistingDirectory(None,"choose fine-tune data",self.DefaultImFolder) if self.fine_tune_dir =='': self.state_label.setText("Choose nothing", color='#FF6A56') else: self.state_label.setText("Choose data at %s"%str(self.fine_tune_dir), color='#969696') self.ftbnt.setEnabled(True) iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/black.png'), resize=self.resize, X2=0) def batch_inference_dir_choose(self): self.batch_inference_dir = QtWidgets.QFileDialog.getExistingDirectory(None, "choose batch segmentation data", self.DefaultImFolder) if self.batch_inference_dir =='': self.state_label.setText("Choose nothing", color='#FF6A56') else: self.state_label.setText("Choose data at %s"%str(self.batch_inference_dir), color='#969696') self.batch_inference_bnt.setEnabled(True) iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/black.png'), resize=self.resize, X2=0) def single_dir_choose(self): self.single_cell_dir = QtWidgets.QFileDialog.getExistingDirectory(None, "choose get single instance data", self.DefaultImFolder) if self.single_cell_dir =='': self.state_label.setText("Choose nothing", color='#FF6A56') else: self.state_label.setText("Choose data at %s"%str(self.single_cell_dir), color='#969696') self.single_cell_btn.setEnabled(True) iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/black.png'), resize=self.resize, X2=0) def model_file_dir_choose(self): """ model after fine-tuning""" self.model_file_path = QtWidgets.QFileDialog.getOpenFileName(None, "choose model file", self.DefaultImFolder) if self.model_file_path[0] =='': self.state_label.setText("Choose nothing", color='#FF6A56') else: self.state_label.setText("Choose model at %s"%str(self.model_file_path[0]), color='#969696') def reset_pretrain_model(self): self.model_file_path = None self.state_label.setText("Reset to pre-trained model", color='#969696') def remove_stroke(self, delete_points=True): # self.current_stroke = get_unique_points(self.current_stroke) stroke = np.array(self.strokes[-1]) cZ = stroke[0, 0] outpix = self.outpix[cZ][stroke[:, 1], stroke[:, 2]] > 0 self.layers[cZ][stroke[~outpix, 1], stroke[~outpix, 2]] = np.array([0, 0, 0, 0]) if self.masksOn: cellpix = self.cellpix[cZ][stroke[:, 1], stroke[:, 2]] ccol = np.array(self.cellcolors.copy()) if self.selected > 0: ccol[self.selected] = np.array([255, 255, 255]) col2mask = ccol[cellpix] col2mask = np.concatenate((col2mask, self.opacity * (cellpix[:, np.newaxis] > 0)), axis=-1) self.layers[cZ][stroke[:, 1], stroke[:, 2], :] = col2mask if self.outlinesOn: self.layers[cZ][stroke[outpix, 1], stroke[outpix, 2]] = np.array(self.outcolor) if delete_points: self.current_point_set = self.current_point_set[:-1 * (stroke[:, -1] == 1).sum()] del self.strokes[-1] self.update_plot() def brush_choose(self): self.brush_size = self.BrushChoose.currentIndex() * 2 + 1 if self.loaded: self.layer.setDrawKernel(kernel_size=self.brush_size) self.update_plot() # if self.eraser_button.isChecked(): # print("will change") # self.cur_size = self.brush_size * 6 # cursor = Qt.QPixmap("./assets/eraser.png") # cursor_scaled = cursor.scaled(self.cur_size, self.cur_size) # cursor_set = Qt.QCursor(cursor_scaled, self.cur_size/2, self.cur_size/2) # QtWidgets.QApplication.setOverrideCursor(cursor_set) # self.update_plot() # # def toggle_server(self, off=False): # if SERVER_UPLOAD: # if self.ncells>0 and not off: # self.saveServer.setEnabled(True) # self.ServerButton.setEnabled(True) # # else: # self.saveServer.setEnabled(False) # self.ServerButton.setEnabled(False) def toggle_mask_ops(self): self.toggle_removals() # self.toggle_server() def load_cell_list(self): self.list_file_name = QtWidgets.QFileDialog.getOpenFileName(None, "Load instance list", self.DefaultImFolder) self.myCellList_array = np.loadtxt(self.list_file_name[0], dtype=str) self.myCellList = self.myCellList_array.tolist() if len(self.myCellList) == self.ncells: self.listmodel = Qt.QStandardItemModel(self.ncells, 1) self.listmodel.setHorizontalHeaderLabels(["Annotation"]) for i in range(len(self.myCellList)): self.listmodel.setItem(i, Qt.QStandardItem(self.myCellList[i])) self.listView.setModel(self.listmodel) def toggle_scale(self): if self.scale_on: self.p0.removeItem(self.scale) self.scale_on = False else: self.p0.addItem(self.scale) self.scale_on = True def toggle_removals(self): if self.ncells > 0: # self.ClearButton.setEnabled(True) self.remcell.setEnabled(True) self.undo.setEnabled(True) else: # self.ClearButton.setEnabled(False) self.remcell.setEnabled(False) self.undo.setEnabled(False) def remove_action(self): if self.selected > 0: self.remove_cell(self.selected) def undo_action(self): if (len(self.strokes) > 0 and self.strokes[-1][0][0] == self.currentZ): self.remove_stroke() else: # remove previous cell if self.ncells > 0: self.remove_cell(self.ncells) def undo_remove_action(self): self.undo_remove_cell() def get_files(self): images = [] images.extend(glob.glob(os.path.dirname(self.filename) + '/*.png')) images.extend(glob.glob(os.path.dirname(self.filename) + '/*.jpg')) images.extend(glob.glob(os.path.dirname(self.filename) + '/*.jpeg')) images.extend(glob.glob(os.path.dirname(self.filename) + '/*.tif')) images.extend(glob.glob(os.path.dirname(self.filename) + '/*.tiff')) images.extend(glob.glob(os.path.dirname(self.filename) + '/*.jfif')) images = natsorted(images) fnames = [os.path.split(images[k])[-1] for k in range(len(images))] f0 = os.path.split(self.filename)[-1] idx = np.nonzero(np.array(fnames) == f0)[0][0] return images, idx def get_prev_image(self): images, idx = self.get_files() idx = (idx - 1) % len(images) iopart._load_image(self, filename=images[idx]) def get_next_image(self): images, idx = self.get_files() idx = (idx + 1) % len(images) iopart._load_image(self, filename=images[idx]) def dragEnterEvent(self, event): if event.mimeData().hasUrls(): event.accept() else: event.ignore() def dropEvent(self, event): files = [u.toLocalFile() for u in event.mimeData().urls()] # print(files) if os.path.splitext(files[0])[-1] == '.npy': iopart._load_seg(self, filename=files[0]) self.initialize_listView() if os.path.isdir(files[0]): print("loading a folder") self.ImFolder = files[0] try: self.OpenDirDropped() except: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/black.png'), resize=self.resize, X2=0) self.state_label.setText("No image found, please choose right data path", color='#FF6A56') else: # print(len(files)) # print(files[0]) self.ImFolder = os.path.dirname(files[0]) try: self.OpenDirDropped(os.path.basename(files[0])) print(files[0], self.ImNameSet[self.CurImId]) self.ImPath = self.ImFolder + r'/' + self.ImNameSet[self.CurImId] iopart._load_image(self, filename=self.ImPath) self.initialize_listView() fname = os.path.basename(files[0]) fsuffix = os.path.splitext(fname)[-1] if fsuffix in ['.png', '.jpg', '.jpeg', '.tif', '.tiff', '.jfif']: if '_mask' in fname: self.state_label.setText("This is a mask file, autoload corresponding image", color='#FDC460') else: self.state_label.setText("This format is not supported", color='#FF6A56') except ValueError: iopart._initialize_image_portable(self, iopart.imread(self.now_pyfile_path + '/assets/black.png'), resize=self.resize, X2=0) self.state_label.setText("No corresponding iamge for this mask file", color='#FF6A56') def toggle_masks(self): if self.MCheckBox.isChecked(): self.masksOn = True else: self.masksOn = False if self.OCheckBox.isChecked(): self.outlinesOn = True else: self.outlinesOn = False if not self.masksOn and not self.outlinesOn: self.p0.removeItem(self.layer) self.layer_off = True else: if self.layer_off: self.p0.addItem(self.layer) self.redraw_masks(masks=self.masksOn, outlines=self.outlinesOn) if self.loaded: self.update_plot() def draw_mask(self, z, ar, ac, vr, vc, color, idx=None): ''' draw single mask using outlines and area ''' if idx is None: idx = self.ncells + 1 self.cellpix[z][vr, vc] = idx self.cellpix[z][ar, ac] = idx self.outpix[z][vr, vc] = idx if self.masksOn: self.layers[z][ar, ac, :3] = color # print(self.layers.shape) # print(self.layers[z][ar, ac, :3].shape) # print(self.layers[z][ar,ac,:3]) self.layers[z][ar, ac, -1] = self.opacity # print(z) if self.outlinesOn: self.layers[z][vr, vc] = np.array(self.outcolor) def draw_masks(self): self.cellcolors = np.array(self.cellcolors) self.layers[..., :3] = self.cellcolors[self.cellpix, :] self.layers[..., 3] = self.opacity * (self.cellpix > 0).astype(np.uint8) self.cellcolors = list(self.cellcolors) self.layers[self.outpix > 0] = np.array(self.outcolor) if self.selected > 0: self.layers[self.outpix == self.selected] = np.array([0, 0, 0, self.opacity]) def redraw_masks(self, masks=True, outlines=True): if not outlines and masks: self.draw_masks() self.cellcolors = np.array(self.cellcolors) self.layers[..., :3] = self.cellcolors[self.cellpix, :] self.layers[..., 3] = self.opacity * (self.cellpix > 0).astype(np.uint8) self.cellcolors = list(self.cellcolors) if self.selected > 0: self.layers[self.cellpix == self.selected] = np.array([255, 255, 255, self.opacity]) else: if masks: self.layers[..., 3] = self.opacity * (self.cellpix > 0).astype(np.uint8) else: self.layers[..., 3] = 0 self.layers[self.outpix > 0] = np.array(self.outcolor).astype(np.uint8) def update_plot_without_mask(self): self.Ly, self.Lx, _ = self.stack[self.currentZ].shape if self.view == 0: image = self.stack[self.currentZ] if self.color == 0: if self.onechan: # show single channel image = self.stack[self.currentZ][:, :, 0] self.img.setImage(image, autoLevels=False, lut=None) elif self.color == 1: image = image.astype(np.float32).mean(axis=-1).astype(np.uint8) self.img.setImage(image, autoLevels=False, lut=None) elif self.color == 2: image = image.astype(np.float32).mean(axis=-1).astype(np.uint8) self.img.setImage(image, autoLevels=False, lut=self.cmap[0]) elif self.color > 2: image = image[:, :, self.color - 3] self.img.setImage(image, autoLevels=False, lut=self.cmap[self.color - 2]) self.img.setLevels(self.saturation[self.currentZ]) else: image = np.zeros((self.Ly, self.Lx), np.uint8) if len(self.flows) >= self.view - 1 and len(self.flows[self.view - 1]) > 0: image = self.flows[self.view - 1][self.currentZ] if self.view > 1: self.img.setImage(image, autoLevels=False, lut=self.bwr) else: self.img.setImage(image, autoLevels=False, lut=None) self.img.setLevels([0.0, 255.0]) self.scale.setImage(self.radii, autoLevels=False) self.scale.setLevels([0.0, 255.0]) if self.masksOn or self.outlinesOn: self.layer.setImage(self.layers[self.currentZ], autoLevels=False) self.win.show() self.show() def update_plot(self): self.Ly, self.Lx, _ = self.stack[self.currentZ].shape if self.view == 0: image = self.stack[self.currentZ] if self.color == 0: if self.onechan: # show single channel image = self.stack[self.currentZ][:, :, 0] self.img.setImage(image, autoLevels=False, lut=None) elif self.color == 1: image = image.astype(np.float32).mean(axis=-1).astype(np.uint8) self.img.setImage(image, autoLevels=False, lut=None) elif self.color == 2: image = image.astype(np.float32).mean(axis=-1).astype(np.uint8) self.img.setImage(image, autoLevels=False, lut=self.cmap[0]) elif self.color > 2: image = image[:, :, self.color - 3] self.img.setImage(image, autoLevels=False, lut=self.cmap[self.color - 2]) self.img.setLevels(self.saturation[self.currentZ]) else: image = np.zeros((self.Ly, self.Lx), np.uint8) if len(self.flows) >= self.view - 1 and len(self.flows[self.view - 1]) > 0: image = self.flows[self.view - 1][self.currentZ] if self.view > 1: self.img.setImage(image, autoLevels=False, lut=self.bwr) else: self.img.setImage(image, autoLevels=False, lut=None) self.img.setLevels([0.0, 255.0]) self.scale.setImage(self.radii, autoLevels=False) self.scale.setLevels([0.0, 255.0]) if self.masksOn or self.outlinesOn: self.layer.setImage(self.layers[self.currentZ], autoLevels=False) self.win.show() self.show() def compute_scale(self): self.diameter = float(self.Diameter.text()) self.pr = int(float(self.Diameter.text())) self.radii = np.zeros((self.Ly + self.pr, self.Lx, 4), np.uint8) yy, xx = plot.disk([self.pr / 2 - 1, self.Ly - self.pr / 2 + 1], self.pr / 2, self.Ly + self.pr, self.Lx) self.radii[yy, xx, 0] = 255 self.radii[yy, xx, -1] = 255 self.update_plot() self.p0.setYRange(0, self.Ly + self.pr) self.p0.setXRange(0, self.Lx) def auto_save(self): if self.autosaveOn: print('Autosaved') self.save_cell_list() iopart._save_sets(self) iopart._save_png(self) def save_all(self): self.save_cell_list() iopart._save_sets(self) iopart._save_png(self) self.state_label.setText('Save masks/npy/list successfully', color='#39B54A') def make_cmap(cm=0): # make a single channel colormap r = np.arange(0, 256) color = np.zeros((256, 3)) color[:, cm] = r color = color.astype(np.uint8) cmap = pg.ColorMap(pos=np.linspace(0.0, 255, 256), color=color) return cmap def interpZ(mask, zdraw): """ find nearby planes and average their values using grid of points zfill is in ascending order """ ifill = np.ones(mask.shape[0], np.bool) zall = np.arange(0, mask.shape[0], 1, int) ifill[zdraw] = False zfill = zall[ifill] zlower = zdraw[np.searchsorted(zdraw, zfill, side='left') - 1] zupper = zdraw[np.searchsorted(zdraw, zfill, side='right')] for k, z in enumerate(zfill): Z = zupper[k] - zlower[k] zl = (z - zlower[k]) / Z plower = avg3d(mask[zlower[k]]) * (1 - zl) pupper = avg3d(mask[zupper[k]]) * zl mask[z] = (plower + pupper) > 0.33 # Ml, norml = avg3d(mask[zlower[k]], zl) # Mu, normu = avg3d(mask[zupper[k]], 1-zl) # mask[z] = (Ml + Mu) / (norml + normu) > 0.5 return mask, zfill def avg3d(C): """ smooth value of c across nearby points (c is center of grid directly below point) b -- a -- b a -- c -- a b -- a -- b """ Ly, Lx = C.shape # pad T by 2 T = np.zeros((Ly + 2, Lx + 2), np.float32) M =
np.zeros((Ly, Lx), np.float32)
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'chengzhi' """ tqsdk.ta 模块包含了一批常用的技术指标计算函数 """ import numpy as np import pandas as pd import numba from tqsdk import ta_func def ATR(df, n): """平均真实波幅""" new_df = pd.DataFrame() pre_close = df["close"].shift(1) new_df["tr"] = np.where(df["high"] - df["low"] > np.absolute(pre_close - df["high"]), np.where(df["high"] - df["low"] > np.absolute(pre_close - df["low"]), df["high"] - df["low"], np.absolute(pre_close - df["low"])), np.where(np.absolute(pre_close - df["high"]) > np.absolute(pre_close - df["low"]), np.absolute(pre_close - df["high"]), np.absolute(pre_close - df["low"]))) new_df["atr"] = ta_func.ma(new_df["tr"], n) return new_df def BIAS(df, n): """乖离率""" ma1 = ta_func.ma(df["close"], n) new_df = pd.DataFrame(data=list((df["close"] - ma1) / ma1 * 100), columns=["bias"]) return new_df def BOLL(df, n, p): """布林线""" new_df = pd.DataFrame() mid = ta_func.ma(df["close"], n) std = df["close"].rolling(n).std() new_df["mid"] = mid new_df["top"] = mid + p * std new_df["bottom"] = mid - p * std return new_df def DMI(df, n, m): """动向指标""" new_df = pd.DataFrame() new_df["atr"] = ATR(df, n)["atr"] pre_high = df["high"].shift(1) pre_low = df["low"].shift(1) hd = df["high"] - pre_high ld = pre_low - df["low"] admp = ta_func.ma(pd.Series(np.where((hd > 0) & (hd > ld), hd, 0)), n) admm = ta_func.ma(pd.Series(np.where((ld > 0) & (ld > hd), ld, 0)), n) new_df["pdi"] = pd.Series(np.where(new_df["atr"] > 0, admp / new_df["atr"] * 100, np.NaN)).ffill() new_df["mdi"] = pd.Series(np.where(new_df["atr"] > 0, admm / new_df["atr"] * 100, np.NaN)).ffill() ad = pd.Series(np.absolute(new_df["mdi"] - new_df["pdi"]) / (new_df["mdi"] + new_df["pdi"]) * 100) new_df["adx"] = ta_func.ma(ad, m) new_df["adxr"] = (new_df["adx"] + new_df["adx"].shift(m)) / 2 return new_df def KDJ(df, n, m1, m2): """随机指标""" new_df = pd.DataFrame() hv = df["high"].rolling(n).max() lv = df["low"].rolling(n).min() rsv = pd.Series(np.where(hv == lv, 0, (df["close"] - lv) / (hv - lv) * 100)) new_df["k"] = ta_func.sma(rsv, m1, 1) new_df["d"] = ta_func.sma(new_df["k"], m2, 1) new_df["j"] = 3 * new_df["k"] - 2 * new_df["d"] return new_df def MACD(df, short, long, m): """异同移动平均线""" new_df = pd.DataFrame() eshort = ta_func.ema(df["close"], short) elong = ta_func.ema(df["close"], long) new_df["diff"] = eshort - elong new_df["dea"] = ta_func.ema(new_df["diff"], m) new_df["bar"] = 2 * (new_df["diff"] - new_df["dea"]) return new_df @numba.njit def _sar(open, high, low, close, range_high, range_low, n, step, maximum): sar = np.empty_like(close) sar[:n] = np.NAN af = 0 ep = 0 trend = 1 if (close[n] - open[n]) > 0 else -1 if trend == 1: sar[n] = min(range_low[n - 2], low[n - 1]) else: sar[n] = max(range_high[n - 2], high[n - 1]) for i in range(n, len(sar)): if i != n: if abs(trend) > 1: sar[i] = sar[i - 1] + af * (ep - sar[i - 1]) elif trend == 1: sar[i] = min(range_low[i - 2], low[i - 1]) elif trend == -1: sar[i] = max(range_high[i - 2], high[i - 1]) if trend > 0: if sar[i - 1] > low[i]: ep = low[i] af = step trend = -1 else: ep = high[i] af = min(af + step, maximum) if ep > range_high[i - 1] else af trend += 1 else: if sar[i - 1] < high[i]: ep = high[i] af = step trend = 1 else: ep = low[i] af = min(af + step, maximum) if ep < range_low[i - 1] else af trend -= 1 return sar def SAR(df, n, step, max): """抛物转向""" range_high = df["high"].rolling(n - 1).max() range_low = df["low"].rolling(n - 1).min() sar = _sar(df["open"].values, df["high"].values, df["low"].values, df["close"].values, range_high.values, range_low.values, n, step, max) new_df = pd.DataFrame(data=sar, columns=["sar"]) return new_df def WR(df, n): """威廉指标""" hn = df["high"].rolling(n).max() ln = df["low"].rolling(n).min() new_df = pd.DataFrame(data=list((hn - df["close"]) / (hn - ln) * (-100)), columns=["wr"]) return new_df def RSI(df, n): """相对强弱指标""" lc = df["close"].shift(1) rsi = ta_func.sma(pd.Series(np.where(df["close"] - lc > 0, df["close"] - lc, 0)), n, 1) / \ ta_func.sma(np.absolute(df["close"] - lc), n, 1) * 100 new_df = pd.DataFrame(data=rsi, columns=["rsi"]) return new_df def ASI(df): """振动升降指标""" lc = df["close"].shift(1) # 上一交易日的收盘价 aa = np.absolute(df["high"] - lc) bb = np.absolute(df["low"] - lc) cc = np.absolute(df["high"] - df["low"].shift(1)) dd = np.absolute(lc - df["open"].shift(1)) r = np.where((aa > bb) & (aa > cc), aa + bb / 2 + dd / 4, np.where((bb > cc) & (bb > aa), bb + aa / 2 + dd / 4, cc + dd / 4)) x = df["close"] - lc + (df["close"] - df["open"]) / 2 + lc - df["open"].shift(1) si = np.where(r == 0, 0, 16 * x / r * np.where(aa > bb, aa, bb)) new_df = pd.DataFrame(data=list(pd.Series(si).cumsum()), columns=["asi"]) return new_df def VR(df, n): """VR 容量比率""" lc = df["close"].shift(1) vr = pd.Series(np.where(df["close"] > lc, df["volume"], 0)).rolling(n).sum() / pd.Series( np.where(df["close"] <= lc, df["volume"], 0)).rolling(n).sum() * 100 new_df = pd.DataFrame(data=list(vr), columns=["vr"]) return new_df def ARBR(df, n): """人气意愿指标""" new_df = pd.DataFrame() new_df["ar"] = (df["high"] - df["open"]).rolling(n).sum() / (df["open"] - df["low"]).rolling(n).sum() * 100 new_df["br"] = pd.Series( np.where(df["high"] - df["close"].shift(1) > 0, df["high"] - df["close"].shift(1), 0)).rolling( n).sum() / pd.Series( np.where(df["close"].shift(1) - df["low"] > 0, df["close"].shift(1) - df["low"], 0)).rolling(n).sum() * 100 return new_df def DMA(df, short, long, m): """平均线差""" new_df = pd.DataFrame() new_df["ddd"] = ta_func.ma(df["close"], short) - ta_func.ma(df["close"], long) new_df["ama"] = ta_func.ma(new_df["ddd"], m) return new_df def EXPMA(df, p1, p2): """指数加权移动平均线组合""" new_df = pd.DataFrame() new_df["ma1"] = ta_func.ema(df["close"], p1) new_df["ma2"] = ta_func.ema(df["close"], p2) return new_df def CR(df, n, m): """CR能量""" new_df = pd.DataFrame() mid = (df["high"] + df["low"] + df["close"]) / 3 new_df["cr"] = pd.Series(np.where(0 > df["high"] - mid.shift(1), 0, df["high"] - mid.shift(1))).rolling( n).sum() / pd.Series(np.where(0 > mid.shift(1) - df["low"], 0, mid.shift(1) - df["low"])).rolling(n).sum() * 100 new_df["crma"] = ta_func.ma(new_df["cr"], m).shift(int(m / 2.5 + 1)) return new_df def CCI(df, n): """顺势指标""" typ = (df["high"] + df["low"] + df["close"]) / 3 ma = ta_func.ma(typ, n) def mad(x): return np.fabs(x - x.mean()).mean() md = typ.rolling(window=n).apply(mad, raw=True) # 平均绝对偏差 new_df = pd.DataFrame(data=list((typ - ma) / (md * 0.015)), columns=["cci"]) return new_df def OBV(df): """能量潮""" lc = df["close"].shift(1) obv = (np.where(df["close"] > lc, df["volume"], np.where(df["close"] < lc, -df["volume"], 0))).cumsum() new_df = pd.DataFrame(data=obv, columns=["obv"]) return new_df def CDP(df, n): """逆势操作""" new_df = pd.DataFrame() pt = df["high"].shift(1) - df["low"].shift(1) cdp = (df["high"].shift(1) + df["low"].shift(1) + df["close"].shift(1)) / 3 new_df["ah"] = ta_func.ma(cdp + pt, n) new_df["al"] = ta_func.ma(cdp - pt, n) new_df["nh"] = ta_func.ma(2 * cdp - df["low"], n) new_df["nl"] = ta_func.ma(2 * cdp - df["high"], n) return new_df def HCL(df, n): """均线通道""" new_df = pd.DataFrame() new_df["mah"] = ta_func.ma(df["high"], n) new_df["mal"] = ta_func.ma(df["low"], n) new_df["mac"] = ta_func.ma(df["close"], n) return new_df def ENV(df, n, k): """包略线 (Envelopes)""" new_df = pd.DataFrame() new_df["upper"] = ta_func.ma(df["close"], n) * (1 + k / 100) new_df["lower"] = ta_func.ma(df["close"], n) * (1 - k / 100) return new_df def MIKE(df, n): """麦克指标""" new_df = pd.DataFrame() typ = (df["high"] + df["low"] + df["close"]) / 3 ll = df["low"].rolling(n).min() hh = df["high"].rolling(n).max() new_df["wr"] = typ + (typ - ll) new_df["mr"] = typ + (hh - ll) new_df["sr"] = 2 * hh - ll new_df["ws"] = typ - (hh - typ) new_df["ms"] = typ - (hh - ll) new_df["ss"] = 2 * ll - hh return new_df def PUBU(df, m): """瀑布线""" pb = (ta_func.ema(df["close"], m) + ta_func.ma(df["close"], m * 2) + ta_func.ma(df["close"], m * 4)) / 3 new_df = pd.DataFrame(data=list(pb), columns=["pb"]) return new_df def BBI(df, n1, n2, n3, n4): """多空指数""" bbi = (ta_func.ma(df["close"], n1) + ta_func.ma(df["close"], n2) + ta_func.ma(df["close"], n3) + ta_func.ma( df["close"], n4)) / 4 new_df = pd.DataFrame(data=list(bbi), columns=["bbi"]) return new_df def DKX(df, m): """多空线""" new_df = pd.DataFrame() a = (3 * df["close"] + df["high"] + df["low"] + df["open"]) / 6 new_df["b"] = (20 * a + 19 * a.shift(1) + 18 * a.shift(2) + 17 * a.shift(3) + 16 * a.shift(4) + 15 * a.shift( 5) + 14 * a.shift(6) + 13 * a.shift(7) + 12 * a.shift(8) + 11 * a.shift(9) + 10 * a.shift(10) + 9 * a.shift( 11) + 8 * a.shift( 12) + 7 * a.shift(13) + 6 * a.shift(14) + 5 * a.shift(15) + 4 * a.shift(16) + 3 * a.shift( 17) + 2 * a.shift(18) + a.shift(20) ) / 210 new_df["d"] = ta_func.ma(new_df["b"], m) return new_df def BBIBOLL(df, n, m): """多空布林线""" new_df = pd.DataFrame() new_df["bbiboll"] = (ta_func.ma(df["close"], 3) + ta_func.ma(df["close"], 6) + ta_func.ma(df["close"], 12) + ta_func.ma( df["close"], 24)) / 4 new_df["upr"] = new_df["bbiboll"] + m * new_df["bbiboll"].rolling(n).std() new_df["dwn"] = new_df["bbiboll"] - m * new_df["bbiboll"].rolling(n).std() return new_df def ADTM(df, n, m): """动态买卖气指标""" new_df = pd.DataFrame() dtm = np.where(df["open"] < df["open"].shift(1), 0, np.where(df["high"] - df["open"] > df["open"] - df["open"].shift(1), df["high"] - df["open"], df["open"] - df["open"].shift(1))) dbm = np.where(df["open"] >= df["open"].shift(1), 0, np.where(df["open"] - df["low"] > df["open"] - df["open"].shift(1), df["open"] - df["low"], df["open"] - df["open"].shift(1))) stm = pd.Series(dtm).rolling(n).sum() sbm = pd.Series(dbm).rolling(n).sum() new_df["adtm"] = np.where(stm > sbm, (stm - sbm) / stm, np.where(stm == sbm, 0, (stm - sbm) / sbm)) new_df["adtmma"] = ta_func.ma(new_df["adtm"], m) return new_df def B3612(df): """三减六日乖离率""" new_df = pd.DataFrame() new_df["b36"] = ta_func.ma(df["close"], 3) - ta_func.ma(df["close"], 6) new_df["b612"] = ta_func.ma(df["close"], 6) - ta_func.ma(df["close"], 12) return new_df def DBCD(df, n, m, t): """异同离差乖离率""" new_df = pd.DataFrame() bias = (df["close"] - ta_func.ma(df["close"], n)) / ta_func.ma(df["close"], n) dif = bias - bias.shift(m) new_df["dbcd"] = ta_func.sma(dif, t, 1) new_df["mm"] = ta_func.ma(new_df["dbcd"], 5) return new_df def DDI(df, n, n1, m, m1): """方向标准离差指数""" new_df = pd.DataFrame() tr = np.where(np.absolute(df["high"] - df["high"].shift(1)) > np.absolute(df["low"] - df["low"].shift(1)), np.absolute(df["high"] - df["high"].shift(1)), np.absolute(df["low"] - df["low"].shift(1))) dmz = np.where((df["high"] + df["low"]) <= (df["high"].shift(1) + df["low"].shift(1)), 0, tr) dmf = np.where((df["high"] + df["low"]) >= (df["high"].shift(1) + df["low"].shift(1)), 0, tr) diz = pd.Series(dmz).rolling(n).sum() / (pd.Series(dmz).rolling(n).sum() + pd.Series(dmf).rolling(n).sum()) dif = pd.Series(dmf).rolling(n).sum() / (pd.Series(dmf).rolling(n).sum() + pd.Series(dmz).rolling(n).sum()) new_df["ddi"] = diz - dif new_df["addi"] = ta_func.sma(new_df["ddi"], n1, m) new_df["ad"] = ta_func.ma(new_df["addi"], m1) return new_df def KD(df, n, m1, m2): """随机指标""" new_df = pd.DataFrame() hv = df["high"].rolling(n).max() lv = df["low"].rolling(n).min() rsv = pd.Series(np.where(hv == lv, 0, (df["close"] - lv) / (hv - lv) * 100)) new_df["k"] = ta_func.sma(rsv, m1, 1) new_df["d"] = ta_func.sma(new_df["k"], m2, 1) return new_df def LWR(df, n, m): """威廉指标""" hv = df["high"].rolling(n).max() lv = df["low"].rolling(n).min() rsv = pd.Series(np.where(hv == lv, 0, (df["close"] - hv) / (hv - lv) * 100)) new_df = pd.DataFrame(data=list(ta_func.sma(rsv, m, 1)), columns=["lwr"]) return new_df def MASS(df, n1, n2): """梅斯线""" ema1 = ta_func.ema(df["high"] - df["low"], n1) ema2 = ta_func.ema(ema1, n1) new_df = pd.DataFrame(data=list((ema1 / ema2).rolling(n2).sum()), columns=["mass"]) return new_df def MFI(df, n): """资金流量指标""" typ = (df["high"] + df["low"] + df["close"]) / 3 mr = pd.Series(np.where(typ > typ.shift(1), typ * df["volume"], 0)).rolling(n).sum() / pd.Series( np.where(typ < typ.shift(1), typ * df["volume"], 0)).rolling(n).sum() new_df = pd.DataFrame(data=list(100 - (100 / (1 + mr))), columns=["mfi"]) return new_df def MI(df, n): """动量指标""" new_df = pd.DataFrame() new_df["a"] = df["close"] - df["close"].shift(n) new_df["mi"] = ta_func.sma(new_df["a"], n, 1) return new_df def MICD(df, n, n1, n2): """异同离差动力指数""" new_df = pd.DataFrame() mi = df["close"] - df["close"].shift(1) ami = ta_func.sma(mi, n, 1) new_df["dif"] = ta_func.ma(ami.shift(1), n1) - ta_func.ma(ami.shift(1), n2) new_df["micd"] = ta_func.sma(new_df["dif"], 10, 1) return new_df def MTM(df, n, n1): """MTM动力指标""" new_df = pd.DataFrame() new_df["mtm"] = df["close"] - df["close"].shift(n) new_df["mtmma"] = ta_func.ma(new_df["mtm"], n1) return new_df def PRICEOSC(df, long, short): """价格震荡指数 Price Oscillator""" ma_s = ta_func.ma(df["close"], short) ma_l = ta_func.ma(df["close"], long) new_df = pd.DataFrame(data=list((ma_s - ma_l) / ma_s * 100), columns=["priceosc"]) return new_df def PSY(df, n, m): """心理线""" new_df = pd.DataFrame() new_df["psy"] = ta_func.count(df["close"] > df["close"].shift(1), n) / n * 100 new_df["psyma"] = ta_func.ma(new_df["psy"], m) return new_df def QHLSR(df): """阻力指标""" new_df = pd.DataFrame() qhl = (df["close"] - df["close"].shift(1)) - (df["volume"] - df["volume"].shift(1)) * ( df["high"].shift(1) - df["low"].shift(1)) / df["volume"].shift(1) a = pd.Series(np.where(qhl > 0, qhl, 0)).rolling(5).sum() e = pd.Series(
np.where(qhl > 0, qhl, 0)
numpy.where
"""Mactices functions. Functions --------- - calc_chi_sq - transform_string_to_r_b - transform_string_to_digits - transform_fraction_with_label_to_string - transform_digits_to_string - transform_r_b_to_string - calc_mRmCmRT - calc_rotation_matrix_ij_by_euler_angles - calc_euler_angles_by_rotation_matrix_ij - calc_determinant_matrix_ij - calc_inverse_matrix_ij - calc_rotation_matrix_ij_around_axis - calc_product_matrices - calc_product_matrix_vector - calc_vector_angle - calc_vector_product - scalar_product - calc_rotation_matrix_by_two_vectors - tri_linear_interpolation - ortogonalize_matrix - calc_moment_2d_by_susceptibility - calc_phase_3d """ import numpy from fractions import Fraction from typing import Tuple def calc_chi_sq(y_exp, y_error, y_model, der_y=None): """Calc chi_sq.""" y_diff = (y_exp - y_model)/y_error chi_sq = (numpy.square(numpy.abs(y_diff))).sum() if der_y is not None: der_chi_sq = (-2.*(y_diff/y_error)[:, numpy.newaxis]*der_y).sum(axis=0) else: der_chi_sq = None return chi_sq, der_chi_sq def transform_string_to_r_b(name: str, labels=("x", "y", "z")) -> Tuple: """Transform string to rotation part and offset. Example ------- x,y,-z -> 0.0 1 0 0 0.0 0 1 0 0.0 0 0 -1 """ l_name = "".join(name.strip().split()).lstrip("(").rstrip(")").split(",") rij, bi = [], [] for _name in l_name: coefficients, offset = transform_string_to_digits(_name, labels) rij.append(coefficients) bi.append(offset) res_rij = numpy.array(rij, dtype=object) res_bi = numpy.array(bi, dtype=object) return res_rij, res_bi def transform_string_to_digits(name: str, labels: Tuple[str]): """Transform string to digits. Multiplication has to be implicit, division must be explicit. White space within the string is optional. >>> transform_string_to_digits('-a+2x/7-0.7t+4', ('a', 'x', 't')) """ coefficients = [] offset = Fraction(0, 1).limit_denominator(10) l_name = name.strip().replace(" ", "").replace("+", " +").replace( "-", " -").split() for _label in labels: res = Fraction(0, 1).limit_denominator(10) for _name in l_name: if _label in _name: s_1 = _name.replace(_label, "").replace("+/", "+1/").replace( "-/", "-1/") if s_1 == "": s_1 = "1" if s_1.startswith("/"): s_1 = "1" + s_1 if s_1.endswith("+"): s_1 = s_1 + "1" if s_1.endswith("-"): s_1 = s_1 + "1" res += Fraction(s_1).limit_denominator(10) coefficients.append(res) res = Fraction(0, 1).limit_denominator(10) for _name in l_name: flag = all([not (_label in _name) for _label in labels]) if flag: res += Fraction(_name).limit_denominator(10) offset = res return coefficients, offset def transform_fraction_with_label_to_string(number: Fraction, label: str) \ -> str: """Transform fraction with label to string. Parameters ---------- number : Fraction DESCRIPTION. label : str DESCRIPTION. Returns ------- str DESCRIPTION. """ if isinstance(number, Fraction): val = number else: val = Fraction(number).limit_denominator(10) if val == Fraction(0, 1): res = "" elif val == Fraction(1, 1): res = f"{label:}" elif val == Fraction(-1, 1): res = f"-{label:}" elif val.denominator == 1: res = f"{val.numerator}{label:}" elif val.numerator == 1: res = f"{label:}/{val.denominator}" else: res = f"{val.numerator}{label:}/{val.denominator}" return res def transform_digits_to_string(labels: Tuple[str], coefficients, offset: Fraction) -> str: """Form a string from digits. Arguments --------- labels: the tuple of lablels (ex.: ('x', 'y', 'z') or ('a', 'b', 'c'))) coefficients: the parameters in front of label (ex.: (1.0, 0.5, 0.0)) offset: the number (ex.: 2/3) Output ------ string Example ------- >>> transform_digits_to_string(('x', 'y', 'z'), (1.0, 0.5, 0.0), 0.6666667) x+1/2y+2/3 """ l_res = [] for _coefficient, _label in zip(coefficients, labels): _name = transform_fraction_with_label_to_string(_coefficient, _label) if _name == "": pass elif _name.startswith("-"): l_res.append(_name) elif l_res == []: l_res.append(_name) else: l_res.append(f"+{_name:}") _name = str(Fraction(offset).limit_denominator(10)) if _name == "0": if l_res == []: l_res.append(_name) elif ((l_res == []) | (_name.startswith("-"))): l_res.append(_name) else: l_res.append(f"+{_name:}") return "".join(l_res) def transform_r_b_to_string(r, b, labels=("x", "y", "z")) -> str: """Transform r (matrix) b (vector) to string. Parameters ---------- r : TYPE DESCRIPTION. b : TYPE DESCRIPTION. labels : TYPE, optional DESCRIPTION. The default is ("x", "y", "z"). Returns ------- str DESCRIPTION. """ l_res = [transform_digits_to_string(labels, _ri, _bi) for _ri, _bi in zip(r, b)] return ",".join(l_res) def calc_mRmCmRT(r_ij, c_ij): """Calculate matrix multiplication R*C*RT. Matrices are expressed through its component and can be expressed as nD-array. r_ij: r11, r12, r13, r21, r22, r23, r31, r32, r33 c_ij: c11, c12, c13, c21, c22, c23, c31, c32, c33 """ r11, r12, r13, r21, r22, r23, r31, r32, r33 = r_ij rt_ij = r11, r21, r31, r12, r22, r32, r13, r23, r33 rcrt_ij = calc_product_matrices(r_ij, c_ij, rt_ij) rcrt_11, rcrt_12, rcrt_13, rcrt_21, rcrt_22, rcrt_23, rcrt_31, rcrt_32, \ rcrt_33 = rcrt_ij return rcrt_11, rcrt_12, rcrt_13, rcrt_21, rcrt_22, rcrt_23, rcrt_31, \ rcrt_32, rcrt_33 def calc_rotation_matrix_ij_by_euler_angles(alpha, beta, gamma): """Calculate rotational matrix from Euler angle. Tait-Bryan convection for angles is used. psi - x-axis theta - y axis phi - z axis 0 <= psi <= 2 pi ??? -pi/2 <= theta <= pi/2 0 <= phi <= 2 pi """ psi, theta, phi = alpha, beta, gamma rm_11 = numpy.cos(theta)*numpy.cos(phi) rm_21 = numpy.cos(theta)*numpy.sin(phi) rm_31 = -numpy.sin(theta) rm_12 = numpy.sin(psi)*numpy.sin(theta)*numpy.cos(phi) - \ numpy.cos(psi)*numpy.sin(phi) rm_22 = numpy.sin(psi)*numpy.sin(theta)*numpy.sin(phi) + \ numpy.cos(psi)*numpy.cos(phi) rm_32 = numpy.sin(psi)*numpy.cos(theta) rm_13 = numpy.cos(psi)*numpy.sin(theta)*numpy.cos(phi) + \ numpy.sin(psi)*numpy.sin(phi) rm_23 = numpy.cos(psi)*numpy.sin(theta)*numpy.sin(phi) - \ numpy.sin(psi)*numpy.cos(phi) rm_33 = numpy.cos(psi)*numpy.cos(theta) return rm_11, rm_12, rm_13, rm_21, rm_22, rm_23, rm_31, rm_32, rm_33 def calc_euler_angles_by_rotation_matrix_ij(rm_ij): """Calculate Euler Angles from rotational matrix. Tait-Bryan convection for angles used. psi - x-axis theta - y axis phi - z axis. """ rm_11, rm_12, rm_13, rm_21, rm_22, rm_23, rm_31, rm_32, rm_33 = rm_ij if (abs(rm_31) != 1.): theta1 = -1*numpy.arcsin(rm_31) theta2 = numpy.pi-theta1 psi1 = numpy.arctan2((rm_32)/numpy.cos(theta1), (rm_33)/numpy.cos(theta1)) psi2 = numpy.arctan2((rm_32)/numpy.cos(theta2), (rm_33)/numpy.cos(theta2)) phi1 = numpy.arctan2((rm_21)/numpy.cos(theta1), (rm_11)/numpy.cos(theta1)) phi2 = numpy.arctan2((rm_21)/numpy.cos(theta2), (rm_11)/numpy.cos(theta2)) res = [[psi1, theta1, phi1], [psi2, theta2, phi2]] else: phi = 0 if (rm_31 == -1): theta = numpy.pi/2 psi = phi+numpy.arctan2(rm_12, rm_13) res = [psi, theta, phi] else: theta = -1*numpy.pi/2 psi = -1*phi+numpy.arctan2(-1*rm_12, -1*rm_13) res = [psi, theta, phi] return res def calc_determinant_matrix_ij(m_ij): """Calculate determinant of the matrix / matrices. Parameters ---------- m_ij : TYPE m_ij = m_11, m_12, m_13, m_21, m_22, m_23, m_31, m_32, m_33 Returns ------- det : TYPE DESCRIPTION. """ m_11, m_12, m_13, m_21, m_22, m_23, m_31, m_32, m_33 = m_ij det = m_11*m_22*m_33 - m_11*m_23*m_32 \ - m_12*m_21*m_33 + m_12*m_23*m_31 \ + m_13*m_21*m_32 - m_13*m_22*m_31 return det def calc_inverse_matrix_ij(m_ij): """Calculate inverse matrix / matrices. Parameters ---------- m_ij : TYPE m_ij = m_11, m_12, m_13, m_21, m_22, m_23, m_31, m_32, m_33 Returns ------- m_i_11 : TYPE DESCRIPTION. m_i_12 : TYPE DESCRIPTION. m_i_13 : TYPE DESCRIPTION. m_i_21 : TYPE DESCRIPTION. m_i_22 : TYPE DESCRIPTION. m_i_23 : TYPE DESCRIPTION. m_i_31 : TYPE DESCRIPTION. m_i_32 : TYPE DESCRIPTION. m_i_33 : TYPE DESCRIPTION. """ eps = 1.0e-12 det = calc_determinant_matrix_ij(m_ij) m_11, m_12, m_13, m_21, m_22, m_23, m_31, m_32, m_33 = m_ij inv_det = numpy.where(det < eps, 0., 1./det) m_i_11 = +(m_22*m_33-m_23*m_32) * inv_det m_i_21 = -(m_21*m_33-m_23*m_31) * inv_det m_i_31 = +(m_21*m_32-m_22*m_31) * inv_det m_i_12 = -(m_12*m_33-m_13*m_32) * inv_det m_i_22 = +(m_11*m_33-m_13*m_31) * inv_det m_i_32 = -(m_11*m_32-m_12*m_31) * inv_det m_i_13 = +(m_12*m_23-m_13*m_22) * inv_det m_i_23 = -(m_11*m_23-m_13*m_21) * inv_det m_i_33 = +(m_11*m_22-m_12*m_21) * inv_det return m_i_11, m_i_12, m_i_13, m_i_21, m_i_22, m_i_23, m_i_31, m_i_32, \ m_i_33 def calc_rotation_matrix_ij_around_axis(angle, axis="x"): """Calculate rotation matrix around given axis. Parameters ---------- angle : TYPE DESCRIPTION. axis : TYPE, optional DESCRIPTION. The default is "x". Returns ------- r_m_11 : TYPE DESCRIPTION. r_m_12 : TYPE DESCRIPTION. r_m_13 : TYPE DESCRIPTION. r_m_21 : TYPE DESCRIPTION. r_m_22 : TYPE DESCRIPTION. r_m_23 : TYPE DESCRIPTION. r_m_31 : TYPE DESCRIPTION. r_m_32 : TYPE DESCRIPTION. r_m_33 : TYPE DESCRIPTION. """ np_zero = 0.*angle np_one = 1. + np_zero if axis.lower() == "y": r_m_11 = numpy.cos(angle) r_m_12 = np_zero r_m_13 = numpy.sin(angle) r_m_21 = np_zero r_m_22 = np_one r_m_23 = np_zero r_m_31 = -numpy.sin(angle) r_m_32 = np_zero r_m_33 = numpy.cos(angle) elif axis.lower() == "z": r_m_11 = numpy.cos(angle) r_m_12 = numpy.sin(angle) r_m_13 = np_zero r_m_21 = -numpy.sin(angle) r_m_22 = numpy.cos(angle) r_m_23 = np_zero r_m_31 = np_zero r_m_32 = np_zero r_m_33 = np_one else: # by default "x" r_m_11 = np_one r_m_12 = np_zero r_m_13 = np_zero r_m_21 = np_zero r_m_22 = numpy.cos(angle) r_m_23 = numpy.sin(angle) r_m_31 = np_zero r_m_32 = -numpy.sin(angle) r_m_33 =
numpy.cos(angle)
numpy.cos
#!/usr/bin/env python """ISOCHRONE.PY - Isochrone and isochrone grid classes """ __authors__ = '<NAME> <<EMAIL>?' __version__ = '20210920' # yyyymmdd import os import numpy as np from glob import glob from astropy.table import Table from astropy.io import fits from scipy.interpolate import interp1d from dlnpyutils import utils as dln import copy from . import extinction,utils def load(): """ Load all the default isochrone files.""" ddir = utils.datadir() files = glob(ddir+'parsec_*fits.gz') nfiles = len(files) if nfiles==0: raise Exception("No default isochrone files found in "+ddir) iso = [] for f in files: iso.append(Table.read(f)) if len(iso)==1: iso=iso[0] # Change metallicity and age names for parsec iso['AGE'] = 10**iso['LOGAGE'].copy() iso['METAL'] = iso['MH'] # Index grid = IsoGrid(iso) return grid def isointerp2(iso1,iso2,frac,photnames=None,minlabel=1,maxlabel=7,verbose=False): """ Interpolate between two isochrones.""" # frac: fractional distance for output isochrone # 0 is close to iso1 and 1 is close to iso2 niso1 = len(iso1) niso2 = len(iso2) label1 = np.unique(iso1['LABEL']) label2 = np.unique(iso2['LABEL']) age1 = iso1['AGE'][0] metal1 = iso1['METAL'][0] age2 = iso2['AGE'][0] metal2 = iso2['METAL'][0] isominimax1 = np.max(iso1['MINI']) isominimax2 = np.max(iso2['MINI']) intimfmax1 = np.max(iso1['INT_IMF']) intimfmax2 = np.max(iso2['INT_IMF']) # max MINI for the output isochrone isominimax = isominimax1*(1-frac)+isominimax2*frac # Use MINI, original mass # get unique MINI values between the two isochrones #mini = np.concatenate((iso1['MINI'].data,iso2['MINI'])) #mini = np.unique(mini) # Maybe interpolate different star type "labels" separately # 1-9 # 1: main sequence # 2: subgiant branch (Hertzsprung gap) # 3: red giant branch # 4: horizontal branch # 5: sometimes "missing" # 6: sometimes "missing" # 7: AGB # 8: TAGB # 9: WD (often only one point) # Descriptions from CMD website # http://stev.oapd.inaf.it/cmd_3.5/faq.html # 0 = PMS, pre main sequence # 1 = MS, main sequence # 2 = SGB, subgiant branch, or Hertzsprung gap for more intermediate+massive stars # 3 = RGB, red giant branch, or the quick stage of red giant for intermediate+massive stars # 4 = CHEB, core He-burning for low mass stars, or the very initial stage of CHeB for intermediate+massive stars # 5 = still CHEB, the blueward part of the Cepheid loop of intermediate+massive stars # 6 = still CHEB, the redward part of the Cepheid loop of intermediate+massive stars # 7 = EAGB, the early asymptotic giant branch, or a quick stage of red giant for massive stars # 8 = TPAGB, the thermally pulsing asymptotic giant branch # 9 = post-AGB (in preparation!) # # can do 1-3 together # sometimes 5+6 are "missing" # # if a phase is missing in ONE of the isochrones then drop it from the output one as well # for isochrones of the SAME age, you should be able to use "mass" as the independent variable # to interpolate things # the points line up REALLY well on the MINI vs. INT_IMF plot # get unique MINI values between the two isochrones #mini = np.concatenate((iso1['MINI'].data,iso2['MINI'])) #mini = np.unique(mini) # MINI values for isochrones of the same age are quite similar, sometimes one will have a couple extra points if photnames is None: colnames = np.char.array(iso1.colnames) photind, = np.where((colnames.find('MAG')>-1) & (colnames.find('_')>-1)) photnames = list(colnames[photind]) interpnames = ['INT_IMF','MASS']+photnames # Initialize the output catalog nout = int(1.5*np.max([niso1,niso2])) out = Table() out['AGE'] = np.zeros(nout,float)+(age1*(1-frac)+age2*frac) out['METAL'] = metal1*(1-frac)+metal2*frac out['MINI'] = 0.0 out['INT_IMF'] = 0.0 out['MASS'] = 0.0 out['LABEL'] = 0 for n in photnames: out[n] = 0.0 # Label loop count = 0 for l in
np.arange(minlabel,maxlabel+1)
numpy.arange
""" Copyright (c) 2016-2020 The scikit-optimize developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Inspired by https://github.com/jonathf/chaospy/blob/master/chaospy/ distributions/sampler/sequences/grid.py """ import numpy as np from entmoot.sampler.base import InitialPointGenerator from entmoot.space.space import Space from sklearn.utils import check_random_state def _quadrature_combine(args): args = [np.asarray(arg).reshape(len(arg), -1) for arg in args] shapes = [arg.shape for arg in args] size = np.prod(shapes, 0)[0] * np.sum(shapes, 0)[1] if size > 10 ** 9: raise MemoryError("Too large sets") out = args[0] for arg in args[1:]: out = np.hstack([ np.tile(out, len(arg)).reshape(-1, out.shape[1]), np.tile(arg.T, len(out)).reshape(arg.shape[1], -1).T, ]) return out def _create_uniform_grid_exclude_border(n_dim, order): assert order > 0 assert n_dim > 0 x_data = np.arange(1, order + 1) / (order + 1.) x_data = _quadrature_combine([x_data] * n_dim) return x_data def _create_uniform_grid_include_border(n_dim, order): assert order > 1 assert n_dim > 0 x_data = np.arange(0, order) / (order - 1.) x_data = _quadrature_combine([x_data] * n_dim) return x_data def _create_uniform_grid_only_border(n_dim, order): assert n_dim > 0 assert order > 1 x = [[0., 1.]] * (n_dim - 1) x.append(list(np.arange(0, order) / (order - 1.))) x_data = _quadrature_combine(x) return x_data class Grid(InitialPointGenerator): """Generate samples from a regular grid. Parameters ---------- border : str, default='exclude' defines how the samples are generated: - 'include' : Includes the border into the grid layout - 'exclude' : Excludes the border from the grid layout - 'only' : Selects only points at the border of the dimension use_full_layout : boolean, default=True When True, a full factorial design is generated and missing points are taken from the next larger full factorial design, depending on `append_border` When False, the next larger full factorial design is generated and points are randomly selected from it. append_border : str, default="only" When use_full_layout is True, this parameter defines how the missing points will be generated from the next larger grid layout: - 'include' : Includes the border into the grid layout - 'exclude' : Excludes the border from the grid layout - 'only' : Selects only points at the border of the dimension """ def __init__(self, border="exclude", use_full_layout=True, append_border="only"): self.border = border self.use_full_layout = use_full_layout self.append_border = append_border def generate(self, dimensions, n_samples, random_state=None): """Creates samples from a regular grid. Parameters ---------- dimensions : list, shape (n_dims,) List of search space dimensions. Each search dimension can be defined either as - a `(lower_bound, upper_bound)` tuple (for `Real` or `Integer` dimensions), - a `(lower_bound, upper_bound, "prior")` tuple (for `Real` dimensions), - as a list of categories (for `Categorical` dimensions), or - an instance of a `Dimension` object (`Real`, `Integer` or `Categorical`). n_samples : int The order of the Halton sequence. Defines the number of samples. random_state : int, RandomState instance, or None (default) Set random state to something other than None for reproducible results. Returns ------- np.array, shape=(n_dim, n_samples) grid set """ rng = check_random_state(random_state) space = Space(dimensions) n_dim = space.n_dims transformer = space.get_transformer() space.set_transformer("normalize") if self.border == "include": if self.use_full_layout: order = int(np.floor(np.sqrt(n_samples))) else: order = int(np.ceil(np.sqrt(n_samples))) if order < 2: order = 2 h = _create_uniform_grid_include_border(n_dim, order) elif self.border == "exclude": if self.use_full_layout: order = int(np.floor(np.sqrt(n_samples))) else: order = int(np.ceil(np.sqrt(n_samples))) if order < 1: order = 1 h = _create_uniform_grid_exclude_border(n_dim, order) elif self.border == "only": if self.use_full_layout: order = int(np.floor(n_samples / 2.)) else: order = int(np.ceil(n_samples / 2.)) if order < 2: order = 2 h = _create_uniform_grid_exclude_border(n_dim, order) else: raise ValueError("Wrong value for border") if np.size(h, 0) > n_samples: rng.shuffle(h) h = h[:n_samples, :] elif
np.size(h, 0)
numpy.size
# -*- coding: utf-8 -*- from io import StringIO import numpy as np import pandas as pd import scipy.stats as stats from scipy.interpolate import interp1d def gumbel_r_(mean: float, sd: float, **_): # parameters Gumbel W&S alpha = 1.282 / sd u = mean - 0.5772 / alpha # parameters Gumbel scipy scale = 1 / alpha loc = u return dict(loc=loc, scale=scale) def lognorm_(mean: float, sd: float, **_): cov = sd / mean sigma_ln = np.sqrt(np.log(1 + cov ** 2)) miu_ln = np.log(mean) - 1 / 2 * sigma_ln ** 2 s = sigma_ln loc = 0 scale = np.exp(miu_ln) return dict(s=s, loc=loc, scale=scale) def norm_(mean: float, sd: float, **_): loc = mean scale = sd return dict(loc=loc, scale=scale) def uniform_(ubound: float, lbound: float, **_): if lbound > ubound: lbound += ubound ubound = lbound - ubound lbound -= ubound loc = lbound scale = ubound - lbound return dict(loc=loc, scale=scale) def random_variable_generator(dict_in: dict, num_samples: int): """Generates samples of defined distribution. This is build upon scipy.stats library. :param dict_in: distribution inputs, required keys are distribution dependent, should be align with inputs required in the scipy.stats. Additional compulsory keys are: `dist`: str, distribution type; `ubound`: float, upper bound of the sampled values; and `lbound`: float, lower bound of the sampled values. :param num_samples: number of samples to be generated. :return samples: sampled values based upon `dist` in the range [`lbound`, `ubound`] with `num_samples` number of values. """ # assign distribution type dist_0 = dict_in["dist"] dist = dict_in["dist"] # assign distribution boundary (for samples) ubound = dict_in["ubound"] lbound = dict_in["lbound"] # sample CDF points (y-axis value) def generate_cfd_q(dist_, dist_kw_, lbound_, ubound_): cfd_q_ = np.linspace( getattr(stats, dist_).cdf(x=lbound_, **dist_kw_), getattr(stats, dist_).cdf(x=ubound_, **dist_kw_), num_samples, ) samples_ = getattr(stats, dist_).ppf(q=cfd_q_, **dist_kw_) return samples_ # convert human distribution parameters to scipy distribution parameters if dist_0 == "gumbel_r_": dist_kw = gumbel_r_(**dict_in) dist = "gumbel_r" samples = generate_cfd_q( dist_=dist, dist_kw_=dist_kw, lbound_=lbound, ubound_=ubound ) elif dist_0 == "uniform_": dist_kw = uniform_(**dict_in) dist = "uniform" samples = generate_cfd_q( dist_=dist, dist_kw_=dist_kw, lbound_=lbound, ubound_=ubound ) elif dist_0 == "norm_": dist_kw = norm_(**dict_in) dist = "norm" samples = generate_cfd_q( dist_=dist, dist_kw_=dist_kw, lbound_=lbound, ubound_=ubound ) elif dist_0 == "lognorm_": dist_kw = lognorm_(**dict_in) dist = "lognorm" samples = generate_cfd_q( dist_=dist, dist_kw_=dist_kw, lbound_=lbound, ubound_=ubound ) elif dist_0 == "lognorm_mod_": dist_kw = lognorm_(**dict_in) dist = "lognorm" samples = generate_cfd_q( dist_=dist, dist_kw_=dist_kw, lbound_=lbound, ubound_=ubound ) samples = 1 - samples elif dist_0 == "constant_": # print(num_samples, lbound, ubound, np.average(lbound)) samples = np.full((num_samples,), np.average([lbound, ubound])) else: try: dict_in.pop("dist") dict_in.pop("ubound") dict_in.pop("lbound") samples = generate_cfd_q( dist_=dist, dist_kw_=dict_in, lbound_=lbound, ubound_=ubound ) except AttributeError: raise ValueError("Unknown distribution type {}.".format(dist)) samples[samples == np.inf] = ubound samples[samples == -np.inf] = lbound if "permanent" in dict_in: samples += dict_in["permanent"] np.random.shuffle(samples) return samples def dict_unflatten(dict_in: dict) -> dict: dict_out = dict() for k in list(dict_in.keys()): if ":" in k: k1, k2 = k.split(":") if k1 in dict_out: dict_out[k1][k2] = dict_in[k] else: dict_out[k1] = dict(k2=dict_in[k]) return dict_out def dict_flatten(dict_in: dict) -> dict: """Converts two levels dict to single level dict. Example input and output see _test_dict_flatten. :param dict_in: Any two levels (or less) dict. :return dict_out: Single level dict. """ dict_out = dict() for k in list(dict_in.keys()): if isinstance(dict_in[k], dict): for kk, vv in dict_in[k].items(): dict_out[f"{k}:{kk}"] = vv else: dict_out[k] = dict_in[k] return dict_out def _test_dict_flatten(): x = dict(A=dict(a=0, b=1), B=dict(c=2, d=3)) y_expected = {"A:a": 0, "A:b": 1, "B:c": 2, "B:d": 3} y = dict_flatten(x) assert y == y_expected def main(x: dict, num_samples: int) -> pd.DataFrame: """Generates samples based upon prescribed distribution types. :param x: description of distribution function. :param num_samples: number of samples to be produced. :return df_out: """ dict_out = dict() for k, v in x.items(): if isinstance(v, float) or isinstance(v, int) or isinstance(v, np.float): dict_out[k] = np.full((num_samples,), v, dtype=float) elif isinstance(v, str): dict_out[k] = np.full( (num_samples,), v, dtype=np.dtype("U{:d}".format(len(v))) ) elif isinstance(v, np.ndarray) or isinstance(v, list): dict_out[k] = list(np.full((num_samples, len(v)), v, dtype=float)) elif isinstance(v, dict): if "dist" in v: try: dict_out[k] = random_variable_generator(v, num_samples) except KeyError: raise ("Missing parameters in input variable {}.".format(k)) elif "ramp" in v: s_ = StringIO(v["ramp"]) d_ = pd.read_csv( s_, names=["x", "y"], dtype=float, skip_blank_lines=True, skipinitialspace=True, ) t_ = d_.iloc[:, 0] v_ = d_.iloc[:, 1] if all(v_ == v_[0]): f_interp = v_[0] else: f_interp = interp1d(t_, v_, bounds_error=False, fill_value=0) dict_out[k] = np.full((num_samples,), f_interp) else: raise ValueError("Unknown input data type for {}.".format(k)) else: raise TypeError("Unknown input data type for {}.".format(k)) dict_out["index"] = np.arange(0, num_samples, 1) df_out = pd.DataFrame.from_dict(dict_out, orient="columns") return df_out def _test_random_variable_generator(): x = dict(v=np.pi) y = main(x, 1000) assert len(y["v"].values) == 1000 assert all([v == np.pi for v in y["v"].values]) x = dict(v="hello world.") y = main(x, 1000) assert len(y["v"].values) == 1000 assert all([v == "hello world." for v in y["v"].values]) x = dict(v=[0.0, 1.0, 2.0]) y = main(x, 1000) assert len(y["v"].values) == 1000 assert all([all(v == np.array([0.0, 1.0, 2.0])) for v in y["v"].values]) x = dict(v=dict(dist="uniform_", ubound=10, lbound=-1)) y = main(x, 1000) assert len(y["v"].values) == 1000 assert
np.max(y["v"].values)
numpy.max
import copy import logging import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.callbacks import Callback from tensorflow.python.keras.layers import BatchNormalization from tensorflow.python.keras.optimizer_v2.gradient_descent import SGD logging.basicConfig(level=logging.INFO) logger = logging.getLogger("DNN") class Dnn: def __init__(self, input_size, class_num): self.class_num = class_num self.input_size = input_size self.model = Sequential() self.model.add(BatchNormalization()) self.model.add( Dense( input_size * 2, input_dim=input_size, activation='relu', kernel_initializer='uniform' ) ) self.model.add(BatchNormalization()) self.model.add( Dense( class_num, input_dim=input_size * 2, activation='softmax', kernel_initializer='uniform' ) ) self.model.compile( optimizer=SGD(lr=0.005), loss="categorical_crossentropy", metrics=["accuracy"] ) def train( self, samples, labels, test_samples, test_labels, epoch=1, batch_size=1, cm=False ): matrices = [] history = TrainHistory(self.model, epoch) self.model.fit( samples, labels, batch_size=batch_size, epochs=epoch, verbose=0, callbacks=[history] ) if cm: cm_model = copy.copy(self.model) cm_labels = np.argmax(test_labels, axis=1) for weight in history.weights_list: confusion_matrix = np.zeros([self.class_num, self.class_num]).astype("int32") cm_model.set_weights(weight) predicts = np.argmax( cm_model.predict(test_samples), axis=1 ).astype("int32") for p in range(predicts.shape[0]): confusion_matrix[predicts[p], cm_labels[p]] += 1 matrices.append(confusion_matrix) return history.loss, history.acc, matrices def evaluate(self, xt, yt, batch_size=1, verbose=0): history = EvaluationHistory() self.model.evaluate(xt, yt, verbose=0, batch_size=batch_size, callbacks=[history]) if verbose == 1: logger.info(f"\rTest Accuracy={np.mean(np.array(history.acc))}") logger.info(f"\rTest Loss={np.mean(
np.array(history.loss)
numpy.array
""" dataset.py This module implements the class Dataset. The Dataset class holds the data on which the experiments are performed. It distinguishes between pool, test and training data. The actual data is only stored *once* and access is granted via reference. Additional copies with unique access indices can be obtained via .make_copy(). """ import numpy as np from sklearn.utils.random import sample_without_replacement class Dataset: # X_pool, y_pool, X_test, y_test are refences to the real data storage # due to python's mutable variable paradigm # different instances of Dataset hold differnt sets of train/pool_idxs def __init__(self, X_pool, y_pool, X_test, y_test, name=None): self.train_idxs = np.empty(0) self.pool_idxs = np.arange(len(X_pool)) self._X_pool = X_pool self._y_pool = y_pool self._X_test = X_test self._y_test = y_test self.name = name def apply_scaler(self, scaler): self.scaler = scaler self.scaler.fit(self._X_pool) self._X_pool = self.scaler.transform(self._X_pool) self._X_test = self.scaler.transform(self._X_test) def apply_scaler_y(self, scaler): self.scaler_y = scaler self.scaler_y.fit(self._y_pool) self._y_pool = self.scaler_y.transform(self._y_pool) self._y_test = self.scaler_y.transform(self._y_test) def reset_pool(self): self.train_idxs = np.empty(0) self.pool_idxs = np.arange(len(self._X_pool)) # different copies hold reference ot the same data, but different indices def make_copy(self, approximate_pool=False): ds = Dataset(self._X_pool, self._y_pool, self._X_test, self._y_test, self.name) # if training data is not empty -> copy the idxs if len(self.train_idxs) > 2: ds.train_idxs = np.array(self.train_idxs) ds.pool_idxs = np.array(self.pool_idxs) return ds # subsample data to requested size def reduce_size(self, size_pool, size_test): assert size_pool <= self._X_pool.shape[0] assert size_test <= self._X_test.shape[0] pool_sample = sample_without_replacement( self._X_pool.shape[0], n_samples=size_pool ) test_sample = sample_without_replacement( self._X_test.shape[0], n_samples=size_test ) self._X_pool = self._X_pool[pool_sample] self._y_pool = self._y_pool[pool_sample] self._X_test = self._X_test[test_sample] self._y_test = self._y_test[test_sample] self.train_idxs = np.empty(0) self.pool_idxs = np.arange(len(self._X_pool)) def add_to_training(self, idxs, return_data=False): if not self.train_idxs.size > 0: self.train_idxs = np.array(idxs) else: assert np.max(idxs) < len(self.pool_idxs) self.train_idxs = np.append(self.train_idxs, self.pool_idxs[idxs]) if return_data: added_data = self._X_pool[self.pool_idxs[idxs]] self.pool_idxs =
np.delete(self.pool_idxs, idxs)
numpy.delete
import librosa import numpy as np import os import tensorflow as tf from keras.models import load_model from model.QueryByVoiceModel import QueryByVoiceModel class SiameseStyle(QueryByVoiceModel): ''' A siamese-style neural network for query-by-voice applications. citation: <NAME>, <NAME>, and <NAME>, "Siamese Style Convolutional Neural Networks for Sound Search by Vocal Imitation," in IEEE/ACM Transactions on Audio, Speech, and Language Processing, pp. 99-112, 2018. ''' def __init__( self, model_filepath, parametric_representation=False, uses_windowing=True, window_length=4.0, hop_length=2.0): ''' SiameseStyle model constructor. Arguments: model_filepath: A string. The path to the model weight file on disk. parametric_representation: A boolen. True if the audio representations depend on the model weights. uses_windowing: A boolean. Indicates whether the model slices the representation window_length: A float. The window length in seconds. Unused if uses_windowing is False. hop_length: A float. The hop length between windows in seconds. Unused if uses_windowing is False. ''' super().__init__( model_filepath, parametric_representation, uses_windowing, window_length, hop_length) def construct_representation(self, audio_list, sampling_rates, is_query): ''' Constructs the audio representation used during inference. Audio files from the dataset are constructed only once and cached for later reuse. Arguments: audio_list: A python list of 1D numpy arrays. Each array represents one variable-length mono audio file. sampling_rate: A python list of ints. The corresponding sampling rate of each element of audio_list. is_query: A boolean. True only if audio is a user query. Returns: A python list of audio representations. The list order should be the same as in audio_list. ''' # Siamese-style network requires different representation of query # and dataset audio if is_query: representation = self._construct_representation_query( audio_list[0], sampling_rates[0]) else: representation = self._construct_representation_dataset( audio_list, sampling_rates) return representation def measure_similarity(self, query, items): ''' Runs model inference on the query. Arguments: query: A numpy array. An audio representation as defined by construct_representation. The user's vocal query. items: A numpy array. The audio representations as defined by construct_representation. The dataset of potential matches for the user's query. Returns: A python list of floats. The similarity score of the query and each element in the dataset. The list order should be the same as in dataset. ''' if not self.model: raise RuntimeError('No model loaded during call to \ measure_similarity.') # run model inference with self.graph.as_default(): self.logger.debug('Running inference') return np.array(self.model.predict( [query, items], batch_size=len(query), verbose=1), dtype='float64') def _load_model(self): ''' Loads the model weights from disk. Prepares the model to be able to make predictions. ''' self.logger.info( 'Loading model weights from {}'.format(self.model_filepath)) self.model = load_model(self.model_filepath) self.graph = tf.get_default_graph() def _construct_representation_query(self, query, sampling_rate): self.logger.debug('Constructing query representation') # resample query at 16k new_sampling_rate = 16000 query = librosa.resample(query, sampling_rate, new_sampling_rate) sampling_rate = new_sampling_rate if self.uses_windowing: windows = self._window(query, sampling_rate) else: windows = [ librosa.util.fix_length( query, self.window_length * sampling_rate)] # construct the logmelspectrogram of the signal representation = [] for window in windows: melspec = librosa.feature.melspectrogram( window, sr=sampling_rate, n_fft=133, hop_length=133, power=2, n_mels=39, fmin=0.0, fmax=5000) melspec = melspec[:, :482] logmelspec = librosa.power_to_db(melspec, ref=np.max) representation.append(logmelspec) # normalize to zero mean and unit variance representation = np.array(representation) representation = self._normalize(representation).astype('float32') return [representation] def _construct_representation_dataset(self, dataset, sampling_rates): new_sampling_rate = 44100 representations = [] for audio, sampling_rate in zip(dataset, sampling_rates): # resample audio at 44.1k audio = librosa.resample(audio, sampling_rate, new_sampling_rate) sampling_rate = new_sampling_rate if self.uses_windowing: windows = self._window(audio, sampling_rate) else: windows = [ librosa.util.fix_length( audio, self.window_length * sampling_rate)] representation = [] for window in windows: # construct the logmelspectrogram of the signal melspec = librosa.feature.melspectrogram( window, sr=sampling_rate, n_fft=1024, hop_length=1024, power=2) melspec = melspec[:, 0:128] logmelspec = librosa.power_to_db(melspec, ref=np.max) representation.append(logmelspec) # normalize to zero mean and unit variance representation = np.array(representation) representation = self._normalize(representation).astype('float32') representation =
np.expand_dims(representation, axis=1)
numpy.expand_dims
import glob import os import librosa import numpy as np import shutil import pretty_midi startpath='Data' destpath = 'TempData' subfolder='MUS' RangeMIDInotes=[21,108] n_fft = 512 sr=44100. bins_per_octave=36 n_octave=7 val_rate=1./7 pretty_midi.pretty_midi.MAX_TICK = 1e10 n_bins= n_octave * bins_per_octave hop_length = 256 win_width = 32 kernel_size=7 overlap=True def midi2mat(midi_path_train, length, spect_len, sr, RangeMIDInotes=RangeMIDInotes): midi_data = pretty_midi.PrettyMIDI(midi_path_train) pianoRoll = midi_data.instruments[0].get_piano_roll(fs=spect_len * sr/length) Ground_truth_mat = (pianoRoll[RangeMIDInotes[0]:RangeMIDInotes[1] + 1, :spect_len] > 0) return Ground_truth_mat files = [f for f in os.listdir('Data')] #fpath is path of different MUS folders for f in files: j=0 k=0 print(f) fpath=os.path.join(startpath,f) print(fpath) subfiles = [f1 for f1 in os.listdir(fpath)] for f1 in subfiles: mainfile=os.path.join(fpath,f1) file_name,file_extensions=os.path.splitext(f1) if file_extensions == ".txt": continue if file_extensions == ".mid": mainfile=os.path.join(fpath,file_name+'.wav') # if file_extensions == ".mid": # continue # mainfile=os.path.join(fpath,f1) # if file_extensions == ".wav": # mainfile = f1 x ,sr = librosa.load(mainfile,sr=sr) # ----------------------------------------------------------------------------------------------------------- fft = np.fft.fft(x) spectrum = np.abs(fft) # perform stft stft = librosa.stft(x, n_fft=n_fft, hop_length=hop_length)[:-1] # calculate abs values on complex numbers to get magnitude spect = np.transpose(np.abs(stft)) log_spectrogram = librosa.amplitude_to_db(np.transpose(spect)) # ------------------------------------------------------------------------------------------------------------ midi_file = os.path.join(fpath,f1) if file_extensions==".wav": midi_file = os.path.join(fpath,file_name+'.mid') Ground_truth_mat=midi2mat(midi_file, len(x), spect.shape[0], sr, RangeMIDInotes=RangeMIDInotes) midi_train = np.transpose(Ground_truth_mat) #midi length<stft length, cut stft if midi_train.shape[0]<spect.shape[0]: spect=spect[:midi_train.shape[0],:] if file_extensions == ".wav" : ofolder = 'wav' subname = 'STFT' elif file_extensions == ".mid" : ofolder = 'mid' subname = 'label' opath = os.path.join(destpath,f,file_name)+subname+'.npy' if file_extensions == ".wav": np.save(opath,spect) elif file_extensions == ".mid": np.save(opath,midi_train) print('Preprocessed',f1) matrix = np.array(
np.load(opath)
numpy.load
import os os.environ["CUDA_VISIBLE_DEVICES"] = "-1" import numpy as np import ismo.iterative_surrogate_model_optimization import ismo.train.trainer_factory import ismo.train.multivariate_trainer import ismo.samples.sample_generator_factory import ismo.optimizers import matplotlib.pyplot as plt import collections class LossWriter: def __init__(self, basename): self.basename = basename self.iteration = 0 def __call__(self, loss): np.save(f'{self.basename}_iteration_{self.iteration}.npy', loss.history['loss']) self.iteration += 1 def convergence_study( *, generator_name, training_parameter_filename, optimizer_name, retries, save_result, prefix, with_competitor, dimension, number_of_variables, number_of_samples_per_iteration, simulator_creator, objective, variable_names, save_plot=lambda name: plt.savefig(f'{name}.png') ): all_values_min = collections.defaultdict(list) samples_as_str = "_".join(map(str, number_of_samples_per_iteration)) for try_number in range(retries): print(f"try_number: {try_number}") generator = ismo.samples.create_sample_generator(generator_name) optimizer = ismo.optimizers.create_optimizer(optimizer_name) trainers = [ismo.train.create_trainer_from_simple_file(training_parameter_filename) for _ in range(number_of_variables)] for var_index, trainer in enumerate(trainers): trainer.add_loss_history_writer(LossWriter(f'{prefix}loss_var_{var_index}_try_{try_number}')) trainer = ismo.train.MultiVariateTrainer(trainers) starting_sample = try_number * sum(number_of_samples_per_iteration) parameters, values = ismo.iterative_surrogate_model_optimization( number_of_samples_per_iteration=number_of_samples_per_iteration, sample_generator=generator, trainer=trainer, optimizer=optimizer, simulator=simulator_creator(starting_sample), objective_function=objective, dimension=dimension, starting_sample=starting_sample ) values = np.array(values) objective_values = [objective(values[i, :]) for i in range(values.shape[0])] per_iteration = collections.defaultdict(list) total_number_of_samples = 0 for number_of_samples in number_of_samples_per_iteration: total_number_of_samples += number_of_samples arg_min = np.argmin(objective_values[:total_number_of_samples]) for n, name in enumerate(variable_names): per_iteration[name].append(values[arg_min, n]) per_iteration['objective'].append(objective_values[arg_min]) for func_name, func_values in per_iteration.items(): all_values_min[func_name].append(per_iteration[func_name]) if save_result: np.savetxt(f'{prefix}parameters_{try_number}_samples_{samples_as_str}.txt', parameters)
np.savetxt(f'{prefix}values_{try_number}_samples_{samples_as_str}.txt', values)
numpy.savetxt
import pytest import tensorflow as tf import numpy as np from scipy.ndimage.measurements import mean as label_mean from skimage.segmentation import relabel_sequential as sk_relabel_sequential from rdcnet.losses.embedding_loss import InstanceEmbeddingLossBase, SpatialInstanceEmbeddingLossBase, InstanceMeanIoUEmbeddingLoss, MarginInstanceEmbeddingLoss, relabel_sequential class DummySpatialInstanceEmbeddingLoss(SpatialInstanceEmbeddingLossBase): def _center_dist_to_probs(self, one_hot, center_dist): pass def test__unbatched_soft_jaccard(): '''Verifies that the soft Jaccard loss behaves as keras MeanIoU when probabilities are either 0 or 1 and that background masking works ''' _unbatched_soft_jaccard = DummySpatialInstanceEmbeddingLoss( )._unbatched_soft_jaccard # check with/without background on simple example yt = np.array([0, 0, 1, 1, 2, 2])[..., None] yp = np.array([0, 1, 0, 1, 2, 2])[..., None] one_hot = tf.cast(tf.one_hot(tf.squeeze(yt, -1), 3), tf.float32) probs = tf.cast(tf.one_hot(tf.squeeze(yp, -1), 3), tf.float32) loss = _unbatched_soft_jaccard(one_hot[..., 1:], probs[..., 1:]).numpy().mean() np.testing.assert_almost_equal(loss, (1 - 1 / 2) / 2, decimal=3) def test__unbatched_label_to_hot(): _unbatched_label_to_hot = DummySpatialInstanceEmbeddingLoss( )._unbatched_label_to_hot np.random.seed(25) labels = np.random.choice(range(5), size=(10, 10, 1)).astype(np.int32) hot_labels = _unbatched_label_to_hot(labels) # #channels == #unique labels - bg assert hot_labels.shape == (10, 10, 4) for idx, l in enumerate([1, 2, 3, 4]): hot_slice = hot_labels[..., idx].numpy().astype(bool) l_mask = labels.squeeze() == l np.testing.assert_array_equal(hot_slice, l_mask) def test_relabel_sequential(): np.random.seed(25) labels = np.random.choice([-1, 0, 2, 3, 4, 5], size=(10, 10, 1)).astype(np.int32) # already sequential labels sk_sequential_labels = sk_relabel_sequential(labels + 1)[0] - 1 tf_sequential_labels = relabel_sequential(labels) assert set(np.unique(sk_sequential_labels)) == set( np.unique(tf_sequential_labels)) # non sequential labels labels[labels == 2] = 0 labels[labels == 4] = -1 sk_sequential_labels = sk_relabel_sequential(labels + 1)[0] - 1 tf_sequential_labels = relabel_sequential(labels) assert set(np.unique(sk_sequential_labels)) == set( np.unique(tf_sequential_labels)) def test__unbatched_embedding_center(): _unbatched_label_to_hot = DummySpatialInstanceEmbeddingLoss( )._unbatched_label_to_hot _unbatched_embedding_center = DummySpatialInstanceEmbeddingLoss( )._unbatched_embedding_center np.random.seed(25) labels = np.random.choice(range(5), size=(10, 10, 1)).astype(np.int32) hot_labels = _unbatched_label_to_hot(labels) yp = np.random.rand(10, 10, 3).astype(np.float32) centers = _unbatched_embedding_center(hot_labels, yp) assert centers.shape == (1, 1, 4, 3) expected_centers = np.stack([ label_mean(p, labels.squeeze(), [1, 2, 3, 4]) for p in
np.moveaxis(yp, -1, 0)
numpy.moveaxis
import numpy as np import pytest from autolens.data.array import mask from autolens.data.array import interpolation from autolens.model.galaxy import galaxy from autolens.model.profiles import mass_profiles @pytest.fixture(name='scheme') def make_scheme(): return interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) @pytest.fixture(name='geometry') def make_geometry(): return interpolation.InterpolationGeometry(y_min=-1.0, y_max=1.0, x_min=-1.0, x_max=1.0, y_pixel_scale=1.0, x_pixel_scale=1.0) @pytest.fixture(name='galaxy_no_profiles', scope='function') def make_galaxy_no_profiles(): return galaxy.Galaxy() @pytest.fixture(name="galaxy_mass_sis") def make_galaxy_mass_sis(): sis = mass_profiles.SphericalIsothermal(einstein_radius=1.0) return galaxy.Galaxy(mass_profile=sis) class TestInterpolationScheme(object): class TestConstructor: def test__sets_up_attributes_correctly(self): image_coords = np.array([[-1.0, -6.0], [-1.0, 0.0], [-4.0, 2.0], [-0.0, -1.0], [0.0, 0.0], [0.0, 1.0], [3.0, -1.0], [1.0, 0.0], [1.0, 1.0]]) interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=image_coords, image_pixel_scale=1.0) assert interp.shape == (3, 3) assert interp.pixels == 9 assert (interp.image_coords == image_coords).all() assert interp.geometry.y_min == -6.0 assert interp.geometry.y_max == 2.0 assert interp.geometry.x_min == -4.0 assert interp.geometry.x_max == 3.0 assert interp.geometry.y_pixel_scale == 1.0 assert interp.geometry.x_pixel_scale == 1.0 assert interp.geometry.x_size == 7.0 assert interp.geometry.y_size == 8.0 assert interp.geometry.x_start == -4.5 assert interp.geometry.y_start == -6.5 class TestNeighbors: def test___3x3_grid_neighbors_all_correct(self): # |0|1|2| # |3|4|5| # |6|7|8| interp = interpolation.InterpolationScheme(shape=(3, 3), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 3, 4])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 4, 5])).all() assert (interp.bottom_right_neighbors[2] == np.array([-1, 5, -1])).all() assert (interp.bottom_right_neighbors[3] == np.array([4, 6, 7])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 7, 8])).all() assert (interp.bottom_right_neighbors[5] == np.array([-1, 8, -1])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, -1, -1])).all() assert (interp.bottom_right_neighbors[7] == np.array([8, -1, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 3])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 3, 4])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 4, 5])).all() assert (interp.bottom_left_neighbors[3] == np.array([-1, -1, 6])).all() assert (interp.bottom_left_neighbors[4] == np.array([3, 6, 7])).all() assert (interp.bottom_left_neighbors[5] == np.array([4, 7, 8])).all() assert (interp.bottom_left_neighbors[6] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[7] == np.array([6, -1, -1])).all() assert (interp.bottom_left_neighbors[8] == np.array([7, -1, -1])).all() assert (interp.top_right_neighbors[0] == np.array([-1, -1, 1])).all() assert (interp.top_right_neighbors[1] == np.array([-1, -1, 2])).all() assert (interp.top_right_neighbors[2] == np.array([-1, -1, -1])).all() assert (interp.top_right_neighbors[3] == np.array([0, 1, 4])).all() assert (interp.top_right_neighbors[4] == np.array([1, 2, 5])).all() assert (interp.top_right_neighbors[5] == np.array([2, -1, -1])).all() assert (interp.top_right_neighbors[6] == np.array([3, 4, 7])).all() assert (interp.top_right_neighbors[7] == np.array([4, 5, 8])).all() assert (interp.top_right_neighbors[8] == np.array([5, -1, -1])).all() assert (interp.top_left_neighbors[0] == np.array([-1, -1, -1])).all() assert (interp.top_left_neighbors[1] == np.array([-1, -1, 0])).all() assert (interp.top_left_neighbors[2] == np.array([-1, -1, 1])).all() assert (interp.top_left_neighbors[3] == np.array([-1, 0, -1])).all() assert (interp.top_left_neighbors[4] == np.array([0, 1, 3])).all() assert (interp.top_left_neighbors[5] == np.array([1, 2, 4])).all() assert (interp.top_left_neighbors[6] == np.array([-1, 3, -1])).all() assert (interp.top_left_neighbors[7] == np.array([3, 4, 6])).all() assert (interp.top_left_neighbors[8] == np.array([4, 5, 7])).all() def test___3x4_grid_neighbors_all_correct(self): # |0|1| 2| 3| # |4|5| 6| 7| # |8|9|10|11| interp = interpolation.InterpolationScheme(shape=(3, 4), image_coords=np.array([[1.0, 1.0]]), image_pixel_scale=1.0) assert (interp.bottom_right_neighbors[0] == np.array([1, 4, 5])).all() assert (interp.bottom_right_neighbors[1] == np.array([2, 5, 6])).all() assert (interp.bottom_right_neighbors[2] == np.array([3, 6, 7])).all() assert (interp.bottom_right_neighbors[3] == np.array([-1, 7, -1])).all() assert (interp.bottom_right_neighbors[4] == np.array([5, 8, 9])).all() assert (interp.bottom_right_neighbors[5] == np.array([6, 9, 10])).all() assert (interp.bottom_right_neighbors[6] == np.array([7, 10, 11])).all() assert (interp.bottom_right_neighbors[7] == np.array([-1, 11, -1])).all() assert (interp.bottom_right_neighbors[8] == np.array([9, -1, -1])).all() assert (interp.bottom_right_neighbors[9] == np.array([10, -1, -1])).all() assert (interp.bottom_right_neighbors[10] == np.array([11, -1, -1])).all() assert (interp.bottom_right_neighbors[11] == np.array([-1, -1, -1])).all() assert (interp.bottom_left_neighbors[0] == np.array([-1, -1, 4])).all() assert (interp.bottom_left_neighbors[1] == np.array([0, 4, 5])).all() assert (interp.bottom_left_neighbors[2] == np.array([1, 5, 6])).all() assert (interp.bottom_left_neighbors[3] == np.array([2, 6, 7])).all() assert (interp.bottom_left_neighbors[4] == np.array([-1, -1, 8])).all() assert (interp.bottom_left_neighbors[5] ==
np.array([4, 8, 9])
numpy.array
from keras import Input from keras.models import Model from keras.layers import Conv2D, MaxPool2D, Conv2DTranspose from keras.layers.merge import concatenate from keras.optimizers import Adam from keras.layers.pooling import MaxPooling2D, GlobalMaxPool2D from keras.layers import Input, BatchNormalization, Activation, Dense, Dropout import numpy as np import imageio import glob import os import argparse import dataloader import random from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint import cv2 def get_data(X_train, y_train, num_train): """ This function generates training samples. Parameters ---------- X_train : List List of training samples features. y_train: Numpy array Target masks num_train: Int The number of training samples. Yields ---------- sample_feature : numpy array The features of a particular sample. sample_label : numpy array The label (mask) of a particular sample. """ while True: for i in range(num_train): sample_feature = np.array([X_train[i]]) sample_label =
np.array([y_train[i]])
numpy.array
import torch import numpy as np import torch.nn as nn from sklearn import metrics from transformers import BertModel from load_data import traindataloader, valdataloader BERT_PATH = '../bert-base-chinese' device = "cuda" if torch.cuda.is_available() else 'cpu' bert = BertModel.from_pretrained(BERT_PATH).to(device) bert.eval() def get_vecs(): device = "cuda" if torch.cuda.is_available() else 'cpu' bert = BertModel.from_pretrained('/content/gdrive/My Drive/bert-base-chinese').to(device) bert.eval() array = np.empty((0, 768)) with torch.no_grad(): for batch in traindataloader: input_ids, attention_mask = batch['input_ids_1'].to(device), batch['attention_mask_1'].to(device) outputs = bert(input_ids, attention_mask=attention_mask, output_hidden_states=True) last_hidden_state = outputs[0]# [batch_size, seq_len, 768] out = last_hidden_state.permute(0, 2, 1) out = nn.AvgPool1d(out.size(2))(out).squeeze(2)# [batch_size, 768] out = out.cpu().data.numpy() array =
np.append(array, out, axis=0)
numpy.append
try: raise ModuleNotFoundError from numba import jit using_numba = True except ModuleNotFoundError: print('Module numba not found. Proceeding without, probably slower.') using_numba = False def jit(stuff): """Blank placeholder decorator for numba JIT, used in the absence of numba.""" return stuff import numpy as np from PIL import Image # from pprint import pprint def pil_analysis(pilimg): """Take image as a PIL Image object, return its palette in a dictionary of the form tuple(color):list(color) for further editing of the palette.""" return palette_analysis(np.array(pilimg)) def img_dimensions(img): """Return dimensions of an image in numpy array form. Most of the times, equivalent to np.shape(img).""" try: width, height, channels = np.shape(img) except ValueError: width, height = np.shape(img) channels = 1 return (width, height, channels) def flat_img(img, dims=None): """Return the image flattened, i.e. a 2-dimensional array, where the second dimension maps only colors.""" if dims is None: dims = img_dimensions(img) return np.reshape(img, (dims[0]*dims[1], dims[2])) @jit def make_palette(flatimg): output = np.unique(flatimg, axis=0) """Return all the colors in a flattened image.""" return np.unique(flatimg, axis=0) def dict_palette(palette): """Take the palette as in the output of make_palette, return them in a dictionary of the form tuple(color):list(color) for further editing of the palette.""" return {tuple(col) : list(col) for col in palette} def palette_analysis(img): """Take image, return its palette in a dictionary of the form tuple(color):list(color) for further editing of the palette.""" return dict_palette(make_palette(flat_img(img))) def crude_remappers(flatimg, dictpalette): """Not to be used alone, responsible for internal transformation. Dict comprehension just extracted to allow JITting of the rest with numba.""" return {tuple(dictpalette[col]): flatimg ==
np.array(col)
numpy.array
# -*- coding: utf-8 -*- # test_imagecodecs.py # Copyright (c) 2018-2019, <NAME> # Copyright (c) 2018-2019, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Unittests for the imagecodecs package. :Author: `<NAME> <https://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics. University of California, Irvine :License: 3-clause BSD :Version: 2019.12.3 """ from __future__ import division, print_function import sys import os import io import re import glob import tempfile import os.path as osp import pytest import numpy from numpy.testing import assert_array_equal, assert_allclose try: import tifffile except ImportError: tifffile = None try: import czifile except ImportError: czifile = None if ( 'imagecodecs_lite' in os.getcwd() or osp.exists(osp.join(osp.dirname(__file__), '..', 'imagecodecs_lite')) ): try: import imagecodecs_lite as imagecodecs from imagecodecs_lite import _imagecodecs_lite # noqa from imagecodecs_lite import imagecodecs as imagecodecs_py except ImportError: pytest.exit('the imagecodec-lite package is not installed') lzma = zlib = bz2 = zstd = lz4 = lzf = blosc = bitshuffle = None _jpeg12 = _jpegls = _zfp = None else: try: import imagecodecs import imagecodecs.imagecodecs as imagecodecs_py from imagecodecs.imagecodecs import (lzma, zlib, bz2, zstd, lz4, lzf, blosc, bitshuffle) from imagecodecs import _imagecodecs # noqa except ImportError: pytest.exit('the imagecodec package is not installed') try: from imagecodecs import _jpeg12 except ImportError: _jpeg12 = None try: from imagecodecs import _jpegls except ImportError: _jpegls = None try: from imagecodecs import _zfp except ImportError: _zfp = None IS_PY2 = sys.version_info[0] == 2 IS_32BIT = sys.maxsize < 2**32 TEST_DIR = osp.dirname(__file__) class TempFileName(): """Temporary file name context manager.""" def __init__(self, name=None, suffix='', remove=True): self.remove = bool(remove) if not name: self.name = tempfile.NamedTemporaryFile(prefix='test_', suffix=suffix).name else: self.name = osp.join(tempfile.gettempdir(), 'test_%s%s' % (name, suffix)) def __enter__(self): return self.name def __exit__(self, exc_type, exc_value, traceback): if self.remove: try: os.remove(self.name) except Exception: pass def test_version(): """Assert imagecodecs versions match docstrings.""" ver = ':Version: ' + imagecodecs.__version__ assert ver in __doc__ assert ver in imagecodecs.__doc__ assert imagecodecs.version().startswith('imagecodecs') assert ver in imagecodecs_py.__doc__ if zlib: assert imagecodecs.version(dict)['zlib'].startswith('1.') @pytest.mark.skipif(not hasattr(imagecodecs, 'imread'), reason='imread function missing') @pytest.mark.filterwarnings('ignore:Possible precision loss') def test_imread_imwrite(): """Test imread and imwrite functions.""" imread = imagecodecs.imread imwrite = imagecodecs.imwrite data = image_data('rgba', 'uint8') # codec from file extension with TempFileName(suffix='.npy') as filename: imwrite(filename, data, level=99) im, codec = imread(filename, return_codec=True) assert codec == imagecodecs.numpy_decode assert_array_equal(data, im) with TempFileName() as filename: # codec from name imwrite(filename, data, codec='numpy') im = imread(filename, codec='npy') assert_array_equal(data, im) # codec from function imwrite(filename, data, codec=imagecodecs.numpy_encode) im = imread(filename, codec=imagecodecs.numpy_decode) assert_array_equal(data, im) # codec from name list im = imread(filename, codec=['npz']) assert_array_equal(data, im) # autodetect im = imread(filename) assert_array_equal(data, im) # fail with pytest.raises(ValueError): imwrite(filename, data) with pytest.raises(ValueError): im = imread(filename, codec='unknown') def test_none(): """Test NOP codec.""" encode = imagecodecs.none_encode decode = imagecodecs.none_decode data = b'None' assert encode(data) is data assert decode(data) is data def test_bitorder(): """Test BitOrder codec with bytes.""" decode = imagecodecs.bitorder_decode data = b'\x01\x00\x9a\x02' reverse = b'\x80\x00Y@' # return new string assert decode(data) == reverse assert data == b'\x01\x00\x9a\x02' # provide output out = bytearray(len(data)) decode(data, out=out) assert out == reverse assert data == b'\x01\x00\x9a\x02' # inplace decode(data, out=data) assert data == reverse # bytes range assert BYTES == decode(readfile('bytes.bitorder.bin')) def test_bitorder_ndarray(): """Test BitOrder codec with ndarray.""" decode = imagecodecs.bitorder_decode data = numpy.array([1, 666], dtype='uint16') reverse = numpy.array([128, 16473], dtype='uint16') # return new array assert_array_equal(decode(data), reverse) # inplace decode(data, out=data) assert_array_equal(data, numpy.array([128, 16473], dtype='uint16')) # array view data = numpy.array([[1, 666, 1431655765, 62], [2, 667, 2863311530, 32], [3, 668, 1431655765, 30]], dtype='uint32') reverse = numpy.array([[1, 666, 1431655765, 62], [2, 16601, 1431655765, 32], [3, 16441, 2863311530, 30]], dtype='uint32') assert_array_equal(decode(data[1:, 1:3]), reverse[1:, 1:3]) # array view inplace decode(data[1:, 1:3], out=data[1:, 1:3]) assert_array_equal(data, reverse) def test_packints_decode(): """Test PackInts decoder.""" decode = imagecodecs.packints_decode decoded = decode(b'', 'B', 1) assert len(decoded) == 0 decoded = decode(b'a', 'B', 1) assert tuple(decoded) == (0, 1, 1, 0, 0, 0, 0, 1) decoded = decode(b'ab', 'B', 2) assert tuple(decoded) == (1, 2, 0, 1, 1, 2, 0, 2) decoded = decode(b'abcd', 'B', 3) assert tuple(decoded) == (3, 0, 2, 6, 1, 1, 4, 3, 3, 1) decoded = decode(numpy.frombuffer(b'abcd', dtype='uint8'), 'B', 3) assert tuple(decoded) == (3, 0, 2, 6, 1, 1, 4, 3, 3, 1) PACKBITS_DATA = [ (b'', b''), (b'X', b'\x00X'), (b'123', b'\x02123'), (b'112112', b'\xff1\x002\xff1\x002'), (b'1122', b'\xff1\xff2'), (b'1' * 126, b'\x831'), (b'1' * 127, b'\x821'), (b'1' * 128, b'\x811'), (b'1' * 127 + b'foo', b'\x821\x00f\xffo'), (b'12345678' * 16, # literal 128 b'\x7f1234567812345678123456781234567812345678123456781234567812345678' b'1234567812345678123456781234567812345678123456781234567812345678'), (b'12345678' * 17, b'~1234567812345678123456781234567812345678123456781234567812345678' b'123456781234567812345678123456781234567812345678123456781234567\x08' b'812345678'), (b'1' * 128 + b'12345678' * 17, b'\x821\xff1~2345678123456781234567812345678123456781234567812345678' b'1234567812345678123456781234567812345678123456781234567812345678' b'12345678\x0712345678'), (b'\xaa\xaa\xaa\x80\x00\x2a\xaa\xaa\xaa\xaa\x80\x00' b'\x2a\x22\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa', b'\xfe\xaa\x02\x80\x00\x2a\xfd\xaa\x03\x80\x00\x2a\x22\xf7\xaa')] @pytest.mark.parametrize('data', range(len(PACKBITS_DATA))) @pytest.mark.parametrize('codec', ['encode', 'decode']) def test_packbits(codec, data): """Test PackBits codec.""" encode = imagecodecs.packbits_encode decode = imagecodecs.packbits_decode uncompressed, compressed = PACKBITS_DATA[data] if codec == 'decode': assert decode(compressed) == uncompressed elif codec == 'encode': try: assert encode(uncompressed) == compressed except AssertionError: # roundtrip assert decode(encode(uncompressed)) == uncompressed def test_packbits_nop(): """Test PackBits decoding empty data.""" decode = imagecodecs.packbits_decode assert decode(b'\x80') == b'' assert decode(b'\x80\x80') == b'' @pytest.mark.parametrize('output', [None, 'array']) @pytest.mark.parametrize('codec', ['encode', 'decode']) def test_packbits_array(codec, output): """Test PackBits codec with arrays.""" encode = imagecodecs.packbits_encode decode = imagecodecs.packbits_decode uncompressed, compressed = PACKBITS_DATA[-1] shape = (2, 7, len(uncompressed)) data = numpy.empty(shape, dtype='uint8') data[..., :] = numpy.frombuffer(uncompressed, dtype='uint8') compressed = compressed * (shape[0] * shape[1]) if codec == 'encode': if output == 'array': out = numpy.empty(data.size, data.dtype) assert_array_equal(encode(data, out=out), numpy.frombuffer(compressed, dtype='uint8')) else: assert encode(data) == compressed else: if output == 'array': out = numpy.empty(data.size, data.dtype) assert_array_equal(decode(compressed, out=out), data.flat) else: assert decode(compressed) == data.tobytes() @pytest.mark.parametrize('output', ['new', 'out', 'inplace']) @pytest.mark.parametrize('codec', ['encode', 'decode']) @pytest.mark.parametrize( 'kind', ['u1', 'u2', 'u4', 'u8', 'i1', 'i2', 'i4', 'i8', 'f4', 'f8', 'B', pytest.param('b', marks=pytest.mark.skipif( sys.version_info[0] == 2, reason='Python 2'))]) @pytest.mark.parametrize('func', ['delta', 'xor']) def test_delta(output, kind, codec, func): """Test Delta codec.""" if func == 'delta': encode = imagecodecs.delta_encode decode = imagecodecs.delta_decode encode_py = imagecodecs_py.delta_encode # decode_py = imagecodecs_py.imagecodecs.delta_decode elif func == 'xor': encode = imagecodecs.xor_encode decode = imagecodecs.xor_decode encode_py = imagecodecs_py.xor_encode # decode_py = imagecodecs_py.imagecodecs.xor_decode bytetype = bytearray if kind == 'b': bytetype = bytes kind = 'B' axis = -2 # do not change dtype = numpy.dtype(kind) if kind[0] in 'iuB': low = numpy.iinfo(dtype).min high = numpy.iinfo(dtype).max data = numpy.random.randint(low, high, size=33 * 31 * 3, dtype=dtype).reshape(33, 31, 3) else: low, high = -1e5, 1e5 data = numpy.random.randint(low, high, size=33 * 31 * 3, dtype='i4').reshape(33, 31, 3) data = data.astype(dtype) data[16, 14] = [0, 0, 0] data[16, 15] = [low, high, low] data[16, 16] = [high, low, high] data[16, 17] = [low, high, low] data[16, 18] = [high, low, high] data[16, 19] = [0, 0, 0] if kind == 'B': # data = data.reshape(-1) data = data.tobytes() diff = encode_py(data, axis=0) if output == 'new': if codec == 'encode': encoded = encode(data, out=bytetype) assert encoded == diff elif codec == 'decode': decoded = decode(diff, out=bytetype) assert decoded == data elif output == 'out': if codec == 'encode': encoded = bytetype(len(data)) encode(data, out=encoded) assert encoded == diff elif codec == 'decode': decoded = bytetype(len(data)) decode(diff, out=decoded) assert decoded == data elif output == 'inplace': if codec == 'encode': encoded = bytetype(data) encode(encoded, out=encoded) assert encoded == diff elif codec == 'decode': decoded = bytetype(diff) decode(decoded, out=decoded) assert decoded == data else: # if func == 'xor' and kind in ('f4', 'f8'): # with pytest.raises(ValueError): # encode(data, axis=axis) # pytest.skip("XOR codec not implemented for float data") diff = encode_py(data, axis=-2) if output == 'new': if codec == 'encode': encoded = encode(data, axis=axis) assert_array_equal(encoded, diff) elif codec == 'decode': decoded = decode(diff, axis=axis) assert_array_equal(decoded, data) elif output == 'out': if codec == 'encode': encoded = numpy.zeros_like(data) encode(data, axis=axis, out=encoded) assert_array_equal(encoded, diff) elif codec == 'decode': decoded = numpy.zeros_like(data) decode(diff, axis=axis, out=decoded) assert_array_equal(decoded, data) elif output == 'inplace': if codec == 'encode': encoded = data.copy() encode(encoded, axis=axis, out=encoded) assert_array_equal(encoded, diff) elif codec == 'decode': decoded = diff.copy() decode(decoded, axis=axis, out=decoded) assert_array_equal(decoded, data) @pytest.mark.parametrize('output', ['new', 'out']) @pytest.mark.parametrize('codec', ['encode', 'decode']) @pytest.mark.parametrize('endian', ['le', 'be']) @pytest.mark.parametrize('planar', ['rgb', 'rrggbb']) def test_floatpred(planar, endian, output, codec): """Test FloatPred codec.""" encode = imagecodecs.floatpred_encode decode = imagecodecs.floatpred_decode data = numpy.fromfile( datafiles('rgb.bin'), dtype='<f4').reshape(33, 31, 3) if planar == 'rgb': axis = -2 if endian == 'le': encoded = numpy.fromfile( datafiles('rgb.floatpred_le.bin'), dtype='<f4') encoded = encoded.reshape(33, 31, 3) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) elif endian == 'be': data = data.astype('>f4') encoded = numpy.fromfile( datafiles('rgb.floatpred_be.bin'), dtype='>f4') encoded = encoded.reshape(33, 31, 3) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) elif planar == 'rrggbb': axis = -1 data = numpy.ascontiguousarray(numpy.moveaxis(data, 2, 0)) if endian == 'le': encoded = numpy.fromfile( datafiles('rrggbb.floatpred_le.bin'), dtype='<f4') encoded = encoded.reshape(3, 33, 31) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) elif endian == 'be': data = data.astype('>f4') encoded = numpy.fromfile( datafiles('rrggbb.floatpred_be.bin'), dtype='>f4') encoded = encoded.reshape(3, 33, 31) if output == 'new': if codec == 'decode': assert_array_equal(decode(encoded, axis=axis), data) elif codec == 'encode': assert_array_equal(encode(data, axis=axis), encoded) elif output == 'out': out = numpy.empty_like(data) if codec == 'decode': decode(encoded, axis=axis, out=out) assert_array_equal(out, data) elif codec == 'encode': out = numpy.empty_like(data) encode(data, axis=axis, out=out) assert_array_equal(out, encoded) def test_lzw_msb(): """Test LZW decoder with MSB.""" # TODO: add test_lzw_lsb decode = imagecodecs.lzw_decode for data, decoded in [ (b'\x80\x1c\xcc\'\x91\x01\xa0\xc2m6\x99NB\x03\xc9\xbe\x0b' b'\x07\x84\xc2\xcd\xa68|"\x14 3\xc3\xa0\xd1c\x94\x02\x02\x80', b'say hammer yo hammer mc hammer go hammer'), (b'\x80\x18M\xc6A\x01\xd0\xd0e\x10\x1c\x8c\xa73\xa0\x80\xc7\x02' b'\x10\x19\xcd\xe2\x08\x14\x10\xe0l0\x9e`\x10\x10\x80', b'and the rest can go and play'), (b'\x80\x18\xcc&\xe19\xd0@t7\x9dLf\x889\xa0\xd2s', b"can't touch this"), (b'\x80@@', b'')]: assert decode(data) == decoded @pytest.mark.parametrize('output', ['new', 'size', 'ndarray', 'bytearray']) def test_lzw_decode(output): """Test LZW decoder of input with horizontal differencing.""" decode = imagecodecs.lzw_decode delta_decode = imagecodecs.delta_decode data = readfile('bytes.lzw_horizontal.bin') decoded_size = len(BYTES) if output == 'new': decoded = decode(data) decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16) delta_decode(decoded, out=decoded, axis=-1) assert_array_equal(BYTESIMG, decoded) elif output == 'size': decoded = decode(data, out=decoded_size) decoded = numpy.frombuffer(decoded, 'uint8').reshape(16, 16) delta_decode(decoded, out=decoded, axis=-1)
assert_array_equal(BYTESIMG, decoded)
numpy.testing.assert_array_equal
