prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!python3 # # Copyright (C) 2014-2015 <NAME>. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. """ PYPOWER-Dynamics Voltage Source Converter Model Class Average model of a VSC in voltage-control mode (i.e. controlled voltage source behind an impedance). """ import numpy as np class vsc_average: def __init__(self, ID, gen_no, Rl, Xl, dynopt): self.id = ID self.gen_no = gen_no self.opt = dynopt['iopt'] self.signals = {} self.states = {} self.states0 = {} self.dsteps = {} self.params = {} self.params['Rl'] = Rl self.params['Xl'] = Xl self.params['fn'] = dynopt['fn'] # Equivalent Norton impedance for Ybus modification self.Yg = 1 / (Rl + 1j * Xl) def initialise(self,vt0,S0): """ Initialise converter emf based on load flow voltage and grid current injection """ # Calculate initial armature current Ia0 = np.conj(S0 / vt0) phi0 = np.angle(Ia0) # Calculate steady state machine emf (i.e. voltage behind synchronous reactance) Edq0 = vt0 + (self.params['Rl'] + 1j * self.params['Xl']) * Ia0 delta0 = np.angle(Edq0) # Convert currents to rotor reference frame Id0 = np.abs(Ia0) * np.sin(delta0 - phi0) Iq0 = np.abs(Ia0) * np.cos(delta0 - phi0) # Initialise signals, states and parameters self.signals['Vt'] = np.abs(vt0) self.signals['Edq'] = Edq0 self.signals['Ed'] = np.real(Edq0) self.signals['Eq'] = np.imag(Edq0) self.signals['Id'] = Id0 self.signals['Iq'] = Iq0 self.states['delta'] = delta0 self.states['omega'] = 1 def calc_currents(self, vt): """ Solve grid current injections (in network reference frame) """ Edq = self.signals['Ed'] + 1j * self.signals['Eq'] delta = np.angle(Edq) # Calculate terminal voltage in dq reference frame Vd = np.abs(vt) * np.sin(self.states['delta'] - np.angle(vt)) Vq = np.abs(vt) * np.cos(self.states['delta'] - np.angle(vt)) # Calculate Id and Iq (Norton equivalent current injection in dq frame) Ia = (Edq - vt) / (self.params['Rl'] + 1j * self.params['Xl']) phi = np.angle(Ia) Id = np.abs(Ia) * np.sin(delta - phi) Iq = np.abs(Ia) * np.cos(delta - phi) # Calculate machine current injection (Norton equivalent current injection in network frame) In = (Iq - 1j * Id) *
np.exp(1j * (self.states['delta']))
numpy.exp
from __future__ import division, print_function, absolute_import import numpy as np from copy import deepcopy from ipsolver._constraints import (NonlinearConstraint, LinearConstraint, BoxConstraint) from ipsolver._canonical_constraint import (_parse_constraint, to_canonical, empty_canonical_constraint) from numpy.testing import (TestCase, assert_array_almost_equal, assert_array_equal, assert_array_less, assert_raises, assert_equal, assert_, run_module_suite, assert_allclose, assert_warns, dec) class TestParseConstraint(TestCase): def test_equality_constraint(self): kind = ("equals", [10, 20, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [0, 1, 2]) assert_array_equal(val_eq, [10, 20, 30]) assert_array_equal(ineq, []) assert_array_equal(val_ineq, []) assert_array_equal(sign, []) def test_greater_constraint(self): kind = ("greater", [10, 20, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 1, 2]) assert_array_equal(val_ineq, [10, 20, 30]) assert_array_equal(sign, [-1, -1, -1]) kind = ("greater", [10, np.inf, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 2]) assert_array_equal(val_ineq, [10, 30]) assert_array_equal(sign, [-1, -1]) def test_less_constraint(self): kind = ("less", [10, 20, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 1, 2]) assert_array_equal(val_ineq, [10, 20, 30]) assert_array_equal(sign, [1, 1, 1]) kind = ("less", [10, np.inf, 30]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 2]) assert_array_equal(val_ineq, [10, 30]) assert_array_equal(sign, [1, 1]) def test_interval_constraint(self): kind = ("interval", [10, 20, 30], [50, 60, 70]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, []) assert_array_equal(val_eq, []) assert_array_equal(ineq, [0, 1, 2, 0, 1, 2]) assert_array_equal(val_ineq, [10, 20, 30, 50, 60, 70]) assert_array_equal(sign, [-1, -1, -1, 1, 1, 1]) kind = ("interval", [10, 20, 30], [50, 20, 70]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [1]) assert_array_equal(val_eq, [20]) assert_array_equal(ineq, [0, 2, 0, 2]) assert_array_equal(val_ineq, [10, 30, 50, 70]) assert_array_equal(sign, [-1, -1, 1, 1]) kind = ("interval", [10, 20, 30], [50, 20, np.inf]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [1]) assert_array_equal(val_eq, [20]) assert_array_equal(ineq, [0, 2, 0]) assert_array_equal(val_ineq, [10, 30, 50]) assert_array_equal(sign, [-1, -1, 1]) kind = ("interval", [-np.inf, 20, 30], [50, 20, np.inf]) eq, ineq, val_eq, val_ineq, sign, fun_len = _parse_constraint(kind) assert_array_equal(eq, [1]) assert_array_equal(val_eq, [20]) assert_array_equal(ineq, [2, 0]) assert_array_equal(val_ineq, [30, 50]) assert_array_equal(sign, [-1, 1]) class TestToCanonical(TestCase): def test_empty_constraint(self): x = [1, 2, 3] canonical = empty_canonical_constraint(x, 3)
assert_array_equal(canonical.n_eq, 0)
numpy.testing.assert_array_equal
import numpy as np from scipy.special import gammaln def logfactorial(n): return gammaln(n + 1) def regularized_log(vector): """ A function which is log(vector) where vector > 0, and zero otherwise. :param vector: :return: """ out =
np.zeros_like(vector)
numpy.zeros_like
import copy import numpy as np from Classes.Uncertainty import Uncertainty from Classes.QComp import QComp from Classes.MovingBedTests import MovingBedTests from Classes.TransectData import TransectData class QAData(object): """Evaluates and stores quality assurance characteristics and messages. Attributes ---------- q_run_threshold_caution: int Caution threshold for interpolated discharge for a run of invalid ensembles, in percent. q_run_threshold_warning: int Warning threshold for interpolated discharge for a run of invalid ensembles, in percent. q_total_threshold_caution: int Caution threshold for total interpolated discharge for invalid ensembles, in percent. q_total_threshold_warning: int Warning threshold for total interpolated discharge for invalid ensembles, in percent. transects: dict Dictionary of quality assurance checks for transects system_tst: dict Dictionary of quality assurance checks on the system test(s) compass: dict Dictionary of quality assurance checks on compass calibration and evaluations temperature: dict Dictionary of quality assurance checks on temperature comparions