import environments.ControlledRangeVariance from opebet import wealth_lb_1d, wealth_lb_2d, wealth_2d, wealth_lb_2d_individual_qps import pickle import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt def getenv(wsq, tv=None): wsupport = [0, 0.5, 2, 100] env = environments.ControlledRangeVariance.ControlledRangeVariance(seed=90210, wsupport=wsupport, expwsq=wsq, tv=tv) return env, env.getpw(), env.range(), env.expectedwsq() def compress(data): # could be improved but it's used only for debugging. sd = sorted(tuple(datum) for datum in data) from itertools import groupby return [(len(list(g)),) + tuple(map(float, k)) for k, g in groupby(sd)] def produce_results(env, method, alpha, ndata=100, reps=10): wmin, wmax = env.range() ubd = np.zeros(ndata) lbd = np.zeros(ndata) cov = np.zeros((reps, ndata)) width = np.zeros((reps, ndata)) bounds = [] for i in range(reps): (truevalue, data) = env.sample(ndata) try: cs = method(data=data, wmin=wmin, wmax=wmax, alpha=alpha) assert np.isfinite(cs[0]).all() and np.isfinite(cs[1]).all() assert np.all(cs[1] >= cs[0] - 1e-4) assert cs[1][-1] <= 1 + 1e-4 assert cs[0][-1] >= -1e-4 except: import json with open('bad_case.json', 'w') as out: perm_state = list(env.perm_state) perm_state[1] = list(map(int, perm_state[1])) out.write(json.dumps((float(truevalue), compress(data), perm_state, float(wmin), float(wmax), alpha))) print('truevalue was {}'.format(truevalue)) print('data was {}'.format(compress(data))) print('wmin, wmax was {} {}'.format(wmin, wmax)) print('ci was {} {}'.format(cs[0][-1], cs[1][-1])) raise np.greater_equal(cs[1], truevalue, out=ubd) np.less_equal(cs[0], truevalue, out=lbd) cov[i, :] = ubd * lbd width[i, :] += np.subtract(cs[1], cs[0]) bounds.append((truevalue, cs[0], cs[1])) upper_ends = [d[2][-1] for d in bounds] lower_ends = [d[1][-1] for d in bounds] upperbounded = [1 if d[0] <= d[2][-1] else 0 for d in bounds] lowerbounded = [1 if d[1][-1] <= d[0] else 0 for d in bounds] covered = [1 if u * l > 0 else 0 for (u, l) in zip(upperbounded, lowerbounded)] final_width = [d[2][-1] - d[1][-1] for d in bounds] def std_mean(x): return np.std(x, ddof=1) / np.sqrt(len(x) - 1) dbg = { 'cov': np.mean(covered), 'covstd': std_mean(covered), 'ubcov': np.mean(upperbounded), 'lbcov': np.mean(lowerbounded), 'final_width': np.mean(final_width), 'widthstd': std_mean(final_width), 'widthlo': np.quantile(final_width, q=[0.05])[0], 'widthhi': np.quantile(final_width, q=[0.95])[0], 'ub': np.mean(upper_ends), 'lb': np.mean(lower_ends), } verbose = True if verbose: print('{}'.format((ndata, {k: np.round(v, 4) for k, v in dbg.items()})), flush=True) return (ndata, { 'cov': np.mean(cov, axis=0), 'covstd': np.std(cov, axis=0, ddof=1) / np.sqrt(cov.shape[0] - 1), 'width': np.mean(width, axis=0), 'widtstd': np.std(width, axis=0, ddof=1) / np.sqrt(width.shape[0] - 1), }, ) def produce_results_ci(env, method, alpha, ndata=100, reps=10): wmin, wmax = env.range() ubd = np.zeros(1) lbd = np.zeros(1) cov = np.zeros(reps) width =
np.zeros(reps)
numpy.zeros
import os.path as osp import torch import pandas as pd import numpy as np class CateAttrEvaluator(object): """ Evaluate DeepFashion topk recall. Args: category_topk (list(int)) topk category recall attr_topk (list(int)): topk attribute recall data_root (str): root directory of dataset Usage: ```python evaluator = CateAttrEvaluator() for batch in loader: out = model(batch) evaluator.add(out, batch) res = evaluator.evaluate() for topk, accuracy in res['category_accuracy_topk'].items(): print('metrics/category_top{}'.format(topk), accuracy) for topk, accuracy in res['attr_group_recall'].items(): for attr_type in range(1, 6): print('metrics/attr_top{}_type_{}_{}_recall'.format( topk, attr_type, const.attrtype2name[attr_type]), accuracy[attr_type - 1] ) print('metrics/attr_top{}_all_recall'.format(topk), res['attr_recall'][topk]) ``` """ def __init__(self, category_topk=(1, 3, 5), attr_topk=(3, 5), data_root="data/df"): self.category_topk = category_topk self.attr_topk = attr_topk self.reset() with open(osp.join(data_root, 'annotations/list_attr_cloth.txt')) as f: ret = [] f.readline() f.readline() for line in f: line = line.split(' ') while line[-1].strip().isdigit() is False: line = line[:-1] ret.append([ ' '.join(line[0:-1]).strip(), int(line[-1]) ]) attr_type = pd.DataFrame(ret, columns=['attr_name', 'type']) attr_type['attr_index'] = ['attr_' + str(i) for i in range(1000)] attr_type.set_index('attr_index', inplace=True) self.attr_type = attr_type self.attrtype2name = {1: 'texture', 2: 'fabric', 3: 'shape', 4: 'part', 5: 'style'} def reset(self): self.category_accuracy = [] self.attr_group_gt = np.array([0.] * 5) self.attr_group_tp = np.zeros((5, len(self.attr_topk))) self.attr_all_gt = 0 self.attr_all_tp = np.zeros((len(self.attr_topk),)) def category_topk_accuracy(self, output, target): """ Compute topk category recall Notes: N: number of samples K: number of categorys Args: output (torch.Tensor(N, K)): prediction cateogory score target (torch.Tensor(N, )) """ if isinstance(output, np.ndarray): output = torch.from_numpy(output) if isinstance(target, np.ndarray): target = torch.from_numpy(target) with torch.no_grad(): maxk = max(self.category_topk) batch_size = target.shape[0] _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in self.category_topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100 / batch_size)) for i in range(len(res)): res[i] = res[i].cpu().numpy()[0] / 100 self.category_accuracy.append(res) def attr_count(self, output, sample): attr_group_gt = np.array([0.] * 5) attr_group_tp = np.zeros((5, len(self.attr_topk))) attr_all_tp = np.zeros((len(self.attr_topk),)) if isinstance(sample['attr'], torch.Tensor): target = sample['attr'].cpu().numpy() elif isinstance(sample['attr'], np.ndarray): target = sample['attr'] else: raise TypeError("Error type of sampe['attr']") target = np.split(target, target.shape[0]) target = [x[0, :] for x in target] if isinstance(output['attr'], torch.Tensor): pred = output['attr'].cpu().detach().numpy() elif isinstance(output['attr'], np.ndarray): pred = output['attr'] else: raise TypeError("Error type of output['attr']") pred = np.split(pred, pred.shape[0]) pred = [x[0, 1, :] for x in pred] for batch_idx in range(len(target)): result_df = pd.DataFrame([target[batch_idx], pred[batch_idx]], index=['target', 'pred'], columns=['attr_' + str(i) for i in range(1000)]) result_df = result_df.transpose() result_df = result_df.join(self.attr_type[['type']]) ret = [] for i in range(1, 6): ret.append(result_df[result_df['type'] == i]['target'].sum()) attr_group_gt += np.array(ret) ret = [] result_df = result_df.sort_values('pred', ascending=False) attr_all_tp += np.array([ result_df.head(k)['target'].sum() for k in self.attr_topk ]) for i in range(1, 6): sort_df = result_df[result_df['type'] == i] ret.append([ sort_df.head(k)['target'].sum() for k in self.attr_topk ]) attr_group_tp += np.array(ret) self.attr_group_gt += attr_group_gt self.attr_group_tp += attr_group_tp self.attr_all_gt += attr_group_gt.sum() self.attr_all_tp += attr_all_tp def add(self, output, sample): self.category_topk_accuracy(output['cate'], sample['category_id']) self.attr_count(output, sample) def evaluate(self): category_accuracy = np.array(self.category_accuracy).mean(axis=0) category_accuracy_topk = {} for i, top_n in enumerate(self.category_topk): category_accuracy_topk[top_n] = category_accuracy[i] attr_group_recall = {} attr_recall = {} for i, top_n in enumerate(self.attr_topk): attr_group_recall[top_n] = self.attr_group_tp[..., i] / self.attr_group_gt attr_recall[top_n] = self.attr_all_tp[i] / self.attr_all_gt return { 'category_accuracy_topk': category_accuracy_topk, 'attr_group_recall': attr_group_recall, 'attr_recall': attr_recall, } class CateCalculator(object): """Calculate Category prediction top-k recall rate Usage: ```python cate_calculator = CateCalculator() for data in loader: result = model(data) cate_calculator.collect_result(result, data) cate_calculator.show_result() ``` """ def __init__(self, category_num, topns=[1, 3], show_cate_name=False, cate_name_file=None): self.collector = dict() self.num_cate = category_num self.topns = topns # true positive for topi in topns: self.collector['top%s' % str(topi)] = dict() tp = np.zeros(self.num_cate) fn = np.zeros(self.num_cate) self.collector['top%s' % str(topi)]['tp'] = tp self.collector['top%s' % str(topi)]['fn'] = fn """ topn recall rate """ self.recall = dict() # collect target per category self.target_per_cate = np.zeros(self.num_cate) # num of total predictions self.total = 0 # topn category prediction self.topns = topns self.show_cate_name = show_cate_name if self.show_cate_name: assert cate_name_file is not None self.cate_dict = {} cate_names = open(cate_name_file).readlines() for i, cate_name in enumerate(cate_names[2:]): self.cate_dict[i] = cate_name.split()[0] def collect(self, indexes, target, topk): """calculate and collect recall rate Args: indexes(list): predicted top-k indexes target(list): ground-truth topk(str): top-k, e.g., top1, top3, top5 """ for i, cnt in enumerate(self.collector[topk]['tp']): # true-positive if i in indexes and i in target: self.collector[topk]['tp'][i] += 1 for i, cnt in enumerate(self.collector[topk]['fn']): # false negative if i not in indexes and i in target: self.collector[topk]['fn'][i] += 1 def collect_result(self, pred, target): """collect_result. Args: pred: Tensor of shape [N, category_num] target: Tensor of shape [N, 1] """ if isinstance(pred, torch.Tensor): data = pred.data.cpu().numpy() elif isinstance(pred, np.ndarray): data = pred else: raise TypeError('type {} cannot be calculated.'.format(type(pred))) for i in range(pred.shape[0]): self.total += 1 indexes = np.argsort(data[i])[::-1] for k in self.topns: idx = indexes[:k] self.collect(idx, target[i], 'top%d'%k) def compute_one_recall(self, tp, fn): """ Mean recall for each category. """ empty = 0 recall = np.zeros(tp.shape) for i, num in enumerate(tp): # ground truth number = true_positive(tp) + false_negative(fn) if tp[i] + fn[i] == 0: empty += 1 continue else: recall[i] = float(tp[i]) / float(tp[i] + fn[i]) sorted_recall = sorted(recall)[::-1] return 100 * sum(sorted_recall) / (len(sorted_recall) - empty) def compute_recall(self): for key, top in self.collector.items(): self.recall[key] = self.compute_one_recall(top['tp'], top['fn']) def show_result(self, batch_idx=None): print('----------- Category Prediction ----------') if batch_idx is not None: print('Batch[%d]' % batch_idx) else: print('Total') self.compute_recall() print('[ Recall Rate ]') for k in self.topns: print('top%d = %.2f' % (k, self.recall['top%d' % k])) def show_per_cate_result(self): for key, top in self.collector.items(): tp = top['tp'] fn = top['fn'] recall =
np.zeros(tp.shape)
numpy.zeros
import itertools import os import traceback from copy import deepcopy from typing import Callable, Dict, List, Tuple import GPy import numpy as np import paramz import stan_utility from GPy.core.parameterization.param import Param from GPy.likelihoods import Gaussian from GPy.util import choleskies from GPy.util.linalg import dpotrs, dtrtrs, jitchol, pdinv, tdot import emukit from emukit.core.interfaces import IModel from . import util from .inferences import StanPosterior from .inferences import ep_batch_comparison as ep from .inferences import vi_batch_comparison as vi class ComparisonGP(GPy.core.Model): """ A class for all common methods needed for the different ComparisonGP wrappers """ def get_current_best(self) -> float: """ :return: minimum of means of predictions at all input locations (needed by q-EI) """ return min(self.Y) def get_y_pred(self) -> np.ndarray: """ :return: GP mean at inputs used to compute the posterior approximation (needed by q-EI) """ y_pred, _ = self.predict(self.X, include_likelihood=False) return y_pred def log_likelihood(self) -> float: """ :return: log marginal likelihood needed for optimizing hyper parameters and performing model comparison """ return self._log_marginal_likelihood def predict( self, Xnew: np.ndarray, full_cov: bool = False, include_likelihood=True ) -> Tuple[np.ndarray, np.ndarray]: """ Predictive mean and covariance of the GP at the input location :param Xnew: Locations the prections are wanted at :param full_cov: If the user wants the function to return the full covariance or only the diagonal :param include_likelihood: If the user wants the function to add the noise of the observations to the prediction covariance :return: predictive mean and predictive covariance """ pred_mean, pred_var = self.posterior._raw_predict( self.kern, Xnew, self.X, full_cov=full_cov ) # self.posterior._raw_predict(self.kern, np.hstack([Xnew,ki]), np.hstack([self.X, self.ki]), full_cov=full_cov) if include_likelihood: pred_var = pred_var + self.likelihood.variance return pred_mean, pred_var def predict_noiseless(self, Xnew, full_cov=False) -> Tuple[np.ndarray, np.ndarray]: """ Predictive mean and covariance of the GP latent function at the input location :param Xnew: Locations the prections are wanted at :param full_cov: If the user wants the function to return the full covariance or only the diagonal :return: predictive latent mean and predictive latent covariance """ return self.predict(Xnew, full_cov=full_cov, include_likelihood=False) def posterior_samples_f(self, X: np.ndarray, size: int = 10, **predict_kwargs) -> np.ndarray: """ Draw random samples from the posterior predictive distribution :param X: Locations where the posterior samples should be drawn at :param size: Number of posterior samples :return: Simulated posterior samples """ predict_kwargs["full_cov"] = True # Always use the full covariance for posterior samples. predict_kwargs["include_likelihood"] = False m, v = self.predict(X, **predict_kwargs) def sim_one_dim(m, v): # Draw posterior sample in one dimension return np.random.multivariate_normal(m, v, size).T if self.output_dim == 1: return sim_one_dim(m.flatten(), v)[:, np.newaxis, :] else: fsim = np.empty((X.shape[0], self.output_dim, size)) for d in range(self.output_dim): if v.ndim == 3: fsim[:, d, :] = sim_one_dim(m[:, d], v[:, :, d]) else: fsim[:, d, :] = sim_one_dim(m[:, d], v) return fsim class EPComparisonGP(ComparisonGP): """ GPy wrapper for a GP model consisting of preferential batch observations when the posterior is approximated using Expectation Propagation :param X: All locations of both direct observations and batch comparisons :param y: Direct observations in as a list of tuples telling location index (row in X) and observation value. :param yc: Batch comparisons in a list of lists of tuples. Each batch is a list and tuples tell the comparisons (winner index, loser index) :param kernel: A GPy kernel used :param likelihood: A GPy likelihood. Only Gaussian likelihoods are accepted :param name: Name of the model. Defaults to 'EpComparisonGP' :param ep_max_it: Maximum number of iterations used when approximating the posterior in EP. :param eta: parameter for fractional EP updates. :param delta: damping EP updates factor. :param get_logger: Function for receiving the legger where the prints are forwarded. """ def __init__( self, X: np.ndarray, y: List[Tuple[int, float]], yc: List[List[Tuple[int, int]]], kernel: GPy.kern.Kern, likelihood: GPy.likelihoods.Gaussian, name: str = "EPComparisonGP", ep_max_itt: int = 100, delta: float = 0.5, eta: float = 0.5, get_logger: Callable = None, ): super(EPComparisonGP, self).__init__(name=name) self.N, self.D = X.shape[0], X.shape[1] self.output_dim = 1 # hard coded, the code doesn't support multi output case self.X = X self.y = y self.yc = yc self.kern = kernel self.likelihood = likelihood # A helper parameter for EP. Each observation could possibly come from different kernels and likelihoods. # The inference supports this already, but this GPy wrapper doesn't self.sigma2s = self.likelihood.variance * np.ones((X.shape[0], 1), dtype=int) self.ep_max_itt = ep_max_itt self.eta = eta self.delta = delta self.link_parameter(self.kern) self.link_parameter(self.likelihood) self.posterior, self.ga_approx, self.Y = None, None, None self.get_logger = get_logger def parameters_changed(self): """ Update the posterior approximation after kernel or likelihood parameters have changed or there are new observations """ # Recompute the posterior approximation self.posterior, self._log_marginal_likelihood, self.grad_dict, self.ga_approx = ep.ep_comparison( self.X, self.y, self.yc, self.kern, self.sigma2s, max_itt=self.ep_max_itt, tol=1e-6, delta=self.delta, eta=self.eta, ga_approx_old=self.ga_approx, get_logger=self.get_logger, ) # predict Y at inputs (needed by q-EI) self.Y = self.get_y_pred() def set_XY(self, X: np.ndarray, y: List[Tuple[int, float]], yc: List[List[Tuple[int, int]]]): """ Set new observations and recompute the posterior :param X: All locations of both direct observations and batch comparisons :param y: Direct observations in as a list of tuples telling location index (row in X) and observation value. :param yc: Batch comparisons in a list of lists of tuples. Each batch is a list and tuples tell the comparisons (winner index, loser index) """ self.X = X self.y = y self.yc = yc self.sigma2s = self.likelihood.variance * np.ones((X.shape[0], 1), dtype=int) self.parameters_changed() class VIComparisonGP(ComparisonGP): """ GPy wrapper for a GP model consisting of preferential batch observations when the posterior is approximated using Variational Inference :param X: All locations of both direct observations and batch comparisons :param y: Direct observations in as a list of tuples telling location index (row in X) and observation value. :param yc: Batch comparisons in a list of lists of tuples. Each batch is a list and tuples tell the comparisons (winner index, loser index) :param kernel: A GPy kernel used :param likelihood: A GPy likelihood. Only Gaussian likelihoods are accepted :param vi_mode: A string indicating if to use full rank or mean field VI :param name: Name of the model. Defaults to 'VIComparisonGP' :param max_iters: Maximum number of iterations used when approximating the posterior in VI. :param get_logger: Function for receiving the legger where the prints are forwarded. """ def __init__( self, X: np.ndarray, y: List[Tuple[int, float]], yc: List[List[Tuple[int, int]]], kernel: GPy.kern.Kern, likelihood: Gaussian, vi_mode: str = "fr", name: str = "VIComparisonGP", max_iters: int = 50, get_logger: Callable = None, ): super(VIComparisonGP, self).__init__(name=name) self.N, self.D = X.shape[0], X.shape[1] self.output_dim = 1 self.get_logger = get_logger self.X = X self.y = y self.yc = yc self.max_iters = max_iters self.vi_mode = vi_mode self.kern = kernel self.likelihood = likelihood self.sigma2s = self.likelihood.variance * np.ones((X.shape[0], 1), dtype=int) jitter = 1e-6 K = self.kern.K(X) L = np.linalg.cholesky(K + np.identity(K.shape[0]) * jitter) self.alpha = np.zeros((self.N, 1)) self.beta = np.ones((self.N, 1)) self.posterior = None # If we are using full rank VI, we initialize it with mean field VI if self.vi_mode == "FRVI": self.posterior, _, _, self.alpha, self.beta = vi.vi_comparison( self.X, self.y, self.yc, self.kern, self.sigma2s, self.alpha, self.beta, max_iters=50, method="mf" ) self.beta = choleskies._triang_to_flat_pure(jitchol(self.posterior.covariance)[None, :]) def parameters_changed(self): """ Update the posterior approximation after kernel or likelihood parameters have changed or there are new observations """ if self.vi_mode == "fr": method = "fr" else: method = "mf" self.posterior, self._log_marginal_likelihood, self.grad_dict, alpha, beta = vi.vi_comparison( self.X, self.y, self.yc, self.kern, self.sigma2s, self.alpha, self.beta, max_iters=self.max_iters, method=method, get_logger=self.get_logger, ) self.alpha = alpha self.beta = beta self.Y = self.get_y_pred() def set_XY(self, X: np.ndarray, y: List[Tuple[int, float]], yc: List[List[Tuple[int, int]]]): """ Set new observations and recompute the posterior :param X: All locations of both direct observations and batch comparisons :param y: Direct observations in as a list of tuples telling location index (row in X) and observation value. :param yc: Batch comparisons in a list of lists of tuples. Each batch is a list and tuples tell the comparisons (winner index, loser index) """ self.N, self.D = X.shape[0], X.shape[1] self.X = X self.y = y self.yc = yc self.sigma2s = self.likelihood.variance *
np.ones((X.shape[0], 1), dtype=int)
numpy.ones
# -*- coding: utf-8 -*- """ Created on Wed Feb 12 2020 Class to read and manipulate CryoSat-2 waveform data Reads CryoSat Level-1b data products from baselines A, B and C Reads CryoSat Level-1b netCDF4 data products from baseline D Supported CryoSat Modes: LRM, SAR, SARin, FDM, SID, GDR INPUTS: full_filename: full path of CryoSat .DBL or .nc file PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python http://www.numpy.org http://www.scipy.org/NumPy_for_Matlab_Users netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html UPDATE HISTORY: Updated 08/2020: flake8 compatible binary regular expression strings Forked 02/2020 from read_cryosat_L1b.py Updated 11/2019: empty placeholder dictionary for baseline D DSD headers Updated 09/2019: added netCDF4 read function for baseline D Updated 04/2019: USO correction signed 32 bit int Updated 10/2018: updated header read functions for python3 Updated 05/2016: using __future__ print and division functions Written 03/2016 """ from __future__ import print_function from __future__ import division import numpy as np import pointCollection as pc import netCDF4 import re import os class data(pc.data): np.seterr(invalid='ignore') def __default_field_dict__(self): """ Define the default fields that get read from the CryoSat-2 file """ field_dict = {} field_dict['Location'] = ['days_J2k','Day','Second','Micsec','USO_Corr', 'Mode_ID','SSC','Inst_config','Rec_Count','Lat','Lon','Alt','Alt_rate', 'Sat_velocity','Real_beam','Baseline','ST_ID','Roll','Pitch','Yaw','MCD'] field_dict['Data'] = ['TD', 'H_0','COR2','LAI','FAI','AGC_CH1','AGC_CH2', 'TR_gain_CH1','TR_gain_CH2','TX_Power','Doppler_range','TR_inst_range', 'R_inst_range','TR_inst_gain','R_inst_gain','Internal_phase', 'External_phase','Noise_power','Phase_slope'] field_dict['Geometry'] = ['dryTrop','wetTrop','InvBar','DAC','Iono_GIM', 'Iono_model','ocTideElv','lpeTideElv','olTideElv','seTideElv','gpTideElv', 'Surf_type','Corr_status','Corr_error'] field_dict['Waveform_20Hz'] = ['Waveform','Linear_Wfm_Multiplier', 'Power2_Wfm_Multiplier','N_avg_echoes'] field_dict['METADATA'] = ['MPH','SPH'] return field_dict def from_dbl(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from binary formats """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() # CryoSat-2 Mode record sizes i_size_timestamp = 12 n_SARIN_BC_RW = 1024 n_SARIN_RW = 512 n_SAR_BC_RW = 256 n_SAR_RW = 125 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # check baseline from file to set i_record_size and allocation function if (BASELINE == 'C'): # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2 + 6*4 + 3*3*4 + 3*2 + 4*4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_BC_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_BC_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_BC_RW*2 + \ n_SARIN_BC_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baseline C read_cryosat_variables = self.cryosat_baseline_C else: # calculate total record sizes of each dataset group i_size_timegroup = i_size_timestamp + 4 + 2*2+ 6*4 + 3*3*4 + 4 i_size_measuregroup = 8 + 4*17 + 8 i_size_external_corr = 4*13 + 12 i_size_1Hz_LRM = i_size_timestamp + 3*4 + 8 + n_LRM_RW*2 + 2*4 + 2*2 i_size_1Hz_SAR = i_size_timestamp + 4*3 + 8 + n_SAR_RW*2 + 4 + 4 + 2 + 2 i_size_1Hz_SARIN = i_size_timestamp + 4*3 + 8 + n_SARIN_RW*2 + 4 + 4 + 2 + 2 i_size_LRM_waveform = n_LRM_RW*2 + 4 + 4 + 2 + 2 i_size_SAR_waveform = n_SAR_RW*2 + 4 + 4 + 2 + 2 + n_BeamBehaviourParams*2 i_size_SARIN_waveform = n_SARIN_RW*2 + 4 + 4 + 2 + 2 + n_SARIN_RW*2 + \ n_SARIN_RW*4 + n_BeamBehaviourParams*2 # Low-Resolution Mode Record Size i_record_size_LRM_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_LRM_waveform) + i_size_external_corr + \ i_size_1Hz_LRM # SAR Mode Record Size i_record_size_SAR_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SAR_waveform) + i_size_external_corr + \ i_size_1Hz_SAR # SARIN Mode Record Size i_record_size_SARIN_L1b = n_blocks * (i_size_timegroup + \ i_size_measuregroup + i_size_SARIN_waveform) + i_size_external_corr + \ i_size_1Hz_SARIN # set read function for Baselines A and B read_cryosat_variables = self.cryosat_baseline_AB # get dataset MODE from PRODUCT portion of file name # set record sizes and DS_TYPE for read_DSD function self.MODE = re.findall('(LRM|SAR|SIN)', PRODUCT).pop() if (self.MODE == 'LRM'): i_record_size = i_record_size_LRM_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SAR'): i_record_size = i_record_size_SAR_L1b DS_TYPE = 'CS_L1B' elif (self.MODE == 'SIN'): i_record_size = i_record_size_SARIN_L1b DS_TYPE = 'CS_L1B' # read the input file to get file information fid = os.open(os.path.expanduser(full_filename),os.O_RDONLY) file_info = os.fstat(fid) os.close(fid) # num DSRs from SPH j_num_DSR = np.int32(file_info.st_size//i_record_size) # print file information if verbose: print(full_filename) print('{0:d} {1:d} {2:d}'.format(j_num_DSR,file_info.st_size,i_record_size)) # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size == file_info.st_size): print('No Header on file') print('The number of DSRs is: {0:d}'.format(j_num_DSR)) else: print('Header on file') # Check if MPH/SPH/DSD headers if (j_num_DSR*i_record_size != file_info.st_size): # If there are MPH/SPH/DSD headers s_MPH_fields = self.read_MPH(full_filename) j_sph_size = np.int32(re.findall(r'[-+]?\d+',s_MPH_fields['SPH_SIZE']).pop()) s_SPH_fields = self.read_SPH(full_filename, j_sph_size) # extract information from DSD fields s_DSD_fields = self.read_DSD(full_filename, DS_TYPE=DS_TYPE) # extract DS_OFFSET j_DS_start = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DS_OFFSET']).pop()) # extract number of DSR in the file j_num_DSR = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['NUM_DSR']).pop()) # check the record size j_DSR_size = np.int32(re.findall(r'[-+]?\d+',s_DSD_fields['DSR_SIZE']).pop()) # minimum size is start of the read plus number of records to read j_check_size = j_DS_start + (j_DSR_size*j_num_DSR) if verbose: print('The offset of the DSD is: {0:d} bytes'.format(j_DS_start)) print('The number of DSRs is {0:d}'.format(j_num_DSR)) print('The size of the DSR is {0:d}'.format(j_DSR_size)) # check if invalid file size if (j_check_size > file_info.st_size): raise IOError('File size error') # extract binary data from input CryoSat data file (skip headers) fid = open(os.path.expanduser(full_filename), 'rb') cryosat_header = fid.read(j_DS_start) # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # add headers to output dictionary as METADATA CS_L1b_mds['METADATA'] = {} CS_L1b_mds['METADATA']['MPH'] = s_MPH_fields CS_L1b_mds['METADATA']['SPH'] = s_SPH_fields CS_L1b_mds['METADATA']['DSD'] = s_DSD_fields # close the input CryoSat binary file fid.close() else: # If there are not MPH/SPH/DSD headers # extract binary data from input CryoSat data file fid = open(os.path.expanduser(full_filename), 'rb') # iterate through CryoSat file and fill output variables CS_L1b_mds = read_cryosat_variables(fid, j_num_DSR) # close the input CryoSat binary file fid.close() # if unpacking the units if unpack: CS_l1b_scale = self.cryosat_scaling_factors() # for each dictionary key for group in CS_l1b_scale.keys(): # for each variable for key,val in CS_L1b_mds[group].items(): # check if val is the 20Hz waveform beam variables if isinstance(val, dict): # for each waveform beam variable for k,v in val.items(): # scale variable CS_L1b_mds[group][key][k] = CS_l1b_scale[group][key][k]*v.copy() else: # scale variable CS_L1b_mds[group][key] = CS_l1b_scale[group][key]*val.copy() # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def from_nc(self, full_filename, field_dict=None, unpack=False, verbose=False): """ Read CryoSat Level-1b data from netCDF4 format data """ # file basename and file extension of input file fileBasename,fileExtension=os.path.splitext(os.path.basename(full_filename)) # CryoSat file class # OFFL (Off Line Processing/Systematic) # NRT_ (Near Real Time) # RPRO (ReProcessing) # TEST (Testing) # TIxx (Stand alone IPF1 testing) # LTA_ (Long Term Archive) regex_class = 'OFFL|NRT_|RPRO|TEST|TIxx|LTA_' # CryoSat mission products # SIR1SAR_FR: Level 1 FBR SAR Mode (Rx1 Channel) # SIR2SAR_FR: Level 1 FBR SAR Mode (Rx2 Channel) # SIR_SIN_FR: Level 1 FBR SARin Mode # SIR_LRM_1B: Level-1 Product Low Rate Mode # SIR_FDM_1B: Level-1 Product Fast Delivery Marine Mode # SIR_SAR_1B: Level-1 SAR Mode # SIR_SIN_1B: Level-1 SARin Mode # SIR1LRC11B: Level-1 CAL1 Low Rate Mode (Rx1 Channel) # SIR2LRC11B: Level-1 CAL1 Low Rate Mode (Rx2 Channel) # SIR1SAC11B: Level-1 CAL1 SAR Mode (Rx1 Channel) # SIR2SAC11B: Level-1 CAL1 SAR Mode (Rx2 Channel) # SIR_SIC11B: Level-1 CAL1 SARin Mode # SIR_SICC1B: Level-1 CAL1 SARIN Exotic Data # SIR1SAC21B: Level-1 CAL2 SAR Mode (Rx1 Channel) # SIR2SAC21B: Level-1 CAL2 SAR Mode (Rx2 Channel) # SIR1SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR2SIC21B: Level-1 CAL2 SARin Mode (Rx1 Channel) # SIR1LRM_0M: LRM and TRK Monitoring Data from Rx 1 Channel # SIR2LRM_0M: LRM and TRK Monitoring Data from Rx 2 Channel # SIR1SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR2SAR_0M: SAR Monitoring Data from Rx 1 Channel # SIR_SIN_0M: SARIN Monitoring Data # SIR_SIC40M: CAL4 Monitoring Data regex_products = ('SIR1SAR_FR|SIR2SAR_FR|SIR_SIN_FR|SIR_LRM_1B|SIR_FDM_1B|' 'SIR_SAR_1B|SIR_SIN_1B|SIR1LRC11B|SIR2LRC11B|SIR1SAC11B|SIR2SAC11B|' 'SIR_SIC11B|SIR_SICC1B|SIR1SAC21B|SIR2SAC21B|SIR1SIC21B|SIR2SIC21B|' 'SIR1LRM_0M|SIR2LRM_0M|SIR1SAR_0M|SIR2SAR_0M|SIR_SIN_0M|SIR_SIC40M') # CRYOSAT LEVEL-1b PRODUCTS NAMING RULES # Mission Identifier # File Class # File Product # Validity Start Date and Time # Validity Stop Date and Time # Baseline Identifier # Version Number regex_pattern = r'(.*?)_({0})_({1})_(\d+T?\d+)_(\d+T?\d+)_(.*?)(\d+)' rx = re.compile(regex_pattern.format(regex_class,regex_products),re.VERBOSE) # extract file information from filename MI,CLASS,PRODUCT,START,STOP,BASELINE,VERSION=rx.findall(fileBasename).pop() print(full_filename) if verbose else None # get dataset MODE from PRODUCT portion of file name self.MODE = re.findall(r'(LRM|FDM|SAR|SIN)', PRODUCT).pop() # read level-2 CryoSat-2 data from netCDF4 file CS_L1b_mds = self.cryosat_baseline_D(full_filename, unpack=unpack) # calculate GPS time of CryoSat data (seconds since Jan 6, 1980 00:00:00) # from TAI time since Jan 1, 2000 00:00:00 GPS_Time = self.calc_GPS_time(CS_L1b_mds['Location']['Day'], CS_L1b_mds['Location']['Second'], CS_L1b_mds['Location']['Micsec']) # leap seconds for converting from GPS time to UTC time leap_seconds = self.count_leap_seconds(GPS_Time) # calculate dates as J2000 days (UTC) CS_L1b_mds['Location']['days_J2k'] = (GPS_Time - leap_seconds)/86400.0 - 7300.0 # parameters to extract if field_dict is None: field_dict = self.__default_field_dict__() # extract fields of interest using field dict keys for group,variables in field_dict.items(): for field in variables: if field not in self.fields: self.fields.append(field) setattr(self, field, CS_L1b_mds[group][field]) # update size and shape of input data self.__update_size_and_shape__() # return the data and header text return self def calc_GPS_time(self, day, second, micsec): """ Calculate the GPS time (seconds since Jan 6, 1980 00:00:00) """ # TAI time is ahead of GPS by 19 seconds return (day + 7300.0)*86400.0 + second.astype('f') + micsec/1e6 - 19 def count_leap_seconds(self, GPS_Time): """ Count number of leap seconds that have passed for given GPS times """ # GPS times for leap seconds leaps = [46828800, 78364801, 109900802, 173059203, 252028804, 315187205, 346723206, 393984007, 425520008, 457056009, 504489610, 551750411, 599184012, 820108813, 914803214, 1025136015, 1119744016, 1167264017] # number of leap seconds prior to GPS_Time n_leaps = np.zeros_like(GPS_Time) for i,leap in enumerate(leaps): count = np.count_nonzero(GPS_Time >= leap) if (count > 0): i_records,i_blocks = np.nonzero(GPS_Time >= leap) n_leaps[i_records,i_blocks] += 1.0 return n_leaps def read_MPH(self, full_filename): """ Read ASCII Main Product Header (MPH) block from an ESA PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # check that first line of header matches PRODUCT if not bool(re.match(br'PRODUCT\=\"(.*)(?=\")',file_contents[0])): raise IOError('File does not start with a valid PDS MPH') # read MPH header text s_MPH_fields = {} for i in range(n_MPH_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_MPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_MPH_fields def read_SPH(self, full_filename, j_sph_size): """ Read ASCII Specific Product Header (SPH) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # compile regular expression operator for reading headers rx = re.compile(br'(.*?)\=\"?(.*)',re.VERBOSE) # check first line of header matches SPH_DESCRIPTOR if not bool(re.match(br'SPH\_DESCRIPTOR\=',file_contents[n_MPH_lines+1])): raise IOError('File does not have a valid PDS DSD') # read SPH header text (no binary control characters) s_SPH_lines = [li for li in file_contents[n_MPH_lines+1:] if rx.match(li) and not re.search(br'[^\x20-\x7e]+',li)] # extract SPH header text s_SPH_fields = {} c = 0 while (c < len(s_SPH_lines)): # check if line is within DS_NAME portion of SPH header if bool(re.match(br'DS_NAME',s_SPH_lines[c])): # add dictionary for DS_NAME field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() key = value.decode('utf-8').rstrip() s_SPH_fields[key] = {} for line in s_SPH_lines[c+1:c+7]: if bool(re.match(br'(.*?)\=\"(.*)(?=\")',line)): # data fields within quotes dsfield,dsvalue=re.findall(br'(.*?)\=\"(.*)(?=\")',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',line)): # data fields without quotes dsfield,dsvalue=re.findall(br'(.*?)\=(.*)',line).pop() s_SPH_fields[key][dsfield.decode('utf-8')] = dsvalue.decode('utf-8').rstrip() # add 6 to counter to go to next entry c += 6 # use regular expression operators to read headers elif bool(re.match(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',s_SPH_lines[c])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',s_SPH_lines[c]).pop() s_SPH_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # add 1 to counter to go to next line c += 1 # Return block name array to calling function return s_SPH_fields def read_DSD(self, full_filename, DS_TYPE=None): """ Read ASCII Data Set Descriptors (DSD) block from a PDS file """ # read input data file with open(os.path.expanduser(full_filename), 'rb') as fid: file_contents = fid.read().splitlines() # Define constant values associated with PDS file formats # number of text lines in standard MPH n_MPH_lines = 41 # number of text lines in a DSD header n_DSD_lines = 8 # Level-1b CryoSat DS_NAMES within files regex_patterns = [] if (DS_TYPE == 'CS_L1B'): regex_patterns.append(br'DS_NAME\="SIR_L1B_LRM[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SAR[\s+]*"') regex_patterns.append(br'DS_NAME\="SIR_L1B_SARIN[\s+]*"') elif (DS_TYPE == 'SIR_L1B_FDM'): regex_patterns.append(br'DS_NAME\="SIR_L1B_FDM[\s+]*"') # find the DSD starting line within the SPH header c = 0 Flag = False while ((Flag is False) and (c < len(regex_patterns))): # find indice within indice = [i for i,line in enumerate(file_contents[n_MPH_lines+1:]) if re.search(regex_patterns[c],line)] if indice: Flag = True else: c+=1 # check that valid indice was found within header if not indice: raise IOError('Can not find correct DSD field') # extract s_DSD_fields info DSD_START = n_MPH_lines + indice[0] + 1 s_DSD_fields = {} for i in range(DSD_START,DSD_START+n_DSD_lines): # use regular expression operators to read headers if bool(re.match(br'(.*?)\=\"(.*)(?=\")',file_contents[i])): # data fields within quotes field,value=re.findall(br'(.*?)\=\"(.*)(?=\")',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() elif bool(re.match(br'(.*?)\=(.*)',file_contents[i])): # data fields without quotes field,value=re.findall(br'(.*?)\=(.*)',file_contents[i]).pop() s_DSD_fields[field.decode('utf-8')] = value.decode('utf-8').rstrip() # Return block name array to calling function return s_DSD_fields def cryosat_baseline_AB(self, fid, n_records): """ Read L1b MDS variables for CryoSat Baselines A and B """ n_SARIN_RW = 512 n_SAR_RW = 128 n_LRM_RW = 128 n_blocks = 20 n_BeamBehaviourParams = 50 # Bind all the variables of the l1b_mds together into a single dictionary CS_l1b_mds = {} # CryoSat-2 Time and Orbit Group CS_l1b_mds['Location'] = {} # Time: day part CS_l1b_mds['Location']['Day'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32,fill_value=0) # Time: second part CS_l1b_mds['Location']['Second'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Time: microsecond part CS_l1b_mds['Location']['Micsec'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # USO correction factor CS_l1b_mds['Location']['USO_Corr'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Mode ID CS_l1b_mds['Location']['Mode_ID'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Source sequence counter CS_l1b_mds['Location']['SSC'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint16) # Instrument configuration CS_l1b_mds['Location']['Inst_config'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Record Counter CS_l1b_mds['Location']['Rec_Count'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lat'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Location']['Lon'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Location']['Alt'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instantaneous altitude rate derived from orbit: packed units (mm/s, 1e-3 m/s) CS_l1b_mds['Location']['Alt_rate'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Satellite velocity vector. In ITRF: packed units (mm/s, 1e-3 m/s) # ITRF= International Terrestrial Reference Frame CS_l1b_mds['Location']['Sat_velocity'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Real beam direction vector. In CRF: packed units (micro-m, 1e-6 m) # CRF= CryoSat Reference Frame. CS_l1b_mds['Location']['Real_beam'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Interferometric baseline vector. In CRF: packed units (micro-m, 1e-6 m) CS_l1b_mds['Location']['Baseline'] = np.ma.zeros((n_records,n_blocks,3),dtype=np.int32) # Measurement Confidence Data Flags # Generally the MCD flags indicate problems when set # If MCD is 0 then no problems or non-nominal conditions were detected # Serious errors are indicated by setting bit 31 CS_l1b_mds['Location']['MCD'] = np.ma.zeros((n_records,n_blocks),dtype=np.uint32) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters CS_l1b_mds['Data'] = {} # Window Delay reference (two-way) corrected for instrument delays CS_l1b_mds['Data']['TD'] = np.ma.zeros((n_records,n_blocks),dtype=np.int64) # H0 Initial Height Word from telemetry CS_l1b_mds['Data']['H_0'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # COR2 Height Rate: on-board tracker height rate over the radar cycle CS_l1b_mds['Data']['COR2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Coarse Range Word (LAI) derived from telemetry CS_l1b_mds['Data']['LAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Fine Range Word (FAI) derived from telemetry CS_l1b_mds['Data']['FAI'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 1: AGC gain applied on Rx channel 1. # Gain calibration corrections are applied (Sum of AGC stages 1 and 2 # plus the corresponding corrections) (dB/100) CS_l1b_mds['Data']['AGC_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Automatic Gain Control Channel 2: AGC gain applied on Rx channel 2. # Gain calibration corrections are applied (dB/100) CS_l1b_mds['Data']['AGC_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 1: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH1'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Total Fixed Gain On Channel 2: gain applied by the RF unit. (dB/100) CS_l1b_mds['Data']['TR_gain_CH2'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Transmit Power in microWatts CS_l1b_mds['Data']['TX_Power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Doppler range correction: Radial component (mm) # computed for the component of satellite velocity in the nadir direction CS_l1b_mds['Data']['Doppler_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: transmit-receive antenna (mm) # Calibration correction to range on channel 1 computed from CAL1. CS_l1b_mds['Data']['TR_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Range Correction: receive-only antenna (mm) # Calibration correction to range on channel 2 computed from CAL1. CS_l1b_mds['Data']['R_inst_range'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: transmit-receive antenna (dB/100) # Calibration correction to gain on channel 1 computed from CAL1 CS_l1b_mds['Data']['TR_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Instrument Gain Correction: receive-only (dB/100) # Calibration correction to gain on channel 2 computed from CAL1 CS_l1b_mds['Data']['R_inst_gain'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Internal Phase Correction (microradians) CS_l1b_mds['Data']['Internal_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # External Phase Correction (microradians) CS_l1b_mds['Data']['External_phase'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Noise Power measurement (dB/100): converted from telemetry units to be # the noise floor of FBR measurement echoes. # Set to -9999.99 when the telemetry contains zero. CS_l1b_mds['Data']['Noise_power'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) # Phase slope correction (microradians) # Computed from the CAL-4 packets during the azimuth impulse response # amplitude (SARIN only). Set from the latest available CAL-4 packet. CS_l1b_mds['Data']['Phase_slope'] = np.ma.zeros((n_records,n_blocks),dtype=np.int32) CS_l1b_mds['Data']['Spares1'] = np.ma.zeros((n_records,n_blocks,4),dtype=np.int8) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry'] = {} # Dry Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['dryTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Wet Tropospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['wetTrop'] = np.ma.zeros((n_records),dtype=np.int32) # Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['InvBar'] = np.ma.zeros((n_records),dtype=np.int32) # Delta Inverse Barometric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['DAC'] = np.ma.zeros((n_records),dtype=np.int32) # GIM Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_GIM'] = np.ma.zeros((n_records),dtype=np.int32) # Model Ionospheric Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['Iono_model'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['ocTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Long period equilibrium ocean tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['lpeTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Ocean loading tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['olTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Solid Earth tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['seTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Geocentric Polar tide Correction packed units (mm, 1e-3 m) CS_l1b_mds['Geometry']['gpTideElv'] = np.ma.zeros((n_records),dtype=np.int32) # Surface Type: enumerated key to classify surface at nadir # 0 = Open Ocean # 1 = Closed Sea # 2 = Continental Ice # 3 = Land CS_l1b_mds['Geometry']['Surf_type'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare1'] = np.ma.zeros((n_records,4),dtype=np.int8) # Corrections Status Flag CS_l1b_mds['Geometry']['Corr_status'] = np.ma.zeros((n_records),dtype=np.uint32) # Correction Error Flag CS_l1b_mds['Geometry']['Corr_error'] = np.ma.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Geometry']['Spare2'] = np.ma.zeros((n_records,4),dtype=np.int8) # CryoSat-2 Average Waveforms Groups CS_l1b_mds['Waveform_1Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) elif (self.MODE == 'SIN'): # SARIN Mode # Same as the LRM/SAR groups but the waveform array is 512 bins instead of # 128 and the number of echoes averaged is different. # Data Record Time (MDSR Time Stamp) CS_l1b_mds['Waveform_1Hz']['Day'] = np.zeros((n_records),dtype=np.int32) CS_l1b_mds['Waveform_1Hz']['Second'] = np.zeros((n_records),dtype=np.uint32) CS_l1b_mds['Waveform_1Hz']['Micsec'] = np.zeros((n_records),dtype=np.uint32) # Lat: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lat'] = np.zeros((n_records),dtype=np.int32) # Lon: packed units (0.1 micro-degree, 1e-7 degrees) CS_l1b_mds['Waveform_1Hz']['Lon'] = np.zeros((n_records),dtype=np.int32) # Alt: packed units (mm, 1e-3 m) # Altitude of COG above reference ellipsoid (interpolated value) CS_l1b_mds['Waveform_1Hz']['Alt'] = np.zeros((n_records),dtype=np.int32) # Window Delay (two-way) corrected for instrument delays CS_l1b_mds['Waveform_1Hz']['TD'] = np.zeros((n_records),dtype=np.int64) # 1 Hz Averaged Power Echo Waveform CS_l1b_mds['Waveform_1Hz']['Waveform'] = np.zeros((n_records,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_1Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Echo Scale Power (a power of 2) CS_l1b_mds['Waveform_1Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_1Hz']['N_avg_echoes'] = np.zeros((n_records),dtype=np.uint16) CS_l1b_mds['Waveform_1Hz']['Flags'] = np.zeros((n_records),dtype=np.uint16) # CryoSat-2 Waveforms Groups # Beam Behavior Parameters Beam_Behavior = {} # Standard Deviation of Gaussian fit to range integrated stack power. Beam_Behavior['SD'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack Center: Mean of Gaussian fit to range integrated stack power. Beam_Behavior['Center'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Stack amplitude parameter scaled in dB/100. Beam_Behavior['Amplitude'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # 3rd moment: providing the degree of asymmetry of the range integrated # stack power distribution. Beam_Behavior['Skewness'] = np.zeros((n_records,n_blocks),dtype=np.int16) # 4th moment: Measure of peakiness of range integrated stack power distribution. Beam_Behavior['Kurtosis'] = np.zeros((n_records,n_blocks),dtype=np.int16) Beam_Behavior['Spare'] = np.zeros((n_records,n_blocks,n_BeamBehaviourParams-5),dtype=np.int16) # CryoSat-2 mode specific waveforms CS_l1b_mds['Waveform_20Hz'] = {} if (self.MODE == 'LRM'): # Low-Resolution Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_LRM_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) elif (self.MODE == 'SAR'): # SAR Mode # Averaged Power Echo Waveform [128] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SAR_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior elif (self.MODE == 'SIN'): # SARIN Mode # Averaged Power Echo Waveform [512] CS_l1b_mds['Waveform_20Hz']['Waveform'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.uint16) # Echo Scale Factor (to scale echo to watts) CS_l1b_mds['Waveform_20Hz']['Linear_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Echo Scale Power (a power of 2 to scale echo to Watts) CS_l1b_mds['Waveform_20Hz']['Power2_Wfm_Multiplier'] = np.zeros((n_records,n_blocks),dtype=np.int32) # Number of echoes averaged CS_l1b_mds['Waveform_20Hz']['N_avg_echoes'] = np.zeros((n_records,n_blocks),dtype=np.uint16) CS_l1b_mds['Waveform_20Hz']['Flags'] = np.zeros((n_records,n_blocks),dtype=np.uint16) # Beam behaviour parameters CS_l1b_mds['Waveform_20Hz']['Beam'] = Beam_Behavior # Coherence [512]: packed units (1/1000) CS_l1b_mds['Waveform_20Hz']['Coherence'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int16) # Phase Difference [512]: packed units (microradians) CS_l1b_mds['Waveform_20Hz']['Phase_diff'] = np.zeros((n_records,n_blocks,n_SARIN_RW),dtype=np.int32) # for each record in the CryoSat file for r in range(n_records): # CryoSat-2 Time and Orbit Group for b in range(n_blocks): CS_l1b_mds['Location']['Day'].data[r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Second'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Micsec'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['USO_Corr'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Mode_ID'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['SSC'][r,b] = np.fromfile(fid,dtype='>u2',count=1) CS_l1b_mds['Location']['Inst_config'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Rec_Count'][r,b] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Location']['Lat'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Lon'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Alt_rate'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Location']['Sat_velocity'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Real_beam'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['Baseline'][r,b,:] = np.fromfile(fid,dtype='>i4',count=3) CS_l1b_mds['Location']['MCD'][r,b] = np.fromfile(fid,dtype='>u4',count=1) # CryoSat-2 Measurement Group # Derived from instrument measurement parameters for b in range(n_blocks): CS_l1b_mds['Data']['TD'][r,b] = np.fromfile(fid,dtype='>i8',count=1) CS_l1b_mds['Data']['H_0'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['COR2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['LAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['FAI'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['AGC_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH1'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_gain_CH2'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TX_Power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Doppler_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_range'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['TR_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['R_inst_gain'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Internal_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['External_phase'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Noise_power'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Phase_slope'][r,b] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Data']['Spares1'][r,b,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 External Corrections Group CS_l1b_mds['Geometry']['dryTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['wetTrop'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['InvBar'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['DAC'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_GIM'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Iono_model'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['ocTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['lpeTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['olTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['seTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['gpTideElv'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Geometry']['Surf_type'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare1'][r,:] = np.fromfile(fid,dtype='>i1',count=4) CS_l1b_mds['Geometry']['Corr_status'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Corr_error'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Geometry']['Spare2'][r,:] = np.fromfile(fid,dtype='>i1',count=4) # CryoSat-2 Average Waveforms Groups if (self.MODE == 'LRM'): # Low-Resolution Mode CS_l1b_mds['Waveform_1Hz']['Day'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Second'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Micsec'][r] = np.fromfile(fid,dtype='>u4',count=1) CS_l1b_mds['Waveform_1Hz']['Lat'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Lon'][r] = np.fromfile(fid,dtype='>i4',count=1) CS_l1b_mds['Waveform_1Hz']['Alt'][r] =
np.fromfile(fid,dtype='>i4',count=1)
numpy.fromfile
""" Multiple Scattering code, By Dr <NAME> For more information see: <NAME>., <NAME>., <NAME>., <NAME>. & <NAME>. (2015). Acta Cryst. A71, 20-25. http://dx.doi.org/10.5281/zenodo.12866 Example: xtl = dif.Crystal('Diamond.cif') mslist = run_calcms(xtl, [0,0,3], [0,1,0], [1,0], [2.83, 2.85], plot=True) Created from python package "calcms" Version 1.0 12/12/2019 ------------------------------------------- Copyright 2014 Diamond Light Source Ltd.123 Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Dr <NAME>, <EMAIL> Tel: +44 1235 778786 www.diamond.ac.uk Diamond Light Source, Chilton, Didcot, Oxon, OX11 0DE, U.K. """ import numpy as np import matplotlib.pyplot as plt import itertools __version__ = '1.0' def run_calcms(xtl, hkl, azir=[0, 0, 1], pv=[1, 0], energy_range=[7.8, 8.2], numsteps=60, full=False, pv1=False, pv2=False, sfonly=True, pv1xsf1=False): """ Run the multiple scattering code mslist = run_calcms(xtl, [0,0,1]) :param xtl: Crystal structure from Dans_Diffraction :param hkl: [h,k,l] principle reflection :param azir: [h,k,l] reference of azimuthal 0 angle :param pv: [s,p] polarisation vector :param energy_range: [min, max] energy range in keV :param numsteps: int: number of calculation steps from energy min to max :param full: True/False: calculation type: full :param pv1: True/False: calculation type: pv1 :param pv2: True/False: calculation type: pv2 :param sfonly: True/False: calculation type: sfonly *default :param pv1xsf1: True/False: calculation type: pv1xsf1? :return: array """ # =============================================================================== # DMS Calculation # =============================================================================== mslist = [[np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN]] # ================= Generate Reflist from Cif =================================== sf, reflist, lattice, structure = loadcif(xtl, energy_range[-1]) refindex = ~np.isnan(Vfind(reflist, np.round(hkl) - reflist).vindex()) sf = sf[refindex] reflist = reflist[refindex] sf2 = sf[Vfind(reflist, np.round(hkl) - reflist).vindex()] loopnum = 1 # ------------------------------------------------------------------------------ if pv1 + pv2 + sfonly + full + pv1xsf1 > 1: print('Choose only one intensity option') print('full=%s, pv1=%s, pv2=%s, sfonly=%s, pv1xsf1=%s' % (full, pv1, pv2, sfonly, pv1xsf1)) return None elif pv1 + pv2 + sfonly + full + pv1xsf1 == 0: print('Geometry Only') mslist = [[np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN, np.NAN]] for enval in np.linspace(energy_range[0], energy_range[1], numsteps): print(str(loopnum) + ' of ' + str(numsteps)) # =========================================================================== # SF0*Gauss*SF1*SF2*PV2 # =========================================================================== if full: #print('full calculation: SF1*SF2*PV2') ms = Calcms(lattice, hkl, hkl, reflist, enval, azir, sf, sf2) # [:,[3,4,5]] polfull = ms.polfull(pv) mslist = np.concatenate((mslist, ms.polfull(pv)), 0) # =========================================================================== # PV1 only # =========================================================================== elif pv1: #print('pv1 calculation: PV1') ms = Calcms(lattice, hkl, hkl, reflist, enval, azir, sf, sf2) mslist = np.concatenate((mslist, ms.pol1only(pv)), 0) # =========================================================================== # PV2 only # =========================================================================== elif pv2: #print('pv2 calculation: PV2') ms = Calcms(lattice, hkl, hkl, reflist, enval, azir, sf, sf2) mslist = np.concatenate((mslist, ms.pol2only(pv)), 0) # =========================================================================== # SF only # =========================================================================== elif sfonly: #print('sfonly calculation: SF1*SF2') ms = Calcms(lattice, hkl, hkl, reflist, enval, azir, sf, sf2) mslist = np.concatenate((mslist, ms.sfonly()), 0) # =========================================================================== # SF only # =========================================================================== elif pv1xsf1: #print('pv1xsf1 calculation: SF1*PV1') ms = Calcms(lattice, hkl, hkl, reflist, enval, azir, sf) mslist = np.concatenate((mslist, ms.pv1xsf1(pv)), 0) # =========================================================================== # Geometry only - no structure factors # =========================================================================== else: print('Geometry Only') ms = Calcms(lattice, hkl, hkl, reflist, enval, azir) mslist = np.concatenate((mslist, ms.geometry()), 0) loopnum = loopnum + 1 keepindex = np.where([~np.isnan(mslist).any(1)])[1] mslist = np.array(mslist[keepindex, :]) return mslist ######################################################################################################################## ############################################### Ancillary Functions ################################################## ######################################################################################################################## def loadcif(xtl, energy_kev): """ New loadcif from Dans_Diffraction returns: intensity: Structure factor^2. I = sf x sf* reflist: array of [h,k,l] reflections lattice: [a,b,c,alpha,beta,gamma] sf: complex structure factors """ lattice = xtl.Cell.lp() reflist = xtl.Cell.all_hkl(energy_kev) reflist = xtl.Cell.sort_hkl(reflist) reflist = reflist[1:] old_sf = xtl.Scatter._return_structure_factor xtl.Scatter._return_structure_factor = True sf = xtl.Scatter.intensity(reflist) # complex structure factor xtl.Scatter._return_structure_factor = old_sf intensity = np.real(sf * np.conj(sf)) print('MS Reflections: %d' % len(reflist)) return intensity, reflist, lattice, sf class Bmatrix(object): """ Convert to Cartesian coordinate system. Returns the Bmatrix and the metric tensors in direct and reciprocal spaces""" def __init__(self, lattice): self.lattice = lattice lattice = self.lattice a = lattice[0] b = lattice[1] c = lattice[2] alph = lattice[3] bet = lattice[4] gamm = lattice[5] alpha1 = alph * np.pi / 180.0 alpha2 = bet * np.pi / 180.0 alpha3 = gamm * np.pi / 180.0 beta1 = np.arccos((np.cos(alpha2) * np.cos(alpha3) - np.cos(alpha1)) / (np.sin(alpha2) * np.sin(alpha3))) beta2 = np.arccos((np.cos(alpha1) * np.cos(alpha3) - np.cos(alpha2)) / (np.sin(alpha1) * np.sin(alpha3))) beta3 = np.arccos((np.cos(alpha1) * np.cos(alpha2) - np.cos(alpha3)) / (np.sin(alpha1) * np.sin(alpha2))) b1 = 1. / (a * np.sin(alpha2) * np.sin(beta3)) b2 = 1. / (b * np.sin(alpha3) * np.sin(beta1)) b3 = 1. / (c * np.sin(alpha1) * np.sin(beta2)) c1 = b1 * b2 * np.cos(beta3) c2 = b1 * b3 * np.cos(beta2) c3 = b2 * b3 * np.cos(beta1) self.bmatrix = np.matrix([[b1, b2 * np.cos(beta3), b3 * np.cos(beta2)], [0.0, b2 * np.sin(beta3), -b3 * np.sin(beta2) * np.cos(alpha1)], [0.0, 0.0, 1. / c]]) def bm(self): return self.bmatrix def ibm(self): return self.bmatrix.I def mt(self): return self.bmatrix.I * self.bmatrix.transpose().I def rmt(self): mt = self.bmatrix.I * self.bmatrix.transpose().I return mt.I class Rotxyz(object): """Example p = Rotxyz(initial_vector, vectorrotateabout, angle)""" def __init__(self, u, angle): self.u = u self.angle = angle u = np.matrix(self.u) / np.linalg.norm(np.matrix(self.u)) e11 = u[0, 0] ** 2 + (1 - u[0, 0] ** 2) * np.cos(angle * np.pi / 180.0) e12 = u[0, 0] * u[0, 1] * (1 - np.cos(angle * np.pi / 180.0)) - u[0, 2] * np.sin(angle * np.pi / 180.0) e13 = u[0, 0] * u[0, 2] * (1 - np.cos(angle * np.pi / 180.0)) + u[0, 1] * np.sin(angle * np.pi / 180.0) e21 = u[0, 0] * u[0, 1] * (1 - np.cos(angle * np.pi / 180.0)) + u[0, 2] * np.sin(angle * np.pi / 180.0) e22 = u[0, 1] ** 2 + (1 - u[0, 1] ** 2) * np.cos(angle * np.pi / 180.0) e23 = u[0, 1] * u[0, 2] * (1 - np.cos(angle * np.pi / 180.0)) - u[0, 0] * np.sin(angle * np.pi / 180.0) e31 = u[0, 0] * u[0, 2] * (1 - np.cos(angle * np.pi / 180.0)) - u[0, 1] * np.sin(angle * np.pi / 180.0) e32 = u[0, 1] * u[0, 2] * (1 - np.cos(angle * np.pi / 180.0)) + u[0, 0] * np.sin(angle * np.pi / 180.0) e33 = u[0, 2] ** 2 + (1 - u[0, 2] ** 2) * np.cos(angle * np.pi / 180.0) self.rotmat = np.matrix([[e11, e12, e13], [e21, e22, e23], [e31, e32, e33]]) def rmat(self): return self.rotmat class Dhkl(object): """calculate d-spacing for reflection from reciprocal metric tensor d = Dhkl(lattice,HKL) lattice = [a b c alpha beta gamma] (angles in degrees) HKL: list of hkl. size(HKL) = n x 3 or 3 x n !!! if size(HKL) is 3 x 3, HKL must be in the form: HKL = [h1 k1 l1 ; h2 k2 l2 ; h3 k3 l3] """ def __init__(self, lattice, hkl): self.lattice = lattice self.hkl = np.matrix(hkl) def d(self): hkl = self.hkl if
np.shape(hkl)
numpy.shape
''' Script to check the correctness of the geometry utils functions (rotation, translation matrices) ''' import numpy as np import unittest from beam_telescope_analysis.tools import geometry_utils class TestTrackAnalysis(unittest.TestCase): @classmethod def setUpClass(cls): pass def test_transformations(self): # Transforms from global to local system and back and checks for equality position = np.array([0, 0, 0]) # Position in global system to transfrom for position in (np.array([-1, -2, -3]), np.array([0, 1, 0]), np.array([3, 2, 1])): for x in range(-3, 4, 3): # Loop over x translation values for y in range(-3, 4, 3): # Loop over y translation values for z in range(-3, 4, 3): # Loop over z translation values for alpha in [- np.pi, -np.pi / 3., 0, np.pi / 4., np.pi / 3., np.pi / 2., 3 * np.pi / 4., np.pi, 4. * np.pi / 3.]: # Loop x rotation values for beta in [- np.pi, -np.pi / 3., 0, np.pi / 4., np.pi / 3., np.pi / 2., 3 * np.pi / 4., np.pi, 4. * np.pi / 3.]: # Loop y rotation values for gamma in [- np.pi, -np.pi / 3., 0, np.pi / 4., np.pi / 3., np.pi / 2., 3 * np.pi / 4., np.pi, 4. * np.pi / 3.]: # Loop z rotation values position_g = np.array([position[0], position[1], position[2], 1]) # Extend global position dimension transformation_matrix_to_local = geometry_utils.global_to_local_transformation_matrix(x, y, z, alpha, beta, gamma) transformation_matrix_to_global = geometry_utils.local_to_global_transformation_matrix(x, y, z, alpha, beta, gamma) position_l = np.dot(transformation_matrix_to_local, position_g) # Transform to local coordinate system position_g_result = np.dot(transformation_matrix_to_global, position_l) # Transform back to global coordinate system self.assertTrue(np.allclose(position, np.array(position_g_result[:-1]))) # Finite precision needs equality check with finite precision def test_rotation_matrices(self): # Check that the rotation matrices in x, y, z have the features of a rotation matrix (det = 1, inverse = transposed matrix) for alpha in [- np.pi, -np.pi / 3., 0, np.pi / 4., np.pi / 3., np.pi / 2., 3 * np.pi / 4., np.pi, 4. * np.pi / 3.]: # Loop x rotation values rotation_matrix_x = geometry_utils.rotation_matrix_x(alpha) self.assertAlmostEqual(np.linalg.det(rotation_matrix_x), 1) self.assertTrue(np.allclose(rotation_matrix_x.T, np.linalg.inv(rotation_matrix_x))) for beta in [- np.pi, -np.pi / 3., 0, np.pi / 4., np.pi / 3., np.pi / 2., 3 * np.pi / 4., np.pi, 4. * np.pi / 3.]: # Loop y rotation values rotation_matrix_y = geometry_utils.rotation_matrix_y(beta) self.assertAlmostEqual(np.linalg.det(rotation_matrix_y), 1) self.assertTrue(np.allclose(rotation_matrix_y.T,
np.linalg.inv(rotation_matrix_y)
numpy.linalg.inv
import glob import os import warnings import numpy as np from astropy import units as u from astropy.io import ascii from astropy.io import fits from exorad.log import Logger from exorad.utils import exolib from .signal import Sed warnings.filterwarnings('ignore', category=UserWarning, append=True) class Star(Logger, object): """ Instantiate a Stellar class using Phenix Stellar Models Attributes ---------- lumiosity : float Stellar bolometric luminosity computed from Phenix stellar modle. Units [W] wl array wavelength [micron] sed array Spectral energy density [W m**-2 micron**-1] ph_wl array phoenix wavelength [micron]. Phenix native resolution ph_sed array phenix spectral energy density [W m**-2 micron**-1]. Phenix native resolution ph_filename phenix filename """ # def __init__(self, star_sed_path, star_distance, star_temperature, star_logg, star_f_h, star_radius): def __init__(self, star_sed_path, starDistance, starTemperature, starLogg, starMetallicity, starRadius, use_planck_spectrum=False, wl_min=0.4 * u.um, wl_max=10.0 * u.um, phoenix_model_filename=None): """ Parameters __________ exocat_star : object exodata star object star_sed_path: : string path to Phoenix stellar spectra """ self.set_log_name() if use_planck_spectrum == True: self.debug('Planck spectrum used') wl = np.linspace(wl_min, wl_max, 10000) ph_wl, ph_sed, ph_L = self.__get_star_spectrum( wl, starDistance.to(u.m), starTemperature.to(u.K), starRadius.to(u.m)) ph_file = None else: if phoenix_model_filename: ph_file = os.path.join(star_sed_path, phoenix_model_filename) self.debug('phoenix file name : {}'.format(ph_file)) else: ph_file = self.__get_phonix_model_filename( star_sed_path, starTemperature.to(u.K), starLogg, starMetallicity) self.debug('phoenix file name : {}'.format(ph_file)) ph_wl, ph_sed, ph_L = self.__read_phenix_spectrum( ph_file, starDistance.to(u.m), starRadius.to(u.m)) self.luminosity = ph_L self.sed = Sed(wl_grid=ph_wl, data=ph_sed) self.filename = ph_file self.model = 'Planck' if use_planck_spectrum else os.path.basename(ph_file) def __get_phonix_model_filename(self, path, star_temperature, star_logg, star_f_h): sed_name = glob.glob(os.path.join(path, "*.BT-Settl.spec.fits.gz")) if len(sed_name) == 0: self.error("No stellar SED files found") raise OSError("No stellar SED files found") sed_T_list = np.array([np.float(os.path.basename(k)[3:8]) for k in sed_name]) sed_Logg_list = np.array([np.float(os.path.basename(k)[9:12]) for k in sed_name]) sed_Z_list = np.array([np.float(os.path.basename(k)[13:16]) for k in sed_name]) idx = np.argmin(np.abs(sed_T_list - np.round(star_temperature.value / 100.0)) +
np.abs(sed_Logg_list - star_logg)
numpy.abs
# normal_cf_ds_classification_by_ufl_w_t_dis.py # 1. fix a_max a_conf S_jam for a driver; mix seq points and random points for initialization: failed # 2. fix S_jam for a driver; mix seq points and random points for initialization: still tried # 3. add temporal distance when calculating distance for assigning labels import numpy as np from scipy.optimize import leastsq import scipy.stats import matplotlib.pyplot as plt import pickle, time, copy, os, warnings import pandas as pd import pylab from scipy.stats import entropy as kl_div import threading, sys from datetime import datetime from sklearn.preprocessing import normalize, minmax_scale from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from scipy.cluster.hierarchy import dendrogram, linkage, fcluster f = open('all_data_for_cf_model_w_t_pre_info_1101.pkl', 'rb') all_data_for_cf_model = pickle.load(f) f.close() from scipy.optimize import minimize, basinhopping, brute, differential_evolution, shgo, dual_annealing import random from pathos.multiprocessing import ProcessingPool as Pool def set_cons(a_max_n_boundary=[0.1, 2.5], desired_V_n_boundary=[1, 40], a_comf_n_boundary=[0.1, 5], S_jam_boundary=[0.1, 10], desired_T_n_boundary=[0.1, 5], beta_boundary=[4, 4]): # constraints: eq or ineq a_max_n_boundary = a_max_n_boundary desired_V_n_boundary = desired_V_n_boundary a_comf_n_boundary = a_comf_n_boundary S_jam_boundary = S_jam_boundary desired_T_n_boundary = desired_T_n_boundary beta_boundary = beta_boundary cons = ({'type': 'ineq', 'fun': lambda x: x[0] - a_max_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[0] + a_max_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[1] - desired_V_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[1] + desired_V_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[2] - a_comf_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[2] + a_comf_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[3] - S_jam_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[3] + S_jam_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[4] - desired_T_n_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[4] + desired_T_n_boundary[1]}, \ {'type': 'ineq', 'fun': lambda x: x[5] - beta_boundary[0]}, \ {'type': 'ineq', 'fun': lambda x: -x[5] + beta_boundary[1]}) return cons def initialize(a_max_n_boundary=[0.1, 2.5], desired_V_n_boundary=[1, 40], a_comf_n_boundary=[0.1, 5], S_jam_boundary=[0.1, 10], \ desired_T_n_boundary=[0.1, 5], beta_boundary=[4, 4]): # a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta x0 = (random.uniform(a_max_n_boundary[0], a_max_n_boundary[1]), random.uniform(desired_V_n_boundary[0], desired_V_n_boundary[1]), \ random.uniform(a_comf_n_boundary[0], a_comf_n_boundary[1]), random.uniform(S_jam_boundary[0], S_jam_boundary[1]), \ random.uniform(desired_T_n_boundary[0], desired_T_n_boundary[1]), 4) return x0 def IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta): def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n): # if a_max_n * a_comf_n <= 0: # print("a_max_n", a_max_n, "a_comf_n", a_comf_n) item1 = S_jam_n item2 = V_n_t * desired_T_n item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0: # item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # else: # item2 = 0 return item1 + max(0, item2 + item3) a_n_t = [] for i in range(len(delta_V_n_t)): desired_S_n = desired_space_hw(S_jam_n, V_n_t[i], desired_T_n, delta_V_n_t[i], a_max_n, a_comf_n) a_n_t.append(a_max_n * (1 - (V_n_t[i] / desired_V_n) ** beta - (desired_S_n / S_n_t[i]) ** 2)) return np.array(a_n_t) def tv_IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta): def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n): # if a_max_n * a_comf_n <= 0: # print("a_max_n", a_max_n, "a_comf_n", a_comf_n) item1 = S_jam_n item2 = V_n_t * desired_T_n item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0: # item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # else: # item2 = 0 return item1 + max(0, item2 + item3) a_n_t = [] for i in range(len(a_max_n)): desired_S_n = desired_space_hw(S_jam_n[i], V_n_t, desired_T_n[i], delta_V_n_t, a_max_n[i], a_comf_n[i]) a_n_t.append(a_max_n[i] * (1 - (V_n_t / desired_V_n[i]) ** beta - (desired_S_n / S_n_t) ** 2)) return np.array(a_n_t) def IDM_cf_model_for_p(delta_V_n_t, S_n_t, V_n_t, a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta): def desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n): item1 = S_jam_n item2 = V_n_t * desired_T_n item3 = (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # if V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) > 0: # item2 = V_n_t * desired_T_n - (V_n_t * delta_V_n_t) / (2 * np.sqrt(a_max_n * a_comf_n)) # else: # item2 = 0 return item1 + max(0, item2 + item3) desired_S_n = desired_space_hw(S_jam_n, V_n_t, desired_T_n, delta_V_n_t, a_max_n, a_comf_n) a_n_t = a_max_n * (1 - (V_n_t / desired_V_n) ** beta - (desired_S_n / S_n_t) ** 2) return a_n_t def obj_func(args): a, delta_V_n_t, S_n_t, V_n_t = args # x[0:6]: a_max_n, desired_V_n, a_comf_n, S_jam_n, desired_T_n, beta # err = lambda x: np.sqrt( np.sum( ( (a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) / a ) ** 2) / len(a) ) # err = lambda x: np.sqrt( np.sum((a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) ** 2) / np.sum(a**2)) err = lambda x: np.sqrt( np.sum((a - IDM_cf_model(delta_V_n_t, S_n_t, V_n_t, x[0], x[1], x[2], x[3], x[4], x[5])) ** 2) / len(a)) return err def mkdir(path): folder = os.path.exists(path) if not folder: os.makedirs(path) print("--- new folder " + path + " ... ---") print("--- OK ---") def _timed_run(func, distribution, args=(), kwargs={}, default=None): """This function will spawn a thread and run the given function using the args, kwargs and return the given default value if the timeout is exceeded. http://stackoverflow.com/questions/492519/timeout-on-a-python-function-call """ class InterruptableThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self.result = default self.exc_info = (None, None, None) def run(self): try: self.result = func(args, **kwargs) except Exception as err: # pragma: no cover self.exc_info = sys.exc_info() def suicide(self): # pragma: no cover raise RuntimeError('Stop has been called') it = InterruptableThread() it.start() started_at = datetime.now() it.join(self.timeout) ended_at = datetime.now() diff = ended_at - started_at if it.exc_info[0] is not None: # pragma: no cover ; if there were any exceptions a, b, c = it.exc_info raise Exception(a, b, c) # communicate that to caller if it.isAlive(): # pragma: no cover it.suicide() raise RuntimeError else: return it.result def fit_posterior(data, Nbest=3, timeout=10): param_names = ["a_max", "desired_V", "a_comf", "S_jam", "desired_T"] common_distributions = ['cauchy', 'chi2', 'expon', 'exponpow', 'gamma', 'lognorm', 'norm', 'powerlaw', 'rayleigh', 'uniform'] distributions = {} data = np.array(data).T for i in range(len(data)): fitted_param = {} fitted_pdf = {} sumsquare_error = {} y, x = np.histogram(data[i], bins=100, density=True) x = [(this + x[i + 1]) / 2. for i, this in enumerate(x[0:-1])] for distribution in common_distributions: try: # need a subprocess to check time it takes. If too long, skip it dist = eval("scipy.stats." + distribution) param = dist.fit(data[i]) pdf_fitted = dist.pdf(x, *param) fitted_param[distribution] = param[:] fitted_pdf[distribution] = pdf_fitted # calculate error sq_error = pylab.sum((fitted_pdf[distribution] - y) ** 2) sumsquare_error[distribution] = sq_error # calcualte information criteria # logLik = np.sum(dist.logpdf(x, *param)) # k = len(param[:]) # n = len(data[i]) # aic = 2 * k - 2 * logLik # bic = n * np.log(sq_error / n) + k * np.log(n) # calcualte kullback leibler divergence # kullback_leibler = kl_div(fitted_pdf[distribution], self.y) # compute some errors now # _fitted_errors[distribution] = sq_error # _aic[distribution] = aic # _bic[distribution] = bic # _kldiv[distribution] = kullback_leibler except Exception: # pragma: no cover print("SKIPPED {} distribution (taking more than {} seconds)".format(distribution, timeout)) # print(Exception) # if we cannot compute the error, set it to large values # fitted_param[distribution] = [] # fitted_pdf[distribution] = np.nan # sumsquare_error[distribution] = np.inf srt_sq_error = sorted(sumsquare_error.items(), key=lambda kv:(kv[1], kv[0])) for j in range(Nbest): dist_name = srt_sq_error[j][0] sq_error = srt_sq_error[j][1] param = fitted_param[dist_name] pdf = fitted_pdf[dist_name] if not param_names[i] in distributions: distributions[param_names[i]] = [{"distribution": dist_name, "fitted_param": param, "sq_error": sq_error}] else: distributions[param_names[i]].append({"distribution": dist_name, "fitted_param": param, "sq_error": sq_error}) return distributions def get_peak_value(data): a_max_n_boundary = [0.1, 2.5] desired_V_n_boundary = [1, 40] a_comf_n_boundary = [0.1, 5] S_jam_boundary = [0.1, 10] desired_T_n_boundary = [0.1, 5] data = data.T a_max_hist, a_max_bins = np.histogram(data[0], bins=100, range=(a_max_n_boundary[0], a_max_n_boundary[1])) desired_V_hist, desired_V_bins = np.histogram(data[1], bins=100, range=(desired_V_n_boundary[0], desired_V_n_boundary[1])) a_comf_hist, a_comf_bins = np.histogram(data[2], bins=100, range=(a_comf_n_boundary[0], a_comf_n_boundary[1])) S_jam_hist, S_jam_bins = np.histogram(data[3], bins=100, range=(S_jam_boundary[0], S_jam_boundary[1])) desired_T_hist, desired_T_bins = np.histogram(data[4], bins=100, range=(desired_T_n_boundary[0], desired_T_n_boundary[1])) idx = np.argmax(a_max_hist) a_max = (a_max_bins[idx + 1] + a_max_bins[idx]) / 2 idx = np.argmax(desired_V_hist) desired_V = (desired_V_bins[idx + 1] + desired_V_bins[idx]) / 2 idx = np.argmax(a_comf_hist) a_comf = (a_comf_bins[idx + 1] + a_comf_bins[idx]) / 2 idx = np.argmax(S_jam_hist) S_jam = (S_jam_bins[idx + 1] + S_jam_bins[idx]) / 2 idx = np.argmax(desired_T_hist) desired_T = (desired_T_bins[idx + 1] + desired_T_bins[idx]) / 2 return a_max, desired_V, a_comf, S_jam, desired_T def get_mean_value(data): data = data.T return np.mean(data[0]), np.mean(data[1]), np.mean(data[2]), np.mean(data[3]), np.mean(data[4]) def get_tv_params(next_v, v_id, all_cf_data): print("-------------------------------------------------------------------------------------------------") print(str(next_v) + 'th vehicle with id ' + str(v_id)) # [delta_v_l, space_hw_l, ego_v_l, a_l] delta_V_n_t = np.array(all_cf_data[0]) S_n_t = np.array(all_cf_data[1]) V_n_t = np.array(all_cf_data[2]) a = np.array(all_cf_data[3]) t = np.array(all_cf_data[4]) pre_v = np.array(all_cf_data[5]) pre_tan_acc = np.array(all_cf_data[6]) pre_lat_acc = np.array(all_cf_data[7]) print(len(a), np.mean(np.abs(a))) print(len(pre_v), np.mean(pre_v)) print(len(pre_tan_acc), np.mean(np.abs(pre_tan_acc))) print(len(pre_lat_acc), np.mean(np.abs(pre_lat_acc))) args = (a, delta_V_n_t, S_n_t, V_n_t) cons = set_cons() if os.path.exists('0714_dist_param/'+str(int(v_id))+'/using_all_data.txt'): res_param = np.loadtxt('0714_dist_param/'+str(int(v_id))+'/using_all_data.txt') else: return False, False, False while True: try: x0 = np.asarray(initialize()) res = minimize(obj_func(args), x0, constraints=cons, method='trust-constr') if res.success: break except ValueError: continue rmse_using_all_data = res.fun # f = open('0704_dist_param/res_using_all_data.txt', 'a+') # f.write("v id " + str(int(v_id)) + " " + str(res.success) + " | RMSE: " + str(res.fun) + " | a_max: " + str( # res.x[0]) + " | desired_V: " + str(res.x[1]) + " | a_comf: " + str(res.x[2]) + " | S_jam: " + str(res.x[3]) + # " | desired_T: " + str(res.x[4]) + " | beta: " + str(res.x[5]) + "\n") # f.close() mkdir('0714_dist_param/'+str(int(v_id))+'/') mkdir('0714_dist_param/' + str(int(v_id)) + '/posterior_figure/') np.savetxt('0714_dist_param/'+str(int(v_id))+'/using_all_data.txt', np.array(res.x)) res_param = res.x fix_a_max = res_param[0] fix_desired_V = res_param[1] fix_a_comf = res_param[2] fix_S_jam = res_param[3] fix_desired_T = res_param[4] fix_beta = res_param[5] data_array = np.array([delta_V_n_t, S_n_t, V_n_t, a, t]).T data_array = data_array[data_array[:, -1].argsort()] t = np.array(data_array[:, 4]) # data_array = data_array[:, 0:-1] data = data_array.tolist() sample_size = 10000 i = 0 fix_sum_err = 0 tv_sum_err = 0 # tv_params = [] tv_params_mean = [] for frame in data: if i % 100 == 0: print(str(next_v)+"th vehicle v_id "+str(v_id)+" frame "+str(i)) if os.path.exists('0714_dist_param/' + str(int(v_id)) + '/' + str(int(i)) + '_tv_params.txt'): with open('0714_dist_param/' + str(int(v_id)) + '/' + str(int(i)) + '_tv_params.txt') as f: accept_tv_params = np.array([line.strip().split() for line in f], float) # accept_tv_params = np.loadtxt('0714_dist_param/' + str(int(v_id)) + '/' + str(int(i)) + '_tv_params.txt') # tv_params.append(accept_tv_params) a_max, desired_V, a_comf, S_jam, desired_T = get_mean_value(accept_tv_params) tv_params_mean.append([a_max, desired_V, a_comf, S_jam, desired_T]) else: if i == 0: return False, False, False print('0714_dist_param/' + str(int(v_id)) + '/' + str(int(i)) + '_tv_params.txt does not exist!!!') i += 1 a_max, desired_V, a_comf, S_jam, desired_T = fix_a_max, fix_desired_V, fix_a_comf, fix_S_jam, fix_desired_T tv_params_mean.append([a_max, desired_V, a_comf, S_jam, desired_T]) delta_V_n_t = frame[0] S_n_t = frame[1] V_n_t = frame[2] a_n_t = frame[3] fix_err = (a_n_t - IDM_cf_model_for_p(delta_V_n_t, S_n_t, V_n_t, fix_a_max, fix_desired_V, fix_a_comf, fix_S_jam, fix_desired_T, 4)) ** 2 fix_sum_err += fix_err # a_max, desired_V, a_comf, S_jam, desired_T = get_peak_value(accept_tv_params) a_n_t_hat = IDM_cf_model_for_p(delta_V_n_t, S_n_t, V_n_t, a_max, desired_V, a_comf, S_jam, desired_T, 4) tv_sum_err += (a_n_t_hat - a_n_t) ** 2 # if (a_n_t_hat - a_n_t) ** 2 > fix_err: # distributions = fit_posterior(accept_tv_params) # print("--------------------------------------------------------------------------------------------") # print(next_v, "v_id", v_id, "frame", i, "tv_err", (a_n_t_hat - a_n_t) ** 2, "fix_err", fix_err) # for param_name in ["a_max", "desired_V", "a_comf", "S_jam", "desired_T"]: # for dist in distributions[param_name]: # print(v_id, param_name, dist["distribution"], dist["fitted_param"], dist["sq_error"]) # print("--------------------------------------------------------------------------------------------") i += 1 print("all data %d | RMSE: %.4f | a_max: %.4f | desired_V: %.4f | a_comf: %.4f | S_jam: %.4f | desired_T: %.4f | beta: %.3f" % \ (v_id, np.sqrt(fix_sum_err / len(a)), res_param[0], res_param[1], res_param[2], res_param[3], res_param[4], res_param[5])) print(str(int(v_id)), "RMSE:", np.sqrt(fix_sum_err / len(a)), np.sqrt(tv_sum_err / len(a))) # print(str(int(v_id)), "mean:", np.mean(np.abs(a-a_hat)), np.std(np.abs(a-a_hat))) # tv_params = np.array(tv_params) # print(str(int(v_id)), "tv params:", tv_params.shape) np.savetxt('0714_dist_param/' + str(int(v_id)) + '/tv_params_mean.txt', np.array(tv_params_mean)) return np.array(tv_params_mean), np.sqrt(tv_sum_err / len(a)) def JS_divergence(p, q): # lb = boundary[0] # ub = boundary[1] # interval = (ub - lb) / 3000 # x = np.arange(lb, ub, interval) # p = eval("scipy.stats." + dist1["name"]).pdf(x, *dist1["param"]) # q = eval("scipy.stats." + dist2["name"]).pdf(x, *dist2["param"]) p = p.reshape(1000, 5) q = q.reshape(1000, 5) p = p.T q = q.T js = 0 for i in range(5): M = (p[i] + q[i]) / 2 js += 0.5 * scipy.stats.entropy(p[i], M) + 0.5 * scipy.stats.entropy(q[i], M) # print(js) return js def get_raw_features(next_v, v_id): print("-------------------------------------------------------------------------------------------------") print(str(next_v) + 'th vehicle with id ' + str(v_id)) if os.path.exists('0714_dist_param/' + str(int(v_id)) + '/tv_params_mean.txt'): tv_params_mean = np.loadtxt('0714_dist_param/'+str(int(v_id))+'/tv_params_mean.txt') else: return mean = np.mean(tv_params_mean, axis=0) std = np.std(tv_params_mean, axis=0) per25 = np.percentile(tv_params_mean, 0.25, axis=0) per75 = np.percentile(tv_params_mean, 0.75, axis=0) a_max_inc_diff_seq = [] a_max_dec_diff_seq = [] desired_V_inc_diff_seq = [] desired_V_dec_diff_seq = [] a_comf_inc_diff_seq = [] a_comf_dec_diff_seq = [] S_jam_inc_diff_seq = [] S_jam_dec_diff_seq = [] desired_T_inc_diff_seq = [] desired_T_dec_diff_seq = [] print(tv_params_mean.shape) for i in range(len(tv_params_mean) - 1): diff = tv_params_mean[i + 1] - tv_params_mean[i] if diff[0] > 0: a_max_inc_diff_seq.append(diff[0]) elif diff[0] < 0: a_max_dec_diff_seq.append(diff[0]) if diff[1] > 0: desired_V_inc_diff_seq.append(diff[1]) elif diff[1] < 0: desired_V_dec_diff_seq.append(diff[1]) if diff[2] > 0: a_comf_inc_diff_seq.append(diff[2]) elif diff[2] < 0: a_comf_dec_diff_seq.append(diff[2]) if diff[3] > 0: S_jam_inc_diff_seq.append(diff[3]) elif diff[3] < 0: S_jam_dec_diff_seq.append(diff[3]) if diff[4] > 0: desired_T_inc_diff_seq.append(diff[4]) elif diff[4] < 0: desired_T_dec_diff_seq.append(diff[4]) diff_seq = [np.mean(a_max_inc_diff_seq), np.std(a_max_inc_diff_seq), np.mean(a_max_dec_diff_seq), np.std(a_max_dec_diff_seq), np.mean(desired_V_inc_diff_seq), np.std(desired_V_inc_diff_seq), np.mean(desired_V_dec_diff_seq), np.std(desired_V_dec_diff_seq), np.mean(a_comf_inc_diff_seq), np.std(a_comf_inc_diff_seq), np.mean(a_comf_dec_diff_seq), np.std(a_comf_dec_diff_seq), np.mean(S_jam_inc_diff_seq), np.std(S_jam_inc_diff_seq), np.mean(S_jam_dec_diff_seq), np.std(S_jam_dec_diff_seq), np.mean(desired_T_inc_diff_seq), np.std(desired_T_inc_diff_seq), np.mean(desired_T_dec_diff_seq), np.std(desired_T_dec_diff_seq)] return mean, std, per25, per75, diff_seq def scale_features(mean_l, std_l, per25_l, per75_l, diff_seq_l): scaled_mean_l = minmax_scale(mean_l, axis=0) scaled_std_l = minmax_scale(std_l, axis=0) scaled_per25_l = minmax_scale(per25_l, axis=0) scaled_per75_l = minmax_scale(per75_l, axis=0) scaled_diff_seq_l = minmax_scale(diff_seq_l, axis=0) return scaled_mean_l, scaled_std_l, scaled_per25_l, scaled_per75_l, scaled_diff_seq_l def cal_agg_index(mean, per25, per75, diff_seq): # a_max, desired_v, a_comf, S_jam, deisred_T relation_op = [1, 1, 1, -1, -1] res1 = 0 res2 = 0 res3 = 0 for i in range(5): res1 += relation_op[i] * (mean[i] + per25[i] + per75[i]) res2 += relation_op[i] * (diff_seq[i * 4] + diff_seq[i * 4 + 1]) res3 += relation_op[i] * (diff_seq[i * 4 + 2] + diff_seq[i * 4 + 3]) return [res1, res2, res3] def cal_agg_matrix(mean, std, per25, per75, diff_seq): # a_max, desired_v, a_comf, S_jam, deisred_T relation_op = [1, 1, 1, -1, -1] agg_matrix = np.zeros((2, 5)) for i in range(5): agg_matrix[0][i] = mean[i] agg_matrix[1][i] = std[i] # agg_matrix[2][i] = per75[i] # agg_matrix[3][i] = diff_seq[i * 4] # agg_matrix[4][i] = diff_seq[i * 4 + 1] # agg_matrix[5][i] = diff_seq[i * 4 + 2] # agg_matrix[6][i] = diff_seq[i * 4 + 3] return agg_matrix def analyze_tv_params(v_id, tv_params, tv_params_mean): # plot tv_params_mean mkdir("0714_dist_param/" + str(int(v_id)) + "/tv_params_figure/") tv_params_mean = tv_params_mean.T # plt.figure() # plt.plot(range(len(tv_params_mean[0])), tv_params_mean[0], color="red") # plt.savefig("0714_dist_param/" + str(int(v_id)) + "/tv_params_figure/a_max.png") # plt.figure() # plt.plot(range(len(tv_params_mean[0])), tv_params_mean[1]/4, color="blue") # plt.savefig("0714_dist_param/" + str(int(v_id)) + "/tv_params_figure/desired_V.png") # plt.figure() # plt.plot(range(len(tv_params_mean[0])), tv_params_mean[2], color="green") # plt.savefig("0714_dist_param/" + str(int(v_id)) + "/tv_params_figure/a_comf.png") # plt.figure() # plt.plot(range(len(tv_params_mean[0])), tv_params_mean[3], color="orange") # plt.savefig("0714_dist_param/" + str(int(v_id)) + "/tv_params_figure/S_jam.png") # plt.figure() # plt.plot(range(len(tv_params_mean[0])), tv_params_mean[4], color="pink") # plt.savefig("0714_dist_param/" + str(int(v_id)) + "/tv_params_figure/all.png") # calculate cov cov = [] corrcoef = [] for t in range(len(tv_params)): params = tv_params[t].T cov.append(np.cov(params)) this_corrcoef = np.corrcoef(params) for i in range(5): this_corrcoef[i][i] = 0 corrcoef.append(this_corrcoef) print(
np.array(cov)
numpy.array
""" Test DOE Driver and Generators. """ import unittest import os import os.path import glob import csv import numpy as np import openmdao.api as om from openmdao.test_suite.components.paraboloid import Paraboloid from openmdao.test_suite.components.paraboloid_distributed import DistParab from openmdao.test_suite.groups.parallel_groups import FanInGrouped from openmdao.utils.assert_utils import assert_near_equal from openmdao.utils.general_utils import run_driver, printoptions from openmdao.utils.testing_utils import use_tempdirs from openmdao.utils.mpi import MPI try: from openmdao.vectors.petsc_vector import PETScVector except ImportError: PETScVector = None class ParaboloidArray(om.ExplicitComponent): """ Evaluates the equation f(x,y) = (x-3)^2 + x*y + (y+4)^2 - 3. Where x and y are xy[0] and xy[1] respectively. """ def setup(self): self.add_input('xy', val=np.array([0., 0.])) self.add_output('f_xy', val=0.0) def compute(self, inputs, outputs): """ f(x,y) = (x-3)^2 + xy + (y+4)^2 - 3 """ x = inputs['xy'][0] y = inputs['xy'][1] outputs['f_xy'] = (x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0 class ParaboloidDiscrete(om.ExplicitComponent): def setup(self): self.add_discrete_input('x', val=10, tags='xx') self.add_discrete_input('y', val=0, tags='yy') self.add_discrete_output('f_xy', val=0, tags='ff') def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): x = discrete_inputs['x'] y = discrete_inputs['y'] f_xy = (x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0 discrete_outputs['f_xy'] = int(f_xy) class ParaboloidDiscreteArray(om.ExplicitComponent): def setup(self): self.add_discrete_input('x', val=np.ones((2, )), tags='xx') self.add_discrete_input('y', val=np.ones((2, )), tags='yy') self.add_discrete_output('f_xy', val=np.ones((2, )), tags='ff') def compute(self, inputs, outputs, discrete_inputs, discrete_outputs): x = discrete_inputs['x'] y = discrete_inputs['y'] f_xy = (x - 3.0)**2 + x * y + (y + 4.0)**2 - 3.0 discrete_outputs['f_xy'] = f_xy.astype(np.int) class TestErrors(unittest.TestCase): def test_generator_check(self): prob = om.Problem() with self.assertRaises(TypeError) as err: prob.driver = om.DOEDriver(om.FullFactorialGenerator) self.assertEqual(str(err.exception), "DOEDriver requires an instance of DOEGenerator, " "but a class object was found: FullFactorialGenerator") with self.assertRaises(TypeError) as err: prob.driver = om.DOEDriver(om.Problem()) self.assertEqual(str(err.exception), "DOEDriver requires an instance of DOEGenerator, " "but an instance of Problem was found.") def test_lhc_criterion(self): with self.assertRaises(ValueError) as err: om.LatinHypercubeGenerator(criterion='foo') self.assertEqual(str(err.exception), "Invalid criterion 'foo' specified for LatinHypercubeGenerator. " "Must be one of ['center', 'c', 'maximin', 'm', 'centermaximin', " "'cm', 'correlation', 'corr', None].") @use_tempdirs class TestDOEDriver(unittest.TestCase): def setUp(self): self.expected_fullfact3 = [ {'x': np.array([0.]), 'y': np.array([0.]), 'f_xy': np.array([22.00])}, {'x': np.array([.5]), 'y': np.array([0.]), 'f_xy': np.array([19.25])}, {'x': np.array([1.]), 'y': np.array([0.]), 'f_xy': np.array([17.00])}, {'x': np.array([0.]), 'y': np.array([.5]), 'f_xy': np.array([26.25])}, {'x': np.array([.5]), 'y': np.array([.5]), 'f_xy': np.array([23.75])}, {'x': np.array([1.]), 'y': np.array([.5]), 'f_xy': np.array([21.75])}, {'x': np.array([0.]), 'y': np.array([1.]), 'f_xy': np.array([31.00])}, {'x': np.array([.5]), 'y': np.array([1.]), 'f_xy': np.array([28.75])}, {'x': np.array([1.]), 'y': np.array([1.]), 'f_xy': np.array([27.00])}, ] def test_no_generator(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.), promotes=['*']) model.add_subsystem('p2', om.IndepVarComp('y', 0.), promotes=['*']) model.add_subsystem('comp', Paraboloid(), promotes=['*']) model.add_design_var('x', lower=-10, upper=10) model.add_design_var('y', lower=-10, upper=10) model.add_objective('f_xy') prob.driver = om.DOEDriver() prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.setup() prob.run_driver() prob.cleanup() cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 0) def test_list(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() # create a list of DOE cases case_gen = om.FullFactorialGenerator(levels=3) cases = list(case_gen(model.get_design_vars(recurse=True))) # create DOEDriver using provided list of cases prob.driver = om.DOEDriver(cases) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.run_driver() prob.cleanup() expected = self.expected_fullfact3 cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_list_errors(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() # data does not contain a list cases = {'desvar': 1.0} with self.assertRaises(RuntimeError) as err: prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) self.assertEqual(str(err.exception), "Invalid DOE case data, " "expected a list but got a dict.") # data contains a list of non-list cases = [{'desvar': 1.0}] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "expecting a list of name/value pairs:\n{'desvar': 1.0}") # data contains a list of list, but one has the wrong length cases = [ [['p1.x', 0.], ['p2.y', 0.]], [['p1.x', 1.], ['p2.y', 1., 'foo']] ] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "expecting a list of name/value pairs:\n" "[['p1.x', 1.0], ['p2.y', 1.0, 'foo']]") # data contains a list of list, but one case has an invalid design var cases = [ [['p1.x', 0.], ['p2.y', 0.]], [['p1.x', 1.], ['p2.z', 1.]] ] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "'p2.z' is not a valid design variable:\n" "[['p1.x', 1.0], ['p2.z', 1.0]]") # data contains a list of list, but one case has multiple invalid design vars cases = [ [['p1.x', 0.], ['p2.y', 0.]], [['p1.y', 1.], ['p2.z', 1.]] ] prob.driver = om.DOEDriver(generator=om.ListGenerator(cases)) with self.assertRaises(RuntimeError) as err: prob.run_driver() self.assertEqual(str(err.exception), "Invalid DOE case found, " "['p1.y', 'p2.z'] are not valid design variables:\n" "[['p1.y', 1.0], ['p2.z', 1.0]]") def test_csv(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) model.set_input_defaults('x', 0.0) model.set_input_defaults('y', 0.0) model.add_design_var('x', lower=0.0, upper=1.0) model.add_design_var('y', lower=0.0, upper=1.0) model.add_objective('f_xy') prob.setup() # create a list of DOE cases case_gen = om.FullFactorialGenerator(levels=3) cases = list(case_gen(model.get_design_vars(recurse=True))) # generate CSV file with cases header = [var for (var, val) in cases[0]] with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([val for _, val in case]) # create DOEDriver using generated CSV file prob.driver = om.DOEDriver(om.CSVGenerator('cases.csv')) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.run_driver() prob.cleanup() expected = self.expected_fullfact3 cr = om.CaseReader("cases.sql") cases = cr.list_cases('driver', out_stream=None) self.assertEqual(len(cases), 9) for case, expected_case in zip(cases, expected): outputs = cr.get_case(case).outputs for name in ('x', 'y', 'f_xy'): self.assertEqual(outputs[name], expected_case[name]) def test_csv_array(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', [0., 1.])) model.add_subsystem('p2', om.IndepVarComp('y', [0., 1.])) model.add_subsystem('comp1', Paraboloid()) model.add_subsystem('comp2', Paraboloid()) model.connect('p1.x', 'comp1.x', src_indices=[0]) model.connect('p2.y', 'comp1.y', src_indices=[0]) model.connect('p1.x', 'comp2.x', src_indices=[1]) model.connect('p2.y', 'comp2.y', src_indices=[1]) model.add_design_var('p1.x', lower=0.0, upper=1.0) model.add_design_var('p2.y', lower=0.0, upper=1.0) prob.setup() # create a list of DOE cases case_gen = om.FullFactorialGenerator(levels=2) cases = list(case_gen(model.get_design_vars(recurse=True))) # generate CSV file with cases header = [var for var, _ in cases[0]] with open('cases.csv', 'w') as f: writer = csv.writer(f) writer.writerow(header) for case in cases: writer.writerow([val for _, val in case]) # create DOEDriver using generated CSV file prob.driver = om.DOEDriver(om.CSVGenerator('cases.csv')) prob.driver.add_recorder(om.SqliteRecorder("cases.sql")) prob.run_driver() prob.cleanup() expected = [ {'p1.x': np.array([0., 0.]), 'p2.y':
np.array([0., 0.])