and variation movingbed: dict Dictionary of quality assurance checks on moving-bed tests user: dict Dictionary of quality assurance checks on user input data boat: dict Dictionary of quality assurance checks on boat velocities bt_vel: dict Dictionary of quality assurance checks on bottom track velocities gga_vel: dict Dictionary of quality assurance checks on gga boat velocities vtg_vel: dict Dictionary of quality assurance checks on vtg boat velocities w_vel: dict Dictionary of quality assurance checks on water track velocities extrapolation: dict Dictionary of quality assurance checks on extrapolations edges: dict Dictionary of quality assurance checks on edges """ def __init__(self, meas, mat_struct=None, compute=True): """Checks the measurement for all quality assurance issues. Parameters ---------- meas: Measurement Object of class Measurement """ # Set default thresholds self.q_run_threshold_caution = 3 self.q_run_threshold_warning = 5 self.q_total_threshold_caution = 10 self.q_total_threshold_warning = 25 # Initialize instance variables self.transects = dict() self.system_tst = dict() self.compass = dict() self.temperature = dict() self.movingbed = dict() self.user = dict() self.depths = dict() self.boat = dict() self.bt_vel = dict() self.gga_vel = dict() self.vtg_vel = dict() self.w_vel = dict() self.extrapolation = dict() self.edges = dict() self.settings_dict = dict() self.settings_dict['tab_compass'] = 'Default' self.settings_dict['tab_tempsal'] = 'Default' self.settings_dict['tab_mbt'] = 'Default' self.settings_dict['tab_bt'] = 'Default' self.settings_dict['tab_gps'] = 'Default' self.settings_dict['tab_depth'] = 'Default' self.settings_dict['tab_wt'] = 'Default' self.settings_dict['tab_extrap'] = 'Default' self.settings_dict['tab_edges'] = 'Default' if compute: # Apply QA checks self.transects_qa(meas) self.system_tst_qa(meas) self.compass_qa(meas) self.temperature_qa(meas) self.moving_bed_qa(meas) self.user_qa(meas) self.depths_qa(meas) self.boat_qa(meas) self.water_qa(meas) self.extrapolation_qa(meas) self.edges_qa(meas) self.check_bt_setting(meas) self.check_wt_settings(meas) self.check_depth_settings(meas) self.check_gps_settings(meas) self.check_edge_settings(meas) self.check_extrap_settings(meas) self.check_tempsal_settings(meas) self.check_mbt_settings(meas) self.check_compass_settings(meas) else: self.populate_from_qrev_mat(meas, mat_struct) def populate_from_qrev_mat(self, meas, meas_struct): """Populates the object using data from previously saved QRev Matlab file. Parameters ---------- meas: Measurement Object of Measurement meas_struct: mat_struct Matlab data structure obtained from sio.loadmat """ # Generate a new QA object using the measurement data and the current QA code. # When QA checks from the current QA are not available from old QRev files, these # checks will be included to supplement the old QRev file data. new_qa = QAData(meas) if hasattr(meas_struct, 'qa'): # Set default thresholds self.q_run_threshold_caution = meas_struct.qa.qRunThresholdCaution self.q_run_threshold_warning = meas_struct.qa.qRunThresholdWarning self.q_total_threshold_caution = meas_struct.qa.qTotalThresholdCaution self.q_total_threshold_warning = meas_struct.qa.qTotalThresholdWarning # Initialize instance variables self.transects = dict() self.transects['duration'] = meas_struct.qa.transects.duration self.transects['messages'] = self.make_list(meas_struct.qa.transects.messages) self.transects['number'] = meas_struct.qa.transects.number self.transects['recip'] = meas_struct.qa.transects.recip self.transects['sign'] = meas_struct.qa.transects.sign self.transects['status'] = meas_struct.qa.transects.status self.transects['uncertainty'] = meas_struct.qa.transects.uncertainty self.system_tst = dict() self.system_tst['messages'] = self.make_list(meas_struct.qa.systemTest.messages) self.system_tst['status'] = meas_struct.qa.systemTest.status self.compass = dict() self.compass['messages'] = self.make_list(meas_struct.qa.compass.messages) self.compass['status'] = meas_struct.qa.compass.status self.compass['status1'] = meas_struct.qa.compass.status1 self.compass['status2'] = meas_struct.qa.compass.status2 # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'magvar'): self.compass['magvar'] = meas_struct.qa.compass.magvar else: self.compass['magvar'] = new_qa.compass['magvar'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'magvarIdx'): self.compass['magvar_idx'] = self.make_array(meas_struct.qa.compass.magvarIdx) else: self.compass['magvar_idx'] = new_qa.compass['magvar_idx'] # Changed mag_error_idx from bool to int array in QRevPy self.compass['mag_error_idx'] = new_qa.compass['mag_error_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'pitchMeanWarningIdx'): self.compass['pitch_mean_warning_idx'] = self.make_array(meas_struct.qa.compass.pitchMeanWarningIdx) else: self.compass['pitch_mean_warning_idx'] = new_qa.compass['pitch_mean_warning_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'rollMeanWarningIdx'): self.compass['roll_mean_warning_idx'] = self.make_array(meas_struct.qa.compass.rollMeanWarningIdx) else: self.compass['roll_mean_warning_idx'] = new_qa.compass['roll_mean_warning_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'pitchMeanCautionIdx'): self.compass['pitch_mean_caution_idx'] = self.make_array(meas_struct.qa.compass.pitchMeanCautionIdx) else: self.compass['pitch_mean_caution_idx'] = new_qa.compass['pitch_mean_caution_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'rollMeanCautionIdx'): self.compass['roll_mean_caution_idx'] = self.make_array(meas_struct.qa.compass.rollMeanCautionIdx) else: self.compass['roll_mean_caution_idx'] = new_qa.compass['roll_mean_caution_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'pitchStdCautionIdx'): self.compass['pitch_std_caution_idx'] = self.make_array(meas_struct.qa.compass.pitchStdCautionIdx) else: self.compass['pitch_std_caution_idx'] = new_qa.compass['pitch_std_caution_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.compass, 'rollStdCautionIdx'): self.compass['roll_std_caution_idx'] = self.make_array(meas_struct.qa.compass.rollStdCautionIdx) else: self.compass['roll_std_caution_idx'] = new_qa.compass['roll_std_caution_idx'] self.temperature = dict() self.temperature['messages'] = self.make_list(meas_struct.qa.temperature.messages) self.temperature['status'] = meas_struct.qa.temperature.status self.movingbed = dict() self.movingbed['messages'] = self.make_list(meas_struct.qa.movingbed.messages) self.movingbed['status'] = meas_struct.qa.movingbed.status self.movingbed['code'] = meas_struct.qa.movingbed.code self.user = dict() self.user['messages'] = self.make_list(meas_struct.qa.user.messages) self.user['sta_name'] = bool(meas_struct.qa.user.staName) self.user['sta_number'] = bool(meas_struct.qa.user.staNumber) self.user['status'] = meas_struct.qa.user.status # If QA check not available, get check from new QA self.depths = self.create_qa_dict(self, meas_struct.qa.depths) if 'draft' not in self.depths: self.depths['draft'] = new_qa.depths['draft'] if 'all_invalid' not in self.depths: self.depths['all_invalid'] = new_qa.depths['all_invalid'] # If QA check not available, get check from new QA self.bt_vel = self.create_qa_dict(self, meas_struct.qa.btVel, ndim=2) if 'all_invalid' not in self.bt_vel: self.bt_vel['all_invalid'] = new_qa.bt_vel['all_invalid'] # If QA check not available, get check from new QA self.gga_vel = self.create_qa_dict(self, meas_struct.qa.ggaVel, ndim=2) if 'all_invalid' not in self.gga_vel: self.gga_vel['all_invalid'] = new_qa.gga_vel['all_invalid'] # If QA check not available, get check from new QA self.vtg_vel = self.create_qa_dict(self, meas_struct.qa.vtgVel, ndim=2) if 'all_invalid' not in self.vtg_vel: self.vtg_vel['all_invalid'] = new_qa.vtg_vel['all_invalid'] # If QA check not available, get check from new QA self.w_vel = self.create_qa_dict(self, meas_struct.qa.wVel, ndim=2) if 'all_invalid' not in self.w_vel: self.w_vel['all_invalid'] = new_qa.w_vel['all_invalid'] self.extrapolation = dict() self.extrapolation['messages'] = self.make_list(meas_struct.qa.extrapolation.messages) self.extrapolation['status'] = meas_struct.qa.extrapolation.status self.edges = dict() self.edges['messages'] = self.make_list(meas_struct.qa.edges.messages) self.edges['status'] = meas_struct.qa.edges.status self.edges['left_q'] = meas_struct.qa.edges.leftQ self.edges['right_q'] = meas_struct.qa.edges.rightQ self.edges['left_sign'] = meas_struct.qa.edges.leftSign self.edges['right_sign'] = meas_struct.qa.edges.rightSign self.edges['left_zero'] = meas_struct.qa.edges.leftzero self.edges['right_zero'] = meas_struct.qa.edges.rightzero self.edges['left_type'] = meas_struct.qa.edges.leftType self.edges['right_type'] = meas_struct.qa.edges.rightType # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'rightDistMovedIdx'): self.edges['right_dist_moved_idx'] = self.make_array(meas_struct.qa.edges.rightDistMovedIdx) else: self.edges['right_dist_moved_idx'] = new_qa.edges['right_dist_moved_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'leftDistMovedIdx'): self.edges['left_dist_moved_idx'] = self.make_array(meas_struct.qa.edges.leftDistMovedIdx) else: self.edges['left_dist_moved_idx'] = new_qa.edges['left_dist_moved_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'leftQIdx'): self.edges['left_q_idx'] = self.make_array(meas_struct.qa.edges.leftQIdx) else: self.edges['left_q_idx'] = new_qa.edges['left_q_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'rightQIdx'): self.edges['right_q_idx'] = self.make_array(meas_struct.qa.edges.rightQIdx) else: self.edges['right_q_idx'] = new_qa.edges['right_q_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'leftZeroIdx'): self.edges['left_zero_idx'] = self.make_array(meas_struct.qa.edges.leftZeroIdx) else: self.edges['left_zero_idx'] = new_qa.edges['left_zero_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'rightZeroIdx'): self.edges['right_zero_idx'] = self.make_array(meas_struct.qa.edges.rightZeroIdx) else: self.edges['right_zero_idx'] = new_qa.edges['right_zero_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'invalid_transect_left_idx'): self.edges['invalid_transect_left_idx'] = \ self.make_array(meas_struct.qa.edges.invalid_transect_left_idx) elif hasattr(meas_struct.qa.edges, 'invalidTransLeftIdx'): self.edges['invalid_transect_left_idx'] = \ self.make_array(meas_struct.qa.edges.invalidTransLeftIdx) else: self.edges['invalid_transect_left_idx'] = new_qa.edges['invalid_transect_left_idx'] # If QA check not available, get check from new QA if hasattr(meas_struct.qa.edges, 'invalid_transect_right_idx'): self.edges['invalid_transect_right_idx'] = \ self.make_array(meas_struct.qa.edges.invalid_transect_right_idx) elif hasattr(meas_struct.qa, 'invalidTransRightIdx'): self.edges['invalid_transect_right_idx'] = \ self.make_array(meas_struct.qa.edges.invalidTransRightIdx) else: self.edges['invalid_transect_right_idx'] = new_qa.edges['invalid_transect_right_idx'] if hasattr(meas_struct.qa, 'settings_dict'): self.settings_dict = dict() self.settings_dict['tab_compass'] = meas_struct.qa.settings_dict.tab_compass self.settings_dict['tab_tempsal'] = meas_struct.qa.settings_dict.tab_tempsal self.settings_dict['tab_mbt'] = meas_struct.qa.settings_dict.tab_mbt self.settings_dict['tab_bt'] = meas_struct.qa.settings_dict.tab_bt self.settings_dict['tab_gps'] = meas_struct.qa.settings_dict.tab_gps self.settings_dict['tab_depth'] = meas_struct.qa.settings_dict.tab_depth self.settings_dict['tab_wt'] = meas_struct.qa.settings_dict.tab_wt self.settings_dict['tab_extrap'] = meas_struct.qa.settings_dict.tab_extrap self.settings_dict['tab_edges'] = meas_struct.qa.settings_dict.tab_edges @staticmethod def create_qa_dict(self, mat_data, ndim=1): """Creates the dictionary used to store QA checks associated with the percent of discharge estimated by interpolation. This dictionary is used by BT, GPS, Depth, and WT. Parameters ---------- self: QAData Object of QAData mat_data: mat_struct Matlab data from QRev file """ # Initialize dictionary qa_dict = dict() # Populate dictionary from Matlab data qa_dict['messages'] = QAData.make_list(mat_data.messages) # allInvalid not available in older QRev data if hasattr(mat_data, 'allInvalid'): qa_dict['all_invalid'] = self.make_array(mat_data.allInvalid, 1).astype(bool) qa_dict['q_max_run_caution'] = self.make_array(mat_data.qRunCaution, ndim).astype(bool) qa_dict['q_max_run_warning'] = self.make_array(mat_data.qRunWarning, ndim).astype(bool) qa_dict['q_total_caution'] = self.make_array(mat_data.qTotalCaution, ndim).astype(bool) qa_dict['q_total_warning'] = self.make_array(mat_data.qTotalWarning, ndim).astype(bool) qa_dict['status'] = mat_data.status # q_max_run and q_total not available in older QRev data try: qa_dict['q_max_run'] = self.make_array(mat_data.qMaxRun, ndim) qa_dict['q_total'] = self.make_array(mat_data.qTotal, ndim) except