numpy.array
"""Implements the forward mode of automatic differentiation This module implements the forward mode of automatic differentiation. It does this by overloading the many math dunder methods that are provided in Python such as __add__, __sub__, __mul__, etc. In addition to these primitive functions, this module also defines the elementary functions such as the trigonometric functions, hyperbolic functions, logarithms, exponentials, and logistic function. To create a new function of a variable, you can instantiate a variable with an initial value using the constructor Forward. For example, Forward('x', 1) creates a variable named 'x' with initial value 1. If we use this value in mathematical operations, then we will create more Forward objects that we can access. To get the results of computation, we can access the actual value by doing .value on the Forward object at hand. To get the gradient with respect to a certain variable, we can call .get_gradient(variable_name) on the Forward object. """ import numpy as np np.seterr(all="ignore") def _coerce(arg): """Private function which does the actual coercion of a type into a Forward object. """ if isinstance(arg, Forward): return arg # we support complex numbers too! if isinstance(arg, (float, int, complex)): return Forward(arg) # otherwise raise ValueError cause we don't support raise ValueError(type(arg)) def coerce(fun): """Decorates a function and coerces each of the inputs of the function into a Forward object. Many of our functions would like to operate on Forward objects instead of raw values. For example, __add__ might get an integer in the case of Forward('x', 5) + 2, but we want the 2 to be wrapped in a Forward object. This decorator automates that process and cleans up the code. """ def ret_f(*args): new_args = [_coerce(arg) for arg in args] return fun(*new_args) return ret_f class Forward: """The primary class of the forward mode of automatic differentiation. The Forward class can be used to instantiate the forward mode of automatic differentiation. By overloading the many dunder methods of Python, this class enables the user to seamlessly define the forward computation of a function while simultaneously deriving the gradient. The result of the computation can be accessed via the .value attribute of the object. The gradient can be accessed by the .get_gradient(variable_name) method which returns the gradient with respect to a particular variable. The object can be instantiated with one or two arguments. If one argument is provided, it must be a numeric type. This represents a constant within automatic differentiation. If two arguments are provided, the first must be a string, which represents the variable name, and the second must be a numeric type, which represents the value of that variable. """ def __init__(self, *args): if len(args) == 1: value = args[0] if not isinstance(value, (int, float, complex)): raise ValueError self.derivatives = {} self.value = value elif len(args) == 2: var_name, value = args if not isinstance(var_name, str): raise ValueError if not isinstance(value, (int, float, complex)): raise ValueError # initialize the variable to have derivative 1 self.derivatives = {var_name: 1} self.value = value else: raise ValueError("Incorrect number of args") def get_gradient(self, var_name): """Gets the gradient with respect to a particular variable. Accesses the .derivatives dictionary of the Forward object which stores the results of the computations that were done by the duner methods during the computation of the result and gradient. If the variable name is not within the dictionary, this implies that the expression was constant and the derivative should be zero. If the stored value is nan, this means there was some error during the computation or the gradient does not exist at that point. """ grad = self.derivatives.get(var_name, 0) # check to see if the computatino was nan, indicating that the gradient # most likely does not exist if
np.isnan(grad)
numpy.isnan
import numpy as np import sys import math from itertools import combinations class Sphere: def __init__(self, name, mass, radius, xpos, ypos, zpos, xvel, yvel, zvel): self.name = name self.radius = radius self.mass = mass self.pos =
np.array((xpos, ypos, zpos))
numpy.array
""" This is a self-standing module that calculates limb darkening parameters for either 1D or 3D stellar models. It returns the parameters for 4-parameter, 3-parameter, quadratic and linear limb darkening models. """ import os import numpy as np import pandas as pd from scipy.io import readsav from scipy.interpolate import interp1d, splev, splrep from astropy.modeling.models import custom_model from astropy.modeling.fitting import LevMarLSQFitter def limb_dark_fit(mode, wsdata, M_H, Teff, logg, dirsen, ld_model='1D', custom_wave=None, custom_sen=None): """ Calculates stellar limb-darkening coefficients for a given wavelength bin. Modes Currently Supported: Spectroscopic: HST STIS G750L, G750M, G430L gratings HST WFC3 UVIS/G280+1, UVIS/G280-1, IR/G102, IR/G141 grisms JWST NIRSpec Prism, G395H, G395M, G235H, G235M, G140H-f100, G140M-f100, G140H-f070, G140M-f070 JWST NIRISS SOSSo1, SOSSo2 JWST NIRCam F322W2, F444 JWST MIRI LRS Photometric: TESS Spitzer IRAC Ch1 (3.6 microns), Ch2 (4.5 microns) Custom throughput model Procedure from Sing et al. (2010, A&A, 510, A21). Uses 3D limb darkening from Magic et al. (2015, A&A, 573, 90). Uses photon FLUX Sum over (lambda*dlamba). :param mode: string; mode to use Spectroscopic: ('STIS_G430L','STIS_G750L', 'WFC3_G280p1', 'WFC3_G280n1', 'WFC3_G102', 'WFC3_G141', 'NIRSpec_Prism', 'NIRSpec_G395H', 'NIRSpec_G395M', 'NIRSpec_G235H', 'NIRSpec_G235M', 'NIRSpec_G140Hf100', 'NIRSpec_G140Mf100', 'NIRSpec_G140Hf070', 'NIRSpec_G140Mf070', 'NIRISS_SOSSo1', 'NIRISS_SOSSo2', 'NIRCam_F322W2', 'NIRCam_F444', 'MIRI_LRS'), Photometric: ('IRAC_Ch1', 'IRAC_Ch2', 'TESS'), Custom: ('Custom') :param wsdata: array; data wavelength solution for range required :param M_H: float; stellar metallicity :param Teff: float; stellar effective temperature (K) :param logg: float; stellar gravity :param dirsen: string; path to main limb darkening directory downloaded from Zenodo V2.1 :param ld_model: string; '1D' or '3D', makes choice between limb darkening models; default is 1D ;optional param custom_wave: array; wavelength array for custom throughput profile ;optional param custom_sen: array; throughput for custom instrument profile (values between 0 and 1) :return: uLD: float; linear limb darkening coefficient aLD, bLD: float; quadratic limb darkening coefficients cp1, cp2, cp3, cp4: float; three-parameter limb darkening coefficients c1, c2, c3, c4: float; non-linear limb-darkening coefficients """ print('You are using the', str(ld_model), 'limb darkening models.') if ld_model == '1D': direc = os.path.join(dirsen, 'Kurucz') print('Current Directories Entered:') print(' ' + dirsen) print(' ' + direc) # Select metallicity M_H_Grid = np.array([-0.1, -0.2, -0.3, -0.5, -1.0, -1.5, -2.0, -2.5, -3.0, -3.5, -4.0, -4.5, -5.0, 0.0, 0.1, 0.2, 0.3, 0.5, 1.0]) M_H_Grid_load = np.array([0, 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 20, 21, 22, 23, 24]) optM = (abs(M_H - M_H_Grid)).argmin() MH_ind = M_H_Grid_load[optM] # Determine which model is to be used, by using the input metallicity M_H to figure out the file name we need file_list = 'kuruczlist.sav' sav1 = readsav(os.path.join(direc, file_list)) model = bytes.decode(sav1['li'][MH_ind]) # Convert object of type "byte" to "string" # Select Teff and subsequently logg Teff_Grid = np.array([3500, 3750, 4000, 4250, 4500, 4750, 5000, 5250, 5500, 5750, 6000, 6250, 6500]) optT = (abs(Teff - Teff_Grid)).argmin() logg_Grid = np.array([4.0, 4.5, 5.0]) optG = (abs(logg - logg_Grid)).argmin() if logg_Grid[optG] == 4.0: Teff_Grid_load =
np.array([8, 19, 30, 41, 52, 63, 74, 85, 96, 107, 118, 129, 138])
numpy.array
#!/usr/bin/env python """ This is an example script showing how to do parallel regridding with ESMPy. ESMPy abstracts some of the parallel components from the user so that very few calls to mpi4py methods are necessary. """ import ESMF import matplotlib.pyplot as plt from mpi4py import MPI import numpy as np __author__ = "<NAME>" __copyright__ = "Copyright 2017" __email__ = "<EMAIL>" __license__ = "MIT" __maintainer__ = "<NAME>" __version__ = "1.0.1" ############################################# CONFIG ############################################# # This is the variable that will be interpolated. A few others are possible. IVAR = 'dpc' # This will toggle the use of the `Gatherv` method. The `Gatherv` method can # send unequal chunks of numpy arrays to other MPI processes. This will # **generally** be faster than the `gather` method that sends python objects. # From my limited experience, `Gatherv` is faster for larger grids, but not grids # that are as small as being used in this example. As always, test for yourself # on your system to determine the best choice for your particular use case. GATHERV = True # Toggle some informative print statements VERBOSE = True # Toggle plot, saves otherwise PLOT = True # Below, you will see arrays that are transposed. This is done to get the arrays into Fortran # contiguous memory order. ESMF subroutines that are called are written in Fortran and passing # arrays with their native memory order will help improve efficiency. Unfortunately, these # changes can make the logic of the script less intuitive. The efficiency gain will mostly affect # larger grid sizes. The good news is that you can remove the the transpose (`.T`) calls from the # arrays and go back to the original, straightforward code without a problem. FORTRAN_CONTIGUOUS = True ################################################################################################## def get_processor_bounds(target, staggerloc): """ :param target: The grid object from which to extract local bounds. :type target: :class:`ESMF.Grid` :return: A tuple of integer bounds. See ``return`` statement. :rtype: tuple """ # The lower_bounds and upper_bounds properties give us global indices of the processor local # bounds. The assumed dimension order is Z, Y, X (based on the data being used in this example) x_lower_bound = target.lower_bounds[staggerloc][1] x_upper_bound = target.upper_bounds[staggerloc][1] y_lower_bound = target.lower_bounds[staggerloc][0] y_upper_bound = target.upper_bounds[staggerloc][0] return x_lower_bound, x_upper_bound, y_lower_bound, y_upper_bound # Turn on the debugger. An output file for each process will be produced ESMF.Manager(debug=True) # Set up MPI communicator and get environment information comm = MPI.COMM_WORLD rank = comm.rank size = comm.size if rank == 0 and VERBOSE: print('Loading data...') #RUC Grid (this will be the source grid) with
np.load('ruc2_130_20120414_1200_006.npz')
numpy.load
# plotting import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns # numpy import numpy as np # scipy import scipy as sp import scipy.interpolate from scipy.special import erfinv, erf from scipy.stats import poisson as pss import scipy.fftpack import scipy.sparse # jit from numba import jit import ctypes import astropy import astropy as ap from astropy.convolution import convolve_fft, AiryDisk2DKernel import pickle # multiprocessing import multiprocessing as mp from copy import deepcopy # utilities import os, time, sys, glob, fnmatch, inspect, traceback, functools # HealPix import healpy as hp # ignore warnings if not in diagnostic mode import warnings #seterr(divide='raise', over='raise', invalid='raise') #seterr(all='raise') #seterr(under='ignore') #warnings.simplefilter('ignore') #np.set_printoptions(linewidth=180) #sns.set(context='poster', style='ticks', color_codes=True) import h5py # utilities # secondaries ## Symbolic Jacobian calculation #import sympy # tdpy import tdpy from tdpy.util import summgene # photometry related ### find the spectra of sources def retr_spec(gdat, flux, sind=None, curv=None, expc=None, sindcolr=None, elin=None, edisintp=None, sigm=None, gamm=None, spectype='powr', plot=False): if gdat.numbener == 1: spec = flux[None, :] else: if plot: meanener = gdat.meanpara.enerplot else: meanener = gdat.meanpara.ener if gmod.spectype == 'gaus': spec = 1. / edis[None, :] / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis[None, :])**2) if gmod.spectype == 'voig': args = (gdat.meanpara.ener[:, None] + 1j * gamm[None, :]) / np.sqrt(2.) / sigm[None, :] spec = 1. / sigm[None, :] / np.sqrt(2. * pi) * flux[None, :] * real(scipy.special.wofz(args)) if gmod.spectype == 'edis': edis = edisintp(elin)[None, :] spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'pvoi': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'lore': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'powr': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) if gmod.spectype == 'colr': if plot: spec = np.zeros((gdat.numbenerplot, flux.size)) else: spec = np.empty((gdat.numbener, flux.size)) for i in gdat.indxener: if i < gdat.indxenerpivt: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i]) elif i == gdat.indxenerpivt: spec[i, :] = flux else: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i-1]) if gmod.spectype == 'curv': spec = flux[None, :] * meanener[:, None]**(-sind[None, :] - gdat.factlogtenerpivt[:, None] * curv[None, :]) if gmod.spectype == 'expc': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) * np.exp(-(meanener - gdat.enerpivt)[:, None] / expc[None, :]) return spec ### find the surface brightness due to one point source def retr_sbrtpnts(gdat, lgal, bgal, spec, psfnintp, indxpixlelem): # calculate the distance to all pixels from each point source dist = retr_angldistunit(gdat, lgal, bgal, indxpixlelem) # interpolate the PSF onto the pixels if gdat.kernevaltype == 'ulip': psfntemp = psfnintp(dist) if gdat.kernevaltype == 'bspx': pass # scale by the PS spectrum sbrtpnts = spec[:, None, None] * psfntemp return sbrtpnts def retr_psfnwdth(gdat, psfn, frac): ''' Return the PSF width ''' wdth = np.zeros((gdat.numbener, gdat.numbevtt)) for i in gdat.indxener: for m in gdat.indxevtt: psfntemp = psfn[i, :, m] indxanglgood = np.argsort(psfntemp) intpwdth = max(frac * np.amax(psfntemp), np.amin(psfntemp)) if intpwdth >= np.amin(psfntemp[indxanglgood]) and intpwdth <= np.amax(psfntemp[indxanglgood]): wdthtemp = sp.interpolate.interp1d(psfntemp[indxanglgood], gdat.binspara.angl[indxanglgood], fill_value='extrapolate')(intpwdth) else: wdthtemp = 0. wdth[i, m] = wdthtemp return wdth # lensing-related def samp_lgalbgalfromtmpl(gdat, probtmpl): indxpixldraw = np.random.choice(gdat.indxpixl, p=probtmpl) lgal = gdat.lgalgrid[indxpixldraw] + randn(gdat.sizepixl) bgal = gdat.bgalgrid[indxpixldraw] + randn(gdat.sizepixl) return lgal, bgal ## custom random variables, pdfs, cdfs and icdfs ### probability distribution functions def retr_lprbpois(data, modl): lprb = data * np.log(modl) - modl - sp.special.gammaln(data + 1) return lprb ### probability density functions def pdfn_self(xdat, minm, maxm): pdfn = 1. / (maxm - minm) return pdfn def pdfn_expo(xdat, maxm, scal): if (xdat > maxm).any(): pdfn = 0. else: pdfn = 1. / scal / (1. - np.exp(-maxm / scal)) * np.exp(-xdat / scal) return pdfn def pdfn_dexp(xdat, maxm, scal): pdfn = 0.5 * pdfn_expo(np.fabs(xdat), maxm, scal) return pdfn def pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr): if np.isscalar(xdat): xdat = np.array([xdat]) faca = 1. / (brek**(sloplowr - slopuppr) * (brek**(1. - sloplowr) - minm**(1. - sloplowr)) / \ (1. - sloplowr) + (maxm**(1. - slopuppr) - brek**(1. - slopuppr)) / (1. - slopuppr)) facb = faca * brek**(sloplowr - slopuppr) / (1. - sloplowr) pdfn = np.empty_like(xdat) indxlowr = np.where(xdat <= brek)[0] indxuppr = np.where(xdat > brek)[0] if indxlowr.size > 0: pdfn[indxlowr] = faca * brek**(sloplowr - slopuppr) * xdat[indxlowr]**(-sloplowr) if indxuppr.size > 0: pdfn[indxuppr] = faca * xdat[indxuppr]**(-slopuppr) return pdfn def pdfn_powr(xdat, minm, maxm, slop): norm = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) pdfn = norm * xdat**(-slop) return pdfn def pdfn_logt(xdat, minm, maxm): pdfn = 1. / (np.log(maxm) - np.log(minm)) / xdat return pdfn def pdfn_igam(xdat, slop, cutf): pdfn = sp.stats.invgamma.pdf(xdat, slop - 1., scale=cutf) return pdfn def pdfn_lnor(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_gaus(xdat, mean, stdv): pdfn = 1. / np.sqrt(2. * pi) / stdv * np.exp(-0.5 * ((xdat - mean) / stdv)**2) return pdfn def pdfn_lgau(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_atan(para, minmpara, maxmpara): pdfn = 1. / (para**2 + 1.) / (np.arctan(maxmpara) - np.arctan(minmpara)) return pdfn def cdfn_paragenrscalbase(gdat, strgmodl, paragenrscalbase, thisindxparagenrbase): gmod = getattr(gdat, strgmodl) scalparagenrbase = gmod.scalpara.genrbase[thisindxparagenrbase] if scalparagenrbase == 'self' or scalparagenrbase == 'logt' or scalparagenrbase == 'atan': listminmparagenrscalbase = gmod.minmpara.genrbase[thisindxparagenrbase] factparagenrscalbase = gmod.factparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'self': paragenrscalbaseunit = cdfn_self(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'logt': paragenrscalbaseunit = cdfn_logt(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'atan': gmod.listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[thisindxparagenrbase] paragenrscalbaseunit = cdfn_atan(paragenrscalbase, listminmparagenrscalbase, gmod.listmaxmparagenrscalbase) elif scalparagenrbase == 'gaus' or scalparagenrbase == 'eerr': gmod.listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[thisindxparagenrbase] gmod.liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'eerr': gmod.cdfnlistminmparagenrscalbaseunit = gmod.cdfnlistminmparagenrscalbaseunit[thisindxparagenrbase] gmod.listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[thisindxparagenrbase] paragenrscalbaseunit = cdfn_eerr(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase, \ gmod.cdfnlistminmparagenrscalbaseunit, gmod.listparagenrscalbaseunitdiff) else: paragenrscalbaseunit = cdfn_gaus(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase) elif scalparagenrbase == 'pois': paragenrscalbaseunit = paragenrscalbase if gdat.booldiagmode: if paragenrscalbaseunit == 0: print('Warning. CDF is zero.') return paragenrscalbaseunit def icdf_paragenrscalfull(gdat, strgmodl, paragenrunitfull, indxparagenrfullelem): gmod = getattr(gdat, strgmodl) # tobechanged # temp -- change zeros to empty paragenrscalfull = np.zeros_like(paragenrunitfull) for scaltype in gdat.listscaltype: listindxparagenrbasescal = gmod.listindxparagenrbasescal[scaltype] if len(listindxparagenrbasescal) == 0: continue paragenrscalfull[listindxparagenrbasescal] = icdf_paragenrscalbase(gdat, strgmodl, paragenrunitfull[listindxparagenrbasescal], scaltype, listindxparagenrbasescal) if not np.isfinite(paragenrscalfull).all(): raise Exception('') if indxparagenrfullelem is not None: for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: indxparagenrfulltemp = indxparagenrfullelem[l][gmod.namepara.genrelem[l][g]] if indxparagenrfulltemp.size == 0: continue paragenrscalfull[indxparagenrfulltemp] = icdf_trap(gdat, strgmodl, paragenrunitfull[indxparagenrfulltemp], paragenrscalfull, \ gmod.listscalparagenrelem[l][g], gmod.namepara.genrelem[l][g], l) if gdat.booldiagmode: if not np.isfinite(paragenrscalfull[indxparagenrfulltemp]).all(): raise Exception('') if not np.isfinite(paragenrscalfull).all(): raise Exception('') return paragenrscalfull def icdf_paragenrscalbase(gdat, strgmodl, paragenrunitbase, scaltype, indxparagenrbasescal): gmod = getattr(gdat, strgmodl) if scaltype == 'self' or scaltype == 'logt' or scaltype == 'atan': minmparagenrscalbase = gmod.minmpara.genrbase[indxparagenrbasescal] factparagenrscalbase = gmod.factpara.genrbase[indxparagenrbasescal] if scaltype == 'self': paragenrscalbase = tdpy.icdf_self(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'logt': paragenrscalbase = tdpy.icdf_logt(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'atan': listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_atan(paragenrunitbase, minmparagenrscalbase, listmaxmparagenrscalbase) elif scaltype == 'gaus' or scaltype == 'eerr': listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[indxparagenrbasescal] liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[indxparagenrbasescal] if scaltype == 'eerr': cdfnminmparagenrscalbaseunit = gmod.cdfnminmparagenrscalbaseunit[indxparagenrbasescal] listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_eerr(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase, cdfnminmparagenrscalbaseunit, listparagenrscalbaseunitdiff) else: paragenrscalbase = tdpy.icdf_gaus(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase) elif scaltype == 'pois': paragenrscalbase = paragenrunitbase if gdat.booldiagmode: if not np.isfinite(paragenrscalbase).all(): print('scaltype') print(scaltype) print('paragenrscalbase') print(paragenrscalbase) print('type(paragenrscalbase)') print(type(paragenrscalbase)) print('paragenrscalbase.dtype') print(paragenrscalbase.dtype) raise Exception('') return paragenrscalbase def icdf_trap(gdat, strgmodl, cdfn, paragenrscalfull, scalcomp, nameparagenrelem, l): gmod = getattr(gdat, strgmodl) if scalcomp == 'self' or scalcomp == 'powr' or scalcomp == 'dpowslopbrek' or scalcomp == 'logt': minm = getattr(gmod.minmpara, nameparagenrelem) if scalcomp != 'self': maxm = getattr(gmod.maxmpara, nameparagenrelem) if scalcomp == 'powr': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio%spop%d' % (nameparagenrelem, l))] if gdat.booldiagmode: if not np.isfinite(slop): raise Exception('') if maxm < minm: raise Exception('') icdf = tdpy.icdf_powr(cdfn, minm, maxm, slop) if scalcomp == 'dpowslopbrek': distbrek = paragenrscalfull[getattr(gmod.indxpara, 'brekprio' + nameparagenrelem)[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + nameparagenrelem)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + nameparagenrelem)[l]] icdf = tdpy.icdf_dpow(cdfn, minm, maxm, distbrek, sloplowr, slopuppr) if scalcomp == 'expo': sexp = getattr(gmod, nameparagenrelem + 'distsexppop%d' % l) icdf = tdpy.icdf_expo(cdfn, maxm, sexp) if scalcomp == 'self': fact = getattr(gmod.factpara, nameparagenrelem) icdf = tdpy.icdf_self_fact(cdfn, minm, fact) if scalcomp == 'logt': icdf = tdpy.icdf_logt(cdfn, minm, fact) if scalcomp == 'dexp': scal = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] icdf = tdpy.icdf_dexp(cdfn, maxm, scal) if scalcomp == 'lnormeanstdv': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_lnor(cdfn, distmean, diststdv) if scalcomp == 'igam': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem)[l]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) icdf = tdpy.icdf_igam(cdfn, slop, cutf) if scalcomp == 'gaus': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_gaus(cdfn, distmean, diststdv) if gdat.booldiagmode: if not np.isfinite(icdf).all(): print('icdf') print(icdf) raise Exception('') return icdf def cdfn_trap(gdat, gdatmodi, strgmodl, icdf, indxpoplthis): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmod.listscalparagenrelem = gmod.listscalparagenrelem[indxpoplthis] cdfn = np.empty_like(icdf) for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[indxpoplthis]): if gmod.listscalparagenrelem[k] == 'self' or gmod.listscalparagenrelem[k] == 'dexp' or gmod.listscalparagenrelem[k] == 'expo' \ or gmod.listscalparagenrelem[k] == 'powr' or gmod.listscalparagenrelem[k] == 'dpowslopbrek': minm = getattr(gdat.fitt.minm, nameparagenrelem) if gmod.listscalparagenrelem[k] == 'powr': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) slop = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cdfn[k] = cdfn_powr(icdf[k], minm, maxm, slop) elif gmod.listscalparagenrelem[k] == 'dpowslopbrek': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) brek = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[indxpoplthis]] sloplowr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[indxpoplthis]] slopuppr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[indxpoplthis]] cdfn[k] = cdfn_dpow(icdf[k], minm, maxm, brek, sloplowr, slopuppr) else: fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) cdfn[k] = cdfn_self(icdf[k], minm, fact) if gmod.listscalparagenrelem[k] == 'lnormeanstdv': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_lnor(icdf[k], distmean, slop) if gmod.listscalparagenrelem[k] == 'igam': slop = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) cdfn[k] = cdfn_igam(icdf[k], slop, cutf) if gmod.listscalparagenrelem[k] == 'gaus': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_gaus(icdf[k], distmean, diststdv) return cdfn ### update sampler state def updt_stat(gdat, gdatmodi): if gdat.typeverb > 1: print('updt_stat()') # update the sample and the unit sample vectors gdatmodi.this.lpritotl = gdatmodi.next.lpritotl gdatmodi.this.lliktotl = gdatmodi.next.lliktotl gdatmodi.this.lpostotl = gdatmodi.next.lpostotl gdatmodi.this.paragenrscalfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrscalfull[gdatmodi.indxsampmodi]) gdatmodi.this.paragenrunitfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrunitfull[gdatmodi.indxsampmodi]) if gdatmodi.this.indxproptype > 0: gdatmodi.this.indxelemfull = deepcopy(gdatmodi.next.indxelemfull) gdatmodi.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdatmodi.this.indxelemfull, 'fitt') def initcompfromstat(gdat, gdatmodi, namerefr): for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): minm = getattr(gdat.fitt.minmpara, nameparagenrelem) maxm = getattr(gdat.fitt.maxmpara, nameparagenrelem) try: comp = getattr(gdat, namerefr + nameparagenrelem)[l][0, :] if gmod.listscalparagenrelem[l][g] == 'self' or gmod.listscalparagenrelem[l][g] == 'logt': fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) if gmod.listscalparagenrelem[l][g] == 'self': compunit = cdfn_self(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'logt': compunit = cdfn_logt(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'expo': scal = getattr(gdat.fitt, 'gangdistsexp') maxm = getattr(gdat.fitt.maxm, nameparagenrelem) compunit = cdfn_expo(icdf, maxm, scal) if gmod.listscalparagenrelem[l][g] == 'powr' or gmod.listscalparagenrelem[l][g] == 'igam': slop = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[l]] if gmod.listscalparagenrelem[l][g] == 'powr': compunit = cdfn_powr(comp, minm, maxm, slop) if gmod.listscalparagenrelem[l][g] == 'igam': cutf = getattr(gdat, 'cutf' + nameparagenrelem) compunit = cdfn_igam(comp, slop, cutf) if gmod.listscalparagenrelem[l][g] == 'dpowslopbrek': brek = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[l]] sloplowr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[l]] slopuppr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[l]] compunit = cdfn_powr(comp, minm, maxm, brek, sloplowr, slopuppr) if gmod.listscalparagenrelem[l][g] == 'gaus': distmean = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[l]] diststdv = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[l]] compunit = cdfn_gaus(comp, distmean, diststdv) except: if gdat.typeverb > 0: print('Initialization from the reference catalog failed for %s. Sampling randomly...' % nameparagenrelem) compunit = np.random.rand(gdatmodi.this.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int)) gdatmodi.this.paragenrunitfull[gdatmodi.this.indxparagenrfullelem[l][nameparagenrelem]] = compunit ### find the set of pixels in proximity to a position on the map def retr_indxpixlelemconc(gdat, strgmodl, dictelem, l): gmod = getattr(gdat, strgmodl) lgal = dictelem[l]['lgal'] bgal = dictelem[l]['bgal'] varbampl = dictelem[l][gmod.nameparagenrelemampl[l]] if gmod.typeelemspateval[l] == 'locl': listindxpixlelem = [[] for k in range(lgal.size)] for k in range(lgal.size): indxpixlpnts = retr_indxpixl(gdat, bgal[k], lgal[k]) indxfluxproxtemp = np.digitize(varbampl[k], gdat.binspara.prox) if indxfluxproxtemp > 0: indxfluxproxtemp -= 1 if indxfluxproxtemp == gdat.binspara.prox.size - 1: print('Warning! Index of the proximity pixel list overflew. Taking the largest list...') indxfluxproxtemp -= 1 indxpixlelem = gdat.indxpixlprox[indxfluxproxtemp][indxpixlpnts] if isinstance(indxpixlelem, int): indxpixlelem = gdat.indxpixl listindxpixlelem[k] = indxpixlelem listindxpixlelemconc = np.unique(np.concatenate(listindxpixlelem)) else: listindxpixlelemconc = gdat.indxpixl listindxpixlelem = gdat.indxpixl return listindxpixlelem, listindxpixlelemconc ### find the distance between two points on the map def retr_angldistunit(gdat, lgal, bgal, indxpixlelem, retranglcosi=False): if gdat.typepixl == 'heal': xdat, ydat, zaxi = retr_unit(lgal, bgal) anglcosi = gdat.xdatgrid[indxpixlelem] * xdat + gdat.ydatgrid[indxpixlelem] * ydat + gdat.zaxigrid[indxpixlelem] * zaxi if retranglcosi: return anglcosi else: angldist = np.arccos(anglcosi) return angldist else: angldist = np.sqrt((lgal - gdat.lgalgrid[indxpixlelem])**2 + (bgal - gdat.bgalgrid[indxpixlelem])**2) return angldist ### find the pixel index of a point on the map def retr_indxpixl(gdat, bgal, lgal): if gdat.typepixl == 'heal': indxpixl = gdat.pixlcnvt[hp.ang2pix(gdat.numbsideheal, np.pi / 2. - bgal, lgal)] if gdat.booldiagmode: if (indxpixl == -1).any(): raise Exception('pixlcnvt went negative!') if gdat.typepixl == 'cart': indxlgcr = np.floor(gdat.numbsidecart * (lgal - gdat.minmlgaldata) / 2. / gdat.maxmgangdata).astype(int) indxbgcr = np.floor(gdat.numbsidecart * (bgal - gdat.minmbgaldata) / 2. / gdat.maxmgangdata).astype(int) if np.isscalar(indxlgcr): if indxlgcr < 0: indxlgcr = 0 if indxlgcr >= gdat.numbsidecart: indxlgcr = gdat.numbsidecart - 1 else: indxlgcr[np.where(indxlgcr < 0)] = 0 indxlgcr[np.where(indxlgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 if np.isscalar(indxbgcr): if indxbgcr < 0: indxbgcr = 0 if indxbgcr >= gdat.numbsidecart: indxbgcr = gdat.numbsidecart - 1 else: indxbgcr[np.where(indxbgcr < 0)] = 0 indxbgcr[np.where(indxbgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 indxpixl = indxlgcr * gdat.numbsidecart + indxbgcr # convert to an index of non-zero exposure pixels #indxpixl = gdat.indxpixlroficnvt[indxpixl] return indxpixl ## obtain count maps def retr_cntp(gdat, sbrt): cntp = sbrt * gdat.expo * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] return cntp ## plotting ### construct path for plots def retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgplot, nameinte=''): if strgmodl == 'true' or strgstat == '': path = gdat.pathinit + nameinte + strgplot + '.pdf' elif strgstat == 'pdfn' or strgstat == 'mlik': path = gdat.pathplotrtag + strgpdfn + '/finl/' + nameinte + strgstat + strgplot + '.pdf' elif strgstat == 'this': path = gdat.pathplotrtag + strgpdfn + '/fram/' + nameinte + strgstat + strgplot + '_swep%09d.pdf' % gdatmodi.cntrswep return path ### determine the marker size def retr_mrkrsize(gdat, strgmodl, compampl, nameparagenrelemampl): gmod = getattr(gdat, strgmodl) minm = getattr(gdat.minmpara, nameparagenrelemampl) maxm = getattr(gdat.maxmpara, nameparagenrelemampl) mrkrsize = (np.sqrt(compampl) - np.sqrt(minm)) / (np.sqrt(maxm) - np.sqrt(minm)) * (gdat.maxmmrkrsize - gdat.minmmrkrsize) + gdat.minmmrkrsize return mrkrsize ## experiment specific def retr_psfphubb(gmod): # temp gmod.psfpexpr = np.array([0.080, 0.087]) / gdat.anglfact def retr_psfpchan(gmod): # temp #gmod.psfpexpr = np.array([0.25, 0.3, 0.4, 0.6, 0.7]) / gdat.anglfact if gdat.numbenerfull == 5: gmod.psfpexpr = np.array([0.424 / gdat.anglfact, 2.75, 0.424 / gdat.anglfact, 2.59, 0.440 / gdat.anglfact, 2.47, 0.457 / gdat.anglfact, 2.45, 0.529 / gdat.anglfact, 3.72]) if gdat.numbenerfull == 2: gmod.psfpexpr = np.array([0.427 / gdat.anglfact, 2.57, 0.449 / gdat.anglfact, 2.49]) #gdat.psfpchan = gmod.psfpexpr[(2 * gdat.indxenerincl[:, None] + np.arange(2)[None, :]).flatten()] #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, # 0.30 / gdat.anglfacti\ # 0.40 / gdat.anglfacti\ # 0.60 / gdat.anglfacti\ # 0.70 / gdat.anglfacti #gmod.psfpexpr = np.array([0.35 / gdat.anglfact, 2e-1, 1.9, 0.5 / gdat.anglfact, 1.e-1, 2.]) #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, 2.0e-1, 1.9, \ # 0.30 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.40 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.60 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.70 / gdat.anglfact, 1.0e-1, 2.0]) def retr_psfpsdyn(gmod): gmod.psfpexpr = np.array([0.05]) def retr_psfpferm(gmod): if gdat.anlytype.startswith('rec8'): path = gdat.pathdata + 'expr/irfn/psf_P8R2_SOURCE_V6_PSF.fits' else: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' irfn = astropy.io.fits.getdata(path, 1) minmener = irfn['energ_lo'].squeeze() * 1e-3 # [GeV] maxmener = irfn['energ_hi'].squeeze() * 1e-3 # [GeV] enerirfn = np.sqrt(minmener * maxmener) numbpsfpscal = 3 numbpsfpform = 5 fermscal = np.zeros((gdat.numbevtt, numbpsfpscal)) fermform = np.zeros((gdat.numbener, gdat.numbevtt, numbpsfpform)) strgpara = ['score', 'gcore', 'stail', 'gtail', 'ntail'] for m in gdat.indxevtt: if gdat.anlytype.startswith('rec8'): irfn = astropy.io.fits.getdata(path, 1 + 3 * gdat.indxevttincl[m]) fermscal[m, :] = astropy.io.fits.getdata(path, 2 + 3 * gdat.indxevttincl[m])['PSFSCALE'] else: if m == 1: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_front.fits' elif m == 0: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' else: continue irfn = astropy.io.fits.getdata(path, 1) fermscal[m, :] = astropy.io.fits.getdata(path, 2)['PSFSCALE'] for k in range(numbpsfpform): fermform[:, m, k] = sp.interpolate.interp1d(enerirfn, np.mean(irfn[strgpara[k]].squeeze(), axis=0), fill_value='extrapolate')(gdat.meanpara.ener) # convert N_tail to f_core for m in gdat.indxevtt: for i in gdat.indxener: fermform[i, m, 4] = 1. / (1. + fermform[i, m, 4] * fermform[i, m, 2]**2 / fermform[i, m, 0]**2) # calculate the scale factor gdat.fermscalfact = np.sqrt((fermscal[None, :, 0] * (10. * gdat.meanpara.ener[:, None])**fermscal[None, :, 2])**2 + fermscal[None, :, 1]**2) # store the fermi PSF parameters gmod.psfpexpr = np.zeros(gdat.numbener * gdat.numbevtt * numbpsfpform) for m in gdat.indxevtt: for k in range(numbpsfpform): indxfermpsfptemp = m * numbpsfpform * gdat.numbener + gdat.indxener * numbpsfpform + k gmod.psfpexpr[indxfermpsfptemp] = fermform[:, m, k] def retr_refrchaninit(gdat): gdat.indxrefr = np.arange(gdat.numbrefr) gdat.dictrefr = [] for q in gdat.indxrefr: gdat.dictrefr.append(dict()) gdat.refr.namepara.elemsign = ['flux', 'magt'] gdat.refr.lablelem = ['Xue+2011', 'Wolf+2008'] gdat.listnamerefr += ['xu11', 'wo08'] setattr(gdat, 'plotminmotyp', 0.) setattr(gdat, 'plottmaxmotyp', 1.) setattr(gmod.lablrootpara, 'otyp', 'O') setattr(gdat, 'scalotypplot', 'self') setattr(gmod.lablrootpara, 'otypxu11', 'O') for name in gdat.listnamerefr: setattr(gdat, 'plotminmotyp' + name, 0.) setattr(gdat, 'plotmaxmotyp' + name, 1.) if gdat.strgcnfg == 'pcat_chan_inpt_home4msc': with open(gdat.pathinpt + 'ECDFS_Cross_ID_Hsu2014.txt', 'r') as thisfile: for k, line in enumerate(thisfile): if k < 18: continue rasccand =line[2] declcand =line[2] gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'otyp', 'lumi'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'magt', 'reds', 'otyp'] def retr_refrchanfinl(gdat): booltemp = False if gdat.anlytype.startswith('extr'): if gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] = 1490 gdat.numbpixlbgalshft[0] = 1430 else: booltemp = True elif gdat.anlytype.startswith('home'): gdat.numbpixllgalshft[0] = 0 gdat.numbpixlbgalshft[0] = 0 if gdat.numbsidecart == 600: pass elif gdat.numbsidecart == 100: indxtile = int(gdat.anlytype[-4:]) numbsidecntr = int(gdat.anlytype[8:12]) numbtileside = numbsidecntr / gdat.numbsidecart indxtilexaxi = indxtile // numbtileside indxtileyaxi = indxtile % numbtileside gdat.numbpixllgalshft[0] += indxtilexaxi * gdat.numbsidecart gdat.numbpixlbgalshft[0] += indxtileyaxi * gdat.numbsidecart elif gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] += 150 gdat.numbpixlbgalshft[0] += 150 else: booltemp = True else: booltemp = True if booltemp: raise Exception('Reference elements cannot be aligned with the spatial axes!') ## WCS object for rotating reference elements into the ROI if gdat.numbener == 2: gdat.listpathwcss[0] = gdat.pathinpt + 'CDFS-4Ms-0p5to2-asca-im-bin1.fits' else: gdat.listpathwcss[0] = gdat.pathinpt + '0.5-0.91028_flux_%sMs.img' % gdat.anlytype[4] # Xue et al. (2011) #with open(gdat.pathinpt + 'chancatl.txt', 'r') as thisfile: pathfile = gdat.pathinpt + 'Xue2011.fits' hdun = pf.open(pathfile) hdun.info() lgalchan = hdun[1].data['_Glon'] / 180. * pi bgalchan = hdun[1].data['_Glat'] / 180. * pi fluxchansoft = hdun[1].data['SFlux'] fluxchanhard = hdun[1].data['HFlux'] objttypechan = hdun[1].data['Otype'] gdat.refrlumi[0][0] = hdun[1].data['Lx'] # position gdat.refr.dictelem[0]['lgal'] = lgalchan gdat.refr.dictelem[0]['bgal'] = bgalchan # spectra gdat.refrspec = [[np.zeros((3, gdat.numbener, lgalchan.size))]] if gdat.numbener == 2: gdat.refrspec[0][0, 0, :] = fluxchansoft * 0.624e9 gdat.refrspec[0][0, 1, :] = fluxchanhard * 0.624e9 / 16. else: gdat.refrspec[0][0, :, :] = 2. * fluxchansoft[None, :] * 0.624e9 gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] # fluxes gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] # spectral indices if gdat.numbener > 1: gdat.refrsind[0] = -np.log(gdat.refrspec[0][0, 1, :] / gdat.refrspec[0][0, 0, :]) / np.log(np.sqrt(7. / 2.) / np.sqrt(0.5 * 2.)) ## object type objttypechantemp = np.zeros(lgalchan.size) - 1. indx = np.where(objttypechan == 'AGN')[0] objttypechantemp[indx] = 0.165 indx = np.where(objttypechan == 'Galaxy')[0] objttypechantemp[indx] = 0.495 indx = np.where(objttypechan == 'Star')[0] objttypechantemp[indx] = 0.835 gdat.refrotyp[0][0] = objttypechantemp # Wolf et al. (2011) path = gdat.pathdata + 'inpt/Wolf2008.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['_Glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - pi) % (2. * pi)) - pi gdat.refrbgal[1] = np.deg2rad(data['_Glat']) gdat.refrmagt[1][0] = data['Rmag'] gdat.refrreds[1][0] = data['MCz'] #listname = [] #for k in range(data['MCclass'].size): # if not data['MCclass'][k] in listname: # listname.append(data['MCclass'][k]) listname = ['Galaxy', 'Galaxy (Uncl!)', 'QSO (Gal?)', 'Galaxy (Star?)', 'Star', 'Strange Object', 'QSO', 'WDwarf'] gdat.refrotyp[1][0] = np.zeros_like(gdat.refrreds[1][0]) - 1. for k, name in enumerate(listname): indx = np.where(data['MCclass'] == name)[0] gdat.refrotyp[1][0][indx] = k / 10. # error budget for name in ['lgal', 'bgal', 'sind', 'otyp', 'lumi', 'magt', 'reds']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_refrferminit(gdat): gdat.listnamerefr += ['ac15', 'ma05'] gdat.indxrefr = np.arange(gdat.numbrefr) gdat.refr.lablelem = ['Acero+2015', 'Manchester+2005'] gdat.refr.namepara.elemsign = ['flux', 'flux0400'] setattr(gmod.lablrootpara, 'curvac15', '%s_{3FGL}' % gdat.lablcurv) setattr(gmod.lablrootpara, 'expcac15', 'E_{c,3FGL}') for name in gdat.listnamerefr: setattr(gdat.minmpara, 'curv' + name, -1.) setattr(gdat.maxmpara, 'curv' + name, 1.) setattr(gdat.minmpara, 'expc' + name, 0.1) setattr(gdat.maxmpara, 'expc' + name, 10.) gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'curv', 'expc', 'tvar', 'etag', 'styp', 'sindcolr0001', 'sindcolr0002'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'flux0400', 'per0', 'per1'] def retr_refrfermfinl(gdat): gdat.minmstyp = -0.5 gdat.maxmstyp = 3.5 gdat.lablstyp = 'S' gmod.scalstypplot = 'self' gdat.minmtvar = 0. gdat.maxmtvar = 400. gdat.labltvar = 'T' gmod.scaltvarplot = 'logt' # Acero+2015 path = gdat.pathdata + 'expr/pnts/gll_psc_v16.fit' fgl3 = astropy.io.fits.getdata(path) gdat.refr.dictelem[0]['lgal'] = np.deg2rad(fgl3['glon']) gdat.refr.dictelem[0]['lgal'] = np.pi - ((gdat.refr.dictelem[0]['lgal'] - np.pi) % (2. * np.pi)) gdat.refr.dictelem[0]['bgal'] = np.deg2rad(fgl3['glat']) gdat.refr.numbelemfull = gdat.refr.dictelem[0]['lgal'].size gdat.refrspec = [np.empty((3, gdat.numbener, gdat.refr.dictelem[0]['lgal'].size))] gdat.refrspec[0][0, :, :] = np.stack((fgl3['Flux300_1000'], fgl3['Flux1000_3000'], fgl3['Flux3000_10000']))[gdat.indxenerincl, :] / gdat.deltener[:, None] fgl3specstdvtemp = np.stack((fgl3['Unc_Flux100_300'], fgl3['Unc_Flux300_1000'], fgl3['Unc_Flux1000_3000'], fgl3['Unc_Flux3000_10000'], \ fgl3['Unc_Flux10000_100000']))[gdat.indxenerincl, :, :] / gdat.deltener[:, None, None] gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 0] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 1] gdat.refrspec[0][np.where(np.isfinite(gdat.refrspec[0]) == False)] = 0. gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] gdat.refrsindcolr0001[0] = -np.log(gdat.refrspec[0][:, 1, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[1] / gdat.enerpivt) gdat.refrsindcolr0002[0] = -np.log(gdat.refrspec[0][:, 2, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[2] / gdat.enerpivt) fgl3axisstdv = (fgl3['Conf_68_SemiMinor'] + fgl3['Conf_68_SemiMajor']) * 0.5 fgl3anglstdv = np.deg2rad(fgl3['Conf_68_PosAng']) # [rad] fgl3lgalstdv = fgl3axisstdv * abs(np.cos(fgl3anglstdv)) fgl3bgalstdv = fgl3axisstdv * abs(np.sin(fgl3anglstdv)) gdat.refretag[0] = np.zeros(gdat.refr.dictelem[0]['lgal'].size, dtype=object) for k in range(gdat.refr.dictelem[0]['lgal'].size): gdat.refretag[0][k] = '%s, %s, %s' % (fgl3['Source_Name'][k], fgl3['CLASS1'][k], fgl3['ASSOC1'][k]) gdat.refrtvar[0] = fgl3['Variability_Index'] gdat.refrstyp[0] = np.zeros_like(gdat.refr.dictelem[0]['lgal']) - 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PowerLaw ')] = 0 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'LogParabola ')] = 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLExpCutoff ')] = 2 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLSuperExpCutoff')] = 3 indx = np.where(gdat.refrstyp[0] == -1)[0] if indx.size > 0: raise Exception('') gdat.refrsind[0] = fgl3['Spectral_Index'] gdat.refrcurv[0] = fgl3['beta'] gdat.refrexpc[0] = fgl3['Cutoff'] * 1e-3 gdat.refrcurv[0][np.where(np.logical_not(np.isfinite(gdat.refrcurv[0])))] = -10. gdat.refrexpc[0][np.where(np.logical_not(np.isfinite(gdat.refrexpc[0])))] = 0. gdat.refrsind[0] = np.tile(gdat.refrsind[0], (3, 1)) gdat.refrcurv[0] = np.tile(gdat.refrcurv[0], (3, 1)) gdat.refrexpc[0] = np.tile(gdat.refrexpc[0], (3, 1)) # Manchester+2005 path = gdat.pathdata + 'inpt/Manchester2005.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - np.pi) % (2. * np.pi)) - np.pi gdat.refrbgal[1] = np.deg2rad(data['glat']) gdat.refrper0[1] = data['P0'] gdat.refrper1[1] = data['P1'] gdat.refrflux0400[1] = data['S400'] #gdat.refrdism[1] = data['DM'] #gdat.refrdlos[1] = data['Dist'] # error budget for name in ['lgal', 'bgal', 'per0', 'per1', 'flux0400', 'tvar', 'styp']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_singgaus(scaldevi, sigc): psfn = 1. / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_singking(scaldevi, sigc, gamc): psfn = 1. / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) return psfn def retr_doubgaus(scaldevi, frac, sigc, sigt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_gausking(scaldevi, frac, sigc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_doubking(scaldevi, frac, sigc, gamc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) + \ (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_lgalbgal(gang, aang): lgal = gang * np.cos(aang) bgal = gang * np.sin(aang) return lgal, bgal def retr_gang(lgal, bgal): gang = np.arccos(np.cos(lgal) * np.cos(bgal)) return gang def retr_aang(lgal, bgal): aang = np.arctan2(bgal, lgal) return aang def show_paragenrscalfull(gdat, gdatmodi, strgstat='this', strgmodl='fitt', indxsampshow=None): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) print('strgmodl: ' + strgmodl) print('strgstat: ' + strgstat) print('%5s %20s %30s %30s %15s' % ('index', 'namepara', 'paragenrunitfull', 'paragenrscalfull', 'scalpara')) for k in gmod.indxparagenrfull: if indxsampshow is not None and not k in indxsampshow: continue if gmod.numbparaelem > 0: booltemp = False for l in gmod.indxpopl: if k == gmod.indxparagenrelemsing[l][0]: booltemp = True if booltemp: print('') print('%5d %20s %30g %30g %15s' % (k, gmod.namepara.genrfull[k], gmodstat.paragenrunitfull[k], gmodstat.paragenrscalfull[k], gmod.scalpara.genrfull[k])) def prop_stat(gdat, gdatmodi, strgmodl, thisindxelem=None, thisindxpopl=None, brth=False, deth=False): if gdat.typeverb > 1: print('prop_stat()') #indxproptype # within, birth, death, split, merge # 0, 1, 2, 3, 4 gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodthis = getattr(gdatobjt, 'this') gmodnext = getattr(gdatobjt, 'next') if gmod.numbparaelem > 0: if gdat.booldiagmode: for l in gmod.indxpopl: if len(gmodthis.indxelemfull[l]) > len(set(gmodthis.indxelemfull[l])): raise Exception('Repeating entry in the element index list!') thisindxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodthis.indxelemfull, strgmodl) setattr(gmodthis, 'indxparagenrfullelem', thisindxparagenrfullelem) else: thisindxparagenrfullelem = None gdatmodi.this.boolpropfilt = True # index of the population in which a transdimensional proposal will be attempted if gmod.numbparaelem > 0: if thisindxpopl is None: gdatmodi.indxpopltran = np.random.choice(gmod.indxpopl) else: gdatmodi.indxpopltran = thisindxpopl numbelemtemp = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # forced death or birth does not check for the prior on the dimensionality on purpose! if gmod.numbparaelem > 0 and (deth or brth or np.random.rand() < gdat.probtran) and \ not (numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if brth or deth or np.random.rand() < gdat.probbrde or \ numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == 1 or numbelemtemp == 0: ## births and deaths if numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] or deth: gdatmodi.this.indxproptype = 2 elif numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or brth: gdatmodi.this.indxproptype = 1 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 1 else: gdatmodi.this.indxproptype = 2 else: ## splits and merges if numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or numbelemtemp < 2: gdatmodi.this.indxproptype = 3 elif numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]: gdatmodi.this.indxproptype = 4 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 3 else: gdatmodi.this.indxproptype = 4 else: if gdat.booldiagmode and (gdatmodi.stdp > 1e2).any(): raise Exception('') thisindxparagenrfullelemconc = [] for l in gmod.indxpopl: thisindxparagenrfullelemconc.append(thisindxparagenrfullelem[l]['full']) # get the indices of the current parameter vector if gmod.numbparaelem > 0: thisindxsampfull = np.concatenate([gmod.indxparagenrbasestdv] + thisindxparagenrfullelemconc) else: thisindxsampfull = gmod.indxparagenrbasestdv thisstdp = gdatmodi.stdp[gdat.indxstdppara[thisindxsampfull]] if not np.isfinite(thisstdp).all(): raise Exception('') gdatmodi.this.indxproptype = 0 if gdat.booldiagmode and gdat.probspmr == 0 and gdatmodi.this.indxproptype > 2: raise Exception('') if gdat.typeverb > 1: print('gdatmodi.this.indxproptype') print(gdatmodi.this.indxproptype) if gdatmodi.this.indxproptype == 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = gmodthis.indxelemfull if gdatmodi.this.indxproptype > 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) gmodnext.paragenrscalfull = np.copy(gmodthis.paragenrscalfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = deepcopy(gmodthis.indxelemfull) if gdatmodi.this.indxproptype == 0: ## proposal scale if False: # amplitude-dependent proposal scale for l in gmod.indxpopl: thiscompampl = gmodthis.paragenrscalfull[thisindxparagenrfullelem[indxelemfull][gmod.nameparagenrelemampl[l]][l]] compampl = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] minmcompampl = getattr(gmod.minmpara, gmod.nameparagenrelemampl[l]) thiscompunit = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] compunit = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] if nameparagenrelem == gmod.nameparagenrelemampl[l]: # temp -- this only works if compampl is powr distributed gdatmodi.this.stdp = stdpcomp / (thiscompampl / minmcompampl)**2. gdatmodi.this.stdv = stdpcomp / (compampl / minmcompampl)**2. gdatmodi.this.ltrp += np.sum(0.5 * (nextcompunit - thiscompunit)**2 * (1. / gdatmodi.this.stdv**2 - 1. / gdatmodi.this.stdv**2)) else: gdatmodi.this.stdp = stdpcomp / (np.minimum(thiscompampl, compampl) / minmcompampl)**0.5 ## propose a step diffparagenrunitfull = np.random.normal(size=thisindxsampfull.size) * thisstdp gmodnext.paragenrunitfull[thisindxsampfull] = gmodthis.paragenrunitfull[thisindxsampfull] + diffparagenrunitfull if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') indxsamplowr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] < 0.)[0] if indxsamplowr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr] = abs(gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr]) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') indxsampuppr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] > 1.)[0] if indxsampuppr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] = (gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] - 1.) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') gmodnext.paragenrscalfull = icdf_paragenrscalfull(gdat, strgmodl, gmodnext.paragenrunitfull, thisindxparagenrfullelem) if gdat.booldiagmode: if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') if np.amin(gmodnext.paragenrunitfull[gmod.numbpopl:]) < 0.: raise Exception('') if np.amax(gmodnext.paragenrunitfull[gmod.numbpopl:]) > 1.: raise Exception('') if not np.isfinite(gmodnext.paragenrscalfull).all(): raise Exception('') if gdatmodi.this.indxproptype > 0: gdatmodi.indxsamptran = [] if gdatmodi.this.indxproptype == 1: gdatmodi.this.auxipara = np.random.rand(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) elif gdatmodi.this.indxproptype != 2: gdatmodi.this.auxipara = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: # find an empty slot in the element list for u in range(gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if not u in gdatmodi.this.indxelemfull[gdatmodi.indxpopltran]: break gdatmodi.indxelemmodi = [u] gdatmodi.indxelemfullmodi = [gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)] # sample indices to add the new element gdatmodi.indxparagenrfullelemaddd = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemaddd) gmodnext.indxelemfull[gdatmodi.indxpopltran].append(gdatmodi.indxelemmodi[0]) if gdatmodi.this.indxproptype == 1: # sample auxiliary variables gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.this.auxipara # death if gdatmodi.this.indxproptype == 2: # occupied element index to be killed if thisindxelem is None: dethindxindxelem = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) else: dethindxindxelem = thisindxelem # element index to be killed gdatmodi.indxelemmodi = [] gdatmodi.indxelemfullmodi = [] if gdat.typeverb > 1: print('dethindxindxelem') print(dethindxindxelem) gdatmodi.indxelemmodi.append(gmodthis.indxelemfull[gdatmodi.indxpopltran][dethindxindxelem]) gdatmodi.indxelemfullmodi.append(dethindxindxelem) # parameter indices to be killed indxparagenrfullelemdeth = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(indxparagenrfullelemdeth) gdatmodi.this.auxipara = gmodthis.paragenrscalfull[indxparagenrfullelemdeth] if gdatmodi.this.indxproptype > 2: gdatmodi.comppare = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compfrst = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compseco = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) # split if gdatmodi.this.indxproptype == 3: # find the probability of splitting elements gdatmodi.indxelemfullsplt = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) gdatmodi.indxelemsplt = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullsplt] gdatmodi.indxelemfullmodi.insert(0, gdatmodi.indxelemfullsplt) gdatmodi.indxelemmodi.insert(0, gdatmodi.indxelemsplt) # sample indices for the first element gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.insert(0, gdatmodi.indxparagenrfullelemfrst) # sample indices for the second element gdatmodi.indxsampseco = gdatmodi.indxparagenrfullelemaddd # take the parent element parameters for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gdatmodi.comppare[k] = np.copy(gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]]) # draw the auxiliary parameters for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.auxipara[g] = np.random.randn() * gdat.radispmr elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = np.random.rand() else: gdatmodi.this.auxipara[g] = icdf_trap(gdat, strgmodl, np.random.rand(), gmodthis.paragenrscalfull, gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], l) # determine the new parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[1]) * gdatmodi.this.auxipara[0] else: gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[0] gdatmodi.compfrst[1] = gdatmodi.comppare[1] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[1] gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[1] * gdatmodi.this.auxipara[0] else: gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[0] gdatmodi.compseco[1] = gdatmodi.comppare[1] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[1] gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] for g in range(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.compfrst[g] = gdatmodi.comppare[g] gdatmodi.compseco[g] = gdatmodi.this.auxipara[g] # place the new parameters into the sample vector gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compfrst, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.compfrst gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compseco, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = gdatmodi.compseco # check for prior boundaries if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): if np.fabs(gdatmodi.compfrst[0]) > gdat.maxmelin or np.fabs(gdatmodi.compseco[0]) > gdat.maxmelin: gdatmodi.this.boolpropfilt = False else: if np.fabs(gdatmodi.compfrst[0]) > maxmlgal or np.fabs(gdatmodi.compseco[0]) > maxmlgal or \ np.fabs(gdatmodi.compfrst[1]) > maxmbgal or np.fabs(gdatmodi.compseco[1]) > maxmbgal: gdatmodi.this.boolpropfilt = False if gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]) or \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: if not gdatmodi.this.boolpropfilt: print('Rejecting the proposal due to a split that falls out of the prior...') if gdatmodi.this.indxproptype == 4: # determine the index of the primary element to be merged (in the full element list) gdatmodi.indxelemfullmergfrst = np.random.choice(np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran]))) ## first element index to be merged gdatmodi.mergindxelemfrst = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergfrst] # find the probability of merging this element with the others probmerg = retr_probmerg(gdat, gdatmodi, gmodthis.paragenrscalfull, thisindxparagenrfullelem, gdatmodi.indxpopltran, 'seco', typeelem=gmod.typeelem) indxelemfulltemp = np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran])) if gdat.booldiagmode: if indxelemfulltemp.size < 2: raise Exception('') gdatmodi.indxelemfullmergseco = np.random.choice(np.setdiff1d(indxelemfulltemp, np.array([gdatmodi.indxelemfullmergfrst])), p=probmerg) gdatmodi.indxelemfullmodi = np.sort(np.array([gdatmodi.indxelemfullmergfrst, gdatmodi.indxelemfullmergseco])) # parameters of the first element to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## first gdatmodi.compfrst[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]] # determine indices of the modified elements in the sample vector ## first element # temp -- this would not work for multiple populations ! gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemfrst) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemfrst) ## second element index to be merged gdatmodi.mergindxelemseco = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergseco] ## second element gdatmodi.indxparagenrfullelemseco = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemseco) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemseco) # parameters of the elements to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## second gdatmodi.compseco[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[1]]] # indices of the element to be merged gdatmodi.indxelemmodi = [gdatmodi.mergindxelemfrst, gdatmodi.mergindxelemseco] # auxiliary parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] else: gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] gdatmodi.this.auxipara[1] = gdatmodi.compseco[1] - gdatmodi.compfrst[1] gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] / \ (gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = gdatmodi.compseco[g] # merged element gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] > getattr(gdat, 'maxm' + gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: print('Proposal rejected due to falling outside the prior.') return if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[1]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) else: gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) gdatmodi.comppare[1] = gdatmodi.compfrst[1] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[1] - gdatmodi.compfrst[1]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ (gdatmodi.compseco[g] - gdatmodi.compfrst[g]) elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + gdatmodi.compseco[g] else: gdatmodi.comppare[g] = gdatmodi.compfrst[g] gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.comppare, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.comppare # calculate the proposed list of pairs if gdat.typeverb > 1: print('mergindxfrst: ', gdatmodi.mergindxelemfrst) print('gdatmodi.indxelemfullmergfrst: ', gdatmodi.indxelemfullmergfrst) print('mergindxseco: ', gdatmodi.mergindxelemseco) print('gdatmodi.indxelemfullmergseco: ', gdatmodi.indxelemfullmergseco) print('indxparagenrfullelemfrst: ', gdatmodi.indxparagenrfullelemfrst) print('indxparagenrfullelemseco: ', gdatmodi.indxparagenrfullelemseco) if gdat.typeverb > 1 and (gdatmodi.this.indxproptype == 3 or gdatmodi.this.boolpropfilt and gdatmodi.this.indxproptype == 4): if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): print('elinfrst: ', gdatmodi.compfrst[0]) print('amplfrst: ', gdatmodi.compfrst[1]) print('elinseco: ', gdatmodi.compseco[0]) print('amplseco: ', gdatmodi.compseco[1]) print('elinpare: ', gdatmodi.comppare[0]) print('fluxpare: ', gdatmodi.comppare[1]) print('auxipara[0][0]: ', gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdatmodi.this.auxipara[1]) else: print('lgalfrst: ', gdat.anglfact * gdatmodi.compfrst[0]) print('bgalfrst: ', gdat.anglfact * gdatmodi.compfrst[1]) print('amplfrst: ', gdatmodi.compfrst[2]) print('lgalseco: ', gdat.anglfact * gdatmodi.compseco[0]) print('bgalseco: ', gdat.anglfact * gdatmodi.compseco[1]) print('amplseco: ', gdatmodi.compseco[2]) print('lgalpare: ', gdat.anglfact * gdatmodi.comppare[0]) print('bgalpare: ', gdat.anglfact * gdatmodi.comppare[1]) print('fluxpare: ', gdatmodi.comppare[2]) print('auxipara[0][0]: ', gdat.anglfact * gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdat.anglfact * gdatmodi.this.auxipara[1]) print('auxipara[0][2]: ', gdatmodi.this.auxipara[2]) if gmod.numbparaelem > 0 and gdatmodi.this.indxproptype > 0 and gdatmodi.this.boolpropfilt: # change the number of elements if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] + 1 if gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] - 1 gmodnext.paragenrunitfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # remove the element from the occupied element list if (gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4): for a, indxelem in enumerate(gdatmodi.indxelemmodi): if a == 0 and gdatmodi.this.indxproptype == 2 or a == 1 and gdatmodi.this.indxproptype == 4: gmodnext.indxelemfull[gdatmodi.indxpopltran].remove(indxelem) if gdatmodi.this.indxproptype == 0: gdatmodi.indxsampmodi = thisindxsampfull else: if gdatmodi.this.indxproptype == 1: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gdatmodi.this.indxproptype == 2: gdatmodi.indxsampmodi = [gmod.indxpara.numbelem[gdatmodi.indxpopltran]] if gdatmodi.this.indxproptype == 3: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), \ gdatmodi.indxsamptran[0], gdatmodi.indxsamptran[1])) if gdatmodi.this.indxproptype == 4: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gmod.numbparaelem > 0: if gdatmodi.this.indxproptype == 0: indxparagenrfullelem = thisindxparagenrfullelem else: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodnext.indxelemfull, strgmodl) if gdat.typeverb > 1: print('gdatmodi.indxsampmodi') print(gdatmodi.indxsampmodi) if gmod.numbparaelem > 0: print('gmodthis.indxelemfull') print(gmodthis.indxelemfull) print('gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)') print(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)) if gdatmodi.this.indxproptype > 0: print('gdatmodi.indxelemmodi') print(gdatmodi.indxelemmodi) print('gdatmodi.indxelemfullmodi') print(gdatmodi.indxelemfullmodi) print('gdatmodi.this.boolpropfilt') print(gdatmodi.this.boolpropfilt) print('indxparagenrfullelem') print(indxparagenrfullelem) if gdatmodi.this.indxproptype == 1: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0][g]] = icdf_trap(gdat, strgmodl, gdatmodi.this.auxipara[g], gmodthis.paragenrscalfull, \ gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gdatmodi.indxpopltran) if gdat.booldiagmode: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]]): print('l') print(l) print('gmod.indxpara.numbelem') print(gmod.indxpara.numbelem) print('gmodthis.paragenrunitfull') print(gmodthis.paragenrunitfull) raise Exception('') if gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if strgmodl == 'fitt': diffparagenrscalfull = abs(gmodnext.paragenrscalfull - gmodthis.paragenrscalfull) #size = np.where(((gmodthis.paragenrscalfull == 0.) & (diffparagenrscalfull > 0.)) | ((gmodthis.paragenrscalfull != 0.) & (diffparagenrscalfull / gmodthis.paragenrscalfull > 0)))[0].size size = np.where(diffparagenrscalfull != 0.)[0].size if gdatmodi.this.indxproptype == 1: if size - 1 != gmod.numbparagenrelemsing[gdatmodi.indxpopltran]: raise Exception('') def calc_probprop(gdat, gdatmodi): gmod = gdat.fitt # calculate the factor to multiply the acceptance rate, i.e., ## probability of the auxiliary parameters, if gdatmodi.this.indxproptype == 0: gdatmodi.this.lpau = 0. elif gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau = gdatmodi.next.lpritotl - gdatmodi.this.lpritotl lpautemp = 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[gdatmodi.indxpopltran] if gdatmodi.this.indxproptype == 1: gdatmodi.this.lpau += lpautemp if gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau -= lpautemp elif gdatmodi.this.indxproptype == 3 or gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau = 0. dictelemtemp = [dict()] for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.lpau += -0.5 * np.log(2. * np.pi * gdat.radispmr**2) - 0.5 * (gdatmodi.this.auxipara[g] / gdat.radispmr)**2 elif g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: dictelemtemp[0][nameparagenrelem] = gdatmodi.this.auxipara[g] gdatmodi.this.lpau += retr_lprielem(gdat, 'fitt', gdatmodi.indxpopltran, g, \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gdatmodi.this.paragenrscalfull, dictelemtemp, [1]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau *= -1. if gdatmodi.this.indxproptype > 2 and gdatmodi.this.boolpropfilt: ## the ratio of the probability of the reverse and forward proposals, and if gdatmodi.this.indxproptype == 3: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.next.paragenrscalfull, gdatmodi.next.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran] + 1) + np.log(gdatmodi.this.probmergtotl) else: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.this.paragenrscalfull, gdatmodi.this.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = -np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran]) - np.log(gdatmodi.this.probmergtotl) ## Jacobian if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.ljcb = np.log(gdatmodi.comppare[1]) else: gdatmodi.this.ljcb = np.log(gdatmodi.comppare[2]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.ljcb *= -1. else: gdatmodi.this.ljcb = 0. gdatmodi.this.ltrp = 0. for l in gmod.indxpopl: if gdatmodi.this.indxproptype > 0: setattr(gdatmodi, 'auxiparapop%d' % l, gdatmodi.this.auxipara) def retr_indxparagenrfullelem(gdat, indxelemfull, strgmodl): gmod = getattr(gdat, strgmodl) ## element parameters if gmod.numbparaelem > 0: indxparagenrfullelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: indxparagenrfulltemp = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + np.array(indxelemfull[l], dtype=int) * gmod.numbparagenrelemsing[l] cntr = tdpy.cntr() indxparagenrfullelem[l] = dict() for nameparagenrelem in gmod.namepara.genrelem[l]: indxparagenrfullelem[l][nameparagenrelem] = indxparagenrfulltemp + cntr.incr() indxparagenrfullelem[l]['full'] = np.repeat(indxparagenrfulltemp, gmod.numbparagenrelemsing[l]) + np.tile(gmod.indxparagenrelemsing[l], len(indxelemfull[l])) if gdat.booldiagmode: for l in gmod.indxpopl: if len(indxparagenrfullelem[l]['full']) > 0: if np.amax(indxparagenrfullelem[l]['full']) > gmod.numbparagenrelem[l] + gmod.numbparagenrbase: print('strgmodl') print(strgmodl) print('strgstat') print(strgstat) print('gmod.numbparagenrbase') print(gmod.numbparagenrbase) print('gmod.numbparagenrelem[l]') print(gmod.numbparagenrelem[l]) print('indxparagenrfullelem[l][full]') summgene(indxparagenrfullelem[l]['full']) print('gdat.fitt.minmpara.numbelempop0') print(gdat.fitt.minmpara.numbelempop0) print('gdat.fitt.maxmpara.numbelempop0') print(gdat.fitt.maxmpara.numbelempop0) raise Exception('Element parameter indices are bad.') else: indxparagenrfullelem = None return indxparagenrfullelem def retr_weigmergodim(gdat, elin, elinothr): weigmerg = np.exp(-0.5 * ((elin - elinothr) / gdat.radispmr)**2) return weigmerg def retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr): weigmerg = np.exp(-0.5 * (((lgal - lgalothr) / gdat.radispmr)**2 + ((bgal - bgalothr) / gdat.radispmr)**2)) return weigmerg def retr_probmerg(gdat, gdatmodi, paragenrscalfull, indxparagenrfullelem, indxpopltran, strgtype, typeelem=None): # calculate the weights if strgtype == 'seco': numb = 1 if strgtype == 'pair': numb = 2 listweigmerg = [] for a in range(numb): if gmod.typeelem[indxpopltran].startswith('lghtline'): elintotl = paragenrscalfull[indxparagenrfullelem['elin'][indxpopltran]] elin = elintotl[gdatmodi.indxelemfullmodi[0]] elinothr = np.concatenate((elintotl[:gdatmodi.indxelemfullmodi[0]], elintotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergodim(gdat, elin, elinothr) else: lgaltotl = paragenrscalfull[indxparagenrfullelem['lgal'][indxpopltran]] bgaltotl = paragenrscalfull[indxparagenrfullelem['bgal'][indxpopltran]] lgal = lgaltotl[gdatmodi.indxelemfullmodi[0]] bgal = bgaltotl[gdatmodi.indxelemfullmodi[0]] lgalothr = np.concatenate((lgaltotl[:gdatmodi.indxelemfullmodi[0]], lgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) bgalothr = np.concatenate((bgaltotl[:gdatmodi.indxelemfullmodi[0]], bgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr) listweigmerg.append(weigmerg) # determine the probability of merging the second element given the first element if strgtype == 'seco': probmerg = listweigmerg[0] / np.sum(listweigmerg[0]) # determine the probability of merging the pair if strgtype == 'pair': if gmod.typeelem[indxpopltran].startswith('lghtline'): weigpair = retr_weigmergtdim(gdat, elin, elintotl[gdatmodi.indxelemfullmodi[1]]) else: weigpair = retr_weigmergtdim(gdat, lgal, lgaltotl[gdatmodi.indxelemfullmodi[1]], bgal, bgaltotl[gdatmodi.indxelemfullmodi[1]]) probmerg = weigpair / np.sum(listweigmerg[0]) + weigpair / np.sum(listweigmerg[1]) if gdat.booldiagmode: if not np.isfinite(probmerg).all(): raise Exception('Merge probability is infinite.') return probmerg def retr_indxparaelem(gmod, l, u): indxsamppnts = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + u * gmod.numbparagenrelemsing[l] + gmod.indxparagenrelemsing[l] return indxsamppnts def gang_detr(): gang, aang, lgal, bgal = sympy.symbols('gang aang lgal bgal') AB = sympy.matrices.Matrix([[a1*b1,a1*b2,a1*b3],[a2*b1,a2*b2,a2*b3],[a3*b1,a3*b2,a3*b3]]) def retr_psfn(gdat, psfp, indxenertemp, thisangl, typemodlpsfn, strgmodl): gmod = getattr(gdat, strgmodl) indxpsfpinit = gmod.numbpsfptotl * (indxenertemp[:, None] + gdat.numbener * gdat.indxevtt[None, :]) if gdat.typeexpr == 'ferm': scalangl = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(thisangl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] scalanglnorm = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(gdat.binspara.angl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] else: scalangl = thisangl[None, :, None] if typemodlpsfn == 'singgaus': sigc = psfp[indxpsfpinit] sigc = sigc[:, None, :] psfn = retr_singgaus(scalangl, sigc) elif typemodlpsfn == 'singking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigc = sigc[:, None, :] gamc = gamc[:, None, :] psfn = retr_singking(scalangl, sigc, gamc) elif typemodlpsfn == 'doubking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigt = psfp[indxpsfpinit+2] gamt = psfp[indxpsfpinit+3] frac = psfp[indxpsfpinit+4] sigc = sigc[:, None, :] gamc = gamc[:, None, :] sigt = sigt[:, None, :] gamt = gamt[:, None, :] frac = frac[:, None, :] psfn = retr_doubking(scalangl, frac, sigc, gamc, sigt, gamt) if gdat.typeexpr == 'ferm': psfnnorm = retr_doubking(scalanglnorm, frac, sigc, gamc, sigt, gamt) # normalize the PSF if gdat.typeexpr == 'ferm': fact = 2. * np.pi * np.trapz(psfnnorm * np.sin(gdat.binspara.angl[None, :, None]), gdat.binspara.angl, axis=1)[:, None, :] psfn /= fact return psfn def retr_unit(lgal, bgal): xdat = np.cos(bgal) * np.cos(lgal) ydat = -np.cos(bgal) * np.sin(lgal) zaxi = np.sin(bgal) return xdat, ydat, zaxi def retr_psec(gdat, conv): # temp conv = conv.reshape((gdat.numbsidecart, gdat.numbsidecart)) psec = (abs(scipy.fftpack.fft2(conv))**2)[:gdat.numbsidecarthalf, :gdat.numbsidecarthalf] * 1e-3 psec = psec.flatten() return psec def retr_psecodim(gdat, psec): psec = psec.reshape((gdat.numbsidecarthalf, gdat.numbsidecarthalf)) psecodim = np.zeros(gdat.numbsidecarthalf) for k in gdat.indxmpolodim: indxmpol = np.where((gdat.meanpara.mpol > gdat.binspara.mpolodim[k]) & (gdat.meanpara.mpol < gdat.binspara.mpolodim[k+1])) psecodim[k] = np.mean(psec[indxmpol]) psecodim *= gdat.meanpara.mpolodim**2 return psecodim def retr_eerrnorm(minmvarb, maxmvarb, meanvarb, stdvvarb): cdfnminm = 0.5 * (sp.special.erf((minmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfnmaxm = 0.5 * (sp.special.erf((maxmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfndiff = cdfnmaxm - cdfnminm return cdfnminm, cdfndiff def retr_condcatl(gdat): # setup ## number of stacked samples numbstks = 0 indxtupl = [] indxstks = [] indxstksparagenrscalfull = [] for n in gdat.indxsamptotl: indxstks.append([]) indxstkssamptemp = [] for l in gmod.indxpopl: indxstks[n].append([]) for k in range(len(gdat.listpostindxelemfull[n][l])): indxstks[n][l].append(numbstks) indxstkssamptemp.append(numbstks) indxtupl.append([n, l, k]) numbstks += 1 indxstkssamp.append(np.array(indxstkssamptemp)) if gdat.typeverb > 1: print('indxstks') print(indxstks) print('indxtupl') print(indxtupl) print('indxstkssamp') print(indxstksparagenrscalfull) print('numbstks') print(numbstks) cntr = 0 arrystks = np.zeros((numbstks, gmod.numbparagenrelemtotl)) for n in gdat.indxsamptotl: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdat.listpostindxelemfull[n], 'fitt') for l in gmod.indxpopl: for k in np.arange(len(gdat.listpostindxelemfull[n][l])): for m, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): arrystks[indxstks[n][l][k], m] = gdat.listpostparagenrscalfull[n, gmodstat.indxparagenrfullelem[l][nameparagenrelem][k]] if gdat.typeverb > 0: print('Constructing the distance matrix for %d stacked samples...' % arrystks.shape[0]) timeinit = gdat.functime() gdat.distthrs = np.empty(gmod.numbparagenrelemtotl) for k, nameparagenrelem in enumerate(gmod.namepara.elem): # temp l = 0 gdat.distthrs[k] = gdat.stdp[getattr(gdat, 'indxstdppop%d' % l + nameparagenrelem)] # construct lists of samples for each proposal type listdisttemp = [[] for k in range(gmod.numbparagenrelemtotl)] indxstksrows = [[] for k in range(gmod.numbparagenrelemtotl)] indxstkscols = [[] for k in range(gmod.numbparagenrelemtotl)] thisperc = 0 cntr = 0 for k in gmod.indxparagenrelemtotl: for n in range(numbstks): dist = np.fabs(arrystks[n, k] - arrystks[:, k]) indxstks = np.where(dist < gdat.distthrs[k])[0] if indxstks.size > 0: for j in indxstks: cntr += 1 listdisttemp[k].append(dist[j]) indxstksrows[k].append(n) indxstkscols[k].append(j) nextperc = np.floor(100. * float(k * numbstks + n) / numbstks / gmod.numbparagenrelemtotl) if nextperc > thisperc: thisperc = nextperc if cntr > 1e6: break listdisttemp[k] = np.array(listdisttemp[k]) indxstksrows[k] = np.array(indxstksrows[k]) indxstkscols[k] = np.array(indxstkscols[k]) if cntr > 1e6: break listdist = [[] for k in range(gmod.numbparagenrelemtotl)] for k, nameparagenrelem in enumerate(gmod.namepara.elem): listdist[k] = scipy.sparse.csr_matrix((listdisttemp[k], (indxstksrows[k], indxstkscols[k])), shape=(numbstks, numbstks)) listindxstkspair = [] indxstksleft = [] if gdat.typeverb > 0: timefinl = gdat.functime() indxstksleft = range(numbstks) # list of sample lists of the labeled element indxstksassc = [] cntr = 0 gdat.prvlthrs = 0.05 while len(indxstksleft) > 0: # count number of associations numbdist = np.zeros(numbstks, dtype=int) - 1 for p in range(len(indxstksleft)): indxindx = np.where((listdist[0][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmlgal < gdat.anglassc) & \ (listdist[1][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmbgal < gdat.anglassc))[0] numbdist[indxstksleft[p]] = indxindx.size prvlmaxmesti = np.amax(numbdist) / float(gdat.numbsamptotl) if prvlmaxmesti < gdat.prvlthrs: break # determine the element with the highest number of neighbors indxstkscntr = np.argmax(numbdist) indxsamptotlcntr = indxtupl[indxstkscntr][0] indxpoplcntr = indxtupl[indxstkscntr][1] indxelemcntr = indxtupl[indxstkscntr][2] # add the central element sample indxstksassc.append([]) indxstksassc[cntr].append(indxstkscntr) indxstksleft.remove(indxstkscntr) if gdat.typeverb > 1: print('Match step %d' % cntr) print('numbdist') print(numbdist) print('indxstkscntr') print(indxstkscntr) print('indxstksleft') print(indxstksleft) # add the associated element samples if len(indxstksleft) > 0: for n in gdat.indxsamptotl: indxstkstemp = np.intersect1d(np.array(indxstksleft), indxstksparagenrscalfull[n]) if n == indxsamptotlcntr: continue if indxstkstemp.size > 0: totl = np.zeros_like(indxstkstemp) for k in gmod.indxparagenrelemtotl: temp = listdist[k][indxstkscntr, indxstkstemp].tonp.array()[0] totl = totl + temp**2 indxleft = np.argsort(totl)[0] indxstksthis = indxstkstemp[indxleft] thisbool = True for k in gmod.indxparagenrelemtotl: if listdist[k][indxstkscntr, indxstksthis] > gdat.distthrs[k]: thisbool = False if thisbool: indxstksassc[cntr].append(indxstksthis) indxstksleft.remove(indxstksthis) # temp #if gdat.makeplot: # gdatmodi = tdpy.gdatstrt() # gdatmodi.this.indxelemfull = deepcopy(listindxelemfull[n]) # for r in range(len(indxstksassc)): # calc_poststkscond(gdat, indxstksassc) # gdatmodi.this.indxelemfull = [[] for l in gmod.indxpopl] # for indxstkstemp in indxstksleft: # indxsamptotlcntr = indxtupl[indxstkstemp][0] # indxpoplcntr = indxtupl[indxstkstemp][1] # indxelemcntr = indxtupl[indxstkstemp][2] # gdatmodi.this.paragenrscalfull = gdat.listparagenrscalfull[indxsamptotlcntr, :] # gdatmodi.this.indxelemfull[].append() # plot_genemaps(gdat, gdatmodi, 'this', 'cntpdata', strgpdfn, indxenerplot=0, indxevttplot=0, cond=True) cntr += 1 gdat.dictglob['poststkscond'] = [] gdat.dictglob['liststkscond'] = [] # for each condensed element for r in range(len(indxstksassc)): gdat.dictglob['liststkscond'].append([]) gdat.dictglob['liststkscond'][r] = {} gdat.dictglob['poststkscond'].append([]) gdat.dictglob['poststkscond'][r] = {} for strgfeat in gmod.namepara.genrelem: gdat.dictglob['liststkscond'][r][strgfeat] = [] # for each associated sample associated with the central stacked sample for k in range(len(indxstksassc[r])): indxsamptotlcntr = indxtupl[indxstksassc[r][k]][0] indxpoplcntr = indxtupl[indxstksassc[r][k]][1] indxelemcntr = indxtupl[indxstksassc[r][k]][2] for strgfeat in gmod.namepara.genrelem: temp = getattr(gdat, 'list' + strgfeat) if temp[indxsamptotlcntr][indxpoplcntr].size > 0: temp = temp[indxsamptotlcntr][indxpoplcntr][..., indxelemcntr] gdat.dictglob['liststkscond'][r][strgfeat].append(temp) for r in range(len(gdat.dictglob['liststkscond'])): for strgfeat in gmod.namepara.genrelem: arry = np.stack(gdat.dictglob['liststkscond'][r][strgfeat], axis=0) gdat.dictglob['poststkscond'][r][strgfeat] = np.zeros(([3] + list(arry.shape[1:]))) gdat.dictglob['poststkscond'][r][strgfeat][0, ...] = median(arry, axis=0) gdat.dictglob['poststkscond'][r][strgfeat][1, ...] = percennp.tile(arry, 16., axis=0) gdat.dictglob['poststkscond'][r][strgfeat][2, ...] = percennp.tile(arry, 84., axis=0) gdat.numbstkscond = len(gdat.dictglob['liststkscond']) gdat.indxstkscond = np.arange(gdat.numbstkscond) gdat.prvl = np.empty(gdat.numbstkscond) for r in gdat.indxstkscond: gdat.prvl[r] = len(gdat.dictglob['liststkscond'][r]['deltllik']) gdat.prvl /= gdat.numbsamptotl gdat.minmprvl = 0. gdat.maxmprvl = 1. retr_axis(gdat, 'prvl') gdat.histprvl = np.histogram(gdat.prvl, bins=gdat.binspara.prvl)[0] if gdat.makeplot: pathcond = getattr(gdat, 'path' + strgpdfn + 'finlcond') for k, nameparagenrelem in enumerate(gmod.namepara.elem): path = pathcond + 'histdist' + nameparagenrelem listtemp = np.copy(listdist[k].tonp.array()).flatten() listtemp = listtemp[np.where(listtemp != 1e20)[0]] tdpy.mcmc.plot_hist(path, listtemp, r'$\Delta \tilde{' + getattr(gmod.lablrootpara, nameparagenrelem) + '}$') path = pathcond + 'histprvl' tdpy.mcmc.plot_hist(path, gdat.prvl, r'$p$') gdat.prvlthrs = 0.1 gdat.indxprvlhigh = np.where(gdat.prvl > gdat.prvlthrs)[0] gdat.numbprvlhigh = gdat.indxprvlhigh.size def retr_conv(gdat, defl): defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) # temp conv = abs(np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0) + np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) / 2. conv = conv.flatten() return conv def retr_invm(gdat, defl): # temp defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) invm = (1. - np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0)) * (1. - np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) - \ np.gradient(defl[:, :, 0], gdat.sizepixl, axis=1) * np.gradient(defl[:, :, 1], gdat.sizepixl, axis=0) invm = invm.flatten() return invm def setp_indxswepsave(gdat): gdat.indxswep = np.arange(gdat.numbswep) gdat.boolsave = np.zeros(gdat.numbswep, dtype=bool) gdat.indxswepsave = np.arange(gdat.numbburn, gdat.numbburn + gdat.numbsamp * gdat.factthin, gdat.factthin) gdat.boolsave[gdat.indxswepsave] = True gdat.indxsampsave = np.zeros(gdat.numbswep, dtype=int) - 1 gdat.indxsampsave[gdat.indxswepsave] = np.arange(gdat.numbsamp) def retr_cntspnts(gdat, listposi, spec): cnts = np.zeros((gdat.numbener, spec.shape[1])) if gdat.boolbinsspat: lgal = listposi[0] bgal = listposi[1] indxpixlpnts = retr_indxpixl(gdat, bgal, lgal) else: elin = listposi[0] indxpixlpnts = np.zeros_like(elin, dtype=int) for k in range(spec.shape[1]): cnts[:, k] += spec[:, k] * gdat.expototl[:, indxpixlpnts[k]] if gdat.enerdiff: cnts *= gdat.deltener[:, None] cnts = np.sum(cnts, axis=0) return cnts def retr_mdencrit(gdat, adissour, adishost, adishostsour): mdencrit = gdat.factnewtlght / 4. / np.pi * adissour / adishostsour / adishost return mdencrit def retr_massfrombein(gdat, adissour, adishost, adishostsour): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) massfrombein = np.pi * adishost**2 * mdencrit return massfrombein def retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) fracacutasca = acut / asca factmcutfromdefs = np.pi * adishost**2 * mdencrit * asca * retr_mcutfrommscl(fracacutasca) return factmcutfromdefs def retr_mcut(gdat, defs, asca, acut, adishost, mdencrit): mscl = defs * np.pi * adishost**2 * mdencrit * asca fracacutasca = acut / asca mcut = mscl * retr_mcutfrommscl(fracacutasca) return mcut def retr_mcutfrommscl(fracacutasca): mcut = fracacutasca**2 / (fracacutasca**2 + 1.)**2 * ((fracacutasca**2 - 1.) * np.log(fracacutasca) + fracacutasca * np.pi - (fracacutasca**2 + 1.)) return mcut def retr_negalogt(varb): negalogt = sign(varb) * np.log10(np.fabs(varb)) return negalogt def retr_gradmaps(gdat, maps): # temp -- this does not work with vanishing exposure maps = maps.reshape((gdat.numbsidecart, gdat.numbsidecart)) grad = np.dstack((np.gradient(maps, gdat.sizepixl, axis=0), np.gradient(maps, gdat.sizepixl, axis=1))).reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) grad = grad.reshape((gdat.numbpixlcart, 2)) return grad def retr_spatmean(gdat, inpt, boolcntp=False): listspatmean = [[] for b in gdat.indxspatmean] listspatstdv = [[] for b in gdat.indxspatmean] for b, namespatmean in enumerate(gdat.listnamespatmean): if boolcntp: cntp = inpt[gdat.listindxcubespatmean[b]] else: cntp = inpt[gdat.listindxcubespatmean[b]] * gdat.expo[gdat.listindxcubespatmean[b]] * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] spatmean = np.mean(np.sum(cntp, 2), axis=1) / gdat.apix spatstdv = np.sqrt(np.sum(cntp, axis=(1, 2))) / gdat.numbdata / gdat.apix if gdat.boolcorrexpo: spatmean /= gdat.expototlmean spatstdv /= gdat.expototlmean if gdat.enerdiff: spatmean /= gdat.deltener spatstdv /= gdat.deltener listspatmean[b] = spatmean listspatstdv[b] = spatstdv return listspatmean, listspatstdv def retr_rele(gdat, maps, lgal, bgal, defs, asca, acut, indxpixlelem, absv=True, cntpmodl=None): grad = retr_gradmaps(gdat, maps) defl = retr_defl(gdat, indxpixlelem, lgal, bgal, defs, asca=asca, acut=acut) prod = grad * defl if cntpmodl is not None: prod /= cntpmodl[:, None] dotstemp = np.sum(prod, 1) if absv: dotstemp = np.fabs(dotstemp) else: dotstemp = dotstemp dots = np.mean(dotstemp) return dots def retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn, strgmome='pmea', indxvarb=None, indxlist=None): if strgvarb.startswith('cntpdata'): varb = getattr(gdat, strgvarb) elif strgvarb.startswith('histcntpdata'): varb = getattr(gdat, strgvarb) else: if strgmodl == 'true': gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) varb = getattr(gmodstat, strgvarb) if strgmodl == 'fitt': if strgstat == 'this': if strgmome == 'errr': varb = getattr(gdatmodi, strgstat + 'errr' + strgvarb) else: varb = getattr(gdatmodi, strgstat + strgvarb) if strgstat == 'pdfn': varb = getattr(gdat, strgmome + strgpdfn + strgvarb) if indxlist is not None: varb = varb[indxlist] if indxvarb is not None: if strgmome == 'errr': varb = varb[[slice(None)] + indxvarb] else: varb = varb[indxvarb] return np.copy(varb) def setp_indxpara(gdat, typesetp, strgmodl='fitt'): print('setp_indxpara(): Building parameter indices for model %s with type %s...' % (strgmodl, typesetp)) gmod = getattr(gdat, strgmodl) if typesetp == 'init': if strgmodl == 'fitt': gmod.lablmodl = 'Model' if strgmodl == 'true': gmod.lablmodl = 'True' # transdimensional element populations gmod.numbpopl = len(gmod.typeelem) gmod.indxpopl = np.arange(gmod.numbpopl) if gdat.typeexpr != 'user': # background component gmod.numbback = 0 gmod.indxback = [] for c in range(len(gmod.typeback)): if isinstance(gmod.typeback[c], str): if gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): namebfun = gmod.typeback[c][:8] ordrexpa = int(gmod.typeback[c][8:]) numbexpa = 4 * ordrexpa**2 indxexpa = np.arange(numbexpa) del gmod.typeback[c] for k in indxexpa: gmod.typeback.insert(c+k, namebfun + '%04d' % k) gmod.numbback = len(gmod.typeback) gmod.indxback = np.arange(gmod.numbback) gmod.numbbacktotl = np.sum(gmod.numbback) gmod.indxbacktotl = np.arange(gmod.numbbacktotl) # galaxy components gmod.indxsersfgrd = np.arange(gmod.numbsersfgrd) # name of the generative element parameter used for the amplitude gmod.nameparagenrelemampl = [[] for l in gmod.indxpopl] gmod.indxparagenrelemampl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmod.nameparagenrelemampl[l] = 'per0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.nameparagenrelemampl[l] = 'lum0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtline'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 1 elif gmod.typeelem[l].startswith('lghtpnts'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtgausbgrd'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l].startswith('clus'): gmod.nameparagenrelemampl[l] = 'nobj' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' if gmod.typeelem[l] == 'clus': gmod.nameparagenrelemampl[l] = 'nobj' if len(gmod.nameparagenrelemampl[l]) == 0: raise Exception('Amplitude feature undefined.') for featpara in gdat.listfeatpara: for strggrop in gdat.liststrggroppara: setattr(gmod, 'list' + featpara + 'para' + strggrop, []) if typesetp == 'finl': # number of elements in the current state of the true model if strgmodl == 'true': gmod.numbelem = np.zeros(gmod.numbpopl) for l in gmod.indxpopl: gmod.numbelem[l] += getattr(gmod.maxmpara, 'numbelempop%d' % l) gmod.numbelemtotl = np.sum(gmod.numbelem) # element setup ## flag to calculate the kernel approximation errors boolcalcerrr = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelemspateval[l] == 'locl' and gdat.numbpixlfull < 1e5: # temp boolcalcerrr[l] = False else: boolcalcerrr[l] = False setp_varb(gdat, 'boolcalcerrr', valu=boolcalcerrr, strgmodl=strgmodl) # maximum number of elements for each population gmod.maxmpara.numbelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = getattr(gmod.maxmpara, 'numbelempop%d' % l) # maximum number of elements summed over all populations gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) ## sorting feature nameparaelemsort = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # feature to be used to sort elements if gmod.typeelem[l].startswith('lght'): nameparaelemsort[l] = 'flux' if gmod.typeelem[l] == 'lens': nameparaelemsort[l] = 'defs' if gmod.typeelem[l].startswith('clus'): nameparaelemsort[l] = 'nobj' ## label extensions gmod.lablelemextn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{fps}' if gmod.typeelem[l] == 'lghtgausbgrd': gmod.lablelemextn[l] = r'\rm{bgs}' else: if gmod.typeelem[l].startswith('lghtpntspuls'): gmod.lablelemextn[l] = r'\rm{pul}' if gmod.typeelem[l].startswith('lghtpntsagnn'): gmod.lablelemextn[l] = r'\rm{agn}' elif gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{pts}' if gmod.typeelem[l] == 'lens': gmod.lablelemextn[l] = r'\rm{sub}' if gmod.typeelem[l].startswith('clus'): gmod.lablelemextn[l] = r'\rm{cls}' if gmod.typeelem[l].startswith('lghtline'): gmod.lablelemextn[l] = r'\rm{lin}' gmod.indxpoplgrid = [[] for y in gdat.indxgrid] for y in gdat.indxgrid: for indx, typeelemtemp in enumerate(gmod.typeelem): # foreground grid (image plane) -- the one np.where the data is measured if y == 0: if typeelemtemp.startswith('lght') and not typeelemtemp.endswith('bgrd') or typeelemtemp.startswith('clus'): gmod.indxpoplgrid[y].append(indx) # foreground mass grid if y == 1: if typeelemtemp.startswith('lens'): gmod.indxpoplgrid[y].append(indx) # background grid (source plane) if y == 2: if typeelemtemp.endswith('bgrd'): gmod.indxpoplgrid[y].append(indx) indxgridpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for y in gdat.indxgrid: if l in gmod.indxpoplgrid[y]: indxgridpopl[l] = y calcelemsbrt = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts'): calcelemsbrt = True if 'lghtgausbgrd' in gmod.typeelem: calcelemsbrtbgrd = True else: calcelemsbrtbgrd = False if gmod.boollenssubh: calcelemdefl = True else: calcelemdefl = False ## element Boolean flags gmod.boolelemlght = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.boolelemlght[l] = True else: gmod.boolelemlght[l] = False gmod.boolelemlghtanyy = True in gmod.boolelemlght gmod.boolelemlens = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lens'): gmod.boolelemlens = True gmod.boolelemsbrtdfnc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0 and (gmod.typeelem[l].startswith('lght') and not gmod.typeelem[l].endswith('bgrd') or gmod.typeelem[l].startswith('clus')): gmod.boolelemsbrtdfnc[l] = True else: gmod.boolelemsbrtdfnc[l] = False gmod.boolelemsbrtdfncanyy = True in gmod.boolelemsbrtdfnc gmod.boolelemdeflsubh = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': gmod.boolelemdeflsubh[l] = True else: gmod.boolelemdeflsubh[l] = False gmod.boolelemdeflsubhanyy = True in gmod.boolelemdeflsubh gmod.boolelemsbrtextsbgrd = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l].endswith('bgrd'): gmod.boolelemsbrtextsbgrd[l] = True else: gmod.boolelemsbrtextsbgrd[l] = False gmod.boolelemsbrtextsbgrdanyy = True in gmod.boolelemsbrtextsbgrd if gmod.boolelemsbrtextsbgrdanyy: gmod.indxpopllens = 1 else: gmod.indxpopllens = 0 gmod.boolelemsbrtpnts = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l] != 'lghtline' or gmod.typeelem[l] == 'clus': gmod.boolelemsbrtpnts[l] = True else: gmod.boolelemsbrtpnts[l] = False gmod.boolelemsbrtpntsanyy = True in gmod.boolelemsbrtpnts # temp -- because there is currently no extended source gmod.boolelemsbrt = gmod.boolelemsbrtdfnc gmod.boolelempsfn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts') or gmod.typeelem[l] == 'clus': gmod.boolelempsfn[l] = True else: gmod.boolelempsfn[l] = False gmod.boolelempsfnanyy = True in gmod.boolelempsfn spectype = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.boolelemlght[l]: spectype[l] = 'powr' else: spectype[l] = 'none' setp_varb(gdat, 'spectype', valu=spectype, strgmodl=strgmodl) minmgwdt = 2. * gdat.sizepixl maxmgwdt = gdat.maxmgangdata / 4. setp_varb(gdat, 'gwdt', minm=minmgwdt, maxm=maxmgwdt, strgmodl=strgmodl) setp_varb(gdat, 'aerr', minm=-100, maxm=100, strgmodl=strgmodl, popl='full') if gmod.boolelemlghtanyy: # flux if gdat.typeexpr == 'ferm': minmflux = 1e-9 maxmflux = 1e-6 if gdat.typeexpr == 'tess': minmflux = 1. maxmflux = 1e3 if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': minmflux = 1e4 maxmflux = 1e7 else: minmflux = 3e-9 maxmflux = 1e-6 if gdat.typeexpr == 'gene': minmflux = 0.1 maxmflux = 100. if gdat.typeexpr == 'hubb': minmflux = 1e-20 maxmflux = 1e-17 if gdat.typeexpr == 'fire': minmflux = 1e-20 maxmflux = 1e-17 setp_varb(gdat, 'flux', limt=[minmflux, maxmflux], strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'brekprioflux', limt=[3e-9, 1e-6], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'sloplowrprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'slopupprprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) if gdat.boolbinsener: ### spectral parameters if gdat.typeexpr == 'ferm': sind = [1., 3.] minmsind = 1. maxmsind = 3. if gdat.typeexpr == 'chan': minmsind = 0.4 maxmsind = 2.4 sind = [0.4, 2.4] if gdat.typeexpr == 'hubb': minmsind = 0.5 maxmsind = 2.5 sind = [0.4, 2.4] if gdat.typeexpr != 'fire': setp_varb(gdat, 'sind', limt=[minmsind, maxmsind], strgmodl=strgmodl) setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) setp_varb(gdat, 'expc', limt=[0.1, 10.], strgmodl=strgmodl) setp_varb(gdat, 'sinddistmean', limt=sind, popl='full', strgmodl=strgmodl) #### standard deviations should not be too small setp_varb(gdat, 'sinddiststdv', limt=[0.3, 2.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdistmean', limt=[-1., 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdiststdv', limt=[0.1, 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdistmean', limt=[1., 8.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdiststdv', limt=[0.01 * gdat.maxmener, gdat.maxmener], popl='full', strgmodl=strgmodl) for i in gdat.indxenerinde: setp_varb(gdat, 'sindcolr0001', limt=[-2., 6.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr0002', limt=[0., 8.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr%04d' % i, limt=[-5., 10.], strgmodl=strgmodl) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': setp_varb(gdat, 'gang', limt=[1e-1 * gdat.sizepixl, gdat.maxmgangdata], strgmodl=strgmodl) setp_varb(gdat, 'geff', limt=[0., 0.4], strgmodl=strgmodl) setp_varb(gdat, 'dglc', limt=[10., 3e3], strgmodl=strgmodl) setp_varb(gdat, 'phii', limt=[0., 2. * np.pi], strgmodl=strgmodl) setp_varb(gdat, 'thet', limt=[0., np.pi], strgmodl=strgmodl) setp_varb(gdat, 'per0distmean', limt=[5e-4, 1e1], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdistmean', limt=[1e7, 1e16], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'per0diststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdiststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'gangslop', limt=[0.5, 4.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'dglcslop', limt=[0.5, 2.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'spatdistcons', limt=[1e-4, 1e-2], popl='full') setp_varb(gdat, 'bgaldistscal', limt=[0.5 / gdat.anglfact, 5. / gdat.anglfact], popl='full', strgmodl=strgmodl) if gmod.typeelem[l] == 'lghtpntsagnntrue': setp_varb(gdat, 'dlos', limt=[1e7, 1e9], strgmodl=strgmodl) setp_varb(gdat, 'dlosslop', limt=[-0.5, -3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0', limt=[1e43, 1e46], strgmodl=strgmodl) setp_varb(gdat, 'lum0distbrek', limt=[1e42, 1e46], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0sloplowr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0slopuppr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) # construct background surface brightness templates from the user input gmod.sbrtbacknorm = [[] for c in gmod.indxback] gmod.boolunifback = np.ones(gmod.numbback, dtype=bool) for c in gmod.indxback: gmod.sbrtbacknorm[c] = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gmod.typeback[c] == 'data': gmod.sbrtbacknorm[c] = np.copy(gdat.sbrtdata) gmod.sbrtbacknorm[c][np.where(gmod.sbrtbacknorm[c] == 0.)] = 1e-100 elif isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c] elif isinstance(gmod.typeback[c], list) and isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = retr_spec(gdat, np.array([gmod.typeback[c]]), sind=np.array([gmod.typeback[c]]))[:, 0, None, None] elif isinstance(gmod.typeback[c], np.ndarray) and gmod.typeback[c].ndim == 1: gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c][:, None, None] elif gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): indxexpatemp = int(gmod.typeback[c][8:]) indxterm = indxexpatemp // ordrexpa**2 indxexpaxdat = (indxexpatemp % ordrexpa**2) // ordrexpa + 1 indxexpaydat = (indxexpatemp % ordrexpa**2) % ordrexpa + 1 if namebfun == 'bfunfour': ampl = 1. func = gdat.meanpara.bgalcart if namebfun == 'bfunwfou': functemp = np.exp(-0.5 * (gdat.meanpara.bgalcart / (1. / gdat.anglfact))**2) ampl = np.sqrt(functemp) func = functemp argslgal = 2. * np.pi * indxexpaxdat * gdat.meanpara.lgalcart / gdat.maxmgangdata argsbgal = 2. * np.pi * indxexpaydat * func / gdat.maxmgangdata if indxterm == 0: termfrst = np.sin(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 1: termfrst = np.sin(argslgal) termseco = ampl * np.cos(argsbgal) if indxterm == 2: termfrst = np.cos(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 3: termfrst = np.cos(argslgal) termseco = ampl * np.cos(argsbgal) gmod.sbrtbacknorm[c] = (termfrst[None, :] * termseco[:, None]).flatten()[None, :, None] * \ np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) else: path = gdat.pathinpt + gmod.typeback[c] gmod.sbrtbacknorm[c] = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': if not gdat.boolforccart: if gmod.sbrtbacknorm[c].shape[2] != gdat.numbsidecart: raise Exception('Provided background template must have the chosen image dimensions.') gmod.sbrtbacknorm[c] = gmod.sbrtbacknorm[c].reshape((gmod.sbrtbacknorm[c].shape[0], -1, gmod.sbrtbacknorm[c].shape[-1])) if gdat.typepixl == 'cart' and gdat.boolforccart: sbrtbacknormtemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtbacknormtemp[i, :, m] = tdpy.retr_cart(gmod.sbrtbacknorm[c][i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gmod.sbrtbacknorm[c] = sbrtbacknormtemp # determine spatially uniform background templates for i in gdat.indxenerfull: for m in gdat.indxevttfull: if np.std(gmod.sbrtbacknorm[c][i, :, m]) > 1e-6: gmod.boolunifback[c] = False boolzero = True gmod.boolbfun = False for c in gmod.indxback: if np.amin(gmod.sbrtbacknorm[c]) < 0. and isinstance(gmod.typeback[c], str) and not gmod.typeback[c].startswith('bfun'): booltemp = False raise Exception('Background templates must be positive-definite every where.') if not np.isfinite(gmod.sbrtbacknorm[c]).all(): raise Exception('Background template is not finite.') if np.amin(gmod.sbrtbacknorm[c]) > 0. or gmod.typeback[c] == 'data': boolzero = False if isinstance(gmod.typeback[c], str) and gmod.typeback[c].startswith('bfun'): gmod.boolbfun = True if boolzero and not gmod.boolbfun: raise Exception('At least one background template must be positive everynp.where.') # temp -- does not take into account dark hosts gmod.boolhost = gmod.typeemishost != 'none' # type of PSF evaluation if gmod.maxmpara.numbelemtotl > 0 and gmod.boolelempsfnanyy: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'full' else: # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'kern' else: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is convolved by a kernel, no point source exists typeevalpsfn = 'conv' else: # the background is not convolved by a kernel, no point source exists typeevalpsfn = 'none' setp_varb(gdat, 'typeevalpsfn', valu=typeevalpsfn, strgmodl=strgmodl) if gdat.typeverb > 1: print('gmod.typeevalpsfn') print(gmod.typeevalpsfn) gmod.boolapplpsfn = gmod.typeevalpsfn != 'none' ### PSF model if gmod.typeevalpsfn != 'none': if gmod.typemodlpsfn == 'singgaus': numbpsfpform = 1 elif gmod.typemodlpsfn == 'singking': numbpsfpform = 2 elif gmod.typemodlpsfn == 'doubgaus': numbpsfpform = 3 elif gmod.typemodlpsfn == 'gausking': numbpsfpform = 4 elif gmod.typemodlpsfn == 'doubking': numbpsfpform = 5 gmod.numbpsfptotl = numbpsfpform if gdat.boolpriopsfninfo: for i in gdat.indxener: for m in gdat.indxevtt: meansigc = gmod.psfpexpr[i * gmod.numbpsfptotl + m * gmod.numbpsfptotl * gdat.numbener] stdvsigc = meansigc * 0.1 setp_varb(gdat, 'sigcen%02devt%d' % (i, m), mean=meansigc, stdv=stdvsigc, lablroot='$\sigma$', scal='gaus', \ strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': meangamc = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 1] stdvgamc = meangamc * 0.1 setp_varb(gdat, 'gamcen%02devt%d' % (i, m), mean=meangamc, stdv=stdvgamc, strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking': meansigt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 2] stdvsigt = meansigt * 0.1 setp_varb(gdat, 'sigten%02devt%d' % (i, m), mean=meansigt, stdv=stdvsigt, strgmodl=strgmodl) meangamt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 3] stdvgamt = meangamt * 0.1 setp_varb(gdat, 'gamten%02devt%d' % (i, m), mean=meangamt, stdv=stdvgamt, strgmodl=strgmodl) meanpsff = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 4] stdvpsff = meanpsff * 0.1 setp_varb(gdat, 'psffen%02devt%d' % (i, m), mean=meanpsff, stdv=stdvpsff, strgmodl=strgmodl) else: if gdat.typeexpr == 'gene': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'ferm': minmsigm = 0.1 maxmsigm = 10. if gdat.typeexpr == 'hubb': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'chan': minmsigm = 0.1 / gdat.anglfact maxmsigm = 2. / gdat.anglfact minmgamm = 1.5 maxmgamm = 20. setp_varb(gdat, 'sigc', minm=minmsigm, maxm=maxmsigm, lablroot='$\sigma_c$', ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'sigt', minm=minmsigm, maxm=maxmsigm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamc', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamt', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'psff', minm=0., maxm=1., ener='full', evtt='full', strgmodl=strgmodl) # background ## number of background parameters numbbacp = 0 for c in gmod.indxback: if gmod.boolspecback[c]: numbbacp += 1 else: numbbacp += gdat.numbener ## background parameter indices gmod.indxbackbacp = np.zeros(numbbacp, dtype=int) indxenerbacp = np.zeros(numbbacp, dtype=int) cntr = 0 for c in gmod.indxback: if gmod.boolspecback[c]: gmod.indxbackbacp[cntr] = c cntr += 1 else: for i in gdat.indxener: indxenerbacp[cntr] = i gmod.indxbackbacp[cntr] = c cntr += 1 # indices of background parameters for each background component gmod.indxbacpback = [[] for c in gmod.indxback] for c in gmod.indxback: gmod.indxbacpback[c] = np.where((gmod.indxbackbacp == c))[0] # list of names of diffuse components gmod.listnamediff = [] for c in gmod.indxback: gmod.listnamediff += ['back%04d' % c] if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: gmod.listnamediff += ['hostisf%d' % e] if gmod.boollens: gmod.listnamediff += ['lens'] # list of names of emission components listnameecom = deepcopy(gmod.listnamediff) for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: if strgmodl == 'true' and gmod.numbelem[l] > 0 or strgmodl == 'fitt' and gmod.maxmpara.numbelem[l] > 0: if not 'dfnc' in listnameecom: listnameecom += ['dfnc'] if not 'dfncsubt' in listnameecom: listnameecom += ['dfncsubt'] gmod.listnameecomtotl = listnameecom + ['modl'] for c in gmod.indxback: setp_varb(gdat, 'cntpback%04d' % c, lablroot='$C_{%d}$' % c, minm=1., maxm=100., scal='logt', strgmodl=strgmodl) gmod.listnamegcom = deepcopy(gmod.listnameecomtotl) if gmod.boollens: gmod.listnamegcom += ['bgrd'] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: gmod.listnamegcom += ['bgrdgalx', 'bgrdexts'] numbdiff = len(gmod.listnamediff) convdiff = np.zeros(numbdiff, dtype=bool) for k, namediff in enumerate(gmod.listnamediff): if not (gdat.boolthindata or gmod.typeevalpsfn == 'none' or gmod.typeevalpsfn == 'kern'): if namediff.startswith('back'): indx = int(namediff[-4:]) convdiff[k] = not gmod.boolunifback[indx] else: convdiff[k] = True # element parameters that correlate with the statistical significance of the element gmod.namepara.elemsign = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.namepara.elemsign[l] = 'flux' if gmod.typeelem[l] == 'lens': gmod.namepara.elemsign[l] = 'defs' if gmod.typeelem[l].startswith('clus'): gmod.namepara.elemsign[l] = 'nobj' if gdat.typeverb > 0: if strgmodl == 'true': strgtemp = 'true' if strgmodl == 'fitt': strgtemp = 'fitting' print('Building elements for the %s model...' % strgtemp) # define the names and scalings of element parameters gmod.namepara.genrelem = [[] for l in gmod.indxpopl] gmod.listscalparagenrelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] = ['elin'] gmod.listscalparagenrelem[l] = ['logt'] elif gmod.typespatdist[l] == 'diskscal': gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'dexp'] elif gmod.typespatdist[l] == 'gangexpo': gmod.namepara.genrelem[l] = ['gang', 'aang'] gmod.listscalparagenrelem[l] = ['expo', 'self'] elif gmod.typespatdist[l] == 'glc3': gmod.namepara.genrelem[l] = ['dglc', 'thet', 'phii'] gmod.listscalparagenrelem[l] = ['powr', 'self', 'self'] else: gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'self'] # amplitude if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['lum0'] gmod.listscalparagenrelem[l] += ['dpowslopbrek'] elif gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['per0'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] elif gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['flux'] gmod.listscalparagenrelem[l] += [gmod.typeprioflux[l]] elif gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['defs'] gmod.listscalparagenrelem[l] += ['powr'] elif gmod.typeelem[l].startswith('clus'): gmod.namepara.genrelem[l] += ['nobj'] gmod.listscalparagenrelem[l] += ['powr'] # shape if gmod.typeelem[l] == 'lghtgausbgrd' or gmod.typeelem[l] == 'clusvari': gmod.namepara.genrelem[l] += ['gwdt'] gmod.listscalparagenrelem[l] += ['powr'] if gmod.typeelem[l] == 'lghtlinevoig': gmod.namepara.genrelem[l] += ['sigm'] gmod.listscalparagenrelem[l] += ['logt'] gmod.namepara.genrelem[l] += ['gamm'] gmod.listscalparagenrelem[l] += ['logt'] # others if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['magf'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] gmod.namepara.genrelem[l] += ['geff'] gmod.listscalparagenrelem[l] += ['self'] elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['dlos'] gmod.listscalparagenrelem[l] += ['powr'] if gdat.numbener > 1 and gmod.typeelem[l].startswith('lghtpnts'): if gmod.spectype[l] == 'colr': for i in gdat.indxener: if i == 0: continue gmod.namepara.genrelem[l] += ['sindcolr%04d' % i] gmod.listscalparagenrelem[l] += ['self'] else: gmod.namepara.genrelem[l] += ['sind'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'curv': gmod.namepara.genrelem[l] += ['curv'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'expc': gmod.namepara.genrelem[l] += ['expc'] gmod.listscalparagenrelem[l] += ['self'] if gmod.typeelem[l] == 'lens': if gdat.variasca: gmod.namepara.genrelem[l] += ['asca'] gmod.listscalparagenrelem[l] += ['self'] if gdat.variacut: gmod.namepara.genrelem[l] += ['acut'] gmod.listscalparagenrelem[l] += ['self'] # names of element parameters for each scaling gmod.namepara.genrelemscal = [{} for l in gmod.indxpopl] for l in gmod.indxpopl: for scaltype in gdat.listscaltype: gmod.namepara.genrelemscal[l][scaltype] = [] for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if scaltype == gmod.listscalparagenrelem[l][k]: gmod.namepara.genrelemscal[l][scaltype].append(nameparagenrelem) # variables for which whose marginal distribution and pair-correlations will be plotted gmod.namepara.derielemodim = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.derielemodim[l] = deepcopy(gmod.namepara.genrelem[l]) gmod.namepara.derielemodim[l] += ['deltllik'] if gdat.boolbinsspat: if not 'lgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['lgal'] if not 'bgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['bgal'] if not 'gang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['gang'] if not 'aang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['aang'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.derielemodim[l] += ['cnts'] if gdat.typeexpr == 'ferm': gmod.namepara.derielemodim[l] + ['sbrt0018'] if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.derielemodim[l] += ['reds'] gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] gmod.namepara.derielemodim[l] += ['mass'] gmod.namepara.derielemodim[l] += ['dlos'] if gmod.typeelem[l] == 'lens': gmod.namepara.derielemodim[l] += ['mcut', 'diss', 'rele', 'reln', 'relk', 'relf', 'relm', 'reld', 'relc'] #for k in range(len(gmod.namepara.derielemodim[l])): # gmod.namepara.derielemodim[l][k] += 'pop%d' % l # check later # temp #if strgmodl == 'fitt': # for q in gdat.indxrefr: # if gmod.nameparagenrelemampl[l] in gdat.refr.namepara.elem[q]: # gmod.namepara.derielemodim[l].append('aerr' + gdat.listnamerefr[q]) if gdat.typeverb > 1: print('gmod.namepara.derielemodim') print(gmod.namepara.derielemodim) # derived element parameters gmod.namepara.derielem = gmod.namepara.derielemodim[:] if gdat.typeverb > 1: print('gmod.namepara.derielem') print(gmod.namepara.derielem) # derived parameters gmod.listnameparaderitotl = [temptemp for temp in gmod.namepara.derielem for temptemp in temp] #gmod.listnameparaderitotl += gmod.namepara.scal for namediff in gmod.listnamediff: gmod.listnameparaderitotl += ['cntp' + namediff] if gdat.typeverb > 1: print('gmod.listnameparaderitotl') print(gmod.listnameparaderitotl) if strgmodl == 'fitt': # add reference element parameters that are not available in the fitting model gdat.refr.namepara.elemonly = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] gmod.namepara.extrelem = [[] for l in gmod.indxpopl] for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for name in gdat.refr.namepara.elem[q]: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and (name == 'defs' or name == 'acut' or name == 'asca' or name == 'mass'): continue if gmod.typeelem[l] == ('lens') and (name == 'cnts' or name == 'flux' or name == 'spec' or name == 'sind'): continue if not name in gmod.namepara.derielemodim[l]: nametotl = name + gdat.listnamerefr[q] if name == 'etag': continue gmod.namepara.derielemodim[l].append(nametotl) if gdat.refr.numbelem[q] == 0: continue gdat.refr.namepara.elemonly[q][l].append(name) if not nametotl in gmod.namepara.extrelem[l]: gmod.namepara.extrelem[l].append(nametotl) #if name == 'reds': # for nametemp in ['lumi', 'dlos']: # nametemptemp = nametemp + gdat.listnamerefr[q] # if not nametemptemp in gmod.namepara.extrelem[l]: # gmod.namepara.derielemodim[l].append(nametemp + gdat.listnamerefr[q]) # gmod.namepara.extrelem[l].append(nametemptemp) if gdat.typeverb > 1: print('gdat.refr.namepara.elemonly') print(gdat.refr.namepara.elemonly) if gdat.typeexpr == 'chan' and gdat.typedata == 'inpt': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpnts': gmod.namepara.extrelem[l].append('lumiwo08') gmod.namepara.derielemodim[l].append('lumiwo08') if gdat.typeverb > 1: print('gmod.namepara.extrelem') print(gmod.namepara.extrelem) # defaults gmod.liststrgpdfnmodu = [[] for l in gmod.indxpopl] gmod.namepara.genrelemmodu = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0.: if l == 1: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] if l == 2: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for liststrg in [gmod.namepara.genrelem[l], gmod.namepara.derielemodim[l]]: for strgthis in liststrg: if not strgthis in gmod.namepara.elem[l]: gmod.namepara.elem[l].append(strgthis) # temp for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] += ['spec'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['spec', 'specplot'] if gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['deflprof'] #gmod.namepara.genrelemeval = [[] for l in gmod.indxpopl] #for l in gmod.indxpopl: # if gmod.typeelem[l].startswith('clus'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'nobj'] # if gmod.typeelem[l] == 'clusvari': # gmod.namepara.genrelemeval[l] += ['gwdt'] # if gmod.typeelem[l] == 'lens': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'defs', 'asca', 'acut'] # if gmod.typeelem[l].startswith('lghtline'): # gmod.namepara.genrelemeval[l] = ['elin', 'spec'] # elif gmod.typeelem[l] == 'lghtgausbgrd': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'gwdt', 'spec'] # elif gmod.typeelem[l].startswith('lght'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'spec'] ## element legends lablpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': lablpopl[l] = 'FPS' if gmod.typeelem[l] == 'lghtgausbgrd': lablpopl[l] = 'BGS' else: if gmod.typeelem[l] == 'lghtpntspuls': lablpopl[l] = 'Pulsar' elif gmod.typeelem[l].startswith('lghtpntsagnn'): lablpopl[l] = 'AGN' elif gmod.typeelem[l].startswith('lghtpnts'): lablpopl[l] = 'PS' if gmod.typeelem[l] == 'lens': lablpopl[l] = 'Subhalo' if gmod.typeelem[l].startswith('clus'): lablpopl[l] = 'Cluster' if gmod.typeelem[l].startswith('lghtline'): lablpopl[l]= 'Line' setp_varb(gdat, 'lablpopl', valu=lablpopl, strgmodl=strgmodl) if strgmodl == 'true': gmod.indxpoplassc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.numbpopl == 3 and gmod.typeelem[1] == 'lens': gmod.indxpoplassc[l] = [l] else: gmod.indxpoplassc[l] = gmod.indxpopl # variables for which two dimensional histograms will be calculated gmod.namepara.genrelemcorr = [[] for l in gmod.indxpopl] if gdat.boolplotelemcorr: for l in gmod.indxpopl: for strgfeat in gmod.namepara.derielemodim[l]: gmod.namepara.genrelemcorr[l].append(strgfeat) # number of element parameters if gmod.numbpopl > 0: gmod.numbparagenrelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcuml = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcumr = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: # number of generative element parameters for a single element of a specific population gmod.numbparagenrelemsing[l] = len(gmod.namepara.genrelem[l]) # number of derived element parameters for a single element of a specific population gmod.numbparaderielemsing[l] = len(gmod.namepara.derielem[l]) # number of element parameters for a single element of a specific population gmod.numbparaelemsing[l] = len(gmod.namepara.elem[l]) # number of generative element parameters for all elements of a specific population gmod.numbparagenrelem[l] = gmod.numbparagenrelemsing[l] * gmod.maxmpara.numbelem[l] # number of generative element parameters up to the beginning of a population gmod.numbparagenrelemcuml[l] = np.sum(gmod.numbparagenrelem[:l]) # number of generative element parameters up to the end of a population gmod.numbparagenrelemcumr[l] = np.sum(gmod.numbparagenrelem[:l+1]) # number of derived element parameters for all elements of a specific population gmod.numbparaderielem[l] = gmod.numbparaderielemsing[l] * gmod.numbelem[l] # number of element parameters for all elements of a specific population gmod.numbparaelem[l] = gmod.numbparaelemsing[l] * gmod.numbelem[l] # number of generative element parameters summed over all populations gmod.numbparagenrelemtotl = np.sum(gmod.numbparagenrelem) # number of derived element parameters summed over all populations gmod.numbparaderielemtotl = np.sum(gmod.numbparaderielem) # number of element parameters summed over all populations gmod.numbparaelemtotl = np.sum(gmod.numbparaderielem) gmod.indxparagenrelemsing = [] for l in gmod.indxpopl: gmod.indxparagenrelemsing.append(np.arange(gmod.numbparagenrelemsing[l])) gmod.indxparaderielemsing = [] for l in gmod.indxpopl: gmod.indxparaderielemsing.append(np.arange(gmod.numbparaderielemsing[l])) gmod.indxparaelemsing = [] for l in gmod.indxpopl: gmod.indxparaelemsing.append(np.arange(gmod.numbparaelemsing[l])) # size of the auxiliary variable propobability density vector if gmod.maxmpara.numbelemtotl > 0: gmod.numblpri = 3 + gmod.numbparagenrelem * gmod.numbpopl else: gmod.numblpri = 0 if gdat.penalpridiff: gmod.numblpri += 1 indxlpri = np.arange(gmod.numblpri) # append the population tags to element parameter names #for l in gmod.indxpopl: # gmod.namepara.genrelem[l] = [gmod.namepara.genrelem[l][g] + 'pop%d' % l for g in gmod.indxparagenrelemsing[l]] gmod.boolcompposi = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.boolcompposi[l] = np.zeros(gmod.numbparagenrelemsing[l], dtype=bool) if gmod.typeelem[l].startswith('lghtline'): gmod.boolcompposi[l][0] = True else: gmod.boolcompposi[l][0] = True gmod.boolcompposi[l][1] = True # list of strings across all populations ## all (generative and derived) element parameters gmod.numbparaelem = len(gmod.namepara.elem) gmod.indxparaelem = np.arange(gmod.numbparaelem) # flattened list of generative element parameters gmod.listnameparagenfelem = [] for l in gmod.indxpopl: for nameparagenrelem in gmod.namepara.genrelem[l]: gmod.listnameparagenfelem.append(nameparagenrelem + 'pop%d' % l) # concatenated list of flattened generative and derived element parameters gmod.listnameparatotlelem = gmod.listnameparagenfelem + gmod.namepara.derielem gmod.numbparaelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.numbparaelem[l] = len(gmod.namepara.elem[l]) numbdeflsubhplot = 2 numbdeflsingplot = numbdeflsubhplot if gmod.numbparaelem > 0: numbdeflsingplot += 3 gmod.convdiffanyy = True in convdiff cntr = tdpy.cntr() if gmod.boollens: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost massfrombein = retr_massfrombein(gdat, adissour, adishost, adishostsour) mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) # object of parameter indices gmod.indxpara = tdpy.gdatstrt() # define parameter indices if gmod.numbparaelem > 0: # number of elements #gmod.indxpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: indx = cntr.incr() setattr(gmod.indxpara, 'numbelempop%d' % l, indx) #gmod.indxpara.numbelem[l] = indx # hyperparameters ## mean number of elements if gmod.typemodltran == 'pois': #gmod.indxpara.meanelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: indx = cntr.incr() setattr(gmod.indxpara, 'meanelempop%d' % l, indx) #gmod.indxpara.meanelem[l] = indx ## parameters parametrizing priors on element parameters liststrgvarb = [] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: for strgpdfnelemgenr, strgfeat in zip(gmod.listscalparagenrelem[l], gmod.namepara.genrelem[l]): if strgpdfnelemgenr == 'expo' or strgpdfnelemgenr == 'dexp': liststrgvarb += [strgfeat + 'distscal'] if strgpdfnelemgenr == 'powr': liststrgvarb += ['slopprio' + strgfeat + 'pop%d' % l] if strgpdfnelemgenr == 'dpow': liststrgvarb += [strgfeat + 'distbrek'] liststrgvarb += [strgfeat + 'sloplowr'] liststrgvarb += [strgfeat + 'slopuppr'] if strgpdfnelemgenr == 'gausmean' or strgpdfnelemgenr == 'lnormean': liststrgvarb += [strgfeat + 'distmean'] if strgpdfnelemgenr == 'gausstdv' or strgpdfnelemgenr == 'lnorstdv': liststrgvarb += [strgfeat + 'diststdv'] if strgpdfnelemgenr == 'gausmeanstdv' or strgpdfnelemgenr == 'lnormeanstdv': liststrgvarb += [nameparagenrelem + 'distmean', nameparagenrelem + 'diststdv'] for strgvarb in liststrgvarb: setattr(gmod.indxpara, strgvarb, np.zeros(gmod.numbpopl, dtype=int) - 1) for l in gmod.indxpopl: strgpopl = 'pop%d' % l if gmod.maxmpara.numbelem[l] > 0: for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if gmod.listscalparagenrelem[l][k] == 'self': continue indx = cntr.incr() if gmod.listscalparagenrelem[l][k] == 'dpow': for nametemp in ['brek', 'sloplowr', 'slopuppr']: strg = '%s' % nametemp + nameparagenrelem setattr(gmod.indxpara, strg, indx) setattr(gmod.indxpara, strg, indx) else: if gmod.listscalparagenrelem[l][k] == 'expo' or gmod.listscalparagenrelem[l][k] == 'dexp': strghypr = 'scal' if gmod.listscalparagenrelem[l][k] == 'powr': strghypr = 'slop' if gmod.listscalparagenrelem[l][k] == 'gausmean' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnormean' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'mean' if gmod.listscalparagenrelem[l][k] == 'gausstdv' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnorstdv' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'stdv' strg = strghypr + 'prio' + nameparagenrelem + 'pop%d' % l setattr(gmod.indxpara, strg, indx) # group PSF parameters if gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full': for m in gdat.indxevtt: for i in gdat.indxener: setattr(gmod.indxpara, 'sigcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': setattr(gmod.indxpara, 'gamcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking': setattr(gmod.indxpara, 'sigten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'gamten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'ffenen%02devt%d' % (i, m), cntr.incr()) gmod.indxpara.psfp = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith('sigce') or strg.startswith('sigte') or strg.startswith('gamce') or strg.startswith('gamte') or strg.startswith('psffe'): gmod.indxpara.psfp.append(valu) gmod.indxpara.psfp = np.array(gmod.indxpara.psfp) gmod.numbpsfptotlevtt = gdat.numbevtt * gmod.numbpsfptotl gmod.numbpsfptotlener = gdat.numbener * gmod.numbpsfptotl numbpsfp = gmod.numbpsfptotl * gdat.numbener * gdat.numbevtt indxpsfpform = np.arange(numbpsfpform) indxpsfptotl = np.arange(gmod.numbpsfptotl) indxpsfp = np.arange(numbpsfp) gmod.indxpara.psfp = np.sort(gmod.indxpara.psfp) gmod.indxparapsfpinit = gmod.indxpara.psfp[0] # group background parameters gmod.indxpara.bacp = [] for c in gmod.indxback: if gmod.boolspecback[c]: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04d' % c, indx) gmod.indxpara.bacp.append(indx) else: for i in gdat.indxener: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04den%02d' % (c, i), indx) gmod.indxpara.bacp.append(indx) gmod.indxpara.bacp = np.array(gmod.indxpara.bacp) # temp #gmod.indxpara.anglsour = [] #gmod.indxpara.anglhost = [] #gmod.indxpara.angllens = [] if gmod.typeemishost != 'none': gmod.indxpara.specsour = [] gmod.indxpara.spechost = [] if gmod.boollens: gmod.indxpara.lgalsour = cntr.incr() gmod.indxpara.bgalsour = cntr.incr() gmod.indxpara.fluxsour = cntr.incr() if gdat.numbener > 1: gmod.indxpara.sindsour = cntr.incr() gmod.indxpara.sizesour = cntr.incr() gmod.indxpara.ellpsour = cntr.incr() gmod.indxpara.anglsour = cntr.incr() if gmod.typeemishost != 'none' or gmod.boollens: for e in gmod.indxsersfgrd: if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'lgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'bgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'fluxhostisf%d' % e, cntr.incr()) if gdat.numbener > 1: setattr(gmod.indxpara, 'sindhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'sizehostisf%d' % e, cntr.incr()) if gmod.boollens: setattr(gmod.indxpara, 'beinhostisf%d' % e, cntr.incr()) if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'ellphostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'anglhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'serihostisf%d' % e, cntr.incr()) if gmod.boollens: gmod.indxpara.sherextr = cntr.incr() gmod.indxpara.sangextr = cntr.incr() gmod.indxpara.sour = [] if gmod.boollens and gmod.typeemishost == 'none': raise Exception('Lensing cannot be modeled without host galaxy emission.') # collect groups of parameters if gdat.typeexpr == 'hubb': gmod.listnamecomplens = ['hostlght', 'hostlens', 'sour', 'extr'] for namecomplens in gmod.listnamecomplens: setattr(gmod, 'liststrg' + namecomplens, []) setattr(gmod.indxpara, namecomplens, []) if gmod.boollens or gmod.typeemishost != 'none': gmod.liststrghostlght += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] gmod.liststrghostlens += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] if gmod.typeemishost != 'none': gmod.liststrghostlght += ['fluxhost', 'sizehost', 'serihost'] if gdat.numbener > 1: gmod.liststrghostlght += ['sindhost'] if gmod.boollens: gmod.liststrghostlens += ['beinhost'] gmod.liststrgextr += ['sherextr', 'sangextr'] gmod.liststrgsour += ['lgalsour', 'bgalsour', 'fluxsour', 'sizesour', 'ellpsour', 'anglsour'] if gdat.numbener > 1: gmod.liststrgsour += ['sindsour'] for strg, valu in gmod.