AttributeError: qa_dict['q_max_run'] = np.tile(np.nan, (len(mat_data.qRunCaution), 6)) qa_dict['q_total'] = np.tile(np.nan, (len(mat_data.qRunCaution), 6)) return qa_dict @staticmethod def make_array(num_in, ndim=1): """Ensures that num_in is an array and if not makes it an array. num_in: any Any value or array """ if type(num_in) is np.ndarray: if len(num_in.shape) < 2 and ndim > 1: num_in = np.reshape(num_in, (1, num_in.shape[0])) return num_in else: return num_in else: return np.array([num_in]) @staticmethod def make_list(array_in): """Converts a string or array to a list. Parameters ---------- array_in: any Data to be converted to list. Returns ------- list_out: list List of array_in data """ list_out = [] # Convert string to list if type(array_in) is str: list_out = [array_in] else: # Empty array if array_in.size == 0: list_out = [] # Single message with integer codes at end elif array_in.size == 3: if type(array_in[1]) is int or len(array_in[1].strip()) == 1: temp = array_in.tolist() if len(temp) > 0: internal_list = [] for item in temp: internal_list.append(item) list_out = [internal_list] else: list_out = array_in.tolist() # Either multiple messages with or without integer codes else: list_out = array_in.tolist() return list_out def transects_qa(self, meas): """Apply quality checks to transects Parameters ---------- meas: Measurement Object of class Measurement """ # Assume good results self.transects['status'] = 'good' # Initialize keys self.transects['messages'] = [] self.transects['recip'] = 0 self.transects['sign'] = 0 self.transects['duration'] = 0 self.transects['number'] = 0 self.transects['uncertainty'] = 0 # Initialize lists checked = [] discharges = [] start_edge = [] # Populate lists for n in range(len(meas.transects)): checked.append(meas.transects[n].checked) if meas.transects[n].checked: discharges.append(meas.discharge[n]) start_edge.append(meas.transects[n].start_edge) num_checked = np.nansum(np.asarray(checked)) # Check duration total_duration = 0 if num_checked >= 1: for transect in meas.transects: if transect.checked: total_duration += transect.date_time.transect_duration_sec # Check duration against USGS policy if total_duration < 720: self.transects['status'] = 'caution' self.transects['messages'].append( ['Transects: Duration of selected transects is less than 720 seconds;', 2, 0]) self.transects['duration'] = 1 # Check transects for missing ensembles for transect in meas.transects: if transect.checked: # Determine number of missing ensembles if transect.adcp.manufacturer == 'SonTek': # Determine number of missing ensembles for SonTek data idx_missing = np.where(transect.date_time.ens_duration_sec > 1.5)[0] if len(idx_missing) > 0: average_ensemble_duration = (np.nansum(transect.date_time.ens_duration_sec) - np.nansum(transect.date_time.ens_duration_sec[idx_missing])) \ / (len(transect.date_time.ens_duration_sec) - len(idx_missing)) num_missing = np.round(np.nansum(transect.date_time.ens_duration_sec[idx_missing]) / average_ensemble_duration) - len(idx_missing) else: num_missing = 0 else: # Determine number of lost ensembles for TRDI data idx_missing = np.where(np.isnan(transect.date_time.ens_duration_sec) == True)[0] num_missing = len(idx_missing) - 1 # Save caution message if num_missing > 0: self.transects['messages'].append(['Transects: ' + str(transect.file_name) + ' is missing ' + str(int(num_missing)) + ' ensembles;', 2, 0]) self.transects['status'] = 'caution' # Check number of transects checked if num_checked == 0: # No transects selected self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: No transects selected;', 1, 0]) self.transects['number'] = 2 elif num_checked == 1: # Only one transect selected self.transects['status'] = 'caution' self.transects['messages'].append(['Transects: Only one transect selected;', 2, 0]) self.transects['number'] = 2 else: self.transects['number'] = num_checked if num_checked == 2: # Only 2 transects selected cov, _ = Uncertainty.uncertainty_q_random(discharges, 'total') # Check uncertainty if cov > 2: self.transects['status'] = 'caution' self.transects['messages'].append( ['Transects: Uncertainty would be reduced by additional transects;', 2, 0]) # Check for consistent sign q_positive = [] for q in discharges: if q.total >= 0: q_positive.append(True) else: q_positive.append(False) if len(np.unique(q_positive)) > 1: self.transects['status'] = 'warning' self.transects['messages'].append( ['TRANSECTS: Sign of total Q is not consistent. One or more start banks may be incorrect;', 1, 0]) # Check for reciprocal transects num_left = start_edge.count('Left') num_right = start_edge.count('Right') if not num_left == num_right: self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: Transects selected are not reciprocal transects;', 1, 0]) # Check for zero discharge transects q_zero = False for q in discharges: if q.total == 0: q_zero = True if q_zero: self.transects['status'] = 'warning' self.transects['messages'].append(['TRANSECTS: One or more transects have zero Q;', 1, 0]) def system_tst_qa(self, meas): """Apply QA checks to system test. Parameters ---------- meas: Measurement Object of class Measurement """ self.system_tst['messages'] = [] self.system_tst['status'] = 'good' # Determine if a system test was recorded if not meas.system_tst: # No system test data recorded self.system_tst['status'] = 'warning' self.system_tst['messages'].append(['SYSTEM TEST: No system test;', 1, 3]) else: pt3_fail = False num_tests_with_failure = 0 for test in meas.system_tst: if hasattr(test, 'result'): # Check for presence of pt3 test if 'pt3' in test.result and test.result['pt3'] is not None: # Check hard_limit, high gain, wide bandwidth if 'hard_limit' in test.result['pt3']: if 'high_wide' in test.result['pt3']['hard_limit']: corr_table = test.result['pt3']['hard_limit']['high_wide']['corr_table'] if len(corr_table) > 0: # All lags past lag 2 should be less than 50% of lag 0 qa_threshold = corr_table[0, :] * 0.5 all_lag_check = np.greater(corr_table[3::, :], qa_threshold) # Lag 7 should be less than 25% of lag 0 lag_7_check = np.greater(corr_table[7, :], corr_table[0, :] * 0.25) # If either condition is met for any beam the test fails if np.sum(np.sum(all_lag_check)) + np.sum(lag_7_check) > 1: pt3_fail = True if test.result['sysTest']['n_failed'] is not None and test.result['sysTest']['n_failed'] > 0: num_tests_with_failure += 1 # pt3 