__dict__.items(): if isinstance(valu, list) or isinstance(valu, np.ndarray): continue if gdat.typeexpr == 'hubb': for namecomplens in gmod.listnamecomplens: for strgtemp in getattr(gmod, 'liststrg' + namecomplens): if strg[12:].startswith(strgtemp): if isinstance(valu, list): for valutemp in valu: gmod['indxparagenr' + namecomplens].append(valutemp) else: gmod['indxparagenr' + namecomplens].append(valu) # remove indxpara. from strg strg = strg[12:] if strg.startswith('fluxsour') or strg.startswith('sindsour'): gmod.indxpara.specsour.append(valu) if strg.startswith('fluxhost') or strg.startswith('sindhost'): gmod.indxpara.spechost.append(valu) if gmod.boollens or gmod.boolhost: gmod.indxpara.host = gmod.indxparahostlght + gmod.indxparahostlens gmod.indxpara.lens = gmod.indxpara.host + gmod.indxpara.sour + gmod.indxpara.extr ## number of model spectral parameters for each population #numbspep = np.empty(gmod.numbpopl, dtype=int) #liststrgspep = [[] for l in range(gmod.numbpopl)] #for l in gmod.indxpopl: # if gdat.numbener > 1: # liststrgspep[l] += ['sind'] # if gmod.spectype[l] == 'expc': # liststrgspep[l] += ['expc'] # if gmod.spectype[l] == 'curv': # liststrgspep[l] = ['curv'] # numbspep[l] = len(liststrgspep[l]) def setp_paragenrscalbase(gdat, strgmodl='fitt'): ''' Setup labels and scales for base parameters ''' print('setp_paragenrscalbase(): Building the %s model base paremeter names and scales...' % strgmodl) gmod = getattr(gdat, strgmodl) listlablback = [] listlablback = [] for nameback in gmod.listnameback: if nameback == 'isot': listlablback.append('Isotropic') listlablback.append(r'$\mathcal{I}$') if nameback == 'fdfm': listlablback.append('FDM') listlablback.append(r'$\mathcal{D}$') if nameback == 'dark': listlablback.append('NFW') listlablback.append(r'$\mathcal{D}_{dark}$') if nameback == 'part': listlablback.append('Particle Back.') listlablback.append(r'$\mathcal{I}_p$') # background templates listlablsbrt = deepcopy(listlablback) numblablsbrt = 0 for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: listlablsbrt.append(gmod.lablpopl[l]) listlablsbrt.append(gmod.lablpopl[l] + ' subt') numblablsbrt += 2 if gmod.boollens: listlablsbrt.append('Source') numblablsbrt += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listlablsbrt.append('Host %d' % e) numblablsbrt += 1 if gmod.numbpopl > 0: if 'clus' in gmod.typeelem or 'clusvari' in gmod.typeelem: listlablsbrt.append('Uniform') numblablsbrt += 1 listlablsbrtspec = ['Data'] listlablsbrtspec += deepcopy(listlablsbrt) if len(listlablsbrt) > 1: listlablsbrtspec.append('Total Model') numblablsbrtspec = len(listlablsbrtspec) # number of generative parameters per element, depends on population #numbparaelem = gmod.numbparagenrelem + numbparaelemderi # maximum total number of parameters #numbparagenrfull = gmod.numbparagenrbase + gmod.numbparaelem #numbparaelemkind = gmod.numbparagenrbase #for l in gmod.indxpopl: # numbparaelemkind += gmod.numbparagenrelemsing[l] #nameparagenrbase #gmod.namepara.genrelem #listnameparaderifixd #listnameparaderielem #gmod.namepara.genrelemextd = gmod.namepara.genrelem * maxm.numbelem #listnameparaderielemextd = gmod.namepara.genrelem * maxm.numbelem gmod.listindxparakindscal = {} for scaltype in gdat.listscaltype: gmod.listindxparakindscal[scaltype] = np.where(scaltype == gmod.listscalparakind)[0] # ## stack ## gmod.listnameparastck #gmod.listnameparastck = np.zeros(gmod.maxmnumbpara, dtype=object) #gmod.listscalparastck = np.zeros(gmod.maxmnumbpara, dtype=object) # #gmod.listnameparastck[gmod.indxparagenrbase] = gmod.nameparagenrbase #gmod.listscalparastck[gmod.indxparagenrbase] = gmod.listscalparagenrbase #for k in range(gmod.numbparaelem): # for l in gmod.indxpopl: # if k >= gmod.numbparagenrelemcuml[l]: # indxpopltemp = l # indxelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) // gmod.numbparagenrelemsing[indxpopltemp] # gmod.indxparagenrelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) % gmod.numbparagenrelemsing[indxpopltemp] # break # gmod.listnameparastck[gmod.numbparagenrbase+k] = '%spop%d%04d' % (gmod.namepara.genrelem[indxpopltemp][gmod.indxparagenrelemtemp], indxpopltemp, indxelemtemp) # gmod.listscalparastck[gmod.numbparagenrbase+k] = gmod.listscalparagenrelem[indxpopltemp][gmod.indxparagenrelemtemp] # # #if np.where(gmod.listscalpara == 0)[0].size > 0: # print('gmod.listscalpara[gmod.indxparagenrbase]') # print(gmod.listscalpara[gmod.indxparagenrbase]) # raise Exception('') # ## labels and scales for variables if gmod.boollens: setattr(gmod.lablrootpara, 'masssubhintg', r'$M_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhdelt', r'$\rho_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhintgbein', r'$M_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhdeltbein', r'$\rho_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhintgunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'masssubhintgbeinunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltbeinunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'fracsubhintg', r'f_{\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhdelt', r'f_{\rho,\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhintgbein', r'$f_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'fracsubhdeltbein', r'$f_{\rho,\rm{sub,E}}$') for e in gmod.indxsersfgrd: setattr(gmod.lablrootpara, 'masshostisf%dbein' % e, r'$M_{\rm{hst,%d,C}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintg' % e, r'$M_{\rm{hst,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddelt' % e, r'$M_{\rm{hst,%d}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintgbein' % e, r'$M_{\rm{hst,E,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddeltbein' % e, r'$M_{\rm{hst,E,%d}}$' % e) for namevarb in ['fracsubh', 'masssubh']: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scal' + namevarb + strgcalcmasssubh + nameeval, 'logt') for e in gmod.indxsersfgrd: setattr(gdat, 'scalmasshostisf%d' % e + 'bein', 'logt') for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scalmasshostisf%d' % e + strgcalcmasssubh + nameeval, 'logt') # scalar variable setup gdat.lablhistcntplowrdfncsubten00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncsubten00evt0 = 'N_{pix,h}' gdat.lablhistcntplowrdfncen00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncen00evt0 = 'N_{pix,h}' gdat.lablbooldfncsubt = 'H' gdat.lablpriofactdoff = r'$\alpha_{p}$' gmod.scalpriofactdoff = 'self' gdat.minmreds = 0. gdat.maxmreds = 1.5 gdat.minmmagt = 19. gdat.maxmmagt = 28. gmod.scalpara.numbelem = 'logt' gmod.scalpara.lliktotl = 'logt' gdat.lablener = 'E' #gdat.lablenertotl = '$%s$ [%s]' % (gdat.lablener, gdat.strgenerunit) # width of the Gaussian clusters gdat.lablgwdt = r'\sigma_G' gdat.lablgang = r'\theta' gdat.lablaang = r'\phi' gdat.labllgalunit = gdat.lablgangunit gdat.lablbgalunit = gdat.lablgangunit gdat.lablanglfromhost = r'\theta_{\rm{0,hst}}' gdat.lablanglfromhostunit = gdat.lablgangunit gdat.labldefs = r'\alpha_s' gdat.lablflux = 'f' gdat.lablnobj = 'p' gdat.lablelin = r'\mathcal{E}' gdat.lablsbrt = r'\Sigma' gdat.labldeflprof = r'\alpha_a' gdat.labldeflprofunit = u'$^{\prime\prime}$' gdat.strgenerkevv = 'keV' gdat.strgenergevv = 'GeV' gdat.strgenerergs = 'erg' gdat.strgenerimum = '\mu m^{-1}' gdat.labldefsunit = u'$^{\prime\prime}$' gdat.lablprat = 'cm$^{-2}$ s$^{-1}$' ### labels for derived fixed dimensional parameters if gdat.boolbinsener: for i in gdat.indxener: setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubten%02d' % i, 'f_{D/ST,%d}' % i) else: gmod.lablrootpara.fracsdenmeandarkdfncsubt = 'f_{D/ST}' setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubt', 'f_{D/ST}') ### labels for background units if gdat.typeexpr == 'ferm': for nameenerscaltype in ['en00', 'en01', 'en02', 'en03']: for labltemptemp in ['flux', 'sbrt']: # define the label if nameenerscaltype == 'en00': strgenerscal = '%s' % labltemp if nameenerscaltype == 'en01': strgenerscal = 'E%s' % labltemp if nameenerscaltype == 'en02': strgenerscal = 'E^2%s' % labltemp if nameenerscaltype == 'en03': strgenerscal = '%s' % labltemp labl = '%s' % strgenerscal for nameenerunit in ['gevv', 'ergs', 'kevv', 'imum']: strgenerunit = getattr(gdat, 'strgener' + nameenerunit) if nameenerscaltype == 'en00': strgenerscalunit = '%s$^{-1}$' % strgenerunit if nameenerscaltype == 'en01': strgenerscalunit = '' if nameenerscaltype == 'en02': strgenerscalunit = '%s' % strgenerunit if nameenerscaltype == 'en03': strgenerscalunit = '%s' % strgenerunit # define the label unit for namesoldunit in ['ster', 'degr']: if labltemptemp == 'flux': lablunit = '%s %s' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'lablflux' + nameenerscaltype + nameenerunit + 'unit', lablunit) else: if namesoldunit == 'ster': lablunit = '%s %s sr$^{-1}$' % (strgenerscalunit, gdat.lablprat) if namesoldunit == 'degr': lablunit = '%s %s deg$^{-2}$' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'sbrt' + nameenerscaltype + nameenerunit + namesoldunit + 'unit', lablunit) if gdat.boolbinsener: gdat.lablfluxunit = getattr(gmod.lablunitpara, 'fluxen00' + gdat.nameenerunit + 'unit') gdat.lablsbrtunit = getattr(gmod.lablunitpara, 'sbrten00' + gdat.nameenerunit + 'sterunit') gdat.lablexpo = r'$\epsilon$' gdat.lablexpounit = 'cm$^2$ s' gdat.lablprvl = '$p$' gdat.lablreds = 'z' gdat.lablmagt = 'm_R' gdat.lablper0 = 'P_0' gmod.scalper0plot = 'logt' gdat.labldglc = 'd_{gc}' gmod.scaldglcplot = 'logt' gdat.labldlos = 'd_{los}' gmod.scaldlosplot = 'logt' if gdat.typeexpr == 'ferm': gdat.labldlosunit = 'kpc' gdat.labllumi = r'L_{\gamma}' if gdat.typeexpr == 'chan': gdat.labldlosunit = 'Mpc' gdat.labllumi = r'L_{X}' gdat.labllum0 = r'L_{X, 0}' gdat.lablgeff = r'\eta_{\gamma}' gmod.scalgeffplot = 'logt' gmod.scallumiplot = 'logt' gdat.labllumiunit = 'erg s$^{-1}$' gdat.labllum0unit = 'erg s$^{-1}$' gdat.lablthet = r'\theta_{gc}' gmod.scalthetplot = 'self' gdat.lablphii = r'\phi_{gc}' gmod.scalphiiplot = 'self' setattr(gmod.lablrootpara, 'magf', 'B') setattr(gdat, 'scalmagfplot', 'logt') setattr(gmod.lablrootpara, 'per1', 'P_1') if gdat.typedata == 'inpt': gdat.minmpara.per0 = 1e-3 gdat.maxmpara.per0 = 1e1 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.flux0400 = 1e-1 gdat.maxmpara.flux0400 = 1e4 setattr(gdat, 'scalper1plot', 'logt') setattr(gmod.lablrootpara, 'flux0400', 'S_{400}') setattr(gdat, 'scalflux0400plot', 'logt') for q in gdat.indxrefr: setattr(gmod.lablrootpara, 'aerr' + gdat.listnamerefr[q], '\Delta_{%d}' % q) gdat.lablsigm = '\sigma_l' gdat.lablgamm = '\gamma_l' gdat.lablbcom = '\eta' gdat.lablinfopost = 'D_{KL}' gdat.lablinfopostunit = 'nat' gdat.lablinfoprio = 'D_{KL,pr}' gdat.lablinfopriounit = 'nat' gdat.labllevipost = '\ln P(D)' gdat.labllevipostunit = 'nat' gdat.lablleviprio = '\ln P_{pr}(D)' gdat.labllevipriounit = 'nat' gdat.lablsind = 's' if gdat.boolbinsener: for i in gdat.indxenerinde: setattr(gmod.lablrootpara, 'sindcolr%04d' % i, 's_%d' % i) gdat.lablexpcunit = gdat.strgenerunit gdat.labllliktotl = r'\ln P(D|M)' gdat.labllpripena = r'\ln P(N)' gdat.lablasca = r'\theta_s' gdat.lablascaunit = gdat.lablgangunit gdat.lablacut = r'\theta_c' gdat.lablacutunit = gdat.lablgangunit gdat.lablmcut = r'M_{c,n}' gdat.lablmcutunit = r'$M_{\odot}$' gdat.lablmcutcorr = r'\bar{M}_{c,n}' gdat.lablmcutcorrunit = r'$M_{\odot}$' gdat.lablspec = gdat.lablflux gdat.lablspecunit = gdat.lablfluxunit gdat.lablspecplot = gdat.lablflux gdat.lablspecplotunit = gdat.lablfluxunit gdat.lablcnts = 'C' gdat.labldeltllik = r'\Delta_n \ln P(D|M)' gdat.labldiss = r'\theta_{sa}' gdat.labldissunit = gdat.lablgangunit gdat.lablrele = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_l| \rangle' gdat.lablrelc = r'\langle\vec{\alpha}_n \cdot \vec{\nabla} k_l \rangle' gdat.lablreld = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_d| \rangle' gdat.lablreln = r'\langle \Delta \theta_{pix} |\hat{\alpha}_n \cdot \vec{\nabla} k_l| / \alpha_{s,n} \rangle' gdat.lablrelm = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelk = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelf = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle / k_m' for q in gdat.indxrefr: for l in gmod.indxpopl: setp_varb(gdat, 'fdispop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$F_{%d%d}$' % (l, q)) setp_varb(gdat, 'cmplpop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$C_{%d%d}$' % (l, q)) if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.minmspec = 1e-2 gdat.maxmspec = 1e1 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 if gdat.typeexpr == 'ferm': gdat.minmlumi = 1e32 gdat.maxmlumi = 1e36 elif gdat.typeexpr == 'chan': if gdat.typedata == 'inpt': gdat.minmlum0 = 1e42 gdat.maxmlum0 = 1e46 gdat.minmlumi = 1e41 gdat.maxmlumi = 1e45 try: gdat.minmdlos except: if gdat.typeexpr == 'chan': gdat.minmdlos = 1e7 gdat.maxmdlos = 1e9 else: gdat.minmdlos = 6e3 gdat.maxmdlos = 1.1e4 if gdat.typeexpr == 'ferm': gdat.minmcnts = 1e1 gdat.maxmcnts = 1e5 if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: gdat.minmcnts = 1e4 gdat.maxmcnts = 1e8 else: gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'hubb': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'fire': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 gdat.minmspecplot = gdat.minmspec gdat.maxmspecplot = gdat.maxmspec gdat.minmdeltllik = 1. gdat.maxmdeltllik = 1e3 gdat.minmdiss = 0. gdat.maxmdiss = gdat.maxmgangdata * np.sqrt(2.) gdat.minmrele = 1e-3 gdat.maxmrele = 1e1 gdat.minmreln = 1e-3 gdat.maxmreln = 1. gdat.minmrelk = 1e-3 gdat.maxmrelk = 1. gdat.minmrelf = 1e-5 gdat.maxmrelf = 1e-1 gdat.minmrelm = 1e-3 gdat.maxmrelm = 1e1 gdat.minmreld = 1e-3 gdat.maxmreld = 1e1 gdat.minmrelc = 1e-3 gdat.maxmrelc = 1. gdat.minmmcut = 3e7 gdat.maxmmcut = 2e9 gdat.minmmcutcorr = gdat.minmmcut gdat.maxmmcutcorr = gdat.maxmmcut if gdat.boolbinsspat: gdat.minmbein = 0. gdat.maxmbein = 1. / gdat.anglfact # scalar variables if gdat.boolbinsspat: gdat.minmdeflprof = 1e-3 / gdat.anglfact gdat.maxmdeflprof = 0.1 / gdat.anglfact #gdat.minmfracsubh = 0. #gdat.maxmfracsubh = 0.3 #gmod.scalfracsubh = 'self' #gdat.minmmasshost = 1e10 #gdat.maxmmasshost = 1e13 #gmod.scalmasshost = 'self' # #gdat.minmmasssubh = 1e8 #gdat.maxmmasssubh = 1e10 #gmod.scalmasssubh = 'self' # collect groups of parameter indices into lists ## labels and scales for base parameters gmod.nameparagenrbase = [] for name, k in gmod.indxpara.__dict__.items(): if not np.isscalar(k): print('name') print(name) print('temp: no nonscalar should be here!') continue gmod.nameparagenrbase.append(name) gmod.numbparagenrbase = len(gmod.nameparagenrbase) gmod.indxparagenrbase = np.arange(gmod.numbparagenrbase) gmod.indxparagenrbasestdv = gmod.indxparagenrbase[gmod.numbpopl:] ## list of scalar variable names gmod.namepara.scal = list(gmod.nameparagenrbase) gmod.namepara.scal += ['lliktotl'] # derived parameters print('Determining the list of derived, fixed-dimensional parameter names...') gmod.namepara.genrelemextd = [[[] for g in gmod.indxparagenrelemsing[l]] for l in gmod.indxpopl] gmod.namepara.derielemextd = [[[] for k in gmod.indxparaderielemsing[l]] for l in gmod.indxpopl] gmod.namepara.genrelemflat = [] gmod.namepara.derielemflat = [] gmod.namepara.genrelemextdflat = [] gmod.namepara.derielemextdflat = [] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: gmod.namepara.genrelemflat.append(gmod.namepara.genrelem[l][g] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.genrelemextd[l][g].append(gmod.namepara.genrelem[l][g] + 'pop%d' % l + '%04d' % d) gmod.namepara.genrelemextdflat.append(gmod.namepara.genrelemextd[l][g][d]) for k in gmod.indxparaderielemsing[l]: gmod.namepara.derielemflat.append(gmod.namepara.derielem[l][k] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.derielemextd[l][k].append(gmod.namepara.derielem[l][k] + 'pop%d' % l + '%04d' % d) gmod.namepara.derielemextdflat.append(gmod.namepara.derielemextd[l][k][d]) # list of element parameter names (derived and generative), counting label-degenerate element parameters only once gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.elem[l].extend(gmod.namepara.genrelem[l]) gmod.namepara.elem[l].extend(gmod.namepara.derielem[l]) gmod.namepara.elemflat = [] for l in gmod.indxpopl: gmod.namepara.elemflat.extend(gmod.namepara.elem[l]) gmod.namepara.genrelemdefa = deepcopy(gmod.namepara.elemflat) if gmod.boolelemlghtanyy: for strgfeat in ['sind', 'curv', 'expc'] + ['sindcolr%04d' % i for i in gdat.indxenerinde]: if not strgfeat in gmod.namepara.genrelemdefa: gmod.namepara.genrelemdefa.append(strgfeat) # list of flattened generative element parameter names, counting label-degenerate element parameters only once gmod.namepara.genrelemkind = gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparagenrelemkind = len(gmod.namepara.genrelemkind) #gmod.inxparagenrscalelemkind = np.arange(gmod.numbparagenrelemkind) gmod.inxparagenrscalelemkind = tdpy.gdatstrt() gmod.numbparagenrelemextdflat = len(gmod.namepara.genrelemextdflat) gmod.indxparagenrelemextdflat = np.arange(gmod.numbparagenrelemextdflat) # list of parameter names (derived and generative), counting label-degenerate element parameters only once, element lists flattened gmod.namepara.kind = gmod.nameparagenrbase + gmod.listnameparaderitotl + gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparakind = len(gmod.namepara.kind) gmod.indxparakind = np.arange(gmod.numbparakind) # list of generative parameter names, separately including all label-degenerate element parameters, element lists flattened gmod.namepara.genrscalfull = gmod.nameparagenrbase + gmod.namepara.genrelemextdflat gmod.namepara.genrscalfull = np.array(gmod.namepara.genrscalfull) gmod.numbparagenrfull = len(gmod.namepara.genrscalfull) gmod.indxparagenrfull = np.arange(gmod.numbparagenrfull) # list of generative parameter names, counting label-degenerate element parameters only once, element lists flattened gmod.listnameparagenrscal = gmod.nameparagenrbase + gmod.namepara.genrelemflat gmod.numbparagenr = len(gmod.listnameparagenrscal) gmod.indxparagenr = np.arange(gmod.numbparagenr) # list of parameter names (derived and generative), element lists flattened gmod.listnameparatotl = gmod.nameparagenrbase + gmod.listnameparaderitotl + \ gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.nameparagenrbase = np.array(gmod.nameparagenrbase) for e in gmod.indxsersfgrd: gmod.namepara.scal += ['masshost' + strgsersfgrd + 'bein'] for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masshost' + strgsersfgrd + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: if gmod.boollenssubh: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masssubh' + strgcalcmasssubh + 'bein', 'fracsubh' + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: gmod.namepara.scal += ['lpripena'] if False and gmod.boolelemsbrtdfncanyy: for strgbins in ['lowr', 'higr']: gmod.namepara.scal += ['histcntp%sdfncen00evt0' % strgbins] gmod.namepara.scal += ['histcntp%sdfncsubten00evt0' % strgbins] for i in gdat.indxener: gmod.namepara.scal += ['fracsdenmeandarkdfncsubten%02d' % i] gmod.namepara.scal += ['booldfncsubt'] if gmod.numbparaelem > 0: for q in gdat.indxrefr: if gdat.boolasscrefr[q]: for l in gmod.indxpopl: gmod.namepara.scal += ['cmplpop%dpop%d' % (l, q)] gmod.namepara.scal += ['fdispop%dpop%d' % (q, l)] gmod.numbvarbscal = len(gmod.namepara.scal) gmod.indxvarbscal = np.arange(gmod.numbvarbscal) # determine total label gmod.listnameparaglob = gmod.namepara.kind + gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.listnameparaglob += ['cntpmodl'] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: if not gmod.namepara.genrelem[l][g] in gmod.listnameparaglob: gmod.listnameparaglob.append(gmod.namepara.genrelem[l][g]) gmod.listnameparaglob.append(gmod.namepara.derielem[l][g]) for name in gmod.listnameparaglob: lablroot = getattr(gmod.lablrootpara, name) lablunit = getattr(gmod.lablunitpara, name) labltotl = tdpy.retr_labltotlsing(lablroot, lablunit) setattr(gmod.labltotlpara, name, labltotl) # define fact for l in gmod.indxpopl: for k in gmod.indxparakind: name = gmod.namepara.kind[k] scal = getattr(gmod.scalpara, name) if scal == 'self' or scal == 'logt': minm = getattr(gmod.minmpara, name) maxm = getattr(gmod.maxmpara, name) if scal == 'self': fact = maxm - minm if scal == 'logt': fact = np.log(maxm / minm) if fact == 0: print('name') print(name) raise Exception('') setattr(gmod.factpara, name, fact) if gmod.numbparaelem > 0: gmod.indxparagenrfulleleminit = gmod.indxparagenrbase[-1] + 1 else: gmod.indxparagenrfulleleminit = -1 ## arrays of parameter features (e.g., minm, maxm, labl, scal, etc.) for featpara in gdat.listfeatparalist: gmodfeat = getattr(gmod, featpara + 'para') ### elements #for strgtypepara in gdat.liststrgtypepara: # listname = getattr(gmod.namepara, strgtypepara + 'elem') # listfeat = [[] for l in gmod.indxpopl] # listfeatflat = [] # for l in gmod.indxpopl: # # numb = getattr(gmod, 'numbpara' + strgtypepara + 'elemsing')[l] # listfeat[l] = [[] for k in range(numb)] # for k in range(numb): # scal = getattr(gmod.scalpara, listname[l][k]) # if featpara == 'fact' and not (scal == 'self' or scal == 'logt'): # continue # if featpara == 'mean' and (scal != 'gaus' and scal != 'lnor'): # continue # if featpara == 'stdv' and (scal != 'gaus' and scal != 'lnor'): # continue # # if strgtypepara == 'genr': # strgextn = 'pop%d' % l # else: # strgextn = '' # print('featpara') # print(featpara) # print('listname') # print(listname) # listfeat[l][k] = getattr(gmodfeat, listname[l][k] + strgextn) # listfeatflat.append(listfeat[l][k]) # setattr(gmodfeat, strgtypepara + 'elem', listfeat) # setattr(gmodfeat, strgtypepara + 'elemflat', listfeatflat) ### groups of parameters inside the parameter vector ### 'base': all fixed-dimensional generative parameters ### 'full': all generative parameters for strggroppara in ['base', 'full']: indx = getattr(gmod, 'indxparagenr' + strggroppara) feat = [0. for k in indx] for attr, valu in gmod.indxpara.__dict__.items(): if not np.isscalar(valu): continue scal = getattr(gmod.scalpara, attr) if not (scal == 'self' or scal == 'logt') and featpara == 'fact': continue if scal != 'gaus' and (featpara == 'mean' or featpara == 'stdv'): print('Mean or Std for non-Gaussian') continue if featpara == 'name': feat[valu] = attr else: feat[valu] = getattr(gmodfeat, attr) feat = np.array(feat) setattr(gmodfeat, 'genr' + strggroppara, feat) #print('gmod.minmpara') #for attr, varb in gmod.minmpara.__dict__.items(): # print(attr, varb) #print('gmod.maxmpara') #for attr, varb in gmod.maxmpara.__dict__.items(): # print(attr, varb) #print('gmod.scalpara') #for attr, varb in gmod.scalpara.__dict__.items(): # print(attr, varb) #raise Exception('') ## population groups ### number of elements for strgvarb in ['numbelem', 'meanelem']: listindxpara = [] if strgmodl == 'true': listpara = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith(strgvarb + 'p'): listindxpara.append(valu) if strgmodl == 'true': listpara.append(getattr(gmod.this, strg)) listindxpara = np.array(listindxpara) setattr(gmod.indxpara, strgvarb, listindxpara) if strgmodl == 'true': listpara = np.array(listpara) setattr(gmod, strgvarb, listpara) ### parameters of priors for element parameters gmod.indxpara.prioelem = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg == 'dist' and np.isscalar(valu): gmod.indxpara.prioelem.append(valu) gmod.indxpara.prioelem = np.array(gmod.indxpara.prioelem) ### hyperparameters if gmod.typemodltran == 'pois': gmod.indxpara.hypr = np.array(list(gmod.indxpara.prioelem) + list(gmod.indxpara.meanelem)) else: gmod.indxpara.hypr = gmod.indxpara.prioelem ## generative base parameter indices for each scaling gmod.listindxparagenrbasescal = dict() for scaltype in gdat.listscaltype: gmod.listindxparagenrbasescal[scaltype] = np.where(np.array(gmod.scalpara.genrbase) == scaltype)[0] if gdat.booldiagmode: if np.where(gmod.scalpara.genrfull == 0)[0].size > 0: raise Exception('') def plot_lens(gdat): if gmod.boolelemdeflsubh: xdat = gdat.binspara.angl[1:] * gdat.anglfact lablxdat = gdat.labltotlpara.gang listdeflscal = np.array([4e-2, 4e-2, 4e-2]) / gdat.anglfact listanglscal = np.array([0.05, 0.1, 0.05]) / gdat.anglfact listanglcutf = np.array([1., 1., 10.]) / gdat.anglfact listasym = [False, False, False] listydat = [] for deflscal, anglscal, anglcutf, asym in zip(listdeflscal, listanglscal, listanglcutf, listasym): listydat.append(retr_deflcutf(gdat.binspara.angl[1:], deflscal, anglscal, anglcutf, asym=asym) * gdat.anglfact) for scalxdat in ['self', 'logt']: path = gdat.pathinitintr + 'deflcutf' + scalxdat + '.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat=scalxdat, scalydat='logt', lablxdat=lablxdat, \ lablydat=r'$\alpha_n$ [$^{\prime\prime}$]', limtydat=[1e-3, 1.5e-2], limtxdat=[None, 2.]) # pixel-convoltuion of the Sersic profile # temp -- y axis labels are wrong, should be per solid angle xdat = gdat.binspara.lgalsers * gdat.anglfact for n in range(gdat.numbindxsers + 1): for k in range(gdat.numbhalfsers + 1): if k != 5: continue path = gdat.pathinitintr + 'sersprofconv%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, gdat.sersprof[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) #path = gdat.pathinitintr + 'sersprofcntr%04d%04d.pdf' % (n, k) #tdpy.plot_gene(path, xdat, gdat.sersprofcntr[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], scalxdat='logt', \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) xdat = gdat.binspara.angl * gdat.anglfact listspec = np.array([1e-19, 1e-18, 1e-18, 1e-18]) / gdat.anglfact listsize = np.array([0.3, 1., 1., 1.]) / gdat.anglfact listindx = np.array([4., 2., 4., 10.]) listydat = [] listlabl = [] for spec, size, indx in zip(listspec, listsize, listindx): listydat.append(spec * retr_sbrtsersnorm(gdat.binspara.angl, size, indxsers=indx)) listlabl.append('$R_e = %.3g ^{\prime\prime}, n = %.2g$' % (size * gdat.anglfact, indx)) path = gdat.pathinitintr + 'sersprof.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, \ listlegd=listlegd, listhlin=1e-7, limtydat=[1e-8, 1e0]) minmredshost = 0.01 maxmredshost = 0.4 minmredssour = 0.01 maxmredssour = 2. numbreds = 200 retr_axis(gdat, 'redshost') retr_axis(gdat, 'redssour') gdat.meanpara.adishost = np.empty(numbreds) for k in range(numbreds): gdat.meanpara.adishost[k] = gdat.adisobjt(gdat.meanpara.redshost[k]) asca = 0.1 / gdat.anglfact acut = 1. / gdat.anglfact minmmass = np.zeros((numbreds + 1, numbreds + 1)) maxmmass = np.zeros((numbreds + 1, numbreds + 1)) for k, redshost in enumerate(gdat.binspara.redshost): for n, redssour in enumerate(gdat.binspara.redssour): if redssour > redshost: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) minmmass[n, k] = np.log10(factmcutfromdefs * gdat.minmdefs) maxmmass[n, k] = np.log10(factmcutfromdefs * gdat.maxmdefs) #valulevl = np.linspace(7.5, 9., 5) valulevl = [7.0, 7.3, 7.7, 8., 8.6] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, minmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=20, fmt='%.3g') axis.set_xlabel(r'$z_{\rm{hst}}$') axis.set_ylabel(r'$z_{\rm{src}}$') axis.set_title(r'$M_{c,min}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsminm.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) valulevl = np.linspace(9., 11., 20) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.imshow(maxmmass, extent=[minmredshost, maxmredshost, minmredssour, maxmredssour], aspect='auto', vmin=9., vmax=11.) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, maxmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=15, fmt='%.3g') axis.set_xlabel('$z_{hst}$') axis.set_ylabel('$z_{src}$') axis.set_title(r'$M_{c,max}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsmaxm.pdf' plt.colorbar(imag) plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * gdat.sizepixl * 1e-3) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * 2. * gdat.maxmgangdata * 1e-3) axis.set_xlabel('$z_h$') axis.set_yscale('log') axis.set_ylabel(r'$\lambda$ [kpc]') path = gdat.pathinitintr + 'wlenreds.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) fracacutasca = np.logspace(-1., 2., 20) mcut = retr_mcutfrommscl(fracacutasca) axis.lognp.log(fracacutasca, mcut) axis.set_xlabel(r'$\tau_n$') axis.set_ylabel(r'$M_{c,n} / M_{0,n}$') axis.axhline(1., ls='--') path = gdat.pathinitintr + 'mcut.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) def retr_listrtagprev(strgcnfg, pathpcat): # list of PCAT run plot outputs pathimag = pathpcat + '/imag/' listrtag = fnmatch.filter(os.listdir(pathimag), '2*') listrtagprev = [] for rtag in listrtag: strgstat = pathpcat + '/data/outp/' + rtag if chec_statfile(pathpcat, rtag, 'gdatmodipost', typeverb=0) and strgcnfg + '_' + rtag[16:].split('_')[-1] == rtag[16:]: listrtagprev.append(rtag) listrtagprev.sort() return listrtagprev def make_legd(axis, offs=None, loca=1, numbcols=1, ptch=None, line=None): hand, labl = axis.get_legend_handles_labels() legd = axis.legend(hand, labl, fancybox=True, frameon=True, bbox_to_anchor=offs, bbox_transform=axis.transAxes, ncol=numbcols, loc=loca, labelspacing=1, handlelength=2) legd.get_frame().set_fill(True) legd.get_frame().set_facecolor('white') def setp_namevarbsing(gdat, gmod, strgmodl, strgvarb, popl, ener, evtt, back, isfr, iele): if popl == 'full': indxpopltemp = gmod.indxpopl elif popl != 'none': indxpopltemp = [popl] if ener == 'full': indxenertemp = gdat.indxener elif ener != 'none': indxenertemp = [ener] if evtt == 'full': indxevtttemp = gdat.indxevtt elif evtt != 'none': indxevtttemp = [evtt] if back == 'full': gmod.indxbacktemp = gmod.indxback elif isinstance(back, int): gmod.indxbacktemp = np.array([back]) liststrgvarb = [] if iele != 'none': for l in gmod.indxpopl: if iele == 'full': listiele = np.arange(gmod.maxmpara.numbelem) else: listiele = [iele] for k in listiele: liststrgvarb.append(strgvarb + 'pop%d%04d' % (l, k)) if popl != 'none' and ener == 'none' and evtt == 'none' and back == 'none' and iele == 'none': for l in indxpopltemp: liststrgvarb.append(strgvarb + 'pop%d' % l) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr != 'none': for e in indxisfrtemp: liststrgvarb.append(strgvarb + 'isf%d' % e) if popl == 'none' and ener != 'none' and evtt != 'none' and back == 'none': for i in indxenertemp: for m in indxevtttemp: liststrgvarb.append(strgvarb + 'en%02devt%d' % (i, m)) if popl == 'none' and ener != 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: for i in indxenertemp: liststrgvarb.append(strgvarb + 'back%04den%02d' % (c, i)) if popl == 'none' and ener == 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: liststrgvarb.append(strgvarb + 'back%04d' % c) if popl == 'none' and ener != 'none' and evtt == 'none' and back == 'none': for i in indxenertemp: liststrgvarb.append(strgvarb + 'en%02d' % i) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr == 'none': liststrgvarb.append(strgvarb) if gdat.booldiagmode: for strgvarb in liststrgvarb: if liststrgvarb.count(strgvarb) != 1: print('liststrgvarb') print(liststrgvarb) print('popl') print(popl) print('ener') print(ener) print('evtt') print(evtt) print('back') print(back) print('isfr') print(isfr) print('iele') print(iele) raise Exception('') return liststrgvarb def setp_varb(gdat, strgvarbbase, valu=None, minm=None, maxm=None, scal='self', lablroot=None, lablunit='', mean=None, stdv=None, cmap=None, numbbins=10, \ popl='none', ener='none', evtt='none', back='none', isfr='none', iele='none', \ boolinvr=False, \ strgmodl=None, strgstat=None, \ ): ''' Set up variable values across all models (true and fitting) as well as all populations, energy bins, event bins, background components, and Sersic components ''' # determine the list of models if strgmodl is None: if gdat.typedata == 'mock': liststrgmodl = ['true', 'fitt', 'plot'] else: liststrgmodl = ['fitt', 'plot'] else: if strgmodl == 'true' or strgmodl == 'plot' or strgmodl == 'refr': liststrgmodl = [strgmodl] else: liststrgmodl = ['fitt', 'plot'] print('liststrgmodl') print(liststrgmodl) for strgmodl in liststrgmodl: if strgmodl == 'plot': gmod = gdat.fitt gmodoutp = gdat else: gmod = getattr(gdat, strgmodl) gmodoutp = gmod # get the list of names of the variable liststrgvarbnone = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, 'none') if iele != 'none': liststrgvarb = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, iele) else: liststrgvarb = liststrgvarbnone # set the values of each variable in the list for strgvarb in liststrgvarb: if minm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.minmpara, strgvarb, minm) if maxm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.maxmpara, strgvarb, maxm) if mean is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, mean) if stdv is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, stdv) if valu is not None: if strgstat is None: print('strgvarb') print(strgvarb) print('strgmodl') print(strgmodl) print('valu') print(valu) print('') setp_varbcore(gdat, strgmodl, gmodoutp, strgvarb, valu) elif strgstat == 'this': setp_varbcore(gdat, strgmodl, gmodoutp.this, strgvarb, valu) if scal is not None: setp_varbcore(gdat, strgmodl, gmodoutp.scalpara, strgvarb, scal) if lablroot is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablrootpara, strgvarb, lablroot) if lablunit is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablunitpara, strgvarb, lablunit) if cmap is not None: setp_varbcore(gdat, strgmodl, gmodoutp.cmappara, strgvarb, cmap) setp_varbcore(gdat, strgmodl, gmodoutp.numbbinspara, strgvarb, numbbins) # create limt, bins, mean, and delt if minm is not None and maxm is not None or mean is not None and stdv is not None: # determine minima and maxima for Gaussian or log-Gaussian distributed parameters if mean is not None: minm = mean - gdat.numbstdvgaus * stdv maxm = mean + gdat.numbstdvgaus * stdv # uniformly-distributed if scal == 'self' or scal == 'pois' or scal == 'gaus': binsunif = np.linspace(minm, maxm, numbbins + 1) if scal == 'logt' or scal == 'powr': binsunif = np.linspace(np.log10(minm), np.log10(maxm), numbbins + 1) if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsunif = np.linspace(
np.arcsinh(minm)
numpy.arcsinh
import numba import numpy as np ####################### # HELPFUL TOOLS BELOW # ####################### @numba.njit(cache=True, fastmath=True) # Speeding up by a lot! def unpack_alms(maps, lmax): #print("Unpacking alms") mmax = lmax nmaps = len(maps) # Nalms is length of target alms Nalms = int(mmax * (2 * lmax + 1 - mmax) / 2 + lmax + 1) alms = np.zeros((nmaps, Nalms), dtype=np.complex128) # Unpack alms as output by commander for sig in range(nmaps): i = 0 for l in range(lmax+1): j_real = l ** 2 + l alms[sig, i] = complex(maps[sig, j_real], 0.0) i += 1 for m in range(1, lmax + 1): for l in range(m, lmax + 1): j_real = l ** 2 + l + m j_comp = l ** 2 + l - m alms[sig, i] = complex(maps[sig, j_real], maps[sig, j_comp],) / np.sqrt(2.0) i += 1 return alms def alm2fits_tool(input, dataset, nside, lmax, fwhm, save=True,): """ Function for converting alms in hdf file to fits """ import h5py import healpy as hp try: sample = int(dataset.split("/")[0]) print(f"Using sample {sample}") except: print(f"No sample specified, fetching last smample") with h5py.File(input, "r") as f: sample = str(len(f.keys()) - 2).zfill(6) dataset=sample+"/"+dataset print(f"Sample {sample} found, dataset now {dataset}") with h5py.File(input, "r") as f: alms = f[dataset][()] lmax_h5 = f[f"{dataset[:-3]}lmax"][()] # Get lmax from h5 if lmax: # Check if chosen lmax is compatible with data if lmax > lmax_h5: print( "lmax larger than data allows: ", lmax_h5, ) print("Please chose a value smaller than this") else: # Set lmax to default value lmax = lmax_h5 mmax = lmax alms_unpacked = unpack_alms(alms, lmax) # Unpack alms # If not amp map, set spin 0. if "amp_alm" in dataset: pol = True if np.shape(alms_unpacked)[0]==1: pol = False else: pol = False print(f"Making map from alms, setting lmax={lmax}, pol={pol}") maps = hp.sphtfunc.alm2map(alms_unpacked, int(nside), lmax=int(lmax), mmax=int(mmax), fwhm=arcmin2rad(fwhm), pol=pol, pixwin=True,) outfile = dataset.replace("/", "_") outfile = outfile.replace("_alm", "") if save: outfile += f"_{str(int(fwhm))}arcmin" if fwhm > 0.0 else "" hp.write_map(outfile + f"_n{str(nside)}_lmax{lmax}.fits", maps, overwrite=True, dtype=None) return maps, nside, lmax, fwhm, outfile def h5handler(input, dataset, min, max, maxchain, output, fwhm, nside, command, pixweight=None, zerospin=False, lowmem=False, notchain=False): """ Function for calculating mean and stddev of signals in hdf file """ # Check if you want to output a map import h5py import healpy as hp from tqdm import tqdm if (lowmem and command == np.std): #need to compute mean first mean_data = h5handler(input, dataset, min, max, maxchain, output, fwhm, nside, np.mean, pixweight, zerospin, lowmem,) print() if command: print("{:-^50}".format(f" {dataset} calculating {command.__name__} ")) print("{:-^50}".format(f" nside {nside}, {fwhm} arcmin smoothing ")) if dataset.endswith("map"): type = "map" elif dataset.endswith("rms"): type = "map" elif dataset.endswith("alm"): type = "alm" elif dataset.endswith("sigma"): type = "sigma" else: type = "data" if (lowmem): nsamp = 0 #track number of samples first_samp = True #flag for first sample else: dats = [] use_pixweights = False if pixweight == None else True maxnone = True if max == None else False # set length of keys for maxchains>1 pol = True if zerospin == False else False # treat maps as TQU maps (polarization) for c in range(1, maxchain + 1): filename = input.replace("c0001", "c" + str(c).zfill(4)) with h5py.File(filename, "r") as f: if notchain: data = f[dataset][()] if data.shape[0] == 1: # Make sure its interprated as I by healpy # For non-polarization data, (1,npix) is not accepted by healpy data = data.ravel() dats.append(data) continue if maxnone: # If no max is specified, chose last sample max = len(f.keys()) - 2 print("{:-^48}".format(f" Samples {min} to {max} in {filename}")) for sample in tqdm(range(min, max + 1), ncols=80): # Identify dataset # alm, map or (sigma_l, which is recognized as l) # Unless output is ".fits" or "map", don't convert alms to map. alm2map = True if output.endswith((".fits", "map")) else False # HDF dataset path formatting s = str(sample).zfill(6) # Sets tag with type tag = f"{s}/{dataset}" #print(f"Reading c{str(c).zfill(4)} {tag}") # Check if map is available, if not, use alms. # If alms is already chosen, no problem try: data = f[tag][()] if len(data[0]) == 0: tag = f"{tag[:-3]}map" print(f"WARNING! No {type} data found, switching to map.") data = f[tag][()] type = "map" except: print(f"Found no dataset called {dataset}") print(f"Trying alms instead {tag}") try: # Use alms instead (This takes longer and is not preferred) tag = f"{tag[:-3]}alm" type = "alm" data = f[tag][()] except: print("Dataset not found.") # If data is alm, unpack. if type == "alm": lmax_h5 = f[f"{tag[:-3]}lmax"][()] data = unpack_alms(data, lmax_h5) # Unpack alms if data.shape[0] == 1: # Make sure its interprated as I by healpy # For non-polarization data, (1,npix) is not accepted by healpy data = data.ravel() # If data is alm and calculating std. Bin to map and smooth first. if type == "alm" and command == np.std and alm2map: #print(f"#{sample} --- alm2map with {fwhm} arcmin, lmax {lmax_h5} ---") data = hp.alm2map(data, nside=nside, lmax=lmax_h5, fwhm=arcmin2rad(fwhm), pixwin=True,verbose=False,pol=pol,) # If data is map, smooth first. elif type == "map" and fwhm > 0.0 and command == np.std: #print(f"#{sample} --- Smoothing map ---") if use_pixweights: data = hp.sphtfunc.smoothing(data, fwhm=arcmin2rad(fwhm),verbose=False,pol=pol,use_pixel_weights=True,datapath=pixweight) else: #use ring weights data = hp.sphtfunc.smoothing(data, fwhm=arcmin2rad(fwhm),verbose=False,pol=pol,use_weights=True) if (lowmem): if (first_samp): first_samp=False if (command==np.mean): dats=data.copy() elif (command==np.std): dats=(mean_data - data)**2 else: print(' Unknown command {command}. Exiting') exit() else: if (command==np.mean): dats=dats+data elif (command==np.std): dats=dats+(mean_data - data)**2 nsamp+=1 else: # Append sample to list dats.append(data) if (lowmem): if (command == np.mean): outdata = dats/nsamp elif (command == np.std): outdata = np.sqrt(dats/nsamp) else: # Convert list to array dats = np.array(dats) # Calculate std or mean print(dats.shape) outdata = command(dats, axis=0) if command else dats # Smoothing afterwards when calculating mean if type == "alm" and command == np.mean and alm2map: print(f"# --- alm2map mean with {fwhm} arcmin, lmax {lmax_h5} ---") outdata = hp.alm2map( outdata, nside=nside, lmax=lmax_h5, fwhm=arcmin2rad(fwhm), pixwin=True, pol=pol ) if type == "map" and fwhm > 0.0 and command == np.mean: print(f"--- Smoothing mean map with {fwhm} arcmin,---") if use_pixweights: outdata = hp.sphtfunc.smoothing(outdata, fwhm=arcmin2rad(fwhm),verbose=False,pol=pol,use_pixel_weights=True,datapath=pixweight) else: #use ring weights outdata = hp.sphtfunc.smoothing(outdata, fwhm=arcmin2rad(fwhm),verbose=False,pol=pol,use_weights=True) # Outputs fits map if output name is .fits if output.endswith(".fits"): hp.write_map(output, outdata, overwrite=True, dtype=None) elif output.endswith(".dat"): while np.ndim(outdata)>2: if outdata.shape[-1]==4: tdata = outdata[:,0,0] print(tdata) outdata = outdata[:,:,3] outdata[:,0] = tdata else: outdata = outdata[:,:,0] np.savetxt(output, outdata) return outdata def arcmin2rad(arcmin): return arcmin * (2 * np.pi) / 21600 def legend_positions(df, y, scaling): """ Calculate position of labels to the right in plot... """ positions = {} for column in y: positions[column] = df[column].values[-1] - 0.005 def push(dpush): """ ...by puting them to the last y value and pushing until no overlap """ collisions = 0 for column1, value1 in positions.items(): for column2, value2 in positions.items(): if column1 != column2: dist = abs(value1-value2) if dist < scaling:# 0.075: #0.075: #0.023: collisions += 1 if value1 < value2: positions[column1] -= dpush positions[column2] += dpush else: positions[column1] += dpush positions[column2] -= dpush return True dpush = .001 pushings = 0 while True: if pushings == 1000: dpush*=10 pushings = 0 pushed = push(dpush) if not pushed: break pushings+=1 return positions def cmb(nu, A): """ CMB blackbody spectrum """ h = 6.62607e-34 # Planck's konstant k_b = 1.38065e-23 # Boltzmanns konstant Tcmb = 2.7255 # K CMB Temperature x = h*nu/(k_b*Tcmb) g = (np.exp(x)-1)**2/(x**2*np.exp(x)) s_cmb = A/g return s_cmb def sync(nu, As, alpha, nuref=0.408): """ Synchrotron spectrum using template """ print("nuref", nuref) #alpha = 1., As = 30 K (30*1e6 muK) nu_0 = nuref*1e9 # 408 MHz from pathlib import Path synch_template = Path(__file__).parent / "Synchrotron_template_GHz_extended.txt" fnu, f = np.loadtxt(synch_template, unpack=True) f = np.interp(nu, fnu*1e9, f) f0 = np.interp(nu_0, nu, f) # Value of s at nu_0 s_s = As*(nu_0/nu)**2*f/f0 return s_s def ffEM(nu,EM,Te): """ Freefree spectrum using emission measure """ #EM = 1 cm-3pc, Te= 500 #K T4 = Te*1e-4 nu9 = nu/1e9 #Hz g_ff = np.log(np.exp(5.960-np.sqrt(3)/np.pi*np.log(nu9*T4**(-3./2.)))+np.e) tau = 0.05468*Te**(-3./2.)*nu9**(-2)*EM*g_ff s_ff = 1e6*Te*(1-np.exp(-tau)) return s_ff def ff(nu,A,Te, nuref=40.): """ Freefree spectrum """ h = 6.62607e-34 # Planck's konstant k_b = 1.38065e-23 # Boltzmanns konstant nu_ref = nuref*1e9 S = np.log(np.exp(5.960 - np.sqrt(3.0)/np.pi * np.log( nu/1e9*(Te/1e4)**-1.5))+2.71828) S_ref = np.log(np.exp(5.960 - np.sqrt(3.0)/np.pi * np.log(nu_ref/1e9*(Te/1e4)**-1.5))+2.71828) s_ff = A*S/S_ref*np.exp(-h*(nu-nu_ref)/k_b/Te)*(nu/nu_ref)**-2 return s_ff def sdust(nu, Asd, nu_p, polfrac, fnu = None, f_ = None, nuref=22.,): """ Spinning dust spectrum using spdust2 """ nuref = nuref*1e9 scale = 30./nu_p try: f = np.interp(scale*nu, fnu, f_) f0 = np.interp(scale*nuref, fnu, f_) # Value of s at nu_0 except: from pathlib import Path ame_template = Path(__file__).parent / "spdust2_cnm.dat" fnu, f_ = np.loadtxt(ame_template, unpack=True) fnu *= 1e9 f = np.interp(scale*nu, fnu, f_) f0 = np.interp(scale*nuref, fnu, f_) # Value of s at nu_0 s_sd = polfrac*Asd*(nuref/nu)**2*f/f0 return s_sd def tdust(nu,Ad,betad,Td,nuref=545.): """ Thermal dust modified blackbody spectrum. """ h = 6.62607e-34 # Planck's konstant k_b = 1.38065e-23 # Boltzmanns konstant nu0=nuref*1e9 gamma = h/(k_b*Td) s_d=Ad*(nu/nu0)**(betad+1)*(np.exp(gamma*nu0)-1)/(np.exp(gamma*nu)-1) return s_d def lf(nu,Alf,betalf,nuref=30e9): """ low frequency component spectrum (power law) """ return Alf*(nu/nuref)**(betalf) def line(nu, A, freq, conversion=1.0): """ Line emission spectrum """ if isinstance(nu, np.ndarray): return np.where(np.isclose(nu, 1e9*freq), A*conversion, 0.0) else: if np.isclose(nu, 1e9*freq[0]): return A*conversion else: return 0.0 def rspectrum(nu, r, sig, scaling=1.0): """ Calculates the CMB amplituded given a value of r and requested modes """ import camb from camb import model, initialpower import healpy as hp #Set up a new set of parameters for CAMB pars = camb.CAMBparams() #This function sets up CosmoMC-like settings, with one massive neutrino and helium set using BBN consistency pars.set_cosmology(H0=67.5, ombh2=0.022, omch2=0.122, mnu=0.06, omk=0, tau=0.06) pars.InitPower.set_params(As=2e-9, ns=0.965, r=r) lmax=6000 pars.set_for_lmax(lmax, lens_potential_accuracy=0) pars.WantTensors = True results = camb.get_results(pars) powers = results.get_cmb_power_spectra(params=pars, lmax=lmax, CMB_unit='muK', raw_cl=True,) l = np.arange(2,lmax+1) if sig == "TT": cl = powers['unlensed_scalar'] signal = 0 elif sig == "EE": cl = powers['unlensed_scalar'] signal = 1 elif sig == "BB": cl = powers['tensor'] signal = 2 bl = hp.gauss_beam(40/(180/np.pi*60), lmax,pol=True) A = np.sqrt(sum( 4*np.pi * cl[2:,signal]*bl[2:,signal]**2/(2*l+1) )) return cmb(nu, A*scaling) def fits_handler(input, min, max, minchain, maxchain, chdir, output, fwhm, nside, zerospin, drop_missing, pixweight, command, lowmem=False, fields=None, write=False): """ Function for handling fits files. """ # Check if you want to output a map import healpy as hp from tqdm import tqdm import os if (not input.endswith(".fits")): print("Input file must be a '.fits'-file") exit() if (lowmem and command == np.std): #need to compute mean first mean_data = fits_handler(input, min, max, minchain, maxchain, chdir, output, fwhm, nside, zerospin, drop_missing, pixweight, lowmem, np.mean, fields, write=False) if (minchain > maxchain): print('Minimum chain number larger that maximum chain number. Exiting') exit() aline=input.split('/') dataset=aline[-1] print() if command: print("{:-^50}".format(f" {dataset} calculating {command.__name__} ")) if (nside == None): print("{:-^50}".format(f" {fwhm} arcmin smoothing ")) else: print("{:-^50}".format(f" nside {nside}, {fwhm} arcmin smoothing ")) type = 'map' if (not lowmem): dats = [] nsamp = 0 #track number of samples first_samp = True #flag for first sample use_pixweights = False if pixweight == None else True maxnone = True if max == None else False # set length of keys for maxchains>1 pol = True if zerospin == False else False # treat maps as TQU maps (polarization) for c in range(minchain, maxchain + 1): if (chdir==None): filename = input.replace("c0001", "c" + str(c).zfill(4)) else: filename = chdir+'_c%i/'%(c)+input basefile = filename.split("k000001") if maxnone: # If no max is specified, find last sample of chain # Assume residual file of convention res_label_c0001_k000234.fits, # i.e. final numbers of file are sample number max_found = False siter=min while (not max_found): filename = basefile[0]+'k'+str(siter).zfill(6)+basefile[1] if (os.path.isfile(filename)): siter += 1 else: max_found = True max = siter - 1 else: if (first_samp): for chiter in range(minchain,maxchain + 1): if (chdir==None): tempname = input.replace("c0001", "c" + str(c).zfill(4)) else: tempname = chdir+'_c%i/'%(c)+input temp = tempname.split("k000001") for siter in range(min,max+1): tempf = temp[0]+'k'+str(siter).zfill(6)+temp[1] if (not os.path.isfile(tempf)): print('chain %i, sample %i missing'%(c,siter)) print(tempf) if (not drop_missing): exit() print("{:-^48}".format(f" Samples {min} to {max} in {filename}")) for sample in tqdm(range(min, max + 1), ncols=80): # dataset sample formatting filename = basefile[0]+'k'+str(sample).zfill(6)+basefile[1] if (first_samp): # Check which fields the input maps have if (not os.path.isfile(filename)): if (not drop_missing): exit() else: continue _, header = hp.fitsfunc.read_map(filename, verbose=False, h=True, dtype=None) if fields!=None: nfields = 0 for par in header: if (par[0] == 'TFIELDS'): nfields = par[1] break if (nfields == 0): print('No fields/maps in input file') exit() elif (nfields == 1): fields=(0) elif (nfields == 2): fields=(0,1) elif (nfields == 3): fields=(0,1,2) #print(' Reading fields ',fields) nest = False for par in header: if (par[0] == 'ORDERING'): if (not par[1] == 'RING'): nest = True break nest = False for par in header: if (par[0] == 'NSIDE'): nside_map = par[1] break if (not nside == None): if (nside > nside_map): print(' Specified nside larger than that of the input maps') print(' Not up-grading the maps') print('') if (not os.path.isfile(filename)): if (not drop_missing): exit() else: continue data = hp.fitsfunc.read_map(filename,field=fields,verbose=False,h=False, nest=nest, dtype=None) if (nest): #need to reorder to ring-ordering data = hp.pixelfunc.reorder(data,n2r=True) # degrading if relevant if (not nside == None): if (nside < nside_map): data=hp.pixelfunc.ud_grade(data,nside) #ordering=ring by default if data.shape[0] == 1: # Make sure its interprated as I by healpy # For non-polarization data, (1,npix) is not accepted by healpy data = data.ravel() # If smoothing applied and calculating stddev, smooth first. if fwhm > 0.0 and command == np.std: #print(f"#{sample} --- Smoothing map ---") if use_pixweights: data = hp.sphtfunc.smoothing(data, fwhm=arcmin2rad(fwhm),verbose=False,pol=pol,use_pixel_weights=True,datapath=pixweight) else: #use ring weights data = hp.sphtfunc.smoothing(data, fwhm=arcmin2rad(fwhm),verbose=False,pol=pol,use_weights=True) if (lowmem): if (first_samp): if (command==np.mean): dats=data.copy() elif (command==np.std): dats=(mean_data - data)**2 else: print(' Unknown command {command}. Exiting') exit() else: if (command==np.mean): dats=dats+data elif (command==np.std): dats=dats+(mean_data - data)**2 nsamp+=1 else: # Append sample to list dats.append(data) first_samp=False if (lowmem): if (command == np.mean): outdata = dats/nsamp elif (command == np.std): outdata = np.sqrt(dats/nsamp) else: # Convert list to array dats =
np.array(dats)
numpy.array
import numpy as np import xarray as xr from xclim import land, set_options def test_base_flow_index(ndq_series): out = land.base_flow_index(ndq_series, freq="YS") assert out.attrs["units"] == "" assert isinstance(out, xr.DataArray) def test_rb_flashiness_index(ndq_series): out = land.base_flow_index(ndq_series, freq="YS") assert out.attrs["units"] == "" assert isinstance(out, xr.DataArray) class Test_FA: def test_simple(self, ndq_series): out = land.freq_analysis( ndq_series, mode="max", t=[2, 5], dist="gamma", season="DJF" ) assert out.long_name == "N-year return period max winter 1-day flow" assert out.shape == (2, 2, 3) # nrt, nx, ny np.testing.assert_array_equal(out.isnull(), False) def test_no_indexer(self, ndq_series): out = land.freq_analysis(ndq_series, mode="max", t=[2, 5], dist="gamma") assert out.long_name == "N-year return period max annual 1-day flow" assert out.shape == (2, 2, 3) # nrt, nx, ny np.testing.assert_array_equal(out.isnull(), False) def test_q27(self, ndq_series): out = land.freq_analysis(ndq_series, mode="max", t=2, dist="gamma", window=7) assert out.shape == (1, 2, 3) def test_empty(self, ndq_series): q = ndq_series.copy() q[:, 0, 0] = np.nan out = land.freq_analysis( q, mode="max", t=2, dist="genextreme", window=6, freq="YS" ) assert np.isnan(out.values[:, 0, 0]).all() class TestStats: def test_simple(self, ndq_series): out = land.stats(ndq_series, freq="YS", op="min", season="MAM") assert out.attrs["units"] == "m^3 s-1" def test_missing(self, ndq_series): a = ndq_series a = ndq_series.where(~((a.time.dt.dayofyear == 5) * (a.time.dt.year == 1902))) assert a.shape == (5000, 2, 3) out = land.stats(a, op="max", month=1) np.testing.assert_array_equal(out.sel(time="1900").isnull(), False) np.testing.assert_array_equal(out.sel(time="1902").isnull(), True) class TestFit: def test_simple(self, ndq_series): ts = land.stats(ndq_series, freq="YS", op="max") p = land.fit(ts, dist="gumbel_r") assert p.attrs["estimator"] == "Maximum likelihood" def test_nan(self, q_series): r =
np.random.rand(22)
numpy.random.rand
import numpy as np def softmax(predictions): ''' Computes probabilities from scores Arguments: predictions, np array, shape is either (N) or (batch_size, N) - classifier output Returns: probs, np array of the same shape as predictions - probability for every class, 0..1 ''' # TODO implement softmax # Your final implementation shouldn't have any loops if predictions.ndim == 1: predictions_normalized = predictions.copy() - predictions.max() predictions_exp = np.exp(predictions_normalized) exp_sum = predictions_exp.sum() results = predictions_exp / exp_sum else: predictions_normalized = predictions.copy() - predictions.max(axis=1).reshape((-1, 1)) predictions_exp = np.exp(predictions_normalized) exp_sum = predictions_exp.sum(axis=1) results = predictions_exp / exp_sum.reshape((-1, 1)) return results def l2_regularization(W, reg_strength): ''' Computes L2 regularization loss on weights and its gradient Arguments: W, np array - weights reg_strength - float value Returns: loss, single value - l2 regularization loss gradient, np.array same shape as W - gradient of weight by l2 loss ''' # TODO: Copy from previous assignment loss = reg_strength *
np.power(W, 2)
numpy.power
#!/usr/bin/env python # coding: utf-8 # # 3D Volume Analysis Functions # ## Introduction # These functions were developed at **Boston University** to aid in the analysis of pre-segmented 3D reconsructed volumes. This code was originally written to segment three-phase material, but can be modified to analyze two-phase materials (with the exception of the TPB function, which by definition requires three phases). The TPB density function relies on a wonderful package called "Skan", which is cited below. # ### Citations: # <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, Solid State Ionics, 148(1), 15 (2002). # # <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, PeerJ, 6(4312), 2018. doi:10.7717/peerj.4312. # # <NAME>, <NAME>, <NAME>, and <NAME>, J. Power Sources, 196(10), 4555 (2011). # In[2]: import numpy from PIL import Image from scipy import ndimage, misc import scipy import matplotlib.pyplot as plt import cv2 import pandas as pd import math import skimage from skimage.measure import label, regionprops from skimage.morphology import skeletonize import random import skan # ### Rescaling # This function takes a 3D labeled volume that may have asymmetric voxel sizes, and resamples the volume to produce a labeled volume with the smallest possible symmetric voxel size. The function takes a labeled volume (arr), and the physical dimensions along the x, y, and z directions in arbitrary units (d1, d2, and d3 respectively). # In[9]: def rescale(arr,d1,d2,d3): sizeArr=numpy.shape(arr) vs=[d1/sizeArr[0],d2/sizeArr[1],d3/sizeArr[2]] v=max(vs) zoomV=((d1/v)/sizeArr[0],(d2/v)/sizeArr[1],1) Labeled_us = ndimage.zoom(Labeled, zoomV, mode='nearest') print("Voxel size: {:.3f} um".format(v)) return(Labeled_us) # ### Average Particle Size # This function implements a version of the intercept method that both determines an average particle size and the average particle size when measured in the x, y, and z directions. The function takes a labeled volume (with the phase of interest occuping voxels labeled val) and calculates, in each direction and overall, the average intercept size through the particles in that phase. The "scale" input value should be in units/voxel side length (for example, um/voxel side length). The function returns an array with the x-direction, y-direction, z-direction, and average particle sizes for that phase, and automatically multiplies each with a stereographic coefficient, assuming that each particle is spherical. # # See Lee et. al. for further details about the intercept method. # In[10]: def bisector_size(arr,val,scale): sizeArr=numpy.shape(arr) x_sz=[] y_sz=[] z_sz=[] x_int=numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int) y_int=numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int) z_int=numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int) #find x sizes ct=0 for z in range(sizeArr[2]): for y in range(sizeArr[1]): ct=0 for x in range(sizeArr[0]): if arr[x,y,z]==val: ct+=1 else: ct=0 x_int[x,y,z]=ct for z in range(sizeArr[2]): for y in range(sizeArr[1]): for x in range(sizeArr[0]-1): if x_int[x,y,z]>0 and x_int[x+1,y,z]==0: x_sz.append(x_int[x,y,z]) if x_int[-1,y,z]>0: x_sz.append(x_int[-1,y,z]) x_size=numpy.mean(x_sz)*scale #find y sizes ct=0 for z in range(sizeArr[2]): for x in range(sizeArr[0]): ct=0 for y in range(sizeArr[1]): if arr[x,y,z]==val: ct+=1 else: ct=0 y_int[x,y,z]=ct for z in range(sizeArr[2]): for x in range(sizeArr[0]): for y in range(sizeArr[1]-1): if y_int[x,y,z]>0 and y_int[x,y+1,z]==0: y_sz.append(y_int[x,y,z]) if y_int[x,-1,z]>0: y_sz.append(y_int[x,-1,z]) y_size=numpy.mean(y_sz)*scale #find z sizes ct=0 for y in range(sizeArr[1]): for x in range(sizeArr[0]): ct=0 for z in range(sizeArr[2]): if arr[x,y,z]==val: ct+=1 else: ct=0 z_int[x,y,z]=ct for y in range(sizeArr[1]): for x in range(sizeArr[0]): for z in range(sizeArr[2]-1): if z_int[x,y,z]>0 and z_int[x,y,z+1]==0: z_sz.append(z_int[x,y,z]) if z_int[x,y,-1]>0: z_sz.append(z_int[x,y,-1]) z_size=numpy.mean(z_sz)*scale cat_sz=x_sz+y_sz+z_sz cat_size=numpy.mean(cat_sz)*scale return([1.5*x_size,1.5*y_size,1.5*z_size,1.5*cat_size]) # ### Percolation Fraction # The "perc" function takes a labeled volume and a phase label, and calculates the fraction of pixels that belong to the largest continuous connected volume of that phase within the sampled volume. This function returns the percolated fraction of that phase, as well as an array containing the coordinates of the voxels in the percolated regions of that phase. # In[11]: def perc(arr,phase_label): sizeArr=numpy.shape(arr) barray=numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int) for x in range(sizeArr[0]): for y in range(sizeArr[1]): for z in range(sizeArr[2]): if arr[x,y,z]==phase_label: barray[x,y,z]=1 regions=label(barray, connectivity=3) reg_props=regionprops(regions) reg_areas=numpy.zeros(len(reg_props)) for i in range(len(reg_props)): reg_areas[i]=reg_props[i].area perc_index=(numpy.where(reg_areas == numpy.amax(reg_areas)))[0] perc_area=reg_props[int(perc_index)].area perc_frac=perc_area/sum(sum(sum(barray))) perc_locs=reg_props[int(perc_index)].coords return(perc_frac,perc_locs) # ### Tortuosity # The tortuosity function calculates the tortuosity of a phase using the random walker method. The function takes a labeled array, the label of the phase of interest (phase_label), the number of walkers you'd like to deploy (walkers), and the number of steps those walkers should take (steps). The function returns the tortuosity values as an array (in the x, y, z directions and on average) as well as the average distance of each walker from its origin (rp, rpx, rpy, rpz) and an array containing the walker time steps. To plot, for example, the distance as a function of time step, plot rp vs. steps. For further details about this calculation, see Kishimoto et. al. cited above. # In[6]: def tortuosity(arr,phase_label,walkers,steps): sizeArr=numpy.shape(arr) ## find the tortuosity in the percolated phase perc_results=perc(arr,phase_label) perc_coords=perc_results[1] perc_vol=numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int) for x in range(len(perc_coords)): perc_vol[(perc_coords[x,:])[0],(perc_coords[x,:])[1],(perc_coords[x,:])[2]]=1 rp=numpy.zeros(steps) rpx=numpy.zeros(steps) rpy=numpy.zeros(steps) rpz=numpy.zeros(steps) for n in range(walkers): walk_seed_index=random.randint(0,len(perc_coords)) walk_seed=(perc_results[1])[walk_seed_index] pos=walk_seed for s in range(steps): xchg=random.randint(-1,1) ychg=random.randint(-1,1) zchg=random.randint(-1,1) postemp=numpy.array([pos[0]+xchg,pos[1]+ychg,pos[2]+zchg]) if (postemp[0] in range(sizeArr[0])) and (postemp[1] in range(sizeArr[1])) and (postemp[2]in range(sizeArr[2])) and (perc_vol[postemp[0],postemp[1],postemp[2]]==1): pos=postemp else: pos=pos rp[s]+=((pos[0]-walk_seed[0])**2+(pos[1]-walk_seed[1])**2+(pos[2]-walk_seed[2])**2) rpx[s]+=abs(pos[0]-walk_seed[0])**2 rpy[s]+=abs(pos[1]-walk_seed[1])**2 rpz[s]+=abs(pos[2]-walk_seed[2])**2 # get displacement as a function of steps for all space, x, y and z rp=rp/walkers rpx=rpx/walkers rpy=rpy/walkers rpz=rpz/walkers ## Free space tortuosity rpfs=numpy.zeros(steps) rpxfs=numpy.zeros(steps) rpyfs=numpy.zeros(steps) rpzfs=numpy.zeros(steps) for n in range(walkers): walk_seed=numpy.array([random.randint(0,sizeArr[0]),random.randint(0,sizeArr[1]),random.randint(0,sizeArr[2])]) pos=walk_seed for s in range(steps): xchg=random.randint(-1,1) ychg=random.randint(-1,1) zchg=random.randint(-1,1) postemp=numpy.array([pos[0]+xchg,pos[1]+ychg,pos[2]+zchg]) if (postemp[0] in range(sizeArr[0])) and (postemp[1] in range(sizeArr[1])) and (postemp[2]in range(sizeArr[2])): pos=postemp else: pos=pos rpfs[s]+=((pos[0]-walk_seed[0])**2+(pos[1]-walk_seed[1])**2+(pos[2]-walk_seed[2])**2) rpxfs[s]+=abs(pos[0]-walk_seed[0])**2 rpyfs[s]+=abs(pos[1]-walk_seed[1])**2 rpzfs[s]+=abs(pos[2]-walk_seed[2])**2 rpfs=rpfs/walkers rpxfs=rpxfs/walkers rpyfs=rpyfs/walkers rpzfs=rpzfs/walkers step_array=numpy.arange(1,steps+1) crp=(numpy.polyfit(step_array,rp,1))[0] crpx=(numpy.polyfit(step_array,rpx,1))[0] crpy=(numpy.polyfit(step_array,rpy,1))[0] crpz=(numpy.polyfit(step_array,rpz,1))[0] crpfs=(numpy.polyfit(step_array,rpfs,1))[0] crpxfs=(numpy.polyfit(step_array,rpxfs,1))[0] crpyfs=(numpy.polyfit(step_array,rpyfs,1))[0] crpzfs=(numpy.polyfit(step_array,rpzfs,1))[0] V_frac=perc_results[0] tort=(1/V_frac)*(crpfs/crp) tortx=(1/V_frac)*(crpxfs/crpx) torty=(1/V_frac)*(crpyfs/crpy) tortz=(1/V_frac)*(crpzfs/crpz) tortvals=[numpy.sqrt(tortx),numpy.sqrt(torty),numpy.sqrt(tortz),numpy.sqrt(tort)] return(tortvals,rp,rpx,rpy,rpz,step_array) # ### TPB Density # TPB density is calculated by the volume expansion method, and takes a labeled volume, the values of each of the three phases of interest as an array, the voxel side length (voxel_size), and the number of dilations you'd like to perform on each of the phases to extract the TPBs. Dilations should be initially set to 1, but can be increased if you are concerned about noise or misclassified pixels in your volume. # In[12]: def TPB_per_vol(arr,phase_values,voxel_size,dilations): sizeArr=numpy.shape(arr) tpb_array=numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int) for i in phase_values: barray=
numpy.zeros((sizeArr[0],sizeArr[1],sizeArr[2]), dtype=int)
numpy.zeros
# -*- coding: utf-8 -*- """ | **@created on:** 9/28/20, | **@author:** prathyushsp, | **@version:** v0.0.1 | | **Description:** | | | **Sphinx Documentation Status:** """ import torch import cv2 import numpy as np import wandb from pert.utils import tv_norm, numpy_to_torch, save_timeseries import matplotlib.pyplot as plt from scipy.ndimage.filters import median_filter import logging import random from nte.experiment.evaluation import run_evaluation_metrics from nte.utils.perturbation_manager import PerturbationManager from nte.models.saliency_model import Saliency from torch.optim.lr_scheduler import ExponentialLR from nte.utils.priority_buffer import PrioritizedBuffer logger = logging.getLogger(__name__) class PertSaliency(Saliency): def __init__(self, background_data, background_label, predict_fn, enable_wandb, use_cuda, args): super(PertSaliency, self).__init__(background_data=background_data, background_label=background_label, predict_fn=predict_fn) self.enable_wandb = enable_wandb self.use_cuda = use_cuda self.args = args self.softmax_fn = torch.nn.Softmax(dim=-1) self.perturbation_manager = None self.r_index = random.randrange(0, len(self.background_data)) if self.args.r_index < 0 else self.args.r_index self.rs_priority_buffer = None self.ro_priority_buffer = None self.eps = 1.0 self.eps_decay = 0.9991 def priority_dual_greedy_pick_rt(self, kwargs, data, label): self.eps *= self.eps_decay if np.random.uniform() < self.eps: self.mode = 'Explore' rs_index = [np.random.choice(len(getattr(self.args.dataset, f"test_class_{int(label)}_data")))] ro_index = [np.random.choice(len(getattr(self.args.dataset, f"test_class_{1-int(label)}_data")))] Rs, rs_weight = [getattr(self.args.dataset, f"test_class_{int(label)}_data")[rs_index[0]]], [1.0] Ro, ro_weight = [getattr(self.args.dataset, f"test_class_{1-int(label)}_data")[ro_index[0]]], [1.0] else: self.mode = 'Exploit' Rs, rs_weight, rs_index = self.rs_priority_buffer.sample(1) Ro, ro_weight, ro_index = self.ro_priority_buffer.sample(1) return {'rs': [Rs, rs_weight, rs_index], 'ro': [Ro, ro_weight, ro_index]} def dynamic_dual_pick_zt(self, kwargs, data, label): ds = kwargs['dataset'].test_class_0_indices ls = len(ds) ods = kwargs['dataset'].test_class_1_indices ols = len(ods) self.r_index = random.randrange(0, ls) self.ro_index = random.randrange(0, ols) Zt = self.background_data[ds[self.r_index]] ZOt = self.background_data[ods[self.ro_index]] return Zt, ZOt def dynamic_pick_zt(self, kwargs, data, label): self.r_index = None if self.args.grad_replacement == 'zeros': Zt = torch.zeros_like(data) else: if self.args.grad_replacement == 'class_mean': if label == 1: Zt = torch.tensor(kwargs['dataset'].test_class_0_mean, dtype=torch.float32) else: Zt = torch.tensor(kwargs['dataset'].test_class_1_mean, dtype=torch.float32) elif self.args.grad_replacement == 'instance_mean': Zt = torch.mean(data).cpu().detach().numpy() Zt = torch.tensor(np.repeat(Zt, data.shape[0]), dtype=torch.float32) elif self.args.grad_replacement == 'random_instance': self.r_index = random.randrange(0, len(self.background_data)) Zt = torch.tensor(self.background_data[self.r_index], dtype=torch.float32) elif self.args.grad_replacement == 'random_opposing_instance': if label == 1: sds = kwargs['dataset'].test_class_0_indices sls = len(sds) else: sds = kwargs['dataset'].test_class_1_indices sls = len(sds) self.r_index = random.randrange(0, sls) Zt = torch.tensor(sds[self.r_index], dtype=torch.float32) return Zt def static_pick_zt(self, kwargs, data, label): if self.args.grad_replacement == 'zeros': Zt = torch.zeros_like(data) else: if self.args.grad_replacement == 'class_mean': if label == 1: Zt = torch.tensor(kwargs['dataset'].test_class_0_mean, dtype=torch.float32) else: Zt = torch.tensor(kwargs['dataset'].test_class_1_mean, dtype=torch.float32) elif self.args.grad_replacement == 'instance_mean': Zt = torch.mean(data).cpu().detach().numpy() Zt = torch.tensor(np.repeat(Zt, data.shape[0]), dtype=torch.float32) elif self.args.grad_replacement == 'random_instance': Zt = torch.tensor(self.background_data[self.r_index], dtype=torch.float32) elif self.args.grad_replacement == 'random_opposing_instance': if label == 1: Zt = torch.tensor(kwargs['dataset'].test_statistics['between_class']['opposing'][0], dtype=torch.float32) else: Zt = torch.tensor(kwargs['dataset'].test_statistics['between_class']['opposing'][1], dtype=torch.float32) return Zt def weighted_mse_loss(self, input, target, weight): return torch.mean(weight * (input - target) ** 2) def generate_saliency(self, data, label, **kwargs): self.rs_priority_buffer = PrioritizedBuffer( background_data=getattr(kwargs['dataset'], f"test_class_{int(label)}_data")) self.ro_priority_buffer = PrioritizedBuffer( background_data=getattr(kwargs['dataset'], f"test_class_{1 - int(label)}_data")) self.eps = 1.0 if isinstance(data, np.ndarray): data = torch.tensor(data, dtype=torch.float32) category = np.argmax(kwargs['target'].cpu().data.numpy()) if kwargs['save_perturbations']: self.perturbation_manager = PerturbationManager( original_signal=data.cpu().detach().numpy().flatten(), algo=self.args.algo, prediction_prob=np.max(kwargs['target'].cpu().data.numpy()), original_label=label, sample_id=self.args.single_sample_id) plt.plot(data, label="Original Signal Norm") gkernel = cv2.getGaussianKernel(3, 0.5) gaussian_blur_signal = cv2.filter2D(data.cpu().detach().numpy(), -1, gkernel).flatten() plt.plot(gaussian_blur_signal, label="Gaussian Blur") median_blur_signal = median_filter(data, 3) plt.plot(median_blur_signal, label="Median Blur") blurred_signal = (gaussian_blur_signal + median_blur_signal) / 2 plt.plot(blurred_signal, label="Blurred Signal") mask_init = np.random.uniform(size=len(data), low=-1e-2, high=1e-2) blurred_signal_norm = blurred_signal /
np.max(blurred_signal)
numpy.max
''' ''' import numpy as np class Replace(object): def __init__(self, strategy="Replace", fill_value=np.nan, thresh=3.5): ''' :param strategy:"Replace" :param fill_value: when startegy="replace", replace outlier with np.nan ''' self.strategy = strategy self.fill_value = fill_value self.thresh = thresh def fit(self, X, y=None): median = np.median(X, axis=0) diff = np.abs(X - median) med_abs_deviation = np.median(diff, axis=0) self.median = median self.med_abs_deviation = med_abs_deviation return self def transform(self, X): diff = np.abs(X - self.median) modified_z_score = 0.6745 * diff / self.med_abs_deviation mask = modified_z_score > self.thresh X = X.astype("float") X[mask] = self.fill_value return X class Filter(object): def __init__(self, method='filter', missing_values=np.nan, threshold= 0.85): ''' :param method: 'filter' - filter columns :param missing_values: :param threshold: ''' self.missing_values= missing_values self.threshold=threshold def fit(self, X, y=None): self.index =
np.isnan(X)
numpy.isnan
#****************************************************# # This file is part of OPTALG. # # # # Copyright (c) 2019, <NAME>. # # # # OPTALG is released under the BSD 2-clause license. # #****************************************************# from __future__ import print_function import numpy as np from functools import reduce from .opt_solver_error import * from .problem import cast_problem, OptProblem from .opt_solver import OptSolver from optalg.lin_solver import new_linsolver from scipy.sparse import bmat,eye,coo_matrix,tril class OptSolverAugL(OptSolver): parameters = {'beta_large' : 0.9, # for decreasing sigma when progress 'beta_med' : 0.5, # for decreasing sigma when forcing 'beta_small' : 0.1, # for decreasing sigma 'feastol' : 1e-4, # feasibility tolerance 'optol' : 1e-4, # optimality tolerance 'gamma' : 0.1, # for determining required decrease in ||f|| 'tau' : 0.1, # for reductions in ||GradF|| 'kappa' : 1e-2, # for initializing sigma 'maxiter' : 1000, # maximum iterations 'sigma_min' : 1e-12, # minimum sigma 'sigma_init_min' : 1e-3, # minimum initial sigma 'sigma_init_max' : 1e8, # maximum initial sigma 'theta_min' : 1e-6, # minimum barrier parameter 'theta_max' : 1e0 , # maximum initial barrier parameter 'lam_reg' : 1e-4, # regularization of first order dual update 'subprob_force' : 10, # for periodic sigma decrease 'subprob_maxiter' : 150, # maximum subproblem iterations 'linsolver' : 'default', # linear solver 'quiet' : False} # flag for omitting output def __init__(self): """ Augmented Lagrangian algorithm. """ OptSolver.__init__(self) self.parameters = OptSolverAugL.parameters.copy() self.linsolver1 = None self.linsolver2 = None self.barrier = None def supports_properties(self, properties): for p in properties: if p not in [OptProblem.PROP_CURV_LINEAR, OptProblem.PROP_CURV_QUADRATIC, OptProblem.PROP_CURV_NONLINEAR, OptProblem.PROP_VAR_CONTINUOUS, OptProblem.PROP_TYPE_FEASIBILITY, OptProblem.PROP_TYPE_OPTIMIZATION]: return False return True def solve(self, problem): # Local vars norm2 = self.norm2 norminf = self.norminf params = self.parameters # Parameters tau = params['tau'] gamma = params['gamma'] kappa = params['kappa'] optol = params['optol'] feastol = params['feastol'] beta_small = params['beta_small'] beta_large = params['beta_large'] sigma_init_min = params['sigma_init_min'] sigma_init_max = params['sigma_init_max'] theta_max = params['theta_max'] theta_min = params['theta_min'] # Problem problem = cast_problem(problem) self.problem = problem # Linear solver self.linsolver1 = new_linsolver(params['linsolver'],'symmetric') self.linsolver2 = new_linsolver(params['linsolver'],'symmetric') # Reset self.reset() # Barrier self.barrier = AugLBarrier(problem.get_num_primal_variables(), problem.l, problem.u, eps=feastol/10.) # Init primal if problem.x is not None: self.x = self.barrier.to_interior(problem.x.copy(), eps=feastol/10.) else: self.x = (self.barrier.umax+self.barrier.umin)/2. assert(np.all(self.x > self.barrier.umin)) assert(np.all(self.x < self.barrier.umax)) # Init dual if problem.lam is not None: self.lam = problem.lam.copy() else: self.lam =
np.zeros(problem.b.size)
numpy.zeros
""" A finder chart maker, designed for use with transients. TO USE: > import findermaker > findermaker.FinderMaker(ra='r.a. string',dec='declination string',name='object name') -<NAME>, 2015 """ import aplpy import os import time from subprocess import Popen, PIPE import coord from astrometryClient.client import Client as anClient #import pyfits as pf from astropy.io import fits as pf import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from scipy.optimize import leastsq import wget # a hackaround for a compass rose in aplpy def initCompass(self, parent): self._ax1 = parent._ax1 self._wcs = parent._wcs self.world2pixel = parent.world2pixel self.pixel2world = parent.pixel2world self._initialize_compass() aplpy.overlays.Compass.__init__ = initCompass # define some pretty colors red = '#990000' blue = '#0000FF' green = '#006600' orange = '#996600' class FinderMaker(object): """ A class to make finder charts. image: path to input image ra,dec: coordinates of object name: name of object diagnostics: if True, will plot diagnostic plots of the fit to each star's location NOTE: Either (ra, dec) OR image must be given (both is ok too). Will use astrometry.net to find WCS solution for any image without one. If (ra, dec) not given, the object of interest must be clearly discernable from the background in the given image. """ def __init__(self, image=None, ra=None, dec=None, name=None, diagnostics=False): self.name = name self.diagnostics = diagnostics self.annotations = [] # make sure we have one of the allowed input combinations if image != None: if image.rsplit('.')[-1].lower() not in ['fit','fits']: raise ValueError('Image must be in fits format.') else: self.image = image else: self.image = None # parse input ra and dec (can be sexagesimal or decimal degrees) if (ra != None) & (dec != None): self.ra = coord.parse_ra( ra ) self.dec = coord.parse_dec( dec ) else: self.ra = None self.dec = None if (self.image == None) and any([v==None for v in [self.ra, self.dec]]): raise ValueError('Must include either a fits image or the target coordinates.') # run it! self.go() def go(self): if self.image == None: # get an image of the field self.get_dss_image() else: # make sure we have WCS info header = pf.open(self.image)[0].header if header.get('WCSAXES') == None: self.get_astrometry() self.build_plot() if (self.ra == self.dec == None): # have the user choose the object input( '\n\nHit enter and then identify the target.\n\n' ) while True: res = self.get_star() if res != None: self.ra, self.dec = res break else: print("\nThat didn't work. Try again.\n") self.add_object( self.ra, self.dec, wcs=True, marker='a' ) self.add_offset_stars() def get_astrometry(self): """ Interact with astrometry.net to get the WCS for our image, using the astrometry client code. """ # connect to astrometry.net supernova_key = '<KEY>' supernova_url = 'http://supernova.astrometry.net/api/' nova_key = '<KEY>' nova_url = 'http://nova.astrometry.net/api/' new_image = self.image.replace('.fits','.wcs.fits') # The short routines below are pulled from astrometryClient/client.py in the __main__ c = anClient(apiurl=nova_url) c.login(nova_key) # upload the image print('\n\nUploading image to astrometry.net\n\n') kwargs = {'publicly_visible': 'y', 'allow_modifications': 'd', 'allow_commercial_use': 'd'} upres = c.upload(self.image, **kwargs) stat = upres['status'] if stat != 'success': raise IOError('Upload failed: status %s\n %s\n' %(str(stat), str(upres))) subID = upres['subid'] print('\n\nUpload successful. Submission id:',subID,'\n\n') # Wait for the response while True: stat = c.sub_status(subID, justdict=True) jobs = stat.get('jobs', []) if len(jobs): for j in jobs: if j is not None: break if j is not None: print('\n\nReceived job id',j,'\n\n') jobID = j break time.sleep(5) # wait for the calculation to finish success = False while True: stat = c.job_status(jobID, justdict=True) if stat.get('status','') in ['success']: success = (stat['status'] == 'success') break time.sleep(5) if not success: raise IOError('astrometry.net query failed: status %s'%str(stat)) # download the new image print('\n\nGrabbing solved image\n\n') url = nova_url.replace('api','new_fits_file/%i' %jobID) try: os.remove( new_image ) except OSError: pass wget.download( url, out=new_image ) self.image = new_image def get_dss_image(self, name='finder_field.fits', size=10.0): """ Get a DSS finder chart, if not given input image. Size is width in arcminutes. """ url = "http://archive.stsci.edu/cgi-bin/dss_search?v=3&r=%.8f&d=%.8f$" %(self.ra, self.dec) +\ "&h=%.2f&w=%.2f&f=fits&c=none&fov=NONE&e=J2000" %(size, size) print('Downloading image.') try: os.remove( name ) except OSError: pass wget.download( url, out=name ) self.image = name def build_plot(self): """ Creates the plot with which you interact. """ self.hdu = pf.open( self.image ) # assume, from here on out, that the first table is the relevant one self.fig = aplpy.FITSFigure( self.image ) self.fig.show_grayscale(stretch='log', invert=True) self.fig.compass = aplpy.overlays.Compass(self.fig) self.fig.compass.show_compass(color='black', corner=2, length=0.1) self.fig.show_grid() self.fig.grid.set_color('k') self.fig.grid.set_alpha(0.25) if self.name != None: plt.title(self.name) def _gauss2D(self, params, x, y): A, x0, y0, sigmaX, sigmaY, C = params return A*np.exp(-((x-x0)**2/(2*sigmaX**2) + (y-y0)**2/(2*sigmaY**2))) + C def _gauss2D_residuals(self, params, z, x, y): return z - self._gauss2D(params, x, y) def _plane(self, params, x, y): a, bx, by = params return a + bx*x + by*y def _plane_residuals(self, params, z, x, y): return z - self._plane(params, x, y) def get_star(self, cutout=10.0, error_plot=None, fit_plane=2): """ Get a single star from the user interacting with the image. Star must be bright enough to fit a Gaussian to it! cutout is the region size to consider during fitting (in arcseconds). Returns best-fit coordinates (in WCS). If error_plot > 0, will plot up cutout and the best-fit Gaussian. If error_plot > 1, will plot background fitting result in addition. fit_plane must be an integer describing the size of the background region to subtract. fit_plane == 0: none fit_plane == 1: same size as cutout fit_plane > 2: size = fit_plane*cutout """ if error_plot == None: error_plot = self.diagnostics # convert arcseconds into degrees cutout = cutout/3600.0 print("Click on the object.") [(x,y)] = plt.ginput() # in pixels # map the coutout size (in arcseconds) onto pixel size # Use the fact that delta(Dec) = delta(true angle) ra, dec = self.fig.pixel2world(x,y) _,y1 = self.fig.world2pixel( ra, dec+cutout ) _,y2 = self.fig.world2pixel( ra, dec ) w = abs(y1-y2) # get a subarray to fit the Gaussian to [xmin,xmax, ymin,ymax] = map( lambda l: int(round(l)), [x-w,x+w, y-w,y+w] ) subarray = np.copy(self.hdu[0].data[ymin:ymax, xmin:xmax]).astype(float) X = np.arange(xmin,xmax) # keeping track of the true pixel Y = np.arange(ymin,ymax) # numbers of the subarray XX,YY = np.meshgrid( X,Y ) # need to make everything 1D X = XX.reshape( XX.shape[0]*XX.shape[1] ) Y = YY.reshape( YY.shape[0]*YY.shape[1] ) Z = subarray.reshape( subarray.shape[0]*subarray.shape[1] ) if fit_plane: # fit and subtract a 2d surface fit_plane*cutout in dimension f = fit_plane [bgxmin,bgxmax, bgymin,bgymax] = map( lambda l: int(round(l)), [x-f*w,x+f*w, y-f*w,y+f*w] ) bgarray = np.copy(self.hdu[0].data[bgymin-1:bgymax, bgxmin-1:bgxmax]).astype(float) bgX = np.arange(bgxmin-1,bgxmax, dtype=float) # keeping track of the true pixel bgY = np.arange(bgymin-1,bgymax, dtype=float) # numbers of the subarray bgXX,bgYY = np.meshgrid( bgX,bgY ) bgX = bgXX.reshape( bgXX.shape[0]*bgXX.shape[1] ) bgY = bgYY.reshape( bgYY.shape[0]*bgYY.shape[1] ) bgZ = bgarray.reshape( bgarray.shape[0]*bgarray.shape[1] ) fit_params, success = leastsq(self._plane_residuals, [np.min(bgZ),0.0, 0.0], args=(bgZ, bgX, bgY)) if not success: print('background fitting failed!') return None else: plane = self._plane(fit_params, X, Y) Z -= plane if error_plot > 1: curax = plt.gca() # need to manage current axis variable fig = plt.figure() ax = Axes3D(fig) ax.plot_wireframe(bgXX,bgYY,bgarray, color='k') ax.plot_wireframe(bgXX,bgYY, self._plane(fit_params, bgXX, bgYY), color='r') plt.xlabel('RA (px)') plt.ylabel('Dec (px)') plt.title(self.image+' ::: BG fitting') plt.show() plt.sca( curax ) # now fit a 2D Gaussian to it maximum = np.max(Z) inparams = [maximum, x,y, w/5, w/5,
np.median(Z)
numpy.median
""" This file contains classes and functions for representing, solving, and simulating agents who must allocate their resources among consumption, risky or rental housing, saving in a risk-free asset (with a low return), and saving in a risky asset (with higher average return). """ from copy import copy, deepcopy import numpy as np from HARK import MetricObject, make_one_period_oo_solver, NullFunc from HARK.ConsumptionSaving.ConsIndShockModel import ( IndShockConsumerType, utility, utilityP, utilityP_inv, utility_inv, utility_invP, ) from HARK.ConsumptionSaving.ConsPortfolioModel import ( PortfolioSolution, PortfolioConsumerType, solveConsPortfolio, ) from HARK.distribution import ( Lognormal, combine_indep_dstns, calc_expectation, Bernoulli, ) from HARK.interpolation import ( LinearInterp, IdentityFunction, ValueFuncCRRA, LinearInterpOnInterp1D, BilinearInterp, MargValueFuncCRRA, TrilinearInterp, CubicInterp, ) from numba import njit, prange from scipy.optimize import minimize_scalar from Calibration.params_CGM import dict_portfolio class PortfolioRiskyHousingSolution(MetricObject): distance_criteria = ["vPfuncRnt", "vPfuncHse"] def __init__( self, cFuncRnt=NullFunc(), hseFuncRnt=NullFunc(), totExpFuncRnt=NullFunc(), ShareFuncRnt=NullFunc(), vFuncRnt=NullFunc(), vPfuncRnt=NullFunc(), cFuncHse=NullFunc(), ShareFuncHse=NullFunc(), vFuncHse=NullFunc(), vPfuncHse=NullFunc(), ): # Set attributes of self self.cFuncRnt = cFuncRnt self.hseFuncRnt = hseFuncRnt self.totExpFuncRnt = totExpFuncRnt self.cFuncHse = cFuncHse self.ShareFuncRnt = ShareFuncRnt self.ShareFuncHse = ShareFuncHse self.vFuncRnt = vFuncRnt self.vFuncHse = vFuncHse self.vPfuncRnt = vPfuncRnt self.vPfuncHse = vPfuncHse class PortfolioRentalHousingType(PortfolioConsumerType): """ A consumer type with rental housing and a portfolio choice. This agent type has log-normal return factors. Their problem is defined by a coefficient of relative risk aversion, share of expenditures spent on rental housing, intertemporal discount factor, risk-free interest factor, and time sequences of permanent income growth rate, survival probability, and permanent and transitory income shock standard deviations (in logs). The agent may also invest in a risky asset, which has a higher average return than the risk-free asset. He *might* have age-varying beliefs about the risky-return; if he does, then "true" values of the risky asset's return distribution must also be specified. """ time_inv_ = deepcopy(PortfolioConsumerType.time_inv_) time_inv_ = time_inv_ + ["RntHseShare"] def __init__(self, cycles=1, verbose=False, quiet=False, **kwds): params = init_portfolio_housing.copy() params.update(kwds) kwds = params # Initialize a basic consumer type PortfolioConsumerType.__init__( self, cycles=cycles, verbose=verbose, quiet=quiet, **kwds ) self.solve_one_period = make_one_period_oo_solver( ConsPortfolioRentalHousingSolver ) if not hasattr(self, "RntHseShare"): raise Exception( "Portfolio Choice with Risky Housing must have a RntHseShare parameter." ) def update(self): IndShockConsumerType.update(self) self.update_AdjustPrb() self.update_human_wealth() self.update_RiskyShares() self.update_RiskyDstn() self.update_ShockDstn() self.update_ShareGrid() self.update_ShareLimit() def update_solution_terminal(self): PortfolioConsumerType.update_solution_terminal(self) self.solution_terminal.hNrm = 0 def update_human_wealth(self): hNrm = np.empty(self.T_cycle + 1) hNrm[-1] = 0.0 for t in range(self.T_cycle - 1, -1, -1): IncShkDstn = self.IncShkDstn[t] ShkPrbsNext = IncShkDstn.pmf PermShkValsNext = IncShkDstn.X[0] TranShkValsNext = IncShkDstn.X[1] # Calculate human wealth this period Ex_IncNext = np.dot(ShkPrbsNext, TranShkValsNext * PermShkValsNext) hNrm[t] = self.PermGroFac[t] / self.Rfree * (Ex_IncNext + hNrm[t + 1]) self.hNrm = hNrm def update_RiskyShares(self): if self.ExRiskyShareBool: if type(self.ExRiskyShare) is list: if len(self.ExRiskyShare) == self.T_cycle: self.add_to_time_vary("ExRiskyShare") else: raise AttributeError( "If ExRiskyShare is time-varying, it must have length of T_cycle!" ) else: self.add_to_time_inv("ExRiskyShare") if "ExRiskyShare" in self.time_vary: self.RiskyAvg = [] self.RiskyStd = [] for t in range(self.T_cycle): mean = self.RiskyAvgTrue std = self.RiskyStdTrue mean_squared = mean ** 2 variance = std ** 2 mu = np.log(mean_squared / (np.sqrt(mean_squared + variance))) sigma = np.sqrt(np.log(1.0 + variance / mean_squared)) ratio = (self.WlthNrmAvg[t] + self.hNrm[t]) / ( self.CRRA * self.ExRiskyShare[t] * self.WlthNrmAvg[t] ) if self.FixRiskyAvg and self.FixRiskyStd: # This case ignores exogenous risky shares as option parameters indicate # fixing both RiskyAvg and RiskyStd to their true values self.RiskyAvg.append(self.RiskyAvgTrue) self.RiskyStd.append(self.RiskyStdTrue) elif self.FixRiskyStd: # There is no analytical solution for this case, so we look for a numerical one risky_share = ( lambda x: np.log(x / self.Rfree) * (1.0 + self.hNrm[t] / self.WlthNrmAvg[t]) / (self.CRRA * np.log(1 + variance / x ** 2)) - self.ExRiskyShare[t] ) res = minimize_scalar( risky_share, bounds=(mean, 2), method="bounded" ) RiskyAvg = res.x self.RiskyAvg.append(RiskyAvg) self.RiskyStd.append(self.RiskyStdTrue) elif self.FixRiskyAvg: # This case has an analytical solution RiskyVar = ((mean / self.Rfree) ** ratio - 1) * mean_squared self.RiskyAvg.append(self.RiskyAvgTrue) self.RiskyStd.append(np.sqrt(RiskyVar)) else: # There are 2 ways to do this one, but not implemented yet raise NotImplementedError( "The case when RiskyAvg and RiskyStd are both not fixed is not implemented yet." ) def post_solve(self): for i in range(self.T_age): TotalExpAdj = copy(self.solution[i].cFuncAdj) self.solution[i].TotalExpAdj = TotalExpAdj if isinstance(TotalExpAdj, LinearInterp): x_list = TotalExpAdj.x_list y_list = TotalExpAdj.y_list self.solution[i].cFuncAdj = LinearInterp( x_list, (1 - self.RntHseShare) * y_list ) self.solution[i].hFuncAdj = LinearInterp( x_list, self.RntHseShare * y_list ) elif isinstance(TotalExpAdj, IdentityFunction): x_list = np.array([0, 1]) y_list = np.array([0, 1]) self.solution[i].cFuncAdj = LinearInterp( x_list, (1 - self.RntHseShare) * y_list ) self.solution[i].hFuncAdj = LinearInterp( x_list, self.RntHseShare * y_list ) class ConsPortfolioRentalHousingSolver(MetricObject): def __init__( self, solution_next, ShockDstn, IncShkDstn, RiskyDstn, LivPrb, DiscFac, CRRA, Rfree, PermGroFac, BoroCnstArt, aXtraGrid, ShareGrid, vFuncBool, AdjustPrb, DiscreteShareBool, ShareLimit, IndepDstnBool, ): self.solution_next = solution_next self.ShockDstn = ShockDstn self.IncShkDstn = IncShkDstn self.RiskyDstn = RiskyDstn self.LivPrb = LivPrb self.DiscFac = DiscFac self.CRRA = CRRA self.Rfree = Rfree self.PermGroFac = PermGroFac self.BoroCnstArt = BoroCnstArt self.aXtraGrid = aXtraGrid self.ShareGrid = ShareGrid self.vFuncBool = vFuncBool self.AdjustPrb = AdjustPrb self.DiscreteShareBool = DiscreteShareBool self.ShareLimit = ShareLimit self.IndepDstnBool = IndepDstnBool def add_human_wealth(self): self.ShkPrbsNext = self.IncShkDstn.pmf self.PermShkValsNext = self.IncShkDstn.X[0] self.TranShkValsNext = self.IncShkDstn.X[1] # Calculate human wealth this period self.Ex_IncNext = np.dot( self.ShkPrbsNext, self.TranShkValsNext * self.PermShkValsNext ) self.hNrmNow = ( self.PermGroFac / self.Rfree * (self.Ex_IncNext + self.solution_next.hNrm) ) return self.hNrmNow def solve(self): solution = solveConsPortfolio( self.solution_next, self.ShockDstn, self.IncShkDstn, self.RiskyDstn, self.LivPrb, self.DiscFac, self.CRRA, self.Rfree, self.PermGroFac, self.BoroCnstArt, self.aXtraGrid, self.ShareGrid, self.vFuncBool, self.AdjustPrb, self.DiscreteShareBool, self.ShareLimit, self.IndepDstnBool, ) solution.hNrm = self.add_human_wealth() return solution class PortfolioRiskyHousingType(PortfolioConsumerType): time_inv_ = deepcopy(PortfolioConsumerType.time_inv_) time_inv_ = time_inv_ + ["HouseShare", "HseDiscFac", "RntHseShare", "HseInitPrice"] time_vary_ = deepcopy(PortfolioConsumerType.time_vary_) time_vary_ = time_vary_ + ["RentPrb", "HseGroFac"] shock_vars_ = PortfolioConsumerType.shock_vars_ + ["RntShk", "HouseShk"] state_vars = PortfolioConsumerType.state_vars + ["haveHse", "hNrm"] track_vars = ["mNrm", "hNrm", "haveHse", "cNrm", "aNrm", "pLvl", "aLvl", "Share"] def __init__(self, cycles=1, verbose=False, quiet=False, **kwds): params = init_portfolio_risky_housing.copy() params.update(kwds) kwds = params # Initialize a basic consumer type PortfolioConsumerType.__init__( self, cycles=cycles, verbose=verbose, quiet=quiet, **kwds ) self.solve_one_period = make_one_period_oo_solver( ConsPortfolioRiskyHousingSolver ) def update_HouseDstn(self): """ Creates the attributes RiskyDstn from the primitive attributes RiskyAvg, RiskyStd, and RiskyCount, approximating the (perceived) distribution of returns in each period of the cycle. Parameters ---------- None Returns ------- None """ # Determine whether this instance has time-varying risk perceptions if ( (type(self.HouseAvg) is list) and (type(self.HouseStd) is list) and (len(self.HouseAvg) == len(self.HouseStd)) and (len(self.HouseAvg) == self.T_cycle) ): self.add_to_time_vary("HouseAvg", "HouseStd") elif (type(self.HouseStd) is list) or (type(self.HouseAvg) is list): raise AttributeError( "If HouseAvg is time-varying, then HouseStd must be as well, and they must both have length of T_cycle!" ) else: self.add_to_time_inv("HouseAvg", "HouseStd") # Generate a discrete approximation to the risky return distribution if the # agent has age-varying beliefs about the risky asset if "HouseAvg" in self.time_vary: self.HouseDstn = [] for t in range(self.T_cycle): self.HouseDstn.append( Lognormal.from_mean_std(self.HouseAvg[t], self.HouseStd[t]).approx( self.HouseShkCount ) ) self.add_to_time_vary("HouseDstn") # Generate a discrete approximation to the risky return distribution if the # agent does *not* have age-varying beliefs about the risky asset (base case) else: self.HouseDstn = Lognormal.from_mean_std( self.HouseAvg, self.HouseStd, ).approx(self.HouseShkCount) self.add_to_time_inv("HouseDstn") def update_ShockDstn(self): """ Combine the income shock distribution (over PermShk and TranShk) with the risky return distribution (RiskyDstn) to make a new attribute called ShockDstn. Parameters ---------- None Returns ------- None """ if "HouseDstn" in self.time_vary: self.ShockDstn = [ combine_indep_dstns(self.IncShkDstn[t], self.HouseDstn[t]) for t in range(self.T_cycle) ] else: self.ShockDstn = [ combine_indep_dstns(self.IncShkDstn[t], self.HouseDstn) for t in range(self.T_cycle) ] self.add_to_time_vary("ShockDstn") # Mark whether the risky returns, income shocks, and housing shocks are independent (they are) self.IndepDstnBool = True self.add_to_time_inv("IndepDstnBool") def update(self): IndShockConsumerType.update(self) self.update_AdjustPrb() self.update_RiskyDstn() self.update_HouseDstn() self.update_ShockDstn() self.update_ShareGrid() self.update_HouseGrid() self.update_ShareLimit() def update_solution_terminal(self): PortfolioConsumerType.update_solution_terminal(self) solution = portfolio_to_housing(self.solution_terminal, self.RntHseShare) self.solution_terminal = solution def update_HouseGrid(self): """ Creates the attribute HouseGrid as an evenly spaced grid on [HouseMin,HouseMax], using the primitive parameter HouseCount. Parameters ---------- None Returns ------- None """ self.HouseGrid = np.linspace(self.HouseMin, self.HouseMax, self.HouseCount) self.add_to_time_inv("HouseGrid") def get_HouseShk(self): """ Sets the attribute HouseShk as a single draw from a lognormal distribution. Uses the attributes HouseAvg and HouseStd. Parameters ---------- None Returns ------- None """ HouseAvg = self.HouseAvg HouseStd = self.HouseStd HouseAvgSqrd = HouseAvg ** 2 HouseVar = HouseStd ** 2 mu = np.log(HouseAvg / (np.sqrt(1.0 + HouseVar / HouseAvgSqrd))) sigma = np.sqrt(np.log(1.0 + HouseVar / HouseAvgSqrd)) self.shocks["HouseShk"] = Lognormal( mu, sigma, seed=self.RNG.randint(0, 2 ** 31 - 1) ).draw(1) def get_RentShk(self): """ Sets the attribute RentShk as a boolean array of size AgentCount, indicating whether each agent is forced to liquidate their house this period. Uses the attribute RentPrb to draw from a Bernoulli distribution. Parameters ---------- None Returns ------- None """ if not ("RentPrb" in self.time_vary): self.shocks["RentShk"] = Bernoulli( self.RentPrb, seed=self.RNG.randint(0, 2 ** 31 - 1) ).draw(self.AgentCount) else: RntShk = np.zeros(self.AgentCount, dtype=bool) # Initialize shock array for t in range(self.T_cycle): these = t == self.t_cycle N = np.sum(these) if N > 0: if t == 0: RentPrb = 0.0 else: RentPrb = self.RentPrb[t - 1] RntShk[these] = Bernoulli( RentPrb, seed=self.RNG.randint(0, 2 ** 31 - 1) ).draw(N) self.shocks["RentShk"] = RntShk def get_shocks(self): """ Draw shocks as in PortfolioConsumerType, then draw a single common value for the House price shock. Also draws whether each agent is forced to rent next period. Parameters ---------- None Returns ------- None """ PortfolioConsumerType.get_shocks(self) self.get_HouseShk() self.get_RentShk() def get_states(self): PortfolioConsumerType.get_states(self) # previous house size hNrmPrev = self.state_prev["hNrm"] # new house size self.state_now["hNrm"] = ( np.array(self.HseGroFac)[self.t_cycle] * hNrmPrev / self.shocks["PermShk"] ) # cash on hand in case of liquidation mRntNrmNow = ( self.state_now["mNrm"] + self.state_now["hNrm"] * self.shocks["HouseShk"] ) # find index for households that were previously homeowners but # will no longer be homeowners next period # state_prev["haveHse"] = True and # shocks["RentShk"] = True trans_idx = np.logical_and(self.state_prev["haveHse"], self.shocks["RentShk"]) # only change state for agents who were previously homeowners # they may stay homeowners or become renters self.state_now["haveHse"] = self.state_prev["haveHse"].copy() self.state_now["haveHse"][trans_idx] = False # if households went from homeowner to renter, they # receive their liquidation value as cash on hand self.state_now["mNrm"][trans_idx] = mRntNrmNow[trans_idx] return None def get_controls(self): """ Calculates consumption cNrmNow and risky portfolio share ShareNow using the policy functions in the attribute solution. These are stored as attributes. Parameters ---------- None Returns ------- None """ cNrmNow = np.zeros(self.AgentCount) + np.nan ShareNow = np.zeros(self.AgentCount) + np.nan # Loop over each period of the cycle, getting controls separately depending on "age" for t in range(self.T_cycle): these = t == self.t_cycle # Get controls for agents who are renters those = np.logical_and(these, self.shocks["RentShk"]) cNrmNow[those] = self.solution[t].cFuncRnt(self.state_now["mNrm"][those]) ShareNow[those] = self.solution[t].ShareFuncRnt( self.state_now["mNrm"][those] ) # Get Controls for agents who are homeowners those = np.logical_and(these, np.logical_not(self.shocks["RentShk"])) cNrmNow[those] = self.solution[t].cFuncHse( self.state_now["mNrm"][those], self.state_now["hNrm"][those] ) ShareNow[those] = self.solution[t].ShareFuncHse( self.state_now["mNrm"][those], self.state_now["hNrm"][those] ) # Store controls as attributes of self self.controls["cNrm"] = cNrmNow self.controls["Share"] = ShareNow def sim_birth(self, which_agents): """ Create new agents to replace ones who have recently died; takes draws of initial aNrm and pLvl, as in PortfolioConsumerType, then sets RentShk to zero as initial values. Parameters ---------- which_agents : np.array Boolean array of size AgentCount indicating which agents should be "born". Returns ------- None """ # Get and store states for newly born agents # for now, agents start being homeowners and # the distribution of houses is uniform self.state_now["haveHse"][which_agents] = True N = np.sum(which_agents) # Number of new consumers to make self.state_now["hNrm"][which_agents] = np.linspace(1.0, 10.0, N) PortfolioConsumerType.sim_birth(self, which_agents) def initialize_sim(self): """ Initialize the state of simulation attributes. Simply calls the same method for PortfolioConsumerType, then sets the type of RentShk to bool. Parameters ---------- None Returns ------- None """ self.state_now["haveHse"] = np.zeros(self.AgentCount, dtype=bool) PortfolioConsumerType.initialize_sim(self) def get_poststates(self): """ Calculates end-of-period assets for each consumer of this type. Parameters ---------- None Returns ------- None """ self.state_now["aNrm"] = ( self.state_now["mNrm"] - self.controls["cNrm"] - (np.array(self.HseGroFac)[self.t_cycle] - (1 - self.HseDiscFac)) * self.HseInitPrice * self.state_now["hNrm"] ) # Useful in some cases to precalculate asset level self.state_now["aLvl"] = self.state_now["aNrm"] * self.state_now["pLvl"] class MargValueFuncHousing(MetricObject): distance_criteria = ["cFunc", "CRRA"] def __init__(self, cFunc, HouseGrid, CRRA, HouseShare): self.cFunc = deepcopy(cFunc) self.hseGrid = HouseGrid self.CRRA = CRRA self.HouseShare = HouseShare def __call__(self, m_nrm, h_nrm): """ Evaluate the marginal value function at given levels of market resources m. Parameters ---------- cFuncArgs : floats or np.arrays Values of the state variables at which to evaluate the marginal value function. Returns ------- vP : float or np.array Marginal lifetime value of beginning this period with state cFuncArgs """ c_opt = self.cFunc(m_nrm, h_nrm) x_comp = c_opt ** (1 - self.HouseShare) * h_nrm ** self.HouseShare return utilityP(x_comp, gam=self.CRRA) * (h_nrm / c_opt) ** self.HouseShare class ConsPortfolioRiskyHousingSolver(MetricObject): """ Define an object-oriented one period solver. Solve the one period problem for a portfolio-choice consumer. This solver is used when the income and risky return shocks are independent and the allowed optimal share is continuous. Parameters ---------- solution_next : PortfolioSolution Solution to next period's problem. ShockDstn : [np.array] List with four arrays: discrete probabilities, permanent income shocks, transitory income shocks, and risky returns. This is only used if the input IndepDstnBool is False, indicating that income and return distributions can't be assumed to be independent. IncShkDstn : distribution.Distribution Discrete distribution of permanent income shocks and transitory income shocks. This is only used if the input IndepDsntBool is True, indicating that income and return distributions are independent. RiskyDstn : [np.array] List with two arrays: discrete probabilities and risky asset returns. This is only used if the input IndepDstnBool is True, indicating that income and return distributions are independent. LivPrb : float Survival probability; likelihood of being alive at the beginning of the succeeding period. DiscFac : float Intertemporal discount factor for future utility. CRRA : float Coefficient of relative risk aversion. Rfree : float Risk free interest factor on end-of-period assets. PermGroFac : float Expected permanent income growth factor at the end of this period. BoroCnstArt: float or None Borrowing constraint for the minimum allowable assets to end the period with. In this model, it is *required* to be zero. aXtraGrid: np.array Array of "extra" end-of-period asset values-- assets above the absolute minimum acceptable level. ShareGrid : np.array Array of risky portfolio shares on which to define the interpolation of the consumption function when Share is fixed. vFuncBool: boolean An indicator for whether the value function should be computed and included in the reported solution. AdjustPrb : float Probability that the agent will be able to update his portfolio share. DiscreteShareBool : bool Indicator for whether risky portfolio share should be optimized on the continuous [0,1] interval using the FOC (False), or instead only selected from the discrete set of values in ShareGrid (True). If True, then vFuncBool must also be True. ShareLimit : float Limiting lower bound of risky portfolio share as mNrm approaches infinity. IndepDstnBool : bool Indicator for whether the income and risky return distributions are in- dependent of each other, which can speed up the expectations step. """ def __init__( self, solution_next, ShockDstn, IncShkDstn, RiskyDstn, HouseDstn, LivPrb, DiscFac, CRRA, Rfree, PermGroFac, HseGroFac, HseDiscFac, HseInitPrice, HouseShare, RntHseShare, BoroCnstArt, aXtraGrid, ShareGrid, HouseGrid, vFuncBool, RentPrb, DiscreteShareBool, ShareLimit, ): """ Constructor for portfolio choice problem solver. """ self.solution_next = solution_next self.ShockDstn = ShockDstn self.IncShkDstn = IncShkDstn self.RiskyDstn = RiskyDstn self.HouseDstn = HouseDstn self.LivPrb = LivPrb self.DiscFac = DiscFac self.CRRA = CRRA self.Rfree = Rfree self.PermGroFac = PermGroFac self.HseGroFac = HseGroFac self.HseDiscFac = HseDiscFac self.HouseShare = HouseShare self.HseInitPrice = HseInitPrice self.RntHseShare = RntHseShare self.BoroCnstArt = BoroCnstArt self.aXtraGrid = aXtraGrid self.ShareGrid = ShareGrid self.HouseGrid = HouseGrid self.vFuncBool = vFuncBool self.RentPrb = RentPrb self.DiscreteShareBool = DiscreteShareBool self.ShareLimit = ShareLimit # Make sure the individual is liquidity constrained. Allowing a consumer to # borrow *and* invest in an asset with unbounded (negative) returns is a bad mix. if self.BoroCnstArt != 0.0: raise ValueError("PortfolioConsumerType must have BoroCnstArt=0.0!") # Make sure that if risky portfolio share is optimized only discretely, then # the value function is also constructed (else this task would be impossible). if self.DiscreteShareBool and (not self.vFuncBool): raise ValueError( "PortfolioConsumerType requires vFuncBool to be True when DiscreteShareBool is True!" ) self.def_utility_funcs() def def_utility_funcs(self): """ Define temporary functions for utility and its derivative and inverse """ self.u = lambda x: utility(x, self.CRRA) self.uP = lambda x: utilityP(x, self.CRRA) self.uPinv = lambda x: utilityP_inv(x, self.CRRA) self.uinv = lambda x: utility_inv(x, self.CRRA) self.uinvP = lambda x: utility_invP(x, self.CRRA) def set_and_update_values(self): """ Unpacks some of the inputs (and calculates simple objects based on them), storing the results in self for use by other methods. """ # Unpack next period's solution self.vPfuncRnt_next = self.solution_next.vPfuncRnt self.vPfuncHse_next = self.solution_next.vPfuncHse self.vFuncRnt_next = self.solution_next.vFuncRnt self.vFuncHse_next = self.solution_next.vFuncHse # Unpack the shock distribution self.TranShks_next = self.IncShkDstn.X[1] self.Risky_next = self.RiskyDstn.X # Flag for whether the natural borrowing constraint is zero self.zero_bound = np.min(self.TranShks_next) == 0.0 self.RiskyMax = np.max(self.Risky_next) self.RiskyMin = np.min(self.Risky_next) self.tmp_fac_A = ( ((1.0 - self.RntHseShare) ** (1.0 - self.RntHseShare)) * (self.RntHseShare ** self.RntHseShare) ) ** (1.0 - self.CRRA) # Shock positions in ShockDstn self.PermShkPos = 0 self.TranShkPos = 1 self.HseShkPos = 2 def prepare_to_solve(self): """ Perform preparatory work. """ self.set_and_update_values() def prepare_to_calc_EndOfPrdvP(self): """ Prepare to calculate end-of-period marginal values by creating an array of market resources that the agent could have next period, considering the grid of end-of-period assets and the distribution of shocks he might experience next period. """ # bNrm represents R*a, balances after asset return shocks but before income. # This just uses the highest risky return as a rough shifter for the aXtraGrid. if self.zero_bound: self.aNrmGrid = self.aXtraGrid self.bNrmGrid = np.insert( self.RiskyMax * self.aXtraGrid, 0, self.RiskyMin * self.aXtraGrid[0], ) else: # Add an asset point at exactly zero self.aNrmGrid = np.insert(self.aXtraGrid, 0, 0.0) self.bNrmGrid = self.RiskyMax * np.insert(self.aXtraGrid, 0, 0.0) # Get grid and shock sizes, for easier indexing self.aNrm_N = self.aNrmGrid.size self.Share_N = self.ShareGrid.size self.House_N = self.HouseGrid.size # Make tiled arrays to calculate future realizations of mNrm and Share when integrating over IncShkDstn self.bNrm_tiled, self.House_tiled = np.meshgrid( self.bNrmGrid, self.HouseGrid, indexing="ij" ) self.aNrm_2tiled, self.House_2tiled = np.meshgrid( self.aNrmGrid, self.HouseGrid, indexing="ij" ) # Make tiled arrays to calculate future realizations of bNrm and Share when integrating over RiskyDstn self.aNrm_3tiled, self.House_3tiled, self.Share_3tiled = np.meshgrid( self.aNrmGrid, self.HouseGrid, self.ShareGrid, indexing="ij" ) def m_nrm_next(self, shocks, b_nrm): """ Calculate future realizations of market resources """ return ( b_nrm / (self.PermGroFac * shocks[self.PermShkPos]) + shocks[self.TranShkPos] ) def hse_nrm_next(self, shocks, hse_nrm): """ Calculate future realizations of house size """ return self.HseGroFac * hse_nrm / shocks[self.PermShkPos] def m_rnt_nrm_next(self, shocks, m_nrm, hse_nrm): """ Calculate future realizations of market resources including house liquidation """ return m_nrm + shocks[self.HseShkPos] * hse_nrm def calc_EndOfPrdvP(self): """ Calculate end-of-period marginal value of assets and shares at each point in aNrm and ShareGrid. Does so by taking expectation of next period marginal values across income and risky return shocks. """ def dvdb_dist(shocks, b_nrm, hse_nrm): """ Evaluate realizations of marginal value of market resources next period """ mNrm_next = self.m_nrm_next(shocks, b_nrm) hseNrm_next = self.hse_nrm_next(shocks, hse_nrm) mRntNrm_next = self.m_rnt_nrm_next(shocks, mNrm_next, hseNrm_next) dvdmRnt_next = self.tmp_fac_A * self.vPfuncRnt_next(mRntNrm_next) if self.RentPrb < 1.0: dvdmHse_next = self.vPfuncHse_next(mNrm_next, hseNrm_next) # Combine by adjustment probability dvdm_next = ( self.RentPrb * dvdmRnt_next + (1.0 - self.RentPrb) * dvdmHse_next ) else: # Don't bother evaluating if there's no chance that household keeps house dvdm_next = dvdmRnt_next return (self.PermGroFac * shocks[self.PermShkPos]) ** ( -self.CRRA ) * dvdm_next # Evaluate realizations of marginal value of risky share next period # No marginal value of Share if it's a free choice! # Calculate intermediate marginal value of bank balances by taking expectations over income shocks dvdb_intermed = calc_expectation( self.ShockDstn, dvdb_dist, self.bNrm_tiled, self.House_tiled ) dvdb_intermed = dvdb_intermed[:, :, 0] dvdbNvrs_intermed = self.uPinv(dvdb_intermed) dvdbNvrsFunc_intermed = BilinearInterp( dvdbNvrs_intermed, self.bNrmGrid, self.HouseGrid ) dvdbFunc_intermed = MargValueFuncCRRA(dvdbNvrsFunc_intermed, self.CRRA) def EndOfPrddvda_dist(shock, a_nrm, hse_nrm, share): # Calculate future realizations of bank balances bNrm Rxs = shock - self.Rfree Rport = self.Rfree + share * Rxs b_nrm_next = Rport * a_nrm return Rport * dvdbFunc_intermed(b_nrm_next, hse_nrm) def EndOfPrddvds_dist(shock, a_nrm, hse_nrm, share): # Calculate future realizations of bank balances bNrm Rxs = shock - self.Rfree Rport = self.Rfree + share * Rxs b_nrm_next = Rport * a_nrm # No marginal value of Share if it's a free choice! return Rxs * a_nrm * dvdbFunc_intermed(b_nrm_next, hse_nrm) # Calculate end-of-period marginal value of assets by taking expectations EndOfPrddvda = ( self.DiscFac * self.LivPrb * calc_expectation( self.RiskyDstn, EndOfPrddvda_dist, self.aNrm_3tiled, self.House_3tiled, self.Share_3tiled, ) ) EndOfPrddvda = EndOfPrddvda[:, :, :, 0] temp_fac_hse = (1.0 - self.HouseShare) * self.House_3tiled ** ( self.HouseShare * (1.0 - self.CRRA) ) c_opt = EndOfPrddvda / temp_fac_hse self.c_opt = c_opt ** ( 1 / (-self.CRRA * (1.0 - self.HouseShare) - self.HouseShare) ) # Calculate end-of-period marginal value of risky portfolio share by taking expectations EndOfPrddvds = ( self.DiscFac * self.LivPrb * calc_expectation( self.RiskyDstn, EndOfPrddvds_dist, self.aNrm_3tiled, self.House_3tiled, self.Share_3tiled, ) ) EndOfPrddvds = EndOfPrddvds[:, :, :, 0] self.EndOfPrddvds = EndOfPrddvds def optimize_share(self): """ Optimization of Share on continuous interval [0,1] """ # Initialize to putting everything in safe asset self.Share_now = np.zeros((self.aNrm_N, self.House_N)) self.cNrmHse_now = np.zeros((self.aNrm_N, self.House_N)) # For each value of hNrm, find the value of Share such that FOC-Share == 0. for h in range(self.House_N): # For values of aNrm at which the agent wants to put more than 100% into risky asset, constrain them FOC_s = self.EndOfPrddvds[:, h] # If agent wants to put more than 100% into risky asset, he is constrained constrained_top = FOC_s[:, -1] > 0.0 # Likewise if he wants to put less than 0% into risky asset constrained_bot = FOC_s[:, 0] < 0.0 # so far FOC never greater than 0.0 self.Share_now[constrained_top, h] = 1.0 if not self.zero_bound: # aNrm=0, so there's no way to "optimize" the portfolio self.Share_now[0, h] = 1.0 # Consumption when aNrm=0 does not depend on Share self.cNrmHse_now[0, h] = self.c_opt[0, h, -1] # Mark as constrained so that there is no attempt at optimization constrained_top[0] = True # Get consumption when share-constrained self.cNrmHse_now[constrained_top, h] = self.c_opt[constrained_top, h, -1] self.cNrmHse_now[constrained_bot, h] = self.c_opt[constrained_bot, h, 0] # For each value of aNrm, find the value of Share such that FOC-Share == 0. # This loop can probably be eliminated, but it's such a small step that it won't speed things up much. crossing = np.logical_and(FOC_s[:, 1:] <= 0.0, FOC_s[:, :-1] >= 0.0) for j in range(self.aNrm_N): if not (constrained_top[j] or constrained_bot[j]): idx = np.argwhere(crossing[j, :])[0][0] bot_s = self.ShareGrid[idx] top_s = self.ShareGrid[idx + 1] bot_f = FOC_s[j, idx] top_f = FOC_s[j, idx + 1] bot_c = self.c_opt[j, h, idx] top_c = self.c_opt[j, h, idx + 1] alpha = 1.0 - top_f / (top_f - bot_f) self.Share_now[j, h] = (1.0 - alpha) * bot_s + alpha * top_s self.cNrmHse_now[j, h] = (1.0 - alpha) * bot_c + alpha * top_c def optimize_share_discrete(self): # Major method fork: discrete vs continuous choice of risky portfolio share if self.DiscreteShareBool: # Optimization of Share on the discrete set ShareGrid opt_idx = np.argmax(self.EndOfPrdv, axis=2) # Best portfolio share is one with highest value Share_now = self.ShareGrid[opt_idx] # Take cNrm at that index as well cNrmHse_now = self.c_opt[ np.arange(self.aNrm_N), np.arange(self.House_N), opt_idx ] if not self.zero_bound: # aNrm=0, so there's no way to "optimize" the portfolio Share_now[0] = 1.0 # Consumption when aNrm=0 does not depend on Share cNrmHse_now[0] = self.c_opt[0, :, -1] def make_basic_solution(self): """ Given end of period assets and end of period marginal values, construct the basic solution for this period. """ # Calculate the endogenous mNrm gridpoints when the agent adjusts his portfolio self.mNrmHse_now = ( self.aNrm_2tiled + self.cNrmHse_now + (self.HseGroFac - (1.0 - self.HseDiscFac)) * self.HseInitPrice * self.House_2tiled ) self.mNrmMin = ( (self.HseGroFac - (1.0 - self.HseDiscFac)) * self.HseInitPrice * self.HouseGrid ) # Construct the consumption function when the agent can adjust cNrmHse_by_hse = [] cNrmHse_now = np.insert(self.cNrmHse_now, 0, 0.0, axis=0) mNrmHse_now_temp = np.insert(self.mNrmHse_now, 0, self.mNrmMin, axis=0) for h in range(self.House_N): cNrmHse_by_hse.append( LinearInterp(mNrmHse_now_temp[:, h], cNrmHse_now[:, h]) ) self.cFuncHse_now = LinearInterpOnInterp1D(cNrmHse_by_hse, self.HouseGrid) # Construct the marginal value (of mNrm) function when the agent can adjust # this needs to be reworked self.vPfuncHse_now = MargValueFuncHousing( self.cFuncHse_now, self.HouseGrid, self.CRRA, self.HouseShare ) def make_ShareFuncHse(self): """ Construct the risky share function when the agent can adjust """ if self.zero_bound: Share_lower_bound = self.ShareLimit else: Share_lower_bound = 1.0 Share_now = np.insert(self.Share_now, 0, Share_lower_bound, axis=0) mNrmHse_now_temp = np.insert(self.mNrmHse_now, 0, self.mNrmMin, axis=0) ShareFuncHse_by_hse = [] for j in range(self.House_N): ShareFuncHse_by_hse.append( LinearInterp( mNrmHse_now_temp[:, j], Share_now[:, j], intercept_limit=self.ShareLimit, slope_limit=0.0, ) ) self.ShareFuncHse_now = LinearInterpOnInterp1D( ShareFuncHse_by_hse, self.HouseGrid ) def make_ShareFuncHse_discrete(self): # TODO mNrmHse_mid = (self.mNrmHse_now[1:] + self.mNrmHse_now[:-1]) / 2 mNrmHse_plus = mNrmHse_mid * (1.0 + 1e-12) mNrmHse_comb = (np.transpose(np.vstack((mNrmHse_mid, mNrmHse_plus)))).flatten() mNrmHse_comb = np.append(np.insert(mNrmHse_comb, 0, 0.0), self.mNrmHse_now[-1]) Share_comb = ( np.transpose(np.vstack((self.Share_now, self.Share_now))) ).flatten() self.ShareFuncHse_now = LinearInterp(mNrmHse_comb, Share_comb) def add_vFunc(self): """ Creates the value function for this period and adds it to the solution. """ self.make_EndOfPrdvFunc() self.make_vFunc() def make_EndOfPrdvFunc(self): """ Construct the end-of-period value function for this period, storing it as an attribute of self for use by other methods. """ # If the value function has been requested, evaluate realizations of value def v_intermed_dist(shocks, b_nrm, hse_nrm): mNrm_next = self.m_nrm_next(shocks, b_nrm) hseNrm_next = self.hse_nrm_next(shocks, hse_nrm) mRntNrm = self.m_rnt_nrm_next(shocks, mNrm_next, hseNrm_next) vRnt_next = self.tmp_fac_A * self.vFuncRnt_next(mRntNrm) if self.RentPrb < 1.0: # Combine by adjustment probability vHse_next = self.vFuncHse_next(mNrm_next, hseNrm_next) v_next = self.RentPrb * vRnt_next + (1.0 - self.RentPrb) * vHse_next else: # Don't bother evaluating if there's no chance that household keeps house v_next = vRnt_next return (self.PermGroFac * shocks[self.PermShkPos]) ** ( 1.0 - self.CRRA ) * v_next # Calculate intermediate value by taking expectations over income shocks v_intermed = calc_expectation( self.ShockDstn, v_intermed_dist, self.bNrm_tiled, self.House_tiled ) v_intermed = v_intermed[:, :, 0] vNvrs_intermed = self.uinv(v_intermed) vNvrsFunc_intermed = BilinearInterp( vNvrs_intermed, self.bNrmGrid, self.HouseGrid ) vFunc_intermed = ValueFuncCRRA(vNvrsFunc_intermed, self.CRRA) def EndOfPrdv_dist(shock, a_nrm, hse_nrm, share): # Calculate future realizations of bank balances bNrm Rxs = shock - self.Rfree Rport = self.Rfree + share * Rxs b_nrm_next = Rport * a_nrm return vFunc_intermed(b_nrm_next, hse_nrm) # Calculate end-of-period value by taking expectations self.EndOfPrdv = ( self.DiscFac * self.LivPrb * calc_expectation( self.RiskyDstn, EndOfPrdv_dist, self.aNrm_3tiled, self.House_3tiled, self.Share_3tiled, ) ) self.EndOfPrdv = self.EndOfPrdv[:, :, :, 0] self.EndOfPrdvNvrs = self.uinv(self.EndOfPrdv) def make_vFunc(self): """ Creates the value functions for this period, defined over market resources m when agent can adjust his portfolio, and over market resources and fixed share when agent can not adjust his portfolio. self must have the attribute EndOfPrdvFunc in order to execute. """ # First, make an end-of-period value function over aNrm and Share EndOfPrdvNvrsFunc = TrilinearInterp( self.EndOfPrdvNvrs, self.aNrmGrid, self.HouseGrid, self.ShareGrid ) EndOfPrdvFunc = ValueFuncCRRA(EndOfPrdvNvrsFunc, self.CRRA) # Construct the value function when the agent can adjust his portfolio # Just use aXtraGrid as our grid of mNrm values mNrm = self.aXtraGrid mNrm_tiled, House_tiled =
np.meshgrid(mNrm, self.HouseGrid, indexing="ij")
numpy.meshgrid
######################################################################## # # Copyright 2014 Johns Hopkins University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Contact: <EMAIL> # Website: http://turbulence.pha.jhu.edu/ # ######################################################################## import numpy import scipy import scipy.spatial def points_on_sphere( N, origin = numpy.zeros(3), radius = 1.): """ Generate N evenly distributed points on the unit sphere centered at the origin. Uses the 'Golden Spiral'. Code by <NAME> from the numpy-discussion list. """ phi = (1 + numpy.sqrt(5)) / 2 # the golden ratio long_incr = 2*numpy.pi / phi # how much to increment the longitude dz = 2.0 / float(N) # a unit sphere has diameter 2 bands = numpy.arange(N) # each band will have one point placed on it z = bands * dz - 1 + (dz/2) # the height z of each band/point r =
numpy.sqrt(1 - z*z)
numpy.sqrt
from __future__ import print_function import numpy as np import unittest import discretize np.random.seed(182) MESHTYPES = ['uniformTensorMesh', 'randomTensorMesh'] TOLERANCES = [0.9, 0.5, 0.5] call1 = lambda fun, xyz: fun(xyz) call2 = lambda fun, xyz: fun(xyz[:, 0], xyz[:, -1]) call3 = lambda fun, xyz: fun(xyz[:, 0], xyz[:, 1], xyz[:, 2]) cart_row2 = lambda g, xfun, yfun: np.c_[call2(xfun, g), call2(yfun, g)] cart_row3 = lambda g, xfun, yfun, zfun: np.c_[call3(xfun, g), call3(yfun, g), call3(zfun, g)] cartF2 = lambda M, fx, fy: np.vstack((cart_row2(M.gridFx, fx, fy), cart_row2(M.gridFy, fx, fy))) cartF2Cyl = lambda M, fx, fy: np.vstack((cart_row2(M.gridFx, fx, fy), cart_row2(M.gridFz, fx, fy))) cartE2 = lambda M, ex, ey: np.vstack((cart_row2(M.gridEx, ex, ey), cart_row2(M.gridEy, ex, ey))) cartE2Cyl = lambda M, ex, ey: cart_row2(M.gridEy, ex, ey) cartF3 = lambda M, fx, fy, fz: np.vstack((cart_row3(M.gridFx, fx, fy, fz), cart_row3(M.gridFy, fx, fy, fz), cart_row3(M.gridFz, fx, fy, fz))) cartE3 = lambda M, ex, ey, ez: np.vstack((cart_row3(M.gridEx, ex, ey, ez), cart_row3(M.gridEy, ex, ey, ez), cart_row3(M.gridEz, ex, ey, ez))) TOL = 1e-7 class TestInterpolation1D(discretize.Tests.OrderTest): LOCS = np.random.rand(50)*0.6+0.2 name = "Interpolation 1D" meshTypes = MESHTYPES tolerance = TOLERANCES meshDimension = 1 meshSizes = [8, 16, 32, 64, 128] def getError(self): funX = lambda x: np.cos(2*np.pi*x) ana = call1(funX, self.LOCS) if 'CC' == self.type: grid = call1(funX, self.M.gridCC) elif 'N' == self.type: grid = call1(funX, self.M.gridN) comp = self.M.getInterpolationMat(self.LOCS, self.type)*grid err = np.linalg.norm((comp - ana), 2) return err def test_orderCC(self): self.type = 'CC' self.name = 'Interpolation 1D: CC' self.orderTest() def test_orderN(self): self.type = 'N' self.name = 'Interpolation 1D: N' self.orderTest() class TestOutliersInterp1D(unittest.TestCase): def setUp(self): pass def test_outliers(self): M = discretize.TensorMesh([4]) Q = M.getInterpolationMat(np.array([[0], [0.126], [0.127]]), 'CC', zerosOutside=True) x = np.arange(4)+1 self.assertTrue(np.linalg.norm(Q*x - np.r_[1, 1.004, 1.008]) < TOL) Q = M.getInterpolationMat(np.array([[-1], [0.126], [0.127]]), 'CC', zerosOutside=True) self.assertTrue(np.linalg.norm(Q*x - np.r_[0, 1.004, 1.008]) < TOL) class TestInterpolation2d(discretize.Tests.OrderTest): name = "Interpolation 2D" LOCS = np.random.rand(50, 2)*0.6+0.2 meshTypes = MESHTYPES tolerance = TOLERANCES meshDimension = 2 meshSizes = [8, 16, 32, 64] def getError(self): funX = lambda x, y: np.cos(2*np.pi*y) funY = lambda x, y: np.cos(2*np.pi*x) if 'x' in self.type: ana = call2(funX, self.LOCS) elif 'y' in self.type: ana = call2(funY, self.LOCS) else: ana = call2(funX, self.LOCS) if 'F' in self.type: Fc = cartF2(self.M, funX, funY) grid = self.M.projectFaceVector(Fc) elif 'E' in self.type: Ec = cartE2(self.M, funX, funY) grid = self.M.projectEdgeVector(Ec) elif 'CC' == self.type: grid = call2(funX, self.M.gridCC) elif 'N' == self.type: grid = call2(funX, self.M.gridN) comp = self.M.getInterpolationMat(self.LOCS, self.type)*grid err = np.linalg.norm((comp - ana), np.inf) return err def test_orderCC(self): self.type = 'CC' self.name = 'Interpolation 2D: CC' self.orderTest() def test_orderN(self): self.type = 'N' self.name = 'Interpolation 2D: N' self.orderTest() def test_orderFx(self): self.type = 'Fx' self.name = 'Interpolation 2D: Fx' self.orderTest() def test_orderFy(self): self.type = 'Fy' self.name = 'Interpolation 2D: Fy' self.orderTest() def test_orderEx(self): self.type = 'Ex' self.name = 'Interpolation 2D: Ex' self.orderTest() def test_orderEy(self): self.type = 'Ey' self.name = 'Interpolation 2D: Ey' self.orderTest() class TestInterpolation2dCyl_Simple(unittest.TestCase): def test_simpleInter(self): M = discretize.CylMesh([4, 1, 1]) locs = np.r_[0, 0, 0.5] fx = np.array([[ 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]) self.assertTrue( np.all(fx == M.getInterpolationMat(locs, 'Fx').todense()) ) fz = np.array([[ 0., 0., 0., 0., 0.5, 0., 0., 0., 0.5, 0., 0., 0.]]) self.assertTrue( np.all(fz == M.getInterpolationMat(locs, 'Fz').todense()) ) def test_exceptions(self): M = discretize.CylMesh([4, 1, 1]) locs = np.r_[0, 0, 0.5] self.assertRaises(Exception, lambda:M.getInterpolationMat(locs, 'Fy')) self.assertRaises(Exception, lambda:M.getInterpolationMat(locs, 'Ex')) self.assertRaises(Exception, lambda:M.getInterpolationMat(locs, 'Ez')) class TestInterpolation2dCyl(discretize.Tests.OrderTest): name = "Interpolation 2D" LOCS = np.c_[np.random.rand(4)*0.6+0.2, np.zeros(4), np.random.rand(4)*0.6+0.2] meshTypes = ['uniformCylMesh'] # MESHTYPES + tolerance = 0.6 meshDimension = 2 meshSizes = [32, 64, 128, 256] def getError(self): funX = lambda x, y: np.cos(2*np.pi*y) funY = lambda x, y: np.cos(2*np.pi*x) if 'x' in self.type: ana = call2(funX, self.LOCS) elif 'y' in self.type: ana = call2(funY, self.LOCS) elif 'z' in self.type: ana = call2(funY, self.LOCS) else: ana = call2(funX, self.LOCS) if 'Fx' == self.type: Fc = cartF2Cyl(self.M, funX, funY) Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]] grid = self.M.projectFaceVector(Fc) elif 'Fz' == self.type: Fc = cartF2Cyl(self.M, funX, funY) Fc = np.c_[Fc[:, 0], np.zeros(self.M.nF), Fc[:, 1]] grid = self.M.projectFaceVector(Fc) elif 'E' in self.type: Ec = cartE2Cyl(self.M, funX, funY) grid = Ec[:, 1] elif 'CC' == self.type: grid = call2(funX, self.M.gridCC) elif 'N' == self.type: grid = call2(funX, self.M.gridN) comp = self.M.getInterpolationMat(self.LOCS, self.type)*grid err = np.linalg.norm((comp - ana), np.inf) return err def test_orderCC(self): self.type = 'CC' self.name = 'Interpolation 2D CYLMESH: CC' self.orderTest() def test_orderN(self): self.type = 'N' self.name = 'Interpolation 2D CYLMESH: N' self.orderTest() def test_orderFx(self): self.type = 'Fx' self.name = 'Interpolation 2D CYLMESH: Fx' self.orderTest() def test_orderFz(self): self.type = 'Fz' self.name = 'Interpolation 2D CYLMESH: Fz' self.orderTest() def test_orderEy(self): self.type = 'Ey' self.name = 'Interpolation 2D CYLMESH: Ey' self.orderTest() class TestInterpolation3D(discretize.Tests.OrderTest): name = "Interpolation" LOCS = np.random.rand(50, 3)*0.6+0.2 meshTypes = MESHTYPES tolerance = TOLERANCES meshDimension = 3 meshSizes = [8, 16, 32, 64] def getError(self): funX = lambda x, y, z:
np.cos(2*np.pi*y)
numpy.cos
import numpy as np from matplotlib import pyplot as plt import time import utils as ut def print_loss(iteration_results,final_results,n_chessboard): ''' iteration_results: list of the list containg the value of the loss function at each iteration for every chessboard final_results: list of the final loss function value for each chessboard n_chessboard: number of processed chessboard ''' #plot of the descent of loss function for each chessboard for i in range(n_chessboard): plt.plot(*zip(*iteration_results[i]),label = "Chessboard {}".format(i)) plt.title('Comparsion between the descent of the loss of every analyzed chessboard') #plot settings plt.legend() plt.xlabel('Number of iterations') plt.ylabel('Loss function') plt.show() plt.ylabel('Final value of loss function') plt.title('Final value of the loss for every chessboard') #plot of the final values of the loss function for each chessboard plt.plot(*zip(*final_results),markersize=10,marker='x',linewidth=0, color='r') plt.tight_layout() plt.show() def generate_starting_points(point, stepsize): ''' point: point from which it is generate the orthogonal base stepsize: lenght of the sides of simplex ''' num = point.shape[0] identity = np.eye(num) starting_points = [point] #generation of initial simplex for i in range(num): starting_points.append(point + stepsize * identity[i,:].T) return starting_points def centroid_calculation(simplex,loss_function,m,w): ''' simplex: current simplex loss_function: function of loss m: image_points used as loss function parameter w: worlds point used as loss function parameter ''' centroid = np.zeros(len(simplex)-1) for i in range(len(simplex)-1): centroid += simplex[i][1] centroid /= float( len(simplex)-1 ) centroid_value = loss_function(m,np.reshape(centroid,(3,3)),w) return (centroid_value,centroid) def reflection(worst,centroid,coeff,loss_function,m,w): ''' worst: tuple of the worst point of the simplex centroid: current centroid tuple of the simplex coeff: reflection coefficent loss_function: function of loss m: image_points used as loss function parameter w: worlds point used as loss function parameter ''' reflection_point = centroid[1] * ( 1.0 + coeff ) - coeff * worst[1] reflection_value = loss_function(m, np.reshape(reflection_point,(3,3)) ,w) return (reflection_value, reflection_point) def expansion(reflection,centroid,coeff,loss_function,m,w): ''' reflection: reflected tuple of the simplex centroid: current centroid tuple of the simplex coeff: expansion coefficent loss_function: function of loss m: image_points used as loss function parameter w: worlds point used as loss function parameter ''' expansion_point = centroid[1] * (1-coeff) + coeff*reflection[1] expansion_value = loss_function(m, np.reshape(expansion_point,(3,3)) ,w) return (expansion_value,expansion_point) def outer_contraction(reflection,centroid,coeff,loss_function,m,w): ''' reflection: reflected tuple of the simplex centroid: current centroid tuple of the simplex coeff: contraction coefficent loss_function: function of loss m: image_points used as loss function parameter w: worlds point used as loss function parameter ''' contraction_point = centroid[1] + coeff * (reflection[1] - centroid[1]) contraction_value = loss_function(m, np.reshape(contraction_point,(3,3)), w) return (contraction_value,contraction_point) def inner_contraction(reflection,centroid,coeff,loss_function,m,w): ''' reflection: reflected tuple of the simplex centroid: current centroid tuple of the simplex coeff: contraction coefficent loss_function: function of loss m: image_points used as loss function parameter w: worlds point used as loss function parameter ''' contraction_point = centroid[1] - coeff * (reflection[1] - centroid[1]) contraction_value = loss_function(m,
np.reshape(contraction_point,(3,3))
numpy.reshape
import os os.environ['CUDA_VISIBLE_DEVICES'] = '2' import torch torch.rand(10) import torch.nn as nn import torch.nn.functional as F import glob from tqdm import tqdm, trange print(torch.cuda.is_available()) print(torch.cuda.get_device_name()) print(torch.cuda.current_device()) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) print() #Additional Info when using cuda if device.type == 'cuda': print(torch.cuda.get_device_name(0)) print('Memory Usage:') print('Allocated:', round(torch.cuda.memory_allocated(0)/1024**3,1), 'GB') print('Cached: ', round(torch.cuda.memory_reserved(0)/1024**3,1), 'GB') import torch.backends.cudnn as cudnn import numpy as np import os, cv2 from tqdm import tqdm, trange import seaborn as sns from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import ( check_img_size, non_max_suppression, apply_classifier, scale_coords, xyxy2xywh, plot_one_box, strip_optimizer) from utils.torch_utils import select_device, load_classifier, time_synchronized from my_utils import xyxy_2_xyxyo, draw_boxes # Initialize device = select_device('') half = device.type != 'cpu' # half precision only supported on CUDA def prepare_input(img1, img_size=416, half=True): img2 = cv2.resize(img1, (img_size, img_size)) # W x H img2 = img2.transpose(2,0,1) img2 = img2[np.newaxis, ...] img2 = torch.from_numpy(img2).to(device) # torch image is ch x H x W img2 = img2.half() if not half else img2.float() img2 /= 255.0 return img2 #%% # Directories out = '/home/user01/data_ssd/Talha/yolo/op/' weights = '/home/user01/data_ssd/Talha/yolo/ScaledYOLOv4/runs/exp2_yolov4-csp-results/weights/best_yolov4-csp-results.pt' source = '/home/user01/data_ssd/Talha/yolo/paprika_y5/valid/images/' imgsz = 416 conf_thres = 0.4 iou_thres = 0.5 classes = [0,1,2,3,4,5] class_names = ["blossom_end_rot", "graymold","powdery_mildew","spider_mite", "spotting_disease", "snails_and_slugs"] # deleting files in op_dir filelist = [ f for f in os.listdir(out)]# if f.endswith(".png") ] for f in tqdm(filelist, desc = 'Deleting old files fro directory'): os.remove(os.path.join(out, f)) # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size img_paths = glob.glob('/home/user01/data_ssd/Talha/yolo/paprika_y5/test/images/*.png') + \ glob.glob('/home/user01/data_ssd/Talha/yolo/paprika_y5/test/images/*.jpg') # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once #%% for i in trange(len(img_paths)): path = img_paths[i] img1 = cv2.imread(path) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) img_h, img_w, _ = img1.shape img2 = prepare_input(img1, 416, half) # get file name name = os.path.basename(path)[:-4] # Inference t1 = time_synchronized() pred = model(img2, augment=False)[0] # Apply NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes=classes, agnostic=True) if pred[0] is not None: boxes = pred[0].cpu().detach().numpy() # <xmin><ymin><xmax><ymax><confd><class_id> else: boxes = np.array([10.0, 20.0, 30.0, 50.0, 0.75, 0]).reshape(1,6) # dummy values coords_minmax = np.zeros((boxes.shape[0], 4)) # droping 5th value confd =
np.zeros((boxes.shape[0], 1))
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Sat Oct 17 15:58:22 2020 @author: vivek """ ### statsmodels vs sklearn # both packages are frequently tagged with python, statistics, and data-analysis # differences between them highlight what each in particular has to offer: # scikit-learn’s other popular topics are machine-learning and data-science; # StatsModels are econometrics, generalized-linear-models, timeseries-analysis, and regression-models ### Introduction import numpy as np import statsmodels.api as sm import statsmodels.formula.api as smf # Example 1 # Load data dat = sm.datasets.get_rdataset("Guerry", "HistData").data # Fit regression model (using the natural log of one of the regressors) results = smf.ols('Lottery ~ Literacy + np.log(Pop1831)', data=dat).fit() # Inspect the results print(results.summary()) # Example 2 # Generate artificial data (2 regressors + constant) X = np.random.random((100, 2)) X = sm.add_constant(X) beta = [1, .1, .5] e =
np.random.random(100)
numpy.random.random
"""Subdivided icosahedral mesh generation""" from __future__ import print_function import numpy as np # following: http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html # hierarchy: # Icosphere -> Triangle -> Point class IcoSphere: """ Usage: IcoSphere(level) Maximum supported level = 8 get started with: >>> A = IcoSphere(3) ... A.plot3d() """ # maximum level for subdivision of the icosahedron maxlevel = 8 def __init__(self, level): if type(level) is not int: raise TypeError('level must be an integer') elif level < 0: raise Exception('level must be no less than 0') elif level > self.maxlevel: raise Exception('level larger than ' + str(self.maxlevel) + ' not supported') self.level = level self.points = [] self.triangles = [] self.npts = 0 ################################ # initialise level 1 icosahedron ################################ # golden ration t = (1.0 + np.sqrt(5.0)) / 2.0 # add vertices self._addPoint(np.array([-1, t, 0])) self._addPoint(np.array([ 1, t, 0])) self._addPoint(np.array([-1,-t, 0])) self._addPoint(np.array([ 1,-t, 0])) self._addPoint(np.array([ 0,-1, t])) self._addPoint(np.array([ 0, 1, t])) self._addPoint(np.array([ 0,-1,-t])) self._addPoint(np.array([ 0, 1,-t])) self._addPoint(np.array([ t, 0,-1])) self._addPoint(np.array([ t, 0, 1])) self._addPoint(np.array([-t, 0,-1])) self._addPoint(np.array([-t, 0, 1])) # make triangles tris = self.triangles verts = self.points # 5 faces around point 0 tris.append(Triangle([ verts[0],verts[11], verts[5]])) tris.append(Triangle([ verts[0], verts[5], verts[1]])) tris.append(Triangle([ verts[0], verts[1], verts[7]])) tris.append(Triangle([ verts[0], verts[7],verts[10]])) tris.append(Triangle([ verts[0],verts[10],verts[11]])) # 5 adjacent faces tris.append(Triangle([ verts[1], verts[5], verts[9]])) tris.append(Triangle([ verts[5],verts[11], verts[4]])) tris.append(Triangle([verts[11],verts[10], verts[2]])) tris.append(Triangle([verts[10], verts[7], verts[6]])) tris.append(Triangle([ verts[7], verts[1], verts[8]])) # 5 faces around point 3 tris.append(Triangle([ verts[3], verts[9], verts[4]])) tris.append(Triangle([ verts[3], verts[4], verts[2]])) tris.append(Triangle([ verts[3], verts[2], verts[6]])) tris.append(Triangle([ verts[3], verts[6], verts[8]])) tris.append(Triangle([ verts[3], verts[8], verts[9]])) # 5 adjacent faces tris.append(Triangle([ verts[4], verts[9], verts[5]])) tris.append(Triangle([ verts[2], verts[4],verts[11]])) tris.append(Triangle([ verts[6], verts[2],verts[10]])) tris.append(Triangle([ verts[8], verts[6], verts[7]])) tris.append(Triangle([ verts[9], verts[8], verts[1]])) ######################################## # refine triangles to desired mesh level ######################################## for l in range(self.level): midPointDict = {} faces = [] for tri in self.triangles: # replace triangle by 4 triangles p = tri.pts a = self._getMiddlePoint(p[0], p[1], midPointDict) b = self._getMiddlePoint(p[1], p[2], midPointDict) c = self._getMiddlePoint(p[2], p[0], midPointDict) faces.append(Triangle([p[0], a, c])) faces.append(Triangle([p[1], b, a])) faces.append(Triangle([p[2], c, b])) faces.append(Triangle([a, b, c])) # once looped thru all triangles overwrite self.triangles self.triangles = faces self.nfaces = len(self.triangles) # check that npts and nfaces are as expected expected_npts = calculate_npts(self.level) expected_nfaces = calculate_nfaces(self.level) if self.npts != calculate_npts(self.level): raise Exception('npts '+str(self.npts)+' not as expected '+str(expected_npts)) elif self.nfaces != calculate_nfaces(self.level): raise Exception('nfaces '+str(self.nfaces)+' not as expected '+str(expected_nfaces)) def _addPoint(self, xyz): """Add point to self.points""" self.points.append(Point(self.npts, xyz)) self.npts += 1 def _getMiddlePoint(self, p1, p2, midPointDict): """return Point""" if not isinstance(p1, Point) or not isinstance(p2, Point): raise TypeError('p1 and p2 must be Points') # does point already exist? key = tuple(sorted([p1.idx, p2.idx])) if key in midPointDict: # point exists pass else: # point is new self._addPoint((p1.xyz + p2.xyz)/2) midPointDict[key] = self.points[-1] return midPointDict[key] def plot3d(self): """Matplotlib 3D plot of mesh""" import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') xyz = np.asarray([ pt.xyz for pt in self.points ]) x = xyz[:,0] y = xyz[:,1] z = xyz[:,2] ts = np.asarray([ [ p.idx for p in t.pts ] for t in self.triangles ]) ax.plot_trisurf(x,y,ts,z) plt.show() def dump_xyz(self): [ print(*pt.xyz) for pt in self.points ] def dump_latlonr(self): [ print(*cart2geo(*pt.xyz)) for pt in self.points ] class Triangle: """A triangle adjoining three adjacent points""" def __init__(self, pts): if not isinstance(pts, list): raise TypeError('pts must be a list') elif len(pts) !=3: raise Exception('pts must be of length 3') else: self.pts = pts class Point: """A 3D point on the mesh""" def __init__(self, idx, xyz): if type(idx) is not int: raise TypeError('idx must be an integer') elif not isinstance(xyz,np.ndarray): raise TypeError('xyz must be a numpy array') elif xyz.size != 3: raise Exception('xyz must be of size 3') else: # ensure length equals 1 and add to list of points self.xyz = (xyz/np.linalg.norm(xyz)) self.idx = idx def calculate_npts(level): n = 2**level return 2 + 10 * n**2 def calculate_nfaces(level): n = 2**level return 20 * n**2 def cart2geo(x, y, z): """convert x y z cartesian coordinates to latitude longitude radius xyz is a numpy array, a right handed co-ordinate system is assumed with -- x-axis going through the equator at 0 degrees longitude -- y-axis going through the equator at 90 degrees longitude -- z-axis going through the north pole.""" r = np.sqrt(x**2 + y**2 + z**2) lon = np.rad2deg(np.arctan2(y,x)) lat = np.rad2deg(np.arcsin(z/r)) return lat, lon, r def geo2cart(lat, lon, r): """convert latitude longitude radius to x y z cartesian coordinates xyz is a numpy array, a right handed co-ordinate system is assumed with -- x-axis going through the equator at 0 degrees longitude -- y-axis going through the equator at 90 degrees longitude -- z-axis going through the north pole.""" x = r *
np.cos(lon)
numpy.cos
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data # (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP # (c) 07/2019-present : DESY PHOTON SCIENCE # authors: # <NAME>, <EMAIL> try: import hdf5plugin # for P10, should be imported before h5py or PyTables except ModuleNotFoundError: pass import numpy as np import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.ndimage.measurements import center_of_mass from bcdi.experiment.detector import create_detector from bcdi.experiment.setup import Setup import bcdi.preprocessing.bcdi_utils as bu import bcdi.graph.graph_utils as gu import bcdi.utils.utilities as util import bcdi.utils.validation as valid helptext = """ Open a series of rocking curve data and track the position of the Bragg peak over the series. Supported beamlines: ESRF ID01, PETRAIII P10, SOLEIL SIXS, SOLEIL CRISTAL, MAX IV NANOMAX. """ scans = np.arange(1460, 1475 + 1, step=3) # list or array of scan numbers scans = np.concatenate((scans, np.arange(1484, 1586 + 1, 3))) scans = np.concatenate((scans, np.arange(1591, 1633 + 1, 3))) scans = np.concatenate((scans, np.arange(1638, 1680 + 1, 3))) root_folder = "D:/data/P10_OER/data/" sample_name = "dewet2_2" # list of sample names. If only one name is indicated, # it will be repeated to match the number of scans save_dir = "D:/data/P10_OER/analysis/candidate_12/" # images will be saved here, leave it to None otherwise (default to root_folder) x_axis = [0.740 for _ in range(16)] for _ in range(10): x_axis.append(0.80) for _ in range(15): x_axis.append(-0.05) for _ in range(15): x_axis.append(0.3) for _ in range(15): x_axis.append(0.8) # values against which the Bragg peak center of mass evolution will be plotted, # leave [] otherwise x_label = "voltage (V)" # label for the X axis in plots, leave '' otherwise comment = "_BCDI_RC" # comment for the saving filename, should start with _ strain_range = 0.00005 # range for the plot of the q value peak_method = ( "max_com" # Bragg peak determination: 'max', 'com', 'max_com' (max then com) ) debug = False # set to True to see more plots ############################### # beamline related parameters # ############################### beamline = ( "P10" # name of the beamline, used for data loading and normalization by monitor ) # supported beamlines: 'ID01', 'SIXS_2018', 'SIXS_2019', 'CRISTAL', 'P10' custom_scan = False # True for a stack of images acquired without scan, # e.g. with ct in a macro (no info in spec file) custom_images = np.arange(11353, 11453, 1) # list of image numbers for the custom_scan custom_monitor = np.ones( len(custom_images) ) # monitor values for normalization for the custom_scan custom_motors = { "eta": np.linspace(16.989, 18.989, num=100, endpoint=False), "phi": 0, "nu": -0.75, "delta": 36.65, } # ID01: eta, phi, nu, delta # CRISTAL: mgomega, gamma, delta # P10: om, phi, chi, mu, gamma, delta # SIXS: beta, mu, gamma, delta rocking_angle = "outofplane" # "outofplane" or "inplane" is_series = False # specific to series measurement at P10 specfile_name = "" # template for ID01: name of the spec file without '.spec' # template for SIXS_2018: full path of the alias dictionnary, # typically root_folder + 'alias_dict_2019.txt' # template for all other beamlines: '' ############################### # detector related parameters # ############################### detector = "Eiger4M" # "Eiger2M" or "Maxipix" or "Eiger4M" x_bragg = 1387 # horizontal pixel number of the Bragg peak, # can be used for the definition of the ROI y_bragg = 809 # vertical pixel number of the Bragg peak, # can be used for the definition of the ROI roi_detector = [ y_bragg - 200, y_bragg + 200, x_bragg - 400, x_bragg + 400, ] # [Vstart, Vstop, Hstart, Hstop] # leave it as None to use the full detector. # Use with center_fft='skip' if you want this exact size. debug_pix = 40 # half-width in pixels of the ROI centered on the Bragg peak hotpixels_file = None # root_folder + 'hotpixels.npz' # non empty file path or None flatfield_file = ( None # root_folder + "flatfield_8.5kev.npz" # non empty file path or None ) template_imagefile = "_master.h5" # template for ID01: 'data_mpx4_%05d.edf.gz' or 'align_eiger2M_%05d.edf.gz' # template for SIXS_2018: 'align.spec_ascan_mu_%05d.nxs' # template for SIXS_2019: 'spare_ascan_mu_%05d.nxs' # template for Cristal: 'S%d.nxs' # template for P10: '_master.h5' # template for NANOMAX: '%06d.h5' # template for 34ID: 'Sample%dC_ES_data_51_256_256.npz' #################################### # q calculation related parameters # #################################### convert_to_q = True # True to convert from pixels to q values using parameters below beam_direction = (1, 0, 0) # beam along z directbeam_x = 476 # x horizontal, cch2 in xrayutilities directbeam_y = 1374 # y vertical, cch1 in xrayutilities direct_inplane = -2.0 # outer angle in xrayutilities direct_outofplane = 0.8 sdd = 1.83 # sample to detector distance in m energy = 10300 # in eV, offset of 6eV at ID01 ################################## # end of user-defined parameters # ################################## ################### # define colormap # ################### bad_color = "1.0" # white bckg_color = "0.7" # grey colormap = gu.Colormap(bad_color=bad_color) my_cmap = colormap.cmap ######################################## # check and initialize some parameters # ######################################## print(f"\n{len(scans)} scans: {scans}") print(f"\n {len(x_axis)} x_axis values provided:") if len(x_axis) == 0: x_axis = np.arange(len(scans)) if len(x_axis) != len(scans): raise ValueError("the length of x_axis should be equal to the number of scans") if isinstance(sample_name, str): sample_name = [sample_name for idx in range(len(scans))] valid.valid_container( sample_name, container_types=(tuple, list), length=len(scans), item_types=str, name="preprocess_bcdi", ) if peak_method not in [ "max", "com", "max_com", ]: raise ValueError('invalid value for "peak_method" parameter') int_sum = [] # integrated intensity in the detector ROI int_max = [] # maximum intensity in the detector ROI zcom = [] # center of mass for the first data axis ycom = [] # center of mass for the second data axis xcom = [] # center of mass for the third data axis tilt_com = [] # center of mass for the incident rocking angle q_com = [] # q value of the center of mass check_roi = [] # a small ROI around the Bragg peak will be stored for each scan, # to see if the peak is indeed # captured by the rocking curve ####################### # Initialize detector # ####################### detector = create_detector( name=detector, template_imagefile=template_imagefile, roi=roi_detector, ) #################### # Initialize setup # #################### setup = Setup( beamline=beamline, detector=detector, energy=energy, rocking_angle=rocking_angle, distance=sdd, beam_direction=beam_direction, custom_scan=custom_scan, custom_images=custom_images, custom_monitor=custom_monitor, custom_motors=custom_motors, is_series=is_series, ) ######################################## # print the current setup and detector # ######################################## print("\n##############\nSetup instance\n##############") print(setup) print("\n#################\nDetector instance\n#################") print(detector) ############################################### # load recursively the scans and update lists # ############################################### flatfield = util.load_flatfield(flatfield_file) hotpix_array = util.load_hotpixels(hotpixels_file) for scan_idx, scan_nb in enumerate(scans, start=1): tmp_str = f"Scan {scan_idx}/{len(scans)}: S{scan_nb}" print(f'\n{"#" * len(tmp_str)}\n' + tmp_str + "\n" + f'{"#" * len(tmp_str)}') # initialize the paths setup.init_paths( sample_name=sample_name[scan_idx - 1], scan_number=scan_nb, root_folder=root_folder, save_dir=save_dir, verbose=True, specfile_name=specfile_name, template_imagefile=template_imagefile, ) # override the saving directory, we want to save results at the same place detector.savedir = save_dir logfile = setup.create_logfile( scan_number=scan_nb, root_folder=root_folder, filename=detector.specfile ) data, mask, frames_logical, monitor = bu.load_bcdi_data( logfile=logfile, scan_number=scan_nb, detector=detector, setup=setup, flatfield=flatfield, hotpixels=hotpix_array, normalize=True, debugging=debug, ) tilt, grazing, inplane, outofplane = setup.diffractometer.goniometer_values( frames_logical=frames_logical, logfile=logfile, scan_number=scan_nb, setup=setup ) nbz, nby, nbx = data.shape if peak_method == "max": piz, piy, pix = np.unravel_index(data.argmax(), shape=(nbz, nby, nbx)) elif peak_method == "com": piz, piy, pix = center_of_mass(data) else: # 'max_com' max_z, max_y, max_x = np.unravel_index(data.argmax(), shape=data.shape) com_z, com_y, com_x = center_of_mass( data[ :, int(max_y) - debug_pix : int(max_y) + debug_pix, int(max_x) - debug_pix : int(max_x) + debug_pix, ] ) # correct the pixel offset due to the ROI defined by debug_pix around the max piz = com_z # the data was not cropped along the first axis piy = com_y + max_y - debug_pix pix = com_x + max_x - debug_pix if debug: fig, _, _ = gu.multislices_plot( data, sum_frames=True, plot_colorbar=True, cmap=my_cmap, title="scan" + str(scan_nb), scale="log", is_orthogonal=False, reciprocal_space=True, ) fig.text( 0.60, 0.30, f"(piz, piy, pix) = ({piz:.1f}, {piy:.1f}, {pix:.1f})", size=12 ) plt.draw() if peak_method == "max_com": fig, _, _ = gu.multislices_plot( data[ :, int(max_y) - debug_pix : int(max_y) + debug_pix, int(max_x) - debug_pix : int(max_x) + debug_pix, ], sum_frames=True, plot_colorbar=True, cmap=my_cmap, title="scan" + str(scan_nb), scale="log", is_orthogonal=False, reciprocal_space=True, ) fig.text( 0.60, 0.30, f"(com_z, com_y, com_x) = ({com_z:.1f}, {com_y:.1f}, {com_x:.1f})", size=12, ) plt.draw() print("") zcom.append(piz) ycom.append(piy) xcom.append(pix) int_sum.append(data.sum()) int_max.append(data.max()) check_roi.append( data[:, :, int(pix) - debug_pix : int(pix) + debug_pix].sum(axis=1) ) interp_tilt = interp1d(np.arange(data.shape[0]), tilt, kind="linear") tilt_com.append(interp_tilt(piz)) ############################## # convert pixels to q values # ############################## if convert_to_q: ( setup.outofplane_angle, setup.inplane_angle, setup.tilt_angle, setup.grazing_angle, ) = (outofplane, inplane, tilt, grazing) # calculate the position of the Bragg peak in full detector pixels bragg_x = detector.roi[2] + pix bragg_y = detector.roi[0] + piy # calculate the position of the direct beam at 0 detector angles x_direct_0 = directbeam_x + setup.inplane_coeff * ( direct_inplane * np.pi / 180 * sdd / detector.pixelsize_x ) # inplane_coeff is +1 or -1 y_direct_0 = ( directbeam_y - setup.outofplane_coeff * direct_outofplane * np.pi / 180 * sdd / detector.pixelsize_y ) # outofplane_coeff is +1 or -1 # calculate corrected detector angles for the Bragg peak bragg_inplane = setup.inplane_angle + setup.inplane_coeff * ( detector.pixelsize_x * (bragg_x - x_direct_0) / sdd * 180 / np.pi ) # inplane_coeff is +1 or -1 bragg_outofplane = ( setup.outofplane_angle - setup.outofplane_coeff * detector.pixelsize_y * (bragg_y - y_direct_0) / sdd * 180 / np.pi ) # outofplane_coeff is +1 or -1 print( f"\nBragg angles before correction (gam, del): ({setup.inplane_angle:.4f}, " f"{setup.outofplane_angle:.4f})" ) print( f"Bragg angles after correction (gam, del): ({bragg_inplane:.4f}, " f"{bragg_outofplane:.4f})" ) # update setup with the corrected detector angles setup.inplane_angle = bragg_inplane setup.outofplane_angle = bragg_outofplane ############################################################## # wavevector transfer calculations (in the laboratory frame) # ############################################################## kin = 2 * np.pi / setup.wavelength * np.asarray(beam_direction) # in lab frame z downstream, y vertical, x outboard kout = ( setup.exit_wavevector ) # in lab.frame z downstream, y vertical, x outboard q = (kout - kin) / 1e10 # convert from 1/m to 1/angstrom q_com.append(np.linalg.norm(q)) print(f"Wavevector transfer of Bragg peak: {q}, Qnorm={np.linalg.norm(q):.4f}") ########################################################## # plot the ROI centered on the Bragg peak for each scan # ########################################################## plt.ion() # plot maximum 7x7 ROIs per figure nb_fig = 1 + len(scans) // 49 if nb_fig == 1: nb_rows = np.floor(np.sqrt(len(scans))) nb_columns = np.ceil(len(scans) / nb_rows) else: nb_rows = 7 nb_columns = 7 scan_counter = 0 for fig_idx in range(nb_fig): fig = plt.figure(figsize=(12, 9)) for idx in range(min(49, len(scans) - scan_counter)): axis = plt.subplot(nb_rows, nb_columns, idx + 1) axis.imshow(np.log10(check_roi[scan_counter])) axis.set_title("S{:d}".format(scans[scan_counter])) scan_counter = scan_counter + 1 plt.tight_layout() plt.pause(0.1) fig.savefig(detector.savedir + f"check-roi{fig_idx+1}" + comment + ".png") ########################################################## # plot the evolution of the center of mass and intensity # ########################################################## fig, ((ax0, ax1, ax2), (ax3, ax4, ax5)) = plt.subplots( nrows=2, ncols=3, figsize=(12, 9) ) ax0.plot(scans, x_axis, "-o") ax0.set_xlabel("Scan number") ax0.set_ylabel(x_label) ax1.scatter(x_axis, int_sum, s=24, c=scans, cmap=my_cmap) ax1.set_xlabel(x_label) ax1.set_ylabel("Integrated intensity") ax1.set_facecolor(bckg_color) ax2.scatter(x_axis, int_max, s=24, c=scans, cmap=my_cmap) ax2.set_xlabel(x_label) ax2.set_ylabel("Maximum intensity") ax2.set_facecolor(bckg_color) ax3.scatter(x_axis, xcom, s=24, c=scans, cmap=my_cmap) ax3.set_xlabel(x_label) if peak_method in ["com", "max_com"]: ax3.set_ylabel("xcom (pixels)") else: # 'max' ax3.set_ylabel("xmax (pixels)") ax3.set_facecolor(bckg_color) ax4.scatter(x_axis, ycom, s=24, c=scans, cmap=my_cmap) ax4.set_xlabel(x_label) if peak_method in ["com", "max_com"]: ax4.set_ylabel("ycom (pixels)") else: # 'max' ax4.set_ylabel("ymax (pixels)") ax4.set_facecolor(bckg_color) plt5 = ax5.scatter(x_axis, zcom, s=24, c=scans, cmap=my_cmap) gu.colorbar(plt5, scale="linear", numticks=min(len(scans), 20), label="scan #") ax5.set_xlabel(x_label) if peak_method in ["com", "max_com"]: ax5.set_ylabel("zcom (pixels)") else: # 'max' ax5.set_ylabel("zmax (pixels)") ax5.set_facecolor(bckg_color) plt.tight_layout() plt.pause(0.1) fig.savefig(detector.savedir + "summary" + comment + ".png") ############################################ # plot the evolution of the incident angle # ############################################ tilt_com = np.asarray(tilt_com) x_axis = np.asarray(x_axis) uniq_xaxis = np.unique(x_axis) mean_tilt = np.empty(len(uniq_xaxis)) std_tilt = np.empty(len(uniq_xaxis)) for idx, item in enumerate(uniq_xaxis): mean_tilt[idx] = np.mean(tilt_com[x_axis == item]) std_tilt[idx] = np.std(tilt_com[x_axis == item]) fig, (ax0, ax1, ax2) = plt.subplots(nrows=1, ncols=3, figsize=(12, 9)) ax0.plot(scans, tilt_com, "-o") ax0.set_xlabel("Scan number") ax0.set_ylabel("Bragg angle (deg)") ax1.errorbar( uniq_xaxis, mean_tilt, yerr=std_tilt, elinewidth=2, capsize=6, capthick=2, linestyle="", marker="o", markersize=6, markerfacecolor="w", ) ax1.set_xlabel(x_label) ax1.set_ylabel("Bragg angle (deg)") plt2 = ax2.scatter(x_axis, tilt_com, s=24, c=scans, cmap=my_cmap) gu.colorbar(plt2, scale="linear", numticks=min(len(scans), 20), label="scan #") ax2.set_xlabel(x_label) ax2.set_ylabel("Bragg angle (deg)") ax2.set_facecolor(bckg_color) plt.tight_layout() plt.pause(0.1) fig.savefig(detector.savedir + "Bragg angle" + comment + ".png") ############################################## # plot the evolution of the diffusion vector # ############################################## if convert_to_q: q_com = np.asarray(q_com) mean_q = np.empty(len(uniq_xaxis)) std_q = np.empty(len(uniq_xaxis)) for idx, item in enumerate(uniq_xaxis): mean_q[idx] = np.mean(q_com[x_axis == item]) std_q[idx] =
np.std(q_com[x_axis == item])
numpy.std
import numpy as np import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' import seaborn as sns import sys import matplotlib.pyplot as plt from skimage.transform import rescale sys.path.append('../..') from config import DIR_FIGS from os.path import join as opj cb = '#66ccff' cr = '#cc0000' cm = sns.diverging_palette(10, 240, n=1000, as_cmap=True) def save_fig(fname): plt.savefig(opj(DIR_FIGS, fname) + '.png') def cshow(im): plt.imshow(im, cmap='magma', vmax=0.15, vmin=-0.05) plt.axis('off') def plot_2d_samples(sample, color='C0'): """Plot 2d sample Arugments --------- sample : 2D ndarray or tensor matrix of spatial coordinates for each sample """ if "torch" in str(type(sample)): sample_np = sample.detach().cpu().numpy() x = sample_np[:, 0] y = sample_np[:, 1] plt.scatter(x, y, color=color) plt.gca().set_aspect('equal', adjustable='box') def plot_2d_latent_samples(latent_sample, color='C0'): """Plot latent samples select two most highly variable coordinates Arugments --------- latent_sample : tensor matrix of spatial coordinates for each latent sample """ latent_dim = latent_sample.size()[1] stds = [] for i in range(latent_dim): stds.append(torch.std(latent_sample[:,i]).item()) stds = np.array(stds) ind = np.argsort(stds)[::-1][:2] plot_2d_samples(latent_sample[:,list(ind)]) def traverse_line(idx, model, n_samples=100, n_latents=2, data=None, max_traversal=10): """Return a (size, latent_size) latent sample, corresponding to a traversal of a latent variable indicated by idx. Parameters ---------- idx : int Index of continuous dimension to traverse. If the continuous latent vector is 10 dimensional and idx = 7, then the 7th dimension will be traversed while all others are fixed. n_samples : int Number of samples to generate. data : torch.Tensor or None, optional Data to use for computing the posterior. If `None` then use the mean of the prior (all zeros) for all other dimensions. """ model.eval() if data is None: # mean of prior for other dimensions samples = torch.zeros(n_samples, n_latents) traversals = torch.linspace(-2, 2, steps=n_samples) else: if data.size(0) > 1: raise ValueError("Every value should be sampled from the same posterior, but {} datapoints given.".format(data.size(0))) with torch.no_grad(): post_mean, post_logvar = model.encoder(data.to(device)) samples = model.reparameterize(post_mean, post_logvar) samples = samples.cpu().repeat(n_samples, 1) post_mean_idx = post_mean.cpu()[0, idx] post_std_idx = torch.exp(post_logvar / 2).cpu()[0, idx] # travers from the gaussian of the posterior in case quantile traversals = torch.linspace(post_mean_idx - max_traversal, post_mean_idx + max_traversal, steps=n_samples) for i in range(n_samples): samples[i, idx] = traversals[i] return samples def traversals(model, data=None, n_samples=100, n_latents=2, max_traversal=1.): """ """ latent_samples = [traverse_line(dim, model, n_samples, n_latents, data=data, max_traversal=max_traversal) for dim in range(n_latents)] decoded_traversal = model.decoder(torch.cat(latent_samples, dim=0).to(device)) decoded_traversal = decoded_traversal.detach().cpu() return decoded_traversal def plot_traversals(model, data, lb=0, ub=2000, num=100, draw_data=False, draw_recon=False, traversal_samples=100, n_latents=4, max_traversal=1.): if draw_data is True: plot_2d_samples(data[:,:2], color='C0') if draw_recon is True: recon_data, _, _ = model(data) plot_2d_samples(recon_data[:,:2], color='C8') ranges = np.arange(lb, ub) samples_index = np.random.choice(ranges, num, replace=False) for i in samples_index: decoded_traversal = traversals(model, data=data[i:i+1], n_samples=traversal_samples, n_latents=n_latents, max_traversal=max_traversal) decoded_traversal0 = decoded_traversal[:,:2] plot_2d_samples(decoded_traversal0[:100], color='C2') plot_2d_samples(decoded_traversal0[100:200], color='C3') plot_2d_samples(decoded_traversal0[200:300], color='C4') plot_2d_samples(decoded_traversal0[300:400], color='C5') def viz_filters(tensors, n_row=4, n_col=8, resize_fac=2, normalize=True, vmax=None, vmin=None, title=None): plt.figure(figsize=(10,10)) # plot filters p = tensors.shape[2] + 2 mosaic = np.zeros((p*n_row,p*n_col)) indx = 0 for i in range(n_row): for j in range(n_col): im = tensors.data.cpu().numpy()[indx].squeeze() if normalize: im = (im-np.min(im)) im = im/
np.max(im)
numpy.max
""" These are designed to be unit-tests of the wrapper functionality. They do not test for correctness of simulations, but whether different parameter options work/don't work as intended. """ import pytest import numpy as np from py21cmfast import wrapper @pytest.fixture(scope="module") def perturb_field_lowz(ic, low_redshift): """A default perturb_field""" return wrapper.perturb_field(redshift=low_redshift, init_boxes=ic, write=True) @pytest.fixture(scope="module") def ionize_box(perturb_field): """A default ionize_box""" return wrapper.ionize_box(perturbed_field=perturb_field, write=True) @pytest.fixture(scope="module") def ionize_box_lowz(perturb_field_lowz): """A default ionize_box at lower redshift.""" return wrapper.ionize_box(perturbed_field=perturb_field_lowz, write=True) @pytest.fixture(scope="module") def spin_temp(perturb_field): """A default perturb_field""" return wrapper.spin_temperature(perturbed_field=perturb_field, write=True) def test_perturb_field_no_ic(default_user_params, redshift, perturb_field): """Run a perturb field without passing an init box""" pf = wrapper.perturb_field(redshift=redshift, user_params=default_user_params) assert len(pf.density) == pf.user_params.HII_DIM == default_user_params.HII_DIM assert pf.redshift == redshift assert pf.random_seed != perturb_field.random_seed assert not np.all(pf.density == 0) assert pf != perturb_field assert pf._seedless_repr() == perturb_field._seedless_repr() def test_ib_no_z(ic): with pytest.raises(ValueError): wrapper.ionize_box(init_boxes=ic) def test_pf_unnamed_param(): """Try using an un-named parameter.""" with pytest.raises(TypeError): wrapper.perturb_field(7) def test_perturb_field_ic(perturb_field, ic): # this will run perturb_field again, since by default regenerate=True for tests. # BUT it should produce exactly the same as the default perturb_field since it has # the same seed. pf = wrapper.perturb_field(redshift=perturb_field.redshift, init_boxes=ic) assert len(pf.density) == len(ic.lowres_density) assert pf.cosmo_params == ic.cosmo_params assert pf.user_params == ic.user_params assert not np.all(pf.density == 0) assert pf.user_params == perturb_field.user_params assert pf.cosmo_params == perturb_field.cosmo_params assert pf == perturb_field def test_cache_exists(default_user_params, perturb_field, tmpdirec): pf = wrapper.PerturbedField( redshift=perturb_field.redshift, cosmo_params=perturb_field.cosmo_params, user_params=default_user_params, ) assert pf.exists(tmpdirec) pf.read(tmpdirec) assert np.all(pf.density == perturb_field.density) assert pf == perturb_field def test_pf_new_seed(perturb_field, tmpdirec): pf = wrapper.perturb_field( redshift=perturb_field.redshift, user_params=perturb_field.user_params, random_seed=1, ) # we didn't write it, and this has a different seed assert not pf.exists(direc=tmpdirec) assert pf.random_seed != perturb_field.random_seed assert not np.all(pf.density == perturb_field.density) def test_ib_new_seed(ionize_box_lowz, perturb_field_lowz, tmpdirec): # this should fail because perturb_field has a seed set already, which isn't 1. with pytest.raises(ValueError): wrapper.ionize_box( perturbed_field=perturb_field_lowz, random_seed=1, ) ib = wrapper.ionize_box( cosmo_params=perturb_field_lowz.cosmo_params, redshift=perturb_field_lowz.redshift, user_params=perturb_field_lowz.user_params, random_seed=1, ) # we didn't write it, and this has a different seed assert not ib.exists(direc=tmpdirec) assert ib.random_seed != ionize_box_lowz.random_seed assert not np.all(ib.xH_box == ionize_box_lowz.xH_box) def test_st_new_seed(spin_temp, perturb_field, tmpdirec): # this should fail because perturb_field has a seed set already, which isn't 1. with pytest.raises(ValueError): wrapper.spin_temperature( perturbed_field=perturb_field, random_seed=1, ) st = wrapper.spin_temperature( cosmo_params=spin_temp.cosmo_params, user_params=spin_temp.user_params, astro_params=spin_temp.astro_params, flag_options=spin_temp.flag_options, redshift=spin_temp.redshift, random_seed=1, ) # we didn't write it, and this has a different seed assert not st.exists(direc=tmpdirec) assert st.random_seed != spin_temp.random_seed assert not np.all(st.Ts_box == spin_temp.Ts_box) def test_st_from_z(perturb_field_lowz, spin_temp): # This one has all the same parameters as the nominal spin_temp, but is evaluated # with an interpolated perturb_field st = wrapper.spin_temperature( perturbed_field=perturb_field_lowz, astro_params=spin_temp.astro_params, flag_options=spin_temp.flag_options, redshift=spin_temp.redshift, # Higher redshift ) assert st != spin_temp assert not np.all(st.Ts_box == spin_temp.Ts_box) def test_ib_from_pf(perturb_field): ib = wrapper.ionize_box(perturbed_field=perturb_field) assert ib.redshift == perturb_field.redshift assert ib.user_params == perturb_field.user_params assert ib.cosmo_params == perturb_field.cosmo_params def test_ib_from_z(default_user_params, perturb_field): ib = wrapper.ionize_box( redshift=perturb_field.redshift, user_params=default_user_params, regenerate=False, ) assert ib.redshift == perturb_field.redshift assert ib.user_params == perturb_field.user_params assert ib.cosmo_params == perturb_field.cosmo_params assert ib.cosmo_params is not perturb_field.cosmo_params def test_ib_override_z(perturb_field): with pytest.raises(ValueError): wrapper.ionize_box( redshift=perturb_field.redshift + 1, perturbed_field=perturb_field, ) def test_ib_override_z_heat_max(perturb_field): # save previous z_heat_max zheatmax = wrapper.global_params.Z_HEAT_MAX wrapper.ionize_box( redshift=perturb_field.redshift, perturbed_field=perturb_field, z_heat_max=12.0, ) assert wrapper.global_params.Z_HEAT_MAX == zheatmax def test_ib_bad_st(ic, redshift): with pytest.raises(ValueError): wrapper.ionize_box(redshift=redshift, spin_temp=ic) def test_bt(ionize_box, spin_temp, perturb_field): with pytest.raises(TypeError): # have to specify param names wrapper.brightness_temperature(ionize_box, spin_temp, perturb_field) # this will fail because ionized_box was not created with spin temperature. with pytest.raises(ValueError): wrapper.brightness_temperature( ionized_box=ionize_box, perturbed_field=perturb_field, spin_temp=spin_temp ) bt = wrapper.brightness_temperature( ionized_box=ionize_box, perturbed_field=perturb_field ) assert bt.cosmo_params == perturb_field.cosmo_params assert bt.user_params == perturb_field.user_params assert bt.flag_options == ionize_box.flag_options assert bt.astro_params == ionize_box.astro_params def test_coeval_against_direct(ic, perturb_field, ionize_box): coeval = wrapper.run_coeval(perturb=perturb_field, init_box=ic) assert coeval.init_struct == ic assert coeval.perturb_struct == perturb_field assert coeval.ionization_struct == ionize_box def test_lightcone(lc, default_user_params, redshift, max_redshift): assert lc.lightcone_redshifts[-1] >= max_redshift assert np.isclose(lc.lightcone_redshifts[0], redshift, atol=1e-4) assert lc.cell_size == default_user_params.BOX_LEN / default_user_params.HII_DIM def test_lightcone_quantities(ic, max_redshift, perturb_field): lc = wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=max_redshift, lightcone_quantities=("dNrec_box", "density", "brightness_temp"), global_quantities=("density", "Gamma12_box"), ) assert hasattr(lc, "dNrec_box") assert hasattr(lc, "density") assert hasattr(lc, "global_density") assert hasattr(lc, "global_Gamma12") # dNrec is not filled because we're not doing INHOMO_RECO assert lc.dNrec_box.max() == lc.dNrec_box.min() == 0 # density should be filled with not zeros. assert lc.density.min() != lc.density.max() != 0 # Simply ensure that different quantities are not getting crossed/referred to each other. assert lc.density.min() != lc.brightness_temp.min() != lc.brightness_temp.max() # Raise an error since we're not doing spin temp. with pytest.raises(ValueError): wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=20.0, lightcone_quantities=("Ts_box", "density"), ) # And also raise an error for global quantities. with pytest.raises(ValueError): wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=20.0, global_quantities=("Ts_box",), ) def test_run_lf(): muv, mhalo, lf = wrapper.compute_luminosity_function(redshifts=[7, 8, 9], nbins=100) assert np.all(lf[~np.isnan(lf)] > -30) assert lf.shape == (3, 100) # Check that memory is in-tact and a second run also works: muv, mhalo, lf2 = wrapper.compute_luminosity_function( redshifts=[7, 8, 9], nbins=100 ) assert lf2.shape == (3, 100) assert np.allclose(lf2[~np.isnan(lf2)], lf[~np.isnan(lf)]) muv_minih, mhalo_minih, lf_minih = wrapper.compute_luminosity_function( redshifts=[7, 8, 9], nbins=100, component=0, flag_options={"USE_MINI_HALOS": True}, mturnovers=[7.0, 7.0, 7.0], mturnovers_mini=[5.0, 5.0, 5.0], ) assert np.all(lf_minih[~np.isnan(lf_minih)] > -30) assert lf_minih.shape == (3, 100) def test_coeval_st(ic, perturb_field): coeval = wrapper.run_coeval( init_box=ic, perturb=perturb_field, flag_options={"USE_TS_FLUCT": True}, ) assert isinstance(coeval.spin_temp_struct, wrapper.TsBox) def _global_Tb(coeval_box): assert isinstance(coeval_box, wrapper.Coeval) global_Tb = coeval_box.brightness_temp.mean(dtype=np.float128).astype(np.float32) assert np.isclose(global_Tb, coeval_box.brightness_temp_struct.global_Tb) return global_Tb def test_coeval_callback(ic, max_redshift, perturb_field): lc, coeval_output = wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=max_redshift, lightcone_quantities=("brightness_temp",), global_quantities=("brightness_temp",), coeval_callback=_global_Tb, ) assert isinstance(lc, wrapper.LightCone) assert isinstance(coeval_output, list) assert len(lc.node_redshifts) == len(coeval_output) assert np.allclose( lc.global_brightness_temp, np.array(coeval_output, dtype=np.float32) ) def test_coeval_callback_redshifts(ic, redshift, max_redshift, perturb_field): coeval_callback_redshifts = np.array( [max_redshift, max_redshift, (redshift + max_redshift) / 2, redshift], dtype=np.float32, ) lc, coeval_output = wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=max_redshift, coeval_callback=lambda x: x.redshift, coeval_callback_redshifts=coeval_callback_redshifts, ) assert len(coeval_callback_redshifts) - 1 == len(coeval_output) computed_redshifts = [ lc.node_redshifts[np.argmin(np.abs(i - lc.node_redshifts))] for i in coeval_callback_redshifts[1:] ] assert np.allclose(coeval_output, computed_redshifts) def Heaviside(x): return 1 if x > 0 else 0 def test_coeval_callback_exceptions(ic, redshift, max_redshift, perturb_field): # should output warning in logs and not raise an error lc, coeval_output = wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=max_redshift, coeval_callback=lambda x: 1 / Heaviside(x.redshift - (redshift + max_redshift) / 2), coeval_callback_redshifts=[max_redshift, redshift], ) # should raise an error with pytest.raises(RuntimeError) as excinfo: lc, coeval_output = wrapper.run_lightcone( init_box=ic, perturb=perturb_field, max_redshift=max_redshift, coeval_callback=lambda x: 1 / 0, coeval_callback_redshifts=[max_redshift, redshift], ) assert "coeval_callback computation failed on first trial" in str(excinfo.value) def test_coeval_vs_low_level(ic): coeval = wrapper.run_coeval( redshift=20, init_box=ic, zprime_step_factor=1.1, regenerate=True, flag_options={"USE_TS_FLUCT": True}, write=False, ) st = wrapper.spin_temperature( redshift=20, init_boxes=ic, zprime_step_factor=1.1, regenerate=True, flag_options={"USE_TS_FLUCT": True}, write=False, ) assert np.allclose(coeval.Tk_box, st.Tk_box) assert np.allclose(coeval.Ts_box, st.Ts_box) assert
np.allclose(coeval.x_e_box, st.x_e_box)
numpy.allclose
# -*- coding: utf-8 -*- """ Created on Wed Mar 21 10:00:33 2018 @author: jdkern """ from __future__ import division from sklearn import linear_model from statsmodels.tsa.api import VAR import scipy.stats as st import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns ###################################################################### # LOAD ###################################################################### #import data df_load = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='hourly_load',header=0) df_weather = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='weather',header=0) BPA_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='BPA_location_weights',header=0) CAISO_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='CAISO_location_weights',header=0) Name_list=pd.read_csv('Synthetic_demand_pathflows/Covariance_Calculation.csv') Name_list=list(Name_list.loc['SALEM_T':]) Name_list=Name_list[1:] df_wind=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_years = int(len(df_wind)/8760) + 3 sim_weather=pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0,index_col=0) sim_weather = sim_weather.iloc[0:365*sim_years,:] sim_weather = sim_weather.iloc[365:len(sim_weather)-730,:] sim_weather = sim_weather.reset_index(drop=True) #weekday designation dow = df_weather.loc[:,'Weekday'] #generate simulated day of the week assuming starts from monday count=0 sim_dow= np.zeros(len(sim_weather)) for i in range(0,len(sim_weather)): count = count +1 if count <=5: sim_dow[i]=1 elif count > 5: sim_dow[i]=0 if count ==7: count =0 #Generate a datelist datelist=pd.date_range(pd.datetime(2017,1,1),periods=365).tolist() sim_month=np.zeros(len(sim_weather)) sim_day=np.zeros(len(sim_weather)) sim_year=np.zeros(len(sim_weather)) count=0 for i in range(0,len(sim_weather)): if count <=364: sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year else: count=0 sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year count=count+1 ###################################################################### # BPAT ###################################################################### #Find the simulated data at the sites col_BPA_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T'] col_BPA_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W'] BPA_sim_T=sim_weather[col_BPA_T].values BPA_sim_W=sim_weather[col_BPA_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) ########################################### #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*BPA_weights.loc[0,i] Wind[:,j] = df_weather.loc[:,n3] weighted_SimT[:,0] = weighted_SimT[:,0] + BPA_sim_T[:,j]*BPA_weights.loc[0,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 BPA_sim_T_F=(BPA_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-BPA_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,BPA_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(BPA_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(BPA_sim_W,binary_HDD_sim) #convert load to array BPA_load = df_load.loc[:,'BPA'].values #remove NaNs a = np.argwhere(np.isnan(BPA_load)) for i in a: BPA_load[i] = BPA_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(BPA_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X70p = M[(M[:,0] >= 70),2:] y70p = M[(M[:,0] >= 70),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),2:] y40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),1] X30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),2:] y30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),1] X25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),2:] y25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),1] X25m = M[(M[:,0] < 25),2:] y25m = M[(M[:,0] < 25),1] X70p_Sim = M_sim[(M_sim[:,0] >= 70),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X40_50_Sim = M_sim[(M_sim[:,0] >= 40) & (M_sim[:,0] < 50),1:] X30_40_Sim = M_sim[(M_sim[:,0] >= 30) & (M_sim[:,0] < 40),1:] X25_30_Sim = M_sim[(M_sim[:,0] >= 25) & (M_sim[:,0] < 30),1:] X25m_Sim = M_sim[(M_sim[:,0] < 25),1:] #multivariate regression #Create linear regression object reg70p = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg40_50 = linear_model.LinearRegression() reg30_40 = linear_model.LinearRegression() reg25_30 = linear_model.LinearRegression() reg25m = linear_model.LinearRegression() # Train the model using the training sets if len(y70p) > 0: reg70p.fit(X70p,y70p) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y40_50) > 0: reg40_50.fit(X40_50,y40_50) if len(y30_40) > 0: reg30_40.fit(X30_40,y30_40) if len(y25_30) > 0: reg25_30.fit(X25_30,y25_30) if len(y25m) > 0: reg25m.fit(X25m,y25m) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=70: y_hat = reg70p.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] >= 40 and M[i,0] < 50: y_hat = reg40_50.predict(s) elif M[i,0] >= 30 and M[i,0] < 40: y_hat = reg30_40.predict(s) elif M[i,0] >= 25 and M[i,0] < 30: y_hat = reg25_30.predict(s) elif M[i,0] < 25: y_hat = reg25m.predict(s) predicted = np.append(predicted,y_hat) BPA_p = predicted.reshape((len(predicted),1)) #Simulate using the regression above simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=70: y_hat = reg70p.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] >= 40 and M_sim[i,0] < 50: y_hat = reg40_50.predict(s) elif M_sim[i,0] >= 30 and M_sim[i,0] < 40: y_hat = reg30_40.predict(s) elif M_sim[i,0] >= 25 and M_sim[i,0] < 30: y_hat = reg25_30.predict(s) elif M_sim[i,0] < 25: y_hat = reg25m.predict(s) simulated = np.append(simulated,y_hat) BPA_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,BPA_p) print(a[0]**2, a[1]) # Residuals BPAresiduals = BPA_p - peaks BPA_y = peaks # RMSE RMSE = (np.sum((BPAresiduals**2))/len(BPAresiduals))**.5 output = np.column_stack((BPA_p,peaks)) ######################################################################### # CAISO ######################################################################### #Find the simulated data at the sites col_CAISO_T = ['FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_CAISO_W = ['FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] CAISO_sim_T=sim_weather[col_CAISO_T].values CAISO_sim_W=sim_weather[col_CAISO_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) #find average temps cities = ['Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] Wind[:,j] = df_weather.loc[:,n3] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*CAISO_weights.loc[1,i] weighted_SimT[:,0] = weighted_SimT[:,0] + CAISO_sim_T[:,j]*CAISO_weights.loc[1,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 CAISO_sim_T_F=(CAISO_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-CAISO_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,CAISO_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) CDD_wind_sim = np.multiply(CAISO_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(CAISO_sim_W,binary_HDD_sim) ########################### # CAISO - SDGE ########################### #convert load to array SDGE_load = df_load.loc[:,'SDGE'].values #remove NaNs a = np.argwhere(np.isnan(SDGE_load)) for i in a: SDGE_load[i] = SDGE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SDGE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SDGE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) SDGE_sim = simulated.reshape((len(simulated),1)) # Residuals SDGEresiduals = SDGE_p - peaks SDGE_y = peaks #a=st.pearsonr(peaks,SDGE_p) #print a[0]**2 # RMSE RMSE = (np.sum((SDGEresiduals**2))/len(SDGEresiduals))**.5 ########################### # CAISO - SCE ########################### #convert load to array SCE_load = df_load.loc[:,'SCE'].values #remove NaNs a = np.argwhere(np.isnan(SCE_load)) for i in a: SCE_load[i] = SCE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SCE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SCE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) SCE_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,SCE_p) #print a[0]**2 # Residuals SCEresiduals = SCE_p - peaks SCE_y = peaks # RMSE RMSE = (np.sum((SCEresiduals**2))/len(SCEresiduals))**.5 ########################### # CAISO - PG&E Valley ########################### #convert load to array PGEV_load = df_load.loc[:,'PGE_V'].values #remove NaNs a = np.argwhere(np.isnan(PGEV_load)) for i in a: PGEV_load[i] = PGEV_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEV_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEV_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) PGEV_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,PGEV_p) print(a[0]**2, a[1]) # Residuals PGEVresiduals = PGEV_p - peaks PGEV_y = peaks # RMSE RMSE = (np.sum((PGEVresiduals**2))/len(PGEVresiduals))**.5 ########################### # CAISO - PG&E Bay ########################### #convert load to array PGEB_load = df_load.loc[:,'PGE_B'].values #remove NaNs a = np.argwhere(np.isnan(PGEB_load)) for i in a: PGEB_load[i] = PGEB_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEB_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEB_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) PGEB_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,PGEB_p) #print a[0]**2 # Residuals PGEBresiduals = PGEB_p - peaks PGEB_y = peaks # RMSE RMSE = (np.sum((PGEBresiduals**2))/len(PGEBresiduals))**.5 #Collect residuals from load regression R = np.column_stack((BPAresiduals,SDGEresiduals,SCEresiduals,PGEVresiduals,PGEBresiduals)) ResidualsLoad = R[0:3*365,:] ################################### # PATH 46 ################################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/46_daily.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path46'}, inplace=True) df_data.rename(columns={4:'Weekday'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] y = df_data.loc[:,'Path46'] #multivariate regression jan_reg_46 = linear_model.LinearRegression() feb_reg_46 = linear_model.LinearRegression() mar_reg_46 = linear_model.LinearRegression() apr_reg_46 = linear_model.LinearRegression() may_reg_46 = linear_model.LinearRegression() jun_reg_46 = linear_model.LinearRegression() jul_reg_46 = linear_model.LinearRegression() aug_reg_46 = linear_model.LinearRegression() sep_reg_46 = linear_model.LinearRegression() oct_reg_46 = linear_model.LinearRegression() nov_reg_46 = linear_model.LinearRegression() dec_reg_46 = linear_model.LinearRegression() # Train the model using the training sets jan_reg_46.fit(jan.loc[:,'Weekday':],jan.loc[:,'Path46']) feb_reg_46.fit(feb.loc[:,'Weekday':],feb.loc[:,'Path46']) mar_reg_46.fit(mar.loc[:,'Weekday':],mar.loc[:,'Path46']) apr_reg_46.fit(apr.loc[:,'Weekday':],apr.loc[:,'Path46']) may_reg_46.fit(may.loc[:,'Weekday':],may.loc[:,'Path46']) jun_reg_46.fit(jun.loc[:,'Weekday':],jun.loc[:,'Path46']) jul_reg_46.fit(jul.loc[:,'Weekday':],jul.loc[:,'Path46']) aug_reg_46.fit(aug.loc[:,'Weekday':],aug.loc[:,'Path46']) sep_reg_46.fit(sep.loc[:,'Weekday':],sep.loc[:,'Path46']) oct_reg_46.fit(oct.loc[:,'Weekday':],oct.loc[:,'Path46']) nov_reg_46.fit(nov.loc[:,'Weekday':],nov.loc[:,'Path46']) dec_reg_46.fit(dec.loc[:,'Weekday':],dec.loc[:,'Path46']) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Weekday':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jan_reg_46.predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = feb_reg_46.predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = mar_reg_46.predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = apr_reg_46.predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = may_reg_46.predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jun_reg_46.predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jul_reg_46.predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = aug_reg_46.predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = sep_reg_46.predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = oct_reg_46.predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = nov_reg_46.predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = dec_reg_46.predict(s) predicted = np.append(predicted,p) Path46_p = predicted # Residuals residuals = predicted - y.values Residuals46 = np.reshape(residuals[730:],(1095,1)) Path46_y = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 ##R2 #a=st.pearsonr(y,predicted) #print a[0]**2 ############################### # NW PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/NW_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Weekday']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) H = df_data #df_data.to_excel('Synthetic_demand_pathflows/cX.xlsx') df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path8'}, inplace=True) df_data.rename(columns={4:'Path14'}, inplace=True) df_data.rename(columns={5:'Path3'}, inplace=True) df_data.rename(columns={6:'BPA_wind'}, inplace=True) df_data.rename(columns={7:'BPA_hydro'}, inplace=True) df_data.rename(columns={8:'Weekday'}, inplace=True) df_data.rename(columns={9:'Salem_HDD'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path8','Path14','Path3'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) NWPaths_p= np.zeros((len(cX),num_lines)) NWPaths_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name='jan_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='feb_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='mar_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='apr_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='may_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='jun_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='jul_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='aug_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='sep_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='oct_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='nov_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='dec_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() # Train the model using the training sets name='jan_reg_NW' + str(line) locals()[name].fit(jan.loc[:,'BPA_wind':],jan.loc[:,line]) name='feb_reg_NW' + str(line) locals()[name].fit(feb.loc[:,'BPA_wind':],feb.loc[:,line]) name='mar_reg_NW' + str(line) locals()[name].fit(mar.loc[:,'BPA_wind':],mar.loc[:,line]) name='apr_reg_NW' + str(line) locals()[name].fit(apr.loc[:,'BPA_wind':],apr.loc[:,line]) name='may_reg_NW' + str(line) locals()[name].fit(may.loc[:,'BPA_wind':],may.loc[:,line]) name='jun_reg_NW' + str(line) locals()[name].fit(jun.loc[:,'BPA_wind':],jun.loc[:,line]) name='jul_reg_NW' + str(line) locals()[name].fit(jul.loc[:,'BPA_wind':],jul.loc[:,line]) name='aug_reg_NW' + str(line) locals()[name].fit(aug.loc[:,'BPA_wind':],aug.loc[:,line]) name='sep_reg_NW' + str(line) locals()[name].fit(sep.loc[:,'BPA_wind':],sep.loc[:,line]) name='oct_reg_NW' + str(line) locals()[name].fit(oct.loc[:,'BPA_wind':],oct.loc[:,line]) name='nov_reg_NW' + str(line) locals()[name].fit(nov.loc[:,'BPA_wind':],nov.loc[:,line]) name='dec_reg_NW' + str(line) locals()[name].fit(dec.loc[:,'BPA_wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'BPA_wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jan_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='feb_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='mar_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='apr_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='may_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jun_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jul_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='aug_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='sep_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='oct_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='nov_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='dec_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) NWPaths_p[:,line_index] = predicted # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals NWPaths_y[:,line_index] = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 # #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 ResidualsNWPaths = export_residuals ############################### # Other CA PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/OtherCA_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path61'}, inplace=True) df_data.rename(columns={4:'Path42'}, inplace=True) df_data.rename(columns={5:'Path24'}, inplace=True) df_data.rename(columns={6:'Path45'}, inplace=True) df_data.rename(columns={7:'BPA_wind'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path61','Path42','Path24','Path45'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) OtherCA_Paths_p= np.zeros((len(cX),num_lines)) OtherCA_Paths_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name_1='jan_reg_CA' + str(line) name_2='feb_reg_CA' + str(line) name_3='mar_reg_CA' + str(line) name_4='apr_reg_CA' + str(line) name_5='may_reg_CA' + str(line) name_6='jun_reg_CA' + str(line) name_7='jul_reg_CA' + str(line) name_8='aug_reg_CA' + str(line) name_9='sep_reg_CA' + str(line) name_10='oct_reg_CA' + str(line) name_11='nov_reg_CA' + str(line) name_12='dec_reg_CA' + str(line) locals()[name_1] = linear_model.LinearRegression() locals()[name_2] = linear_model.LinearRegression() locals()[name_3] = linear_model.LinearRegression() locals()[name_4] = linear_model.LinearRegression() locals()[name_5] = linear_model.LinearRegression() locals()[name_6] = linear_model.LinearRegression() locals()[name_7] = linear_model.LinearRegression() locals()[name_8] = linear_model.LinearRegression() locals()[name_9] = linear_model.LinearRegression() locals()[name_10] = linear_model.LinearRegression() locals()[name_11] = linear_model.LinearRegression() locals()[name_12] = linear_model.LinearRegression() # Train the model using the training sets locals()[name_1].fit(jan.loc[:,'BPA_wind':],jan.loc[:,line]) locals()[name_2].fit(feb.loc[:,'BPA_wind':],feb.loc[:,line]) locals()[name_3].fit(mar.loc[:,'BPA_wind':],mar.loc[:,line]) locals()[name_4].fit(apr.loc[:,'BPA_wind':],apr.loc[:,line]) locals()[name_5].fit(may.loc[:,'BPA_wind':],may.loc[:,line]) locals()[name_6].fit(jun.loc[:,'BPA_wind':],jun.loc[:,line]) locals()[name_7].fit(jul.loc[:,'BPA_wind':],jul.loc[:,line]) locals()[name_8].fit(aug.loc[:,'BPA_wind':],aug.loc[:,line]) locals()[name_9].fit(sep.loc[:,'BPA_wind':],sep.loc[:,line]) locals()[name_10].fit(oct.loc[:,'BPA_wind':],oct.loc[:,line]) locals()[name_11].fit(nov.loc[:,'BPA_wind':],nov.loc[:,line]) locals()[name_12].fit(dec.loc[:,'BPA_wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'BPA_wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) OtherCA_Paths_p[:,line_index] = predicted # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals OtherCA_Paths_y[:,line_index] = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 # #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 ResidualsOtherCA_Paths = export_residuals ########################## # PATH 65 & 66 ########################## #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/Path65_66_regression_data.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Weekday']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path65'}, inplace=True) df_data.rename(columns={4:'Path66'}, inplace=True) df_data.rename(columns={5:'Wind'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path65','Path66'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) Path65_66_p = np.zeros((len(cX),num_lines)) Path65_66_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name_1='jan_reg_6566' + str(line) name_2='feb_reg_6566' + str(line) name_3='mar_reg_6566' + str(line) name_4='apr_reg_6566' + str(line) name_5='may_reg_6566' + str(line) name_6='jun_reg_6566' + str(line) name_7='jul_reg_6566' + str(line) name_8='aug_reg_6566' + str(line) name_9='sep_reg_6566' + str(line) name_10='oct_reg_6566' + str(line) name_11='nov_reg_6566' + str(line) name_12='dec_reg_6566' + str(line) locals()[name_1] = linear_model.LinearRegression() locals()[name_2] = linear_model.LinearRegression() locals()[name_3] = linear_model.LinearRegression() locals()[name_4] = linear_model.LinearRegression() locals()[name_5] = linear_model.LinearRegression() locals()[name_6] = linear_model.LinearRegression() locals()[name_7] = linear_model.LinearRegression() locals()[name_8] = linear_model.LinearRegression() locals()[name_9] = linear_model.LinearRegression() locals()[name_10] = linear_model.LinearRegression() locals()[name_11] = linear_model.LinearRegression() locals()[name_12] = linear_model.LinearRegression() # Train the model using the training sets locals()[name_1].fit(jan.loc[:,'Wind':],jan.loc[:,line]) locals()[name_2].fit(feb.loc[:,'Wind':],feb.loc[:,line]) locals()[name_3].fit(mar.loc[:,'Wind':],mar.loc[:,line]) locals()[name_4].fit(apr.loc[:,'Wind':],apr.loc[:,line]) locals()[name_5].fit(may.loc[:,'Wind':],may.loc[:,line]) locals()[name_6].fit(jun.loc[:,'Wind':],jun.loc[:,line]) locals()[name_7].fit(jul.loc[:,'Wind':],jul.loc[:,line]) locals()[name_8].fit(aug.loc[:,'Wind':],aug.loc[:,line]) locals()[name_9].fit(sep.loc[:,'Wind':],sep.loc[:,line]) locals()[name_10].fit(oct.loc[:,'Wind':],oct.loc[:,line]) locals()[name_11].fit(nov.loc[:,'Wind':],nov.loc[:,line]) locals()[name_12].fit(dec.loc[:,'Wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) Path65_66_p[:,line_index] = predicted Path65_66_y[:,line_index] = y.values # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals # # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 Residuals65_66 = export_residuals[730:,:] ##################################################################### # Residual Analysis ##################################################################### R = np.column_stack((ResidualsLoad,ResidualsNWPaths,ResidualsOtherCA_Paths,Residuals46,Residuals65_66)) rc = np.shape(R) cols = rc[1] mus = np.zeros((cols,1)) stds = np.zeros((cols,1)) R_w = np.zeros(np.shape(R)) sim_days = len(R_w) #whiten residuals for i in range(0,cols): mus[i] = np.mean(R[:,i]) stds[i] = np.std(R[:,i]) R_w[:,i] = (R[:,i] - mus[i])/stds[i] #Vector autoregressive model on residuals model = VAR(R_w) results = model.fit(1) sim_residuals = np.zeros((sim_days,cols)) errors = np.zeros((sim_days,cols)) p = results.params y_seeds = R_w[-1] C = results.sigma_u means = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] E = np.random.multivariate_normal(means,C,sim_days) ys = np.zeros((cols,1)) # Generate cross correlated residuals for i in range(0,sim_days): for j in range(1,cols+1): name='y' + str(j) locals()[name]= p[0,j-1] + p[1,j-1]*y_seeds[0]+ p[2,j-1]*y_seeds[1]+ p[3,j-1]*y_seeds[2]+ p[4,j-1]*y_seeds[3]+ p[5,j-1]*y_seeds[4]+ p[6,j-1]*y_seeds[5]+ p[7,j-1]*y_seeds[6]+ p[8,j-1]*y_seeds[7]+ p[9,j-1]*y_seeds[8]+ p[10,j-1]*y_seeds[9]+ p[11,j-1]*y_seeds[10]+ p[12,j-1]*y_seeds[11]+ p[13,j-1]*y_seeds[12]+ p[13,j-1]*y_seeds[12]+ p[14,j-1]*y_seeds[13]+ p[15,j-1]*y_seeds[14]+E[i,j-1] for j in range(1,cols+1): name='y' + str(j) y_seeds[j-1]=locals()[name] sim_residuals[i,:] = [y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15] for i in range(0,cols): sim_residuals[:,i] = sim_residuals[:,i]*stds[i]*(1/np.std(sim_residuals[:,i])) + mus[i] #validation Y = np.column_stack((np.reshape(BPA_y[0:3*365],(1095,1)),np.reshape(SDGE_y[0:3*365],(1095,1)),np.reshape(SCE_y[0:3*365],(1095,1)),np.reshape(PGEV_y[0:3*365],(1095,1)),np.reshape(PGEB_y[0:3*365],(1095,1)),NWPaths_y,OtherCA_Paths_y,np.reshape(Path46_y[730:],(1095,1)),np.reshape(Path65_66_y[730:,:],(1095,2)))) combined_BPA = np.reshape(sim_residuals[:,0],(1095,1)) + np.reshape(BPA_p[0:3*365],(1095,1)) combined_SDGE = np.reshape(sim_residuals[:,1],(1095,1)) + np.reshape(SDGE_p[0:3*365],(1095,1)) combined_SCE = np.reshape(sim_residuals[:,2],(1095,1)) + np.reshape(SCE_p[0:3*365],(1095,1)) combined_PGEV = np.reshape(sim_residuals[:,3],(1095,1)) + np.reshape(PGEV_p[0:3*365],(1095,1)) combined_PGEB = np.reshape(sim_residuals[:,4],(1095,1)) + np.reshape(PGEB_p[0:3*365],(1095,1)) combined_Path8 = np.reshape(sim_residuals[:,5],(1095,1)) + np.reshape(NWPaths_p[:,0],(1095,1)) combined_Path14 = np.reshape(sim_residuals[:,6],(1095,1)) + np.reshape(NWPaths_p[:,1],(1095,1)) combined_Path3 = np.reshape(sim_residuals[:,7],(1095,1)) + np.reshape(NWPaths_p[:,2],(1095,1)) combined_Path61 = np.reshape(sim_residuals[:,8],(1095,1)) + np.reshape(OtherCA_Paths_p[:,0],(1095,1)) combined_Path42 = np.reshape(sim_residuals[:,9],(1095,1)) + np.reshape(OtherCA_Paths_p[:,1],(1095,1)) combined_Path24 = np.reshape(sim_residuals[:,10],(1095,1)) + np.reshape(OtherCA_Paths_p[:,2],(1095,1)) combined_Path45 = np.reshape(sim_residuals[:,11],(1095,1)) + np.reshape(OtherCA_Paths_p[:,3],(1095,1)) combined_Path46 = np.reshape(sim_residuals[:,12],(1095,1)) + np.reshape(Path46_p[730:],(1095,1)) combined_Path65 = np.reshape(sim_residuals[:,13],(1095,1)) + np.reshape(Path65_66_p[730:,0],(1095,1)) combined_Path66 = np.reshape(sim_residuals[:,14],(1095,1)) + np.reshape(Path65_66_p[730:,1],(1095,1)) combined = np.column_stack((combined_BPA,combined_SDGE,combined_SCE,combined_PGEV,combined_PGEB,combined_Path8,combined_Path14,combined_Path3,combined_Path61,combined_Path42,combined_Path24,combined_Path45,combined_Path46,combined_Path65,combined_Path66)) rc = np.shape(Y) cols = rc[1] names = ['BPA','SDGE','SCE','PGEV','PGEB','Path8','Path14','Path3','Path61','Path42','Path24','Path45','Path46','Path65','Path66'] #for n in names: # # n_index = names.index(n) # # plt.figure() # plt.plot(combined[:,n_index],'r') # plt.plot(Y[:,n_index],'b') # plt.title(n) # ########################################################################################################################################################## #Simulating demand and path ######################################################################################################################################################### #Sim Residual simulation_length=len(sim_weather) syn_residuals = np.zeros((simulation_length,cols)) errors = np.zeros((simulation_length,cols)) y_seeds = R_w[-1] C = results.sigma_u means = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] E = np.random.multivariate_normal(means,C,simulation_length) ys = np.zeros((cols,1)) for i in range(0,simulation_length): for n in range(0,cols): ys[n] = p[0,n] for m in range(0,cols): ys[n] = ys[n] + p[m+1,n]*y_seeds[n] ys[n] = ys[n] + E[i,n] for n in range(0,cols): y_seeds[n] = ys[n] syn_residuals[i,:] = np.reshape([ys],(1,cols)) for i in range(0,cols): syn_residuals[:,i] = syn_residuals[:,i]*stds[i]*(1/np.std(syn_residuals[:,i])) + mus[i] ################################################## # PATH NW ################################################## #This only uses BPA wind and hydro col_nw_T =['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_nw_W =['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','<NAME>'] num_cities = len(col_nw_T) NW_sim_T=sim_weather[col_nw_T].values NW_sim_W=sim_weather[col_nw_W].values NW_sim_T=sim_weather[col_nw_T].values NW_sim_W=sim_weather[col_nw_W].values NW_sim_T_F=(NW_sim_T * 9/5) +32 NW_sim_W =NW_sim_W *2.23694 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-NW_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,NW_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(NW_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(NW_sim_W,binary_HDD_sim) #Need Month,Day,Year,8 14 3 BPA_wind,BPA_hydro sim_BPA_hydro = pd.read_csv('PNW_hydro/FCRPS/Path_dams.csv',header=None) sim_BPA_hydro=sim_BPA_hydro.values sim_BPA_hydro=np.sum(sim_BPA_hydro,axis=1)/24 #What is the common length effect_sim_year=int(len(sim_BPA_hydro)/365) sim_month=sim_month[:len(sim_BPA_hydro)] sim_day=sim_day[:len(sim_BPA_hydro)] sim_year=sim_year[:len(sim_BPA_hydro)] sim_dow= sim_dow[:len(sim_BPA_hydro)] sim_wind_power=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_BPA_wind_power= sim_wind_power.loc[:,'BPA']/24 sim_wind_daily = np.zeros((effect_sim_year*365,1)) for i in range(0,effect_sim_year*365): sim_wind_daily[i] = np.sum((sim_BPA_wind_power.loc[i*24:i*24+24])) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,sim_dow)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path8'}, inplace=True) df_data_sim.rename(columns={4:'Path14'}, inplace=True) df_data_sim.rename(columns={5:'Path3'}, inplace=True) df_data_sim.rename(columns={6:'BPA_wind'}, inplace=True) df_data_sim.rename(columns={7:'BPA_hydro'}, inplace=True) df_data_sim.rename(columns={8:'Weekday'}, inplace=True) df_data_sim.rename(columns={9:'Salem_HDD'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path8','Path14','Path3'] upper = [1900,1500,1900] lower = [-600,-900,-2200] for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'BPA_wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_NW' + str(line) name_2='feb_reg_NW' + str(line) name_3='mar_reg_NW' + str(line) name_4='apr_reg_NW' + str(line) name_5='may_reg_NW' + str(line) name_6='jun_reg_NW' + str(line) name_7='jul_reg_NW' + str(line) name_8='aug_reg_NW' + str(line) name_9='sep_reg_NW' + str(line) name_10='oct_reg_NW' + str(line) name_11='nov_reg_NW' + str(line) name_12='dec_reg_NW' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) if predicted[i] > upper[line_index]: predicted[i] = upper[line_index] elif predicted[i] < lower[line_index]: predicted[i] = lower[line_index] name='predicted_' + str(line) locals()[name]=predicted syn_Path8=predicted_Path8+syn_residuals[:effect_sim_year*365,5] syn_Path14=predicted_Path14+syn_residuals[:effect_sim_year*365,6] syn_Path3=predicted_Path3+syn_residuals[:effect_sim_year*365,7] bias = np.mean(syn_Path8) - np.mean(NWPaths_y[:,0]) syn_Path8 = syn_Path8 - bias bias = np.mean(syn_Path14) - np.mean(NWPaths_y[:,1]) syn_Path14 = syn_Path14 - bias bias = np.mean(syn_Path3) - np.mean(NWPaths_y[:,2]) syn_Path3 = syn_Path3 - bias S = df_data_sim.values HO = H.values stats = np.zeros((69,4)) for i in range(0,69): stats[i,0] = np.mean(S[:,i]) stats[i,1] = np.mean(HO[:,i]) stats[i,2] = np.std(S[:,i]) stats[i,3] = np.std(HO[:,i]) ################################################################################ ################################################### ## PATH 65 & 66 ################################################### col_6566_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_6566_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','<NAME>_W'] num_cities = len(col_6566_T) P6566_sim_T=sim_weather[col_6566_T].values P6566_sim_W=sim_weather[col_6566_W].values P6566_sim_W =P6566_sim_W*2.23694 sim_days = len(sim_weather) P6566_sim_T_F=(P6566_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-P6566_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,P6566_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(P6566_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(P6566_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,syn_Path3,syn_Path8,syn_Path14,sim_dow)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path65'}, inplace=True) df_data_sim.rename(columns={4:'Path66'}, inplace=True) df_data_sim.rename(columns={5:'Wind'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path65','Path66'] upper = [3100,4300] lower = [-2210,-500] for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'Wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_6566' + str(line) name_2='feb_reg_6566' + str(line) name_3='mar_reg_6566' + str(line) name_4='apr_reg_6566' + str(line) name_5='may_reg_6566' + str(line) name_6='jun_reg_6566' + str(line) name_7='jul_reg_6566' + str(line) name_8='aug_reg_6566' + str(line) name_9='sep_reg_6566' + str(line) name_10='oct_reg_6566' + str(line) name_11='nov_reg_6566' + str(line) name_12='dec_reg_6566' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'Wind':] s =
np.reshape(s[:,None],(1,n))
numpy.reshape
import estimators import matplotlib.pyplot as plt import numpy as np import argparse from sklearn.neural_network import MLPRegressor from sklearn.model_selection import train_test_split from time import time def annStructureTest(): sample_list = [1e3, 1e4, 1e5] estimator_list, descriptions = estimators.get() figure, ax_list = plt.subplots(len(sample_list), len( estimator_list), sharex=True, sharey=True) figure.suptitle("ANN regression fit of $y=x^2$") for sample_idx, num_samples in enumerate(sample_list): X = np.linspace(-10, 10, num_samples).reshape(-1, 1) y = np.ravel(np.square(X)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=0) ax_list[sample_idx, 0].set_ylabel( str(len(X_train)) + " training samples") for estimator_idx, est in enumerate(estimator_list): print("Training with " + str(len(X_train)) + " samples and " + descriptions[estimator_idx] + "...") tic = time() est.fit(X_train, y_train) print("done in {:.3f}s".format(time() - tic)) y_est = est.predict(X_test) err = np.absolute(y_est - y_test) rel_err = np.absolute(np.divide(y_est - y_test, y_test)) print("Mean error: {:.2f}".format(np.mean(err))) print("Max error: {:.2f}".format(np.max(err))) print("Mean relative error: {:.2f}\n".format(np.mean(rel_err))) ax_list[sample_idx, estimator_idx].scatter( X_test, y_est, color='r') ax_list[sample_idx, estimator_idx].plot(X, y) ax_list[sample_idx, estimator_idx].set_title( descriptions[estimator_idx]) ax_list[sample_idx, estimator_idx].set_xlabel( "$\epsilon_\mu=${:.2f} $\epsilon_{{max}}=${:.2f}".format(np.mean(err), np.max(err))) plt.tight_layout() def extrapolationTest(): num_samples = 1e5 est = MLPRegressor(hidden_layer_sizes=(50, 50), learning_rate_init=0.01, early_stopping=True) plt.figure() plt.title( "ANN regression fit of $y=x^2$, with extrapolation outside of [-10 10]") X_train = np.linspace(-10, 10, num_samples).reshape(-1, 1) y_train = np.ravel(np.square(X_train)) X_test = np.linspace(-100, 100, 10e3).reshape(-1, 1) y_test = np.ravel(np.square(X_test)) plt.ylabel(str(len(X_train)) + " training samples") print("Training with " + str(len(X_train)) + " samples and 50 neurons, 2 layers...") tic = time() est.fit(X_train, y_train) print("done in {:.3f}s".format(time() - tic)) y_est = est.predict(X_test) err = np.absolute(y_est - y_test) rel_err = np.absolute(np.divide(y_est - y_test, y_test)) print("Mean error: {:.2f}".format(np.mean(err))) print("Max error: {:.2f}".format(np.max(err))) print("Mean relative error: {:.2f}\n".format(np.mean(rel_err))) plt.scatter( X_test, y_est, color='r') plt.plot(X_test, y_test) plt.xlabel( "$\epsilon_\mu=${:.2f} $\epsilon_{{max}}=${:.2f}".format(np.mean(err), np.max(err))) plt.tight_layout() def interpolationTest(): num_samples = 1e5 est = MLPRegressor(hidden_layer_sizes=(50, 50), learning_rate_init=0.01, early_stopping=True) plt.figure() plt.title( "ANN regression fit of $y=x^2$, with void interpolation in [-10, 10]") X_train = np.linspace(-100, 100, num_samples) X_train = X_train[np.where(np.abs(X_train) > 10)].reshape(-1, 1) y_train = np.ravel(np.square(X_train)) X_test = np.linspace(-100, 100, 10e3).reshape(-1, 1) y_test = np.ravel(
np.square(X_test)
numpy.square
# -*- coding: UTF-8 -*- from ZUI_MDP_solution import * from unittest import TestCase import itertools as it import numpy as np import numpy.testing as nptest # Taken from http://www.neuraldump.net/2017/06/how-to-suppress-python-unittest-warnings/. def ignore_warnings(test_func): def do_test(self, *args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter("ignore") test_func(self, *args, **kwargs) return do_test class TestGridWorld2x2(TestCase): rtol = 1e-4 # relative tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('2x2') def test_is_obstacle_at(self): self.assertFalse(self.gw._is_obstacle([0, 0])) self.assertFalse(self.gw._is_obstacle([0, 1])) self.assertFalse(self.gw._is_obstacle([1, 0])) self.assertFalse(self.gw._is_obstacle([1, 1])) def test_is_on_grid_true(self): self.assertTrue(self.gw._is_on_grid([0, 0]),msg='The point [{},{}] should be on the grid.'.format(0, 0)) self.assertTrue(self.gw._is_on_grid([1, 1]), msg='The point [{},{}] should be on the grid.'.format(1, 1)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [2,0], [0,2], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_2x2_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol) def test_Q_from_V_zeros(self): V = np.zeros((self.gw.n_states + 1,)) desired_Q = np.array([[-0.04, -0.04, -0.04, -0.04], [1., 1., 1., 1.], [-0.04, -0.04, -0.04, -0.04], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) nptest.assert_allclose(self.gw.Q_from_V(V=V), desired_Q, rtol=self.rtol) def test_Q_from_V_ones(self): V = np.ones((self.gw.n_states + 1,)) desired_Q = np.array([[0.96, 0.96, 0.96, 0.96], [2., 2., 2., 2.], [0.96, 0.96, 0.96, 0.96], [0., 0., 0., 0.], [1., 1., 1., 1.]]) nptest.assert_allclose(self.gw.Q_from_V(V=V), desired_Q, rtol=self.rtol) def test_Q_from_V_init(self): V = np.max(self.gw.rewards,axis=1) desired_Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) nptest.assert_allclose(self.gw.Q_from_V(V=V), desired_Q, rtol=self.rtol) def test_Q2V_single(self): desired_V = np.array([0.752, 1., -0.08, -1., 0.]) Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2V(self): desired_V = np.array([0.752, 1., -0.08, -1., 0.]) Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2Vbypolicy(self): desired_V = np.array([0.9178081, 1., 0.66027364, -1., 0., ]) Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) policy = np.array([1, 0, 0, 0, 0], dtype=int) actual_V = self.gw.Q2Vbypolicy(Q,policy) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2Vbypolicy should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2policy(self): Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_policy = np.array([1, 0, 0, 0, 0], dtype=int) actual_policy = self.gw.Q2policy(Q) self.assertEqual(actual_policy.shape, (self.gw.n_states + 1,), msg='Q2policy should return array policy of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_policy.shape)) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) @ignore_warnings def test_value_iteration_single_iter(self): actual_Q = self.gw.value_iteration(max_iter=1) desired_Q = np.array([[0.024, 0.752, 0.024, -0.08], [1., 1., 1., 1.], [-0.176, -0.848, -0.176, -0.08], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_Q_shape = (self.gw.n_states + 1,self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Value_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_value_iteration(self): desired_Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) actual_Q = self.gw.value_iteration() nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_policy_iteration_policy_only(self): actual_policy = self.gw.Q2policy(self.gw.policy_iteration()) desired_Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_policy = self.gw.Q2policy(desired_Q) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) def test_policy_iteration(self): actual_Q = self.gw.policy_iteration() desired_Q = np.array([[0.88602712, 0.9178081, 0.67999927, 0.85205443], [1., 1., 1., 1.], [0.66027364, -0.6821919, 0.45424578, 0.64602658], [-1., -1., -1., -1.], [0., 0., 0., 0.]]) desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Policy_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) class TestGridWorld3x3(TestCase): rtol = 1e-3 # relative tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('3x3') def test_is_obstacle_at(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertFalse(self.gw._is_obstacle([i, j]), msg='No obstacle should be at [{},{}].'.format(i,j)) def test_is_on_grid_true(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertTrue(self.gw._is_on_grid([i, j]),msg='The point [{},{}] should be on the grid.'.format(i, j)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [3,0], [0,3], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_3x3_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol) def test_Q2V_single(self): desired_V = np.load('./test_data/test_gw_3x3_V_single_iter.npy') Q = np.load('./test_data/test_gw_3x3_Q_single_iter.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2V(self): desired_V = np.load('./test_data/test_gw_3x3_V.npy') Q = np.load('./test_data/test_gw_3x3_Q.npy') actual_V = self.gw.Q2V(Q) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2V should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) actual_V = self.gw.Q2V(Q) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2Vbypolicy(self): desired_V = np.load('./test_data/test_gw_3x3_V.npy') Q = np.load('./test_data/test_gw_3x3_Q.npy') policy = np.array([1, 1, 0, 0, 3, 0, 0, 3, 2, 0],dtype=int) actual_V = self.gw.Q2Vbypolicy(Q, policy) self.assertEqual(actual_V.shape, (self.gw.n_states + 1,), msg='Q2Vbypolicy should return array V of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_V.shape)) nptest.assert_allclose(actual_V, desired_V, rtol=self.rtol) def test_Q2policy(self): Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_policy = np.array([1, 1, 0, 0, 3, 0, 0, 3, 2, 0],dtype=int) actual_policy = self.gw.Q2policy(Q) self.assertEqual(actual_policy.shape, (self.gw.n_states + 1,), msg='Q2policy should return array policy of' ' shape {} but has returned V with shape {}.'.format( self.gw.n_states + 1, actual_policy.shape)) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) @ignore_warnings def test_value_iteration_single_iter(self): actual_Q = self.gw.value_iteration(max_iter=1) desired_Q = np.load('./test_data/test_gw_3x3_Q_single_iter.npy') desired_Q_shape = (self.gw.n_states + 1,self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Value_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_value_iteration(self): desired_Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) actual_Q = self.gw.value_iteration() nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) def test_policy_iteration_policy_only(self): actual_policy = self.gw.Q2policy(self.gw.policy_iteration()) desired_Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_policy = self.gw.Q2policy(desired_Q) #actual_policy = self.gw.Q2policy(actual_Q) nptest.assert_allclose(actual_policy, desired_policy, rtol=self.rtol) def test_policy_iteration(self): actual_Q = self.gw.policy_iteration() desired_Q = np.load('./test_data/test_gw_3x3_Q.npy') desired_Q_shape = (self.gw.n_states + 1, self.gw.n_actions) self.assertEqual(actual_Q.shape, desired_Q_shape, msg='Policy_iteration should return array Q of' ' shape {} but has returned V with shape {}.'.format( desired_Q_shape, actual_Q.shape)) nptest.assert_allclose(actual_Q, desired_Q, rtol=self.rtol) class TestGridWorld3x4(TestCase): rtol = 1e-3 # relative tolerance for comparing two floats def setUp(self): self.gw = GridWorld.get_world('3x4') def test_is_obstacle_at(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): if i == 1 and j == 1: continue self.assertFalse(self.gw._is_obstacle([i, j]), msg='No obstacle should be at [{},{}].'.format(i,j)) self.assertTrue(self.gw._is_obstacle([1, 1]), msg='An obstacle should be at [{},{}].'.format(1, 1)) def test_is_on_grid_true(self): for i,j in it.product(range(self.gw.n_rows),range(self.gw.n_columns)): self.assertTrue(self.gw._is_on_grid([i, j]),msg='The point [{},{}] should be on the grid.'.format(i, j)) def test_is_on_grid_false(self): for point in ([-1,0], [-2,-2], [3,0], [0,4], [5,5], [0,-1]): self.assertFalse(self.gw._is_on_grid(point),msg='The point [{}] should not be on the grid.'.format(point)) def test_transition_proba(self): true_transition_proba = np.load('./test_data/test_gw_3x4_transition_proba.npy') nptest.assert_allclose(self.gw.transition_proba,true_transition_proba,rtol=self.rtol) def test_Q2V_single(self): desired_V =
np.load('./test_data/test_gw_3x4_V_single_iter.npy')
numpy.load
import argparse from design_search import RobotDesignEnv, make_graph, build_normalized_robot, presimulate, simulate import mcts import numpy as np import os import pyrobotdesign as rd import random import tasks import time class CameraTracker(object): def __init__(self, viewer, sim, robot_idx): self.viewer = viewer self.sim = sim self.robot_idx = robot_idx self.reset() def update(self, time_step): lower = np.zeros(3) upper = np.zeros(3) self.sim.get_robot_world_aabb(self.robot_idx, lower, upper) # Update camera position to track the robot smoothly target_pos = 0.5 * (lower + upper) camera_pos = self.viewer.camera_params.position.copy() camera_pos += 5.0 * time_step * (target_pos - camera_pos) self.viewer.camera_params.position = camera_pos def reset(self): lower = np.zeros(3) upper = np.zeros(3) self.sim.get_robot_world_aabb(self.robot_idx, lower, upper) self.viewer.camera_params.position = 0.5 * (lower + upper) def run_trajectory(sim, robot_idx, input_sequence, task, step_callback): step_callback(0) for j in range(input_sequence.shape[1]): for k in range(task.interval): step_idx = j * task.interval + k sim.set_joint_targets(robot_idx, input_sequence[:,j].reshape(-1, 1)) task.add_noise(sim, step_idx) sim.step() step_callback(step_idx + 1) def view_trajectory(sim, robot_idx, input_sequence, task): record_step_indices = set() sim.save_state() viewer = rd.GLFWViewer() # Get robot bounds lower = np.zeros(3) upper =
np.zeros(3)
numpy.zeros
"""Module containing low-level functions to classify gridded radar / lidar measurements. """ from typing import List import numpy as np import skimage from numpy import ma from cloudnetpy import utils from cloudnetpy.categorize import droplet, falling, freezing, insects, melting from cloudnetpy.categorize.containers import ClassData, ClassificationResult def classify_measurements(data: dict) -> ClassificationResult: """Classifies radar/lidar observations. This function classifies atmospheric scatterers from the input data. The input data needs to be averaged or interpolated to the common time / height grid before calling this function. Args: data: Containing :class:`Radar`, :class:`Lidar`, :class:`Model` and :class:`Mwr` instances. Returns: A :class:`ClassificationResult` instance. References: The Cloudnet classification scheme is based on methodology proposed by <NAME>. and <NAME>., 2004, https://bit.ly/2Yjz9DZ and its proprietary Matlab implementation. Notes: Some of the individual classification methods are changed in this Python implementation compared to the original Cloudnet methodology. Especially methods classifying insects, melting layer and liquid droplets. """ obs = ClassData(data) bits: List[np.ndarray] = [np.array([])] * 6 liquid = droplet.find_liquid(obs) bits[3] = melting.find_melting_layer(obs) bits[2] = freezing.find_freezing_region(obs, bits[3]) bits[0] = droplet.correct_liquid_top(obs, liquid, bits[2], limit=500) bits[5] = insects.find_insects(obs, bits[3], bits[0]) bits[1] = falling.find_falling_hydrometeors(obs, bits[0], bits[5]) bits, filtered_ice = _filter_falling(bits) for _ in range(5): bits[3] = _fix_undetected_melting_layer(bits) bits = _filter_insects(bits) bits[4] = _find_aerosols(obs, bits[1], bits[0]) bits[4][filtered_ice] = False return ClassificationResult( _bits_to_integer(bits), obs.is_rain, obs.is_clutter, liquid["bases"], obs.rain_rate ) def fetch_quality(data: dict, classification: ClassificationResult, attenuations: dict) -> dict: """Returns Cloudnet quality bits. Args: data: Containing :class:`Radar` and :class:`Lidar` instances. classification: A :class:`ClassificationResult` instance. attenuations: Dictionary containing keys `liquid_corrected`, `liquid_uncorrected`. Returns: Dictionary containing `quality_bits`, an integer array with the bits: - bit 0: Pixel contains radar data - bit 1: Pixel contains lidar data - bit 2: Pixel contaminated by radar clutter - bit 3: Molecular scattering present (currently not implemented!) - bit 4: Pixel was affected by liquid attenuation - bit 5: Liquid attenuation was corrected - bit 6: Data gap in radar or lidar data """ bits: List[np.ndarray] = [np.ndarray([])] * 7 radar_echo = data["radar"].data["Z"][:] bits[0] = ~radar_echo.mask bits[1] = ~data["lidar"].data["beta"][:].mask bits[2] = classification.is_clutter bits[4] = attenuations["liquid_corrected"] | attenuations["liquid_uncorrected"] bits[5] = attenuations["liquid_corrected"] qbits = _bits_to_integer(bits) return {"quality_bits": qbits} def _find_aerosols(obs: ClassData, is_falling: np.ndarray, is_liquid: np.ndarray) -> np.ndarray: """Estimates aerosols from lidar backscattering. Aerosols are lidar signals that are: a) not falling, b) not liquid droplets. Args: obs: A :class:`ClassData` instance. is_falling: 2-D boolean array of falling hydrometeors. is_liquid: 2-D boolean array of liquid droplets. Returns: 2-D boolean array containing aerosols. """ is_beta = ~obs.beta.mask return is_beta & ~is_falling & ~is_liquid def _fix_undetected_melting_layer(bits: list) -> np.ndarray: melting_layer = bits[3] drizzle_and_falling = _find_drizzle_and_falling(*bits[:3]) transition = ma.diff(drizzle_and_falling, axis=1) == -1 melting_layer[:, 1:][transition] = True return melting_layer def _find_drizzle_and_falling( is_liquid: np.ndarray, is_falling: np.ndarray, is_freezing: np.ndarray ) -> np.ndarray: """Classifies pixels as falling, drizzle and others. Args: is_liquid: 2D boolean array denoting liquid layers. is_falling: 2D boolean array denoting falling pixels. is_freezing: 2D boolean array denoting subzero temperatures. Returns: 2D array where values are 1 (falling, drizzle, supercooled liquids), 2 (drizzle), and masked (all others). """ falling_dry = is_falling & ~is_liquid supercooled_liquids = is_liquid & is_freezing drizzle = falling_dry & ~is_freezing drizzle_and_falling = falling_dry.astype(int) + drizzle.astype(int) drizzle_and_falling = ma.copy(drizzle_and_falling) drizzle_and_falling[supercooled_liquids] = 1 drizzle_and_falling[drizzle_and_falling == 0] = ma.masked return drizzle_and_falling def _bits_to_integer(bits: list) -> np.ndarray: """Creates array of integers from individual boolean arrays. Args: bits: List of bit fields (of similar sizes) to be saved in the resulting array of integers. bits[0] is saved as bit 0, bits[1] as bit 1, etc. Returns: Array of integers containing the information of the individual boolean arrays. """ int_array = np.zeros_like(bits[0], dtype=int) for n, bit in enumerate(bits): ind = np.where(bit) # works also if bit is None int_array[ind] = utils.setbit(int_array[ind].astype(int), n) return int_array def _filter_insects(bits: list) -> list: is_melting_layer = bits[3] is_insects = bits[5] is_falling = bits[1] # Remove above melting layer above_melting = utils.ffill(is_melting_layer) ind = np.where(is_insects & above_melting) is_falling[ind] = True is_insects[ind] = False # remove around melting layer: original_insects = np.copy(is_insects) n_gates = 5 for x, y in zip(*np.where(is_melting_layer)): try: # change insects to drizzle below melting layer pixel ind1 = np.arange(y - n_gates, y) ind11 = np.where(original_insects[x, ind1])[0] n_drizzle = sum(is_falling[x, :y]) if n_drizzle > 5: is_falling[x, ind1[ind11]] = True is_insects[x, ind1[ind11]] = False else: continue # change insects on the right and left of melting layer pixel to drizzle ind1 = np.arange(x - n_gates, x + n_gates + 1) ind11 = np.where(original_insects[ind1, y])[0] is_falling[ind1[ind11], y - 1 : y + 2] = True is_insects[ind1[ind11], y - 1 : y + 2] = False except IndexError: continue bits[1] = is_falling bits[5] = is_insects return bits def _filter_falling(bits: list) -> tuple: # filter falling ice speckle noise is_freezing = bits[2] is_falling = bits[1] is_falling_filtered = skimage.morphology.remove_small_objects(is_falling, 10, connectivity=1) is_filtered = is_falling & ~
np.array(is_falling_filtered)
numpy.array
# Copyright (C) 2020 Arm Limited or its affiliates. All rights reserved. # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Description: # Compresses and pads the weigths. It also calculates the scales and packs with the biases. import math from collections import namedtuple from typing import Tuple import numpy as np from .api import NpuBlockTraversal from .architecture_features import Accelerator from .architecture_features import ArchitectureFeatures from .data_type import DataType from .errors import UnsupportedFeatureError from .nn_graph import SchedulingStrategy from .numeric_util import round_up from .numeric_util import round_up_divide from .operation import NpuBlockType from .operation import Op from .scaling import quantise_scale from .scaling import reduced_quantise_scale from .tensor import create_equivalence_id from .tensor import TensorBlockTraversal from .tensor import TensorFormat from .tensor import TensorPurpose from .tensor import TensorSubPurpose from ethosu import mlw_codec # Contains meta info for a weight compression. If two tensors have identical weight compression config, # then they also will have identical compressed weights. WeightCompressionConfig = namedtuple( "WeightCompressionConfig", ["npu_block_type", "ofm_block_depth", "ofm_depth_step", "dilation", "value_id"] ) def encode_weights( accelerator: Accelerator, weights_volume: np.ndarray, dilation_xy: Tuple[int, int], ifm_bitdepth: int, ofm_block_depth: int, is_depthwise: bool, block_traversal: NpuBlockTraversal, ): """ Internal implementation of the public facing API to use weight encoding. :param accelerator: architecture_features.Accelerator enum to pick the correct Ethos-U accelerator :param weights_volume: numpy.ndarray in OHWI layout with a shape of four :param dilation_xy: a two element tuple of dilation attributes in x,y dimension :param ifm_bitdepth: the bitdepth of input feature map :param ofm_block_depth: the depth of blocks for Ethos-U processing :param is_depthwise: a boolean indicating these weights are used for a depthwise traversal :param block_traversal: indicates how these weights are traversed on sub-kernel basis :return: a bytearray of compressed weights """ # Check arg types assert isinstance(accelerator, Accelerator) assert isinstance(weights_volume, np.ndarray) assert isinstance(dilation_xy, tuple) assert isinstance(ifm_bitdepth, int) assert isinstance(ofm_block_depth, int) assert isinstance(is_depthwise, bool) assert isinstance(block_traversal, NpuBlockTraversal) # Checks for weight layout assert len(weights_volume.shape) == 4, "weights ndarray should have a shape of 4" # It cannot be both partkernel and depthwise assert not ( is_depthwise and block_traversal == NpuBlockTraversal.PART_KERNEL_FIRST ), "encode_weights :: partkernel and depthwise are mutually exclusive" # Check valid values for dilation assert dilation_xy[0] in (1, 2), "encode_weights :: dilation x should be 1 or 2 not {}".format(dilation_xy[0]) assert dilation_xy[1] in (1, 2), "encode_weights :: dilation y should be 1 or 2 not {}".format(dilation_xy[1]) ifm_ublock = ArchitectureFeatures.accelerator_configs[accelerator].ifm_ublock ofm_ublock = ArchitectureFeatures.accelerator_configs[accelerator].ofm_ublock raw_stream = generate_brick( ifm_ublock=ifm_ublock, ofm_ublock=ofm_ublock, brick_weights=weights_volume, ofm_block_depth=ofm_block_depth, is_depthwise=is_depthwise, is_partkernel=block_traversal == NpuBlockTraversal.PART_KERNEL_FIRST, ifm_bitdepth=ifm_bitdepth, dilation=dilation_xy, ) encoded_stream = encode(raw_stream) return encoded_stream def encode_bias(bias: np.int64, scale: int, shift: int): """ Internal implementation of public facing API to pack bias and scale values as required by the Ethos-U :param bias: 64bit signed number that includes 40bit signed bias :param scale: 32bit scale value :param shift: 6bit shift value :return: packed 80bit [0(2-bits),shift(6-bits),scale(32-bits),bias(40-bits)] """ # Check arg types assert isinstance(bias, np.int64) assert isinstance(scale, int) assert isinstance(shift, int) assert -(1 << (40 - 1)) <= bias < (1 << (40 - 1)) # signed 40-bit range assert 0 <= scale < (1 << 32) # unsigned 32-bit range assert 0 <= shift < (1 << 6) # unsigned 6-bit range data = bytearray(10) data[0] = (bias >> (0 * 8)) & 0xFF data[1] = (bias >> (1 * 8)) & 0xFF data[2] = (bias >> (2 * 8)) & 0xFF data[3] = (bias >> (3 * 8)) & 0xFF data[4] = (bias >> (4 * 8)) & 0xFF data[5] = (scale >> (0 * 8)) & 0xFF data[6] = (scale >> (1 * 8)) & 0xFF data[7] = (scale >> (2 * 8)) & 0xFF data[8] = (scale >> (3 * 8)) & 0xFF data[9] = shift & 0x3F return data def create_weight_compression_config(tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation): # Note: for an ofm block only its depth is used in weight compression. # And block depth > ofm depth gives same result as block depth == ofm depth block_depth = min(ofm_block_depth, tens.quant_values.shape[-1]) return WeightCompressionConfig(npu_block_type, block_depth, ofm_depth_step, dilation, tens.value_id) def set_storage_shape(tens): # Sets the storage shape depending on the tensor's sub purpose if tens.sub_purpose == TensorSubPurpose.DoubleBuffer and len(tens.compressed_values) > 2: offset = 2 * np.amax([len(x) for x in tens.compressed_values]) assert offset % 16 == 0 else: offset = tens.weight_compressed_offsets[-1] tens.storage_shape = [1, 1, 1, offset] class CompressedWeightCache: # Contains weight compressions for all weight tensors in a graph def __init__(self): self.cache = {} # maps from WeightCompressionConfig to a tensor clone containing compressed weights def get_tensor_with_same_compression(self, wcc): return self.cache.get(wcc) def add(self, tens): # Adds the compressed weights from the tensor to the cache wcc = tens.weight_compression_config # Clone the tensor to make sure that nothing related to the weight compression is modified tens_clone = tens.clone("_weights{}_{}".format(wcc.ofm_block_depth, wcc.ofm_depth_step)) self.cache[wcc] = tens_clone def encode(weight_stream): if len(weight_stream) == 0: return [] assert np.amin(weight_stream) >= -255 assert np.amax(weight_stream) <= 255 # Encode flattened signed weight stream compressed = mlw_codec.encode(weight_stream) # pad with 0xFF as needed so the length of the weight stream # is a multiple of 16 while (len(compressed) % 16) != 0: compressed.append(0xFF) return compressed def generate_brick( ifm_ublock, ofm_ublock, brick_weights, ofm_block_depth, is_depthwise, is_partkernel, ifm_bitdepth, dilation ): decomp_h = ArchitectureFeatures.SubKernelMax.height // dilation[0] decomp_w = ArchitectureFeatures.SubKernelMax.width // dilation[1] # Expect weights formatted OHWI ofm_depth = brick_weights.shape[-4] ifm_depth = brick_weights.shape[-1] kernel_width = brick_weights.shape[-2] kernel_height = brick_weights.shape[-3] # IFM block depth if is_partkernel or (ifm_bitdepth == 16): # IFM block depth is always 16 for part-kernel-first ifm_block_depth = 16 elif ifm_bitdepth == 8: ifm_block_depth = 32 else: assert False stream = [] # Top level striping - OFM blocks in the entire brick's depth for ofm_block_z in range(0, ofm_depth, ofm_block_depth): clipped_ofm_block_depth = min(ofm_block_depth, ofm_depth - ofm_block_z) # IFM blocks required for the brick for ifm_block_z in range(0, (1 if is_depthwise else ifm_depth), ifm_block_depth): if is_depthwise: clipped_ifm_block_depth = ifm_ublock.depth else: clipped_ifm_block_depth = ( min(ifm_block_depth, ifm_depth - ifm_block_z) if is_partkernel else ifm_block_depth ) # Weight decomposition # Subkernel Splitting (H) for subkernel_y in range(0, kernel_height, decomp_h): sub_height = min(kernel_height - subkernel_y, decomp_h) # Subkernel splitting (W) for subkernel_x in range(0, kernel_width, decomp_w): sub_width = min(kernel_width - subkernel_x, decomp_w) subkernel_elements = sub_width * sub_height # Part kernel first works across the kernel H/W and needs padding if is_partkernel: if ifm_bitdepth == 16 and subkernel_elements % 2 != 0: subkernel_elements = int(math.ceil(subkernel_elements / 2) * 2) elif ifm_bitdepth == 8 and subkernel_elements % 4 != 0: subkernel_elements = int(math.ceil(subkernel_elements / 4) * 4) # Depthwise Conv requires multiple of 4 kernel elements in its weight block # this is different from normal conv which is considered "weights depth-first" elif is_depthwise: subkernel_elements = int(math.ceil(subkernel_elements / 4.0) * 4) ifm_block_depth_outer = clipped_ifm_block_depth if is_partkernel else 1 ifm_block_depth_inner = 1 if is_partkernel else clipped_ifm_block_depth # IFM Ublocks in IFM-block over depth for part-kernel-first mode # For depth-first IFM Ublocks are traversed after subkernel elements so this loop is ignored. for ifm_ublk_outer in range(0, ifm_block_depth_outer, ifm_ublock.depth): # OFM Ublocks in OFM-block over depth for ofm_ublk in range(0, clipped_ofm_block_depth, ofm_ublock.depth): # HW Kernel element traversal - cannot be a H/W loop due to element # padding requirement on depthwise/part-kernel configurations for element in range(subkernel_elements): kx = element % sub_width ky = element // sub_width # IFM Ublocks in IFM-block over depth (only 1 ublock if depthwise) # In case of part-kernel-first IFM Ublock traversal have already been handled # and this loop is ignored. for ifm_ublk_inner in range(0, ifm_block_depth_inner, ifm_ublock.depth): # Feed OFM ublock elements for ofm_ublock_z in range(ofm_ublock.depth): # Source IFM ublock elements (only 1 element deep if depthwise) for ifm_ublock_z in range(1 if is_depthwise else ifm_ublock.depth): # Source position within the current subkernel wx = subkernel_x + kx wy = subkernel_y + ky # Source IFM/OFM slices ifm_ublk = ifm_ublk_inner + ifm_ublk_outer ifm_z = ifm_block_z + ifm_ublk + ifm_ublock_z ofm_z = ofm_block_z + ofm_ublk + ofm_ublock_z if (ifm_z >= ifm_depth) or (ofm_z >= ofm_depth) or (ky >= sub_height): stream.append(0) else: stream.append(brick_weights[ofm_z][wy][wx][ifm_z]) return stream def core_deinterleave(hwio, core, ncores): # Put weights back into OHWI ohwi = np.transpose(hwio, (3, 0, 1, 2)) return ohwi[core : ohwi.shape[0] : ncores] # Compress the weights def compress_weights(arch, nng, tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation): assert tens.purpose == TensorPurpose.Weights # Check the weight cache if nng.weight_cache is None: nng.weight_cache = CompressedWeightCache() wcc = create_weight_compression_config(tens, npu_block_type, ofm_block_depth, ofm_depth_step, dilation) tens.weight_compression_config = wcc # Reassign equivalence id such that tensors with same weight compression get identical equivalence ids, # but tensors with the same values but different compression get different equivalence ids tens.equivalence_id = create_equivalence_id(wcc) tens_cached = nng.weight_cache.get_tensor_with_same_compression(wcc) if tens_cached is not None: # Cache hit, copy weights from the cache tens.copy_compressed_weight_info(tens_cached) set_storage_shape(tens) return # No cache hit, perform the compression assert tens.quantization is not None assert tens.quantization.scale_f32 is not None assert tens.quantization.zero_point is not None zero_point = tens.quantization.zero_point quant_buf = tens.quant_values.astype(np.int64) # Early zero-point correction weights = quant_buf - zero_point if len(weights.shape) == 2: weights = np.expand_dims(np.expand_dims(weights, axis=0), axis=0) compression_scales = [] compressed_offsets = [] encoded_streams = [] encoded_streams_substream_offsets = [] offset = 0 max_single_buffer_len = 0 ifm_bitdepth = tens.consumer_list[0].inputs[0].dtype.size_in_bits() ifm_depth = weights.shape[-2] if npu_block_type == NpuBlockType.ConvolutionDepthWise: tens.block_traversal = TensorBlockTraversal.DepthWise if npu_block_type == NpuBlockType.ConvolutionMxN: # Determine which block traversal strategy has better DPU utilization kernel_size = weights.shape[0] * weights.shape[1] depth_utilization = weights.shape[2] / round_up(weights.shape[2], 32 if ifm_bitdepth == 8 else 16) part_kernel_utilization = (weights.shape[2] / round_up(weights.shape[2], 8)) * ( kernel_size / round_up(kernel_size, 4 if ifm_bitdepth == 8 else 2) ) if part_kernel_utilization >= depth_utilization or ifm_depth <= 8: # Part-kernel first is always better for ifm depths <= 8 tens.block_traversal = TensorBlockTraversal.PartKernelFirst else: tens.block_traversal = TensorBlockTraversal.DepthFirst is_depthwise = tens.block_traversal == TensorBlockTraversal.DepthWise if tens.block_traversal == TensorBlockTraversal.PartKernelFirst: block_traversal = NpuBlockTraversal.PART_KERNEL_FIRST else: block_traversal = NpuBlockTraversal.DEPTH_FIRST if tens.consumer_list[0].type == Op.Conv2DBackpropInputSwitchedBias: # Transpose Convoluion, reverse weights in H and W axes weights = np.flip(weights, axis=(0, 1)) # Calculate brick size brick_size = (weights.shape[0], weights.shape[1], weights.shape[2], min(tens.shape[-1], ofm_depth_step)) elements_in_brick = np.prod(brick_size) # Slice weight stream up depth-ways into bricks and compress full_ofm_depth = quant_buf.shape[-1] for idx in range(0, full_ofm_depth, ofm_depth_step): # Get the weights necessary for this brick count = min(full_ofm_depth - idx, ofm_depth_step) brick_weights = weights[:, :, :, idx : idx + count] substream_offsets = [0] encoded_stream = [] # For each core, deinterleave weights from the larger volume # and generate separate compressed streams. for core in range(0, min(arch.ncores, full_ofm_depth)): core_weights = core_deinterleave(brick_weights, core, arch.ncores) block_depth = (ofm_block_depth + arch.ncores - 1 - core) // arch.ncores encoded_substream = [] if block_depth != 0: encoded_substream = encode_weights( accelerator=arch.accelerator_config, weights_volume=core_weights, dilation_xy=dilation, ifm_bitdepth=ifm_bitdepth, ofm_block_depth=block_depth, is_depthwise=is_depthwise, block_traversal=block_traversal, ) encoded_stream.extend(encoded_substream) substream_offsets.append(len(encoded_stream)) encoded_streams.append(encoded_stream) encoded_streams_substream_offsets.append(substream_offsets) # Remember maximum encoded length for DoubleBuffering max_single_buffer_len = max(max_single_buffer_len, len(encoded_stream)) # Remember where we put it for linear addressing compressed_offsets.append(offset) offset += len(encoded_stream) assert offset % 16 == 0 # Compression scale tracking compression_scales.append(len(encoded_stream) / elements_in_brick) # Track total length as last element of the offsets array compressed_offsets.append(offset) tens.weight_compression_scales = compression_scales tens.weight_compressed_offsets = compressed_offsets tens.compression_scale_for_worst_weight_stream = np.amax(compression_scales) tens.storage_compression_scale = tens.bandwidth_compression_scale = np.average(compression_scales) tens.compressed_values = encoded_streams tens.compressed_values_substream_offsets = encoded_streams_substream_offsets tens.brick_size = brick_size set_storage_shape(tens) nng.weight_cache.add(tens) def calc_scales_and_pack_biases(tens, arch, ofm_depth_step, rescale_for_faf=False): assert tens.purpose in [TensorPurpose.FeatureMap, TensorPurpose.FSBias] assert tens.format == TensorFormat.NHWC # the connected operator should expect a bias input unless it is a FullyConnected assert tens.consumer_list[0].type.needs_bias() # the input bias tensor is the same as that connected to the operator bias_tens = tens.consumer_list[0].bias assert tens is bias_tens # the operator should only have a single output assert len(tens.consumer_list[0].outputs) == 1 biases = tens.quant_values first_consumer_op = tens.consumer_list[0] ifm_dtype = first_consumer_op.inputs[0].dtype ifm_scale = first_consumer_op.inputs[0].quantization.scale_f32 ofm_scale = first_consumer_op.get_output_quantization().scale_f32 weight_scales = first_consumer_op.inputs[1].quantization.scale_f32 # biases can have multiple consumers for rnn cells. if so, then check that they are all the same for op in tens.consumer_list[1:]: assert ifm_scale == op.inputs[0].quantization.scale_f32 assert ofm_scale == op.get_output_quantization().scale_f32 assert weight_scales == op.inputs[1].quantization.scale_f32 if not hasattr(weight_scales, "__iter__"): # If weight_scales is not already an iterable make it into a list weight_scales = [weight_scales] # Convert scales to np.double (from np.float32) to conform to TensorFlow Lite which # uses double during scaling calculations # TensorFlow Lite casts the scales slightly differently for uint8 and int8 if not rescale_for_faf: if ifm_dtype == DataType.uint8: scales = [np.double(ifm_scale * weight_scale) / np.double(ofm_scale) for weight_scale in weight_scales] elif ifm_dtype == DataType.int8 or ifm_dtype == DataType.int16: scales = [ (np.double(ifm_scale) * np.double(weight_scale)) / np.double(ofm_scale) for weight_scale in weight_scales ] else: raise UnsupportedFeatureError( "Compression of {} is not implemented; tensor: {}".format(ifm_dtype, tens.name) ) else: if ifm_dtype == DataType.uint8: scales = [np.double(ifm_scale * weight_scale * 0x3000) for weight_scale in weight_scales] elif ifm_dtype == DataType.int8 or ifm_dtype == DataType.int16: scales = [(np.double(ifm_scale * 0x3000) *
np.double(weight_scale)