test failure message if pt3_fail: self.system_tst['status'] = 'caution' self.system_tst['messages'].append( ['System Test: One or more PT3 tests in the system test indicate potential EMI;', 2, 3]) # Check for failed tests if num_tests_with_failure == len(meas.system_tst): # All tests had a failure self.system_tst['status'] = 'warning' self.system_tst['messages'].append( ['SYSTEM TEST: All system test sets have at least one test that failed;', 1, 3]) elif num_tests_with_failure > 0: self.system_tst['status'] = 'caution' self.system_tst['messages'].append( ['System Test: One or more system test sets have at least one test that failed;', 2, 3]) def compass_qa(self, meas): """Apply QA checks to compass calibration and evaluation. Parameters ---------- meas: Measurement Object of class Measurement """ self.compass['messages'] = [] checked = [] for transect in meas.transects: checked.append(transect.checked) if np.any(checked): heading = np.unique(meas.transects[checked.index(1)].sensors.heading_deg.internal.data) else: heading = np.array([0]) # Initialize variable as if ADCP has no compass self.compass['status'] = 'inactive' self.compass['status1'] = 'good' self.compass['status2'] = 'good' self.compass['magvar'] = 0 self.compass['magvar_idx'] = [] self.compass['mag_error_idx'] = [] self.compass['pitch_mean_warning_idx'] = [] self.compass['pitch_mean_caution_idx'] = [] self.compass['pitch_std_caution_idx'] = [] self.compass['roll_mean_warning_idx'] = [] self.compass['roll_mean_caution_idx'] = [] self.compass['roll_std_caution_idx'] = [] if len(heading) > 1 and np.any(np.not_equal(heading, 0)): # ADCP has a compass # A compass calibration is required if a loop test or GPS are used # Check for loop test loop = False for test in meas.mb_tests: if test.type == 'Loop': loop = True # Check for GPS data gps = False if meas.transects[checked.index(True)].boat_vel.gga_vel is not None or \ meas.transects[checked.index(True)].boat_vel.vtg_vel is not None: gps = True if gps or loop: # Compass calibration is required # Determine the ADCP manufacturer if meas.transects[checked.index(True)].adcp.manufacturer == 'SonTek': # SonTek ADCP if len(meas.compass_cal) == 0: # No compass calibration self.compass['status1'] = 'warning' self.compass['messages'].append(['COMPASS: No compass calibration;', 1, 4]) elif meas.compass_cal[-1].result['compass']['error'] == 'N/A': # If the error cannot be decoded from the calibration assume the calibration is good self.compass['status1'] = 'good' else: if meas.compass_cal[-1].result['compass']['error'] <= 0.2: self.compass['status1'] = 'good' else: self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: Calibration result > 0.2 deg;', 2, 4]) elif meas.transects[checked.index(True)].adcp.manufacturer == 'TRDI': # TRDI ADCP if len(meas.compass_cal) == 0: # No compass calibration if len(meas.compass_eval) == 0: # No calibration or evaluation self.compass['status1'] = 'warning' self.compass['messages'].append(['COMPASS: No compass calibration or evaluation;', 1, 4]) else: # No calibration but an evaluation was completed self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: No compass calibration;', 2, 4]) else: # Compass was calibrated if len(meas.compass_eval) == 0: # No compass evaluation self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: No compass evaluation;', 2, 4]) else: # Check results of evaluation try: if float(meas.compass_eval[-1].result['compass']['error']) <= 1: self.compass['status1'] = 'good' else: self.compass['status1'] = 'caution' self.compass['messages'].append(['Compass: Evaluation result > 1 deg;', 2, 4]) except ValueError: self.compass['status1'] = 'good' else: # Compass not required if len(meas.compass_cal) == 0 and len(meas.compass_eval) == 0: # No compass calibration or evaluation self.compass['status1'] = 'default' else: # Compass was calibrated and evaluated self.compass['status1'] = 'good' # Check for consistent magvar and pitch and roll mean and variation magvar = [] align = [] mag_error_exceeded = [] pitch_mean = [] pitch_std = [] pitch_exceeded = [] roll_mean = [] roll_std = [] roll_exceeded = [] transect_idx = [] for n, transect in enumerate(meas.transects): if transect.checked: transect_idx.append(n) heading_source_selected = getattr( transect.sensors.heading_deg, transect.sensors.heading_deg.selected) pitch_source_selected = getattr(transect.sensors.pitch_deg, transect.sensors.pitch_deg.selected) roll_source_selected = getattr(transect.sensors.roll_deg, transect.sensors.roll_deg.selected) magvar.append(transect.sensors.heading_deg.internal.mag_var_deg) if transect.sensors.heading_deg.external is not None: align.append(transect.sensors.heading_deg.external.align_correction_deg) pitch_mean.append(np.nanmean(pitch_source_selected.data)) pitch_std.append(np.nanstd(pitch_source_selected.data, ddof=1)) roll_mean.append(np.nanmean(roll_source_selected.data)) roll_std.append(np.nanstd(roll_source_selected.data, ddof=1)) # SonTek G3 compass provides pitch, roll, and magnetic error parameters that can be checked if transect.adcp.manufacturer == 'SonTek': if heading_source_selected.pitch_limit is not None: # Check for bug in SonTek data where pitch and roll was n x 3 use n x 1 if len(pitch_source_selected.data.shape) == 1: pitch_data = pitch_source_selected.data else: pitch_data = pitch_source_selected.data[:, 0] idx_max = np.where(pitch_data > heading_source_selected.pitch_limit[0])[0] idx_min = np.where(pitch_data < heading_source_selected.pitch_limit[1])[0] if len(idx_max) > 0 or len(idx_min) > 0: pitch_exceeded.append(True) else: pitch_exceeded.append(False) if heading_source_selected.roll_limit is not None: if len(roll_source_selected.data.shape) == 1: roll_data = roll_source_selected.data else: roll_data = roll_source_selected.data[:, 0] idx_max = np.where(roll_data > heading_source_selected.pitch_limit[0])[0] idx_min = np.where(roll_data < heading_source_selected.pitch_limit[1])[0] if len(idx_max) > 0 or len(idx_min) > 0: roll_exceeded.append(True) else: roll_exceeded.append(False) if heading_source_selected.mag_error is not None: idx_max = np.where(heading_source_selected.mag_error > 2)[0] if len(idx_max) > 0: mag_error_exceeded.append(n) # Check magvar consistency if len(np.unique(magvar)) > 1: self.compass['status2'] = 'caution' self.compass['messages'].append( ['Compass: Magnetic variation is not consistent among transects;', 2, 4]) self.compass['magvar'] = 1 # Check magvar