numpy.double
#!/usr/bin/env python # Copyright (C) 2009-2010 <NAME> (<EMAIL>) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """Music structure segmentation using SI-PLCA This module contains an implementation of the algorithm for music structure segmentation described in [1]. It is based on Shift-invariant Probabilistic Latent Component Analysis, a variant of convolutive non-negative matrix factorization (NMF). See plca.py for more details. Examples -------- >>> import segmenter >>> wavfile = '/path/to/come_together.wav' >>> rank = 4 # rank corresponds to the number of segments >>> win = 60 # win controls the length of each chroma pattern >>> niter = 200 # number of iterations to perform >>> np.random.seed(123) # Make this reproduceable >>> labels = segmenter.segment_wavfile(wavfile, win=win, rank=rank, ... niter=niter, plotiter=10) INFO:plca:Iteration 0: divergence = 10.065992 INFO:plca:Iteration 50: divergence = 9.468196 INFO:plca:Iteration 100: divergence = 9.421632 INFO:plca:Iteration 150: divergence = 9.409279 INFO:root:Iteration 199: final divergence = 9.404961 INFO:segmenter:Removing 2 segments shorter than 32 frames .. image::come_together-segmentation.png >>> print labels 0.0000 21.7480 segment0 21.7480 37.7640 segment1 37.7640 55.1000 segment0 55.1000 76.1440 segment1 76.1440 95.1640 segment0 95.1640 121.2360 segment1 121.2360 158.5360 segment2 158.5360 180.8520 segment1 180.8520 196.5840 segment0 196.5840 255.8160 segment3 See Also -------- segmenter.extract_features : Beat-synchronous chroma feature extraction segmenter.segment_song : Performs segmentation segmenter.evaluate_segmentation : Evaluate frame-wise segmentation segmenter.convert_labels_to_segments : Generate HTK formatted list of segments from frame-wise labels plca.SIPLCA : Implementation of Shift-invariant PLCA References ---------- [1] <NAME> and <NAME>. "Identifying Repeated Patterns in Music Using Sparse Convolutive Non-Negative Matrix Factorization". In Proc. International Conference on Music Information Retrieval (ISMIR), 2010. Copyright (C) 2009-2010 <NAME> <<EMAIL>> LICENSE: This module is licensed under the GNU GPL. See COPYING for details. """ import logging import numpy as np import sys, os from os.path import join, basename, splitext import msaf import msaf.input_output as io from msaf.algorithms.interface import SegmenterInterface # Local stuff import plca SAVE = False saveto = '/Users/mitian/Documents/hg/phd-docs/thesis/analysis/plca' logging.basicConfig(level=logging.INFO, format='%(levelname)s %(name)s %(asctime)s ' '%(filename)s:%(lineno)d %(message)s') logger = logging.getLogger('segmenter') def segment_song(seq, rank=4, win=32, seed=None, nrep=1, minsegments=3, maxlowen=10, maxretries=5, uninformativeWinit=False, uninformativeHinit=True, viterbi_segmenter=False, align_downbeats=False, **kwargs): """Segment the given feature sequence using SI-PLCA Parameters ---------- seq : array, shape (F, T) Feature sequence to segment. rank : int Number of patterns (unique segments) to search for. win : int Length of patterns in frames. seed : int Random number generator seed. Defaults to None. nrep : int Number of times to repeat the analysis. The repetition with the lowest reconstrucion error is returned. Defaults to 1. minsegments : int Minimum number of segments in the output. The analysis is repeated until the output contains at least `minsegments` segments is or `maxretries` is reached. Defaults to 3. maxlowen : int Maximum number of low energy frames in the SIPLCA reconstruction. The analysis is repeated if it contains too many gaps. Defaults to 10. maxretries : int Maximum number of retries to perform if `minsegments` or `maxlowen` are not satisfied. Defaults to 5. uninformativeWinit : boolean If True, `W` is initialized to have a flat distribution. Defaults to False. uninformativeHinit : boolean If True, `H` is initialized to have a flat distribution. Defaults to True. viterbi_segmenter : boolean If True uses uses the Viterbi algorithm to convert SIPLCA decomposition into segmentation, otherwises uses the process described in [1]. Defaults to False. align_downbeats : boolean If True, postprocess the SIPLCA analysis to find the optimal alignments of the components of W with V. I.e. try to align the first column of W to the downbeats in the song. Defaults to False. kwargs : dict Keyword arguments passed to plca.SIPLCA.analyze. See plca.SIPLCA for more details. Returns ------- labels : array, length `T` Segment label for each frame of `seq`. W : array, shape (`F`, `rank`, `win`) Set of `F` x `win` shift-invariant basis functions found in `seq`. Z : array, length `rank` Set of mixing weights for each basis. H : array, shape (`rank`, `T`) Activations of each basis in time. segfun : array, shape (`rank`, `T`) Raw segmentation function used to generate segment labels from SI-PLCA decomposition. Corresponds to $\ell_k(t)$ in [1]. norm : float Normalization constant to make `seq` sum to 1. Notes ----- The experimental results reported in [1] were found using the default values for all keyword arguments while varying kwargs. """ seq = seq.copy() #logger.debug('Using random seed %s.', seed) np.random.seed(seed) if 'alphaWcutoff' in kwargs and 'alphaWslope' in kwargs: kwargs['alphaW'] = create_sparse_W_prior((seq.shape[0], win), kwargs['alphaWcutoff'], kwargs['alphaWslope']) del kwargs['alphaWcutoff'] del kwargs['alphaWslope'] F, T = seq.shape if uninformativeWinit: kwargs['initW'] = np.ones((F, rank, win)) / (F*win) if uninformativeHinit: kwargs['initH'] = np.ones((rank, T)) / T outputs = [] for n in xrange(nrep): outputs.append(plca.SIPLCA.analyze(seq, rank=rank, win=win, **kwargs)) div = [x[-1] for x in outputs] W, Z, H, norm, recon, div = outputs[np.argmin(div)] # Need to rerun segmentation if there are too few segments or # if there are too many gaps in recon (i.e. H) lowen = seq.shape[0] * np.finfo(float).eps nlowen_seq = np.sum(seq.sum(0) <= lowen) if nlowen_seq > maxlowen: maxlowen = nlowen_seq nlowen_recon = np.sum(recon.sum(0) <= lowen) nretries = maxretries while (len(Z) < minsegments or nlowen_recon > maxlowen) and nretries > 0: nretries -= 1 #logger.debug('Redoing SIPLCA analysis (len(Z) = %d, number of ' #'low energy frames = %d).', len(Z), nlowen_recon) outputs = [] for n in xrange(nrep): outputs.append(plca.SIPLCA.analyze(seq, rank=rank, win=win, **kwargs)) div = [x[-1] for x in outputs] W, Z, H, norm, recon, div = outputs[np.argmin(div)] nlowen_recon = np.sum(recon.sum(0) <= lowen) if viterbi_segmenter: segmentation_function = nmf_analysis_to_segmentation_using_viterbi_path else: segmentation_function = nmf_analysis_to_segmentation labels, segfun = segmentation_function(seq, win, W, Z, H, **kwargs) return labels, W, Z, H, segfun, norm def create_sparse_W_prior(shape, cutoff, slope): """Constructs sparsity parameters for W (alphaW) to learn pattern length Follows equation (6) in the ISMIR paper referenced in this module's docstring. """ # W.shape is (ndim, nseg, nwin) prior = np.zeros(shape[-1]) prior[cutoff:] = prior[0] + slope * np.arange(shape[-1] - cutoff) alphaW = np.zeros((shape[0], 1, shape[-1])) alphaW[:,:] = prior return alphaW def nmf_analysis_to_segmentation(seq, win, W, Z, H, min_segment_length=32, use_Z_for_segmentation=True, **ignored_kwargs): if not use_Z_for_segmentation: Z = np.ones(Z.shape) segfun = [] for n, (w,z,h) in enumerate(zip(np.transpose(W, (1, 0, 2)), Z, H)): reconz = plca.SIPLCA.reconstruct(w, z, h) score = np.sum(reconz, 0) # Smooth it out score = np.convolve(score,
np.ones(min_segment_length)
numpy.ones
# -*- coding: utf-8 -*- """ Created on Mon Jun 13 13:59:45 2016 @author: sksuram """ import os,sys,numpy as np,matplotlib.pyplot as plt,sys sys.path.append(r'E:\GitHub\JCAPDataProcess\AuxPrograms') from fcns_io import * from DBPaths import * sys.path.append(r'E:\GitHub\JCAPDataProcess\AnalysisFunctions') sys.path.append(r'E:\python-codes\CALTECH\datahandling') from Analysis_Master import * from datamanipulation import * xyfolder=r'K:\experiments\xrds\Lan\Oxynitride\30801_TaLaON_postRTP\pmpy24p3_line\integration\bkg_subtraction' plateidstr=xyfolder.split(os.sep)[-4].split('_')[0][0:-1] Normalize=0. write_udi=1 CompType='random' #options are 'random','calibrated','raw' replace_xynan=False replace_Int_lessthanzeros_val=1E-05 replace_Int_lessthanzeros=True add_fn_str='_normalized' if Normalize else '' udifl=os.path.join(xyfolder,r'udifl'+add_fn_str+'.txt') fn=lambda x: os.path.join(xyfolder,x) xyd={} wl_CuKa=1.5406*0.1 replace_X_nan=50.; replace_Y_nan=47.23 xyfiles=filter(lambda x: os.path.splitext(x)[-1]=='.xy',map(fn,os.listdir(xyfolder))) specinds=[] xarr=[];yarr=[] for xyind,xyfile in enumerate(xyfiles): bxyf=os.path.basename(xyfile).split('.xy')[0] xyfileinfo,xyd[xyind]=text2dict(xyfile,header_row=1,delimiter=' ',skip_footer=0,obscolnum=None,headerfromdata=False,header=['twoth','Inte']) xarr+=[float(bxyf.split('pmpx')[-1].split('_')[0])] yarr+=[float(bxyf.split('pmpy')[-1].split('_')[0])] if 'specind' in bxyf: specinds+=[int(bxyf.split('specind')[-1].split('_')[0])] else: specinds+=[int(xyind)] xarr=np.array(xarr);yarr=np.array(yarr) naninds_xarr=list(np.where(np.isnan(xarr))[0]) naninds_yarr=list(np.where(np.isnan(yarr))[0]) if replace_xynan: xarr[naninds_xarr]=replace_X_nan yarr[naninds_yarr]=replace_Y_nan elif len(naninds_xarr)>0 or len(naninds_yarr)>0: raise ValueError('Nans exist for positions, no replacement values are provided') infofiled=importinfo(plateidstr) udi_dict={} udi_dict['ellabels']=[x for x in getelements_plateidstr(plateidstr) if x not in ['','O','Ar','N']]#,print_id=2 removed on 20161019 because no longer valid udi_dict['X']=xarr udi_dict['Y']=yarr udi_dict['specind']=specinds udi_dict['sample_no']=[] udi_dict['plate_id']=[int(plateidstr)] udi_dict['mX']=np.ones(np.shape(udi_dict['X']))*np.nan udi_dict['mY']=np.ones(np.shape(udi_dict['Y']))*np.nan getplatemappath_plateid(plateidstr) pmap_path=getplatemappath_plateid(plateidstr) pmpdl=readsingleplatemaptxt(pmap_path) pmpx,pmpy,smplist=[[iter_d[fom] for iter_d in pmpdl] for fom in ['x','y','sample_no']] udi_dict['sample_no']=[smplist[np.argmin((np.array(pmpx)-udi_dict['X'][row])**2+(np.array(pmpy)-udi_dict['Y'][row])**2)] for row in xrange(np.shape(udi_dict['X'])[0])] intsn_twoth_range=np.arange(np.max([x['twoth'][0] for x in xyd.values()]),np.min([x['twoth'][-1] for x in xyd.values()]),0.005) #intsn_twoth_range=np.arange(60.,np.min([x['twoth'][-1] for x in xyd.values()]),0.005) for key in xyd.keys(): xyd[key]['interp_Inte']=np.interp(intsn_twoth_range,xyd[key]['twoth'],xyd[key]['Inte']) Qarr=(4*np.pi*np.sin(np.radians(intsn_twoth_range/2.)))/(wl_CuKa) Iarr=np.zeros([len(xyd.keys()),len(intsn_twoth_range)]) for idx,key in enumerate(sorted(xyd.keys())): Iarr[idx,:]=xyd[key]['interp_Inte'] if replace_Int_lessthanzeros: Iarr[idx,np.where(Iarr[idx,:]<0)[0]]=replace_Int_lessthanzeros_val if Normalize: for idx in xrange(np.shape(Iarr)[0]): Iarr[idx,:]=Iarr[idx,:]/np.max(Iarr[idx,:]) udi_dict['Iarr']=Iarr udi_dict['Q']=Qarr udi_dict['Normalize']=False if CompType=='random': udi_dict['CompType']=CompType num_samples=len(xarr) comps=np.r_[[
np.random.random(num_samples)
numpy.random.random
""" Procedures for fitting marginal regression models to dependent data using Generalized Estimating Equations. References ---------- <NAME> and <NAME>. "Longitudinal data analysis using generalized linear models". Biometrika (1986) 73 (1): 13-22. <NAME> and <NAME>. "Longitudinal Data Analysis for Discrete and Continuous Outcomes". Biometrics Vol. 42, No. 1 (Mar., 1986), pp. 121-130 <NAME> and <NAME> (1990). "Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data", Biometrika, 77, 485-497. <NAME> and <NAME> (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf <NAME>, <NAME> (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001 Mar;57(1):126-34. """ from __future__ import division from statsmodels.compat.python import range, lzip, zip import numpy as np from scipy import stats import pandas as pd import patsy from collections import defaultdict from statsmodels.tools.decorators import cache_readonly import statsmodels.base.model as base # used for wrapper: import statsmodels.regression.linear_model as lm import statsmodels.base.wrapper as wrap from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import cov_struct as cov_structs import statsmodels.genmod.families.varfuncs as varfuncs from statsmodels.genmod.families.links import Link from statsmodels.tools.sm_exceptions import (ConvergenceWarning, DomainWarning, IterationLimitWarning, ValueWarning) import warnings from statsmodels.graphics._regressionplots_doc import ( _plot_added_variable_doc, _plot_partial_residuals_doc, _plot_ceres_residuals_doc) from statsmodels.discrete.discrete_margins import ( _get_margeff_exog, _check_margeff_args, _effects_at, margeff_cov_with_se, _check_at_is_all, _transform_names, _check_discrete_args, _get_dummy_index, _get_count_index) class ParameterConstraint(object): """ A class for managing linear equality constraints for a parameter vector. """ def __init__(self, lhs, rhs, exog): """ Parameters ---------- lhs : ndarray A q x p matrix which is the left hand side of the constraint lhs * param = rhs. The number of constraints is q >= 1 and p is the dimension of the parameter vector. rhs : ndarray A 1-dimensional vector of length q which is the right hand side of the constraint equation. exog : ndarray The n x p exognenous data for the full model. """ # In case a row or column vector is passed (patsy linear # constraints passes a column vector). rhs = np.atleast_1d(rhs.squeeze()) if rhs.ndim > 1: raise ValueError("The right hand side of the constraint " "must be a vector.") if len(rhs) != lhs.shape[0]: raise ValueError("The number of rows of the left hand " "side constraint matrix L must equal " "the length of the right hand side " "constraint vector R.") self.lhs = lhs self.rhs = rhs # The columns of lhs0 are an orthogonal basis for the # orthogonal complement to row(lhs), the columns of lhs1 are # an orthogonal basis for row(lhs). The columns of lhsf = # [lhs0, lhs1] are mutually orthogonal. lhs_u, lhs_s, lhs_vt = np.linalg.svd(lhs.T, full_matrices=1) self.lhs0 = lhs_u[:, len(lhs_s):] self.lhs1 = lhs_u[:, 0:len(lhs_s)] self.lhsf = np.hstack((self.lhs0, self.lhs1)) # param0 is one solution to the underdetermined system # L * param = R. self.param0 = np.dot(self.lhs1, np.dot(lhs_vt, self.rhs) / lhs_s) self._offset_increment = np.dot(exog, self.param0) self.orig_exog = exog self.exog_fulltrans = np.dot(exog, self.lhsf) def offset_increment(self): """ Returns a vector that should be added to the offset vector to accommodate the constraint. Parameters ---------- exog : array-like The exogeneous data for the model. """ return self._offset_increment def reduced_exog(self): """ Returns a linearly transformed exog matrix whose columns span the constrained model space. Parameters ---------- exog : array-like The exogeneous data for the model. """ return self.exog_fulltrans[:, 0:self.lhs0.shape[1]] def restore_exog(self): """ Returns the full exog matrix before it was reduced to satisfy the constraint. """ return self.orig_exog def unpack_param(self, params): """ Converts the parameter vector `params` from reduced to full coordinates. """ return self.param0 + np.dot(self.lhs0, params) def unpack_cov(self, bcov): """ Converts the covariance matrix `bcov` from reduced to full coordinates. """ return np.dot(self.lhs0, np.dot(bcov, self.lhs0.T)) _gee_init_doc = """ Marginal regression model fit using Generalized Estimating Equations. GEE can be used to fit Generalized Linear Models (GLMs) when the data have a grouped structure, and the observations are possibly correlated within groups but not between groups. Parameters ---------- endog : array-like 1d array of endogenous values (i.e. responses, outcomes, dependent variables, or 'Y' values). exog : array-like 2d array of exogeneous values (i.e. covariates, predictors, independent variables, regressors, or 'X' values). A `nobs x k` array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See `statsmodels.tools.add_constant`. groups : array-like A 1d array of length `nobs` containing the group labels. time : array-like A 2d array of time (or other index) values, used by some dependence structures to define similarity relationships among observations within a cluster. family : family class instance %(family_doc)s cov_struct : CovStruct class instance The default is Independence. To specify an exchangeable structure use cov_struct = Exchangeable(). See statsmodels.genmod.cov_struct.CovStruct for more information. offset : array-like An offset to be included in the fit. If provided, must be an array whose length is the number of rows in exog. dep_data : array-like Additional data passed to the dependence structure. constraint : (ndarray, ndarray) If provided, the constraint is a tuple (L, R) such that the model parameters are estimated under the constraint L * param = R, where L is a q x p matrix and R is a q-dimensional vector. If constraint is provided, a score test is performed to compare the constrained model to the unconstrained model. update_dep : bool If true, the dependence parameters are optimized, otherwise they are held fixed at their starting values. weights : array-like An array of weights to use in the analysis. The weights must be constant within each group. These correspond to probability weights (pweights) in Stata. %(extra_params)s See Also -------- statsmodels.genmod.families.family :ref:`families` :ref:`links` Notes ----- Only the following combinations make sense for family and link :: + ident log logit probit cloglog pow opow nbinom loglog logc Gaussian | x x x inv Gaussian | x x x binomial | x x x x x x x x x Poission | x x x neg binomial | x x x x gamma | x x x Not all of these link functions are currently available. Endog and exog are references so that if the data they refer to are already arrays and these arrays are changed, endog and exog will change. The "robust" covariance type is the standard "sandwich estimator" (e.g. Liang and Zeger (1986)). It is the default here and in most other packages. The "naive" estimator gives smaller standard errors, but is only correct if the working correlation structure is correctly specified. The "bias reduced" estimator of Mancl and DeRouen (Biometrics, 2001) reduces the downard bias of the robust estimator. The robust covariance provided here follows Liang and Zeger (1986) and agrees with R's gee implementation. To obtain the robust standard errors reported in Stata, multiply by sqrt(N / (N - g)), where N is the total sample size, and g is the average group size. Examples -------- %(example)s """ _gee_family_doc = """\ The default is Gaussian. To specify the binomial distribution use `family=sm.families.Binomial()`. Each family can take a link instance as an argument. See statsmodels.genmod.families.family for more information.""" _gee_ordinal_family_doc = """\ The only family supported is `Binomial`. The default `Logit` link may be replaced with `probit` if desired.""" _gee_nominal_family_doc = """\ The default value `None` uses a multinomial logit family specifically designed for use with GEE. Setting this argument to a non-default value is not currently supported.""" _gee_fit_doc = """ Fits a marginal regression model using generalized estimating equations (GEE). Parameters ---------- maxiter : integer The maximum number of iterations ctol : float The convergence criterion for stopping the Gauss-Seidel iterations start_params : array-like A vector of starting values for the regression coefficients. If None, a default is chosen. params_niter : integer The number of Gauss-Seidel updates of the mean structure parameters that take place prior to each update of the dependence structure. first_dep_update : integer No dependence structure updates occur before this iteration number. cov_type : string One of "robust", "naive", or "bias_reduced". ddof_scale : scalar or None The scale parameter is estimated as the sum of squared Pearson residuals divided by `N - ddof_scale`, where N is the total sample size. If `ddof_scale` is None, the number of covariates (including an intercept if present) is used. scaling_factor : scalar The estimated covariance of the parameter estimates is scaled by this value. Default is 1, Stata uses N / (N - g), where N is the total sample size and g is the average group size. Returns ------- An instance of the GEEResults class or subclass Notes ----- If convergence difficulties occur, increase the values of `first_dep_update` and/or `params_niter`. Setting `first_dep_update` to a greater value (e.g. ~10-20) causes the algorithm to move close to the GLM solution before attempting to identify the dependence structure. For the Gaussian family, there is no benefit to setting `params_niter` to a value greater than 1, since the mean structure parameters converge in one step. """ _gee_results_doc = """ Attributes ---------- cov_params_default : ndarray default covariance of the parameter estimates. Is chosen among one of the following three based on `cov_type` cov_robust : ndarray covariance of the parameter estimates that is robust cov_naive : ndarray covariance of the parameter estimates that is not robust to correlation or variance misspecification cov_robust_bc : ndarray covariance of the parameter estimates that is robust and bias reduced converged : bool indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold cov_type : string string indicating whether a "robust", "naive" or "bias_reduced" covariance is used as default fit_history : dict Contains information about the iterations. fittedvalues : array Linear predicted values for the fitted model. dot(exog, params) model : class instance Pointer to GEE model instance that called `fit`. normalized_cov_params : array See GEE docstring params : array The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data. scale : float The estimate of the scale / dispersion for the model fit. See GEE.fit for more information. score_norm : float norm of the score at the end of the iterative estimation. bse : array The standard errors of the fitted GEE parameters. """ _gee_example = """ Logistic regression with autoregressive working dependence: >>> import statsmodels.api as sm >>> family = sm.families.Binomial() >>> va = sm.cov_struct.Autoregressive() >>> model = sm.GEE(endog, exog, group, family=family, cov_struct=va) >>> result = model.fit() >>> print(result.summary()) Use formulas to fit a Poisson GLM with independent working dependence: >>> import statsmodels.api as sm >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = sm.GEE.from_formula("y ~ age + trt + base", "subject", \ data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.summary()) Equivalent, using the formula API: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = smf.gee("y ~ age + trt + base", "subject", \ data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.summary()) """ _gee_ordinal_example = """ Fit an ordinal regression model using GEE, with "global odds ratio" dependence: >>> import statsmodels.api as sm >>> gor = sm.cov_struct.GlobalOddsRatio("ordinal") >>> model = sm.OrdinalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using formulas: >>> import statsmodels.formula.api as smf >>> model = smf.ordinal_gee("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) """ _gee_nominal_example = """ Fit a nominal regression model using GEE: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> gor = sm.cov_struct.GlobalOddsRatio("nominal") >>> model = sm.NominalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using formulas: >>> import statsmodels.api as sm >>> model = sm.NominalGEE.from_formula("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using the formula API: >>> import statsmodels.formula.api as smf >>> model = smf.nominal_gee("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) """ def _check_args(endog, exog, groups, time, offset, exposure): if endog.size != exog.shape[0]: raise ValueError("Leading dimension of 'exog' should match " "length of 'endog'") if groups.size != endog.size: raise ValueError("'groups' and 'endog' should have the same size") if time is not None and (time.size != endog.size): raise ValueError("'time' and 'endog' should have the same size") if offset is not None and (offset.size != endog.size): raise ValueError("'offset and 'endog' should have the same size") if exposure is not None and (exposure.size != endog.size): raise ValueError("'exposure' and 'endog' should have the same size") class GEE(base.Model): __doc__ = ( " Estimation of marginal regression models using Generalized\n" " Estimating Equations (GEE).\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_family_doc, 'example': _gee_example}) cached_means = None def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, exposure=None, dep_data=None, constraint=None, update_dep=True, weights=None, **kwargs): if family is not None: if not isinstance(family.link, tuple(family.safe_links)): import warnings msg = ("The {0} link function does not respect the " "domain of the {1} family.") warnings.warn(msg.format(family.link.__class__.__name__, family.__class__.__name__), DomainWarning) groups = np.asarray(groups) # in case groups is pandas if "missing_idx" in kwargs and kwargs["missing_idx"] is not None: # If here, we are entering from super.from_formula; missing # has already been dropped from endog and exog, but not from # the other variables. ii = ~kwargs["missing_idx"] groups = groups[ii] if time is not None: time = time[ii] if offset is not None: offset = offset[ii] if exposure is not None: exposure = exposure[ii] del kwargs["missing_idx"] _check_args(endog, exog, groups, time, offset, exposure) self.missing = missing self.dep_data = dep_data self.constraint = constraint self.update_dep = update_dep self._fit_history = defaultdict(list) # Pass groups, time, offset, and dep_data so they are # processed for missing data along with endog and exog. # Calling super creates self.exog, self.endog, etc. as # ndarrays and the original exog, endog, etc. are # self.data.endog, etc. super(GEE, self).__init__(endog, exog, groups=groups, time=time, offset=offset, exposure=exposure, weights=weights, dep_data=dep_data, missing=missing, **kwargs) self._init_keys.extend(["update_dep", "constraint", "family", "cov_struct"]) # Handle the family argument if family is None: family = families.Gaussian() else: if not issubclass(family.__class__, families.Family): raise ValueError("GEE: `family` must be a genmod " "family instance") self.family = family # Handle the cov_struct argument if cov_struct is None: cov_struct = cov_structs.Independence() else: if not issubclass(cov_struct.__class__, cov_structs.CovStruct): raise ValueError("GEE: `cov_struct` must be a genmod " "cov_struct instance") self.cov_struct = cov_struct # Handle the offset and exposure self._offset_exposure = None if offset is not None: self._offset_exposure = self.offset.copy() self.offset = offset if exposure is not None: if not isinstance(self.family.link, families.links.Log): raise ValueError( "exposure can only be used with the log link function") if self._offset_exposure is not None: self._offset_exposure += np.log(exposure) else: self._offset_exposure = np.log(exposure) self.exposure = exposure # Handle the constraint self.constraint = None if constraint is not None: if len(constraint) != 2: raise ValueError("GEE: `constraint` must be a 2-tuple.") if constraint[0].shape[1] != self.exog.shape[1]: raise ValueError( "GEE: the left hand side of the constraint must have " "the same number of columns as the exog matrix.") self.constraint = ParameterConstraint(constraint[0], constraint[1], self.exog) if self._offset_exposure is not None: self._offset_exposure += self.constraint.offset_increment() else: self._offset_exposure = ( self.constraint.offset_increment().copy()) self.exog = self.constraint.reduced_exog() # Create list of row indices for each group group_labels, ix = np.unique(self.groups, return_inverse=True) se = pd.Series(index=np.arange(len(ix))) gb = se.groupby(ix).groups dk = [(lb, np.asarray(gb[k])) for k, lb in enumerate(group_labels)] self.group_indices = dict(dk) self.group_labels = group_labels # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. self.endog_li = self.cluster_list(self.endog) self.exog_li = self.cluster_list(self.exog) if self.weights is not None: self.weights_li = self.cluster_list(self.weights) self.weights_li = [x[0] for x in self.weights_li] self.weights_li = np.asarray(self.weights_li) self.num_group = len(self.endog_li) # Time defaults to a 1d grid with equal spacing if self.time is not None: self.time = np.asarray(self.time, np.float64) if self.time.ndim == 1: self.time = self.time[:, None] self.time_li = self.cluster_list(self.time) else: self.time_li = \ [np.arange(len(y), dtype=np.float64)[:, None] for y in self.endog_li] self.time = np.concatenate(self.time_li) if self._offset_exposure is not None: self.offset_li = self.cluster_list(self._offset_exposure) else: self.offset_li = None if constraint is not None: self.constraint.exog_fulltrans_li = \ self.cluster_list(self.constraint.exog_fulltrans) self.family = family self.cov_struct.initialize(self) # Total sample size group_ns = [len(y) for y in self.endog_li] self.nobs = sum(group_ns) # The following are column based, not on rank see #1928 self.df_model = self.exog.shape[1] - 1 # assumes constant self.df_resid = self.nobs - self.exog.shape[1] # Skip the covariance updates if all groups have a single # observation (reduces to fitting a GLM). maxgroup = max([len(x) for x in self.endog_li]) if maxgroup == 1: self.update_dep = False # Override to allow groups and time to be passed as variable # names. @classmethod def from_formula(cls, formula, groups, data, subset=None, time=None, offset=None, exposure=None, *args, **kwargs): """ Create a GEE model instance from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model groups : array-like or string Array of grouping labels. If a string, this is the name of a variable in `data` that contains the grouping labels. data : array-like The data for the model. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of the data to used when fitting the model. time : array-like or string The time values, used for dependence structures involving distances between observations. If a string, this is the name of a variable in `data` that contains the time values. offset : array-like or string The offset values, added to the linear predictor. If a string, this is the name of a variable in `data` that contains the offset values. exposure : array-like or string The exposure values, only used if the link function is the logarithm function, in which case the log of `exposure` is added to the offset (if any). If a string, this is the name of a variable in `data` that contains the offset values. %(missing_param_doc)s args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with two exceptions. `dep_data` is processed as described below. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Optional arguments ------------------ dep_data : string or array-like Data used for estimating the dependence structure. See specific dependence structure classes (e.g. Nested) for details. If `dep_data` is a string, it is interpreted as a formula that is applied to `data`. If it is an array, it must be an array of strings corresponding to column names in `data`. Otherwise it must be an array-like with the same number of rows as data. Returns ------- model : GEE model instance Notes ----- `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. """ % {'missing_param_doc': base._missing_param_doc} groups_name = "Groups" if isinstance(groups, str): groups_name = groups groups = data[groups] if isinstance(time, str): time = data[time] if isinstance(offset, str): offset = data[offset] if isinstance(exposure, str): exposure = data[exposure] dep_data = kwargs.get("dep_data") dep_data_names = None if dep_data is not None: if isinstance(dep_data, str): dep_data = patsy.dmatrix(dep_data, data, return_type='dataframe') dep_data_names = dep_data.columns.tolist() else: dep_data_names = list(dep_data) dep_data = data[dep_data] kwargs["dep_data"] = np.asarray(dep_data) model = super(GEE, cls).from_formula(formula, data=data, subset=subset, groups=groups, time=time, offset=offset, exposure=exposure, *args, **kwargs) if dep_data_names is not None: model._dep_data_names = dep_data_names model._groups_name = groups_name return model def cluster_list(self, array): """ Returns `array` split into subarrays corresponding to the cluster structure. """ if array.ndim == 1: return [np.array(array[self.group_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.group_indices[k], :]) for k in self.group_labels] def compare_score_test(self, submodel): """ Perform a score test for the given submodel against this model. Parameters ---------- submodel : GEEResults instance A fitted GEE model that is a submodel of this model. Returns ------- A dictionary with keys "statistic", "p-value", and "df", containing the score test statistic, its chi^2 p-value, and the degrees of freedom used to compute the p-value. Notes ----- The score test can be performed without calling 'fit' on the larger model. The provided submodel must be obtained from a fitted GEE. This method performs the same score test as can be obtained by fitting the GEE with a linear constraint and calling `score_test` on the results. References ---------- <NAME> and <NAME> (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ # Check consistency between model and submodel (not a comprehensive # check) submod = submodel.model if self.exog.shape[0] != submod.exog.shape[0]: msg = "Model and submodel have different numbers of cases." raise ValueError(msg) if self.exog.shape[1] == submod.exog.shape[1]: msg = "Model and submodel have the same number of variables" warnings.warn(msg) if not isinstance(self.family, type(submod.family)): msg = "Model and submodel have different GLM families." warnings.warn(msg) if not isinstance(self.cov_struct, type(submod.cov_struct)): warnings.warn("Model and submodel have different GEE covariance " "structures.") if not np.equal(self.weights, submod.weights).all(): msg = "Model and submodel should have the same weights." warnings.warn(msg) # Get the positions of the submodel variables in the # parent model qm, qc = _score_test_submodel(self, submodel.model) if qm is None: msg = "The provided model is not a submodel." raise ValueError(msg) # Embed the submodel params into a params vector for the # parent model params_ex = np.dot(qm, submodel.params) # Attempt to preserve the state of the parent model cov_struct_save = self.cov_struct import copy cached_means_save = copy.deepcopy(self.cached_means) # Get the score vector of the submodel params in # the parent model self.cov_struct = submodel.cov_struct self.update_cached_means(params_ex) _, score = self._update_mean_params() if score is None: msg = "Singular matrix encountered in GEE score test" warnings.warn(msg, ConvergenceWarning) return None if not hasattr(self, "ddof_scale"): self.ddof_scale = self.exog.shape[1] if not hasattr(self, "scaling_factor"): self.scaling_factor = 1 _, ncov1, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale ** 2 score2 = np.dot(qc.T, score) / scale amat = np.linalg.inv(ncov1) bmat_11 = np.dot(qm.T, np.dot(cmat, qm)) bmat_22 = np.dot(qc.T, np.dot(cmat, qc)) bmat_12 = np.dot(qm.T, np.dot(cmat, qc)) amat_11 = np.dot(qm.T, np.dot(amat, qm)) amat_12 = np.dot(qm.T, np.dot(amat, qc)) score_cov = bmat_22 - np.dot(amat_12.T, np.linalg.solve(amat_11, bmat_12)) score_cov -= np.dot(bmat_12.T, np.linalg.solve(amat_11, amat_12)) score_cov += np.dot(amat_12.T, np.dot(np.linalg.solve(amat_11, bmat_11), np.linalg.solve(amat_11, amat_12))) # Attempt to restore state self.cov_struct = cov_struct_save self.cached_means = cached_means_save from scipy.stats.distributions import chi2 score_statistic = np.dot(score2, np.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) return {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} def estimate_scale(self): """ Estimate the dispersion/scale. The scale parameter for binomial, Poisson, and multinomial families is fixed at 1, otherwise it is estimated from the data. """ if isinstance(self.family, (families.Binomial, families.Poisson, _Multinomial)): return 1. endog = self.endog_li cached_means = self.cached_means nobs = self.nobs varfunc = self.family.variance scale = 0. fsum = 0. for i in range(self.num_group): if len(endog[i]) == 0: continue expval, _ = cached_means[i] f = self.weights_li[i] if self.weights is not None else 1. sdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / sdev scale += f * np.sum(resid ** 2) fsum += f * len(endog[i]) scale /= (fsum * (nobs - self.ddof_scale) / float(nobs)) return scale def mean_deriv(self, exog, lin_pred): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- exog : array-like The exogeneous data at which the derivative is computed. lin_pred : array-like The values of the linear predictor. Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. Notes ----- If there is an offset or exposure, it should be added to `lin_pred` prior to calling this function. """ idl = self.family.link.inverse_deriv(lin_pred) dmat = exog * idl[:, None] return dmat def mean_deriv_exog(self, exog, params, offset_exposure=None): """ Derivative of the expected endog with respect to exog. Parameters ---------- exog : array-like Values of the independent variables at which the derivative is calculated. params : array-like Parameter values at which the derivative is calculated. offset_exposure : array-like, optional Combined offset and exposure. Returns ------- The derivative of the expected endog with respect to exog. """ lin_pred = np.dot(exog, params) if offset_exposure is not None: lin_pred += offset_exposure idl = self.family.link.inverse_deriv(lin_pred) dmat = np.outer(idl, params) return dmat def _update_mean_params(self): """ Returns ------- update : array-like The update vector such that params + update is the next iterate when solving the score equations. score : array-like The current value of the score equations, not incorporating the scale parameter. If desired, multiply this vector by the scale parameter to incorporate the scale. """ endog = self.endog_li exog = self.exog_li cached_means = self.cached_means varfunc = self.family.variance bmat, score = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (dmat, resid)) if rslt is None: return None, None vinv_d, vinv_resid = tuple(rslt) f = self.weights_li[i] if self.weights is not None else 1. bmat += f * np.dot(dmat.T, vinv_d) score += f * np.dot(dmat.T, vinv_resid) update = np.linalg.solve(bmat, score) self._fit_history["cov_adjust"].append( self.cov_struct.cov_adjust) return update, score def update_cached_means(self, mean_params): """ cached_means should always contain the most recent calculation of the group-wise mean vectors. This function should be called every time the regression parameters are changed, to keep the cached means up to date. """ endog = self.endog_li exog = self.exog_li offset = self.offset_li linkinv = self.family.link.inverse self.cached_means = [] for i in range(self.num_group): if len(endog[i]) == 0: continue lpr = np.dot(exog[i], mean_params) if offset is not None: lpr += offset[i] expval = linkinv(lpr) self.cached_means.append((expval, lpr)) def _covmat(self): """ Returns the sampling covariance matrix of the regression parameters and related quantities. Returns ------- cov_robust : array-like The robust, or sandwich estimate of the covariance, which is meaningful even if the working covariance structure is incorrectly specified. cov_naive : array-like The model-based estimate of the covariance, which is meaningful if the covariance structure is correctly specified. cmat : array-like The center matrix of the sandwich expression, used in obtaining score test results. """ endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_means = self.cached_means # Calculate the naive (model-based) and robust (sandwich) # covariances. bmat, cmat = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat, resid)) if rslt is None: return None, None, None, None vinv_d, vinv_resid = tuple(rslt) f = self.weights_li[i] if self.weights is not None else 1. bmat += f * np.dot(dmat.T, vinv_d) dvinv_resid = f * np.dot(dmat.T, vinv_resid) cmat += np.outer(dvinv_resid, dvinv_resid) scale = self.estimate_scale() bmati = np.linalg.inv(bmat) cov_naive = bmati * scale cov_robust = np.dot(bmati, np.dot(cmat, bmati)) cov_naive *= self.scaling_factor cov_robust *= self.scaling_factor return cov_robust, cov_naive, cmat # Calculate the bias-corrected sandwich estimate of Mancl and # DeRouen. def _bc_covmat(self, cov_naive): cov_naive = cov_naive / self.scaling_factor endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_means = self.cached_means scale = self.estimate_scale() bcm = 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat,)) if rslt is None: return None vinv_d = rslt[0] vinv_d /= scale hmat = np.dot(vinv_d, cov_naive) hmat = np.dot(hmat, dmat.T).T f = self.weights_li[i] if self.weights is not None else 1. aresid = np.linalg.solve(np.eye(len(resid)) - hmat, resid) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (aresid,)) if rslt is None: return None srt = rslt[0] srt = f * np.dot(dmat.T, srt) / scale bcm += np.outer(srt, srt) cov_robust_bc = np.dot(cov_naive, np.dot(bcm, cov_naive)) cov_robust_bc *= self.scaling_factor return cov_robust_bc def predict(self, params, exog=None, offset=None, exposure=None, linear=False): """ Return predicted values for a marginal regression model fit using GEE. Parameters ---------- params : array-like Parameters / coefficients of a marginal regression model. exog : array-like, optional Design / exogenous data. If exog is None, model exog is used. offset : array-like, optional Offset for exog if provided. If offset is None, model offset is used. exposure : array-like, optional Exposure for exog, if exposure is None, model exposure is used. Only allowed if link function is the logarithm. linear : bool If True, returns the linear predicted values. If False, returns the value of the inverse of the model's link function at the linear predicted values. Returns ------- An array of fitted values Notes ----- Using log(V) as the offset is equivalent to using V as the exposure. If exposure U and offset V are both provided, then log(U) + V is added to the linear predictor. """ # TODO: many paths through this, not well covered in tests if exposure is not None: if not isinstance(self.family.link, families.links.Log): raise ValueError( "exposure can only be used with the log link function") # This is the combined offset and exposure _offset = 0. # Using model exog if exog is None: exog = self.exog if not isinstance(self.family.link, families.links.Log): # Don't need to worry about exposure if offset is None: if self._offset_exposure is not None: _offset = self._offset_exposure.copy() else: _offset = offset else: if offset is None and exposure is None: if self._offset_exposure is not None: _offset = self._offset_exposure elif offset is None and exposure is not None: _offset = np.log(exposure) if hasattr(self, "offset"): _offset = _offset + self.offset elif offset is not None and exposure is None: _offset = offset if hasattr(self, "exposure"): _offset = offset + np.log(self.exposure) else: _offset = offset + np.log(exposure) # exog is provided: this is simpler than above because we # never use model exog or exposure if exog is provided. else: if offset is not None: _offset = _offset + offset if exposure is not None: _offset += np.log(exposure) lin_pred = _offset + np.dot(exog, params) if not linear: return self.family.link.inverse(lin_pred) return lin_pred def _starting_params(self): model = GLM(self.endog, self.exog, family=self.family, offset=self._offset_exposure, freq_weights=self.weights) result = model.fit() return result.params def fit(self, maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, cov_type='robust', ddof_scale=None, scaling_factor=1.): # Docstring attached below # Subtract this number from the total sample size when # normalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale self.scaling_factor = scaling_factor self._fit_history = defaultdict(list) if self.weights is not None and cov_type == 'naive': raise ValueError("when using weights, cov_type may not be naive") if start_params is None: mean_params = self._starting_params() else: start_params = np.asarray(start_params) mean_params = start_params.copy() self.update_cached_means(mean_params) del_params = -1. num_assoc_updates = 0 for itr in range(maxiter): update, score = self._update_mean_params() if update is None: warnings.warn("Singular matrix encountered in GEE update", ConvergenceWarning) break mean_params += update self.update_cached_means(mean_params) # L2 norm of the change in mean structure parameters at # this iteration. del_params = np.sqrt(np.sum(score ** 2)) self._fit_history['params'].append(mean_params.copy()) self._fit_history['score'].append(score) self._fit_history['dep_params'].append( self.cov_struct.dep_params) # Don't exit until the association parameters have been # updated at least once. if (del_params < ctol and (num_assoc_updates > 0 or self.update_dep is False)): break # Update the dependence structure if (self.update_dep and (itr % params_niter) == 0 and (itr >= first_dep_update)): self._update_assoc(mean_params) num_assoc_updates += 1 if del_params >= ctol: warnings.warn("Iteration limit reached prior to convergence", IterationLimitWarning) if mean_params is None: warnings.warn("Unable to estimate GEE parameters.", ConvergenceWarning) return None bcov, ncov, _ = self._covmat() if bcov is None: warnings.warn("Estimated covariance structure for GEE " "estimates is singular", ConvergenceWarning) return None bc_cov = None if cov_type == "bias_reduced": bc_cov = self._bc_covmat(ncov) if self.constraint is not None: x = mean_params.copy() mean_params, bcov = self._handle_constraint(mean_params, bcov) if mean_params is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None y, ncov = self._handle_constraint(x, ncov) if y is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None if bc_cov is not None: y, bc_cov = self._handle_constraint(x, bc_cov) if x is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None scale = self.estimate_scale() # kwargs to add to results instance, need to be available in __init__ res_kwds = dict(cov_type=cov_type, cov_robust=bcov, cov_naive=ncov, cov_robust_bc=bc_cov) # The superclass constructor will multiply the covariance # matrix argument bcov by scale, which we don't want, so we # divide bcov by the scale parameter here results = GEEResults(self, mean_params, bcov / scale, scale, cov_type=cov_type, use_t=False, attr_kwds=res_kwds) # attributes not needed during results__init__ results.fit_history = self._fit_history self.fit_history = defaultdict(list) results.score_norm = del_params results.converged = (del_params < ctol) results.cov_struct = self.cov_struct results.params_niter = params_niter results.first_dep_update = first_dep_update results.ctol = ctol results.maxiter = maxiter # These will be copied over to subclasses when upgrading. results._props = ["cov_type", "use_t", "cov_params_default", "cov_robust", "cov_naive", "cov_robust_bc", "fit_history", "score_norm", "converged", "cov_struct", "params_niter", "first_dep_update", "ctol", "maxiter"] return GEEResultsWrapper(results) fit.__doc__ = _gee_fit_doc def _update_regularized(self, params, pen_wt, scad_param, eps): sn, hm = 0, 0 for i in range(self.num_group): expval, _ = self.cached_means[i] resid = self.endog_li[i] - expval sdev = np.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid, ex)) sn0 = rslt[0] sn += np.dot(ex.T, sn0) hm0 = rslt[1] hm += np.dot(ex.T, hm0) # Wang et al. divide sn here by num_group, but that # seems to be incorrect ap = np.abs(params) clipped = np.clip(scad_param * pen_wt - ap, 0, np.inf) en = pen_wt * clipped * (ap > pen_wt) en /= (scad_param - 1) * pen_wt en += pen_wt * (ap <= pen_wt) en /= eps + ap hm.flat[::hm.shape[0] + 1] += self.num_group * en hm *= self.estimate_scale() sn -= self.num_group * en * params return np.linalg.solve(hm, sn), hm def _regularized_covmat(self, mean_params): self.update_cached_means(mean_params) ma = 0 for i in range(self.num_group): expval, _ = self.cached_means[i] resid = self.endog_li[i] - expval sdev = np.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid,)) ma0 = np.dot(ex.T, rslt[0]) ma += np.outer(ma0, ma0) return ma def fit_regularized(self, pen_wt, scad_param=3.7, maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-5, ztol=1e-3, eps=1e-6): """ Regularized estimation for GEE. Parameters ---------- pen_wt : float The penalty weight (a non-negative scalar). scad_param : float Non-negative scalar determining the shape of the Scad penalty. maxiter : integer The maximum number of iterations. ddof_scale : integer Value to subtract from `nobs` when calculating the denominator degrees of freedom for t-statistics, defaults to the number of columns in `exog`. update_assoc : integer The dependence parameters are updated every `update_assoc` iterations of the mean structure parameter updates. ctol : float Convergence criterion, default is one order of magnitude smaller than proposed in section 3.1 of Wang et al. ztol : float Coefficients smaller than this value are treated as being zero, default is based on section 5 of Wang et al. eps : non-negative scalar Numerical constant, see section 3.2 of Wang et al. Returns ------- GEEResults instance. Note that not all methods of the results class make sense when the model has been fit with regularization. Notes ----- This implementation assumes that the link is canonical. References ---------- <NAME>, <NAME>, <NAME>. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf """ mean_params = np.zeros(self.exog.shape[1]) self.update_cached_means(mean_params) converged = False fit_history = defaultdict(list) # Subtract this number from the total sample size when # normalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale for itr in range(maxiter): update, hm = self._update_regularized( mean_params, pen_wt, scad_param, eps) if update is None: msg = "Singular matrix encountered in regularized GEE update", warnings.warn(msg, ConvergenceWarning) break if np.sqrt(np.sum(update**2)) < ctol: converged = True break mean_params += update fit_history['params'].append(mean_params.copy()) self.update_cached_means(mean_params) if itr != 0 and (itr % update_assoc == 0): self._update_assoc(mean_params) if not converged: msg = "GEE.fit_regularized did not converge" warnings.warn(msg) mean_params[
np.abs(mean_params)
numpy.abs
r""" Special Functions ................. This following standard C99 math functions are available: M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E: $\pi$, $\pi/2$, $\pi/4$, $1/\sqrt{2}$ and Euler's constant $e$ exp, log, pow(x,y), expm1, log1p, sqrt, cbrt: Power functions $e^x$, $\ln x$, $x^y$, $e^x - 1$, $\ln 1 + x$, $\sqrt{x}$, $\sqrt[3]{x}$. The functions expm1(x) and log1p(x) are accurate across all $x$, including $x$ very close to zero. sin, cos, tan, asin, acos, atan: Trigonometry functions and inverses, operating on radians. sinh, cosh, tanh, asinh, acosh, atanh: Hyperbolic trigonometry functions. atan2(y,x): Angle from the $x$\ -axis to the point $(x,y)$, which is equal to $\tan^{-1}(y/x)$ corrected for quadrant. That is, if $x$ and $y$ are both negative, then atan2(y,x) returns a value in quadrant III where atan(y/x) would return a value in quadrant I. Similarly for quadrants II and IV when $x$ and $y$ have opposite sign. fabs(x), fmin(x,y), fmax(x,y), trunc, rint: Floating point functions. rint(x) returns the nearest integer. NAN: NaN, Not a Number, $0/0$. Use isnan(x) to test for NaN. Note that you cannot use :code:`x == NAN` to test for NaN values since that will always return false. NAN does not equal NAN! The alternative, :code:`x != x` may fail if the compiler optimizes the test away. INFINITY: $\infty, 1/0$. Use isinf(x) to test for infinity, or isfinite(x) to test for finite and not NaN. erf, erfc, tgamma, lgamma: **do not use** Special functions that should be part of the standard, but are missing or inaccurate on some platforms. Use sas_erf, sas_erfc and sas_gamma instead (see below). Note: lgamma(x) has not yet been tested. Some non-standard constants and functions are also provided: M_PI_180, M_4PI_3: $\frac{\pi}{180}$, $\frac{4\pi}{3}$ SINCOS(x, s, c): Macro which sets s=sin(x) and c=cos(x). The variables *c* and *s* must be declared first. square(x): $x^2$ cube(x): $x^3$ sas_sinx_x(x): $\sin(x)/x$, with limit $\sin(0)/0 = 1$. powr(x, y): $x^y$ for $x \ge 0$; this is faster than general $x^y$ on some GPUs. pown(x, n): $x^n$ for $n$ integer; this is faster than general $x^n$ on some GPUs. FLOAT_SIZE: The number of bytes in a floating point value. Even though all variables are declared double, they may be converted to single precision float before running. If your algorithm depends on precision (which is not uncommon for numerical algorithms), use the following:: #if FLOAT_SIZE>4 ... code for double precision ... #else ... code for single precision ... #endif SAS_DOUBLE: A replacement for :code:`double` so that the declared variable will stay double precision; this should generally not be used since some graphics cards do not support double precision. There is no provision for forcing a constant to stay double precision. The following special functions and scattering calculations are defined. These functions have been tuned to be fast and numerically stable down to $q=0$ even in single precision. In some cases they work around bugs which appear on some platforms but not others, so use them where needed. Add the files listed in :code:`source = ["lib/file.c", ...]` to your *model.py* file in the order given, otherwise these functions will not be available. polevl(x, c, n): Polynomial evaluation $p(x) = \sum_{i=0}^n c_i x^i$ using Horner's method so it is faster and more accurate. $c = \{c_n, c_{n-1}, \ldots, c_0 \}$ is the table of coefficients, sorted from highest to lowest. p1evl(x, c, n): Evaluate normalized polynomial $p(x) = x^n + \sum_{i=0}^{n-1} c_i x^i$ using Horner's method so it is faster and more accurate. $c = \{c_{n-1}, c_{n-2} \ldots, c_0 \}$ is the table of coefficients, sorted from highest to lowest. sas_gamma(x): Gamma function $\text{sas_gamma}(x) = \Gamma(x)$. The standard math function, tgamma(x) is unstable for $x < 1$ on some platforms. sas_gammaln(x): log gamma function sas_gammaln\ $(x) = \log \Gamma(|x|)$. The standard math function, lgamma(x), is incorrect for single precision on some platforms. sas_gammainc(a, x), sas_gammaincc(a, x): Incomplete gamma function sas_gammainc\ $(a, x) = \int_0^x t^{a-1}e^{-t}\,dt / \Gamma(a)$ and complementary incomplete gamma function sas_gammaincc\ $(a, x) = \int_x^\infty t^{a-1}e^{-t}\,dt / \Gamma(a)$ sas_erf(x), sas_erfc(x): Error function $\text{sas_erf}(x) = \frac{2}{\sqrt\pi}\int_0^x e^{-t^2}\,dt$ and complementary error function $\text{sas_erfc}(x) = \frac{2}{\sqrt\pi}\int_x^{\infty} e^{-t^2}\,dt$. The standard math functions erf(x) and erfc(x) are slower and broken on some platforms. sas_J0(x): Bessel function of the first kind $\text{sas_J0}(x)=J_0(x)$ where $J_0(x) = \frac{1}{\pi}\int_0^\pi \cos(x\sin(\tau))\,d\tau$. The standard math function j0(x) is not available on all platforms. sas_J1(x): Bessel function of the first kind $\text{sas_J1}(x)=J_1(x)$ where $J_1(x) = \frac{1}{\pi}\int_0^\pi \cos(\tau - x\sin(\tau))\,d\tau$. The standard math function j1(x) is not available on all platforms. sas_JN(n, x): Bessel function of the first kind and integer order $n$: $\text{sas_JN}(n, x)=J_n(x)$ where $J_n(x) = \frac{1}{\pi}\int_0^\pi \cos(n\tau - x\sin(\tau))\,d\tau$. If $n$ = 0 or 1, it uses sas_J0(x) or sas_J1(x), respectively. The standard math function jn(n, x) is not available on all platforms. sas_Si(x): Sine integral $\text{Si}(x) = \int_0^x \tfrac{\sin t}{t}\,dt$. This function uses Taylor series for small and large arguments: For large arguments, .. math:: \text{Si}(x) \sim \frac{\pi}{2} - \frac{\cos(x)}{x} \left(1 - \frac{2!}{x^2} + \frac{4!}{x^4} - \frac{6!}{x^6} \right) - \frac{\sin(x)}{x} \left(\frac{1}{x} - \frac{3!}{x^3} + \frac{5!}{x^5} - \frac{7!}{x^7}\right) For small arguments, .. math:: \text{Si}(x) \sim x - \frac{x^3}{3\times 3!} + \frac{x^5}{5 \times 5!} - \frac{x^7}{7 \times 7!} + \frac{x^9}{9\times 9!} - \frac{x^{11}}{11\times 11!} sas_3j1x_x(x): Spherical Bessel form $\text{sph_j1c}(x) = 3 j_1(x)/x = 3 (\sin(x) - x \cos(x))/x^3$, with a limiting value of 1 at $x=0$, where $j_1(x)$ is the spherical Bessel function of the first kind and first order. This function uses a Taylor series for small $x$ for numerical accuracy. sas_2J1x_x(x): Bessel form $\text{sas_J1c}(x) = 2 J_1(x)/x$, with a limiting value of 1 at $x=0$, where $J_1(x)$ is the Bessel function of first kind and first order. gauss76.n, gauss76.z[i], gauss76.w[i]: Points $z_i$ and weights $w_i$ for 76-point Gaussian quadrature, respectively, computing $\int_{-1}^1 f(z)\,dz \approx \sum_{i=1}^{76} w_i\,f(z_i)$. When translating the model to C, include 'lib/gauss76.c' in the source and use :code:`GAUSS_N`, :code:`GAUSS_Z`, and :code:`GAUSS_W`. Similar arrays are available in :code:`gauss20` for 20-point quadrature and :code:`gauss150.c` for 150-point quadrature. By using :code:`import gauss76 as gauss` it is easy to change the number of points in the integration. """ # pylint: disable=unused-import import numpy as np # Functions to add to our standard set from numpy import degrees, radians # C99 standard math library functions from numpy import exp, log, power as pow, expm1, log1p, sqrt, cbrt from numpy import sin, cos, tan, arcsin as asin, arccos as acos, arctan as atan from numpy import sinh, cosh, tanh, arcsinh as asinh, arccosh as acosh, arctanh as atanh from numpy import arctan2 as atan2 from numpy import fabs, fmin, fmax, trunc, rint from numpy import pi, nan, inf from scipy.special import gamma as sas_gamma from scipy.special import gammaln as sas_gammaln from scipy.special import gammainc as sas_gammainc from scipy.special import gammaincc as sas_gammaincc from scipy.special import erf as sas_erf from scipy.special import erfc as sas_erfc from scipy.special import j0 as sas_J0 from scipy.special import j1 as sas_J1 from scipy.special import jn as sas_JN # erf, erfc, tgamma, lgamma **do not use** # C99 standard math constants M_PI, M_PI_2, M_PI_4, M_SQRT1_2, M_E = np.pi, np.pi/2, np.pi/4, np.sqrt(0.5), np.e NAN = nan INFINITY = inf # non-standard constants M_PI_180, M_4PI_3 = M_PI/180, 4*M_PI/3 # can't do SINCOS in python; use "s, c = SINCOS(x)" instead def SINCOS(x): """return sin(x), cos(x)""" return sin(x), cos(x) sincos = SINCOS def square(x): """return x^2""" return x*x def cube(x): """return x^3""" return x*x*x def sas_sinx_x(x): """return sin(x)/x""" from numpy import sinc as _sinc return _sinc(x/M_PI) def powr(x, y): """return x^y for x>0""" return x**y def pown(x, n): """return x^n for n integer""" return x**n FLOAT_SIZE = 8 def polevl(x, c, n): """return p(x) for polynomial p of degree n-1 with coefficients c""" return np.polyval(c[:n], x) def p1evl(x, c, n): """return x^n + p(x) for polynomial p of degree n-1 with coefficients c""" return np.polyval(np.hstack(([1.], c))[:n], x) def sas_Si(x): """return Si(x)""" from scipy.special import sici return sici(x)[0] def sas_j1(x): """return j1(x)""" if np.isscalar(x): retvalue = (sin(x) - x*
cos(x)
numpy.cos
import os import torch import cv2 import json import time import numpy as np from torch.autograd import Variable import torch.nn.functional as F from torch import nn import matplotlib.pyplot as plt from copy import deepcopy from tqdm import tqdm from config import system_configs from PIL import Image, ImageGrab while(True): image = np.array(ImageGrab.grab(bbox=(0,40,800,640))) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) height, width = image.shape[0:2] # gps_track = np.array([[[168,84,243]]]).repeat(600, axis=0).repeat(800, axis=1) height, width, _ = image.shape select_r = np.array(image[:,:,2]==168, dtype=np.uint8) select_g =
np.array(image[:,:,1]==84, dtype=np.uint8)
numpy.array
""" climt/LICENSE @mcgibbon BSD License Copyright (c) 2016, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import cftime import datetime import numpy as np from typing import Union, TypeVar import xarray as xr RAD_PER_DEG = np.pi / 180.0 T = TypeVar("T", xr.DataArray, np.ndarray, float) def _ensure_units_of_degrees(da): units = da.attrs.get("units", "").lower() if "rad" in units: return np.rad2deg(da).assign_attrs(units="degrees") else: return da def cos_zenith_angle( time: Union[T, datetime.datetime, cftime.DatetimeJulian], lon: T, lat: T, ) -> T: """ Cosine of sun-zenith angle for lon, lat at time (UTC). If DataArrays are provided for the lat and lon arguments, their units will be assumed to be in degrees, unless they have a units attribute that contains "rad"; in that case they will automatically be converted to having units of degrees. Args: time: time in UTC lon: float or np.ndarray in degrees (E/W), or xr.DataArray lat: float or np.ndarray in degrees (N/S), or xr.DataArray Returns: float, np.ndarray, or xr.DataArray """ if isinstance(lon, xr.DataArray): lon = _ensure_units_of_degrees(lon) lat = _ensure_units_of_degrees(lat) return ( xr.apply_ufunc( cos_zenith_angle, time, lon, lat, dask="parallelized", output_dtypes=[np.float64], ) .rename("cos_zenith_angle") .assign_attrs(units="") ) else: lon_rad, lat_rad = lon * RAD_PER_DEG, lat * RAD_PER_DEG return _star_cos_zenith(time, lon_rad, lat_rad) def _days_from_2000(model_time): """Get the days since year 2000. """ date_type = type(np.asarray(model_time).ravel()[0]) if date_type not in [datetime.datetime, cftime.DatetimeJulian]: raise ValueError( f"model_time has an invalid date type. It must be either " f"datetime.datetime or cftime.DatetimeJulian. Got {date_type}." ) return _total_days(model_time - date_type(2000, 1, 1, 12, 0)) def _total_days(time_diff): """ Total time in units of days """ return
np.asarray(time_diff)
numpy.asarray
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as mplcm import matplotlib.colors as colors import os, sys import pandas from Bio import Phylo import utility_functions_beast as beast_utils import utility_functions_simulated_data as sim_utils from plot_defaults import * def read_treetime_results_dataset(fname): """ Read results of the TreeTime simulations Args: - fname: path to the input file Returns: - df: Table of results as pandas data-frame """ columns = ['File', 'Sim_Tmrca', 'Tmrca', 'mu', 'R', 'R2_int'] df = pandas.read_csv(fname, names=columns) #filter obviously failed simulations df = df[[len(str(k)) > 10 for k in df.File]] df = df[df.R > 0.1] # some very basic preprocessing df['dTmrca'] = -(df['Sim_Tmrca'] - df['Tmrca']) df['Sim_mu'] = map(lambda x: float(x.split("/")[-1].split('_')[6][2:]), df.File) df['Ns'] = map(lambda x: int(x.split("/")[-1].split('_')[3][2:]), df.File) df['Ts'] = map(lambda x: int(x.split("/")[-1].split('_')[4][2:]), df.File) df['N'] = map(lambda x: int(x.split("/")[-1].split('_')[2][1:]), df.File) df['T'] = df['Ns']*df['Ts'] df['Nmu'] = (df['N']*df['Sim_mu']) return df def read_lsd_results_dataset(fname): """ Read results of the LSd simulations Args: - fname: path to the input file Returns: - df: Table of results as pandas data-frame """ columns = ['File', 'Sim_Tmrca', 'Tmrca', 'mu', 'obj'] df = pandas.read_csv(fname, names=columns) # Filter out obviously wrong data df = df[[len(k) > 10 for k in df.File]] #Some basic preprocessing df['dTmrca'] = -(df['Sim_Tmrca'] - df['Tmrca']) df['Sim_mu'] = map(lambda x: float(x.split("/")[-1].split('_')[6][2:]), df.File) df['Ns'] = map(lambda x: int(x.split("/")[-1].split('_')[3][2:]), df.File) df['Ts'] = map(lambda x: int(x.split("/")[-1].split('_')[4][2:]), df.File) df['N'] = map(lambda x: int(x.split("/")[-1].split('_')[2][1:]), df.File) df['T'] = df['Ns']*df['Ts'] df['Nmu'] = (df['N']*df['Sim_mu']) return df def create_lsd_tt_pivot(df, T_over_N=None, mean_or_median='median'): if T_over_N is not None: DF = df[ df["T"] / df["N"] == T_over_N ] else: DF = df N_MUS =
np.unique(DF.Nmu)
numpy.unique
# - * - coding: utf-8 - * - import numpy as np import pandas as pd import matplotlib.pyplot as plt import scipy.signal from ..signal import signal_smooth from ..signal import signal_zerocrossings def ecg_findpeaks(ecg_cleaned, sampling_rate=1000, method="neurokit", show=False): """Find R-peaks in an ECG signal. Low-level function used by `ecg_peaks()` to identify R-peaks in an ECG signal using a different set of algorithms. See `ecg_peaks()` for details. Parameters ---------- ecg_cleaned : list, array or Series The cleaned ECG channel as returned by `ecg_clean()`. sampling_rate : int The sampling frequency of `ecg_signal` (in Hz, i.e., samples/second). Defaults to 1000. method : string The algorithm to be used for R-peak detection. Can be one of 'neurokit' (default), 'pamtompkins1985', 'hamilton2002', 'christov2004', 'gamboa2008', 'elgendi2010', 'engzeemod2012', 'kalidas2017', 'martinez2003' or 'rodrigues2020'. show : bool If True, will return a plot to visualizing the thresholds used in the algorithm. Useful for debugging. Returns ------- info : dict A dictionary containing additional information, in this case the samples at which R-peaks occur, accessible with the key "ECG_R_Peaks". See Also -------- ecg_clean, signal_fixpeaks, ecg_peaks, ecg_rate, ecg_process, ecg_plot Examples -------- >>> import neurokit2 as nk >>> >>> ecg = nk.ecg_simulate(duration=10, sampling_rate=1000) >>> cleaned = nk.ecg_clean(ecg, sampling_rate=1000) >>> info = nk.ecg_findpeaks(cleaned) >>> nk.events_plot(info["ECG_R_Peaks"], cleaned) >>> >>> # Different methods >>> neurokit = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="neurokit"), method="neurokit") >>> pantompkins1985 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="pantompkins1985"), method="pantompkins1985") >>> hamilton2002 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="hamilton2002"), method="hamilton2002") >>> christov2004 = nk.ecg_findpeaks(cleaned, method="christov2004") >>> gamboa2008 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="gamboa2008"), method="gamboa2008") >>> elgendi2010 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="elgendi2010"), method="elgendi2010") >>> engzeemod2012 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="engzeemod2012"), method="engzeemod2012") >>> kalidas2017 = nk.ecg_findpeaks(nk.ecg_clean(ecg, method="kalidas2017"), method="kalidas2017") >>> martinez2003 = nk.ecg_findpeaks(cleaned, method="martinez2003") >>> >>> # Visualize >>> nk.events_plot([neurokit["ECG_R_Peaks"], pantompkins1985["ECG_R_Peaks"], hamilton2002["ECG_R_Peaks"], christov2004["ECG_R_Peaks"], gamboa2008["ECG_R_Peaks"], elgendi2010["ECG_R_Peaks"], engzeemod2012["ECG_R_Peaks"], kalidas2017["ECG_R_Peaks"]], martinez2003["ECG_R_Peaks"]], cleaned) References -------------- - <NAME>. (2008). Multi-modal behavioral biometrics based on hci and electrophysiology. PhD ThesisUniversidade. - <NAME>, <NAME>, <NAME>, and <NAME>. An open-source algorithm to detect onset of arterial blood pressure pulses. In Computers in Cardiology, 2003, pages 259–262, 2003. - Hamilton, Open Source ECG Analysis Software Documentation, E.P.Limited, 2002. - <NAME> and <NAME>. A Real-Time QRS Detection Algorithm. In: IEEE Transactions on Biomedical Engineering BME-32.3 (1985), pp. 230–236. - <NAME>, A single scan algorithm for QRS detection and feature extraction, IEEE Comp. in Cardiology, vol. 6, pp. 37-42, 1979 - <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, "Real Time Electrocardiogram Segmentation for Finger Based ECG Biometrics", BIOSIGNALS 2012, pp. 49-54, 2012. """ # Try retrieving right column if isinstance(ecg_cleaned, pd.DataFrame): try: ecg_cleaned = ecg_cleaned["ECG_Clean"] except NameError: try: ecg_cleaned = ecg_cleaned["ECG_Raw"] except NameError: ecg_cleaned = ecg_cleaned["ECG"] method = method.lower() # remove capitalised letters # Run peak detection algorithm if method in ["nk", "nk2", "neurokit", "neurokit2"]: rpeaks = _ecg_findpeaks_neurokit(ecg_cleaned, sampling_rate, show=show) elif method in ["pantompkins", "pantompkins1985"]: rpeaks = _ecg_findpeaks_pantompkins(ecg_cleaned, sampling_rate) elif method in ["gamboa2008", "gamboa"]: rpeaks = _ecg_findpeaks_gamboa(ecg_cleaned, sampling_rate) elif method in ["ssf", "slopesumfunction", "zong", "zong2003"]: rpeaks = _ecg_findpeaks_ssf(ecg_cleaned, sampling_rate) elif method in ["hamilton", "hamilton2002"]: rpeaks = _ecg_findpeaks_hamilton(ecg_cleaned, sampling_rate) elif method in ["christov", "christov2004"]: rpeaks = _ecg_findpeaks_christov(ecg_cleaned, sampling_rate) elif method in ["engzee", "engzee2012", "engzeemod", "engzeemod2012"]: rpeaks = _ecg_findpeaks_engzee(ecg_cleaned, sampling_rate) elif method in ["elgendi", "elgendi2010"]: rpeaks = _ecg_findpeaks_elgendi(ecg_cleaned, sampling_rate) elif method in ["kalidas2017", "swt", "kalidas", "kalidastamil", "kalidastamil2017"]: rpeaks = _ecg_findpeaks_kalidas(ecg_cleaned, sampling_rate) elif method in ["martinez2003", "martinez"]: rpeaks = _ecg_findpeaks_WT(ecg_cleaned, sampling_rate) elif method in ["rodrigues2020", "rodrigues", "asi"]: rpeaks = _ecg_findpeaks_rodrigues(ecg_cleaned, sampling_rate) else: raise ValueError("NeuroKit error: ecg_findpeaks(): 'method' should be " "one of 'neurokit' or 'pamtompkins'.") # Prepare output. info = {"ECG_R_Peaks": rpeaks} return info # ============================================================================= # NeuroKit # ============================================================================= def _ecg_findpeaks_neurokit(signal, sampling_rate=1000, smoothwindow=.1, avgwindow=.75, gradthreshweight=1.5, minlenweight=0.4, mindelay=0.3, show=False): """ All tune-able parameters are specified as keyword arguments. The `signal` must be the highpass-filtered raw ECG with a lowcut of .5 Hz. """ if show is True: fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, sharex=True) # Compute the ECG's gradient as well as the gradient threshold. Run with # show=True in order to get an idea of the threshold. grad = np.gradient(signal) absgrad = np.abs(grad) smooth_kernel = int(np.rint(smoothwindow * sampling_rate)) avg_kernel = int(np.rint(avgwindow * sampling_rate)) smoothgrad = signal_smooth(absgrad, kernel="boxcar", size=smooth_kernel) avggrad = signal_smooth(smoothgrad, kernel="boxcar", size=avg_kernel) gradthreshold = gradthreshweight * avggrad mindelay = int(np.rint(sampling_rate * mindelay)) if show is True: ax1.plot(signal) ax2.plot(smoothgrad) ax2.plot(gradthreshold) # Identify start and end of QRS complexes. qrs = smoothgrad > gradthreshold beg_qrs = np.where(np.logical_and(np.logical_not(qrs[0:-1]), qrs[1:]))[0] end_qrs = np.where(np.logical_and(qrs[0:-1], np.logical_not(qrs[1:])))[0] # Throw out QRS-ends that precede first QRS-start. end_qrs = end_qrs[end_qrs > beg_qrs[0]] # Identify R-peaks within QRS (ignore QRS that are too short). num_qrs = min(beg_qrs.size, end_qrs.size) min_len =
np.mean(end_qrs[:num_qrs] - beg_qrs[:num_qrs])
numpy.mean
#!/usr/bin/env python3 # extract srt form of subtitles from dji movie (caption setting needs # to be turned on when movie is recorded) # # ffmpeg -txt_format text -i input_file.MOV output_file.srt import argparse import cv2 import datetime import skvideo.io # pip3 install scikit-video import math import fractions import json from matplotlib import pyplot as plt import numpy as np import os import pyexiv2 import re import sys from scipy import interpolate # strait up linear interpolation, nothing fancy from auracore import wgs84 from aurauas_flightdata import flight_loader, flight_interp from props import PropertyNode import props_json import djilog parser = argparse.ArgumentParser(description='extract and geotag dji movie frames.') parser.add_argument('--video', required=True, help='input video') parser.add_argument('--camera', help='select camera calibration file') parser.add_argument('--cam-mount', choices=['forward', 'down', 'rear'], default='down', help='approximate camera mounting orientation') parser.add_argument('--interval', type=float, default=1.0, help='extraction interval') parser.add_argument('--distance', type=float, help='max extraction distance interval') parser.add_argument('--start-time', type=float, help='begin frame grabbing at this time.') parser.add_argument('--end-time', type=float, help='end frame grabbing at this time.') parser.add_argument('--start-counter', type=int, default=1, help='first image counter') parser.add_argument('--ground', type=float, help='ground altitude in meters') parser.add_argument('--djicsv', help='name of dji exported csv log file from the flight, see https://www.phantomhelp.com/logviewer/upload/') args = parser.parse_args() r2d = 180.0 / math.pi match_ratio = 0.75 scale = 0.4 filter_method = 'homography' tol = 3.0 overlap = 0.25 djicsv = djilog.djicsv() djicsv.load(args.djicsv) class Fraction(fractions.Fraction): """Only create Fractions from floats. >>> Fraction(0.3) Fraction(3, 10) >>> Fraction(1.1) Fraction(11, 10) """ def __new__(cls, value, ignore=None): """Should be compatible with Python 2.6, though untested.""" return fractions.Fraction.from_float(value).limit_denominator(99999) def dms_to_decimal(degrees, minutes, seconds, sign=' '): """Convert degrees, minutes, seconds into decimal degrees. >>> dms_to_decimal(10, 10, 10) 10.169444444444444 >>> dms_to_decimal(8, 9, 10, 'S') -8.152777777777779 """ return (-1 if sign[0] in 'SWsw' else 1) * ( float(degrees) + float(minutes) / 60 + float(seconds) / 3600 ) def decimal_to_dms(decimal): """Convert decimal degrees into degrees, minutes, seconds. >>> decimal_to_dms(50.445891) [Fraction(50, 1), Fraction(26, 1), Fraction(113019, 2500)] >>> decimal_to_dms(-125.976893) [Fraction(125, 1), Fraction(58, 1), Fraction(92037, 2500)] """ remainder, degrees = math.modf(abs(decimal)) remainder, minutes = math.modf(remainder * 60) return [Fraction(n) for n in (degrees, minutes, remainder * 60)] # find affine transform between matching keypoints in pixel # coordinate space. fullAffine=True means unconstrained to # include best warp/shear. fullAffine=False means limit the # matrix to only best rotation, translation, and scale. def findAffine(src, dst, fullAffine=False): affine_minpts = 7 #print("src:", src) #print("dst:", dst) if len(src) >= affine_minpts: # affine = cv2.estimateRigidTransform(np.array([src]), np.array([dst]), fullAffine) affine, status = \ cv2.estimateAffinePartial2D(np.array([src]).astype(np.float32), np.array([dst]).astype(np.float32)) else: affine = None #print str(affine) return affine def decomposeAffine(affine): if affine is None: return (0.0, 0.0, 0.0, 1.0, 1.0) tx = affine[0][2] ty = affine[1][2] a = affine[0][0] b = affine[0][1] c = affine[1][0] d = affine[1][1] sx = math.sqrt( a*a + b*b ) if a < 0.0: sx = -sx sy = math.sqrt( c*c + d*d ) if d < 0.0: sy = -sy rotate_deg = math.atan2(-b,a) * 180.0/math.pi if rotate_deg < -180.0: rotate_deg += 360.0 if rotate_deg > 180.0: rotate_deg -= 360.0 return (rotate_deg, tx, ty, sx, sy) def filterMatches(kp1, kp2, matches): mkp1, mkp2 = [], [] idx_pairs = [] used = np.zeros(len(kp2), np.bool_) for m in matches: if len(m) == 2 and m[0].distance < m[1].distance * match_ratio: #print " dist[0] = %d dist[1] = %d" % (m[0].distance, m[1].distance) m = m[0] # FIXME: ignore the bottom section of movie for feature detection #if kp1[m.queryIdx].pt[1] > h*0.75: # continue if not used[m.trainIdx]: used[m.trainIdx] = True mkp1.append( kp1[m.queryIdx] ) mkp2.append( kp2[m.trainIdx] ) idx_pairs.append( (m.queryIdx, m.trainIdx) ) p1 = np.float32([kp.pt for kp in mkp1]) p2 = np.float32([kp.pt for kp in mkp2]) kp_pairs = zip(mkp1, mkp2) return p1, p2, kp_pairs, idx_pairs, mkp1 def filterFeatures(p1, p2, K, method): inliers = 0 total = len(p1) space = "" status = [] M = None if len(p1) < 7: # not enough points return None, np.zeros(total), [], [] if method == 'homography': M, status = cv2.findHomography(p1, p2, cv2.LMEDS, tol) elif method == 'fundamental': M, status = cv2.findFundamentalMat(p1, p2, cv2.LMEDS, tol) elif method == 'essential': M, status = cv2.findEssentialMat(p1, p2, K, cv2.LMEDS, threshold=tol) elif method == 'none': M = None status =
np.ones(total)
numpy.ones
import datetime from collections import OrderedDict import numpy as np import pandas as pd import pytest from kartothek.core.common_metadata import make_meta, read_schema_metadata from kartothek.core.dataset import DatasetMetadata from kartothek.core.uuid import gen_uuid from kartothek.io.eager import ( create_empty_dataset_header, store_dataframes_as_dataset, write_single_partition, ) from kartothek.io.testing.write import * # noqa: F40 from kartothek.io_components.metapartition import MetaPartition def _store_dataframes(dfs, **kwargs): # Positional arguments in function but `None` is acceptable input for kw in ("dataset_uuid", "store"): if kw not in kwargs: kwargs[kw] = None return store_dataframes_as_dataset(dfs=dfs, **kwargs) @pytest.fixture() def bound_store_dataframes(): return _store_dataframes def test_write_single_partition(store_factory, mock_uuid, metadata_version): create_empty_dataset_header( store=store_factory(), schema=pd.DataFrame({"col": [1]}), dataset_uuid="some_dataset", metadata_version=metadata_version, table_name="table1", ) new_data = pd.DataFrame({"col": [1, 2]}) keys_in_store = set(store_factory().keys()) new_mp = write_single_partition( store=store_factory, dataset_uuid="some_dataset", data=new_data, table_name="table1", ) keys_in_store.add("some_dataset/table1/auto_dataset_uuid.parquet") assert set(store_factory().keys()) == keys_in_store expected_mp = MetaPartition( label="auto_dataset_uuid", # this will be a hash of the input file="some_dataset/table1/auto_dataset_uuid.parquet", metadata_version=4, schema=make_meta(pd.DataFrame({"col": [1, 2]}), origin="table1"), ) assert new_mp == expected_mp with pytest.raises(ValueError): # col is an integer column so this is incompatible. new_data = pd.DataFrame({"col": [datetime.date(2010, 1, 1)]}) write_single_partition( store=store_factory, dataset_uuid="some_dataset", data=new_data, table_name="table1", ) def test_create_dataset_header_minimal_version(store, metadata_storage_format): with pytest.raises(NotImplementedError): create_empty_dataset_header( store=store, schema=pd.DataFrame({"col": [1]}), dataset_uuid="new_dataset_uuid", metadata_storage_format=metadata_storage_format, metadata_version=3, ) create_empty_dataset_header( store=store, schema=pd.DataFrame({"col": [1]}), dataset_uuid="new_dataset_uuid", metadata_storage_format=metadata_storage_format, metadata_version=4, ) def test_create_dataset_header(store, metadata_storage_format, frozen_time): schema = make_meta(pd.DataFrame({"col": [1]}), origin="1") new_dataset = create_empty_dataset_header( store=store, schema=schema, dataset_uuid="new_dataset_uuid", metadata_storage_format=metadata_storage_format, metadata_version=4, ) expected_dataset = DatasetMetadata( uuid="new_dataset_uuid", metadata_version=4, explicit_partitions=False, schema=schema, ) assert new_dataset == expected_dataset storage_keys = list(store.keys()) assert len(storage_keys) == 2 loaded = DatasetMetadata.load_from_store(store=store, uuid="new_dataset_uuid") assert loaded == expected_dataset # If the read succeeds, the schema is written read_schema_metadata(dataset_uuid=new_dataset.uuid, store=store) # TODO: move `store_dataframes_as_dataset` tests to generic tests or remove if redundant def test_store_dataframes_as_dataset_no_pipeline_partition_on(store): df = pd.DataFrame( {"P": np.arange(0, 10), "L": np.arange(0, 10), "TARGET": np.arange(10, 20)} ) dataset = store_dataframes_as_dataset( store=store, dataset_uuid="dataset_uuid", dfs=[df], partition_on="P", metadata_version=4, ) assert isinstance(dataset, DatasetMetadata) assert len(dataset.partitions) == 10 stored_dataset = DatasetMetadata.load_from_store("dataset_uuid", store) assert dataset == stored_dataset def test_store_dataframes_as_dataset_partition_on_inconsistent(store): df = pd.DataFrame( {"P": np.arange(0, 10), "L":
np.arange(0, 10)
numpy.arange
import os import sys import copy import time import textwrap as tw import itertools as it import numpy as np import numba as nb import matplotlib.pyplot as plt import matplotlib.ticker as tck import parser import filehandle as fh def compress_size (size): """ Compress binary array into integers comprising bits """ sim_t = np.bool8 sim_bits = 1 # Computes the best type to compress boolean data with `size` for i in it.count(): nbytes = 1 << i nbits = nbytes << 3 # If size cannot fit into bits if size & (nbits - 1) != 0: break try: # Create numpy dtype sim_t = np.dtype("u{}".format(nbytes)) # Save new bits per type element, e.g., 4 for an integer sim_bits = nbits except TypeError: break return sim_t, sim_bits def binary_combinations (size): """ Build all binary combinations of `size` bits """ exp_size = 1 << size dtype, dbits = compress_size(exp_size) numbers = (exp_size + dbits - 1) // dbits result = np.empty(( size, numbers ), dtype) vals = np.arange(exp_size) temp = np.empty_like(vals) for i in range(size - 1, -1, -1): np.bitwise_and(1 << i, vals, temp) compress(temp, dtype, dbits, result[i]) return result def compress (data, dtype, dbits, out): # Convert only if type is not boolean if dtype is not np.bool8: numbers = (data.shape[0] + dbits - 1) // dbits data = data.reshape(numbers, dbits) bits_shift = np.arange(dbits, dtype = dtype) np.left_shift(data > 0, bits_shift, out = data) out = np.bitwise_or.reduce(data, axis = 1, out = out) else: out[:] = data dgen = np.int64 class CGPException (Exception): """ Class to represent a CGP Exception """ pass class CGP (object): """ Class to represent the Cartesian Genetic Programming """ __slots__ = [ "__p_find_active_loop", "__p_simulate_loop", "__p_energy_loop", "__p_arr_nodes", "__p_arr_cols", "__p_arr_size", "__p_funcs", "__p_arities", "__p_ffmts", "__p_famap", "__p_feval", "__p_integer_mul", "__p_integer_add", "__p___sims_data", "__seed", "__random", "__popsize", "__fnames", "__arity", "__ni", "__no", "__nc", "__gen", "__act", "__fit", "__generation", "__inp_data", "__exp_data", "__best_curve", "__best_gener", "__better", "__worse", "__equal", "__same", "__times", "__time", "__module", "neutral_drift", "mutate_gene" ] def init_properties (self): """ Initialize CGP's properties """ self.__p_find_active_loop = self.__p_simulate_loop = None self.__p_energy_loop = self.__p_arr_nodes = self.__p_arr_cols = None self.__p_arr_size = self.__p_funcs = self.__p_arities = None self.__p_ffmts = self.__p_famap = self.__p_feval = None self.__p_integer_mul = self.__p_integer_add = None self.__p___sims_data = None def __init__ (self, popsize, gates = (), neutral_drift = True, seed = 0): """ Constructs CGP """ self.init_properties() self.__seed = seed self.__popsize = popsize self.__fnames = np.sort(gates) self.__fnames.setflags(write = False) self.__arity = self.arities.max() self.__module = "circuit" self.neutral_drift = neutral_drift def random_genotype (self, amount = 1): """ Generate a random genotype """ return self.to_integer(self.__random.random_sample( ( amount, self.nodes_size + self.no ) )) def setup_one_lambda (self, c_seed, kappa, mutation): """ Setup 1+lambda ES """ self.__module, cinps, chromo, couts = parser.convert(c_seed) self.__ni = len(cinps) self.__no = len(couts) self.__nc = int(np.ceil(len(chromo) * kappa)) self.mutate_gene = mutation / (self.nc + self.no) # Generate one base random genotype self.__gen = self.random_genotype(1) id_map = np.arange(self.ni + len(chromo)) funs, args, outs = self.break_genotypes(self.__gen) gates = { name : i for i, name in enumerate(self.fnames) } # Randomly distributes the original nodes into the random genotype pieces = np.zeros(self.nc, np.bool8) pieces[ : len(chromo) ] = True self.__random.shuffle(pieces) cpos = 0 for pos in np.flatnonzero(pieces): cfun, *cargs = chromo[cpos] if cfun not in gates: raise CGPException("Seed circuit has unselected " "function `{}`.".format(cfun)) funs[ ... , pos ] = gates[cfun] args[ ... , pos , : len(cargs)] = id_map[cargs] id_map[cpos + self.ni] = pos + self.ni cpos += 1 outs[:] = id_map[couts] self.__act = self.find_active(self.__gen) # Generate combinations self.__inp_data = binary_combinations(self.ni) self.__inp_data.setflags(write = False) self.simulate(self.__gen, self.__act, self.__sims_data[ : 1 ]) self.__exp_data = self.__sims_data[ 0 , -self.no : ].copy() self.__exp_data.setflags(write = False) self.__fit = self.get_fitness(self.__gen, self.__act, self.__sims_data[ : 1 ]) def setup (self, c_seed, kappa = 1.0, mutation = 1.0, log = fh.log): """ Setup CGP """ start_time = time.time() self.__random = np.random.RandomState(self.__seed) self.__generation = 0 self.setup_one_lambda(c_seed, kappa, mutation) self.__best_gener = [] self.__best_curve = [] self.__better = [] self.__equal = [] self.__worse = [] self.__same = [] self.__times = [] self.__time = 0.0 rtime = time.time() - start_time self.store_data(0, 0, 0, 0, rtime) self.print_debug(log) def store_data (self, bet, equ, wor, same, rtime): """ Stores newly generated data into the class """ best_fit = self.best_fit if not self.__best_curve or best_fit != self.__best_curve[-1]: # Add to curve iff changed self.__best_curve.append(best_fit) self.__best_gener.append(self.generation) self.__better.append(bet) self.__equal.append(equ) self.__worse.append(wor) self.__same.append(same) self.__times.append(rtime) self.__time += rtime def one_lambda (self): """ Run 1+lambda ES """ # Get current best best_gen, best_act, best_fit = self.best # Storage for new individuals off_gen = np.empty(( self.popsize, self.genotype_size ), best_gen.dtype) off_act = np.empty(self.popsize, np.object) off_fit = np.empty(self.popsize, np.object) same = 0 sames = np.zeros(self.popsize, np.bool8) diff = [] # Generate individuals for pos in range(self.popsize): gen = self.mutation(best_gen) off_gen[pos] = gen if self.same_critical(best_gen, best_act, gen): off_act[pos] = best_act off_fit[pos] = best_fit sames[pos] = True same += 1 else: diff.append(pos) # Evaluate different individuals if diff: diff = np.array(diff) gen = off_gen[diff] act = self.find_active(gen) sim = self.simulate(gen, act, self.__sims_data[ : len(diff) ]) fit = self.get_fitness(gen, act, sim) for i, pos in enumerate(diff): off_act[pos] = act[i] off_fit[pos] = fit[i] pos = None better = equal = worse = 0 new_fit = best_fit # Compare individuals to parent for i, fit in enumerate(off_fit): if fit < best_fit: better += 1 elif best_fit < fit: worse += 1 else: equal += 1 change = fit <= new_fit if self.neutral_drift else fit < new_fit if change: pos = i new_fit = fit # Update best individual if pos is not None: self.__gen = off_gen[pos][np.newaxis] if not sames[pos]: self.__act = off_act[pos][np.newaxis] self.__fit = off_fit[pos][np.newaxis] return better, equal, worse, same def run (self, merge, on_change, every, log = fh.log): """ Run 1 generation """ self.__generation += 1 start_time = time.time() bet, equ, wor, same = self.one_lambda() rtime = time.time() - start_time # Save generation data self.store_data(bet, equ, wor, same, rtime) debug = True if every != 0: # Test if it requires printing changed = self.__best_gener[-1] == self.generation debug = (on_change and changed) or (self.generation % every == 0) else: # Test if it requires to go back to previous line back = merge == 0 or (self.generation - 1) % merge != 0 if on_change and back: back = self.__best_gener[-1] != (self.generation - 1) if back: print("\033[F\033[K", end = "", file = log) if debug: # Print debug message self.print_debug(log) def run_until (self, stop, merge, on_change, every, log = fh.log): """ Run until stop criteria is met """ merge = max(merge, 0) while not stop(self): self.run(merge, on_change, every, log = log) def to_integer (self, rea, mul = None, add = None): """ Convert a floating point individual to integer """ mul = self.integer_mul if mul is None else mul add = self.integer_add if add is None else add gen = np.empty(rea.shape, dgen) np.multiply(rea, mul, casting = "unsafe", out = gen) return np.add(gen, add, out = gen) def break_genotypes (self, gens): """ Break genotypes into functions, arguments, and outputs """ shape = gens.shape[ : -1 ] nod = gens[ ... , : -self.no ].reshape(*shape, -1, self.arity + 1) out = gens[ ... , -self.no : ] fun = nod[ ... , 0 ] arg = nod[ ... , 1 : ] return fun, arg, out @property def find_active_loop (self): """ Build a numba compiled loop to find active nodes """ if self.__p_find_active_loop is None: def __find_active_loop (active, active_nod, nod): """ Compiled loop to find active nodes """ for i in range(active.shape[0]): old_found = 0 nodi = nod[i] activei = active[i] active_nodi = active_nod[i] # Iterate while there are changes while True: new_active = nodi[active_nodi].reshape(-1) found = new_active.shape[0] if found == old_found: break activei[new_active] = True old_found = found # Compile self.__p_find_active_loop = nb.njit([ nb.void(nb.b1[ :, : ], nb.b1[ :, : ], nb.i8[ :, :, : ]) ], nogil = True)(__find_active_loop) return self.__p_find_active_loop def find_active (self, gens): """ Find active nodes on an individual """ active = np.zeros(( gens.shape[0], self.full_size ), np.bool8) active[ ... , -self.no : ] = True active_nod = active[ ... , self.ni : -self.no ] # Set outputs as active lines = np.arange(gens.shape[0]).reshape(-1, 1) active[ lines , gens[ ... , -self.no : ]] = True shape = gens.shape[0] nod = gens[ ... , : -self.no ].reshape(shape, -1, self.arity + 1) fun = nod[ ... , 0 ] nod = nod[ ... , 1 : ].copy() nod[self.famap[fun]] = self.full_size - 1 # Propagate active status to output's parents self.find_active_loop(active, active_nod, nod) return active @property def simulate_loop (self): """ Build a numba compiled loop to simulate circuits """ if self.__p_simulate_loop is None: arities = self.arities feval = self.feval arr_nodes = self.arr_nodes rel_nodes = self.arr_size no = self.no def __simulate_loop (acts_nod, fun, arg, out, sim): """ Compiled loop to simulate circuits """ for i in range(arg.shape[0]): acts_nodi = acts_nod[i] funi = fun[i] argi = arg[i] simi = sim[i] outi = out[i] for npos in rel_nodes[acts_nodi]: fpos = funi[npos] fari = arities[fpos] farg = argi[npos][ : fari] feval(fpos, simi, farg, arr_nodes[npos]) for j in range(-1, -no - 1, -1): simi[j] = simi[outi[j]] # Compile self.__p_simulate_loop = nb.njit(nogil = True)(__simulate_loop) return self.__p_simulate_loop def simulate (self, gens, acts, sim): """ Simulate circuits into `sim` """ fun, arg, out = self.break_genotypes(gens) acts_nod = acts[ ... , self.ni : -self.no ] self.simulate_loop(acts_nod, fun, arg, out, sim) return sim @property def energy_loop (self): """ Build a numba compiled loop to evaluate the Landauer's Limit """ if self.__p_energy_loop is None: rel_nodes = self.arr_size arities = self.arities fnames = self.fnames try: sim_bits = np.iinfo(self.inp_data.dtype).bits except ValueError: sim_bits = 1 nums = self.inp_data.shape[1] to_prob = 1.0 / (nums * sim_bits) def __energy_loop (fun, arg, sims, act_nod, sim_nod, ene): """ Compiled loop to evaluate the Landauer's Limit """ # Iterate over circuits for i in range(len(ene)): simi = sims[i] nods = rel_nodes[act_nod[i]] # Iterate over active nodes for j in range(len(nods)): npos = nods[j] narg = arg[i][npos] fari = arities[fun[i][npos]] c_inp = np.zeros(1 << fari, np.uint64) c_out = np.zeros(2, np.uint64) # Iterate over positions on simulation for k in range(nums): # Iterate over bits on postion for l in range(sim_bits): comb = 0 # Fetch output bit opos = (sim_nod[ i, npos, k ] >> l) & 1 # Fetch inputs' bits' combinations for m in range(fari): comb |= ((simi[narg[m], k] >> l) & 1) << m # Save combinations c_inp[comb] += 1 c_out[opos] += 1 # Calculate energy using Shannon's Entropy energy = 0.0 for v in c_out: if v > 0: prob = v * to_prob energy += prob * np.log2(prob) for v in c_inp: if v > 0: prob = v * to_prob energy -= prob * np.log2(prob) ene[i] += energy # Compile self.__p_energy_loop = nb.njit(nogil = True)(__energy_loop) return self.__p_energy_loop def energy (self, gens, acts, sims): """ Evaluate the energy from circuits """ fun, arg, _ = self.break_genotypes(gens) ene = np.zeros(gens.shape[ : -1 ] or 1, np.double) act_nod = acts[ ... , self.ni : -self.no ] sim_nod = sims[ ... , self.ni : -self.no , : ] self.energy_loop(fun, arg, sims, act_nod, sim_nod, ene) return ene def get_fitness (self, gens, acts, sims): """ Get invidual's fitness """ # Find matching outputs eqs = sims[ ... , -self.no : , : ] == self.exp_data eqs = eqs.all(axis = ( 1 , 2 )) # Fill results with infinity result = np.full(gens.shape[0], np.inf) for i, ( gen, act, sim, eq ) in enumerate(zip(gens, acts, sims, eqs)): if eq: gen = gen[ np.newaxis ] act = act[ np.newaxis ] sim = sim[ np.newaxis ] # Evaluate energy iff all outputs matches result[i] = self.energy(gen, act, sim) return result def print_debug (self, file = fh.log): """ Print debug data """ best_v = self.__best_curve[-1] best = "" if np.isscalar(best_v): best = "{:.5f}".format(best_v) else: best = " ".join(map("{:.5f}".format, best_v)) print("Gen", self.generation, end = ": ", file = file) print("Best = {}".format(best), end = ", ", file = file) print("Same = {}".format(self.__same[-1]), end = ", ", file = file) print("Time = {:.5f}s".format(self.__time), end = ", ", file = file) print("Diff = {:.5f}s".format(self.__times[-1]), file = file) def mutation (self, gen): """ Mutate an indivdual """ randoms = self.__random.random_sample(self.genotype_size) selected = randoms < self.mutate_gene child = gen.copy() changed = self.__random.random_sample(np.count_nonzero(selected)) child[selected] = self.to_integer( changed, self.integer_mul[selected], self.integer_add[selected] ) return child def same_critical (self, gen1, act1, gen2): """ Test if two genotypes share same critical section """ # If outputs are different, they may be different if not np.array_equal(gen1[ -self.no : ], gen2[ -self.no : ]): return False inactive = ~act1[ self.ni : -self.no ] nod1 = gen1[ : -self.no ].reshape(-1, self.arity + 1).copy() nod2 = gen2[ : -self.no ].reshape(-1, self.arity + 1).copy() nod1[inactive] = 0 nod2[inactive] = 0 fun1 = nod1[ : , 0 ] fun2 = nod2[ : , 0 ] # If active functions are different, they may be different if not np.array_equal(fun1, fun2): return False nod1 = nod1[ : , 1 : ] nod2 = nod2[ : , 1 : ] # Test remaining nodes return np.logical_or(nod1 == nod2, self.famap[fun1]).all() def plot (self, file): """ Plot energy convergence curve """ plt.figure() plt.plot( [ *self.__best_gener, self.generation ], [ *self.__best_curve, self.best_fit ], color = "#222222", label = "Energy", lw = 0.5 ) sciargs = { "style" : "sci", "scilimits" : ( 0 , 0 ), "useMathText" : True } ax = plt.gca() gargs = { "axis": "y", "ls": ":" } # Add minor locators ax.yaxis.set_minor_locator(tck.AutoMinorLocator()) # Add grids plt.grid(True, which = "minor", lw = 0.1, color = "#CCCCCC", **gargs) plt.grid(True, which = "major", lw = 0.5, color = "#AAAAAA", **gargs) # Use scientific notiation on x-axis plt.ticklabel_format(axis = "x", **sciargs) # Use scientific notiation on y-axis plt.ticklabel_format(axis = "y", **sciargs) plt.xlabel("Generation") plt.ylabel("Fitness") plt.legend() plt.savefig(file, dpi = 300, transparent = True) plt.close() def verilog (self, gen, act, module = None): """ Convert individual to verilog """ # Max string size is the maximum possible index, # + the type identifier 'i' for inputs, 'n' for nodes, 'o' for outputs, # + the '~' for possible inverted values max_size = len(str(max(( self.ni, self.nc, self.no )))) + 2 names = np.zeros(self.full_size, "|U{}".format(max_size)) exprs = [] inputs = [] outputs = [] wires = [] fun, nod, out = self.break_genotypes(gen) # Create inputs' nodes for node in range(0, self.ni): names[node] = "i{}".format(node) inputs.append(node) # Slice active nodes act_nod = act[ self.ni : -self.no ] # Create logical nodes for node in self.arr_nodes[act_nod]: npos = node - self.ni fpos = fun[npos] ffmt = self.ffmts[fpos] # NOT gate case if self.fnames[fpos] == "NOT": names[node] = parser.invert(names[nod[ npos, 0 ]]) continue # Create name names[node] = "n{}".format(len(wires)) wires.append(node) # Parse args args = nod[ npos , : self.arities[fpos] ] exprs.append(( node, ffmt.format(*names[args]) )) # Create outputs' nodes for node, inp in enumerate(out, self.nout_size): names[node] = "o{}".format(node - self.nout_size) exprs.append(( node, names[inp] )) outputs.append(node) names = np.array(names) # Parse headers ionames = "module {} ({});".format( self.__module if not module else module, ", ".join(it.chain(names[inputs], names[outputs])) ) inames = " input {};".format(", ".join(names[inputs])) onames = " output {};".format(", ".join(names[outputs])) # Create wrapper wrap = tw.TextWrapper( subsequent_indent = " ", break_long_words = False, break_on_hyphens = False, width = 80 ) # Yield wrapped file yield from wrap.wrap(ionames) yield "" yield from wrap.wrap(inames) yield from wrap.wrap(onames) if wires: wnames = " wire {};".format(", ".join(names[wires])) yield from wrap.wrap(wnames) yield "" for node, expr in exprs: assign = " assign {} = {};".format(names[node], expr) yield from wrap.wrap(assign) yield "endmodule" def save_curve (self, fname): """ Save convergence curve to file """ with open(fname, "wb") as file: np.savez_compressed(file, best = self.__best_curve, gene = self.__best_gener, final = self.generation ) def save_stats (self, fname): """ Save evolution stats to file """ with open(fname, "wb") as file: np.savez_compressed(file, same = self.same, better = self.better, equal = self.equal, worse = self.worse, times = self.times ) def save_best (self, fname): """ Save best individual and its data to file """ os.makedirs(os.path.dirname(fname), exist_ok = True) with open(fname, "wb") as file: np.savez_compressed(file, best = self.best_gen, act = self.best_act, fit = self.best_fit ) @property def popsize (self): """ CGP's lambda """ return self.__popsize @property def arr_nodes (self): """ Array of nodes' indices """ if self.__p_arr_nodes is None: self.__p_arr_nodes = np.arange(self.ni, self.nout_size) self.__p_arr_nodes.setflags(write = False) return self.__p_arr_nodes @property def arr_cols (self): """ Array of CGP's columns' indices """ if self.__p_arr_cols is None: self.__p_arr_cols = np.arange(self.nc) self.__p_arr_cols.setflags(write = False) return self.__p_arr_cols @property def arr_size (self): """ Array of CGP's nodes' indices """ if self.__p_arr_size is None: self.__p_arr_size = np.arange(self.nc) self.__p_arr_size.setflags(write = False) return self.__p_arr_size @property def inp_data (self): """ CGP's input data """ return self.__inp_data @property def exp_data (self): """ CGP's expected data, given its input data """ return self.__exp_data @property def generation (self): """ CGP's generation """ return self.__generation @property def best_gen (self): """ CGP's fittest genotype """ return self.__gen[0] @property def best_act (self): """ CGP's fittest genotype's active nodes """ return self.__act[0] @property def best_fit (self): """ CGP's best fitness """ return self.__fit[0] @property def best (self): """ CGP's fittest genotype's data """ return self.best_gen, self.best_act, self.best_fit @property def same (self): """ Same individual, i.e., the ones with same critical section \ as the parent, per generation """ return self.__same @property def better (self): """ Individuals fitter than the parent per generation """ return self.__better @property def equal (self): """ Individuals with same fitness as the parent per generation """ return self.__equal @property def worse (self): """ Individuals less fitter than the parent per generation """ return self.__worse @property def times (self): """ Generation times """ return self.__times @property def time (self): """ Total time """ return self.__time @property def arity (self): """ Maximum arity """ return self.__arity @property def ni (self): """ Input count """ return self.__ni @property def no (self): """ Output count """ return self.__no @property def nc (self): """ Columns count """ return self.__nc @property def nout_size (self): """ Size of non-outputs """ return self.ni + self.nc @property def full_size (self): """ Full circuit size """ return self.nout_size + self.no @property def gene_size (self): """ Gene size """ return 1 + self.arity @property def nodes_size (self): """ Genotype size of nodes section """ return self.nc * self.gene_size @property def genotype_size (self): """ Full genotype size """ return self.nodes_size + self.no @property def fnames (self): """ Gates' functions' names """ return self.__fnames @property def funcs (self): """ Gates' functions """ if self.__p_funcs is None: funcs = np.array([ parser.gates[name][0] for name in self.fnames ]) funcs.setflags(write = False) self.__p_funcs = funcs return self.__p_funcs @property def arities (self): """ Gates' functions' arities """ if self.__p_arities is None: arits = np.array([ parser.gates[name][1] for name in self.fnames ]) arits.setflags(write = False) self.__p_arities = arits return self.__p_arities @property def ffmts (self): """ Gates' functions' formatting strings """ if self.__p_ffmts is None: ffmts = np.array([ parser.gates[name][2] for name in self.fnames ]) ffmts.setflags(write = False) self.__p_ffmts = ffmts return self.__p_ffmts @property def famap (self): """ Gates' functions' map to disabled inputs """ if self.__p_famap is None: famap = np.zeros(( len(self.fnames), self.arity ), np.bool8) for i, arity in enumerate(self.arities): famap[ i, arity : ] = True famap.setflags(write = False) self.__p_famap = famap return self.__p_famap @property def feval (self): """ Compiled function to evaluate a gate's function """ if self.__p_feval is None: # Build function's body func_txt = "def __eval_func (fpos, values, args, out):\n" fmt = "f{}".format for i, ( func, fari ) in enumerate(zip(self.funcs, self.arities)): # Conditions and calls func_txt += ( " {}if fpos == {}:\n" " {}({}, values[out])\n" ).format( ("el" if i else ""), i, fmt(i), ", ".join( "values[args[{}]]".format(j) for j in range(fari) )) # 'Compile' the function's code to python scope = { fmt(i): func for i, func in enumerate(self.funcs) } local = {} exec(func_txt, scope, local) # Compile the python's function self.__p_feval = nb.njit(nogil = True)(local["__eval_func"]) return self.__p_feval @property def integer_mul (self): """ Multiplier to convert genotype from real to integer """ if self.__p_integer_mul is None: i_mul = np.empty(self.genotype_size, dgen) i_mul[ -self.no : ].fill(self.nout_size) # Its value represent the difference between the maximum # and the minimum possible values for each position on the # genotype, hence, when multiplied to the real-valued genotype, # it returns a new genotype on the range [ 0, max - min ] delta_con = self.ni + self.arr_cols delta_con[self.arr_cols >= self.nc] = self.nc delta_con = np.repeat(delta_con, self.arity) nod = i_mul[ : -self.no ].reshape(-1, self.arity + 1) nod[ : , 0 ] = len(self.fnames) nod[ : , 1 : ] = delta_con.reshape(-1, self.arity) i_mul.setflags(write = False) self.__p_integer_mul = i_mul return self.__p_integer_mul @property def integer_add (self): """ Adder to convert genotype from real to integer, \ applied after multiplier """ if self.__p_integer_add is None: i_add =
np.zeros(self.genotype_size, dgen)
numpy.zeros
# Training code for the CVAE driver sensor model. Code is adapted from: https://github.com/sisl/EvidentialSparsification and # https://github.com/StanfordASL/Trajectron-plus-plus. import os import time seed = 123 import numpy as np np.random.seed(seed) from matplotlib import pyplot as plt import torch torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False import torch.nn as nn torch.autograd.set_detect_anomaly(True) from copy import deepcopy import pdb import io import PIL.Image from tqdm import tqdm import argparse import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from torchvision import datasets, transforms from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter from torch.optim.lr_scheduler import ExponentialLR from collections import OrderedDict, defaultdict os.chdir("../..") from src.utils.utils_model import to_var from src.driver_sensor_model.models_cvae import VAE from src.utils.data_generator import * import time import torch._utils try: torch._utils._rebuild_tensor_v2 except AttributeError: def _rebuild_tensor_v2(storage, storage_offset, size, stride, requires_grad, backward_hooks): tensor = torch._utils._rebuild_tensor(storage, storage_offset, size, stride) tensor.requires_grad = requires_grad tensor._backward_hooks = backward_hooks return tensor torch._utils._rebuild_tensor_v2 = _rebuild_tensor_v2 def plot_bar(alpha_p,alpha_q,args): figure = plt.figure() plt.bar(np.arange(args.latent_size)-0.1, alpha_p.cpu().data.numpy(), width=0.2, align='center', color='g', label='alpha_p') plt.bar(
np.arange(args.latent_size)
numpy.arange
from __future__ import division, absolute_import, print_function from functools import reduce import numpy as np import numpy.core.umath as umath import numpy.core.fromnumeric as fromnumeric from numpy.testing import TestCase, run_module_suite, assert_ from numpy.ma.testutils import assert_array_equal from numpy.ma import ( MaskType, MaskedArray, absolute, add, all, allclose, allequal, alltrue, arange, arccos, arcsin, arctan, arctan2, array, average, choose, concatenate, conjugate, cos, cosh, count, divide, equal, exp, filled, getmask, greater, greater_equal, inner, isMaskedArray, less, less_equal, log, log10, make_mask, masked, masked_array, masked_equal, masked_greater, masked_greater_equal, masked_inside, masked_less, masked_less_equal, masked_not_equal, masked_outside, masked_print_option, masked_values, masked_where, maximum, minimum, multiply, nomask, nonzero, not_equal, ones, outer, product, put, ravel, repeat, resize, shape, sin, sinh, sometrue, sort, sqrt, subtract, sum, take, tan, tanh, transpose, where, zeros, ) pi = np.pi def eq(v, w, msg=''): result = allclose(v, w) if not result: print("Not eq:%s\n%s\n----%s" % (msg, str(v), str(w))) return result class TestMa(TestCase): def setUp(self): x = np.array([1., 1., 1., -2., pi/2.0, 4., 5., -10., 10., 1., 2., 3.]) y = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.]) a10 = 10. m1 = [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0] m2 = [0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1] xm = array(x, mask=m1) ym = array(y, mask=m2) z = np.array([-.5, 0., .5, .8]) zm = array(z, mask=[0, 1, 0, 0]) xf = np.where(m1, 1e+20, x) s = x.shape xm.set_fill_value(1e+20) self.d = (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) def test_testBasic1d(self): # Test of basic array creation and properties in 1 dimension. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d self.assertFalse(isMaskedArray(x)) self.assertTrue(isMaskedArray(xm)) self.assertEqual(shape(xm), s) self.assertEqual(xm.shape, s) self.assertEqual(xm.dtype, x.dtype) self.assertEqual(xm.size, reduce(lambda x, y:x * y, s)) self.assertEqual(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) self.assertTrue(eq(xm, xf)) self.assertTrue(eq(filled(xm, 1.e20), xf)) self.assertTrue(eq(x, xm)) def test_testBasic2d(self): # Test of basic array creation and properties in 2 dimensions. for s in [(4, 3), (6, 2)]: (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d x.shape = s y.shape = s xm.shape = s ym.shape = s xf.shape = s self.assertFalse(isMaskedArray(x)) self.assertTrue(isMaskedArray(xm)) self.assertEqual(shape(xm), s) self.assertEqual(xm.shape, s) self.assertEqual(xm.size, reduce(lambda x, y:x * y, s)) self.assertEqual(count(xm), len(m1) - reduce(lambda x, y:x + y, m1)) self.assertTrue(eq(xm, xf)) self.assertTrue(eq(filled(xm, 1.e20), xf)) self.assertTrue(eq(x, xm)) self.setUp() def test_testArithmetic(self): # Test of basic arithmetic. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d a2d = array([[1, 2], [0, 4]]) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) self.assertTrue(eq(a2d * a2d, a2d * a2dm)) self.assertTrue(eq(a2d + a2d, a2d + a2dm)) self.assertTrue(eq(a2d - a2d, a2d - a2dm)) for s in [(12,), (4, 3), (2, 6)]: x = x.reshape(s) y = y.reshape(s) xm = xm.reshape(s) ym = ym.reshape(s) xf = xf.reshape(s) self.assertTrue(eq(-x, -xm)) self.assertTrue(eq(x + y, xm + ym)) self.assertTrue(eq(x - y, xm - ym)) self.assertTrue(eq(x * y, xm * ym)) with np.errstate(divide='ignore', invalid='ignore'): self.assertTrue(eq(x / y, xm / ym)) self.assertTrue(eq(a10 + y, a10 + ym)) self.assertTrue(eq(a10 - y, a10 - ym)) self.assertTrue(eq(a10 * y, a10 * ym)) with np.errstate(divide='ignore', invalid='ignore'): self.assertTrue(eq(a10 / y, a10 / ym)) self.assertTrue(eq(x + a10, xm + a10)) self.assertTrue(eq(x - a10, xm - a10)) self.assertTrue(eq(x * a10, xm * a10)) self.assertTrue(eq(x / a10, xm / a10)) self.assertTrue(eq(x ** 2, xm ** 2)) self.assertTrue(eq(abs(x) ** 2.5, abs(xm) ** 2.5)) self.assertTrue(eq(x ** y, xm ** ym)) self.assertTrue(eq(np.add(x, y), add(xm, ym))) self.assertTrue(eq(np.subtract(x, y), subtract(xm, ym))) self.assertTrue(eq(np.multiply(x, y), multiply(xm, ym))) with np.errstate(divide='ignore', invalid='ignore'): self.assertTrue(eq(np.divide(x, y), divide(xm, ym))) def test_testMixedArithmetic(self): na = np.array([1]) ma = array([1]) self.assertTrue(isinstance(na + ma, MaskedArray)) self.assertTrue(isinstance(ma + na, MaskedArray)) def test_testUfuncs1(self): # Test various functions such as sin, cos. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d self.assertTrue(eq(np.cos(x), cos(xm))) self.assertTrue(eq(np.cosh(x), cosh(xm))) self.assertTrue(eq(np.sin(x), sin(xm))) self.assertTrue(eq(np.sinh(x), sinh(xm))) self.assertTrue(eq(np.tan(x), tan(xm))) self.assertTrue(eq(np.tanh(x), tanh(xm))) with np.errstate(divide='ignore', invalid='ignore'): self.assertTrue(eq(np.sqrt(abs(x)), sqrt(xm))) self.assertTrue(eq(np.log(abs(x)), log(xm))) self.assertTrue(eq(np.log10(abs(x)), log10(xm))) self.assertTrue(eq(np.exp(x), exp(xm))) self.assertTrue(eq(np.arcsin(z), arcsin(zm))) self.assertTrue(eq(np.arccos(z), arccos(zm))) self.assertTrue(eq(np.arctan(z), arctan(zm))) self.assertTrue(eq(np.arctan2(x, y), arctan2(xm, ym))) self.assertTrue(eq(np.absolute(x), absolute(xm))) self.assertTrue(eq(np.equal(x, y), equal(xm, ym))) self.assertTrue(eq(np.not_equal(x, y), not_equal(xm, ym))) self.assertTrue(eq(np.less(x, y), less(xm, ym))) self.assertTrue(eq(np.greater(x, y), greater(xm, ym))) self.assertTrue(eq(np.less_equal(x, y), less_equal(xm, ym))) self.assertTrue(eq(np.greater_equal(x, y), greater_equal(xm, ym))) self.assertTrue(eq(np.conjugate(x), conjugate(xm))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, ym)))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((x, y)))) self.assertTrue(eq(np.concatenate((x, y)), concatenate((xm, y)))) self.assertTrue(eq(np.concatenate((x, y, x)), concatenate((x, ym, x)))) @dec.skipif('__pypy__' in sys.builtin_module_names) def test_xtestCount(self): # Test count ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) self.assertTrue(count(ott).dtype.type is np.intp) self.assertEqual(3, count(ott)) self.assertEqual(1, count(1)) self.assertTrue(eq(0, array(1, mask=[1]))) ott = ott.reshape((2, 2)) self.assertTrue(count(ott).dtype.type is np.intp) assert_(isinstance(count(ott, 0), np.ndarray)) self.assertTrue(count(ott).dtype.type is np.intp) self.assertTrue(eq(3, count(ott))) assert_(getmask(count(ott, 0)) is nomask) self.assertTrue(eq([1, 2], count(ott, 0))) def test_testMinMax(self): # Test minimum and maximum. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d xr = np.ravel(x) # max doesn't work if shaped xmr = ravel(xm) # true because of careful selection of data self.assertTrue(eq(max(xr), maximum(xmr))) self.assertTrue(eq(min(xr), minimum(xmr))) def test_testAddSumProd(self): # Test add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d self.assertTrue(eq(np.add.reduce(x), add.reduce(x))) self.assertTrue(eq(np.add.accumulate(x), add.accumulate(x))) self.assertTrue(eq(4, sum(array(4), axis=0))) self.assertTrue(eq(4, sum(array(4), axis=0))) self.assertTrue(eq(np.sum(x, axis=0), sum(x, axis=0))) self.assertTrue(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))) self.assertTrue(eq(np.sum(x, 0), sum(x, 0))) self.assertTrue(eq(np.product(x, axis=0), product(x, axis=0))) self.assertTrue(eq(np.product(x, 0), product(x, 0))) self.assertTrue(eq(np.product(filled(xm, 1), axis=0), product(xm, axis=0))) if len(s) > 1: self.assertTrue(eq(np.concatenate((x, y), 1), concatenate((xm, ym), 1))) self.assertTrue(eq(np.add.reduce(x, 1), add.reduce(x, 1))) self.assertTrue(eq(np.sum(x, 1), sum(x, 1))) self.assertTrue(eq(np.product(x, 1), product(x, 1))) def test_testCI(self): # Test of conversions and indexing x1 = np.array([1, 2, 4, 3]) x2 = array(x1, mask=[1, 0, 0, 0]) x3 = array(x1, mask=[0, 1, 0, 1]) x4 = array(x1) # test conversion to strings str(x2) # raises? repr(x2) # raises? assert_(eq(np.sort(x1), sort(x2, fill_value=0))) # tests of indexing assert_(type(x2[1]) is type(x1[1])) assert_(x1[1] == x2[1]) assert_(x2[0] is masked) assert_(eq(x1[2], x2[2])) assert_(eq(x1[2:5], x2[2:5])) assert_(eq(x1[:], x2[:])) assert_(eq(x1[1:], x3[1:])) x1[2] = 9 x2[2] = 9 assert_(eq(x1, x2)) x1[1:3] = 99 x2[1:3] = 99 assert_(eq(x1, x2)) x2[1] = masked assert_(eq(x1, x2)) x2[1:3] = masked assert_(eq(x1, x2)) x2[:] = x1 x2[1] = masked assert_(allequal(getmask(x2), array([0, 1, 0, 0]))) x3[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x3), array([0, 1, 1, 0]))) x4[:] = masked_array([1, 2, 3, 4], [0, 1, 1, 0]) assert_(allequal(getmask(x4), array([0, 1, 1, 0]))) assert_(allequal(x4, array([1, 2, 3, 4]))) x1 = np.arange(5) * 1.0 x2 = masked_values(x1, 3.0) assert_(eq(x1, x2)) assert_(allequal(array([0, 0, 0, 1, 0], MaskType), x2.mask)) assert_(eq(3.0, x2.fill_value)) x1 = array([1, 'hello', 2, 3], object) x2 = np.array([1, 'hello', 2, 3], object) s1 = x1[1] s2 = x2[1] self.assertEqual(type(s2), str) self.assertEqual(type(s1), str) self.assertEqual(s1, s2) assert_(x1[1:1].shape == (0,)) def test_testCopySize(self): # Tests of some subtle points of copying and sizing. n = [0, 0, 1, 0, 0] m = make_mask(n) m2 = make_mask(m) self.assertTrue(m is m2) m3 = make_mask(m, copy=1) self.assertTrue(m is not m3) x1 = np.arange(5) y1 = array(x1, mask=m) self.assertTrue(y1._data is not x1) self.assertTrue(allequal(x1, y1._data)) self.assertTrue(y1.mask is m) y1a = array(y1, copy=0) self.assertTrue(y1a.mask is y1.mask) y2 = array(x1, mask=m, copy=0) self.assertTrue(y2.mask is m) self.assertTrue(y2[2] is masked) y2[2] = 9 self.assertTrue(y2[2] is not masked) self.assertTrue(y2.mask is not m) self.assertTrue(allequal(y2.mask, 0)) y3 = array(x1 * 1.0, mask=m) self.assertTrue(filled(y3).dtype is (x1 * 1.0).dtype) x4 = arange(4) x4[2] = masked y4 = resize(x4, (8,)) self.assertTrue(eq(concatenate([x4, x4]), y4)) self.assertTrue(eq(getmask(y4), [0, 0, 1, 0, 0, 0, 1, 0])) y5 = repeat(x4, (2, 2, 2, 2), axis=0) self.assertTrue(eq(y5, [0, 0, 1, 1, 2, 2, 3, 3])) y6 = repeat(x4, 2, axis=0) self.assertTrue(eq(y5, y6)) def test_testPut(self): # Test of put d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked) x[[1, 4]] = [10, 40] self.assertTrue(x.mask is not m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is not masked) self.assertTrue(eq(x, [0, 10, 2, -1, 40])) x = array(d, mask=m) x.put([0, 1, 2], [-1, 100, 200]) self.assertTrue(eq(x, [-1, 100, 200, 0, 0])) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked) def test_testMaPut(self): (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d m = [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1] i = np.nonzero(m)[0] put(ym, i, zm) assert_(all(take(ym, i, axis=0) == zm)) def test_testOddFeatures(self): # Test of other odd features x = arange(20) x = x.reshape(4, 5) x.flat[5] = 12 assert_(x[1, 0] == 12) z = x + 10j * x assert_(eq(z.real, x)) assert_(eq(z.imag, 10 * x)) assert_(eq((z * conjugate(z)).real, 101 * x * x)) z.imag[...] = 0.0 x = arange(10) x[3] = masked assert_(str(x[3]) == str(masked)) c = x >= 8 assert_(count(where(c, masked, masked)) == 0) assert_(shape(where(c, masked, masked)) == c.shape) z = where(c, x, masked) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is masked) assert_(z[7] is masked) assert_(z[8] is not masked) assert_(z[9] is not masked) assert_(eq(x, z)) z = where(c, masked, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) z = masked_where(c, x) assert_(z.dtype is x.dtype) assert_(z[3] is masked) assert_(z[4] is not masked) assert_(z[7] is not masked) assert_(z[8] is masked) assert_(z[9] is masked) assert_(eq(x, z)) x = array([1., 2., 3., 4., 5.]) c = array([1, 1, 1, 0, 0]) x[2] = masked z = where(c, x, -x) assert_(eq(z, [1., 2., 0., -4., -5])) c[0] = masked z = where(c, x, -x) assert_(eq(z, [1., 2., 0., -4., -5])) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) assert_(eq(masked_where(greater(x, 2), x), masked_greater(x, 2))) assert_(eq(masked_where(greater_equal(x, 2), x), masked_greater_equal(x, 2))) assert_(eq(masked_where(less(x, 2), x), masked_less(x, 2))) assert_(eq(masked_where(less_equal(x, 2), x), masked_less_equal(x, 2))) assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) assert_(eq(masked_where(equal(x, 2), x), masked_equal(x, 2))) assert_(eq(masked_where(not_equal(x, 2), x), masked_not_equal(x, 2))) assert_(eq(masked_inside(list(range(5)), 1, 3), [0, 199, 199, 199, 4])) assert_(eq(masked_outside(list(range(5)), 1, 3), [199, 1, 2, 3, 199])) assert_(eq(masked_inside(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 1, 3).mask, [1, 1, 1, 1, 0])) assert_(eq(masked_outside(array(list(range(5)), mask=[0, 1, 0, 0, 0]), 1, 3).mask, [1, 1, 0, 0, 1])) assert_(eq(masked_equal(array(list(range(5)), mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 0])) assert_(eq(masked_not_equal(array([2, 2, 1, 2, 1], mask=[1, 0, 0, 0, 0]), 2).mask, [1, 0, 1, 0, 1])) assert_(eq(masked_where([1, 1, 0, 0, 0], [1, 2, 3, 4, 5]), [99, 99, 3, 4, 5])) atest = ones((10, 10, 10), dtype=np.float32) btest = zeros(atest.shape, MaskType) ctest = masked_where(btest, atest) assert_(eq(atest, ctest)) z = choose(c, (-x, x)) assert_(eq(z, [1., 2., 0., -4., -5])) assert_(z[0] is masked) assert_(z[1] is not masked) assert_(z[2] is masked) x = arange(6) x[5] = masked y = arange(6) * 10 y[2] = masked c = array([1, 1, 1, 0, 0, 0], mask=[1, 0, 0, 0, 0, 0]) cm = c.filled(1) z = where(c, x, y) zm = where(cm, x, y) assert_(eq(z, zm)) assert_(getmask(zm) is nomask) assert_(eq(zm, [0, 1, 2, 30, 40, 50])) z = where(c, masked, 1) assert_(eq(z, [99, 99, 99, 1, 1, 1])) z = where(c, 1, masked) assert_(eq(z, [99, 1, 1, 99, 99, 99])) def test_testMinMax2(self): # Test of minumum, maximum. assert_(eq(minimum([1, 2, 3], [4, 0, 9]), [1, 0, 3])) assert_(eq(maximum([1, 2, 3], [4, 0, 9]), [4, 2, 9])) x = arange(5) y = arange(5) - 2 x[3] = masked y[0] = masked assert_(eq(minimum(x, y), where(less(x, y), x, y))) assert_(eq(maximum(x, y), where(greater(x, y), x, y))) assert_(minimum(x) == 0) assert_(maximum(x) == 4) def test_testTakeTransposeInnerOuter(self): # Test of take, transpose, inner, outer products x = arange(24) y = np.arange(24) x[5:6] = masked x = x.reshape(2, 3, 4) y = y.reshape(2, 3, 4) assert_(eq(np.transpose(y, (2, 0, 1)), transpose(x, (2, 0, 1)))) assert_(eq(np.take(y, (2, 0, 1), 1), take(x, (2, 0, 1), 1))) assert_(eq(np.inner(filled(x, 0), filled(y, 0)), inner(x, y))) assert_(eq(np.outer(filled(x, 0), filled(y, 0)), outer(x, y))) y = array(['abc', 1, 'def', 2, 3], object) y[2] = masked t = take(y, [0, 3, 4]) assert_(t[0] == 'abc') assert_(t[1] == 2) assert_(t[2] == 3) def test_testInplace(self): # Test of inplace operations and rich comparisons y = arange(10) x = arange(10) xm = arange(10) xm[2] = masked x += 1 assert_(eq(x, y + 1)) xm += 1 assert_(eq(x, y + 1)) x = arange(10) xm = arange(10) xm[2] = masked x -= 1 assert_(eq(x, y - 1)) xm -= 1 assert_(eq(xm, y - 1)) x = arange(10) * 1.0 xm = arange(10) * 1.0 xm[2] = masked x *= 2.0 assert_(eq(x, y * 2)) xm *= 2.0 assert_(eq(xm, y * 2)) x = arange(10) * 2 xm = arange(10) xm[2] = masked x //= 2 assert_(eq(x, y)) xm //= 2 assert_(eq(x, y)) x = arange(10) * 1.0 xm = arange(10) * 1.0 xm[2] = masked x /= 2.0 assert_(eq(x, y / 2.0)) xm /= arange(10) assert_(eq(xm, ones((10,)))) x = arange(10).astype(np.float32) xm = arange(10) xm[2] = masked x += 1. assert_(eq(x, y + 1.)) def test_testPickle(self): # Test of pickling import pickle x = arange(12) x[4:10:2] = masked x = x.reshape(4, 3) s = pickle.dumps(x) y = pickle.loads(s) assert_(eq(x, y)) def test_testMasked(self): # Test of masked element xx = arange(6) xx[1] = masked self.assertTrue(str(masked) == '--') self.assertTrue(xx[1] is masked) self.assertEqual(filled(xx[1], 0), 0) # don't know why these should raise an exception... #self.assertRaises(Exception, lambda x,y: x+y, masked, masked) #self.assertRaises(Exception, lambda x,y: x+y, masked, 2) #self.assertRaises(Exception, lambda x,y: x+y, masked, xx) #self.assertRaises(Exception, lambda x,y: x+y, xx, masked) def test_testAverage1(self): # Test of average. ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) self.assertTrue(eq(2.0, average(ott, axis=0))) self.assertTrue(eq(2.0, average(ott, weights=[1., 1., 2., 1.]))) result, wts = average(ott, weights=[1., 1., 2., 1.], returned=1) self.assertTrue(eq(2.0, result)) self.assertTrue(wts == 4.0) ott[:] = masked self.assertTrue(average(ott, axis=0) is masked) ott = array([0., 1., 2., 3.], mask=[1, 0, 0, 0]) ott = ott.reshape(2, 2) ott[:, 1] = masked self.assertTrue(eq(average(ott, axis=0), [2.0, 0.0])) self.assertTrue(average(ott, axis=1)[0] is masked) self.assertTrue(eq([2., 0.], average(ott, axis=0))) result, wts = average(ott, axis=0, returned=1) self.assertTrue(eq(wts, [1., 0.])) def test_testAverage2(self): # More tests of average. w1 = [0, 1, 1, 1, 1, 0] w2 = [[0, 1, 1, 1, 1, 0], [1, 0, 0, 0, 0, 1]] x = arange(6) self.assertTrue(allclose(average(x, axis=0), 2.5)) self.assertTrue(allclose(average(x, axis=0, weights=w1), 2.5)) y = array([arange(6), 2.0 * arange(6)]) self.assertTrue(allclose(average(y, None), np.add.reduce(np.arange(6)) * 3. / 12.)) self.assertTrue(allclose(average(y, axis=0), np.arange(6) * 3. / 2.)) self.assertTrue(allclose(average(y, axis=1), [average(x, axis=0), average(x, axis=0)*2.0])) self.assertTrue(allclose(average(y, None, weights=w2), 20. / 6.)) self.assertTrue(allclose(average(y, axis=0, weights=w2), [0., 1., 2., 3., 4., 10.])) self.assertTrue(allclose(average(y, axis=1), [average(x, axis=0), average(x, axis=0)*2.0])) m1 = zeros(6) m2 = [0, 0, 1, 1, 0, 0] m3 = [[0, 0, 1, 1, 0, 0], [0, 1, 1, 1, 1, 0]] m4 = ones(6) m5 = [0, 1, 1, 1, 1, 1] self.assertTrue(allclose(average(masked_array(x, m1), axis=0), 2.5)) self.assertTrue(allclose(average(masked_array(x, m2), axis=0), 2.5)) self.assertTrue(average(masked_array(x, m4), axis=0) is masked) self.assertEqual(average(masked_array(x, m5), axis=0), 0.0) self.assertEqual(count(average(masked_array(x, m4), axis=0)), 0) z = masked_array(y, m3) self.assertTrue(allclose(average(z, None), 20. / 6.)) self.assertTrue(allclose(average(z, axis=0), [0., 1., 99., 99., 4.0, 7.5])) self.assertTrue(allclose(average(z, axis=1), [2.5, 5.0])) self.assertTrue(allclose(average(z, axis=0, weights=w2), [0., 1., 99., 99., 4.0, 10.0])) a = arange(6) b = arange(6) * 3 r1, w1 = average([[a, b], [b, a]], axis=1, returned=1) self.assertEqual(shape(r1), shape(w1)) self.assertEqual(r1.shape, w1.shape) r2, w2 = average(ones((2, 2, 3)), axis=0, weights=[3, 1], returned=1) self.assertEqual(shape(w2), shape(r2)) r2, w2 = average(ones((2, 2, 3)), returned=1) self.assertEqual(shape(w2), shape(r2)) r2, w2 = average(ones((2, 2, 3)), weights=ones((2, 2, 3)), returned=1) self.assertTrue(shape(w2) == shape(r2)) a2d = array([[1, 2], [0, 4]], float) a2dm = masked_array(a2d, [[0, 0], [1, 0]]) a2da = average(a2d, axis=0) self.assertTrue(eq(a2da, [0.5, 3.0])) a2dma = average(a2dm, axis=0) self.assertTrue(eq(a2dma, [1.0, 3.0])) a2dma = average(a2dm, axis=None) self.assertTrue(eq(a2dma, 7. / 3.)) a2dma = average(a2dm, axis=1) self.assertTrue(eq(a2dma, [1.5, 4.0])) def test_testToPython(self): self.assertEqual(1, int(array(1))) self.assertEqual(1.0, float(array(1))) self.assertEqual(1, int(