consistency if len(np.unique(align)) > 1: self.compass['status2'] = 'caution' self.compass['messages'].append( ['Compass: Heading offset is not consistent among transects;', 2, 4]) self.compass['align'] = 1 # Check that magvar was set if GPS data are available if gps: if 0 in magvar: self.compass['status2'] = 'warning' self.compass['messages'].append( ['COMPASS: Magnetic variation is 0 and GPS data are present;', 1, 4]) self.compass['magvar'] = 2 self.compass['magvar_idx'] = np.where(np.array(magvar) == 0)[0].tolist() # Check pitch mean if np.any(np.asarray(np.abs(pitch_mean)) > 8): self.compass['status2'] = 'warning' self.compass['messages'].append(['PITCH: One or more transects have a mean pitch > 8 deg;', 1, 4]) temp = np.where(np.abs(pitch_mean) > 8)[0] if len(temp) > 0: self.compass['pitch_mean_warning_idx'] = np.array(transect_idx)[temp] else: self.compass['pitch_mean_warning_idx'] = [] elif np.any(np.asarray(np.abs(pitch_mean)) > 4): if self.compass['status2'] == 'good': self.compass['status2'] = 'caution' self.compass['messages'].append(['Pitch: One or more transects have a mean pitch > 4 deg;', 2, 4]) temp = np.where(np.abs(pitch_mean) > 4)[0] if len(temp) > 0: self.compass['pitch_mean_caution_idx'] = np.array(transect_idx)[temp] else: self.compass['pitch_mean_caution_idx'] = [] # Check roll mean if np.any(np.asarray(np.abs(roll_mean)) > 8): self.compass['status2'] = 'warning' self.compass['messages'].append(['ROLL: One or more transects have a mean roll > 8 deg;', 1, 4]) temp = np.where(
np.abs(roll_mean)
numpy.abs
from astropy.io import fits from os import path import os import numpy as np import shutil import autoarray as aa fits_path = path.join( "{}".format(path.dirname(path.realpath(__file__))), "files", "array_1d" ) def create_fits(fits_path,): if path.exists(fits_path): shutil.rmtree(fits_path) os.makedirs(fits_path) hdu_list = fits.HDUList() hdu_list.append(fits.ImageHDU(np.ones(3))) hdu_list[0].header.set("BITPIX", -64, "") hdu_list.writeto(path.join(fits_path, "3_ones.fits")) hdu_list = fits.HDUList() hdu_list.append(fits.ImageHDU(np.ones(4))) hdu_list[0].header.set("BITPIX", -64, "") hdu_list.writeto(path.join(fits_path, "4_ones.fits")) def clean_fits(fits_path): if path.exists(fits_path): shutil.rmtree(fits_path) class TestAPI: def test__manual__makes_array_1d_with_pixel_scale(self): array_1d = aa.Array1D.manual_slim(array=[1.0, 2.0, 3.0, 4.0], pixel_scales=1.0) assert type(array_1d) == aa.Array1D assert (array_1d.native == np.array([1.0, 2.0, 3.0, 4.0])).all() assert (array_1d.slim == np.array([1.0, 2.0, 3.0, 4.0])).all() assert (array_1d.grid_radial == np.array(([0.0, 1.0, 2.0, 3.0]))).all() assert array_1d.pixel_scale == 1.0 assert array_1d.pixel_scales == (1.0,) assert array_1d.origin == (0.0,) array_1d = aa.Array1D.manual_native( array=[1.0, 2.0, 3.0, 4.0], pixel_scales=1.0 ) assert type(array_1d) == aa.Array1D assert (array_1d.native == np.array([1.0, 2.0, 3.0, 4.0])).all() assert (array_1d.slim == np.array([1.0, 2.0, 3.0, 4.0])).all() assert (array_1d.grid_radial == np.array(([0.0, 1.0, 2.0, 3.0]))).all() assert array_1d.pixel_scale == 1.0 assert array_1d.pixel_scales == (1.0,) assert array_1d.origin == (0.0,) def test__manual_mask__makes_array_1d_using_input_mask(self): mask = aa.Mask1D.manual( mask=[True, False, False, True, False, False], pixel_scales=1.0, sub_size=1 ) array_1d = aa.Array1D.manual_mask( array=[100.0, 1.0, 2.0, 100.0, 3.0, 4.0], mask=mask ) assert type(array_1d) == aa.Array1D assert (array_1d.native == np.array([0.0, 1.0, 2.0, 0.0, 3.0, 4.0])).all() assert (array_1d.slim == np.array([1.0, 2.0, 3.0, 4.0])).all() assert array_1d.pixel_scale == 1.0 assert array_1d.pixel_scales == (1.0,) assert array_1d.origin == (0.0,) def test__full__makes_array_1d_with_pixel_scale__filled_with_input_value(self): array_1d = aa.Array1D.full(fill_value=1.0, shape_native=4, pixel_scales=1.0) assert type(array_1d) == aa.Array1D assert (array_1d.native == np.array([1.0, 1.0, 1.0, 1.0])).all() assert (array_1d.slim == np.array([1.0, 1.0, 1.0, 1.0])).all() assert array_1d.pixel_scale == 1.0 assert array_1d.pixel_scales == (1.0,) assert array_1d.origin == (0.0,) array_1d = aa.Array1D.full( fill_value=2.0, shape_native=3, pixel_scales=3.0, sub_size=2, origin=(4.0,) ) assert type(array_1d) == aa.Array1D print(array_1d.native) assert (array_1d.native == np.array([2.0, 2.0, 2.0, 2.0, 2.0, 2.0])).all() assert (array_1d.slim == np.array([2.0, 2.0, 2.0, 2.0, 2.0, 2.0])).all() assert array_1d.pixel_scale == 3.0 assert array_1d.pixel_scales == (3.0,) assert array_1d.origin == (4.0,) def test__ones_zeros__makes_array_1d_with_pixel_scale__filled_with_input_value( self ): array_1d = aa.Array1D.ones( shape_native=3, pixel_scales=3.0, sub_size=2, origin=(4.0,) ) assert type(array_1d) == aa.Array1D assert (array_1d.native == np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0])).all() assert (array_1d.slim == np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0])).all() assert array_1d.pixel_scale == 3.0 assert array_1d.pixel_scales == (3.0,) assert array_1d.origin == (4.0,) array_1d = aa.Array1D.zeros( shape_native=3, pixel_scales=3.0, sub_size=2, origin=(4.0,) ) assert type(array_1d) == aa.Array1D assert (array_1d.native == np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])).all() assert (array_1d.slim == np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0])).all() assert array_1d.pixel_scale == 3.0 assert array_1d.pixel_scales == (3.0,) assert array_1d.origin == (4.0,) def test__from_fits__makes_array_without_other_inputs(self): create_fits(fits_path=fits_path) arr = aa.Array1D.from_fits( file_path=path.join(fits_path, "3_ones.fits"), hdu=0, pixel_scales=1.0 ) assert type(arr) == aa.Array1D assert (arr.native ==
np.ones((3,))
numpy.ones