array([[[1]]])
numpy.ma.array
# HIV-1 protease Markov State Model Conformational Gating Analysis #Author: <NAME> #Correspondence: <EMAIL>, Affiliation: 1. Heidelberg Institute for Theoretical Studies, HITS gGmbH 2. European Moelcular Biology Laboratory #This module contains core functions for molecular dynamics (MD) simulation and Markov state model analyses of apo HIV-1 protease conformational gating for the manuscript: #<NAME>‡, <NAME>, <NAME>, <NAME> (2021) A multiscale approach for computing gated ligand binding from molecular dynamics and Brownian dynamics simulations ######################################################################################################################################## from __future__ import print_function import warnings import pyemma import os #%pylab inline import pyemma.coordinates as coor import pyemma.msm as msm import pyemma.plots as mplt from pyemma import config config.show_progress_bars = False #print(config.show_progress_bars) import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap import matplotlib.image as mpimg from collections import OrderedDict import math import numpy as np import sys import os.path import random import errno from shutil import copyfile import operator import re from glob import glob #from kmodes.kmodes import KModes import random import MDAnalysis from MDAnalysis.analysis import dihedrals from MDAnalysis.analysis import align, rms, distances, contacts from MDAnalysis.analysis.base import AnalysisFromFunction from MDAnalysis.coordinates.memory import MemoryReader from MDAnalysis.analysis import density #import MDAnalysis.analysis.hbonds from MDAnalysis.analysis.hydrogenbonds.hbond_analysis import HydrogenBondAnalysis as HBA mpl.rcParams.update({'font.size': 12}) print('pyEMMA version: '+ pyemma.__version__) print('MDAnalysis version: ' + MDAnalysis.version.__version__) from sklearn.neighbors import KernelDensity from matplotlib import gridspec from scipy.stats import norm ######################################################################################################################################## ########################################################################################################## # # FUNCTIONS # ########################################################################################################## ########################################################################################################## ################# #pyEMMA standard Functions ################# ################# def save_figure(name): # change these if wanted do_save = True fig_dir = './figs/' if do_save: savefig(fig_dir + name, bbox_inches='tight') ################# def plot_sampled_function(ax_num, xall, yall, zall, dim, msm_dims, ticks_set, labels, ax=None, nbins=100, nlevels=20, cmap=cm.bwr, cbar=True, cbar_label=None): # histogram data xmin = np.min(xall) xmax = np.max(xall) dx = (xmax - xmin) / float(nbins) ymin = np.min(yall) ymax = np.max(yall) dy = (ymax - ymin) / float(nbins) # bin data #eps = x xbins = np.linspace(xmin - 0.5*dx, xmax + 0.5*dx, num=nbins) ybins = np.linspace(ymin - 0.5*dy, ymax + 0.5*dy, num=nbins) xI = np.digitize(xall, xbins) yI = np.digitize(yall, ybins) # result z = np.zeros((nbins, nbins)) N = np.zeros((nbins, nbins)) # average over bins for t in range(len(xall)): z[xI[t], yI[t]] += zall[t] N[xI[t], yI[t]] += 1.0 with warnings.catch_warnings() as cm: warnings.simplefilter('ignore') z /= N # do a contour plot extent = [xmin, xmax, ymin, ymax] if ax is None: ax = gca() s = ax.contourf(z.T, 100, extent=extent, cmap=cmap) if cbar: cbar = fig.colorbar(s) if cbar_label is not None: cbar.ax.set_ylabel(cbar_label) ax.set_xlim(xbins.min()-5,xbins.max()+5) ax.set_xticks(ticks_set[np.where(msm_dims==dim[0])[0][0]]) ax.set_xlabel(labels[dim[0]],fontsize=10) ax.set_ylim(ybins.min()-5,ybins.max()+5) ax.set_yticks(ticks_set[np.where(msm_dims==dim[1])[0][0]]) if ax_num==0: ax.set_ylabel(labels[dim[1]],fontsize=10) return ax ################# def plot_sampled_density(ax_num, xall, yall, zall, dim, msm_dims, ticks_set, labels, ax=None, nbins=100, cmap=cm.Blues, cbar=True, cbar_label=None): return plot_sampled_function(ax_num, xall, yall, zall, dim, msm_dims, ticks_set, labels, ax=ax, nbins=nbins, cmap=cmap, cbar=cbar, cbar_label=cbar_label) ########################################################################################################## ################# #pyEMMA MSM functions ################# ################# def eval_transformer(trans_obj): # Effective dimension (Really? If we just underestimate the Eigenvalues this value also shrinks...)) print('Evaluating transformer: ', str(trans_obj.__class__)) print('effective dimension', np.sum(1.0 - trans_obj.cumvar)) print('eigenvalues', trans_obj.eigenvalues[:5]) print('partial eigensum', np.sum(trans_obj.eigenvalues[:10])) print('total variance', np.sum(trans_obj.eigenvalues ** 2)) print() ################# def project_and_cluster(trajfiles, featurizer, sparsify=False, tica=True, lag=100, scale=True, var_cutoff=0.95, ncluster=100): """ Returns ------- trans_obj, Y, clustering """ X = coor.load(trajfiles, featurizer) if sparsify: X = remove_constant(X) if tica: trans_obj = coor.tica(X, lag=lag, var_cutoff=var_cutoff) else: trans_obj = coor.pca(X, dim=-1, var_cutoff=var_cutoff) Y = trans_obj.get_output() if scale: for y in Y: y *= trans_obj.eigenvalues[:trans_obj.dimension()] cl_obj = coor.cluster_kmeans(Y, k=ncluster, max_iter=3, fixed_seed=True) return trans_obj, Y, cl_obj ########################################################################################################## ################# #File reading functions ################# def read_int_matrix(fname): """ reads a file containing a matrix of integer numbers """ a = [] with open(fname) as f: for line in f: row = line.rstrip().split() a.append(row) foo = np.array(a) bar = foo.astype(np.int) return bar ################# #Read in matrix of floats from file def read_float_matrix(fname): """ reads a file containing a matrix of floating point numbers """ a = [] with open(fname) as f: for line in f: row = line.rstrip().split() a.append(row) foo = np.array(a) bar = foo.astype(np.float) return bar def READ_INITIAL_FILE ( filename ): # read in group data into lists of lists file = open(filename,'r') coords=[] for line in file: vals=line.split() vals2 = [float(numeric_string) for numeric_string in vals[3:6]] coords.append(vals2) return coords; ########################################################################################################## ################# #Trajectory Processing Functions ################# # This sorts the list of trajectories in double numerical order e.g. 1-1.dcd def sorted_traj_list(traj_list): s=[] for i in range(len(traj_list)): string = traj_list[i] s.append([int(n) for n in re.findall(r'\d+\d*', string)]) s = sorted(s, key = operator.itemgetter(0, 1)) sorted_traj_list = [] for i in range(len(s)): sorted_traj_list.append(indir+'/'+str(s[i][0])+'-'+str(s[i][1])+'.dcd') return(sorted_traj_list) ################# #Creates a trajectory list from an array that contains the format: batch sims frames def traj_list_from_sims_array(sims_array, indir): traj_list = [] for i in range(len(sims_array)): traj_list.append(indir+'/'+str(sims_array[i][0])+'-'+str(sims_array[i][1])+'.dcd') return traj_list ################# #Creates a trajectory list from an array that contains the format: batch sims frames def traj_list_from_sims_array_xtc(sims_array, indir): traj_list = [] for i in range(len(sims_array)): traj_list.append(indir+'/'+str(sims_array[i][1])+'-filtered.xtc') return traj_list ################# #Select only those trajectories from an trajlist/array that have >= than a certain threshold of frames def thresh_subset(sims_array,thresh): frames_thresh=np.empty((0,3)) for i in range(len(sims_array)): if sims_array[i][2]>=thresh: frames_thresh=np.vstack((frames_thresh,sims_array[i])) f=frames_thresh.astype(np.int) return f def predefined_simsarray(full_sims_array): """ #creates a subarray from a predefined sim list of batch and sim numbers and a complete sims array # this is for testing a limited number of sims e.g. if copied to local resources """ simlist=[[1,1],[2,1],[3,1],[4,1],[5,1],[6,1]] sublist = [] for i in range(len(simlist)): sublist = sublist + [x for x in full_sims_array.tolist() if x[0]==simlist[i][0] and x[1]==simlist[i][1]] subarray=np.array(sublist) return subarray ########################################################################################################## ################# #Functions for calculating continuous minimum nearest neighbour contact ################# ################# #Minimum Mean Continuous minimum distance across sliding window tau def cmindist(data, tau): """ computes continuous minimum distance of data array as the minimum of the mean sliding window of length tau """ tscan=np.shape(data)[0]-tau+1 num_feat=np.shape(data)[1] cmd=np.empty((0,num_feat)) for i in range(tscan): cmd=np.vstack((cmd,np.mean(data[i:i+tau,:],axis=0))) return np.min(cmd,axis=0) ################# #Mean Continuous minimum distance across sliding window tau def taumean_mindist(data, tau): """ computes continuous minimum distance of data array as the mean sliding window of length tau """ tscan=np.shape(data)[0]-tau+1 num_feat=np.shape(data)[1] cmd=np.empty((0,num_feat)) for i in range(tscan): cmd=np.vstack((cmd,np.mean(data[i:i+tau,:],axis=0))) return cmd ################# #Longest continuous time of minimum distance def long_mindist(data, thresh): """ computes the longest time the minimum distance stays within a threshhold of thresh """ tscan=np.shape(data)[0] num_feat=np.shape(data)[1] count=np.empty(num_feat) lmd=np.empty(num_feat) for i in range(tscan): for j in range(num_feat): if data[i,j] < thresh: count[j] += 1 else: if count[j] > lmd[j]: lmd[j] = count[j] count[j] = 0 return lmd.astype(np.int) ################# #Determine res-res pairs included for which to calculate minimum distance features def res_pairs(num_res, nearn): """ computes res-res pairs included for which to calculate minimum distance features state num of residues, and nearest neighbour skip e.g. i+3 is nearn=3 """ res=[] for i in range(num_res-nearn): for j in range(i+nearn,num_res): res.append([i+1,j+1]) return res ################# #Calculate longest duration of minimum distance below a threshold of each res-res pair across traj ensemble def ensemble_maxdur(traj_arr, col_exc, res, tau, thresh): """ computes longest duration of minimum distance below a threshold of each res-res pair across traj ensemble using: list of traj nums -traj_array, res-pair list - res, sliding mean smoothing - tau, mindist threshold - thresh col_exc is the number of colums in data file specified by traj_arr to exclude - normally col_exc=3 """ lmd=np.empty((0,len(res))) for i in range(len(traj_arr)): fname = './analysis/resres_mindist/'+str(traj_arr[i,0])+'-'+str(traj_arr[i,1])+'.dat' mindist = read_float_matrix(fname) mindist=mindist[:,col_exc:] #cmd=cmindist(mindist,tau) if tau>1: taumd=taumean_mindist(mindist,tau) else: taumd=mindist lmd=np.vstack((lmd,long_mindist(taumd, thresh))) print("Batch: "+str(traj_arr[i,0])+", Sim: "+str(traj_arr[i,1])) #return np.max(lmd.astype(np.int),axis=0) return lmd.astype(np.int) ################# #Continuous minimum nearest neighbour contact calculation def mindist_contacts(res_start, res_end, tau_c): #Number of residues num_res=23 #Next nearest neighbour - e.g. i+3 nearn=3 #List of i!=j res-res number pairs with i:i+3 res=res_pairs(num_res,nearn) #Maximum duration each above res-res contact is formed in each traj #In reality this is done once on the server and saved as a file as time consuming #Number of columns to exclude in data files #col_exc=3 #window length for calculating sliding mean minimum distance #tau=10 #Threshold distance in Angstrom #thresh=4.0 #ens_max_dur=ensemble_maxdur(sims_array, col_exc, res, tau, thresh) #np.savetxt('ens_max_dur.dat', ens_max_dur, fmt='%1d',delimiter=' ') fname = './ens_max_dur.dat' ens_max_dur = read_int_matrix(fname)#Collapse all trajectories into 1 row showing maximum of each res-res pair max_dur=np.max(ens_max_dur,axis=0) #List of res-res contacts that fulfil tau_c - res labelling starting from 1 contacts_list=[res[x] for x in range(len(res)) if max_dur[x]>=tau_c] contacts=np.array(contacts_list) contacts=contacts[contacts[:,0]>=res_start] contacts=contacts[contacts[:,1]<=res_end] #Con0 is relabeling residue pairs starting from 0 con0_list=[[x[0]-1, x[1]-1] for x in contacts.tolist()] con0=np.array(con0_list) #Theoretical maximum size of res list for given residue range num_res_select = res_end - res_start + 1 res_select=res_pairs(num_res_select,nearn) max_res_select = len(res_select) return con0, res, max_res_select, max_dur ########################################################################################################## ################# #Feature Data Loading Functions ################# ################# #Lambda coordinate space def lambda_obj(lamdir,sims_array,num_frames=None): """ # loads values from lambda space for HIV-1 PR into lambda_obj """ coords=[] for i in range(len(sims_array)): filename=lamdir + '/' + str(sims_array[i][0])+'-'+str(sims_array[i][1]) + '.dat' if os.path.isfile(filename): tmpcoords=read_float_matrix(filename) if num_frames==None: coords.append(tmpcoords[:,3:6]) else: coords.append(tmpcoords[0:num_frames,3:6]) return coords ################# #Multidimenstional metric files coordinate space def multidir_obj(dir_array,sims_array,num_frames=None): """ # loads values from lambda space and other metrics for HIV-1 PR into lambda_obj """ coords=[] for i in range(len(sims_array)): #Make a list for each correspoinding file in different directories filename=[dir_array[x] + '/' + str(sims_array[i][0])+'-'+str(sims_array[i][1]) + '.dat' for x in range(len(dir_array))] #Check that same files exist across all deisgnated directories if np.sum([os.path.isfile(filename[x]) for x in range(len(dir_array))])==len(dir_array): tmpcoords=read_float_matrix(filename[0]) tmpcoords=tmpcoords[:,3:] for i in range(1,len(dir_array)): tmpcoords_i=read_float_matrix(filename[i]) tmpcoords_i=tmpcoords_i[:,3:] tmpcoords=np.hstack((tmpcoords,tmpcoords_i)) if num_frames==None: coords.append(tmpcoords) else: coords.append(tmpcoords[0:num_frames,:]) return coords ########################################################################################################## ################# #Coordinate Transformation Functions ################# ################# def xyz_to_cyl_coords(data,th_offset=0): x,y = data[:,0], data[:,1] rho = np.sqrt(x**2+y**2) theta = 180*np.arctan2(y,x)/np.pi - th_offset theta %= 360 z=data[:,2] return np.transpose(np.vstack((rho,theta,z))) ########################################################################################################## ################# #Plotting functions ################# ################# def plot_frames(plt,num_frames): """ # Plot number of frames for each sim """ fig, axs = plt.subplots(1, 1, figsize=(12, 6), constrained_layout=True) ax=plt.axes() plt.xticks(np.arange(0, len(num_frames), 100)) plt.yticks(np.arange(0, 2000, 100)) ax.set_xlim(0,len(num_frames)) ax.set_ylim(0,2000) x=np.array(range(len(num_frames))) y=num_frames p1 = ax.plot(x, y,'k-o') plt.show() return ################# def plot_dropoff(plt,sorted_frames): """ #Plot Drop off of trajectories with increasing number of frames """ fig, axs = plt.subplots(1, 1, figsize=(12, 6), constrained_layout=True) ax=plt.axes() plt.xticks(np.arange(0, 9000, 1000)) plt.yticks(np.arange(0, 700, 100)) ax.set_xlim(0,9000) ax.set_ylim(0,600) plt.xlabel('Number of frames') plt.ylabel('Number of trajectories') x = sorted_frames y = np.arange(sorted_frames.size) #p1 = ax.step(x, y,'k-') p2 = ax.step(x[::-1], y,'r-') plt.show() ################# def plot_minmax_coverage(plt,min_req_frames,sorted_frames,min_coverage,max_coverage): """ #Plot minimum and maximum coverage based on a minimum required number of frames/traj """ fig, axs = plt.subplots(1, 1, figsize=(12, 6), constrained_layout=True) ax=plt.axes() plt.xticks(np.arange(0, 9000, 1000)) plt.yticks(np.arange(0, 1.1, 0.1)) ax.set_xlim(0,9000) ax.set_ylim(0,1) plt.xlabel('Used traj length (frames)') plt.ylabel('Number of frames used') x = min_req_frames y = min_coverage/sum(sorted_frames) y2 = max_coverage/sum(sorted_frames) p1 = ax.step(x, y,'k-') p2 = ax.step(x, y2,'b-') plt.show() return ################# def trajplot_format(plt,tlim,ylims,ylab="Distance (\AA)"): plt.rc('text', usetex=True) plt.xlim(0,(tlim+1)/10) if ylims[0]>=0: plt.ylim(0,ylims[1]+1) else: plt.ylim(ylims[0],ylims[1]+1) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel(r"Time (ns)", fontsize=30) plt.ylabel(ylab, fontsize=30) return ################# def plot_traj(Y,sims_array,traj_no,dims,colors=['b','k','r','y'],md_numbering=True): tlim=np.shape(Y)[1] if md_numbering is True: traj_id=np.where(sims_array[:,1]==traj_no)[0][0] else: traj_id=traj_no ydat=np.array([j for m in [Y[traj_id][:tlim,dims[i]] for i in range(len(dims))] for j in m]) ylims=[ydat.min(),ydat.max()] for i in range(len(dims)): plt.plot([x/10 for x in range(1,tlim+1)], Y[traj_id][:tlim,dims[i]], '-', color=colors[i]) trajplot_format(plt,tlim,ylims) return ################# def plot_traj_from_Z(Z,nsnaps,sims_array,traj_no,dims,colors=['b','k','r','y'],md_numbering=True): tlim=nsnaps if md_numbering is True: traj_id=np.where(sims_array[:,1]==traj_no)[0][0] else: traj_id=traj_no traj_start_ind=traj_id*nsnaps ydat=np.array([j for m in [Z[traj_start_ind:traj_start_ind+tlim,dims[i]] for i in range(len(dims))] for j in m]) ylims=[ydat.min(),ydat.max()] for i in range(len(dims)): plt.plot([x/10 for x in range(1,tlim+1)], Z[traj_start_ind:traj_start_ind+tlim,dims[i]], '-', color=colors[i]) trajplot_format(plt,tlim,ylims) return ################# def plot_traj_from_MD(data,nsnaps,dims,colors=['b','k','r','y']): tlim=nsnaps ydat=np.array([j for m in [data[:tlim,dims[i]] for i in range(len(dims))] for j in m]) ylims=[ydat.min(),ydat.max()] for i in range(len(dims)): plt.plot([x/10 for x in range(1,tlim+1)], data[:tlim,dims[i]], '-', color=colors[i]) trajplot_format(plt,tlim,ylims) return ################# def plot_free_energy_landscape(Z,plt,xdim,ydim,labels,cmap="jet",fill=True, contour_label=True,contour_color='k',wg=None): #x=np.vstack(Y)[:,0] #y=np.vstack(Y)[:,2] x=Z[:,xdim] y=Z[:,ydim] rho,xbins,ybins = np.histogram2d(x,y,bins=[100,100],weights=wg) kBT=0.596 G=-kBT*np.log(rho+0.1) Gzero=G-np.min(G) fig, ax = plt.subplots(figsize=(12,9)) ex=[xbins.min(),xbins.max(),ybins.min(),ybins.max()] lev=[x /10.0 for x in range(int(5*round(np.min(G)*2))-10,0,5)] contours=plt.contour(np.transpose(G), extent=ex, levels = lev, colors=contour_color,linestyles= '-' ) if fill is True: plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) if contour_label is True: plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) #plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) #plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) cbar = plt.colorbar() #plt.clim(np.min(G)-0.5,np.max(G)+0.5) plt.clim(-10,0) cbar.set_label(r"G (kcal/mol)", rotation=90, fontsize=30) cbar.ax.tick_params(labelsize=30) plt.rc('text', usetex=True) plt.xlim(xbins.min()-5,xbins.max()) plt.ylim(ybins.min()-5,ybins.max()) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel(labels[xdim], fontsize=30) plt.ylabel(labels[ydim], fontsize=30) return plt ################# def plot_free_energy_landscape_nocbar(Z,plt,xdim,ydim,labels,cmap="jet",fill=True, contour_label=True,contour_color='k',wg=None): #x=np.vstack(Y)[:,0] #y=np.vstack(Y)[:,2] x=Z[:,xdim] y=Z[:,ydim] rho,xbins,ybins = np.histogram2d(x,y,bins=[100,100],weights=wg) kBT=0.596 G=-kBT*np.log(rho+0.1) Gzero=G-np.min(G) #fig, ax = plt.subplots(figsize=(9,9)) ex=[xbins.min(),xbins.max(),ybins.min(),ybins.max()] lev=[x /10.0 for x in range(int(5*round(np.min(G)*2))-10,0,5)] contours=plt.contour(np.transpose(G), extent=ex, levels = lev, colors=contour_color,linestyles= '-' ) if fill is True: plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) if contour_label is True: plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) #plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) #plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) #cbar = plt.colorbar() #plt.clim(np.min(G)-0.5,np.max(G)+0.5) plt.clim(-10,30) #cbar.set_label(r"G (kcal/mol)", rotation=90, fontsize=30) #cbar.ax.tick_params(labelsize=30) plt.rc('text', usetex=True) plt.xlim(xbins.min()-5,xbins.max()) plt.ylim(ybins.min()-5,ybins.max()) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel(labels[xdim], fontsize=30) plt.ylabel(labels[ydim], fontsize=30) return plt ################# def plot_free_energy_landscape_nocbar_array(Z,plt,xdim,ydim,labels,cmap="jet", fill=False, contour_label=False,contour_color='k', wg=None,show_ticks=False,show_labels=False): #x=np.vstack(Y)[:,0] #y=np.vstack(Y)[:,2] x=Z[:,xdim] y=Z[:,ydim] rho,xbins,ybins = np.histogram2d(x,y,bins=[100,100],weights=wg) kBT=0.596 G=-kBT*np.log(rho+0.1) Gzero=G-np.min(G) #fig, ax = plt.subplots(figsize=(9,9)) ex=[xbins.min(),xbins.max(),ybins.min(),ybins.max()] lev=[x /10.0 for x in range(int(5*round(np.min(G)*2))-10,0,5)] contours=plt.contour(np.transpose(G), extent=ex, levels = lev, colors=contour_color,linestyles= '-' ) if fill is True: plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) if contour_label is True: plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) #plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) #plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) #cbar = plt.colorbar() #plt.clim(np.min(G)-0.5,np.max(G)+0.5) plt.clim(-10,30) #cbar.set_label(r"G (kcal/mol)", rotation=90, fontsize=30) #cbar.ax.tick_params(labelsize=30) plt.rc('text', usetex=True) plt.xlim(xbins.min()-5,xbins.max()) plt.ylim(ybins.min()-5,ybins.max()) if show_ticks: plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) else: plt.xticks([]) plt.yticks([]) if show_labels: plt.xlabel(labels[xdim], fontsize=30) plt.ylabel(labels[ydim], fontsize=30) return plt ################# def plot_weighted_free_energy_landscape(Z,plt,xdim,ydim,labels, cmap="jet", fill=True, contour_label=True, contour_color='k', clim=[-10,0],cbar=False, cbar_label="G (kcal/mol)",lev_max=-1,shallow=False,wg=None,fsize_cbar=(12,9),fsize=(9,9),standalone=True): if standalone: if cbar: fig, ax = plt.subplots(figsize=fsize_cbar) else: fig, ax = plt.subplots(figsize=fsize) #x=np.vstack(Y)[:,0] #y=np.vstack(Y)[:,2] x=Z[:,xdim] y=Z[:,ydim] rho,xbins,ybins = np.histogram2d(x,y,bins=[100,100],weights=wg) rho += 0.1 kBT=0.596 G=-kBT*np.log(rho/np.sum(rho)) G=G-np.max(G) ex=[xbins.min(),xbins.max(),ybins.min(),ybins.max()] lev=[x /10.0 for x in range(int(5*round(np.min(G)*2))-10,int(lev_max*10),5)] if shallow is True: lev_shallow=[-0.4,-0.3,-0.2,-0.1] lev+=lev_shallow contours=plt.contour(np.transpose(G), extent=ex, levels = lev, colors=contour_color, linestyles= '-' ) if fill is True: plt.contourf(np.transpose(G), extent=ex,cmap = cmap, levels = lev) if contour_label is True: plt.clabel(contours, inline=True, fmt='%1.1f', fontsize=20) plt.clim(clim[0],clim[1]) plt.rc('text', usetex=True) if cbar: cbar = plt.colorbar() if cbar_label is not None: cbar.ax.set_ylabel(cbar_label, rotation=90, fontsize=30) cbar.ax.tick_params(labelsize=30) plt.xlim(xbins.min()-5,xbins.max()+5) plt.ylim(ybins.min()-5,ybins.max()+5) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel(labels[xdim], fontsize=30) plt.ylabel(labels[ydim], fontsize=30) return plt ################# def annotate_microstates(plt,sets,cl_x,cl_y,tsize=12): i=0 for xy in zip(cl_x,cl_y): plt.annotate(' %s' % sets[i], xy=xy, textcoords='data', size=tsize,weight='bold',color='black', fontname='Courier' ) #arrowprops=dict(edgecolor='red',facecolor='red', shrink=0.02,width=1,headwidth=5) #,edgecolor='red',facecolor='red', shrink=0.05,width=2 #arrowstyle="->",edgecolor='white',facecolor='white' i+=1 return plt ################# def plot_metastable_sets(plt,cl_obj,meta_sets,MSM_dims,dim,mstate_color,msize=10,annotate=False,textsize=18): for k in range(len(meta_sets)): cl_x=cl_obj.clustercenters[meta_sets[k],np.where(MSM_dims==dim[0])[0][0]] cl_y=cl_obj.clustercenters[meta_sets[k],np.where(MSM_dims==dim[1])[0][0]] plt.plot(cl_x,cl_y, linewidth=0, marker='o', markersize=msize, markeredgecolor=mstate_color[k],markerfacecolor=mstate_color[k], markeredgewidth=2) #plt.plot(cl_obj.clustercenters[meta_sets[k],np.where(MSM_dims==dim[0])[0][0]],cl_obj.clustercenters[meta_sets[k],np.where(MSM_dims==dim[1])[0][0]], linewidth=0, marker='o', markersize=msize, markeredgecolor=mstate_color[k],markerfacecolor=mstate_color[k], markeredgewidth=2) if annotate is True: plt=annotate_microstates(plt,meta_sets[k],cl_x,cl_y,tsize=textsize) return ################# def plot_projected_density(Z, zall, plt, xdim, ydim, labels, nbins=100, nlevels=20, cmap=cm.bwr, cbar=False, cbar_label=None): if cbar: fig, ax = plt.subplots(figsize=(12,9)) else: fig, ax = plt.subplots(figsize=(9,9)) xall=Z[:,xdim] yall=Z[:,ydim] # histogram data xmin = np.min(xall) xmax = np.max(xall) dx = (xmax - xmin) / float(nbins) ymin = np.min(yall) ymax = np.max(yall) dy = (ymax - ymin) / float(nbins) # bin data #eps = x xbins = np.linspace(xmin - 0.5*dx, xmax + 0.5*dx, num=nbins) ybins = np.linspace(ymin - 0.5*dy, ymax + 0.5*dy, num=nbins) xI = np.digitize(xall, xbins) yI = np.digitize(yall, ybins) # result z = np.zeros((nbins, nbins)) N = np.zeros((nbins, nbins)) # average over bins for t in range(len(xall)): z[xI[t], yI[t]] += zall[t] N[xI[t], yI[t]] += 1.0 #with warnings.catch_warnings() as cm: #warnings.simplefilter('ignore') #z /= N # do a contour plot extent = [xmin, xmax, ymin, ymax] lev_step=0.0001 lev=[x*lev_step for x in range(400)] plt.contourf(z.T, 100, extent=extent, cmap=cmap, levels = lev) plt.clim(0,0.05) plt.rc('text', usetex=True) if cbar: cbar = plt.colorbar() if cbar_label is not None: cbar.ax.set_ylabel(cbar_label, rotation=90, fontsize=30) cbar.ax.tick_params(labelsize=30) plt.xlim(xbins.min()-5,xbins.max()+5) plt.ylim(ybins.min()-5,ybins.max()+5) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel(labels[xdim], fontsize=30) plt.ylabel(labels[ydim], fontsize=30) return plt ################# #Plot Timescale curves def plot_its(mplt,its_dim_type,x_lim,y_lim): #Plot relaxation timescales mpl.rcParams.update({'font.size': 20}) mplt.plot_implied_timescales(its_dim_type, ylog=True, dt=0.1, units='ns', linewidth=2) plt.xlim(0, x_lim); plt.ylim(0, y_lim); #save_figure('its.png') return ################# def plot_timescale_ratios(its,ntims=5,ylim=4): tim=np.transpose(its.timescales) lags=its.lags fig, ax = plt.subplots(figsize=(6,4)) for i in range(ntims): plt.plot(lags/10,tim[i]/tim[i+1],'-o',label="$t_{"+str(i+1)+"}$/$t_{"+str(i+2)+"}$") plt.rc('text', usetex=True) plt.xlim(0,30+np.max(lags)/10) plt.ylim(0,ylim) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel("Time (ns)", fontsize=30) plt.ylabel(r"$t_{i}/t_{i+1}$", fontsize=30) legend = plt.legend(loc='upper right', shadow=False, fontsize='small') return ################# def plot_kinetic_variance(its,ylim=20): lags=its.lags fig, ax = plt.subplots(figsize=(6,4)) kinvar=[(M.eigenvalues()**2).sum() for M in its.models] plt.plot(0.1*lags, kinvar, linewidth=2) plt.rc('text', usetex=True) plt.xlim(0,np.max(lags)/10) plt.ylim(0,ylim) plt.xticks(fontsize=30, rotation=0) plt.yticks(fontsize=30, rotation=0) plt.xlabel("Time (ns)", fontsize=30) plt.ylabel(r"$\sigma^{2}$", fontsize=30) return ########################################################################################################## ################# #File Writing Functions ################# ################# def write_list_to_file(fname,lname): """ #Writes a list to a filename: fname is filename, lname is list name e.g. traj_list """ with open(fname,'w') as f: for item in lname: f.write("%s\n" % item) return ################# def save_current_fig(plt, figname): fig = plt.gcf() fig.set_size_inches(12, 9) plt.savefig(figname, dpi=600, facecolor='w', edgecolor='w', orientation='portrait', papertype=None, format=None, transparent=False, bbox_inches=None, pad_inches=0.1, frameon=None, metadata=None) return ################# def save_current_fig2(plt, figname,pad=0.1): fig = plt.gcf() #fig.set_size_inches(12, 9) plt.savefig(figname, dpi=600, facecolor='w', edgecolor='w', orientation='portrait', format=None, transparent=False, bbox_inches='tight', pad_inches=pad, metadata=None) return ########################################################################################################## ################# #Pre-Optimized Coarse-Grained Metastable State Kinetic Rate Calculation and Transition Path Theory Functions ################# ################# def tpt_rate_matrix(M,pcca_sets,tfac): n_sets=len(pcca_sets) rate=np.zeros((n_sets,n_sets)) for i in range(n_sets): for j in range(n_sets): if i != j: rate[i,j]=tfac*(msm.tpt(M,pcca_sets[i],pcca_sets[j]).rate) return rate ################# def gamma_factor(kon,init,fin): #gam=np.sum(kon[init,fin])/(np.sum(kon[init,fin]) + np.sum(kon[fin,init])) gam=np.sum(kon[np.ix_(init,fin)])/(np.sum(kon[np.ix_(init,fin)]) + np.sum(kon[np.ix_(fin,init)])) return gam def tau_c(kon,init,fin): #gam=np.sum(kon[init,fin])/(np.sum(kon[init,fin]) + np.sum(kon[fin,init])) tau_c=1/(np.sum(kon[np.ix_(init,fin)]) + np.sum(kon[np.ix_(fin,init)])) return tau_c ################# def metastable_kinetics_calc(M,tau,n_sets,init,fin): #Create the PCCA sets, distributions, memberships M.pcca(n_sets) pccaX = M.metastable_distributions pccaM = M.metastable_memberships # get PCCA memberships pcca_sets = M.metastable_sets pcca_assign = M.metastable_assignments #Calculate Free energy based on the raw prob of discretized snapshots of microstates belonging to metastable state all_disc_snaps=np.hstack([dtraj for dtraj in M.discrete_trajectories_full]) mstate_rho=np.array([len(np.where(all_disc_snaps==i)[0]) for i in range(n_clusters)])/len(all_disc_snaps) meta_rho=np.array([np.sum(mstate_rho[pcca_sets[i]]) for i in range(len(pcca_sets))]) # Calculate Free Energy based on sum of stationary distribution (as calculated by transition matrix) of microstates belonging to each metastable state P_msm=M.transition_matrix meta_pi=np.array([np.sum(M.stationary_distribution[pcca_sets[i]]) for i in range(len(pcca_sets))]) #Manually Calculate the HMM free energy from the X and M matrices NORM_M=np.linalg.inv(np.dot(np.transpose(pccaM),pccaM)) NORM_X=np.linalg.inv(np.dot(pccaX,np.transpose(pccaX))) I=np.identity(len(pccaM)) PI=np.transpose(M.pi)*I cg_pi=np.dot(NORM_X,np.dot(pccaX,np.dot(PI,pccaM))) cg_pi=np.sum(np.identity(len(pccaX))*cg_pi,axis=0) #Calculate CG transition matrix from manually constructed HMM (prior to Baum-Welch optimisation) P_tilda=np.dot(NORM_M,np.dot(np.transpose(pccaM), np.dot(P_msm,pccaM))) #Calculate k_on matrix from CG transition matrix #1000 factor is to convert to microseconds^-1 kon_tilda=1000.*P_tilda/tau #Non-diagonal rate matrix with from/to state labelling kon_tilda_nd=nondiag_rates(kon_tilda) #Calculate k_on from TPT rate matrix tfac=10000 kon_tpt=tpt_rate_matrix(M,pcca_sets,tfac) kon_tpt_nd=nondiag_rates(kon_tpt) #Calculate gating factor for various kon_matrices gam_kon_tilda= gamma_factor(kon_tilda,init,fin) gam_kon_tpt= gamma_factor(kon_tpt,init,fin) return meta_rho, meta_pi, cg_pi, kon_tilda_nd, kon_tpt_nd, gam_kon_tilda, gam_kon_tpt ################# def nondiag_rates(kon): nd_rates=np.zeros((0,4)) for i in range(len(kon)): for j in range(i+1,len(kon)): nd_rates=np.vstack((nd_rates, [int(i), int(j), kon[i,j], kon[j,i]])) return nd_rates ################# def tau_c(kon,init,fin): #gam=np.sum(kon[init,fin])/(np.sum(kon[init,fin]) + np.sum(kon[fin,init])) tau_c=1/(np.sum(kon[np.ix_(init,fin)]) + np.sum(kon[np.ix_(fin,init)])) return tau_c ########################################################################################################## ################# #Functions to Identify and Extract Representative Conformations of Metastable States # Using both MSM approach and also from subselection of PMF landscapes ################# ################# def micro_order(Xsets, Xdist,macro_state): kBT=0.596 a=np.transpose(np.vstack((Xsets[macro_state],Xdist[macro_state,Xsets[macro_state]]))) b = a[a[:,1].argsort()[::-1]] c = (-kBT*np.log(b[:,1])-np.min(-kBT*np.log(b[:,1]))).reshape(-1,1) micro_state_order=np.hstack((b,c)) return micro_state_order # Microstate and snapshot extractor def top_microstates(macro_state, Xdist, Xsets, energy_factor): """ a: Creates a Boltz-weighted list of fuzzy microstates of a given macrostate b: Creates a Boltz-weighted probability-sorted list of fuzzy microstates of a given macrostate from the pccaX (Xdist) distribution. Most prob state is set to 0, other states are ranked relative to the most prob state energy factor - define a cut off Boltz-weighted energy difference to select only most probable states = 0.5*kBT chi_conf_sets: list of chosen microstates lam - normalized lambda metric for clustercenters correponding to microstates """ kBT=0.596 energy_thresh=energy_factor*kBT mic_states = np.array([x for x in range(np.shape(Xdist)[1])]) a=np.transpose(np.vstack((mic_states,-kBT*
np.log(Xdist[macro_state])
numpy.log
import numpy as np import math import torch import random import copy class Gameboard: def __init__(self): self.boardsize = 4 # The size of one side of the board. self.score = 0 self.board = np.zeros((self.boardsize, self.boardsize), dtype=np.int32) self.board_tensor = torch.zeros((self.boardsize, self.boardsize), dtype=torch.int32) self.place_random() self.place_random() def copy(self): return copy.deepcopy(self) def print(self, show_score=False): print(self.board) if show_score: print('Score: {}'.format(self.score)) print() def np_board(self): return self.board # Place a number in a random place on the board. If that random position is already filled, it chooses a different # position. The default number is 2. def place_random(self, number=2): (x_coordinate, y_coordinate) = np.random.randint(0, self.boardsize, 2) # print(x_coordinate, y_coordinate) if self.board[x_coordinate, y_coordinate] == 0: self.board[x_coordinate, y_coordinate] = number else: self.place_random(number) def collapse_right(self): # Loop over it three times so it moves blocks as far as possible for _ in range(0, 3): for i in range(0, self.boardsize): # print('Row {}:{}'.format(i, self.board[i])) for j in reversed(range(0, self.boardsize)): # print('Checking if position {} is in range'.format(j+1)) if j+1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if self.board[i, j+1] == 0: # print('Next position is 0') self.board[i, j+1] = self.board[i, j] self.board[i, j] = 0 elif self.board[i, j+1] == self.board[i, j]: # print('Next position is identical') self.score += self.board[i, j] self.board[i, j+1] *= 2 self.board[i, j] = 0 def collapse_left(self): # Loop over it three times so it moves blocks as far as possible for _ in range(0, 3): for i in range(0, self.boardsize): # print('Row {}:{}'.format(i, self.board[i])) for j in range(0, self.boardsize): # print('Checking if position {} is in range'.format(j+1)) if j-1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if self.board[i, j-1] == 0: # print('Next position is 0') self.board[i, j-1] = self.board[i, j] self.board[i, j] = 0 elif self.board[i, j-1] == self.board[i, j]: # print('Next position is identical') self.score += self.board[i, j] self.board[i, j-1] *= 2 self.board[i, j] = 0 def collapse_down(self): # Loop over it three times so it moves blocks as far as possible for _ in range(0, 3): for i in range(0, self.boardsize): # print('Column {}:{}'.format(i, self.board[:i])) for j in reversed(range(0, self.boardsize)): # print('Checking if position {} is in range'.format(j+1)) if j+1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if self.board[j+1, i] == 0: # print('Next position is 0') self.board[j+1, i] = self.board[j, i] self.board[j, i] = 0 elif self.board[j+1, i] == self.board[j, i]: # print('Next position is identical') self.score += self.board[j, i] self.board[j+1, i] *= 2 self.board[j, i] = 0 def collapse_up(self): # Loop over it three times so it moves blocks as far as possible for _ in range(0, 3): for i in range(0, self.boardsize): # print('Column {}:{}'.format(i, self.board[:i])) for j in range(0, self.boardsize): # print('Checking if position {} is in range'.format(j+1)) if j-1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j - 1, self.board[i, j - 1])) # print('Position {} is in range.'.format(j-1)) if self.board[j-1, i] == 0: # print('Next position is 0') self.board[j-1, i] = self.board[j, i] self.board[j, i] = 0 elif self.board[j-1, i] == self.board[j, i]: # print('Next position is identical') self.score += self.board[j, i] self.board[j-1, i] *= 2 self.board[j, i] = 0 def simulate_collapse_right(self): # Loop over it three times so it moves blocks as far as possible simulated_board = self.board.copy() for _ in range(0, 3): for i in range(0, self.boardsize): # print('Row {}:{}'.format(i, self.board[i])) for j in reversed(range(0, self.boardsize)): # print('Checking if position {} is in range'.format(j+1)) if j + 1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if simulated_board[i, j + 1] == 0: # print('Next position is 0') simulated_board[i, j + 1] = simulated_board[i, j] simulated_board[i, j] = 0 elif simulated_board[i, j + 1] == simulated_board[i, j]: # print('Next position is identical') simulated_board[i, j + 1] *= 2 simulated_board[i, j] = 0 def simulate_collapse_down(self): # Loop over it three times so it moves blocks as far as possible simulated_board = self.board.copy() for _ in range(0, 3): for i in range(0, self.boardsize): # print('Column {}:{}'.format(i, self.board[:i])) for j in reversed(range(0, self.boardsize)): # print('Checking if position {} is in range'.format(j+1)) if j + 1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if simulated_board[j + 1, i] == 0: # print('Next position is 0') simulated_board[j + 1, i] = simulated_board[j, i] simulated_board[j, i] = 0 elif simulated_board[j + 1, i] == simulated_board[j, i]: # print('Next position is identical') simulated_board[j + 1, i] *= 2 simulated_board[j, i] = 0 def simulate_collapse_left(self): # Loop over it three times so it moves blocks as far as possible simulated_board = self.board.copy() for _ in range(0, 3): for i in range(0, self.boardsize): # print('Row {}:{}'.format(i, self.board[i])) for j in range(0, self.boardsize): # print('Checking if position {} is in range'.format(j+1)) if j - 1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if simulated_board[i, j - 1] == 0: # print('Next position is 0') simulated_board[i, j - 1] = simulated_board[i, j] simulated_board[i, j] = 0 elif simulated_board[i, j - 1] == simulated_board[i, j]: # print('Next position is identical') simulated_board[i, j - 1] *= 2 simulated_board[i, j] = 0 def simulate_collapse_up(self): # Loop over it three times so it moves blocks as far as possible simulated_board = self.board.copy() for _ in range(0, 3): for i in range(0, self.boardsize): # print('Column {}:{}'.format(i, self.board[:i])) for j in range(0, self.boardsize): # print('Checking if position {} is in range'.format(j+1)) if j - 1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j - 1, self.board[i, j - 1])) # print('Position {} is in range.'.format(j-1)) if simulated_board[j - 1, i] == 0: # print('Next position is 0') simulated_board[j - 1, i] = simulated_board[j, i] simulated_board[j, i] = 0 elif simulated_board[j - 1, i] == simulated_board[j, i]: # print('Next position is identical') simulated_board[j - 1, i] *= 2 simulated_board[j, i] = 0 def rotate_board(self, board, number_of_rotations): # number of rotations is in quarter circles, with positive being counter-clockwise # returns a copy of the board, but rotated temporary_board = board return temporary_board.rot90(number_of_rotations) def simulate_move(self, direction): # Creates a copy of the board, rotates it so that the desired collapse directory is pointed down, collapses # down, then rotates it back to its proper orientation. # parameter direction is a string that says 'up', 'down', 'left', or 'right' move_dictionary = {'up': 2, 'down': 0, 'left': 1, 'right': -1} simulated_board = self.board_tensor # make a copy simulated_board = self.rotate_board(simulated_board, move_dictionary[direction]) # rotate the copy # Do the collapse for _ in range(0, 3): for i in range(0, self.boardsize): # print('Column {}:{}'.format(i, self.board[:i])) for j in reversed(range(0, self.boardsize)): # print('Checking if position {} is in range'.format(j+1)) if j + 1 in range(0, self.boardsize): # print('({},{}) has {}; ({},{}) has {}'.format(i, j, self.board[i, j], # i, j + 1, self.board[i, j + 1])) # print('Position {} is in range.'.format(j+1)) if simulated_board[j + 1, i] == 0: # print('Next position is 0') simulated_board[j + 1, i] = simulated_board[j, i] simulated_board[j, i] = 0 elif simulated_board[j + 1, i] == simulated_board[j, i]: # print('Next position is identical') simulated_board[j + 1, i] *= 2 simulated_board[j, i] = 0 simulated_board = self.rotate_board(simulated_board, -1 * move_dictionary[direction]) # rotate back return simulated_board def simulate_move_successful(self, index): moves = { 0: 'up', 1: 'down', 2: 'left', 3: 'right', 4: 'nothing' } temporary_board = np.copy(self.board) direction = moves[index] simulated_board = self.simulate_move(direction) if np.array_equal(simulated_board, temporary_board): # print('Simulated move not successful.') return False return True def collapse_nothing(self): return def is_board_full(self): board_full = not (self.boardsize ** 2 - np.count_nonzero(self.board)) if board_full: for index in range(3): result = self.simulate_move_successful(index) if not result: return True # The move was not successful, so we return that the board is full return False def move(self, direction, show_score=False, print_board=True): # direction is a string representing the direction to collapse # show_score tells the print function to show the score or not after moving. # Exit codes: # 0: Move not successful (no change in board) # -1: board is full # 1: Move successful, tile added # parameter direction is a string that says 'up', 'down', 'left', or 'right' move_dictionary = {'up': self.collapse_up, 'down': self.collapse_down, 'left': self.collapse_left, 'right': self.collapse_right, 'nothing': self.collapse_nothing} # Make a temporary copy of the previous board temporary_board = np.copy(self.board) # Execute the proper collapse function for the given direction. if print_board: print('Moving in direction {}'.format(direction)) move_dictionary[direction]() # print(self.board, temporary_board) # Add a random tile if a move was successful if self.is_board_full(): if print_board: self.print(show_score) print('BOARD FULL') return -1 if np.array_equal(self.board, temporary_board): if print_board: self.print() print('Move not successful. Score: {}'.format(show_score)) return 0 else: # print('Previous move successful') # print('Is board full: {}'.format(self.is_board_full())) if self.is_board_full(): if print_board: self.print(show_score) print('BOARD FULL') return -1 else: self.place_random(self.generate_random_tile()) if print_board: self.print(show_score) return 1 def generate_random_tile(self): # Generate a 2, 90% of the time return 2 if np.random.random() < 0.9 else 4 def get_highest_tile(self): return np.max(self.board) def get_board_total(self): return np.sum(self.board) def get_number_of_active_tiles(self): return
np.count_nonzero(self.board)
numpy.count_nonzero
import unittest import numpy as np from blmath.geometry.transform.rotation import rotation_from_up_and_look, euler class TestRotationFromUpAndLook(unittest.TestCase): def test_starting_with_canonical_reference_frame_gives_identity(self): result = rotation_from_up_and_look(up=[0, 1, 0], look=[0, 0, 1]) np.testing.assert_array_almost_equal(result, np.eye(3)) def test_raises_value_error_with_zero_length_inputs(self): with self.assertRaises(ValueError): rotation_from_up_and_look(up=[0, 0, 0], look=[0, 0, 1]) with self.assertRaises(ValueError): rotation_from_up_and_look(up=[0, 1, 0], look=[0, 0, 0]) def test_raises_value_error_with_colinear_inputs(self): with self.assertRaises(ValueError): rotation_from_up_and_look(up=[0, 0, 1], look=[0, 0, 1]) with self.assertRaises(ValueError): rotation_from_up_and_look(up=[0, 0, 1], look=[0, 0, -1]) def test_normalizes_inputs(self): result = rotation_from_up_and_look(up=[0, 42, 0], look=[0, 0, 13]) np.testing.assert_array_almost_equal(result, np.eye(3)) def test_always_outputs_float64(self): result = rotation_from_up_and_look(up=np.array([0, 1, 0], dtype=np.float32), look=np.array([0, 0, 1], dtype=np.float32)) self.assertEqual(result.dtype, np.float64) np.testing.assert_array_almost_equal(result,
np.eye(3)
numpy.eye
from unittest import TestCase import numpy as np from ..image_measures import isotope_pattern_match, isotope_image_correlation class IsotopePatternMatchTest(TestCase): def test_empty_inputs(self): inputs = ( ([], []), ([[]], [0.3]), ([[]] * 2, [0.2] * 2), ) for args in inputs: self.assertRaises(Exception, isotope_pattern_match, *args) def test_misaligned_shapes(self): inputs = ( (np.arange(5 * 5).reshape((5, 5)), np.arange(6)), (np.ones(5), np.ones(5)), (
np.ones((3, 3))
numpy.ones
import sys import re import math import os import numpy as np try: import paraview.simple as para except ImportError: para = None def Log(s): sys.stderr.write(str(s) + '\n') def GetStep(path): return re.findall('[^_]*_([0-9]*)\.*.', os.path.basename(path))[0] def GetSteps(paths): return list(map(GetStep, paths)) def ReplaceFilename(paths, pattern, keep_dir=True): """ Replaces filename by pattern with step index substitution. paths: `list(str)` Paths. pattern: `str` Pattern containing a single `{}` to be replaced by step index. Example: >>> ReplaceFilename(["dir/vf_0001.xmf"], "sm_{}.vtk") >>> ["dir/sm_0001.vtk"] """ r = [] for f in paths: dirname = os.path.dirname(f) basename = os.path.basename(f) step = GetStep(f) if keep_dir: r.append(os.path.join(dirname, pattern.format(step))) else: r.append(pattern.format(step)) return r def SubstituteStep(*args, **kwargs): Log("Warning: SubstituteStep() is deprecated. Renamed to ReplaceFilename()") return ReplaceFilename(*args, **kwargs) def ApplyForceTime(sources): ''' Applies ForceTime filter to sources. Returns new sources and arrays with original time values. ''' timearrays = [np.array(s.TimestepValues) if hasattr(s, "TimestepValues") else None for s in sources] sources_ft = [para.ForceTime(s) if s is not None else None for s in sources] return sources_ft, timearrays def SetTimeStep(index, sources_ft, timearrays): ''' Sets sources to time step given by index. ''' for s,t in zip(sources_ft, timearrays): if hasattr(s, "ForcedTime"): try: s.ForcedTime = t[index] except: pass s.UpdatePipeline() def SaveAnimation(steps, renderView, sources_ft, timearrays, pattern="a_{:}.png", force=False): for index,step in enumerate(steps): outfile = pattern.format(step) if os.path.isfile(outfile) and not force: Log("skip existing {:}".format(outfile)) continue open(outfile, 'a').close() SetTimeStep(index, sources_ft, timearrays) Log("{:}/{:}: {:}".format(index + 1, len(steps), outfile)) para.SaveScreenshot(outfile, renderView) def GetBoundingBox(o): ''' Returns bounding box of object o. [x0, y0, z0], [x1, y1, z1] ''' o.UpdatePipeline() di = o.GetDataInformation() lim = di.DataInformation.GetBounds() lim0 = np.array(lim[::2]) lim1 = np.array(lim[1::2]) return
np.array(lim0)
numpy.array
"""Input and output (IO) of information from and to the persistence layer. Currently, input and output of both, datasets and recipes can be handled. Datasets ======== Both, data and metadata contained in datasets as well as the information stored in recipes for recipe-driven data analysis can be read and written. For datasets, two generic classes are provided: * :class:`aspecd.io.DatasetImporter` * :class:`aspecd.io.DatasetExporter` As the name says, these classes should be used to implement import and export functionality for your own purposes in applications derived from the ASpecD framework. Generally, both import and export should be handled via the respective methods of the :class:`aspecd.dataset.Dataset` class, thus first instantiating an object of that class and an appropriate importer or exporter, and afterwards only operating on the dataset using its methods. In its most generic form, this may look something like: .. code-block:: dataset = aspecd.dataset.Dataset() importer = aspecd.io.DatasetImporter(source="/path/to/your/data") dataset.import_from(importer) Similarly, you would handle the export of your data (and metadata) contained in a dataset object using an exporter object, respectively. .. code-block:: dataset = aspecd.dataset.Dataset() importer = aspecd.io.DatasetExporter(target="/path/to/destination") dataset.export_to(exporter) However, if you use :ref:`recipe-driven data analysis <recipes>`, things become much simpler: * Imports will be automatically taken care of. * Exports can be specified as simple task. A simple example of a recipe only loading datasets and afterwards exporting them could look like this: .. code-block:: yaml datasets: - /path/to/first/dataset - /path/to/second/dataset tasks: - kind: export type: AdfExporter properties: target: - dataset1 - dataset2 What is happening here? Two datasets are imported, and afterwards exported to the ASpecD Dataset Format (ADF) using the :class:`aspecd.io.AdfExporter`. Another frequent use case, although one that admittedly pretty much opposes the whole idea of the ASpecD framework in terms of reproducibility and traceability: Your collaboration partners require you to provide them with raw data they can import into their favourite program for creating plots. The only viable way: export to plain text (ouch!) - saying good-bye to all your metadata and history: .. code-block:: yaml datasets: - /path/to/first/cool/dataset - /path/to/second/cool/dataset - /path/to/another/cool/dataset tasks: - kind: export type: TxtExporter properties: target: - cool-dataset1 - cool-dataset2 - cool-dataset3 In this case, you can as well add whatever processing necessary to your datasets before exporting them, and you see that recipes come in quite handy here. Importers for specific file formats ----------------------------------- There exists a series of importers for specific file formats: * :class:`aspecd.io.AdfImporter` Importer for data in ASpecD Dataset Format (ADF) * :class:`aspecd.io.AsdfImporter` Importer for data in asdf format * :class:`aspecd.io.TxtImporter` Importer for data in plain text format For details, see the respective class documentation. Exporters for specific file formats ----------------------------------- Datasets need to be persisted sometimes, and currently, there exist two exporters for specific file formats that can be imported again using the respective importers. Furthermore, the full information contained in a dataset will be retained. * :class:`aspecd.io.AdfExporter` Exporter for datasets to ASpecD Dataset Format (ADF) * :class:`aspecd.io.AsdfExporter` Exporter for datasets to asdf format For details, see the respective class documentation. A bit a special case is the exporter to plain text files, as this file format does *not* preserve the metadata stored within the dataset and should only be used as last resort: * :class:`aspecd.io.TxtExporter` Exporter for data to plain text format .. warning:: All metadata contained within a dataset (including the full history) are lost when exporting to plain text. Therefore, using this exporter will usually result in you loosing reproducibility. Hence, better think twice before using this exporter and use entirely on your own risk and only if you *really* know what you are doing (and why). Writing importers for data -------------------------- When writing importer classes for your own data, there is a number of pitfalls, some of which shall be described here together with solutions and "best practices". Dimensions of data ~~~~~~~~~~~~~~~~~~ Usually, we assign axes in the order *x*, *y*, *z*, and assume the *x* axis to be the horizontal axis in a plot. However, numpy (as well as other software), follows a different convention, with the first index referring to the *row* of your matrix, the second index to the *column*. That boils down to having the first index correspond to the *y* axis, and the second index referring to the *x* axis. As long as your data are one-dimensional, resulting in two axes objects in your dataset, everything is fine, and the second axis will have no values. However, if your data to be imported are two-dimensional, your first dimension will be the index of rows (along a column), hence the *y* axis, and the second dimension the index of your columns (along a row), *i.e.* the *x* axis. This is perfectly fine, and it is equally fine to revert this order, as long as you ensure your axis objects to be consistent with the dimensions of your data. If you assign numeric data to the :attr:`aspecd.dataset.Data.data` property, the corresponding axes values will initially be set to the indices of the data points along the corresponding dimension, with the first axis (index 0) corresponding to the first dimension (row indices along a column) and similar for each of the following dimensions of your data. Note that there will always be one axis more than dimensions of your data. This last axis will not have values, and usually its quantity is something like "intensity". Backup of the data ~~~~~~~~~~~~~~~~~~ One essential concept of the ASpecD dataset is to store the original data together with their axes in a separate, non-public property. This is done automatically by the importer after calling out to its non-public method :meth:`aspecd.io.DatasetImporter._import`. Hence, usually you need not take care of this at all. Handling of metadata ~~~~~~~~~~~~~~~~~~~~ Data without information about these data are usually pretty useless. Hence, an ASpecD dataset is always a unit of numerical data and corresponding metadata. While you will need to come up with your own structure for metadata of your datasets and create a hierarchy of classes derived from :class:`aspecd.metadata.DatasetMetadata`, your importers need to ensure that these metadata are populated respectively. Of course, which metadata can be populated depends strongly on the file format you are about to import. Handling different file formats for importing data -------------------------------------------------- Often, data are available in different formats, and deciding which importer is appropriate for a given format can be quite involved. To free other classes from having to contain the relevant code, a factory can be used: * :class:`aspecd.io.DatasetImporterFactory` Currently, the sole information provided to decide about the appropriate importer is the source (a string). A concrete importer object is returned by the method :meth:`get_importer`. Thus, using the factory in another class may look like the following:: importer_factory = aspecd.io.DatasetImporterFactory() importer = importer_factory.get_importer(source="/path/to/your/data") dataset = aspecd.dataset.Dataset() dataset.import_from(importer) Here, as in the example above, "source" refers to a (unique) identifier of your dataset, be it a filename, path, URL/URI, LOI, or alike. .. important:: For recipe-driven data analysis to work with an ASpecD-derived package, you need to implement a :class:`aspecd.io.DatasetImporterFactory` class there as well that can be obtained by instantiating ``<your_package>.io.DatasetImporterFactory()``. Recipes ======= For recipes, a similar set of classes is provided: * :class:`aspecd.io.RecipeImporter` * :class:`aspecd.io.RecipeExporter` For additional concrete classes handling import and export from and to YAML files see below. The same general principles laid out above for the datasets applies to these classes as well. In particular, both import and export should be handled via the respective methods of the :class:`aspecd.tasks.Recipe` class, thus first instantiating an object of that class and an appropriate importer or exporter, and afterwards only operating on the recipe using its methods. In its most generic form, this may look something like:: recipe = aspecd.tasks.Recipe() importer = aspecd.io.RecipeImporter(source="/path/to/your/recipe") recipe.import_from(importer) Similarly, you would handle the export of the information contained in a recipe object using an exporter object, respectively. To simplify the input and output of recipes, and due recipe-driven data analysis being an intrinsic property of the ASpecD framework, two classes handling the import and export from and to YAML files are provided as well: * :class:`aspecd.io.RecipeYamlImporter` * :class:`aspecd.io.RecipeYamlExporter` These classes can directly be used to work with YAML files containing information for recipe-driven data analysis. For details of the YAML file structure, see the :class:`aspecd.tasks.Recipe` class and its attributes. Module documentation ==================== """ import copy import os import tempfile import zipfile import asdf import numpy as np import aspecd.exceptions import aspecd.metadata import aspecd.utils class DatasetImporter: """Base class for dataset importer. Each class actually importing data and metadata into a dataset should inherit from this class. To perform the import, call the :meth:`~aspecd.dataset.Dataset.import_from` method of the dataset the import should be performed for, and provide a reference to the actual importer object to it. The actual implementation of the importing is done in the private method :meth:`_import` that in turn gets called by :meth:`import_into` which is called by the :meth:`aspecd.dataset.Dataset.import_from` method of the dataset object. One question arising when actually implementing an importer for a specific file format: How do the data get into the dataset? The simple answer: The :meth:`_import` method of the importer knows about the dataset and its structure (see :class:`aspecd.dataset.Dataset` for details) and assigns data (and metadata) read from an external source to the respective fields of the dataset. In terms of a broader software architecture point of view: The dataset knows nothing about the importer besides its bare existence and interface, whereas the importer knows about the dataset and how to map data and metadata. Attributes ---------- dataset : :class:`aspecd.dataset.Dataset` dataset to import data and metadata into source : :class:`str` specifier of the source the data and metadata will be read from parameters : :class:`dict` Additional parameters to control import options. Useful in case of, *e.g.*, CSV importers where the user may want to set things such as the delimiter .. versionadded:: 0.2 Raises ------ aspecd.io.MissingDatasetError Raised when no dataset exists to act upon """ def __init__(self, source=None): self.source = source self.dataset = None self.parameters = dict() def import_into(self, dataset=None): """Perform the actual import into the given dataset. If no dataset is provided at method call, but is set as property in the importer object, the :meth:`aspecd.dataset.Dataset.import_from` method of the dataset will be called. If no dataset is provided at method call nor as property in the object, the method will raise a respective exception. The dataset object always calls this method with the respective dataset as argument. Therefore, in this case setting the dataset property within the importer object is not necessary. The actual import should be implemented within the non-public method :meth:`_import`. .. note:: A number of parameters of the dataset are automatically assigned *after* calling out to the non-public method :meth:`aspecd.io.DatasetImporter._import`, namely the non-public property ``_origdata`` of the dataset is populated with a copy of :attr:`aspecd.dataset.Dataset.data`, and id and label are set to :attr:`aspecd.io.DatasetImporter.source`. Parameters ---------- dataset : :class:`aspecd.dataset.Dataset` Dataset to import data and metadata into Raises ------ aspecd.io.MissingDatasetError Raised if no dataset is provided. """ if not dataset: if self.dataset: self.dataset.import_from(self) else: raise aspecd.exceptions.MissingDatasetError( "No dataset provided") else: self.dataset = dataset self._import() # Untested due to lack of ideas how to test # pylint: disable=protected-access self.dataset._origdata = copy.deepcopy(self.dataset.data) self.dataset.id = self.source self.dataset.label = self.source def _import(self): """Perform the actual import of data and metadata into the dataset. The implementation of the actual import goes in here in all classes inheriting from DatasetImporter. This method is automatically called by :meth:`import_into`. Importing data and metadata includes assigning both to the respective fields of the :obj:`aspecd.dataset.Dataset` object. For details of its structure, see there. Usually, this method will successively call other private/protected methods of the importer to perform the required tasks that are specific for each data source. """ class DatasetImporterFactory: """ Factory for creating importer objects based on the source provided. Often, data are available in different formats, and deciding which importer is appropriate for a given format can be quite involved. To free other classes from having to contain the relevant code, a factory can be used. Currently, the sole information provided to decide about the appropriate importer is the source (a string). A concrete importer object is returned by the method :meth:`get_importer`. If no source is provided, an exception will be raised. The actual code for deciding which type of importer to return in what case should be implemented in the non-public method :meth:`_get_importer` in any package based on the ASpecD framework. In its basic implementation, as done here, the non-public method :meth:`_get_importer` returns the importers for ADF, ASDF, and TXT depending on the file extension, and in all other cases the standard importer. This might be a viable way for an own :class:`DatasetImporterFactory` implementation in the rare case of having only one single type of data, but provides a sensible starting point for own developments. Attributes ---------- source : :class:`str` Source of the dataset to be loaded. Gets set by calling the method :meth:`get_importer` with the ``source`` parameter. Raises ------ aspecd.io.MissingSourceError Raised if no source is provided """ def __init__(self): self.source = None def get_importer(self, source='', importer='', parameters=None): """ Return importer object for dataset specified by its source. The actual code for deciding which type of importer to return in what case should be implemented in the non-public method :meth:`_get_importer` in any package based on the ASpecD framework. If no importer gets returned by the method :meth:`_get_importer`, the ASpecD-interal importers will be checked for matching the file type. Thus, you can overwrite the behaviour of any filetype supported natively by the ASpecD framework, but retain compatibility to the ASpecD-specific file types. .. note:: Currently, only filenames/paths are supported, and if ``source`` does not start with the file separator, the absolute path to the current directory is prepended. Parameters ---------- source : :class:`str` string describing the source of the dataset May be a filename or path, a URL/URI, a LOI, or similar importer : :class:`str` Name of the importer to use for importing the dataset Default: '' .. versionadded:: 0.2 parameters : :class:`dict` Additional parameters for controlling the import Default: None .. versionadded:: 0.2 Returns ------- importer : :class:`aspecd.io.DatasetImporter` importer object of appropriate class Raises ------ aspecd.io.MissingSourceError Raised if no source is provided """ if not source: raise aspecd.exceptions.MissingSourceError( 'A source is required to return an appropriate importer') self.source = source if not self.source.startswith(os.pathsep): self.source = os.path.join(os.path.abspath(os.curdir), self.source) if importer: package_name = aspecd.utils.package_name(self) # Currently untested if not package_name.endswith('io'): package_name = '.'.join([package_name, 'io']) full_class_name = '.'.join([package_name, importer]) importer = aspecd.utils.object_from_class_name(full_class_name) importer.source = self.source if not importer: importer = self._get_importer() if not importer: importer = self._get_aspecd_importer() if parameters: importer.parameters = parameters return importer # noinspection PyMethodMayBeStatic # pylint: disable=no-self-use def _get_importer(self): """Choose appropriate importer for a dataset. Every package inheriting from the ASpecD framework should implement this method. Note that in case you do not handle a filetype and hence return no importer, the default ASpecD importer will be checked for matching the given source. Thus, you can overwrite the behaviour of any filetype supported natively by the ASpecD framework, but retain compatibility to the ASpecD-specific file types. Returns ------- importer : :class:`aspecd.io.DatasetImporter` Importer for the specific file type """ importer = None return importer def _get_aspecd_importer(self): _, file_extension = os.path.splitext(self.source) if file_extension == '.adf': return AdfImporter(source=self.source) if file_extension == '.asdf': return AsdfImporter(source=self.source) if file_extension == '.txt': return TxtImporter(source=self.source) return DatasetImporter(source=self.source) class DatasetExporter: """Base class for dataset exporter. Each class actually exporting data from a dataset to some other should inherit from this class. To perform the export, call the :meth:`~aspecd.dataset.Dataset.export_to` method of the dataset the export should be performed for, and provide a reference to the actual exporter object to it. The actual implementation of the exporting is done in the non-public method :meth:`_export` that in turn gets called by :meth:`export_from` which is called by the :meth:`aspecd.dataset.Dataset.export_to` method of the dataset object. Attributes ---------- dataset : :obj:`aspecd.dataset.Dataset` dataset to export data and metadata from target : string specifier of the target the data and metadata will be written to Raises ------ aspecd.io.MissingDatasetError Raised when no dataset exists to act upon """ def __init__(self, target=None): self.target = target self.dataset = None def export_from(self, dataset=None): """Perform the actual export from the given dataset. If no dataset is provided at method call, but is set as property in the exporter object, the :meth:`aspecd.dataset.Dataset.export_to` method of the dataset will be called. If no dataset is provided at method call nor as property in the object, the method will raise a respective exception. The dataset object always calls this method with the respective dataset as argument. Therefore, in this case setting the dataset property within the exporter object is not necessary. The actual export is implemented within the non-public method :meth:`_export` that gets automatically called. Parameters ---------- dataset : :class:`aspecd.dataset.Dataset` Dataset to export data and metadata from Raises ------ aspecd.io.MissingDatasetError Raised if no dataset is provided. """ if not dataset: if self.dataset: self.dataset.export_to(self) else: raise aspecd.exceptions.MissingDatasetError( "No dataset provided") else: self.dataset = dataset self._export() def _export(self): """Perform the actual export of data and metadata from the dataset. The implementation of the actual export goes in here in all classes inheriting from DatasetExporter. This method is automatically called by :meth:`export_from`. Usually, this method will successively call other private/protected methods of the exporter to perform the required tasks that are specific for each target format. """ class RecipeImporter: """Base class for recipe importer. Each class actually importing recipes into a :obj:`aspecd.tasks.Recipe` object should inherit from this class. To perform the import, call the :meth:`~aspecd.tasks.Recipe.import_from` method of the recipe the import should be performed for, and provide a reference to the actual importer object to it. The actual implementation of the importing is done in the non-public method :meth:`_import` that in turn gets called by :meth:`import_into` which is called by the :meth:`aspecd.tasks.Recipe.import_from` method of the recipe object. One question arising when actually implementing an importer for a specific file format: How does the information get into the recipe? The simple answer: The :meth:`_import` method of the importer knows about the recipe and its structure (see :class:`aspecd.tasks.Recipe` for details) and creates a dictionary with keys corresponding to the respective attributes of the recipe. In turn, it can then call the :meth:`aspecd.tasks.Recipe.from_dict` method. In terms of a broader software architecture point of view: The recipe knows nothing about the importer besides its bare existence and interface, whereas the importer knows about the recipe and how to map the information obtained to it. Attributes ---------- recipe : :obj:`aspecd.tasks.Recipe` recipe to import into source : :class:`str` specifier of the source the information will be read from Raises ------ aspecd.io.MissingRecipeError Raised when no dataset exists to act upon """ def __init__(self, source=''): self.source = source self.recipe = None def import_into(self, recipe=None): """Perform the actual import into the given recipe. If no recipe is provided at method call, but is set as property in the importer object, the :meth:`aspecd.tasks.Recipe.import_from` method of the recipe will be called. If no recipe is provided at method call nor as property in the object, the method will raise a respective exception. The recipe object always calls this method with the respective recipe as argument. Therefore, in this case setting the recipe property within the importer object is not necessary. The actual import should be implemented within the non-public method :meth:`_import`. Parameters ---------- recipe : :obj:`aspecd.tasks.Recipe` recipe to import into Raises ------ aspecd.io.MissingRecipeError Raised if no recipe is provided. """ if not recipe: if self.recipe: self.recipe.import_from(self) else: raise aspecd.exceptions.MissingRecipeError("No recipe provided") else: self.recipe = recipe self.recipe.filename = self.source self._import() def _import(self): """Perform the actual import into the recipe. The implementation of the actual import goes in here in all classes inheriting from RecipeImporter. This method is automatically called by :meth:`import_into`. Importing metadata includes assigning it to the respective fields of the :obj:`aspecd.tasks.Recipe` object. For details of its structure, see there. To do this, the method should create a dictionary that can afterwards be supplied as an argument to a call to :meth:`aspecd.tasks.Recipe.from_dict`. """ class RecipeExporter: """Base class for recipe exporter. Each class actually exporting recipes from :obj:`aspecd.tasks.Recipe` objects should inherit from this class. To perform the export, call the :meth:`aspecd.tasks.Recipe.export_to` method of the recipe the export should be performed for, and provide a reference to the actual exporter object to it. The actual implementation of the exporting is done in the non-public method :meth:`_export` that in turn gets called by :meth:`export_from` which is called by the :meth:`aspecd.tasks.Recipe.export_to` method of the recipe object. Attributes ---------- recipe : :obj:`aspecd.tasks.Recipe` recipe to export information from target : string specifier of the target the information will be written to Raises ------ aspecd.io.MissingRecipeError Raised when no dataset exists to act upon """ def __init__(self, target=''): self.target = target self.recipe = None def export_from(self, recipe=None): """Perform the actual export from the given recipe. If no recipe is provided at method call, but is set as property in the exporter object, the :meth:`aspecd.tasks.Recipe.export_to` method of the recipe will be called. If no recipe is provided at method call nor as property in the object, the method will raise a respective exception. The recipe object always calls this method with the respective recipe as argument. Therefore, in this case setting the recipe property within the exporter object is not necessary. The actual export should be implemented within the non-public method :meth:`_export`. Parameters ---------- recipe : :class:`aspecd.tasks.Recipe` Recipe to export from Raises ------ aspecd.io.MissingRecipeError Raised if no recipe is provided. """ if not recipe: if self.recipe: self.recipe.export_to(self) else: raise aspecd.exceptions.MissingRecipeError("No recipe provided") else: self.recipe = recipe self._export() def _export(self): """Perform the actual export from the recipe. The implementation of the actual export goes in here in all classes inheriting from RecipeExporter. This method is automatically called by :meth:`export_from`. Usually, this method will first create a dictionary from the recipe using the :meth:`aspecd.tasks.Recipe.to_dict` method. This dictionary can afterwards be further processed and written to some file. """ class RecipeYamlImporter(RecipeImporter): """ Recipe importer for importing from YAML files. The YAML file needs to have a structure compatible to the actual recipe, such that the dict created from reading the YAML file can be directly fed into the :meth:`aspecd.tasks.Recipe.from_dict` method. The order of entries of the YAML file is preserved due to using ordered dictionaries (:class:`collections.OrderedDict`) internally. Parameters ---------- source : :class:`str` filename of a YAML file to read from """ def __init__(self, source=''): self.recipe_version = '' self._recipe_dict = None super().__init__(source=source) def _import(self): self._load_from_yaml() self._convert() self.recipe.from_dict(self._recipe_dict) def _load_from_yaml(self): yaml = aspecd.utils.Yaml() yaml.read_from(filename=self.source) yaml.deserialise_numpy_arrays() self._recipe_dict = yaml.dict def _convert(self): self._get_recipe_version() self._map_recipe_structure() def _get_recipe_version(self): self.recipe_version = self.recipe.format['version'] if 'format' in self._recipe_dict \ and 'version' in self._recipe_dict['format']: self.recipe_version = self._recipe_dict['format']['version'] deprecated_keys = ['default_package', 'autosave_plots', 'output_directory', 'datasets_source_directory'] if any([key in self._recipe_dict for key in deprecated_keys]): self.recipe_version = '0.1' def _map_recipe_structure(self): mapper = aspecd.metadata.MetadataMapper() mapper.version = self.recipe_version mapper.metadata = self._recipe_dict mapper.recipe_filename = 'recipe_mapper.yaml' mapper.map() self._recipe_dict = mapper.metadata class RecipeYamlExporter(RecipeExporter): """ Recipe exporter for exporting to YAML files. The YAML file will have a structure corresponding to the output of the :meth:`aspecd.tasks.Recipe.to_dict` method of the recipe object. Parameters ---------- target : :class:`str` filename of a YAML file to write to """ def __init__(self, target=''): super().__init__(target=target) def _export(self): yaml = aspecd.utils.Yaml() yaml.dict = self.recipe.to_dict() yaml.numpy_array_to_list = True yaml.serialise_numpy_arrays() yaml.write_to(filename=self.target) class AdfExporter(DatasetExporter): """ Dataset exporter for exporting to ASpecD dataset format. The ASpecD dataset format is vaguely reminiscent of the Open Document Format, *i.e.* a zipped directory containing structured data (in this case in form of a YAML file) and binary data in a corresponding subdirectory. As PyYAML is not capable of dealing with NumPy arrays out of the box, those are dealt with separately. Small arrays are stored inline as lists, larger arrays in separate files. For details, see the :class:`aspecd.utils.Yaml` class. The data format tries to be as self-contained as possible, using standard file formats and a brief description of its layout contained within the archive. Collecting the contents in a single ZIP archive allows the user to deal with a single file for a dataset, while more advanced users can easily dig into the details and write importers for other platforms and programming languages, making the format rather platform-independent and future-safe. Due to using binary representation for larger numerical arrays, the format should be more memory-efficient than other formats. """ def __init__(self, target=None): super().__init__(target=target) self.extension = '.adf' self._filenames = { 'dataset': 'dataset.yaml', 'version': 'VERSION', 'readme': 'README', } self._bin_dir = 'binaryData' self._tempdir_name = '' self._version = '1.0.0' def _export(self): if not self.target: raise aspecd.exceptions.MissingTargetError with tempfile.TemporaryDirectory() as tempdir: self._tempdir_name = tempdir self._create_files() self._create_zip_archive() def _create_zip_archive(self): with zipfile.ZipFile(self.target + self.extension, 'w') as zipped_file: for filename in self._filenames.values(): zipped_file.write( filename=os.path.join(self._tempdir_name, filename), arcname=filename) bin_dir_path = os.path.join(self._tempdir_name, self._bin_dir) zipped_file.write( filename=os.path.join(bin_dir_path), arcname=self._bin_dir) for filename in os.listdir(bin_dir_path): zipped_file.write( filename=os.path.join(bin_dir_path, filename), arcname=os.path.join(self._bin_dir, filename)) def _create_files(self): self._create_dataset_yaml() self._create_version_file() self._create_readme_file() def _create_dataset_yaml(self): bin_dir_path = os.path.join(self._tempdir_name, self._bin_dir) os.mkdir(bin_dir_path) yaml = aspecd.utils.Yaml() yaml.binary_directory = bin_dir_path yaml.dict = self.dataset.to_dict() yaml.serialise_numpy_arrays() yaml.write_to(filename=os.path.join(self._tempdir_name, self._filenames["dataset"])) def _create_version_file(self): with open(os.path.join(self._tempdir_name, self._filenames["version"]), 'w+') as file: file.write(self._version) def _create_readme_file(self): readme_contents = ( "Readme\n" "======\n\n" "This directory contains an ASpecD dataset stored in the\n" "ASpecD dataset format (adf).\n\n" "What follows is a bit of information on the meaning of\n" "each of the files in the directory.\n" "Sources of further information on the file format\n" "are provided at the end of the file.\n\n" "Copyright (c) 2021, <NAME>\n" "2021-01-04\n\n" "Files and their meaning\n" "-----------------------\n\n" "* dataset.yaml - text/YAML\n" " hierarchical metadata store\n\n" "* binaryData/<filename>.npy - NumPy binary\n" " numerical data of the dataset stored in NumPy format\n\n" " Only arrays exceeding a certain threshold are stored\n" " in binary format, mainly to save space and preserve\n" " numerical accuracy.\n\n" "* VERSION - text\n" " version number of the dataset format\n\n" " The version number follows the semantic versioning scheme.\n\n" "* README - text\n" " This file\n\n" "Further information\n" "-------------------\n\n" "More information can be found on the web in the\n" "ASpecD package documentation:\n\n" "https://docs.aspecd.de/adf.html\n" ) with open(os.path.join(self._tempdir_name, self._filenames["readme"]), 'w+') as file: file.write(readme_contents) class AdfImporter(DatasetImporter): """ Dataset importer for importing from ASpecD dataset format. For more details of the ASpecD dataset format, see the :class:`aspecd.io.AdfExporter` class. """ def __init__(self, source=None): super().__init__(source=source) self.extension = '.adf' self._dataset_yaml_filename = 'dataset.yaml' self._bin_dir = 'binaryData' def _import(self): with tempfile.TemporaryDirectory() as tempdir: with zipfile.ZipFile(self.source + self.extension, 'r') as \ zipped_file: zipped_file.extractall(path=tempdir) yaml = aspecd.utils.Yaml() yaml.binary_directory = os.path.join(tempdir, self._bin_dir) yaml.read_from(os.path.join(tempdir, self._dataset_yaml_filename)) yaml.deserialise_numpy_arrays() self.dataset.from_dict(yaml.dict) class AsdfExporter(DatasetExporter): """ Dataset exporter for exporting to Advanced Scientific Data Format (ASDF). For more information on ASDF, see the `homepage of the asdf package <https://asdf.readthedocs.io/en/stable/>`_, and its `format specification <https://asdf-standard.readthedocs.io/>`_. """ def __init__(self, target=None): super().__init__(target=target) self.extension = '.asdf' def _export(self): if not self.target: raise aspecd.exceptions.MissingTargetError dataset_dict = self.dataset.to_dict() dataset_dict["dataset_history"] = dataset_dict.pop("history") asdf_file = asdf.AsdfFile(dataset_dict) asdf_file.write_to(self.target + self.extension) class AsdfImporter(DatasetImporter): """ Dataset importer for importing from Advanced Scientific Data Format (ASDF). For more information on ASDF, see the `homepage of the asdf package <https://asdf.readthedocs.io/en/stable/>`_, and its `format specification <https://asdf-standard.readthedocs.io/>`_. """ def __init__(self, source=None): super().__init__(source=source) self.extension = '.asdf' def _import(self): with asdf.open(self.source + self.extension, lazy_load=False, copy_arrays=True) as asdf_file: dataset_dict = asdf_file.tree dataset_dict["history"] = dataset_dict.pop("dataset_history") self.dataset.from_dict(dataset_dict) class TxtImporter(DatasetImporter): # noinspection PyUnresolvedReferences """ Dataset importer for importing from plain text files (TXT). Plain text files have often the disadvantage of no accompanying metadata, therefore the use of plain text files for data storage is highly discouraged, besides other problems like inherent low resolution/accuracy or otherwise large file sizes. The main reason for this class to exist is that it provides a simple way to showcase ASpecD functionality reading from primitive data sources. Besides that, sometimes you will encounter plain text files. .. note:: The importer relies on :func:`numpy.loadtxt` for reading text files. Hence, the same limitations apply, *e.g.* the dot as decimal separator. If your data consist of two columns, the first will automatically be interpreted as the *x* axis. In all other cases, data will be read as is and no axes values explicitly written. Attributes ---------- parameters : :class:`dict` Parameters controlling the import skiprows : :class:`int` Number of rows to skip in text file (*e.g.*, header lines) """ def __init__(self, source=None): super().__init__(source=source) self.extension = '.txt' self.parameters["skiprows"] = 0 def _import(self): data =
np.loadtxt(self.source, **self.parameters)
numpy.loadtxt
import numpy as np import matplotlib.pyplot as plt import inspect # Used for storing the input from .element import Element from .equation import HeadEquation, PotentialEquation from .besselaesnumba import besselaesnumba besselaesnumba.initialize() try: from .src import besselaesnew besselaesnew.besselaesnew.initialize() #print('succes on f2py') except: pass from .controlpoints import controlpoints, strengthinf_controlpoints __all__ = ['LineSinkBase', 'HeadLineSinkZero', 'HeadLineSink', 'LineSinkDitch', 'HeadLineSinkString', 'LineSinkDitchString'] class LineSinkChangeTrace: def changetrace(self, xyzt1, xyzt2, aq, layer, ltype, modellayer, direction, hstepmax, verbose=False): changed = False terminate = False xyztnew = 0 if (ltype == 'a'): if True: # if (layer == self.layers).any(): # in layer where line-sink is screened # not needed anymore, I thin this is all taken care of with checking Qn1 and Qn2 if verbose: print('hello changetrace') print('xyz1:', xyzt1[:-1]) print('xyz2:', xyzt2[:-1]) x1, y1, z1, t1 = xyzt1 x2, y2, z2, t2 = xyzt2 eps = 1e-8 za = x1 + y1 * 1j zb = x2 + y2 * 1j Za = (2 * za - (self.z1 + self.z2)) / (self.z2 - self.z1) Zb = (2 * zb - (self.z1 + self.z2)) / (self.z2 - self.z1) if Za.imag * Zb.imag < 0: Xa, Ya = Za.real, Za.imag Xb, Yb = Zb.real, Zb.imag X = Xa - Ya * (Xb - Xa) / (Yb - Ya) if verbose: print('X', X) if abs(X) <= 1: # crosses line-sink if verbose: print('crosses line-sink') Znew1 = X - eps * np.sign(Yb) * 1j # steps to side of Ya Znew2 = X + eps * np.sign(Yb) * 1j # steps to side of Yb znew1 = 0.5 * ((self.z2 - self.z1) * Znew1 + self.z1 + self.z2) znew2 = 0.5 * ((self.z2 - self.z1) * Znew2 + self.z1 + self.z2) xnew1, ynew1 = znew1.real, znew1.imag xnew2, ynew2 = znew2.real, znew2.imag if Ya < 0: theta = self.theta_norm_out else: theta = self.theta_norm_out + np.pi Qx1, Qy1 = self.model.disvec(xnew1, ynew1)[:, layer] * direction Qn1 = Qx1 * np.cos(theta) + Qy1 * np.sin(theta) Qx2, Qy2 = self.model.disvec(xnew2, ynew2)[:, layer] * direction Qn2 = Qx2 * np.cos(theta) + Qy2 * np.sin(theta) if verbose: print('xnew1, ynew1:', xnew1, ynew1) print('xnew2, ynew2:', xnew2, ynew2) print('Qn1, Qn2', Qn1, Qn2) print('Qn2 > Qn1:', Qn2 > Qn1) if Qn1 < 0: # trying to cross line-sink that infiltrates, stay on bottom, don't terminate if verbose: print('change 1') xnew = xnew1 ynew = ynew1 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) tnew = t1 + dnew / dold * (t2 - t1) changed = True xyztnew = [np.array([xnew, ynew, znew, tnew])] elif Qn2 < 0: # all water is taken out, terminate if verbose: print('change 2') xnew = xnew2 ynew = ynew2 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) tnew = t1 + dnew / dold * (t2 - t1) changed = True terminate = True xyztnew = [np.array([xnew, ynew, znew, tnew])] elif Qn2 > Qn1: # line-sink infiltrates if verbose: print('change 3') xnew = xnew2 ynew = ynew2 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) # elevation just before jump tnew = t1 + dnew / dold * (t2 - t1) Qbelow = (znew - aq.z[modellayer + 1]) / aq.Haq[layer] * Qn1 znew2 = aq.z[modellayer + 1] + Qbelow / Qn2 * aq.Haq[layer] changed = True xyztnew = [np.array([xnew, ynew, znew, tnew]), np.array([xnew, ynew, znew2, tnew])] else: # line-sink takes part of water out if verbose: print('change 4') xnew = xnew2 ynew = ynew2 dold = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2) dnew = np.sqrt((x1 - xnew) ** 2 + (y1 - ynew) ** 2) znew = z1 + dnew / dold * (z2 - z1) # elevation just before jump tnew = t1 + dnew / dold * (t2 - t1) Qbelow = (znew - aq.z[modellayer + 1]) / aq.Haq[layer] * Qn1 if Qbelow > Qn2: # taken out terminate = True xyztnew = [np.array([xnew, ynew, znew, tnew])] else: znew2 = aq.z[modellayer + 1] + Qbelow / Qn2 * aq.Haq[layer] xyztnew = [np.array([xnew, ynew, znew, tnew]),
np.array([xnew, ynew, znew2, tnew])
numpy.array
""" ----------------------------------------------------------------------- Harmoni: a Novel Method for Eliminating Spurious Neuronal Interactions due to the Harmonic Components in Neuronal Data <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> https://doi.org/10.1101/2021.10.06.463319 ----------------------------------------------------------------------- script for: ** Lemon Data analysis ** ----------------------------------------------------------------------- (c) <NAME> (<EMAIL>) @ Neurolgy Dept, MPI CBS, 2021 https://github.com/minajamshidi (c) please cite the above paper in case of using this code for your research License: MIT License ----------------------------------------------------------------------- last modified: 20211004 by \Mina ----------------------------------------------------------------------- ----------------------------------------------------------------------- """ import os.path as op import os import itertools from operator import itemgetter import multiprocessing from functools import partial import time from matplotlib import pyplot as plt import matplotlib import pandas as pd import numpy as np from numpy import pi import scipy.stats as stats from scipy.signal import butter from tools_general import * from tools_source_space import * from tools_connectivity import * from tools_connectivity_plot import * # directories and settings ----------------------------------------------------- # fill in these directories with your own data directories subjects_dir = '/data/pt_02076/mne_data/MNE-fsaverage-data/' # dir for the head model subject = 'fsaverage' _oct = '6' src_dir = op.join(subjects_dir, subject, 'bem', subject + '-oct' + _oct + '-src.fif') fwd_dir = op.join(subjects_dir, subject, 'bem', subject + '-oct' + _oct + '-fwd.fif') inv_method = 'eLORETA' condition = 'EC' # dir_adjmat = op.join('/data/pt_02076/LEMON/lemon_processed_data/networks_bandpass/eloreta/Schaefer100/', condition) dir_adjmat = '/data/pt_02076/LEMON/lemon_processed_data/networks_coh_indiv_alphapeak_broadsvd_noperm/' dir_raw_set = '/data/pt_nro109/Share/EEG_MPILMBB_LEMON/EEG_Preprocessed_BIDS_ID/EEG_Preprocessed/' """ NOTE ABOUT DATA You have to download the data of eyes-closed rsEEG of subject sub-010017 from https://ftp.gwdg.de/pub/misc/MPI-Leipzig_Mind-Brain-Body-LEMON/EEG_MPILMBB_LEMON/EEG_Raw_BIDS_ID/sub-010017/RSEEG/ and put it in the data_dir you specify here. """ # ----------------------------------------------------- # read the parcellation # ----------------------------------------------------- parcellation = dict(name='Schaefer2018_100Parcels_7Networks_order', abb='Schaefer100') labels = mne.read_labels_from_annot(subject, subjects_dir=subjects_dir, parc=parcellation['name']) labels = labels[:-2] # labels = labels[:-1] labels_sorted, idx_sorted = rearrange_labels(labels) # rearrange labels labels_sorted2, idx_sorted2 = rearrange_labels_network(labels) # rearrange labels labels_network_sorted, idx_lbl_sort = rearrange_labels_network(labels_sorted) n_parc = len(labels) n_parc_range_prod = list(itertools.product(np.arange(n_parc), np.arange(n_parc))) # read forward solution --------------------------------------------------- fwd = mne.read_forward_solution(fwd_dir) fwd_fixed = mne.convert_forward_solution(fwd, surf_ori=True, force_fixed=True, use_cps=True) leadfield = fwd_fixed['sol']['data'] n_vox = leadfield.shape[1] src = fwd_fixed['src'] sfreq = 250 vertices = [src[0]['vertno'], src[1]['vertno']] iir_params = dict(order=2, ftype='butter') b10, a10 = butter(N=2, Wn=np.array([8, 12]) / sfreq * 2, btype='bandpass') b20, a20 = butter(N=2, Wn=np.array([16, 24]) / sfreq * 2, btype='bandpass') # ----------------------------------------------------- # ID settings # ----------------------------------------------------- # ids1 = select_subjects('young', 'male', 'right', meta_file_path) list_ids = listdir_restricted(dir_adjmat, 'sub-') ids = [list_ids1[:10] for list_ids1 in list_ids] ids = np.unique(np.sort(ids)) n_subj = len(ids) # ---------------------------------------------------------------------------------------------------------------------- # Harmoni and rsEEG data - panel A # 1:2 coh all subjects source-space # This part is commented because it takes a lot of time - just uncomment it if you wanna run it # ---------------------------------------------------------------------------------------------------------------------- # plv_src = np.zeros((n_vox, n_subj)) # for i_subj, subj in enumerate(ids): # print(i_subj, '**************') # raw_name = op.join(dir_raw_set, subj + '_EC.set') # raw = read_eeglab_standard_chanloc(raw_name) # data_raw = raw.get_data() # inv_sol, inv_op, inv = extract_inv_sol(data_raw.shape, fwd, raw.info) # fwd_ch = fwd_fixed.ch_names # raw_ch = raw.info['ch_names'] # ind = [fwd_ch.index(ch) for ch in raw_ch] # leadfield_raw = leadfield[ind, :] # sfreq = raw.info['sfreq'] # # # alpha sources -------- # raw_alpha = raw.copy() # raw_alpha.load_data() # raw_alpha.filter(l_freq=8, h_freq=12, method='iir', iir_params=iir_params) # raw_alpha.set_eeg_reference(projection=True) # stc_alpha_raw = mne.minimum_norm.apply_inverse_raw(raw_alpha, inverse_operator=inv, # lambda2=0.05, method=inv_method, pick_ori='normal') # # beta sources -------- # raw_beta = raw.copy() # raw_beta.load_data() # raw_beta.filter(l_freq=16, h_freq=24, method='iir', iir_params=iir_params) # raw_beta.set_eeg_reference(projection=True) # stc_beta_raw = mne.minimum_norm.apply_inverse_raw(raw_beta, inverse_operator=inv, # lambda2=0.1, method=inv_method, pick_ori='normal') # # for i_parc, label1 in enumerate(labels): # print(i_parc) # parc_idx, _ = label_idx_whole_brain(src, label1) # data1 = stc_alpha_raw.data[parc_idx, :] # data2 = stc_beta_raw.data[parc_idx] # plv_src[parc_idx, i_subj] = compute_phase_connectivity(data1, data2, 1, 2, measure='coh', axis=1, type1='abs') # # save_json_from_numpy('/NOBACKUP/Results/lemon_processed_data/parcels/plv_vertices_all-subj', plv_src) # # stc_new = mne.SourceEstimate(np.mean(plv_src, axis=-1, keepdims=True), vertices, tmin=0, tstep=0.01, subject='fsaverage') # stc_new.plot(subject='fsaverage', subjects_dir=subjects_dir, time_viewer=True, hemi='split', background='white', # surface='pial') # ---------------------------------------------------------------------------------------------------------------------- # read the graphs # ---------------------------------------------------------------------------------------------------------------------- # containers for the graphs and asymmetry index ----------------------------------- # all graphs, not thresholded conn1_all = np.zeros((n_parc, n_parc, n_subj)) conn2_all = np.zeros((n_parc, n_parc, n_subj)) conn2_corr_all = np.zeros((n_parc, n_parc, n_subj)) conn12_all = np.zeros((n_parc, n_parc, n_subj)) conn12_corr_all = np.zeros((n_parc, n_parc, n_subj)) conn12_symm_idx = np.zeros((n_subj, 2)) # asymmetry index container ind_triu = np.triu_indices(n_parc, k=1) ind_diag = np.diag_indices(n_parc) """ ************************* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! CAUTION: graph adjacency matrices are rearranged here --> the parcels are rearranged as the in labels_sorted they are rearranged in the posterior-anterior direction. In most cases, nearby parcels are also adjacent physically ************************* !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! """ for i_subj, subj in enumerate(ids): print(i_subj) pickle_name = op.join(dir_adjmat, subj + '-alpha-alpha') conn1, pval1, pval1_ = load_pickle(pickle_name) pickle_name = op.join(dir_adjmat, subj + '-beta-beta') conn2, pval2, _ = load_pickle(pickle_name) pickle_name = op.join(dir_adjmat, subj + '-beta-beta-corr-grad') conn2_corr, pval2_corr, _ = load_pickle(pickle_name) pickle_name = op.join(dir_adjmat, subj + '-alpha-beta') conn12, pval12, _ = load_pickle(pickle_name) pickle_name = op.join(dir_adjmat, subj + '-alpha-beta-corr-grad') conn12_corr, pval12_corr, _ = load_pickle(pickle_name) # save the original graphs conn1_all[:, :, i_subj] = conn1[idx_sorted, :][:, idx_sorted] conn2_all[:, :, i_subj] = conn2[idx_sorted, :][:, idx_sorted] conn2_corr_all[:, :, i_subj] = conn2_corr[idx_sorted, :][:, idx_sorted] conn12_all[:, :, i_subj] = conn12[idx_sorted, :][:, idx_sorted] conn12_corr_all[:, :, i_subj] = conn12_corr[idx_sorted, :][:, idx_sorted] # asymmetry index from original graphs conn12_symm_idx[i_subj, 0] = np.linalg.norm((conn12 - conn12.T)) / (2) / np.linalg.norm(conn12) conn12_symm_idx[i_subj, 1] = np.linalg.norm((conn12_corr - conn12_corr.T)) / (2) / np.linalg.norm(conn12_corr) conn12_all = zscore_matrix_fischer(conn12_all) conn12_corr_all = zscore_matrix_fischer(conn12_corr_all) # ---------------------------------------------------------------------------------------------------------------------- # Harmoni and rsEEG data - panels B & C & D & E # means # # ---------------------------------------------------------------------------------------------------------------------- net_mean_before = np.mean(conn12_all, axis=-1) net_mean_after = np.mean(conn12_corr_all, axis=-1) # zscore all ------------------------- conn12_all_z = np.zeros_like(conn12_all) conn12_corr_all_z = np.zeros_like(conn12_corr_all) for i_subj in range(n_subj): print(i_subj) conn12_all_z[:, :, i_subj] = zscore_matrix(conn12_all[:, :, i_subj]) conn12_corr_all_z[:, :, i_subj] = zscore_matrix(conn12_corr_all[:, :, i_subj]) # difference by subtracting the zscored graphs ------------------------- conn12_diff_z = conn12_corr_all_z - conn12_all_z conn12_diff_z_mean = np.mean(conn12_diff_z, axis=-1) conn12_diff_z_mean_pos = conn12_diff_z_mean.copy() conn12_diff_z_mean_pos[conn12_diff_z_mean < 0] = 0 conn12_diff_z_mean_neg = conn12_diff_z_mean.copy() conn12_diff_z_mean_neg[conn12_diff_z_mean > 0] = 0 conn12_diff_z_mean_neg = np.abs(conn12_diff_z_mean_neg) # test the significance of change in each connection ------------------------- pvalue_zscores = np.zeros((n_parc, n_parc)) statistics_all = np.zeros((n_parc, n_parc)) for i1 in range(n_parc): for i2 in range(n_parc): statistics_all[i1, i2], pvalue_zscores[i1, i2] = stats.ttest_rel((conn12_all_z[i1, i2, :]), (conn12_corr_all_z[i1, i2, :])) ind_nonsig = pvalue_zscores > 0.05 / n_parc ** 2 # Bonferroni correction pvalue2_zscores = np.ones((n_parc, n_parc)) pvalue2_zscores[ind_nonsig] = 0 # plot the networks ------------------------- # the mean before Harmoni - panel B con_lbl_net_before, labels_s = plot_connectivity_bipartite_2_prime(net_mean_before, labels_sorted, 0, edge_cmp='Blues', fig_title='mean before', only_lbl=None, arrange='network') # the mean after Harmoni - panel C con_lbl_net_after, _ = plot_connectivity_bipartite_2_prime(net_mean_after, labels_sorted, 0, edge_cmp='Blues', fig_title='mean after', only_lbl=None, arrange='network') # the positive difference - significant connections - panel D con_lbl_net_diff_pos, _ = plot_connectivity_bipartite_2_prime(conn12_diff_z_mean_pos * pvalue2_zscores, labels_sorted, 0, edge_cmp='Purples', fig_title='pos difference', only_lbl=None, arrange='network') # the negative difference - significant connections - panel E con_lbl_net_diff_neg, _ = plot_connectivity_bipartite_2_prime(conn12_diff_z_mean_neg * pvalue2_zscores, labels_sorted, 0, edge_cmp='Greens', fig_title='pos difference', only_lbl=None, arrange='network') fig, ax = plt.subplots() plot_matrix(con_lbl_net_before, cmap='RdBu', vmin=None, axes=ax) ax.set_yticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.set_xticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.xaxis.grid(True, which='minor', color = 'black', linestyle = '--', linewidth = 1) ax.yaxis.grid(True, which='minor', color = 'black', linestyle = '--', linewidth = 1) fig, ax = plt.subplots() plot_matrix(con_lbl_net_after, cmap='RdBu', vmin=0, axes=ax) ax.set_yticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.set_xticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.xaxis.grid(True, which='minor', color = 'black', linestyle='--', linewidth = 1) ax.yaxis.grid(True, which='minor', color = 'black', linestyle='--', linewidth = 1) fig, ax = plt.subplots() plot_matrix(con_lbl_net_diff_pos, cmap='PRGn_r', vmin=0, axes=ax) ax.set_yticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.set_xticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.xaxis.grid(True, which='minor', color = 'black', linestyle = '--', linewidth = 1) ax.yaxis.grid(True, which='minor', color = 'black', linestyle = '--', linewidth = 1) fig, ax = plt.subplots() plot_matrix(con_lbl_net_diff_neg, cmap='PRGn', vmin=0, axes=ax) ax.set_yticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.set_xticks([3.5, 16.5, 24.5, 27.5, 34.5, 40.5, 49.5, 57.5, 65.5, 70.5, 72.5, 79.5, 90.5], minor=True) ax.xaxis.grid(True, which='minor', color = 'black', linestyle = '--', linewidth = 1) ax.yaxis.grid(True, which='minor', color = 'black', linestyle = '--', linewidth = 1) # plot_matrix(net_mean_before) # plot_matrix(net_mean_after) # plot_matrix(conn12_diff_z_mean_pos*pvalue2_zscores) # plot_matrix(conn12_diff_z_mean_neg*pvalue2_zscores) # ---------------------------------------------------------------------------------------------------------------------- # test the decrease # ---------------------------------------------------------------------------------------------------------------------- pvalue_all = np.zeros((n_parc, n_parc)) tvalue_all = np.zeros((n_parc, n_parc)) for i1 in range(n_parc): for i2 in range(n_parc): tvalue_all[i1, i2], pvalue_all[i1, i2] = stats.ttest_rel(conn12_corr_all[i1, i2, :], conn12_all[i1, i2, :]) ind_nonsig = pvalue_all > 0.05 / n_parc**2 # Bonferroni correction pvalue2 = np.ones((n_parc, n_parc)) pvalue2[ind_nonsig] = 0 print('min t=',
np.min(tvalue_all[pvalue2 == 1])
numpy.min
from functools import lru_cache from typing import Union import numpy as np from qutip import Qobj, expect, jmat, lindblad_dissipator, sigmax, sigmay, sigmaz, spin_q_function, spin_state, steadystate from scipy import integrate from scipy.linalg import expm from utils import profile def spin_S_measure(theta, Q): # Calculate synchronisation measure from Q representation # theta parameter and theta 'axis' of Q should be the same. if len(theta.shape) > 1: # To ensure params are passed the right way around raise ValueError("theta must be either a row of column vector") return integrate.trapz(Q * np.sin(theta), theta) - 1 / (2 * np.pi) def my_spin_coherent_dm(j, theta, phi): Qsize = [1, 1] if isinstance(theta, np.ndarray): Qsize[1] = theta.size if isinstance(phi, np.ndarray): Qsize[0] = phi.size Sp = np.ones(Qsize, dtype=Qobj) * jmat(j, "+") Sm =
np.ones(Qsize, dtype=Qobj)
numpy.ones
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT license. from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch from torchvision import transforms import cv2 import numpy as np import types from PIL import Image, ImageEnhance, ImageDraw import math import six import sys; sys.path.append('../') from data.choose_config import cfg cfg = cfg.cfg import random class sampler(): def __init__(self, max_sample, max_trial, min_scale, max_scale, min_aspect_ratio, max_aspect_ratio, min_jaccard_overlap, max_jaccard_overlap, min_object_coverage, max_object_coverage, use_square=False): self.max_sample = max_sample self.max_trial = max_trial self.min_scale = min_scale self.max_scale = max_scale self.min_aspect_ratio = min_aspect_ratio self.max_aspect_ratio = max_aspect_ratio self.min_jaccard_overlap = min_jaccard_overlap self.max_jaccard_overlap = max_jaccard_overlap self.min_object_coverage = min_object_coverage self.max_object_coverage = max_object_coverage self.use_square = use_square def intersect(box_a, box_b): max_xy = np.minimum(box_a[:, 2:], box_b[2:]) min_xy = np.maximum(box_a[:, :2], box_b[:2]) inter = np.clip((max_xy - min_xy), a_min=0, a_max=np.inf) return inter[:, 0] * inter[:, 1] def jaccard_numpy(box_a, box_b): """Compute the jaccard overlap of two sets of boxes. The jaccard overlap is simply the intersection over union of two boxes. E.g.: A ∩ B / A ∪ B = A ∩ B / (area(A) + area(B) - A ∩ B) Args: box_a: Multiple bounding boxes, Shape: [num_boxes,4] box_b: Single bounding box, Shape: [4] Return: jaccard overlap: Shape: [box_a.shape[0], box_a.shape[1]] """ inter = intersect(box_a, box_b) area_a = ((box_a[:, 2] - box_a[:, 0]) * (box_a[:, 3] - box_a[:, 1])) # [A,B] area_b = ((box_b[2] - box_b[0]) * (box_b[3] - box_b[1])) # [A,B] union = area_a + area_b - inter return inter / union # [A,B] class bbox(): def __init__(self, xmin, ymin, xmax, ymax): self.xmin = xmin self.ymin = ymin self.xmax = xmax self.ymax = ymax def random_brightness(img): prob = np.random.uniform(0, 1) if prob < cfg.brightness_prob: delta = np.random.uniform(-cfg.brightness_delta, cfg.brightness_delta) + 1 img = ImageEnhance.Brightness(img).enhance(delta) return img def random_contrast(img): prob = np.random.uniform(0, 1) if prob < cfg.contrast_prob: delta = np.random.uniform(-cfg.contrast_delta, cfg.contrast_delta) + 1 img = ImageEnhance.Contrast(img).enhance(delta) return img def random_saturation(img): prob = np.random.uniform(0, 1) if prob < cfg.saturation_prob: delta = np.random.uniform(-cfg.saturation_delta, cfg.saturation_delta) + 1 img = ImageEnhance.Color(img).enhance(delta) return img def random_hue(img): prob = np.random.uniform(0, 1) if prob < cfg.hue_prob: delta = np.random.uniform(-cfg.hue_delta, cfg.hue_delta) img_hsv = np.array(img.convert('HSV')) img_hsv[:, :, 0] = img_hsv[:, :, 0] + delta img = Image.fromarray(img_hsv, mode='HSV').convert('RGB') return img def distort_image(img): prob = np.random.uniform(0, 1) # Apply different distort order if prob > 0.5: img = random_brightness(img) img = random_contrast(img) img = random_saturation(img) img = random_hue(img) else: img = random_brightness(img) img = random_saturation(img) img = random_hue(img) img = random_contrast(img) return img def meet_emit_constraint(src_bbox, sample_bbox): center_x = (src_bbox.xmax + src_bbox.xmin) / 2 center_y = (src_bbox.ymax + src_bbox.ymin) / 2 if center_x >= sample_bbox.xmin and \ center_x <= sample_bbox.xmax and \ center_y >= sample_bbox.ymin and \ center_y <= sample_bbox.ymax: return True return False def project_bbox(object_bbox, sample_bbox): if object_bbox.xmin >= sample_bbox.xmax or \ object_bbox.xmax <= sample_bbox.xmin or \ object_bbox.ymin >= sample_bbox.ymax or \ object_bbox.ymax <= sample_bbox.ymin: return False else: proj_bbox = bbox(0, 0, 0, 0) sample_width = sample_bbox.xmax - sample_bbox.xmin sample_height = sample_bbox.ymax - sample_bbox.ymin proj_bbox.xmin = (object_bbox.xmin - sample_bbox.xmin) / sample_width proj_bbox.ymin = (object_bbox.ymin - sample_bbox.ymin) / sample_height proj_bbox.xmax = (object_bbox.xmax - sample_bbox.xmin) / sample_width proj_bbox.ymax = (object_bbox.ymax - sample_bbox.ymin) / sample_height proj_bbox = clip_bbox(proj_bbox) if bbox_area(proj_bbox) > 0: return proj_bbox else: return False def transform_labels(bbox_labels, sample_bbox): sample_labels = [] for i in range(len(bbox_labels)): sample_label = [] object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4]) if not meet_emit_constraint(object_bbox, sample_bbox): continue proj_bbox = project_bbox(object_bbox, sample_bbox) if proj_bbox: sample_label.append(bbox_labels[i][0]) sample_label.append(float(proj_bbox.xmin)) sample_label.append(float(proj_bbox.ymin)) sample_label.append(float(proj_bbox.xmax)) sample_label.append(float(proj_bbox.ymax)) sample_label = sample_label + bbox_labels[i][5:] sample_labels.append(sample_label) return sample_labels def expand_image(img, bbox_labels, img_width, img_height): prob = np.random.uniform(0, 1) if prob < cfg.expand_prob: if cfg.expand_max_ratio - 1 >= 0.01: expand_ratio = np.random.uniform(1, cfg.expand_max_ratio) height = int(img_height * expand_ratio) width = int(img_width * expand_ratio) h_off = math.floor(np.random.uniform(0, height - img_height)) w_off = math.floor(np.random.uniform(0, width - img_width)) expand_bbox = bbox(-w_off / img_width, -h_off / img_height, (width - w_off) / img_width, (height - h_off) / img_height) expand_img = np.ones((height, width, 3)) expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean)) expand_img = Image.fromarray(expand_img) expand_img.paste(img, (int(w_off), int(h_off))) bbox_labels = transform_labels(bbox_labels, expand_bbox) return expand_img, bbox_labels, width, height return img, bbox_labels, img_width, img_height def clip_bbox(src_bbox): src_bbox.xmin = max(min(src_bbox.xmin, 1.0), 0.0) src_bbox.ymin = max(min(src_bbox.ymin, 1.0), 0.0) src_bbox.xmax = max(min(src_bbox.xmax, 1.0), 0.0) src_bbox.ymax = max(min(src_bbox.ymax, 1.0), 0.0) return src_bbox def bbox_area(src_bbox): if src_bbox.xmax < src_bbox.xmin or src_bbox.ymax < src_bbox.ymin: return 0. else: width = src_bbox.xmax - src_bbox.xmin height = src_bbox.ymax - src_bbox.ymin return width * height def intersect_bbox(bbox1, bbox2): if bbox2.xmin > bbox1.xmax or bbox2.xmax < bbox1.xmin or \ bbox2.ymin > bbox1.ymax or bbox2.ymax < bbox1.ymin: intersection_box = bbox(0.0, 0.0, 0.0, 0.0) else: intersection_box = bbox( max(bbox1.xmin, bbox2.xmin), max(bbox1.ymin, bbox2.ymin), min(bbox1.xmax, bbox2.xmax), min(bbox1.ymax, bbox2.ymax)) return intersection_box def bbox_coverage(bbox1, bbox2): inter_box = intersect_bbox(bbox1, bbox2) intersect_size = bbox_area(inter_box) if intersect_size > 0: bbox1_size = bbox_area(bbox1) return intersect_size / bbox1_size else: return 0. def generate_batch_random_samples(batch_sampler, bbox_labels, image_width, image_height, scale_array, resize_width, resize_height): sampled_bbox = [] for sampler in batch_sampler: found = 0 for i in range(sampler.max_trial): if found >= sampler.max_sample: break sample_bbox = data_anchor_sampling( sampler, bbox_labels, image_width, image_height, scale_array, resize_width, resize_height) if sample_bbox == 0: break if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels): sampled_bbox.append(sample_bbox) found = found + 1 return sampled_bbox def data_anchor_sampling(sampler, bbox_labels, image_width, image_height, scale_array, resize_width, resize_height): num_gt = len(bbox_labels) # np.random.randint range: [low, high) rand_idx = np.random.randint(0, num_gt) if num_gt != 0 else 0 if num_gt != 0: norm_xmin = bbox_labels[rand_idx][1] norm_ymin = bbox_labels[rand_idx][2] norm_xmax = bbox_labels[rand_idx][3] norm_ymax = bbox_labels[rand_idx][4] xmin = norm_xmin * image_width ymin = norm_ymin * image_height wid = image_width * (norm_xmax - norm_xmin) hei = image_height * (norm_ymax - norm_ymin) range_size = 0 area = wid * hei for scale_ind in range(0, len(scale_array) - 1): if area > scale_array[scale_ind] ** 2 and area < \ scale_array[scale_ind + 1] ** 2: range_size = scale_ind + 1 break if area > scale_array[len(scale_array) - 2]**2: range_size = len(scale_array) - 2 scale_choose = 0.0 if range_size == 0: rand_idx_size = 0 else: # np.random.randint range: [low, high) rng_rand_size = np.random.randint(0, range_size + 1) rand_idx_size = rng_rand_size % (range_size + 1) if rand_idx_size == range_size: min_resize_val = scale_array[rand_idx_size] / 2.0 max_resize_val = min(2.0 * scale_array[rand_idx_size], 2 * math.sqrt(wid * hei)) scale_choose = random.uniform(min_resize_val, max_resize_val) else: min_resize_val = scale_array[rand_idx_size] / 2.0 max_resize_val = 2.0 * scale_array[rand_idx_size] scale_choose = random.uniform(min_resize_val, max_resize_val) sample_bbox_size = wid * resize_width / scale_choose w_off_orig = 0.0 h_off_orig = 0.0 if sample_bbox_size < max(image_height, image_width): if wid <= sample_bbox_size: w_off_orig = np.random.uniform(xmin + wid - sample_bbox_size, xmin) else: w_off_orig = np.random.uniform(xmin, xmin + wid - sample_bbox_size) if hei <= sample_bbox_size: h_off_orig = np.random.uniform(ymin + hei - sample_bbox_size, ymin) else: h_off_orig = np.random.uniform(ymin, ymin + hei - sample_bbox_size) else: w_off_orig = np.random.uniform(image_width - sample_bbox_size, 0.0) h_off_orig = np.random.uniform( image_height - sample_bbox_size, 0.0) w_off_orig = math.floor(w_off_orig) h_off_orig = math.floor(h_off_orig) # Figure out top left coordinates. w_off = 0.0 h_off = 0.0 w_off = float(w_off_orig / image_width) h_off = float(h_off_orig / image_height) sampled_bbox = bbox(w_off, h_off, w_off + float(sample_bbox_size / image_width), h_off + float(sample_bbox_size / image_height)) return sampled_bbox else: return 0 def jaccard_overlap(sample_bbox, object_bbox): if sample_bbox.xmin >= object_bbox.xmax or \ sample_bbox.xmax <= object_bbox.xmin or \ sample_bbox.ymin >= object_bbox.ymax or \ sample_bbox.ymax <= object_bbox.ymin: return 0 intersect_xmin = max(sample_bbox.xmin, object_bbox.xmin) intersect_ymin = max(sample_bbox.ymin, object_bbox.ymin) intersect_xmax = min(sample_bbox.xmax, object_bbox.xmax) intersect_ymax = min(sample_bbox.ymax, object_bbox.ymax) intersect_size = (intersect_xmax - intersect_xmin) * ( intersect_ymax - intersect_ymin) sample_bbox_size = bbox_area(sample_bbox) object_bbox_size = bbox_area(object_bbox) overlap = intersect_size / ( sample_bbox_size + object_bbox_size - intersect_size) return overlap def satisfy_sample_constraint(sampler, sample_bbox, bbox_labels): if sampler.min_jaccard_overlap == 0 and sampler.max_jaccard_overlap == 0: has_jaccard_overlap = False else: has_jaccard_overlap = True if sampler.min_object_coverage == 0 and sampler.max_object_coverage == 0: has_object_coverage = False else: has_object_coverage = True if not has_jaccard_overlap and not has_object_coverage: return True found = False for i in range(len(bbox_labels)): object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4]) if has_jaccard_overlap: overlap = jaccard_overlap(sample_bbox, object_bbox) if sampler.min_jaccard_overlap != 0 and \ overlap < sampler.min_jaccard_overlap: continue if sampler.max_jaccard_overlap != 0 and \ overlap > sampler.max_jaccard_overlap: continue found = True if has_object_coverage: object_coverage = bbox_coverage(object_bbox, sample_bbox) if sampler.min_object_coverage != 0 and \ object_coverage < sampler.min_object_coverage: continue if sampler.max_object_coverage != 0 and \ object_coverage > sampler.max_object_coverage: continue found = True if found: return True return found def crop_image_sampling(img, bbox_labels, sample_bbox, image_width, image_height, resize_width, resize_height, min_face_size): # no clipping here xmin = int(sample_bbox.xmin * image_width) xmax = int(sample_bbox.xmax * image_width) ymin = int(sample_bbox.ymin * image_height) ymax = int(sample_bbox.ymax * image_height) w_off = xmin h_off = ymin width = xmax - xmin height = ymax - ymin cross_xmin = max(0.0, float(w_off)) cross_ymin = max(0.0, float(h_off)) cross_xmax = min(float(w_off + width - 1.0), float(image_width)) cross_ymax = min(float(h_off + height - 1.0), float(image_height)) cross_width = cross_xmax - cross_xmin cross_height = cross_ymax - cross_ymin roi_xmin = 0 if w_off >= 0 else abs(w_off) roi_ymin = 0 if h_off >= 0 else abs(h_off) roi_width = cross_width roi_height = cross_height roi_y1 = int(roi_ymin) roi_y2 = int(roi_ymin + roi_height) roi_x1 = int(roi_xmin) roi_x2 = int(roi_xmin + roi_width) cross_y1 = int(cross_ymin) cross_y2 = int(cross_ymin + cross_height) cross_x1 = int(cross_xmin) cross_x2 = int(cross_xmin + cross_width) sample_img = np.zeros((height, width, 3)) # print(sample_img.shape) sample_img[roi_y1 : roi_y2, roi_x1 : roi_x2] = \ img[cross_y1: cross_y2, cross_x1: cross_x2] sample_img = cv2.resize( sample_img, (resize_width, resize_height), interpolation=cv2.INTER_AREA) resize_val = resize_width sample_labels = transform_labels_sampling(bbox_labels, sample_bbox, resize_val, min_face_size) return sample_img, sample_labels def transform_labels_sampling(bbox_labels, sample_bbox, resize_val, min_face_size): sample_labels = [] for i in range(len(bbox_labels)): sample_label = [] object_bbox = bbox(bbox_labels[i][1], bbox_labels[i][2], bbox_labels[i][3], bbox_labels[i][4]) if not meet_emit_constraint(object_bbox, sample_bbox): continue proj_bbox = project_bbox(object_bbox, sample_bbox) if proj_bbox: real_width = float((proj_bbox.xmax - proj_bbox.xmin) * resize_val) real_height = float((proj_bbox.ymax - proj_bbox.ymin) * resize_val) if real_width * real_height < float(min_face_size * min_face_size): continue else: sample_label.append(bbox_labels[i][0]) sample_label.append(float(proj_bbox.xmin)) sample_label.append(float(proj_bbox.ymin)) sample_label.append(float(proj_bbox.xmax)) sample_label.append(float(proj_bbox.ymax)) sample_label = sample_label + bbox_labels[i][5:] sample_labels.append(sample_label) return sample_labels def generate_sample(sampler, image_width, image_height): scale = np.random.uniform(sampler.min_scale, sampler.max_scale) aspect_ratio = np.random.uniform(sampler.min_aspect_ratio, sampler.max_aspect_ratio) aspect_ratio = max(aspect_ratio, (scale**2.0)) aspect_ratio = min(aspect_ratio, 1 / (scale**2.0)) bbox_width = scale * (aspect_ratio**0.5) bbox_height = scale / (aspect_ratio**0.5) # guarantee a squared image patch after cropping if sampler.use_square: if image_height < image_width: bbox_width = bbox_height * image_height / image_width else: bbox_height = bbox_width * image_width / image_height xmin_bound = 1 - bbox_width ymin_bound = 1 - bbox_height xmin = np.random.uniform(0, xmin_bound) ymin = np.random.uniform(0, ymin_bound) xmax = xmin + bbox_width ymax = ymin + bbox_height sampled_bbox = bbox(xmin, ymin, xmax, ymax) return sampled_bbox def generate_batch_samples(batch_sampler, bbox_labels, image_width, image_height): sampled_bbox = [] for sampler in batch_sampler: found = 0 for i in range(sampler.max_trial): if found >= sampler.max_sample: break sample_bbox = generate_sample(sampler, image_width, image_height) if satisfy_sample_constraint(sampler, sample_bbox, bbox_labels): sampled_bbox.append(sample_bbox) found = found + 1 return sampled_bbox def crop_image(img, bbox_labels, sample_bbox, image_width, image_height, resize_width, resize_height, min_face_size): sample_bbox = clip_bbox(sample_bbox) xmin = int(sample_bbox.xmin * image_width) xmax = int(sample_bbox.xmax * image_width) ymin = int(sample_bbox.ymin * image_height) ymax = int(sample_bbox.ymax * image_height) sample_img = img[ymin:ymax, xmin:xmax] resize_val = resize_width sample_labels = transform_labels_sampling(bbox_labels, sample_bbox, resize_val, min_face_size) return sample_img, sample_labels def to_chw_bgr(image): """ Transpose image from HWC to CHW and from RBG to BGR. Args: image (np.array): an image with HWC and RBG layout. """ # HWC to CHW if len(image.shape) == 3: image = np.swapaxes(image, 1, 2) image = np.swapaxes(image, 1, 0) # RBG to BGR image = image[[2, 1, 0], :, :] return image def anchor_crop_image_sampling(img, bbox_labels, scale_array, img_width, img_height): mean = np.array([104, 117, 123], dtype=np.float32) maxSize = 12000 # max size infDistance = 9999999 bbox_labels = np.array(bbox_labels) scale = np.array([img_width, img_height, img_width, img_height]) boxes = bbox_labels[:, 1:5] * scale labels = bbox_labels[:, 0] boxArea = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1) # argsort = np.argsort(boxArea) # rand_idx = random.randint(min(len(argsort),6)) # print('rand idx',rand_idx) rand_idx = np.random.randint(len(boxArea)) rand_Side = boxArea[rand_idx] ** 0.5 # rand_Side = min(boxes[rand_idx,2] - boxes[rand_idx,0] + 1, # boxes[rand_idx,3] - boxes[rand_idx,1] + 1) distance = infDistance anchor_idx = 5 for i, anchor in enumerate(scale_array): if abs(anchor - rand_Side) < distance: distance = abs(anchor - rand_Side) anchor_idx = i target_anchor = random.choice(scale_array[0:min(anchor_idx + 1, 5) + 1]) ratio = float(target_anchor) / rand_Side ratio = ratio * (2**random.uniform(-1, 1)) if int(img_height * ratio * img_width * ratio) > maxSize * maxSize: ratio = (maxSize * maxSize / (img_height * img_width))**0.5 interp_methods = [cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_NEAREST, cv2.INTER_LANCZOS4] interp_method = random.choice(interp_methods) image = cv2.resize(img, None, None, fx=ratio, fy=ratio, interpolation=interp_method) boxes[:, 0] *= ratio boxes[:, 1] *= ratio boxes[:, 2] *= ratio boxes[:, 3] *= ratio height, width, _ = image.shape sample_boxes = [] xmin = boxes[rand_idx, 0] ymin = boxes[rand_idx, 1] bw = (boxes[rand_idx, 2] - boxes[rand_idx, 0] + 1) bh = (boxes[rand_idx, 3] - boxes[rand_idx, 1] + 1) w = h = cfg.INPUT_SIZE for _ in range(50): if w < max(height, width): if bw <= w: w_off = random.uniform(xmin + bw - w, xmin) else: w_off = random.uniform(xmin, xmin + bw - w) if bh <= h: h_off = random.uniform(ymin + bh - h, ymin) else: h_off = random.uniform(ymin, ymin + bh - h) else: w_off = random.uniform(width - w, 0) h_off = random.uniform(height - h, 0) w_off = math.floor(w_off) h_off = math.floor(h_off) # convert to integer rect x1,y1,x2,y2 rect = np.array( [int(w_off), int(h_off), int(w_off + w), int(h_off + h)]) # keep overlap with gt box IF center in sampled patch centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0 # mask in all gt boxes that above and to the left of centers m1 = (rect[0] <= boxes[:, 0]) * (rect[1] <= boxes[:, 1]) # mask in all gt boxes that under and to the right of centers m2 = (rect[2] >= boxes[:, 2]) * (rect[3] >= boxes[:, 3]) # mask in that both m1 and m2 are true mask = m1 * m2 overlap = jaccard_numpy(boxes, rect) # have any valid boxes? try again if not if not mask.any() and not overlap.max() > 0.7: continue else: sample_boxes.append(rect) sampled_labels = [] if len(sample_boxes) > 0: choice_idx = np.random.randint(len(sample_boxes)) choice_box = sample_boxes[choice_idx] # print('crop the box :',choice_box) centers = (boxes[:, :2] + boxes[:, 2:]) / 2.0 m1 = (choice_box[0] < centers[:, 0]) * \ (choice_box[1] < centers[:, 1]) m2 = (choice_box[2] > centers[:, 0]) * \ (choice_box[3] > centers[:, 1]) mask = m1 * m2 current_boxes = boxes[mask, :].copy() current_labels = labels[mask] current_boxes[:, :2] -= choice_box[:2] current_boxes[:, 2:] -= choice_box[:2] if choice_box[0] < 0 or choice_box[1] < 0: new_img_width = width if choice_box[ 0] >= 0 else width - choice_box[0] new_img_height = height if choice_box[ 1] >= 0 else height - choice_box[1] image_pad = np.zeros( (new_img_height, new_img_width, 3), dtype=float) image_pad[:, :, :] = mean start_left = 0 if choice_box[0] >= 0 else -choice_box[0] start_top = 0 if choice_box[1] >= 0 else -choice_box[1] image_pad[start_top:, start_left:, :] = image choice_box_w = choice_box[2] - choice_box[0] choice_box_h = choice_box[3] - choice_box[1] start_left = choice_box[0] if choice_box[0] >= 0 else 0 start_top = choice_box[1] if choice_box[1] >= 0 else 0 end_right = start_left + choice_box_w end_bottom = start_top + choice_box_h current_image = image_pad[ start_top:end_bottom, start_left:end_right, :].copy() image_height, image_width, _ = current_image.shape if cfg.filter_min_face: bbox_w = current_boxes[:, 2] - current_boxes[:, 0] bbox_h = current_boxes[:, 3] - current_boxes[:, 1] bbox_area = bbox_w * bbox_h mask = bbox_area > (cfg.min_face_size * cfg.min_face_size) current_boxes = current_boxes[mask] current_labels = current_labels[mask] for i in range(len(current_boxes)): sample_label = [] sample_label.append(current_labels[i]) sample_label.append(current_boxes[i][0] / image_width) sample_label.append(current_boxes[i][1] / image_height) sample_label.append(current_boxes[i][2] / image_width) sample_label.append(current_boxes[i][3] / image_height) sampled_labels += [sample_label] sampled_labels = np.array(sampled_labels) else: current_boxes /= np.array([image_width, image_height, image_width, image_height]) sampled_labels = np.hstack( (current_labels[:, np.newaxis], current_boxes)) return current_image, sampled_labels current_image = image[choice_box[1]:choice_box[ 3], choice_box[0]:choice_box[2], :].copy() image_height, image_width, _ = current_image.shape if cfg.filter_min_face: bbox_w = current_boxes[:, 2] - current_boxes[:, 0] bbox_h = current_boxes[:, 3] - current_boxes[:, 1] bbox_area = bbox_w * bbox_h mask = bbox_area > (cfg.min_face_size * cfg.min_face_size) current_boxes = current_boxes[mask] current_labels = current_labels[mask] for i in range(len(current_boxes)): sample_label = [] sample_label.append(current_labels[i]) sample_label.append(current_boxes[i][0] / image_width) sample_label.append(current_boxes[i][1] / image_height) sample_label.append(current_boxes[i][2] / image_width) sample_label.append(current_boxes[i][3] / image_height) sampled_labels += [sample_label] sampled_labels = np.array(sampled_labels) else: current_boxes /= np.array([image_width, image_height, image_width, image_height]) sampled_labels = np.hstack( (current_labels[:, np.newaxis], current_boxes)) return current_image, sampled_labels else: image_height, image_width, _ = image.shape if cfg.filter_min_face: bbox_w = boxes[:, 2] - boxes[:, 0] bbox_h = boxes[:, 3] - boxes[:, 1] bbox_area = bbox_w * bbox_h mask = bbox_area > (cfg.min_face_size * cfg.min_face_size) boxes = boxes[mask] labels = labels[mask] for i in range(len(boxes)): sample_label = [] sample_label.append(labels[i]) sample_label.append(boxes[i][0] / image_width) sample_label.append(boxes[i][1] / image_height) sample_label.append(boxes[i][2] / image_width) sample_label.append(boxes[i][3] / image_height) sampled_labels += [sample_label] sampled_labels = np.array(sampled_labels) else: boxes /= np.array([image_width, image_height, image_width, image_height]) sampled_labels = np.hstack( (labels[:, np.newaxis], boxes)) return image, sampled_labels def reduce_image(img, bbox_labels, img_width, img_height): bbox_labels = np.array(bbox_labels) scale = np.array([img_width, img_height, img_width, img_height]) boxes = bbox_labels[:, 1:5] * scale boxArea = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1) boxArea_max = np.amax(boxArea) if boxArea_max > 48*48: reduce_ratio = (boxArea_max/(48*48))**(0.5) height = int(img_height / reduce_ratio) width = int(img_width / reduce_ratio) img = img.resize((width, height), resample=Image.LANCZOS) boxes = boxes//reduce_ratio new_scale = np.array([width, height, width, height]) boxes = (boxes[:, 0:4]/new_scale) bbox_labels[:,1:5] = boxes bbox_labels = bbox_labels.tolist() img_height = height img_width = width ratio_h = img_height/320 ratio_w = img_width/320 if ratio_h > 1 and ratio_w > 1: expand_ratio = 1 else: expand_ratio = 1/(min(ratio_h,ratio_w)) height = int(img_height * expand_ratio) width = int(img_width * expand_ratio) h_off = math.floor(np.random.uniform(0, height - img_height)) w_off = math.floor(np.random.uniform(0, width - img_width)) expand_bbox = bbox(-w_off / img_width, -h_off / img_height, (width - w_off) / img_width, (height - h_off) / img_height) expand_img = np.ones((height, width, 3)) expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean)) expand_img = Image.fromarray(expand_img) expand_img.paste(img, (int(w_off), int(h_off))) bbox_labels = transform_labels(bbox_labels, expand_bbox) return expand_img, bbox_labels, width, height return img, bbox_labels.tolist(), img_width, img_height def precrop(img, bbox_labels): img_height, img_width = img.size[1], img.size[0] scale = np.array([img_width, img_height, img_width, img_height]) bbox_labels = np.array(bbox_labels) bbox_labels[:, 1:5] = bbox_labels[:, 1:5] * scale if img_width-20 > img_height: height_max, height_min = img_width + 20, img_width - 20 new_height = np.random.randint(height_min, height_max) expand_img = np.ones((new_height, img_width, 3)) expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean)) expand_img = Image.fromarray(expand_img) expand_img.paste(img, (int(0), int(0))) img_height, img_width = new_height, img_width img = expand_img elif img_height-20 > img_width: width_max, width_min = img_height + 20, img_height - 20 new_width = np.random.randint(width_min, width_max) expand_img = np.ones((img_height, new_width, 3)) expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean)) expand_img = Image.fromarray(expand_img) expand_img.paste(img, (int(0), int(0))) img_height, img_width = img_height, new_width img = expand_img scale = np.array([img_width, img_height, img_width, img_height]) bbox_labels[:, 1:5] = bbox_labels[:, 1:5] / scale return img, bbox_labels.tolist(), img_width, img_height def preprocess(img, bbox_labels, mode, image_path): img_width, img_height = img.size sampled_labels = bbox_labels if mode == 'train': if cfg.apply_distort: img = distort_image(img) if cfg.apply_expand: img, bbox_labels, img_width, img_height = expand_image( img, bbox_labels, img_width, img_height) batch_sampler = [] prob = np.random.uniform(0., 1.) if prob > cfg.data_anchor_sampling_prob and cfg.anchor_sampling: scale_array = np.array(cfg.ANCHOR_SIZES)#[16, 32, 64, 128, 256, 512]) ''' batch_sampler.append( sampler(1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.6, 0.0, True)) sampled_bbox = generate_batch_random_samples( batch_sampler, bbox_labels, img_width, img_height, scale_array, cfg.resize_width, cfg.resize_height) ''' img = np.array(img) img, sampled_labels = anchor_crop_image_sampling( img, bbox_labels, scale_array, img_width, img_height) ''' if len(sampled_bbox) > 0: idx = int(np.random.uniform(0, len(sampled_bbox))) img, sampled_labels = crop_image_sampling( img, bbox_labels, sampled_bbox[idx], img_width, img_height, cfg.resize_width, cfg.resize_height, cfg.min_face_size) ''' img = img.astype('uint8') img = Image.fromarray(img) else: batch_sampler.append(sampler(1, 50, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, True)) batch_sampler.append(sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, True)) batch_sampler.append(sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, True)) batch_sampler.append(sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, True)) batch_sampler.append(sampler(1, 50, 0.3, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, True)) sampled_bbox = generate_batch_samples( batch_sampler, bbox_labels, img_width, img_height) img =
np.array(img)
numpy.array
from PIL import Image import numpy as np def get_size_and_grad(height_len, width_len): correct = True flag = 0 while correct: if flag > 0: print("размеру мозаики должен быть делителем для ширины и высоты изображения, " "а градация серого должна быть меньше 128") print('Введите размер мозаики и градацию серого через пробел: ') flag += 1 array = input().split(' ') array = [int(x) for x in array] if height_len % array[0] == 0 and width_len % array[0] == 0 and array[1] < 128: correct = False print('Данные корректы, ищите результат в папке.') return(array[0], array[1]) def search_grey(i, j, array, size, grad): sum = int(np.sum(array[i:i + size, j:j + size, 0]) + np.sum(array[i:i + size, j:j + size, 1]) + np.sum(array[i:i + size, j:j + size, 2])) / 3 total_grey = int(sum // (size * size)) array[i:i + size, j:j + size, 0] = int(total_grey // grad) * grad array[i:i + size, j:j + size, 1] = int(total_grey // grad) * grad array[i:i + size, j:j + size, 2] = int(total_grey // grad) * grad img = Image.open("img2.jpg") pixel_array =
np.array(img)
numpy.array
# Copyright (c) 2020 Uber Technologies, Inc. # # Licensed under the Uber Non-Commercial License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at the root directory of this project. # # See the License for the specific language governing permissions and # limitations under the License. # # ------------------------------------------------------------------------ # # THIS IS NOT THE ORIGINAL VERSION OF THE FILE. # # Last modified 2021-12-02 import logging import numpy as np logger = logging.getLogger(__name__) class Optimizer(object): def __init__(self, theta, step_size): #self.theta = theta self.dim = len(theta) self.t = 0 def update(self, theta, globalg): logger.info(self.t) self.t += 1 step = self._compute_step(globalg) ratio = np.linalg.norm(step) / np.linalg.norm(theta) return ratio, theta + step def _compute_step(self, globalg): raise NotImplementedError class SimpleSGD(Optimizer): def __init__(self, theta, stepsize): Optimizer.__init__(self, theta, stepsize) self.stepsize = stepsize def _compute_step(self, globalg): step = -self.stepsize * globalg return step class SGD(Optimizer): def __init__(self, theta, stepsize, momentum=0.9): Optimizer.__init__(self, theta, stepsize) self.v = np.zeros(self.dim, dtype=np.float32) self.stepsize, self.momentum = stepsize, momentum def _compute_step(self, globalg): self.v = self.momentum * self.v + (1. - self.momentum) * globalg step = -self.stepsize * self.v return step class Adam(Optimizer): def __init__(self, theta, stepsize, beta1=0.9, beta2=0.999, epsilon=1e-08): Optimizer.__init__(self, theta, stepsize) self.stepsize = stepsize self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.m = np.zeros(self.dim, dtype=np.float32) self.v = np.zeros(self.dim, dtype=np.float32) def reset(self): self.m =
np.zeros(self.dim, dtype=np.float32)
numpy.zeros
import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import MinMaxScaler class TimeSeries: def __init__(self, feature_range: tuple = (0, 1)): self.feature_range = feature_range self.scaler = MinMaxScaler(feature_range=feature_range) self.dataset = [] def scaled(self): return self.scaler.fit_transform(self.dataset) def unscaled(self, dataset): return self.scaler.inverse_transform(dataset) def create_indexed_dataset(self, look_back=1, index_feature_range=(0.05, 0.95)): scaler = MinMaxScaler(feature_range=index_feature_range) dataset = self.scaled() x = [dataset[i:i + look_back] for i in range(0, len(dataset) - look_back)] y = [dataset[i] for i in range(look_back, len(dataset))] n = len(y) t = np.fromiter(range(n), np.float64).reshape((n, 1)) t = scaler.fit_transform(t) x = np.array(x) x = x.reshape((x.shape[0], x.shape[1])) return np.hstack((t, x)).reshape((n, look_back + 1, 1)), np.array(y) def create_dataset(self, look_back=1): dataset = self.scaled() x = [dataset[i:i + look_back] for i in range(0, len(dataset) - look_back)] y = [dataset[i] for i in range(look_back, len(dataset))] return
np.array(x)
numpy.array
import numpy as np import pandas as pd #import random import scipy as sc import scipy.stats as stats from scipy.special import factorial,digamma import numdifftools as nd from scipy.optimize import minimize from joblib import Parallel, delayed ############################################################################################################## ########################################### Functions ##################################################### def Sorting_and_Sequencing(Simulation): # take as input the number of bins (Simulation.bins), the diversity (Simulation.diversity) and size of the library sorted (N), the number of reads to allocate in total (Simulation.reads), the post sorting amplification step (Simulation.ratio_amplification),if the library is balanced (BIAS_Library), the underlying protein Simulation.distribution (gamma or lognormal), the fluorescence bounds for the sorting machine (Simulation.partitioning),and the parameters of the said Simulation.distribution. # Return the (Simulation.diversity*Bins) matrix resulting from the sequencing and the sorting matrix Nj (number of cell sorted in each bin) global Sij def sorting_protein_matrix_populate(i,j): if Simulation.distribution=='lognormal': element_matrix=stats.norm.cdf(Simulation.partitioning[j+1],loc=Simulation.theta1[i], scale=Simulation.theta2[i])-stats.norm.cdf(Simulation.partitioning[j],loc=Simulation.theta1[i], scale=Simulation.theta2[i]) else: element_matrix=stats.gamma.cdf(Simulation.partitioning[j+1],a=Simulation.theta1[i], scale=Simulation.theta2[i])-stats.gamma.cdf(Simulation.partitioning[j],a=Simulation.theta1[i], scale=Simulation.theta2[i]) return(element_matrix) #### STEP 1 - Draw the ratio p_concentration if Simulation.bias_library==True: params=np.ones(Simulation.diversity) Dir=[random.gammavariate(a,1) for a in params] Dir=[v/sum(Dir) for v in Dir] # Sample from the Simulation.diversity simplex to get ratios #p_concentration=np.ones(Simulation.diversity)/Simulation.diversity p_concentration=Dir else: p_concentration=[1/Simulation.diversity]*Simulation.diversity #### STEP 2 - Draw the sample sizes= of each genetic construct Ni=np.random.multinomial(Simulation.size, p_concentration, size=1)[0] #### STEP 3 - Compute binning ## Compute ratios qji Qij=np.fromfunction(sorting_protein_matrix_populate, (Simulation.diversity, Simulation.bins), dtype=int) ## Compute Nij Nij=Qij* Ni[:, np.newaxis] Nij=np.floor(Nij) #Convert to Integer numbers #### STEP 4 - PCR amplification Nij_amplified=np.multiply(Nij,Simulation.ratio_amplification) #### STEP 5 - Compute Reads allocation N=np.sum(Nij) Nj=np.sum(Nij, axis=0) READS=np.floor(Nj*Simulation.reads/N) #Allocate reads with repsect to the number of cells srted in each bin #### STEP 6 - DNA sampling Sij=np.zeros((Simulation.diversity,Simulation.bins)) #Compute ratios& Multinomial sampling for j in range(Simulation.bins): if np.sum(Nij_amplified,axis=0)[j]!=0: Concentration_vector=Nij_amplified[:,j]/np.sum(Nij_amplified,axis=0)[j] else: Concentration_vector=np.zeros(Simulation.diversity) Sij[:,j]=np.random.multinomial(READS[j],Concentration_vector,size=1) return(Sij,Nj) def Sorting(Simulation): # take as input the number of bins (Simulation.bins), the diversity (Simulation.diversity) and size of the library sorted (N), the post sorting amplification step (Simulation.ratio_amplification),if the library is balanced (BIAS_Library), the underlying protein Simulation.distribution (gamma or lognormal), the fluorescence bounds for the sorting machine (Simulation.partitioning),and the parameters of the said Simulation.distribution. # Return the (Simulation.diversity*Bins) matrix resulting from the sorting step global Sij #### STEP 1 - Draw the ratio p_concentration def sorting_protein_matrix_populate(i,j): if Simulation.distribution=='lognormal': element_matrix=stats.norm.cdf(Simulation.partitioning[j+1],loc=Simulation.theta1[i], scale=Simulation.theta2[i])-stats.norm.cdf(Simulation.partitioning[j],loc=Simulation.theta1[i], scale=Simulation.theta2[i]) else: element_matrix=stats.gamma.cdf(Simulation.partitioning[j+1],a=Simulation.theta1[i], scale=Simulation.theta2[i])-stats.gamma.cdf(Simulation.partitioning[j],a=Simulation.theta1[i], scale=Simulation.theta2[i]) return(element_matrix) if Simulation.bias_library==True: params=np.ones(Simulation.diversity) Dir=[random.gammavariate(a,1) for a in params] Dir=[v/sum(Dir) for v in Dir] # Sample from the 30,000 simplex to get ratios #p_concentration=np.ones(Simulation.diversity)/Simulation.diversity p_concentration=Dir else: p_concentration=[1/Simulation.diversity]*Simulation.diversity #### STEP 2 - Draw the sample sizes= of each genetic construct Ni=np.random.multinomial(Simulation.size, p_concentration, size=1)[0] #Ni=Ni[0] #### STEP 3 - Compute binning ## Compute ratios qji Qij=np.fromfunction(sorting_protein_matrix_populate, (Simulation.diversity, Simulation.bins), dtype=int) ## Compute Nij Nij=Qij* Ni[:, np.newaxis] Nij=np.floor(Nij) #Convert to Integer numbers return(Nij) def Sequencing(Simulation,Nij): # take as input the number of bins (Simulation.bins), the diversity (Simulation.diversity) and size of the library sorted (N), the number of reads to allocate in total (Simulation.reads), the post sorting amplification step (Simulation.ratio_amplification),if the library is balanced (BIAS_Library), the underlying protein Simulation.distribution (gamma or lognormal), the fluorescence bounds for the sorting machine (Simulation.partitioning),and the parameters of the said Simulation.distribution. # Return the (Simulation.diversity*Bins) matrix resulting from the sequencing Sij and the sorting matrix Nj (number of cell sorted in each bin) #### STEP 4 - PCR amplification Nij_amplified=np.multiply(Nij,Simulation.ratio_amplification) #### STEP 5 - Compute Reads allocation N=np.sum(Nij) Nj=np.sum(Nij, axis=0) READS=np.floor(Nj*Simulation.reads/N) #Allocate reads with repsect to the number of cells srted in each bin #### STEP 6 - DNA sampling Sij=
np.zeros((Simulation.diversity,Simulation.bins))
numpy.zeros
import typing import numpy as np import tensorflow as tf import src.estimation.configuration as configs import src.utils.plots as plots from src.acceptance.base import hand_orientation, joint_relation_errors, vectors_angle from src.acceptance.gesture_acceptance_result import GestureAcceptanceResult from src.detection.plots import image_plot from src.system.database.reader import UsecaseDatabaseReader from src.system.hand_position_estimator import HandPositionEstimator from src.utils.camera import Camera class GestureRecognizer: def __init__(self, error_thresh: int, orientation_thresh: int, database_subdir: str, camera_name: str, plot_result=True, plot_feedback=False, plot_orientation=True): self.jre_thresh = error_thresh self.orientation_thresh = orientation_thresh self.plot_result = plot_result self.plot_feedback = plot_feedback self.plot_orientation = plot_orientation self.camera = Camera(camera_name) config = configs.PredictCustomDataset() self.estimator = HandPositionEstimator(self.camera, config=config) self.database_reader = UsecaseDatabaseReader() self.database_reader.load_from_subdir(database_subdir) self.gesture_database = self.database_reader.hand_poses def start(self, image_generator, generator_includes_labels=False) -> \ typing.Generator[GestureAcceptanceResult, None, None]: """ Starts gesture recognition. It uses images supplied by image_generator. Parameters ---------- image_generator : generator The source of images. generator_includes_labels : bool Whether the generator also returns labels. Returns ------- Generator[GestureAcceptanceResult] Yields instances of the GestureAcceptanceResult class. """ image_idx = 0 norm, mean = None, None # Prepare figure for live plotting, but only if we are really going to plot. if self.plot_result: if self.plot_feedback: fig, ax = plots.plot_skeleton_with_jre_subplots() else: fig, ax = image_plot() for image_array in image_generator: # If the generator also returns labels, expand the tuple if generator_includes_labels: image_array, gesture_label = image_array if tf.rank(image_array) == 4: image_array = image_array[0] joints_uvz = self.estimator.estimate_from_image(image_array) # Detection failed, continue to next image if joints_uvz is None: continue joints_xyz = self.camera.pixel_to_world(joints_uvz) acceptance_result = self.accept_gesture(joints_xyz) if generator_includes_labels: acceptance_result.expected_gesture_label = gesture_label.numpy() # plot the hand position with gesture label image_subregion = self.estimator.get_cropped_image() joints_subregion = self.estimator.convert_to_cropped_coords(joints_uvz) if self.plot_result: gesture_label = self._get_gesture_label(acceptance_result) if self.plot_feedback: # get JREs jres = acceptance_result.joints_jre[:, acceptance_result.predicted_gesture_idx] if self.plot_orientation: norm, mean = self._get_orientation_vectors_in_2d(acceptance_result) plots.plot_skeleton_with_jre_live( fig, ax, image_subregion, joints_subregion, jres, label=gesture_label, norm_vec=norm, mean_vec=mean) else: plots.plot_skeleton_with_label_live(fig, ax, image_subregion, joints_subregion, gesture_label) image_idx += 1 yield acceptance_result def accept_gesture(self, keypoints: np.ndarray) -> GestureAcceptanceResult: """ Compares given keypoints to the ones stored in the database and decides whether the hand satisfies some of the defined gestures. Basically performs gesture recognition from the hand's skeleton. Parameters ---------- keypoints ndarray of 21 keypoints, shape (batch_size, joints, coords) """ result = GestureAcceptanceResult() result.joints_jre = joint_relation_errors(keypoints, self.gesture_database) aggregated_errors =
np.sum(result.joints_jre, axis=-1)
numpy.sum
# ****************************************************************************** # Copyright 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** import numpy as np import pytest import json import ngraph as ng from test.ngraph.util import get_runtime, run_op_node from ngraph.impl import Function, NodeVector from ngraph.exceptions import UserInputError @pytest.mark.parametrize('dtype', [np.float32, np.float64, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]) @pytest.config.gpu_skip(reason='Not implemented') def test_simple_computation_on_ndarrays(dtype): runtime = get_runtime() shape = [2, 2] parameter_a = ng.parameter(shape, dtype=dtype, name='A') parameter_b = ng.parameter(shape, dtype=dtype, name='B') parameter_c = ng.parameter(shape, dtype=dtype, name='C') model = (parameter_a + parameter_b) * parameter_c computation = runtime.computation(model, parameter_a, parameter_b, parameter_c) value_a = np.array([[1, 2], [3, 4]], dtype=dtype) value_b = np.array([[5, 6], [7, 8]], dtype=dtype) value_c = np.array([[9, 10], [11, 12]], dtype=dtype) result = computation(value_a, value_b, value_c) assert np.allclose(result, np.array([[54, 80], [110, 144]], dtype=dtype)) value_a = np.array([[13, 14], [15, 16]], dtype=dtype) value_b = np.array([[17, 18], [19, 20]], dtype=dtype) value_c = np.array([[21, 22], [23, 24]], dtype=dtype) result = computation(value_a, value_b, value_c) assert np.allclose(result, np.array([[630, 704], [782, 864]], dtype=dtype)) def test_function_call(): runtime = get_runtime() dtype = int shape = [2, 2] parameter_a = ng.parameter(shape, dtype=dtype, name='A') parameter_b = ng.parameter(shape, dtype=dtype, name='B') parameter_c = ng.parameter(shape, dtype=dtype, name='C') parameter_list = [parameter_a, parameter_b, parameter_c] ops = ((parameter_a + parameter_b) * parameter_c) func = Function(NodeVector([ops]), parameter_list, 'addmul') fc = ng.function_call(func, NodeVector(parameter_list)) computation = runtime.computation(fc, parameter_a, parameter_b, parameter_c) value_a = np.array([[1, 2], [3, 4]], dtype=dtype) value_b =
np.array([[5, 6], [7, 8]], dtype=dtype)
numpy.array
# The observation model contains the diagonals (stored as vectors) of the observation # matrices for each possible sensor reading # The last of these vectors contains the probabilities for the sensor to produce nothing import numpy as np import matplotlib.pyplot as plt import random import models.StateModel class ObservationModel: def __init__(self, stateModel): self.__stateModel = stateModel self.__rows, self.__cols, self.__head = stateModel.get_grid_dimensions() self.__dim = self.__rows * self.__cols * self.__head #possible states self.__num_readings = self.__rows * self.__cols + 1 #sensor readings self.__vectors =
np.ones(shape=(self.__num_readings, self.__dim))
numpy.ones
import numpy as np import subprocess import fileinput import argparse import random import shutil import math import cv2 import os import sys global counter def createNumpyMatrix(geometricVertices): """Parse the strings from the obj file and convert them into numpy matrix of floats to perform math efficiently""" vertices = [] for line in geometricVertices: # convert the string to floats for x,y,z coordinates elements = list(map(lambda x: float(x), line.split()[1:])) vertices.append(elements) # convert to 3 x numPoints matrix vertices = np.asarray(vertices) vertices = vertices.T #print(vertices.shape) return vertices def getCenterOfMass(geometricVertices): # com will be a 3x1 vector com = np.average(geometricVertices, axis=1) com = com.reshape(3,1) return com def centerAndScaleObject(geometricVertices, com, resize, meshIsAreaLight): """Translate the object vertices so that they are centered around the origin""" geometricVertices = geometricVertices - com stdev = np.std(geometricVertices, axis=1) / float(resize) stdev = stdev.reshape(3,1) if not meshIsAreaLight: # do not scale the area light mesh object geometricVertices = geometricVertices / stdev return geometricVertices def getRotationMatrix(angleX=0.0, angleY=0.0, angleZ=0.0): if angleX == 0.0 and angleY == 0.0 and angleZ == 0.0: angleX = round(random.uniform(0, 2*math.pi), 2) angleY = round(random.uniform(0, 2*math.pi), 2) angleZ = round(random.uniform(0, 2*math.pi), 2) Rx = np.array([[1, 0, 0], [0, math.cos(angleX), -math.sin(angleX)], [0, math.sin(angleX), math.cos(angleX)]], dtype=np.float) Ry = np.array([[math.cos(angleY), 0, math.sin(angleY)], [0, 1, 0], [-math.sin(angleY), 0, math.cos(angleY)]], dtype=np.float) Rz = np.array([[math.cos(angleZ), -math.sin(angleZ), 0], [math.sin(angleZ), math.cos(angleZ), 0], [0, 0, 1]], dtype=np.float) R = np.matmul(np.matmul(Rx, Ry), Rz) #R = np.identity(3) return R def rotateObject(geometricVertices, rotationMatrix): """Perform matrix multiplication - Rx to get the vertex coordinates after rotation""" rotatedGeometricVertices = np.matmul(rotationMatrix, geometricVertices) return rotatedGeometricVertices def getAxisAlignedBoundingBox(geometricVertices): mins = np.amin(geometricVertices, axis=1) maxs =
np.amax(geometricVertices, axis=1)
numpy.amax
import numpy as np from numpy import linalg as la EX = [[102.38590308, 114.03596477, 120.20542635]] EXY = [[15875.05715902, 16286.31198753, 16212.65198293], [16286.31198753, 17917.16620909, 18175.70219696], [16212.65198293, 18175.70219696, 19657.62259017]] a = EXY - np.dot(np.array(EX).T, np.array(EX)) print(a) u, sigma, vt =
la.svd(a)
numpy.linalg.svd
""" Visualize Genetic Algorithm to find the shortest path for travel sales problem. Visit my tutorial website for more: https://mofanpy.com/tutorials/ """ import matplotlib.pyplot as plt import numpy as np N_CITIES = 20 # DNA size CROSS_RATE = 0.1 MUTATE_RATE = 0.02 POP_SIZE = 500 N_GENERATIONS = 500 class GA(object): def __init__(self, DNA_size, cross_rate, mutation_rate, pop_size, ): self.DNA_size = DNA_size self.cross_rate = cross_rate self.mutate_rate = mutation_rate self.pop_size = pop_size self.pop = np.vstack([np.random.permutation(DNA_size) for _ in range(pop_size)]) def translateDNA(self, DNA, city_position): # get cities' coord in order line_x = np.empty_like(DNA, dtype=np.float64) line_y = np.empty_like(DNA, dtype=np.float64) for i, d in enumerate(DNA): city_coord = city_position[d] line_x[i, :] = city_coord[:, 0] line_y[i, :] = city_coord[:, 1] return line_x, line_y def get_fitness(self, line_x, line_y): total_distance =
np.empty((line_x.shape[0],), dtype=np.float64)
numpy.empty
import numpy as np import py.test import random from weldnumpy import weldarray, erf as welderf import scipy.special as ss ''' TODO0: Decompose heavily repeated stuff, like the assert blocks and so on. TODO: New tests: - reduce ufuncs: at least the supported ones. - use np.add.reduce syntax for the reduce ufuncs. - getitem: lists and ndarrays + ints. - error based tests: nan; underflow/overflow; unsupported types [true] * [...] etc; - long computational graphs - that segfault or take too long; will require implicit evaluation when the nested ops get too many. - edge/failing cases: out = ndarray for op involving weldarrays. - update elements of an array in a loop etc. --> setitem test. - setitem + views tests. ''' UNARY_OPS = [np.exp, np.log, np.sqrt] # TODO: Add wa.erf - doesn't use the ufunc functionality of numpy so not doing it for # now. BINARY_OPS = [np.add, np.subtract, np.multiply, np.divide] REDUCE_UFUNCS = [np.add.reduce, np.multiply.reduce] # FIXME: weld mergers dont support non-commutative ops --> need to find a workaround for this. # REDUCE_UFUNCS = [np.add.reduce, np.subtract.reduce, np.multiply.reduce, np.divide.reduce] TYPES = ['float32', 'float64', 'int32', 'int64'] NUM_ELS = 10 # TODO: Create test with all other ufuncs. def random_arrays(num, dtype): ''' Generates random Weld array, and numpy array of the given num elements. ''' # np.random does not support specifying dtype, so this is a weird # way to support both float/int random numbers test = np.zeros((num), dtype=dtype) test[:] = np.random.randn(*test.shape) test = np.abs(test) # at least add 1 so no 0's (o.w. divide errors) random_add = np.random.randint(1, high=10, size=test.shape) test = test + random_add test = test.astype(dtype) np_test = np.copy(test) w = weldarray(test, verbose=False) return np_test, w def given_arrays(l, dtype): ''' @l: list. returns a np array and a weldarray. ''' test = np.array(l, dtype=dtype) np_test = np.copy(test) w = weldarray(test) return np_test, w def test_unary_elemwise(): ''' Tests all the unary ops in UNARY_OPS. FIXME: For now, unary ops seem to only be supported on floats. ''' for op in UNARY_OPS: for dtype in TYPES: # int still not supported for the unary ops in Weld. if "int" in dtype: continue np_test, w = random_arrays(NUM_ELS, dtype) w2 = op(w) np_result = op(np_test) w2_eval = w2.evaluate() assert np.allclose(w2, np_result) assert np.array_equal(w2_eval, np_result) def test_binary_elemwise(): ''' ''' for op in BINARY_OPS: for dtype in TYPES: np_test, w = random_arrays(NUM_ELS, dtype) np_test2, w2 = random_arrays(NUM_ELS, dtype) w3 = op(w, w2) weld_result = w3.evaluate() np_result = op(np_test, np_test2) # Need array equal to keep matching types for weldarray, otherwise # allclose tries to subtract floats from ints. assert np.array_equal(weld_result, np_result) def test_multiple_array_creation(): ''' Minor edge case but it fails right now. ---would probably be fixed after we get rid of the loop fusion at the numpy level. ''' np_test, w = random_arrays(NUM_ELS, 'float32') w = weldarray(w) # creating array again. w2 = np.exp(w) weld_result = w2.evaluate() np_result = np.exp(np_test) assert np.allclose(weld_result, np_result) def test_array_indexing(): ''' Need to decide: If a weldarray item is accessed - should we evaluateuate the whole array (for expected behaviour to match numpy) or not? ''' pass def test_numpy_operations(): ''' Test operations that aren't implemented yet - it should pass it on to numpy's implementation, and return weldarrays. ''' np_test, w = random_arrays(NUM_ELS, 'float32') np_result = np.sin(np_test) w2 = np.sin(w) weld_result = w2.evaluate() assert np.allclose(weld_result, np_result) def test_type_conversion(): ''' After evaluating, the dtype of the returned array must be the same as before. ''' for t in TYPES: _, w = random_arrays(NUM_ELS, t) _, w2 = random_arrays(NUM_ELS, t) w2 = np.add(w, w2) weld_result = w2.evaluate() assert weld_result.dtype == t def test_concat(): ''' Test concatenation of arrays - either Weld - Weld, or Weld - Numpy etc. ''' pass def test_views_basic(): ''' Taking views into a 1d weldarray should return a weldarray view of the correct data without any copying. ''' n, w = random_arrays(NUM_ELS, 'float32') w2 = w[2:5] n2 = n[2:5] assert isinstance(w2, weldarray) def test_views_update_child(): ''' Updates both parents and child to put more strain. ''' def asserts(w, n, w2, n2): assert np.allclose(w[2:5], w2.evaluate()) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w, n) NUM_ELS = 10 n, w = random_arrays(NUM_ELS, 'float32') w2 = w[2:5] n2 = n[2:5] # unary part w2 = np.exp(w2, out=w2) n2 = np.exp(n2, out=n2) asserts(w, n, w2, n2) # binary part n3, w3 = random_arrays(3, 'float32') n2 = np.add(n2, n3, out=n2) w2 = np.add(w2, w3, out=w2) w2.evaluate() asserts(w, n, w2, n2) w2 += 5.0 n2 += 5.0 w2.evaluate() asserts(w, n, w2, n2) def test_views_update_parent(): ''' Create a view, then update the parent in place. The change should be effected in the view-child as well. ''' def asserts(w, n, w2, n2): assert np.allclose(w[2:4], w2.evaluate()) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w, n) n, w = random_arrays(NUM_ELS, 'float32') w2 = w[2:4] n2 = n[2:4] w = np.exp(w, out=w) n = np.exp(n, out=n) w2.evaluate() print(w2) print(w[2:4]) # w2 should have been updated too. asserts(w, n, w2, n2) n3, w3 = random_arrays(NUM_ELS, 'float32') w = np.add(w, w3, out=w) n = np.add(n, n3, out=n) asserts(w, n, w2, n2) assert np.allclose(w3, n3) # check scalars w += 5.0 n += 5.0 w.evaluate() asserts(w, n, w2, n2) def test_views_update_mix(): ''' ''' n, w = random_arrays(10, 'float32') # Let's add more complexity. Before messing with child views etc, first # register an op with the parent as well. n = np.sqrt(n) w = np.sqrt(w) # get the child views w2 = w[2:5] n2 = n[2:5] # updatig the values in place is still reflected correctly. w = np.log(w, out=w) n = np.log(n, out=n) # evaluating this causes the internal representation to change. So can't # rely on w.weldobj.context[w.name] anymore. w.evaluate() # print("w2 before exp: ", w2) w2 = np.exp(w2, out=w2) n2 = np.exp(n2, out=n2) w2.evaluate() assert np.allclose(w[2:5], w2) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w, n) def test_views_mix2(): ''' update parent/child, binary/unary ops. ''' NUM_ELS = 10 n, w = random_arrays(NUM_ELS, 'float32') w2 = w[2:5] n2 = n[2:5] w2 = np.exp(w2, out=w2) n2 = np.exp(n2, out=n2) w2.evaluate() assert np.allclose(w[2:5], w2) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w, n) n3, w3 = random_arrays(NUM_ELS, 'float32') w = np.add(w, w3, out=w) n = np.add(n, n3, out=n) assert np.allclose(w[2:5], w2.evaluate()) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w, n) # now update the child def test_views_grandparents_update_mix(): ''' Similar to above. Ensure consistency of views of views etc. ''' n, w = random_arrays(10, 'float32') # Let's add more complexity. Before messing with child views etc, first # register an op with the parent as well. # TODO: uncomment. n = np.sqrt(n) w = np.sqrt(w) # get the child views w2 = w[2:9] n2 = n[2:9] w3 = w2[2:4] n3 = n2[2:4] assert np.allclose(w3.evaluate(), n3) # updatig the values in place is still reflected correctly. w = np.log(w, out=w) n = np.log(n, out=n) # evaluating this causes the internal representation to change. So can't # rely on w.weldobj.context[w.name] anymore. w.evaluate() w2 = np.exp(w2, out=w2) n2 = np.exp(n2, out=n2) # w2.evaluate() w3 = np.sqrt(w3, out=w3) n3 = np.sqrt(n3, out=n3) assert np.allclose(w[2:9], w2) assert np.allclose(w2, n2) assert np.allclose(w3, n3) assert np.allclose(w, n) assert np.allclose(w2[2:4], w3) def test_views_check_old(): ''' Old views should still be valid etc. ''' pass def test_views_mess(): ''' More complicated versions of the views test. ''' # parent arrays NUM_ELS = 100 num_views = 10 n, w = random_arrays(NUM_ELS, 'float32') # in order to avoid sqrt running into bad values w += 1000.00 n += 1000.00 weld_views = [] np_views = [] weld_views2 = [] np_views2 = [] for i in range(num_views): nums = random.sample(range(0,NUM_ELS), 2) start = min(nums) end = max(nums) # FIXME: Need to add correct behaviour in this case. if start == end: continue weld_views.append(w[start:end]) np_views.append(n[start:end]) np.sqrt(weld_views[i], out=weld_views[i]) np.sqrt(np_views[i], out=np_views[i]) np.log(weld_views[i], out=weld_views[i]) np.log(np_views[i], out=np_views[i]) np.exp(weld_views[i], out=weld_views[i]) np.exp(np_views[i], out=np_views[i]) # add some binary ops. n2, w2 = random_arrays(len(np_views[i]), 'float32') weld_views[i] = np.add(weld_views[i], w2, out=weld_views[i]) np_views[i] = np.add(np_views[i], n2, out=np_views[i]) # weld_views[i].evaluate() a = np.log(weld_views[i]) b = np.log(np_views[i]) assert np.allclose(a, b) w = np.sqrt(w, out=w) n = np.sqrt(n, out=n) assert np.allclose(n, w) assert np.array_equal(w.evaluate(), n) # TODO: Add stuff with grandchildren, and so on. for i in range(num_views): assert np.array_equal(np_views[i], weld_views[i].evaluate()) assert np.allclose(np_views[i], weld_views[i]) def test_views_overlap(): ''' Two overlapping views of the same array. Updating one must result in the other being updated too. ''' NUM_ELS = 10 n, w = random_arrays(NUM_ELS, 'float32') w2 = w[2:5] n2 = n[2:5] # TODO: uncomment w3 = w[4:7] n3 = n[4:7] # w4, n4 are non overlapping views. Values should never change w4 = w[7:9] n4 = n[7:9] # w5, n5 are contained within w2, n2. w5 = w[3:4] n5 = n[3:4] # unary part w2 = np.exp(w2, out=w2) n2 = np.exp(n2, out=n2) w2.evaluate() assert np.allclose(w[2:5], w2) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w, n) assert np.allclose(w5, n5) assert np.allclose(w4, n4) assert np.allclose(w3, n3) print("starting binary part!") # binary part: # now update the child with binary op n3, w3 = random_arrays(3, 'float32') # n3, w3 = given_arrays([1.0, 1.0, 1.0], 'float32') n2 = np.add(n2, n3, out=n2) print('going to do np.add on w2,w3, out=w2') w2 = np.add(w2, w3, out=w2) # assert np.allclose(w[2:5], w2) assert np.allclose(w, n) assert np.allclose(w2.evaluate(), n2) print('w5: ', w5) print(n5) assert np.allclose(w5, n5) assert np.allclose(w4, n4) assert np.allclose(w3, n3) w2 += 5.0 n2 += 5.0 w2.evaluate() assert np.allclose(w[2:5], w2) assert np.allclose(w, n) assert np.allclose(w2.evaluate(), n2) assert np.allclose(w5, n5) assert np.allclose(w4, n4) assert np.allclose(w3, n3) def test_mix_np_weld_ops(): ''' Weld Ops + Numpy Ops - before executing any of the numpy ops, the registered weld ops must be evaluateuated. ''' np_test, w = random_arrays(NUM_ELS, 'float32') np_test = np.exp(np_test) np_result = np.sin(np_test) w2 = np.exp(w) w2 = np.sin(w2) weld_result = w2.evaluate() assert np.allclose(weld_result, np_result) def test_scalars(): ''' Special case of broadcasting rules - the scalar is applied to all the Weldrray members. ''' t = "int32" print("t = ", t) n, w = random_arrays(NUM_ELS, t) n2 = n + 2 w2 = w + 2 w2 = w2.evaluate() assert np.allclose(w2, n2) # test by combining it with binary op. n, w = random_arrays(NUM_ELS, t) w += 10 n += 10 n2, w2 = random_arrays(NUM_ELS, t) w = np.add(w, w2) n = np.add(n, n2) assert np.allclose(w, n) t = "float32" print("t = ", t) np_test, w = random_arrays(NUM_ELS, t) np_result = np_test + 2.00 w2 = w + 2.00 weld_result = w2.evaluate() assert np.allclose(weld_result, np_result) def test_stale_add(): ''' Registers op for weldarray w2, and then add it to w1. Works trivially because updating a weldobject with another weldobject just needs to get the naming right. ''' n1, w1 = random_arrays(NUM_ELS, 'float32') n2, w2 = random_arrays(NUM_ELS, 'float32') w2 = np.exp(w2) n2 = np.exp(n2) w1 = np.add(w1, w2) n1 = np.add(n1, n2) w1 = w1.evaluate() assert np.allclose(w1, n1) def test_cycle(): ''' This was a problem when I was using let statements to hold intermediate weld code. (because of my naming scheme) ''' n1, w1 = given_arrays([1.0, 2.0], 'float32') n2, w2 = given_arrays([3.0, 3.0], 'float32') # w3 depends on w1. w3 = np.add(w1, w2) n3 = np.add(n1, n2) # changing this to some other variable lets us pass the test. w1 = np.exp(w1) n1 = np.exp(n1) w1 = np.add(w1,w3) n1 = np.add(n1, n3) assert np.allclose(w1.evaluate(), n1) assert np.allclose(w3.evaluate(), n3) def test_self_assignment(): n1, w1 = given_arrays([1.0, 2.0], 'float32') n2, w2 = given_arrays([2.0, 1.0], 'float32') w1 = np.exp(w1) n1 = np.exp(n1) assert np.allclose(w1.evaluate(), n1) w1 = w1 + w2 n1 = n1 + n2 assert np.allclose(w1.evaluate(), n1) def test_reuse_array(): ''' a = np.add(b,) Ensure that despite sharing underlying memory of ndarrays, future ops on a and b should not affect each other as calculations are performed based on the weldobject which isn't shared between the two. ''' n1, w1 = given_arrays([1.0, 2.0], 'float32') n2, w2 = given_arrays([2.0, 1.0], 'float32') w3 = np.add(w1, w2) n3 = np.add(n1, n2) w1 = np.log(w1) n1 = np.log(n1) w3 = np.exp(w3) n3 = np.exp(n3) w1 = w1 + w3 n1 = n1 + n3 w1_result = w1.evaluate() assert np.allclose(w1_result, n1) w3_result = w3.evaluate() assert np.allclose(w3_result, n3) def test_fancy_indexing(): ''' TODO: Needs more complicated tests that mix different indexing strategies, but since fancy indexing creates a new array - it shouldn't have any problems dealing with further stuff. ''' _, w = random_arrays(NUM_ELS, 'float64') b = w > 0.50 w2 = w[b] assert isinstance(w2, weldarray) assert id(w) != id(w2) def test_mixing_types(): ''' mixing f32 with f64, or i32 with f64. Weld doesn't seem to support this right now, so pass it on to np. ''' n1, w1 = random_arrays(2, 'float64') n2, w2 = random_arrays(2, 'float32') w3 = w1 + w2 n3 = n1 + n2 assert np.array_equal(n3, w3.evaluate()) def test_inplace_assignment(): ''' With the output optimization, this should be quite efficient for weld. ''' n, w = random_arrays(100, 'float32') n2, w2 = random_arrays(100, 'float32') orig_addr = id(w) for i in range(100): n += n2 w += w2 # Ensures that the stuff above happened in place. assert id(w) == orig_addr w3 = w.evaluate() assert np.allclose(n, w) def test_nested_weld_expr(): ''' map(zip(map(...))) kind of really long nested expressions. Add a timeout - it shouldn't take literally forever as it does now. ''' pass def test_getitem_evaluate(): ''' Should evaluateuate stuff before returning from getitem. ''' n, w = random_arrays(NUM_ELS, 'float32') n2, w2 = random_arrays(NUM_ELS, 'float32') n += n2 w += w2 assert n[0] == w[0] def test_implicit_evaluate(): n, w = random_arrays(2, 'float32') n2, w2 = random_arrays(2, 'float32') w3 = w+w2 n3 = n+n2 print(w3) w3 = w3.evaluate() w3 = w3.evaluate() assert np.allclose(w3, n3) def test_setitem_basic(): ''' set an arbitrary item in the array after registering ops on it. ''' # TODO: run this on all types. n, w = random_arrays(NUM_ELS, 'float32') n[0] = 5.0 w[0] = 5.0 assert np.allclose(n, w) n[0] += 10.0 w[0] += 10.0 assert np.allclose(n, w) n[2] -= 5.0 w[2] -= 5.0 assert np.allclose(n, w) def test_setitem_slice(): ''' ''' n, w = random_arrays(NUM_ELS, 'float32') n[0:2] = [5.0, 2.0] w[0:2] = [5.0, 2.0] assert np.allclose(n, w) n[4:6] += 10.0 w[4:6] += 10.0 assert np.allclose(n, w) def test_setitem_strides(): ''' TODO: make more complicated versions which do multiple types of changes on strides at once. TODO2: need to support different strides. ''' n, w = random_arrays(NUM_ELS, 'float32') n[0:2:1] = [5.0, 2.0] w[0:2:1] = [5.0, 2.0] print('w: ', w) print('n: ', n) assert np.allclose(n, w) n[5:8:1] += 10.0 w[5:8:1] += 10.0 assert np.allclose(n, w) def test_setitem_list(): ''' ''' n, w = random_arrays(NUM_ELS, 'float32') a = [0, 3] n[a] = [5.0, 13.0] w[a] = [5.0, 13.0] print('n: ', n) print('w: ', w) assert np.allclose(n, w) def test_setitem_weird_indexing(): ''' try to confuse the weldarray with different indexing patterns. ''' pass def test_setitem_mix(): ''' Mix all setitem stuff / and other ops. ''' n, w = random_arrays(NUM_ELS, 'float32') n =
np.sqrt(n)
numpy.sqrt
""" Many of these tests use the minimal test/data/gdc.bed file which has just enough complexity to be useful in testing corner cases. When reading through the tests, it's useful to have that file open to understand what's happening. """ import os import metaseq import multiprocessing from metaseq.array_helpers import ArgumentError import numpy as np from nose.tools import assert_raises from nose.plugins.skip import SkipTest nan = np.nan inf = np.inf gs = {} for kind in ['bed', 'bam', 'bigbed', 'bigwig']: gs[kind] = metaseq.genomic_signal(metaseq.example_filename('gdc.%s' % kind), kind) PROCESSES = int(os.environ.get("METASEQ_PROCESSES", multiprocessing.cpu_count())) def test_tointerval(): assert metaseq.helpers.tointerval("chr2L:1-10[-]").strand == '-' assert metaseq.helpers.tointerval("chr2L:1-10[+]").strand == '+' assert metaseq.helpers.tointerval("chr2L:1-10").strand == '.' def test_local_count(): def check(kind, coord, expected, stranded): try: result = gs[kind].local_count(coord, stranded=stranded) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert result == expected, (kind, coord, result) for kind in ['bam', 'bigbed', 'bed']: for coord, expected, stranded in ( ('chr2L:1-80', 3, False), # easy case ('chr2L:1000-3000', 0, False), # above upper boundary ('chr2L:1-9', 0, False), # below lower boundary ('chr2L:71-73[-]', 2, False), # unstranded = 2 ('chr2L:71-73[-]', 1, True), # stranded = 1 ('chr2L:70-71', 2, False), # pathological corner case # ('chr2L:75-76', 0, False), # pathological corner case ): yield check, kind, coord, expected, stranded def test_local_coverage_stranded(): def check(kind, coord, expected): try: result = gs[kind].local_coverage(coord) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bam', 'bigbed', 'bed', 'bigwig']: for coord, expected in ( ('chr2L:1-20[-]', ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.])[::-1], # note reverse------------------------------------------------------------------------^^^^^^ ), ), ('chr2L:68-76[-]', ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 0., 2., 2., 2., 2., 2., 0.])[::-1], # note reverse----------------------------^^^^^^ ), ), ): yield check, kind, coord, expected def test_local_coverage_shifted(): def check(kind, coord, shift_width, expected): try: result = gs[kind].local_coverage(coord, shift_width=shift_width) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bam', 'bigbed', 'bed']: for coord, shift_width, expected in ( ('chr2L:1-20', -2, ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0., 0., 0.]), ), ), # this one is complex, because the minus-strand read shifts left, # and the plus-strand shifts right. ('chr2L:68-76', 1, ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 1., 1., 2., 2., 2., 1., 1.]), ), ), # shift the reads all the way out of the window... ('chr2L:68-76', 10, ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 0., 0., 0., 0., 0., 0., 0.]), ), ), ): yield check, kind, coord, shift_width, expected def test_local_coverage_read_strand(): """ checks stranded full binning excludes bigwig since strand doesn't make sense for that format. """ def check(kind, coord, read_strand, expected): try: result = gs[kind].local_coverage(coord, read_strand=read_strand) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bam', 'bigbed', 'bed']: for coord, read_strand, expected in ( ('chr2L:1-20', '+', ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.]), ), ), ('chr2L:1-20', '-', ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]), ), ), ): yield check, kind, coord, read_strand, expected def test_local_coverage_fragment_size(): def check(kind, coord, fragment_size, expected): try: result = gs[kind].local_coverage(coord, fragment_size=fragment_size) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bam', 'bigbed', 'bed']: for coord, fragment_size, expected in ( ('chr2L:1-20', 7, ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0.]), ), ), ('chr2L:68-76', 6, ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 1., 2., 2., 2., 2., 2., 1.]), ), ), ('chr2L:68-76', 1, ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 0., 1., 0., 0., 0., 1., 0.]), ), ), ): yield check, kind, coord, fragment_size, expected def test_local_coverage_score(): def check(kind, coord, expected): try: result = gs[kind].local_coverage(coord, use_score=True) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bigbed', 'bed']: for coord, expected in ( ('chr2L:1-20', ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 255., 255., 255., 255., 255., 0., 0., 0., 0., 0.]), ), ), ('chr2L:68-76', ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 0., 510., 510., 510., 510., 510., 0.]), ), ), ): yield check, kind, coord, expected def test_local_coverage_full(): """generator of tests for local coverage ensures that all formats are consistent in their results when retrieving the full un-binned data. """ def check(kind, coord, processes, expected): try: result = gs[kind].local_coverage(coord, processes=processes) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") assert np.all(result[0] == expected[0]) and np.all(result[1] == expected[1]), (kind, coord, result) for kind in ['bam', 'bigbed', 'bed', 'bigwig']: for coord, expected in ( ('chr2L:1-20', ( np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]), np.array([0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.]), ), ), ('chr2L:68-76', ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 0., 2., 2., 2., 2., 2., 0.]), ), ), ('chr2L:568-576', ( np.array([568, 569, 570, 571, 572, 573, 574, 575]), np.array([0., 0., 0., 0., 0., 0., 0., 0.]), ), ), ): for processes in [None, PROCESSES]: yield check, kind, coord, processes, expected def test_local_coverage_binned(): """generator of tests for local coverage ensures that all formats are consistent in their results when retrieving binned data. """ def check(kind, coord, processes, expected): if kind == 'bigwig': result = gs[kind].local_coverage(coord, bins=8, method='get_as_array', processes=processes) else: try: result = gs[kind].local_coverage(coord, bins=8, processes=processes) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") try: assert np.allclose(result[0], expected[0]) and np.allclose(result[1], expected[1]) except: print (kind, coord, result, expected) raise for kind in ['bam', 'bigbed', 'bed', 'bigwig']: for coord, expected in ( ('chr2L:1-20', ( np.array([ 1., 3.57142857, 6.14285714, 8.71428571, 11.28571429, 13.85714286, 16.42857143, 19.]), np.array([ 0., 0., 0., 0., 1., 1., 0., 0. ]), ), ), ('chr2L:68-76', ( np.array([68, 69, 70, 71, 72, 73, 74, 75]), np.array([0., 0., 2., 2., 2., 2., 2., 0.]), ), ), ): for processes in [None, PROCESSES]: yield check, kind, coord, processes, expected def test_array_binned(): def check(kind, coord, processes, expected): if kind == 'bigwig': result = gs[kind].array(coord, bins=8, method='get_as_array', processes=processes) else: try: result = gs[kind].array(coord, bins=8, processes=processes) except NotImplementedError: raise SkipTest("Incompatible bx-python version for bigBed") try: assert np.allclose(result, expected) except: print (kind, coord, result, expected) raise for kind in ['bam', 'bigbed', 'bed', 'bigwig']: for coord, expected in ( (['chr2L:1-20'], np.array([[0., 0., 0., 0., 1., 1., 0., 0. ]]), ), (['chr2L:1-20', 'chr2L:1-20[-]'], np.array([[0., 0., 0., 0., 1., 1., 0., 0. ], [0., 0., 1., 1., 0., 0., 0., 0. ]]), ), (['chr2L:68-76'],
np.array([[0., 0., 2., 2., 2., 2., 2., 0.]])
numpy.array
# coding: utf-8 # In[1]: # These are all the modules we'll be using later. Make sure you can import them # before proceeding further. from __future__ import print_function import imageio import matplotlib.pyplot as plt import numpy as np import os import sys import tarfile from IPython.display import display, Image from sklearn.linear_model import LogisticRegression from six.moves.urllib.request import urlretrieve from six.moves import cPickle as pickle # Config the matplotlib backend as plotting inline in IPython get_ipython().magic('matplotlib inline') # In[2]: url = 'https://commondatastorage.googleapis.com/books1000/' last_percent_reported = None data_root = 'D:\\1_Workspaces\\UNDER_VCS\\github\\1_ML_NN\\python_with_math\\data' # Change me to store data elsewhere def download_progress_hook(count, blockSize, totalSize): """A hook to report the progress of a download. This is mostly intended for users with slow internet connections. Reports every 5% change in download progress. """ global last_percent_reported percent = int(count * blockSize * 100 / totalSize) if last_percent_reported != percent: if percent % 5 == 0: sys.stdout.write("%s%%" % percent) sys.stdout.flush() else: sys.stdout.write(".") sys.stdout.flush() last_percent_reported = percent def maybe_download(filename, expected_bytes, force=False): """Download a file if not present, and make sure it's the right size.""" dest_filename = os.path.join(data_root, filename) if force or not os.path.exists(dest_filename): print('Attempting to download:', filename) filename, _ = urlretrieve(url + filename, dest_filename, reporthook=download_progress_hook) print('\nDownload Complete!') statinfo = os.stat(dest_filename) if statinfo.st_size == expected_bytes: print('Found and verified', dest_filename) else: raise Exception( 'Failed to verify ' + dest_filename + '. Can you get to it with a browser?') return dest_filename train_filename = maybe_download('notMNIST_large.tar.gz', 247336696) test_filename = maybe_download('notMNIST_small.tar.gz', 8458043) # In[3]: num_classes = 10
np.random.seed(133)
numpy.random.seed
""" Testing code. Updated BSM February 2017 """ import sys import os import numpy as np import pytest from pytest import approx from numpy.testing import assert_allclose from scipy.spatial.distance import cdist from pykrige import kriging_tools as kt from pykrige import core from pykrige import variogram_models from pykrige.ok import OrdinaryKriging from pykrige.uk import UniversalKriging from pykrige.ok3d import OrdinaryKriging3D from pykrige.uk3d import UniversalKriging3D BASE_DIR = os.path.abspath(os.path.dirname(__file__)) allclose_pars = {"rtol": 1e-05, "atol": 1e-08} @pytest.fixture def validation_ref(): data = np.genfromtxt(os.path.join(BASE_DIR, "test_data/test_data.txt")) ok_test_answer, ok_test_gridx, ok_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test1_answer.asc"), footer=2 ) uk_test_answer, uk_test_gridx, uk_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test2_answer.asc"), footer=2 ) return ( data, (ok_test_answer, ok_test_gridx, ok_test_gridy), (uk_test_answer, uk_test_gridx, uk_test_gridy), ) @pytest.fixture def sample_data_2d(): data = np.array( [ [0.3, 1.2, 0.47], [1.9, 0.6, 0.56], [1.1, 3.2, 0.74], [3.3, 4.4, 1.47], [4.7, 3.8, 1.74], ] ) gridx = np.arange(0.0, 6.0, 1.0) gridx_2 = np.arange(0.0, 5.5, 0.5) gridy = np.arange(0.0, 5.5, 0.5) xi, yi = np.meshgrid(gridx, gridy) mask = np.array(xi == yi) return data, (gridx, gridy, gridx_2), mask @pytest.fixture def sample_data_3d(): data = np.array( [ [0.1, 0.1, 0.3, 0.9], [0.2, 0.1, 0.4, 0.8], [0.1, 0.3, 0.1, 0.9], [0.5, 0.4, 0.4, 0.5], [0.3, 0.3, 0.2, 0.7], ] ) gridx = np.arange(0.0, 0.6, 0.05) gridy = np.arange(0.0, 0.6, 0.01) gridz = np.arange(0.0, 0.6, 0.1) zi, yi, xi = np.meshgrid(gridz, gridy, gridx, indexing="ij") mask = np.array((xi == yi) & (yi == zi)) return data, (gridx, gridy, gridz), mask def test_core_adjust_for_anisotropy(): X = np.array([[1.0, 0.0, -1.0, 0.0], [0.0, 1.0, 0.0, -1.0]]).T X_adj = core._adjust_for_anisotropy(X, [0.0, 0.0], [2.0], [90.0]) assert_allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0, -1.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([-2.0, 0.0, 2.0, 0.0]), **allclose_pars) def test_core_adjust_for_anisotropy_3d(): # this is a bad examples, as the X matrix is symmetric # and insensitive to transpositions X = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]).T X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [90.0, 0.0, 0.0] ) assert_allclose(X_adj[:, 0], np.array([1.0, 0.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([0.0, 0.0, 2.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([0.0, -2.0, 0.0]), **allclose_pars) X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [0.0, 90.0, 0.0] ) assert_allclose(X_adj[:, 0], np.array([0.0, 0.0, -1.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([0.0, 2.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([2.0, 0.0, 0.0]), **allclose_pars) X_adj = core._adjust_for_anisotropy( X, [0.0, 0.0, 0.0], [2.0, 2.0], [0.0, 0.0, 90.0] ) assert_allclose(X_adj[:, 0], np.array([0.0, 1.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 1], np.array([-2.0, 0.0, 0.0]), **allclose_pars) assert_allclose(X_adj[:, 2], np.array([0.0, 0.0, 2.0]), **allclose_pars) def test_core_make_variogram_parameter_list(): # test of first case - variogram_model_parameters is None # function should return None unaffected result = core._make_variogram_parameter_list("linear", None) assert result is None # tests for second case - variogram_model_parameters is dict with pytest.raises(KeyError): core._make_variogram_parameter_list("linear", {"tacos": 1.0, "burritos": 2.0}) result = core._make_variogram_parameter_list( "linear", {"slope": 1.0, "nugget": 0.0} ) assert result == [1.0, 0.0] with pytest.raises(KeyError): core._make_variogram_parameter_list("power", {"frijoles": 1.0}) result = core._make_variogram_parameter_list( "power", {"scale": 2.0, "exponent": 1.0, "nugget": 0.0} ) assert result == [2.0, 1.0, 0.0] with pytest.raises(KeyError): core._make_variogram_parameter_list("exponential", {"tacos": 1.0}) with pytest.raises(KeyError): core._make_variogram_parameter_list( "exponential", {"range": 1.0, "nugget": 1.0} ) result = core._make_variogram_parameter_list( "exponential", {"sill": 5.0, "range": 2.0, "nugget": 1.0} ) assert result == [4.0, 2.0, 1.0] result = core._make_variogram_parameter_list( "exponential", {"psill": 4.0, "range": 2.0, "nugget": 1.0} ) assert result == [4.0, 2.0, 1.0] with pytest.raises(TypeError): core._make_variogram_parameter_list("custom", {"junk": 1.0}) with pytest.raises(ValueError): core._make_variogram_parameter_list("blarg", {"junk": 1.0}) # tests for third case - variogram_model_parameters is list with pytest.raises(ValueError): core._make_variogram_parameter_list("linear", [1.0, 2.0, 3.0]) result = core._make_variogram_parameter_list("linear", [1.0, 2.0]) assert result == [1.0, 2.0] with pytest.raises(ValueError): core._make_variogram_parameter_list("power", [1.0, 2.0]) result = core._make_variogram_parameter_list("power", [1.0, 2.0, 3.0]) assert result == [1.0, 2.0, 3.0] with pytest.raises(ValueError): core._make_variogram_parameter_list("exponential", [1.0, 2.0, 3.0, 4.0]) result = core._make_variogram_parameter_list("exponential", [5.0, 2.0, 1.0]) assert result == [4.0, 2.0, 1.0] result = core._make_variogram_parameter_list("custom", [1.0, 2.0, 3.0]) assert result == [1.0, 2.0, 3] with pytest.raises(ValueError): core._make_variogram_parameter_list("junk", [1.0, 1.0, 1.0]) # test for last case - make sure function handles incorrect # variogram_model_parameters type appropriately with pytest.raises(TypeError): core._make_variogram_parameter_list("linear", "tacos") def test_core_initialize_variogram_model(validation_ref): data, _, _ = validation_ref # Note the variogram_function argument is not a string in real life... # core._initialize_variogram_model also checks the length of input # lists, which is redundant now because the same tests are done in # core._make_variogram_parameter_list with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "linear", [0.0], "linear", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "spherical", [0.0], "spherical", 6, False, "euclidean", ) # core._initialize_variogram_model does also check coordinate type, # this is NOT redundant with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], "spherical", [0.0, 0.0, 0.0], "spherical", 6, False, "tacos", ) x = np.array([1.0 + n / np.sqrt(2) for n in range(4)]) y = np.array([1.0 + n / np.sqrt(2) for n in range(4)]) z = np.arange(1.0, 5.0, 1.0) lags, semivariance, variogram_model_parameters = core._initialize_variogram_model( np.vstack((x, y)).T, z, "linear", [0.0, 0.0], "linear", 6, False, "euclidean" ) assert_allclose(lags, np.array([1.0, 2.0, 3.0])) assert_allclose(semivariance, np.array([0.5, 2.0, 4.5])) def test_core_initialize_variogram_model_3d(sample_data_3d): data, _, _ = sample_data_3d # Note the variogram_function argument is not a string in real life... # again, these checks in core._initialize_variogram_model are redundant # now because the same tests are done in # core._make_variogram_parameter_list with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "linear", [0.0], "linear", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "spherical", [0.0], "spherical", 6, False, "euclidean", ) with pytest.raises(ValueError): core._initialize_variogram_model( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], "linear", [0.0, 0.0], "linear", 6, False, "geographic", ) lags, semivariance, variogram_model_parameters = core._initialize_variogram_model( np.vstack( ( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.0, 3.0, 4.0]), ) ).T, np.array([1.0, 2.0, 3.0, 4.0]), "linear", [0.0, 0.0], "linear", 3, False, "euclidean", ) assert_allclose( lags, np.array([np.sqrt(3.0), 2.0 * np.sqrt(3.0), 3.0 * np.sqrt(3.0)]) ) assert_allclose(semivariance, np.array([0.5, 2.0, 4.5])) def test_core_calculate_variogram_model(): res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), "linear", variogram_models.linear_variogram_model, False, ) assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.05, 2.95, 4.05, 4.95]), "linear", variogram_models.linear_variogram_model, True, ) assert_allclose(res, np.array([0.98, 1.05]), 0.01, 0.01) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 2.8284271, 5.1961524, 8.0]), "power", variogram_models.power_variogram_model, False, ) assert_allclose(res, np.array([1.0, 1.5, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.0, 1.4142, 1.7321, 2.0]), "power", variogram_models.power_variogram_model, False, ) assert_allclose(res, np.array([1.0, 0.5, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([1.2642, 1.7293, 1.9004, 1.9634]), "exponential", variogram_models.exponential_variogram_model, False, ) assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([0.5769, 1.4872, 1.9065, 1.9914]), "gaussian", variogram_models.gaussian_variogram_model, False, ) assert_allclose(res, np.array([2.0, 3.0, 0.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([3.33060952, 3.85063879, 3.96667301, 3.99256374]), "exponential", variogram_models.exponential_variogram_model, False, ) assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001) res = core._calculate_variogram_model( np.array([1.0, 2.0, 3.0, 4.0]), np.array([2.60487044, 3.85968813, 3.99694817, 3.99998564]), "gaussian", variogram_models.gaussian_variogram_model, False, ) assert_allclose(res, np.array([3.0, 2.0, 1.0]), 0.001, 0.001) def test_core_krige(): # Example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.22], [43.8, 24.6, 2.822]]) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([18.8, 67.9]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(1.6364, rel=1e-4) assert ss == approx(0.4201, rel=1e-4) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([43.8, 24.6]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(2.822, rel=1e-3) assert ss == approx(0.0, rel=1e-3) def test_core_krige_3d(): # Adapted from example 3.2 from Kitanidis data = np.array([[9.7, 47.6, 1.0, 1.22], [43.8, 24.6, 1.0, 2.822]]) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], np.array([18.8, 67.9, 1.0]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(1.6364, rel=1e-4) assert ss == approx(0.4201, rel=1e-4) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1], data[:, 2])).T, data[:, 3], np.array([43.8, 24.6, 1.0]), variogram_models.linear_variogram_model, [0.006, 0.1], "euclidean", ) assert z == approx(2.822, rel=1e-3) assert ss == approx(0.0, rel=1e-3) def test_non_exact(): # custom data for this test data = np.array( [ [0.0, 0.0, 0.47], [1.5, 1.5, 0.56], [3, 3, 0.74], [4.5, 4.5, 1.47], ] ) # construct grid points so diagonal # is identical to input points gridx = np.arange(0.0, 4.51, 1.5) gridy = np.arange(0.0, 4.51, 1.5) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 5.0], ) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 5.0], exact_values=False, ) z_non_exact, ss_non_exact = ok_non_exact.execute( "grid", gridx, gridy, backend="vectorized" ) in_values = np.diag(z) # test that krig field # at input location are identical # to the inputs themselves with # exact_values == True assert_allclose(in_values, data[:, 2]) # test that krig field # at input location are different # than the inputs themselves # with exact_values == False assert ~np.allclose(in_values, data[:, 2]) # test that off diagonal values are the same # by filling with dummy value and comparing # each entry in array np.fill_diagonal(z, 0.0) np.fill_diagonal(z_non_exact, 0.0) assert_allclose(z, z_non_exact) def test_ok(validation_ref): # Test to compare OK results to those obtained using KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) data, (ok_test_answer, gridx, gridy), _ = validation_ref ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], ) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, ok_test_answer) z, ss = ok.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, ok_test_answer) def test_ok_update_variogram_model(validation_ref): data, (ok_test_answer, gridx, gridy), _ = validation_ref with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="blurg") ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) variogram_model = ok.variogram_model variogram_parameters = ok.variogram_model_parameters anisotropy_scaling = ok.anisotropy_scaling anisotropy_angle = ok.anisotropy_angle with pytest.raises(ValueError): ok.update_variogram_model("blurg") ok.update_variogram_model("power", anisotropy_scaling=3.0, anisotropy_angle=45.0) # TODO: check that new parameters equal to the set parameters assert variogram_model != ok.variogram_model assert not np.array_equal(variogram_parameters, ok.variogram_model_parameters) assert anisotropy_scaling != ok.anisotropy_scaling assert anisotropy_angle != ok.anisotropy_angle def test_ok_get_variogram_points(validation_ref): # Test to compare the variogram of OK results to those obtained using # KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) # Variogram parameters _variogram_parameters = [500.0, 3000.0, 0.0] data, _, (ok_test_answer, gridx, gridy) = validation_ref ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=_variogram_parameters, ) # Get the variogram points from the UniversalKriging instance lags, calculated_variogram = ok.get_variogram_points() # Generate the expected variogram points according to the # exponential variogram model expected_variogram = variogram_models.exponential_variogram_model( _variogram_parameters, lags ) assert_allclose(calculated_variogram, expected_variogram) def test_ok_execute(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) with pytest.raises(ValueError): OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], exact_values="blurg") ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], exact_values=False ) with pytest.raises(ValueError): ok.execute("blurg", gridx, gridy) z, ss = ok.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z, ss = ok.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z1, ss1 = ok_non_exact.execute("grid", gridx, gridy, backend="loop") assert_allclose(z1, z) assert_allclose(ss1, ss) z, ss = ok_non_exact.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) with pytest.raises(IOError): ok.execute("masked", gridx, gridy, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): ok.execute("masked", gridx, gridy, mask=mask, backend="vectorized") z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref.T, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(IOError): ok.execute("masked", gridx, gridy, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): ok.execute("masked", gridx, gridy, mask=mask, backend="loop") z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok.execute("masked", gridx, gridy, mask=mask_ref.T, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = ok_non_exact.execute( "masked", gridx, gridy, mask=mask_ref.T, backend="loop" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(ValueError): ok.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="vectorized", ) z, ss = ok.execute("points", gridx[0], gridy[0], backend="vectorized") assert z.shape == (1,) assert ss.shape == (1,) with pytest.raises(ValueError): ok.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="loop" ) z, ss = ok.execute("points", gridx[0], gridy[0], backend="loop") assert z.shape == (1,) assert ss.shape == (1,) def test_cython_ok(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) ok_non_exact = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], exact_values=False ) z1, ss1 = ok.execute("grid", gridx, gridy, backend="loop") z2, ss2 = ok.execute("grid", gridx, gridy, backend="C") assert_allclose(z1, z2) assert_allclose(ss1, ss2) z1, ss1 = ok_non_exact.execute("grid", gridx, gridy, backend="loop") z2, ss2 = ok_non_exact.execute("grid", gridx, gridy, backend="C") assert_allclose(z1, z2) assert_allclose(ss1, ss2) closest_points = 4 z1, ss1 = ok.execute( "grid", gridx, gridy, backend="loop", n_closest_points=closest_points ) z2, ss2 = ok.execute( "grid", gridx, gridy, backend="C", n_closest_points=closest_points ) assert_allclose(z1, z2) assert_allclose(ss1, ss2) z1, ss1 = ok_non_exact.execute( "grid", gridx, gridy, backend="loop", n_closest_points=closest_points ) z2, ss2 = ok_non_exact.execute( "grid", gridx, gridy, backend="C", n_closest_points=closest_points ) assert_allclose(z1, z2) assert_allclose(ss1, ss2) def test_uk(validation_ref): # Test to compare UK with linear drift to results from KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) data, _, (uk_test_answer, gridx, gridy) = validation_ref uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[500.0, 3000.0, 0.0], drift_terms=["regional_linear"], ) z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, uk_test_answer) z, ss = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, uk_test_answer) def test_uk_update_variogram_model(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], variogram_model="blurg") with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], drift_terms=["external_Z"]) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], drift_terms=["external_Z"], external_drift=np.array([0]), ) with pytest.raises(ValueError): UniversalKriging(data[:, 0], data[:, 1], data[:, 2], drift_terms=["point_log"]) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2]) variogram_model = uk.variogram_model variogram_parameters = uk.variogram_model_parameters anisotropy_scaling = uk.anisotropy_scaling anisotropy_angle = uk.anisotropy_angle with pytest.raises(ValueError): uk.update_variogram_model("blurg") uk.update_variogram_model("power", anisotropy_scaling=3.0, anisotropy_angle=45.0) # TODO: check that the new parameters are equal to the expected ones assert variogram_model != uk.variogram_model assert not np.array_equal(variogram_parameters, uk.variogram_model_parameters) assert anisotropy_scaling != uk.anisotropy_scaling assert anisotropy_angle != uk.anisotropy_angle def test_uk_get_variogram_points(validation_ref): # Test to compare the variogram of UK with linear drift to results from # KT3D_H2O. # (<NAME>, <NAME>, and <NAME>, 2009, Groundwater, # vol. 47, no. 4, 580-586.) # Variogram parameters _variogram_parameters = [500.0, 3000.0, 0.0] data, _, (uk_test_answer, gridx, gridy) = validation_ref uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=_variogram_parameters, drift_terms=["regional_linear"], ) # Get the variogram points from the UniversalKriging instance lags, calculated_variogram = uk.get_variogram_points() # Generate the expected variogram points according to the # exponential variogram model expected_variogram = variogram_models.exponential_variogram_model( _variogram_parameters, lags ) assert_allclose(calculated_variogram, expected_variogram) def test_uk_calculate_data_point_zscalars(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d dem = np.arange(0.0, 5.1, 0.1) dem = np.repeat(dem[np.newaxis, :], 6, axis=0) dem_x = np.arange(0.0, 5.1, 0.1) dem_y = np.arange(0.0, 6.0, 1.0) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], external_drift=dem, ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], external_drift=dem, external_drift_x=dem_x, external_drift_y=np.arange(0.0, 5.0, 1.0), ) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 0.0], drift_terms=["external_Z"], external_drift=dem, external_drift_x=dem_x, external_drift_y=dem_y, ) assert_allclose(uk.z_scalars, data[:, 0]) xi, yi = np.meshgrid(np.arange(0.0, 5.3, 0.1), gridy) with pytest.raises(ValueError): uk._calculate_data_point_zscalars(xi, yi) xi, yi = np.meshgrid(np.arange(0.0, 5.0, 0.1), gridy) z_scalars = uk._calculate_data_point_zscalars(xi, yi) assert_allclose(z_scalars[0, :], np.arange(0.0, 5.0, 0.1)) def test_uk_execute_single_point(): # Test data and answer from lecture notes by <NAME>, UCLA Stats data = np.array( [ [61.0, 139.0, 477.0], [63.0, 140.0, 696.0], [64.0, 129.0, 227.0], [68.0, 128.0, 646.0], [71.0, 140.0, 606.0], [73.0, 141.0, 791.0], [75.0, 128.0, 783.0], ] ) point = (65.0, 137.0) z_answer = 567.54 ss_answer = 9.044 uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="exponential", variogram_parameters=[10.0, 9.99, 0.0], drift_terms=["regional_linear"], ) z, ss = uk.execute( "points", np.array([point[0]]), np.array([point[1]]), backend="vectorized" ) assert z_answer == approx(z[0], rel=0.1) assert ss_answer == approx(ss[0], rel=0.1) z, ss = uk.execute( "points", np.array([61.0]), np.array([139.0]), backend="vectorized" ) assert z[0] == approx(477.0, rel=1e-3) assert ss[0] == approx(0.0, rel=1e-3) z, ss = uk.execute("points", np.array([61.0]), np.array([139.0]), backend="loop") assert z[0] == approx(477.0, rel=1e-3) assert ss[0] == approx(0.0, rel=1e-3) def test_uk_execute(sample_data_2d): data, (gridx, gridy, _), mask_ref = sample_data_2d uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], exact_values="blurg", ) uk_non_exact = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) with pytest.raises(ValueError): uk.execute("blurg", gridx, gridy) with pytest.raises(ValueError): uk.execute("grid", gridx, gridy, backend="mrow") z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z1, ss1 = uk_non_exact.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z1, z) assert_allclose(ss1, ss) z, ss = uk_non_exact.execute("grid", gridx, gridy, backend="vectorized") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) z, ss = uk.execute("grid", gridx, gridy, backend="loop") shape = (gridy.size, gridx.size) assert z.shape == shape assert ss.shape == shape assert np.amax(z) != np.amin(z) assert np.amax(ss) != np.amin(ss) assert not np.ma.is_masked(z) with pytest.raises(IOError): uk.execute("masked", gridx, gridy, backend="vectorized") mask = np.array([True, False]) with pytest.raises(ValueError): uk.execute("masked", gridx, gridy, mask=mask, backend="vectorized") z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref.T, backend="vectorized") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(IOError): uk.execute("masked", gridx, gridy, backend="loop") mask = np.array([True, False]) with pytest.raises(ValueError): uk.execute("masked", gridx, gridy, mask=mask, backend="loop") z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = uk.execute("masked", gridx, gridy, mask=mask_ref.T, backend="loop") assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked z, ss = uk_non_exact.execute( "masked", gridx, gridy, mask=mask_ref.T, backend="loop" ) assert np.ma.is_masked(z) assert np.ma.is_masked(ss) assert z[0, 0] is np.ma.masked assert ss[0, 0] is np.ma.masked with pytest.raises(ValueError): uk.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="vectorized", ) z, ss = uk.execute("points", gridx[0], gridy[0], backend="vectorized") assert z.shape == (1,) assert ss.shape == (1,) with pytest.raises(ValueError): uk.execute( "points", np.array([0.0, 1.0, 2.0]), np.array([0.0, 1.0]), backend="loop" ) z, ss = uk.execute("points", gridx[0], gridy[0], backend="loop") assert z.shape == (1,) assert ss.shape == (1,) def test_ok_uk_produce_same_result(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) z_ok, ss_ok = ok.execute("grid", gridx, gridy, backend="vectorized") uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) uk_non_exact = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, exact_values=False, ) z_uk, ss_uk = uk.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) z_uk, ss_uk = uk_non_exact.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) z_ok, ss_ok = ok.execute("grid", gridx, gridy, backend="loop") z_uk, ss_uk = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) z_uk, ss_uk = uk_non_exact.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_ok, z_uk) assert_allclose(ss_ok, ss_uk) def test_ok_backends_produce_same_result(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) z_ok_v, ss_ok_v = ok.execute("grid", gridx, gridy, backend="vectorized") z_ok_l, ss_ok_l = ok.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_ok_v, z_ok_l) assert_allclose(ss_ok_v, ss_ok_l) def test_uk_backends_produce_same_result(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref gridx = np.linspace(1067000.0, 1072000.0, 100) gridy = np.linspace(241500.0, 244000.0, 100) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", verbose=False, enable_plotting=False, ) z_uk_v, ss_uk_v = uk.execute("grid", gridx, gridy, backend="vectorized") z_uk_l, ss_uk_l = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z_uk_v, z_uk_l) assert_allclose(ss_uk_v, ss_uk_l) def test_kriging_tools(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) z_write, ss_write = ok.execute("grid", gridx, gridy) kt.write_asc_grid( gridx, gridy, z_write, filename=os.path.join(BASE_DIR, "test_data/temp.asc"), style=1, ) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/temp.asc") ) assert_allclose(z_write, z_read, 0.01, 0.01) assert_allclose(gridx, x_read) assert_allclose(gridy, y_read) z_write, ss_write = ok.execute("masked", gridx, gridy, mask=mask_ref) kt.write_asc_grid( gridx, gridy, z_write, filename=os.path.join(BASE_DIR, "test_data/temp.asc"), style=1, ) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/temp.asc") ) assert np.ma.allclose( z_write, np.ma.masked_where(z_read == no_data, z_read), masked_equal=True, rtol=0.01, atol=0.01, ) assert_allclose(gridx, x_read) assert_allclose(gridy, y_read) ok = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2]) z_write, ss_write = ok.execute("grid", gridx_2, gridy) kt.write_asc_grid( gridx_2, gridy, z_write, filename=os.path.join(BASE_DIR, "test_data/temp.asc"), style=2, ) z_read, x_read, y_read, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/temp.asc") ) assert_allclose(z_write, z_read, 0.01, 0.01) assert_allclose(gridx_2, x_read) assert_allclose(gridy, y_read) os.remove(os.path.join(BASE_DIR, "test_data/temp.asc")) # http://doc.pytest.org/en/latest/skipping.html#id1 @pytest.mark.skipif(sys.platform == "win32", reason="does not run on windows") def test_uk_three_primary_drifts(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d well = np.array([[1.1, 1.1, -1.0]]) dem = np.arange(0.0, 5.1, 0.1) dem = np.repeat(dem[np.newaxis, :], 6, axis=0) dem_x = np.arange(0.0, 5.1, 0.1) dem_y = np.arange(0.0, 6.0, 1.0) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear", "external_Z", "point_log"], point_drift=well, external_drift=dem, external_drift_x=dem_x, external_drift_y=dem_y, ) z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") assert z.shape == (gridy.shape[0], gridx.shape[0]) assert ss.shape == (gridy.shape[0], gridx.shape[0]) assert np.all(np.isfinite(z)) assert not np.all(np.isnan(z)) assert np.all(np.isfinite(ss)) assert not np.all(np.isnan(ss)) z, ss = uk.execute("grid", gridx, gridy, backend="loop") assert z.shape == (gridy.shape[0], gridx.shape[0]) assert ss.shape == (gridy.shape[0], gridx.shape[0]) assert np.all(np.isfinite(z)) assert not np.all(np.isnan(z)) assert np.all(np.isfinite(ss)) assert not np.all(np.isnan(ss)) def test_uk_specified_drift(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d xg, yg = np.meshgrid(gridx, gridy) well = np.array([[1.1, 1.1, -1.0]]) point_log = ( well[0, 2] * np.log(np.sqrt((xg - well[0, 0]) ** 2.0 + (yg - well[0, 1]) ** 2.0)) * -1.0 ) if np.any(np.isinf(point_log)): point_log[np.isinf(point_log)] = -100.0 * well[0, 2] * -1.0 point_log_data = ( well[0, 2] * np.log( np.sqrt((data[:, 0] - well[0, 0]) ** 2.0 + (data[:, 1] - well[0, 1]) ** 2.0) ) * -1.0 ) if np.any(np.isinf(point_log_data)): point_log_data[np.isinf(point_log_data)] = -100.0 * well[0, 2] * -1.0 with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], ) with pytest.raises(TypeError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=data[:, 0], ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:2, 0]], ) uk_spec = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:, 0], data[:, 1]], ) with pytest.raises(ValueError): uk_spec.execute("grid", gridx, gridy, specified_drift_arrays=[gridx, gridy]) with pytest.raises(TypeError): uk_spec.execute("grid", gridx, gridy, specified_drift_arrays=gridx) with pytest.raises(ValueError): uk_spec.execute("grid", gridx, gridy, specified_drift_arrays=[xg]) z_spec, ss_spec = uk_spec.execute( "grid", gridx, gridy, specified_drift_arrays=[xg, yg] ) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) uk_spec = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[point_log_data], ) z_spec, ss_spec = uk_spec.execute( "grid", gridx, gridy, specified_drift_arrays=[point_log] ) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) uk_spec = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["specified"], specified_drift=[data[:, 0], data[:, 1], point_log_data], ) z_spec, ss_spec = uk_spec.execute( "grid", gridx, gridy, specified_drift_arrays=[xg, yg, point_log] ) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear", "point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_spec, z_lin) assert_allclose(ss_spec, ss_lin) def test_uk_functional_drift(sample_data_2d): data, (gridx, gridy, gridx_2), mask_ref = sample_data_2d well = np.array([[1.1, 1.1, -1.0]]) func_x = lambda x, y: x # noqa func_y = lambda x, y: y # noqa def func_well(x, y): return -well[0, 2] * np.log( np.sqrt((x - well[0, 0]) ** 2.0 + (y - well[0, 1]) ** 2.0) ) with pytest.raises(ValueError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], ) with pytest.raises(TypeError): UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=func_x, ) uk_func = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_x, func_y], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear"], ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) uk_func = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_well], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) uk_func = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["functional"], functional_drift=[func_x, func_y, func_well], ) z_func, ss_func = uk_func.execute("grid", gridx, gridy) uk_lin = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", drift_terms=["regional_linear", "point_log"], point_drift=well, ) z_lin, ss_lin = uk_lin.execute("grid", gridx, gridy) assert_allclose(z_func, z_lin) assert_allclose(ss_func, ss_lin) def test_uk_with_external_drift(validation_ref): data, _, (uk_test_answer, gridx_ref, gridy_ref) = validation_ref dem, demx, demy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test3_dem.asc") ) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="spherical", variogram_parameters=[500.0, 3000.0, 0.0], anisotropy_scaling=1.0, anisotropy_angle=0.0, drift_terms=["external_Z"], external_drift=dem, external_drift_x=demx, external_drift_y=demy, verbose=False, ) answer, gridx, gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test3_answer.asc") ) z, ss = uk.execute("grid", gridx, gridy, backend="vectorized") assert_allclose(z, answer, **allclose_pars) z, ss = uk.execute("grid", gridx, gridy, backend="loop") assert_allclose(z, answer, **allclose_pars) def test_force_exact(): data = np.array([[1.0, 1.0, 2.0], [2.0, 2.0, 1.5], [3.0, 3.0, 1.0]]) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[1.0, 1.0], ) z, ss = ok.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="vectorized") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = ok.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="vectorized" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="vectorized" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = ok.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert not np.any(np.isclose(ss, 0)) z, ss = ok.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="vectorized", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) z, ss = ok.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="loop") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = ok.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="loop" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="loop" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = ok.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = ok.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert not np.any(np.isclose(ss, 0)) z, ss = ok.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="loop", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) uk = UniversalKriging(data[:, 0], data[:, 1], data[:, 2]) z, ss = uk.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="vectorized") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = uk.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="vectorized" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="vectorized" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = uk.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="vectorized" ) assert not (np.any(np.isclose(ss, 0))) z, ss = uk.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="vectorized", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) z, ss = uk.execute("grid", [1.0, 2.0, 3.0], [1.0, 2.0, 3.0], backend="loop") assert z[0, 0] == approx(2.0) assert ss[0, 0] == approx(0.0) assert z[1, 1] == approx(1.5) assert ss[1, 1] == approx(0.0) assert z[2, 2] == approx(1.0) assert ss[2, 2] == approx(0.0) assert ss[0, 2] != approx(0.0) assert ss[2, 0] != approx(0.0) z, ss = uk.execute( "points", [1.0, 2.0, 3.0, 3.0], [2.0, 1.0, 1.0, 3.0], backend="loop" ) assert ss[0] != approx(0.0) assert ss[1] != approx(0.0) assert ss[2] != approx(0.0) assert z[3] == approx(1.0) assert ss[3] == approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 4.0, 0.1), np.arange(0.0, 4.0, 0.1), backend="loop" ) assert z[10, 10] == approx(2.0) assert ss[10, 10] == approx(0.0) assert z[20, 20] == approx(1.5) assert ss[20, 20] == approx(0.0) assert z[30, 30] == approx(1.0) assert ss[30, 30] == approx(0.0) assert ss[0, 0] != approx(0.0) assert ss[15, 15] != approx(0.0) assert ss[10, 0] != approx(0.0) assert ss[0, 10] != approx(0.0) assert ss[20, 10] != approx(0.0) assert ss[10, 20] != approx(0.0) assert ss[30, 20] != approx(0.0) assert ss[20, 30] != approx(0.0) z, ss = uk.execute( "grid", np.arange(0.0, 3.1, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert np.any(np.isclose(ss, 0)) assert not np.any(np.isclose(ss[:9, :30], 0)) assert not np.allclose(z[:9, :30], 0.0) z, ss = uk.execute( "grid", np.arange(0.0, 1.9, 0.1), np.arange(2.1, 3.1, 0.1), backend="loop" ) assert not np.any(np.isclose(ss, 0)) z, ss = uk.execute( "masked", np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25), backend="loop", mask=np.asarray( np.meshgrid(np.arange(2.5, 3.5, 0.1), np.arange(2.5, 3.5, 0.25))[0] == 0.0 ), ) assert np.isclose(ss[2, 5], 0) assert not np.allclose(ss, 0.0) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([1.0, 1.0]), variogram_models.linear_variogram_model, [1.0, 1.0], "euclidean", ) assert z == approx(2.0) assert ss == approx(0.0) z, ss = core._krige( np.vstack((data[:, 0], data[:, 1])).T, data[:, 2], np.array([1.0, 2.0]), variogram_models.linear_variogram_model, [1.0, 1.0], "euclidean", ) assert ss != approx(0.0) data = np.zeros((50, 3)) x, y = np.meshgrid(np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0)) data[:, 0] = np.ravel(x) data[:, 1] = np.ravel(y) data[:, 2] = np.ravel(x) * np.ravel(y) ok = OrdinaryKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[100.0, 1.0], ) z, ss = ok.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="vectorized", ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars) assert_allclose(ss, 0.0, **allclose_pars) z, ss = ok.execute( "grid", np.arange(0.5, 10.0, 1.0), np.arange(0.5, 10.0, 2.0), backend="vectorized", ) assert not np.allclose(np.ravel(z), data[:, 2]) assert not np.allclose(ss, 0.0) z, ss = ok.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="loop" ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars) assert_allclose(ss, 0.0, **allclose_pars) z, ss = ok.execute( "grid", np.arange(0.5, 10.0, 1.0), np.arange(0.5, 10.0, 2.0), backend="loop" ) assert not np.allclose(np.ravel(z), data[:, 2]) assert not np.allclose(ss, 0.0) uk = UniversalKriging( data[:, 0], data[:, 1], data[:, 2], variogram_model="linear", variogram_parameters=[100.0, 1.0], ) z, ss = uk.execute( "grid", np.arange(0.0, 10.0, 1.0), np.arange(0.0, 10.0, 2.0), backend="vectorized", ) assert_allclose(np.ravel(z), data[:, 2], **allclose_pars)
assert_allclose(ss, 0.0, **allclose_pars)
numpy.testing.assert_allclose
# -*- coding: utf-8 -*- # Copyright (c) 2019 The HERA Team # Licensed under the 2-clause BSD License from __future__ import print_function, division, absolute_import from time import time import numpy as np import tensorflow as tf import h5py import random from sklearn.metrics import confusion_matrix from scipy import ndimage from copy import copy def transpose(X): """ Transpose for use in the map functions. """ return X.T def normalize(X): """ Normalization for the log amplitude required in the folding process. """ sh = np.shape(X) absX = np.abs(X) absX = np.where(absX <= 0.0, (1e-8) * np.random.randn(sh[0], sh[1]), absX) LOGabsX = np.nan_to_num(np.log10(absX)) return np.nan_to_num((LOGabsX - np.nanmean(LOGabsX)) / np.nanstd(np.abs(LOGabsX))) def normphs(X): """ Normalization for the phase in the folding proces. """ sh = np.shape(X) return np.array(np.sin(np.angle(X))) def tfnormalize(X): """ Skip connection layer normalization. """ sh = np.shape(X) X_norm = tf.contrib.layers.layer_norm(X, trainable=False) return X def foldl(data, ch_fold=16, padding=2): """ Folding function for carving up a waterfall visibility flags for prediction in the FCN. """ sh = np.shape(data) _data = data.T.reshape(ch_fold, sh[1] / ch_fold, -1) _DATA = np.array(map(transpose, _data)) _DATApad = np.array( map( np.pad, _DATA, len(_DATA) * [((padding + 2, padding + 2), (padding, padding))], len(_DATA) * ["reflect"], ) ) return _DATApad def pad(data, padding=2): """ Padding function applied to folded spectral windows. Reflection is default padding. """ sh = np.shape(data) t_pad = 16 data_pad = np.pad( data, pad_width=((t_pad + 2, t_pad + 2), (t_pad, t_pad)), mode="reflect" ) return data_pad def unpad(data, diff=4, padding=2): """ Unpadding function for recovering flag predictions. """ sh = np.shape(data) t_unpad = sh[0] return data[padding[0] : sh[0] - padding[0], padding[1] : sh[1] - padding[1]] def store_iterator(it): a = [x for x in it] return np.array(a) def fold(data, ch_fold=16, padding=2): """ Folding function for carving waterfall visibilities with additional normalized log and phase channels. Input: (Batch, Time, Frequency) Output: (Batch*FoldFactor, Time, Reduced Frequency, Channels) """ sh = np.shape(data) _data = data.T.reshape(ch_fold, int(sh[1] / ch_fold), -1) _DATA = store_iterator(map(transpose, _data)) _DATApad = store_iterator(map(pad, _DATA)) DATA = np.stack( ( store_iterator(map(normalize, _DATApad)), store_iterator(map(normphs, _DATApad)), np.mod(store_iterator(map(normphs, _DATApad)), np.pi), ), axis=-1, ) return DATA def unfoldl(data_fold, ch_fold=16, padding=2): """ Unfolding function for recombining the carved label (flag) frequency windows back into a complete waterfall visibility. Input: (Batch*FoldFactor, Time, Reduced Frequency, Channels) Output: (Batch, Time, Frequency) """ sh = np.shape(data_fold) data_unpad = data_fold[ :, (padding + 2) : (sh[1] - (padding + 2)), padding : sh[2] - padding ] ch_fold, ntimes, dfreqs = np.shape(data_unpad) data_ = np.transpose(data_unpad, (0, 2, 1)) _data = data_.reshape(ch_fold * dfreqs, ntimes).T return _data def stacked_layer( input_layer, num_filter_layers, kt, kf, activation, stride, pool, bnorm=True, name="None", dropout=None, maxpool=True, mode=True, ): """ Creates a 3x stacked layer of convolutional layers. Each layer uses the same kernel size. Batch normalized output is default and recommended for faster convergence, although not every may require it (???). Input: Tensor Variable (Batch*FoldFactor, Time, Reduced Frequency, Input Filter Layers) Output: Tensor Variable (Batch*FoldFactor, Time/2, Reduced Frequency/2, num_filter_layers) """ conva = tf.layers.conv2d( inputs=input_layer, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padding="same", activation=activation, ) if kt - 2 < 0: kt = 3 if dropout is not None: convb = tf.layers.dropout( tf.layers.conv2d( inputs=conva, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padding="same", activation=activation, ), rate=dropout, ) else: convb = tf.layers.conv2d( inputs=conva, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padding="same", activation=activation, ) shb = convb.get_shape().as_list() convc = tf.layers.conv2d( inputs=convb, filters=num_filter_layers, kernel_size=(1, 1), padding="same", activation=activation, ) if bnorm: bnorm_conv = tf.layers.batch_normalization( convc, scale=True, center=True, training=mode, fused=True ) else: bnorm_conv = convc if maxpool: pool = tf.layers.max_pooling2d( inputs=bnorm_conv, pool_size=pool, strides=stride ) elif maxpool is None: pool = bnorm_conv else: pool = tf.layers.average_pooling2d( inputs=bnorm_conv, pool_size=pool, strides=stride ) return pool def batch_accuracy(labels, predictions): """ Returns the RFI class accuracy. """ labels = tf.cast(labels, dtype=tf.int64) predictions = tf.cast(predictions, dtype=tf.int64) correct = tf.reduce_sum( tf.cast(tf.equal(tf.add(labels, predictions), 2), dtype=tf.int64) ) total = tf.reduce_sum(labels) return tf.divide(correct, total) def accuracy(labels, predictions): """ Numpy version of RFI class accuracy. """ correct = 1.0 * np.sum((labels + predictions) == 2) total = 1.0 * np.sum(labels == 1) print("correct", correct) print("total", total) try: return correct / total except BaseException: return 1.0 def MCC(tp, tn, fp, fn): """ Calculates the Mathews Correlation Coefficient. """ if tp == 0 and fn == 0: return tp * tn - fp * fn else: return (tp * tn - fp * fn) / np.sqrt( (1.0 * (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) ) def f1(tp, tn, fp, fn): """ Calculates the F1 Score. """ precision = tp / (1.0 * (tp + fp)) recall = tp / (1.0 * (tp + fn)) return 2.0 * precision * recall / (precision + recall) def SNRvsTPR(data, true_flags, flags): """ Calculates the signal-to-noise ratio versus true positive rate (recall). """ SNR = np.linspace(0.0, 4.0, 30) snr_tprs = [] data_ = np.copy(data) flags_ = np.copy(flags) true_flags_ = np.copy(true_flags) for snr_ in SNR: snr_map = np.log10(data_ * flags_ / np.std(data_ * np.logical_not(true_flags))) snr_inds = snr_map < snr_ confuse_mat = confusion_matrix( true_flags_[snr_inds].astype(int).reshape(-1), flags_[snr_inds].astype(int).reshape(-1), ) if
np.size(confuse_mat)
numpy.size
from __future__ import print_function, division import keras.backend as K import matplotlib.pyplot as plt import numpy as np from emnist import extract_training_samples from keras.layers import BatchNormalization, Activation, ZeroPadding2D from keras.layers import Input, Dense, Reshape, Flatten, Dropout, Lambda from keras.layers.advanced_activations import LeakyReLU from keras.layers.convolutional import UpSampling2D, Conv2D from keras.models import Model from keras.optimizers import Adam from sklearn.utils import shuffle class DCGAN(): def __init__(self, n_xin=40000, n_xout=10000, mia_attacks=None, use_advreg=False): """ Builds a DCGAN model with adversarial attacks :param n_xin, n_xout Size of training and out-of-distribution data :param mia_attacks List with following possible values ["logan", "dist", "featuremap"] :param use_advreg Build with advreg or without """ if mia_attacks is None: mia_attacks = [] # Input shape self.img_rows = 28 self.img_cols = 28 self.channels = 1 self.img_shape = (self.img_rows, self.img_cols, self.channels) self.latent_dim = 100 self.use_advreg = use_advreg self.mia_attacks = mia_attacks np.random.seed(0) # Load the EMNIST data (self.x_in, y_in), (self.x_out, y_out) = self.load_emnist_data(n_xin=n_xin, n_xout=n_xout) optimizer = Adam(0.0002, 0.5) # Build and compile the discriminator self.featuremap_model, self.discriminator, self.critic_model_with_advreg, self.advreg_model = self.build_discriminator( optimizer) # Build the generator self.generator = self.build_generator() # The generator takes noise as input and generates imgs z = Input(shape=(self.latent_dim,)) img = self.generator(z) # For the combined model we will only train the generator self.discriminator.trainable = False # The discriminator takes generated images as input and determines validity valid = self.discriminator(img) # The combined model (stacked generator and discriminator) self.combined = Model(z, valid) self.combined.compile(loss='binary_crossentropy', optimizer=optimizer) def get_xin(self): """ Gets the members """ return self.x_in def get_xout(self): """ Gets the non-members """ return self.x_out def load_emnist_data(self, n_xin, n_xout): """ Load x_in, x_out and the test set @:param n_xin: Size of the X_in dataset @:param n_xout: Size of the X_out dataset @:return xin, xout, test """ def normalize(data): return np.reshape((data.astype(np.float32) - 127.5) / 127.5, (-1, 28, 28, 1)) # Load and normalize the training data (x_train, y_train) = extract_training_samples('digits') x_train = normalize(x_train) # Shuffle for some randomness x_train, y_train = shuffle(x_train, y_train) assert (n_xin + n_xout < len(x_train)) # No overflow, sizes have to be assured # Split into x_in and x_out x_in, y_in = x_train[:n_xin], y_train[:n_xin] x_out, y_out = x_train[n_xin:n_xin + n_xout], y_train[n_xin:n_xin + n_xout] return (x_in, y_in), (x_out, y_out) def wasserstein_loss(self, y_true, y_pred): return -K.mean(y_true * y_pred) def build_advreg(self, input_shape): """ Build the model for the adversarial regularizer """ advreg_in = Input(input_shape) l0 = Dense(units=500)(advreg_in) l1 = Dropout(0.2)(l0) l2 = Dense(units=250)(l1) l3 = Dropout(0.2)(l2) l4 = Dense(units=10)(l3) advreg_out = Dense(units=1, activation="linear")(l4) return Model(advreg_in, advreg_out) def build_generator(self): input_data = Input((self.latent_dim,)) l0 = Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)(input_data) l1 = Reshape((7, 7, 128))(l0) l2 = UpSampling2D()(l1) l3 = Conv2D(128, kernel_size=3, padding="same")(l2) l4 = BatchNormalization(momentum=0.8)(l3) l5 = Activation("relu")(l4) l6 = UpSampling2D()(l5) l7 = Conv2D(64, kernel_size=3, padding="same")(l6) l8 = BatchNormalization(momentum=0.8)(l7) l9 = Activation("relu")(l8) l10 = Conv2D(self.channels, kernel_size=3, padding="same")(l9) output = Activation("tanh")(l10) return Model(input_data, output) def build_discriminator(self, optimizer): dropout = 0.25 img_shape = (28, 28, 1) critic_in = Input(img_shape) l0 = Conv2D(16, kernel_size=3, strides=2, input_shape=img_shape, padding="same")(critic_in) l1 = LeakyReLU(alpha=0.2)(l0) l2 = Dropout(dropout)(l1) l3 = Conv2D(32, kernel_size=3, strides=2, padding="same")(l2) l4 = ZeroPadding2D(padding=((0, 1), (0, 1)))(l3) l5 = BatchNormalization(momentum=0.8)(l4) l6 = LeakyReLU(alpha=0.2)(l5) l7 = Dropout(dropout)(l6) l8 = Conv2D(64, kernel_size=3, strides=2, padding="same")(l7) l9 = BatchNormalization(momentum=0.8)(l8) l10 = LeakyReLU(alpha=0.2)(l9) l11 = Dropout(dropout)(l10) l12 = Conv2D(128, kernel_size=3, strides=1, padding="same")(l11) l13 = BatchNormalization(momentum=0.8)(l12) l14 = LeakyReLU(alpha=0.2)(l13) l15 = Dropout(dropout)(l14) featuremaps = Flatten()(l15) critic_out = Dense(1, activation="sigmoid", name="critic_out")(featuremaps) """ Build the critic WITHOUT the adversarial regularization """ critic_model_without_advreg = Model(inputs=[critic_in], outputs=[critic_out]) critic_model_without_advreg.compile(optimizer=optimizer, metrics=["accuracy"], loss='binary_crossentropy') """ Build the adversarial regularizer If no adversarial regularization is required, disable it in the training function /!\ """ featuremap_model = Model(inputs=[critic_in], outputs=[featuremaps]) advreg = self.build_advreg(input_shape=(2048,)) mia_pred = advreg(featuremap_model(critic_in)) naming_layer = Lambda(lambda x: x, name='mia_pred') mia_pred = naming_layer(mia_pred) advreg_model = Model(inputs=[critic_in], outputs=[mia_pred]) # Do not train the critic when updating the adversarial regularizer featuremap_model.trainable = False def advreg(y_true, y_pred): return 2*K.binary_crossentropy(y_true, y_pred) advreg_model.compile(optimizer=optimizer, metrics=["accuracy"], loss=self.wasserstein_loss) """ Build the critic WITH the adversarial regularization """ critic_model_with_advreg = Model(inputs=[critic_in], outputs=[critic_out, mia_pred]) advreg_model.trainable = False def critic_out(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) def mia_pred(y_true, y_pred): return K.binary_crossentropy(y_true, y_pred) critic_model_with_advreg.compile(optimizer=optimizer, metrics=["accuracy"], loss={ "critic_out": self.wasserstein_loss, "mia_pred": self.wasserstein_loss }) return featuremap_model, critic_model_without_advreg, critic_model_with_advreg, advreg_model def train(self, epochs, batch_size=128, save_interval=50): logan_precisions, featuremap_precisions = [], [] # Adversarial ground truths valid = np.ones((batch_size, 1)) fake = np.zeros((batch_size, 1)) for epoch in range(epochs): # --------------------- # Train Discriminator # --------------------- # Select a random half of images idx = np.random.randint(0, len(self.x_in), batch_size) imgs = self.x_in[idx] idx_out = np.random.randint(0, len(self.x_out), batch_size) imgs_out = self.x_out[idx_out] # Sample noise and generate a batch of new images noise =
np.random.normal(0, 1, (batch_size, self.latent_dim))
numpy.random.normal
import pytest import numpy as np from numpy.testing import assert_array_almost_equal from pylops.utils import dottest from pylops.signalprocessing import Interp, Bilinear par1 = {'ny': 21, 'nx': 11, 'nt':20, 'imag': 0, 'dtype':'float64', 'kind': 'nearest'} # real, nearest par2 = {'ny': 21, 'nx': 11, 'nt':20, 'imag': 1j, 'dtype':'complex128', 'kind': 'nearest'} # complex, nearest par3 = {'ny': 21, 'nx': 11, 'nt': 20, 'imag': 0, 'dtype': 'float64', 'kind': 'linear'} # real, linear par4 = {'ny': 21, 'nx': 11, 'nt': 20, 'imag': 1j, 'dtype': 'complex128', 'kind': 'linear'} # complex, linear par5 = {'ny': 21, 'nx': 11, 'nt': 20, 'imag': 0, 'dtype': 'float64', 'kind': 'sinc'} # real, sinc par6 = {'ny': 21, 'nx': 11, 'nt': 20, 'imag': 1j, 'dtype': 'complex128', 'kind': 'sinc'} # complex, sinc # subsampling factor perc_subsampling = 0.4 def test_sincinterp(): """Check accuracy of sinc interpolation of subsampled version of input signal """ nt = 81 dt = 0.004 t = np.arange(nt) * dt ntsub = 10 dtsub = dt / ntsub tsub = np.arange(nt * ntsub) * dtsub tsub = tsub[:np.where(tsub == t[-1])[0][0] + 1] x = np.sin(2 * np.pi * 10 * t) + \ 0.4 * np.sin(2 * np.pi * 20 * t) - \ 2 * np.sin(2 * np.pi * 5 * t) xsub = np.sin(2 * np.pi * 10 * tsub) + \ 0.4 * np.sin(2 * np.pi * 20 * tsub) - \ 2 * np.sin(2 * np.pi * 5 * tsub) iava = tsub[20:-20] / (dtsub * ntsub) # exclude edges SI1op, iava = Interp(nt, iava, kind='sinc', dtype='float64') y = SI1op * x print(np.max(np.abs(xsub[20:-20] - y))) assert_array_almost_equal(xsub[20:-20], y, decimal=1) @pytest.mark.parametrize("par", [(par1), (par2), (par3), (par4), (par5), (par6)]) def test_Interp_1dsignal(par): """Dot-test and forward for Interp operator for 1d signal """ np.random.seed(1) x = np.random.normal(0, 1, par['nx']) + \ par['imag'] * np.random.normal(0, 1, par['nx']) Nsub = int(np.round(par['nx'] * perc_subsampling)) iava = np.sort(np.random.permutation(np.arange(par['nx']))[:Nsub]) # fixed indeces Iop, _ = Interp(par['nx'], iava, kind=par['kind'], dtype=par['dtype']) assert dottest(Iop, Nsub, par['nx'], complexflag=0 if par['imag'] == 0 else 3) # decimal indeces Idecop, _ = Interp(par['nx'], iava + 0.3, kind=par['kind'], dtype=par['dtype']) assert dottest(Iop, Nsub, par['nx'], complexflag=0 if par['imag'] == 0 else 3) # repeated indeces with pytest.raises(ValueError): iava_rep = iava.copy() iava_rep[-2] = 0 iava_rep[-1] = 0 _, _ = Interp(par['nx'], iava_rep + 0.3, kind=par['kind'], dtype=par['dtype']) # forward y = Iop * x ydec = Idecop * x assert_array_almost_equal(y, x[iava]) if par['kind'] == 'nearest': assert_array_almost_equal(ydec, x[iava]) @pytest.mark.parametrize("par", [(par1), (par2), (par3), (par4), (par5), (par6)]) def test_Interp_2dsignal(par): """Dot-test and forward for Restriction operator for 2d signal """ np.random.seed(1) x = np.random.normal(0, 1, (par['nx'], par['nt'])) + \ par['imag'] * np.random.normal(0, 1, (par['nx'], par['nt'])) # 1st direction Nsub = int(np.round(par['nx'] * perc_subsampling)) iava = np.sort(np.random.permutation(np.arange(par['nx']))[:Nsub]) # fixed indeces Iop, _ = Interp(par['nx']*par['nt'], iava, dims=(par['nx'], par['nt']), dir=0, kind=par['kind'], dtype=par['dtype']) assert dottest(Iop, Nsub*par['nt'], par['nx']*par['nt'], complexflag=0 if par['imag'] == 0 else 3) # decimal indeces Idecop, _ = Interp(par['nx'] * par['nt'], iava + 0.3, dims=(par['nx'], par['nt']), dir=0, kind=par['kind'], dtype=par['dtype']) # repeated indeces with pytest.raises(ValueError): iava_rep = iava.copy() iava_rep[-2] = 0 iava_rep[-1] = 0 _, _ = Interp(par['nx'] * par['nt'], iava_rep + 0.3, dims=(par['nx'], par['nt']), dir=0, kind=par['kind'], dtype=par['dtype']) y = (Iop * x.ravel()).reshape(Nsub, par['nt']) ydec = (Idecop * x.ravel()).reshape(Nsub, par['nt']) assert_array_almost_equal(y, x[iava]) if par['kind'] == 'nearest': assert_array_almost_equal(ydec, x[iava]) # 2nd direction Nsub = int(np.round(par['nt'] * perc_subsampling)) iava = np.sort(np.random.permutation(np.arange(par['nt']))[:Nsub]) # fixed indeces Iop, _ = Interp(par['nx'] * par['nt'], iava, dims=(par['nx'], par['nt']), dir=1, kind=par['kind'], dtype=par['dtype']) assert dottest(Iop, par['nx'] * Nsub, par['nx'] * par['nt'], complexflag=0 if par['imag'] == 0 else 3) # decimal indeces Idecop, _ = Interp(par['nx'] * par['nt'], iava + 0.3, dims=(par['nx'], par['nt']), dir=1, kind=par['kind'], dtype=par['dtype']) assert dottest(Idecop, par['nx'] * Nsub, par['nx'] * par['nt'], complexflag=0 if par['imag'] == 0 else 3) y = (Iop * x.ravel()).reshape(par['nx'], Nsub) ydec = (Idecop * x.ravel()).reshape(par['nx'], Nsub) assert_array_almost_equal(y, x[:, iava]) if par['kind'] == 'nearest': assert_array_almost_equal(ydec, x[:, iava]) @pytest.mark.parametrize("par", [(par1), (par2), (par3), (par4), (par5), (par6)]) def test_Interp_3dsignal(par): """Dot-test and forward for Interp operator for 3d signal """ np.random.seed(1) x = np.random.normal(0, 1, (par['ny'], par['nx'], par['nt'])) + \ par['imag'] * np.random.normal(0, 1, (par['ny'], par['nx'], par['nt'])) # 1st direction Nsub = int(np.round(par['ny'] * perc_subsampling)) iava = np.sort(np.random.permutation(np.arange(par['ny']))[:Nsub]) # fixed indeces Iop, _ = Interp(par['ny']*par['nx']*par['nt'], iava, dims=(par['ny'], par['nx'], par['nt']), dir=0, kind=par['kind'], dtype=par['dtype']) assert dottest(Iop, Nsub*par['nx']*par['nt'], par['ny']*par['nx']*par['nt'], complexflag=0 if par['imag'] == 0 else 3) # decimal indeces Idecop, _ = Interp(par['ny'] * par['nx'] * par['nt'], iava + 0.3, dims=(par['ny'], par['nx'], par['nt']), dir=0, kind=par['kind'], dtype=par['dtype']) assert dottest(Idecop, Nsub * par['nx'] * par['nt'], par['ny'] * par['nx'] * par['nt'], complexflag=0 if par['imag'] == 0 else 3) # repeated indeces with pytest.raises(ValueError): iava_rep = iava.copy() iava_rep[-2] = 0 iava_rep[-1] = 0 _, _ = Interp(par['ny'] * par['nx'] * par['nt'], iava_rep + 0.3, dims=(par['ny'], par['nx'], par['nt']), dir=0, kind=par['kind'], dtype=par['dtype']) y = (Iop * x.ravel()).reshape(Nsub, par['nx'], par['nt']) ydec = (Idecop * x.ravel()).reshape(Nsub, par['nx'], par['nt']) assert_array_almost_equal(y, x[iava]) if par['kind'] == 'nearest': assert_array_almost_equal(ydec, x[iava]) # 2nd direction Nsub = int(
np.round(par['nx'] * perc_subsampling)
numpy.round