""" Code example from Complexity and Computation, a book about exploring complexity science with Python. Available free from http://greenteapress.com/complexity Copyright 2016 <NAME> MIT License: http://opensource.org/licenses/MIT """ from __future__ import print_function, division import sys import numpy as np import matplotlib.pyplot as plt from matplotlib import animation from scipy.signal import convolve2d """ For animation to work in the notebook, you might have to install ffmpeg. On Ubuntu and Linux Mint, the following should work. sudo add-apt-repository ppa:mc3man/trusty-media sudo apt-get update sudo apt-get install ffmpeg """ class Cell2D: """Implements Conway's Game of Life.""" def __init__(self, n, m=None): """Initializes the attributes. n: number of rows m: number of columns """ m = n if m is None else m self.array = np.zeros((n, m), np.uint8) def add_cells(self, row, col, *strings): """Adds cells at the given location. row: top row index col: left col index strings: list of strings of 0s and 1s """ for i, s in enumerate(strings): self.array[row+i, col:col+len(s)] = np.array([int(b) for b in s]) def step(self): """Executes one time step.""" pass class Cell2DViewer: """Generates an animated view of an array image.""" cmap = plt.get_cmap('Greens') options = dict(interpolation='nearest', alpha=0.8, vmin=0, vmax=1, origin='upper') def __init__(self, viewee): self.viewee = viewee self.im = None self.hlines = None self.vlines = None # TODO: should this really take iters? def step(self, iters=1): """Advances the viewee the given number of steps.""" for i in range(iters): self.viewee.step() def draw(self, grid=False): """Draws the array and any other elements. grid: boolean, whether to draw grid lines """ self.draw_array(self.viewee.array) if grid: self.draw_grid() def draw_array(self, array=None, cmap=None, **kwds): """Draws the cells.""" # Note: we have to make a copy because some implementations # of step perform updates in place. if array is None: array = self.viewee.array a = array.copy() cmap = self.cmap if cmap is None else cmap n, m = a.shape plt.axis([0, m, 0, n]) plt.xticks([]) plt.yticks([]) options = self.options.copy() options['extent'] = [0, m, 0, n] options.update(kwds) self.im = plt.imshow(a, cmap, **options) def draw_grid(self): """Draws the grid.""" a = self.viewee.array n, m = a.shape lw = 2 if m < 7 else 1 options = dict(color='white', linewidth=lw) # the shift is a hack to get the grid to line up with the cells shift = 0.005 * n rows = np.arange(n) + shift self.hlines = plt.hlines(rows, 0, m, **options) cols =
np.arange(m)
numpy.arange
""" Prepare data for Part-GPNN model. Need: Node feature at different scales Edge feature for valid edges Adjacency matrix GT (parse graph GT) Edge weight (corresponds to node level) Edge label GT """ import os import json import pickle import warnings from collections import defaultdict import numpy as np import skimage.io import cv2 import feature_model import metadata import torch import torch.autograd import torchvision.models import vsrl_utils as vu part_ids = {'Right Shoulder': [2], 'Left Shoulder': [5], 'Knee Right': [10], 'Knee Left': [13], 'Ankle Right': [11], 'Ankle Left': [14], 'Elbow Left': [6], 'Elbow Right': [3], 'Hand Left': [7], 'Hand Right': [4], 'Head': [0], 'Hip': [8], 'Upper Body': [2,5,6,3,7,4,0,8], 'Lower Body': [10,13,11,14,8], 'Left Arm': [5,6,7], 'Right Arm': [2,3,4], 'Left Leg': [8,10,11], 'Right Leg': [8,13,14], 'Full Body': [2,5,10,13,11,14,6,3,7,4,0,8], } __PART_WEIGHT_L1 = 0.1 # hand __PART_WEIGHT_L2 = 0.3 # arm __PART_WEIGHT_L3 = 0.5 # upper body __PART_WEIGHT_L4 = 1.0 # human part_weights = {'Right Shoulder': __PART_WEIGHT_L1, 'Left Shoulder': __PART_WEIGHT_L1, 'Knee Right': __PART_WEIGHT_L1, 'Knee Left': __PART_WEIGHT_L1, 'Ankle Right': __PART_WEIGHT_L1, 'Ankle Left': __PART_WEIGHT_L1, 'Elbow Left': __PART_WEIGHT_L1, 'Elbow Right': __PART_WEIGHT_L1, 'Hand Left': __PART_WEIGHT_L1, 'Hand Right': __PART_WEIGHT_L1, 'Head': __PART_WEIGHT_L1, 'Hip': __PART_WEIGHT_L1, 'Upper Body': __PART_WEIGHT_L3, 'Lower Body': __PART_WEIGHT_L3, 'Left Arm': __PART_WEIGHT_L2, 'Right Arm': __PART_WEIGHT_L2, 'Left Leg': __PART_WEIGHT_L2, 'Right Leg': __PART_WEIGHT_L2, 'Full Body': __PART_WEIGHT_L4} part_names = list(part_ids.keys()) part_graph = {'Right Shoulder': [], 'Left Shoulder': [], 'Knee Right': [], 'Knee Left': [], 'Ankle Right': [], 'Ankle Left': [], 'Elbow Left': [], 'Elbow Right': [], 'Hand Left': [], 'Hand Right': [], 'Head': [], 'Hip': [], 'Upper Body': ['Head', 'Hip', 'Left Arm', 'Right Arm'], 'Lower Body': ['Hip', 'Left Leg', 'Right Leg'], 'Left Arm': ['Left Shoulder', 'Elbow Left', 'Hand Left'], 'Right Arm': ['Right Shoulder', 'Elbow Right', 'Hand Right'], 'Left Leg': ['Hip', 'Knee Left', 'Ankle Left'], 'Right Leg': ['Hip', 'Knee Right', 'Ankle Right'], 'Full Body': ['Upper Body', 'Lower Body'] } def get_intersection(box1, box2): return np.hstack((np.maximum(box1[:2], box2[:2]), np.minimum(box1[2:], box2[2:]))) def compute_area(box): side1 = box[2]-box[0] side2 = box[3]-box[1] if side1 > 0 and side2 > 0: return side1 * side2 else: return 0.0 def compute_iou(box1, box2): intersection_area = compute_area(get_intersection(box1, box2)) iou = intersection_area / (compute_area(box1) + compute_area(box2) - intersection_area) return iou def get_node_index(bbox, det_boxes, index_list): bbox = np.array(bbox, dtype=np.float32) max_iou = 0.5 # Use 0.5 as a threshold for evaluation max_iou_index = -1 for i_node in index_list: # check bbox overlap iou = compute_iou(bbox, det_boxes[i_node]) if iou > max_iou: max_iou = iou max_iou_index = i_node return max_iou_index def combine_box(box1, box2): return np.hstack((np.minimum(box1[:2], box2[:2]), np.maximum(box1[2:], box2[2:]))) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) def get_box(_box, human_boxes_all, used_human): max_iou = 0 best_box = None best_i = None for i, box in enumerate(human_boxes_all): if i in used_human: continue iou = compute_iou(_box, box) if iou > max_iou: max_iou = iou best_box = box best_i = i return best_i, box def img_to_torch(img): """ input: H x W x C img iterables with range 0-255 output: C x H x W img tensor with range 0-1, normalized """ img = np.array(img) / 255. img = (img - mean) / std if len(img.shape) == 3: img = np.expand_dims(img.transpose([2,0,1]), axis=0) elif len(img.shape) == 4: img = img.transpose([0,3,1,2]) elif len(img.shape) == 5: img = img.transpose([0,1,4,2,3]) img = torch.autograd.Variable(torch.Tensor(img)).cuda() return img meta_dir = os.path.join(os.path.dirname(__file__), '../../../data/vcoco_features') img_dir = '/home/tengyu/dataset/mscoco/images' checkpoint_dir = '/home/tengyu/github/Part-GPNN/data/model_resnet_noisy/finetune_resnet' vcoco_root = '/home/tengyu/dataset/v-coco/data' save_data_path = '/home/tengyu/github/Part-GPNN/data/feature_resnet_tengyu2' os.makedirs(save_data_path, exist_ok=True) feature_network = feature_model.Resnet152(num_classes=len(metadata.action_classes)) feature_network.cuda() best_model_file = os.path.join(checkpoint_dir, 'model_best.pth') checkpoint = torch.load(best_model_file) for k in list(checkpoint['state_dict'].keys()): if k[:7] == 'module.': checkpoint['state_dict'][k[7:]] = checkpoint['state_dict'][k] del checkpoint['state_dict'][k] feature_network.load_state_dict(checkpoint['state_dict']) transform = torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) input_h, input_w = 224, 224 part_eye = np.eye(21) obj_eye = np.eye(81) vcoco_mapping = {'train': 'train', 'test': 'val', 'val': 'train'} for imageset in ['train', 'test', 'val']: coco = vu.load_coco(vcoco_root) vcoco_all = vu.load_vcoco('vcoco_{}'.format(imageset), vcoco_root) for x in vcoco_all: x = vu.attach_gt_boxes(x, coco) image_ids = vcoco_all[0]['image_id'][:, 0].astype(int).tolist() for imageset in ['train', 'test', 'val']: coco = vu.load_coco(vcoco_root) vcoco_all = vu.load_vcoco('vcoco_{}'.format(imageset), vcoco_root) for x in vcoco_all: x = vu.attach_gt_boxes(x, coco) image_ids = vcoco_all[0]['image_id'][:, 0].astype(int).tolist() for i_image, image_id in enumerate(image_ids): filename = coco.loadImgs(ids=[image_id])[0]['file_name'] d = filename.split('_')[1][:-4] print('%d/%d: %s'%(i_image, len(image_ids), filename)) # if os.path.exists(os.path.join(save_data_path, filename + '.data')): # continue try: openpose = json.load(open(os.path.join(os.path.dirname(__file__), '../../../data/openpose/%s2014openpose/%s_keypoints.json'%(vcoco_mapping[imageset], filename[:-4])))) except: warnings.warn('OpenPose missing ' + os.path.join(os.path.dirname(__file__), '../../../data/openpose/%s2014openpose/%s_keypoints.json'%(vcoco_mapping[imageset], filename[:-4]))) continue try: image_meta = pickle.load(open(os.path.join(meta_dir, filename + '.p'), 'rb'), encoding='latin1') except: warnings.warn('Meta missing ' + filename) continue try: image = skimage.io.imread(os.path.join(img_dir, '%s2014'%d, filename)) except: warnings.warn('Image missing ' + filename) continue img_w = image.shape[0] img_h = image.shape[1] if len(image.shape) == 2: image = np.tile(np.expand_dims(image, axis=-1), [1, 1, 3]) obj_boxes_all = image_meta['boxes'][image_meta['human_num']:] obj_classes_all = image_meta['classes'][image_meta['human_num']:] human_boxes_all = image_meta['boxes'][:image_meta['human_num']] part_human_ids = [] part_classes = [] part_boxes = [] human_boxes = [] used_human = [] # human_boxes contains parts at different levels for human_id, human in enumerate(openpose['people']): keypoints =
np.array(human['pose_keypoints_2d'])
numpy.array
#!/usr/bin/env python # coding=utf-8 """ Script to sample uncertain user parameters """ from __future__ import division import random as rd import numpy as np from scipy.stats import nakagami def main(): nb_samples = 100000 import matplotlib.pyplot as plt # Get samples of set temperatures within building list_set_temp = calc_set_temp_samples(nb_samples=nb_samples) print('List of set temperatures in degree Celsius:') print(list_set_temp) print() fig = plt.figure() # the histogram of the data plt.hist(list_set_temp, bins='auto') plt.xlabel('Set temperatures in degree Celsius') plt.ylabel('Number of temperatures') plt.show() plt.close() # Create constant user air exchange rates list_usr_airx = calc_user_air_ex_rates(nb_samples) print('List of user air exchange rates in 1/h:') print(list_usr_airx) print() fig = plt.figure() # the histogram of the data plt.hist(list_usr_airx, bins='auto') plt.xlabel('User air exchange rates in 1/h') plt.ylabel('Number of values') plt.show() plt.close() method = 'destatis' # method = 'equal' # Sample number of occupants in apartments: list_occ_in_app = calc_sampling_occ_per_app(nb_samples=nb_samples, method=method) fig = plt.figure() # the histogram of the data plt.hist(list_occ_in_app, 5) plt.xlabel('Number of occupants per apartment') plt.ylabel('Number of values') plt.show() plt.close() # Annual electric demand sampling per apartment (3 persons, SFH) list_el_dem = calc_sampling_el_demand_per_apartment(nb_samples=nb_samples, nb_persons=3, type='sfh') fig = plt.figure() # the histogram of the data plt.hist(list_el_dem, bins='auto') plt.xlabel('Number of electric energy demands in kWh') plt.ylabel('Number of values') plt.title('Electric energy demand for\napartment with ' '3 occupants') plt.show() plt.close() list_el_dem_2 = [] for nb_occ in list_occ_in_app: sample_el = \ calc_sampling_el_demand_per_apartment(nb_samples=1, nb_persons=nb_occ, type='sfh')[0] list_el_dem_2.append(sample_el) fig = plt.figure() # the histogram of the data plt.hist(list_el_dem_2, bins='auto') plt.xlabel('Number of electric energy demands in kWh') plt.ylabel('Number of values') plt.title('Electric energy demand for\napartment with ' 'different number of occupants') plt.show() plt.close() # list_dhw = calc_sampling_dhw_per_person(nb_samples=nb_samples) # # fig = plt.figure() # # the histogram of the data # plt.hist(list_dhw, bins='auto') # plt.xlabel('Hot water volumes per person and day in liters') # plt.ylabel('Number of values') # plt.show() # plt.close() nb_persons = 5 list_dhw_vol_per_app = \ calc_sampling_dhw_per_apartment(nb_samples=nb_samples, nb_persons=nb_persons) fig = plt.figure() # the histogram of the data plt.hist(list_dhw_vol_per_app, bins='auto') plt.xlabel('Hot water volumes per apartment and day in liters') plt.ylabel('Number of values') plt.title('Hot water volumes per person and day for ' + str(nb_persons) + ' person apartment') plt.show() plt.close() list_dhw_per_app_2 = [] for nb_occ in list_occ_in_app: sample_dhw = calc_sampling_dhw_per_apartment(nb_samples=1, nb_persons=nb_occ)[0] list_dhw_per_app_2.append(sample_dhw) fig = plt.figure() # the histogram of the data plt.hist(list_dhw_per_app_2, bins='auto') plt.xlabel('Hot water volumes per apartment and day in liters') plt.ylabel('Number of values') plt.title('Hot water volumes per person and day for\napartment with ' 'different number of occupants') plt.show() plt.close() # # Create environment # # #################################################################### # # # Create extended environment of pycity_calc # year = 2010 # timestep = 3600 # Timestep in seconds # location = (51.529086, 6.944689) # (latitude, longitute) of Bottrop # altitude = 55 # Altitude of Bottrop # # # Generate timer object # timer = time.TimerExtended(timestep=timestep, year=year) # # # Generate weather object # weather = Weather.Weather(timer, useTRY=True, location=location, # altitude=altitude) # # # Generate market object # market = mark.Market() # # # Generate co2 emissions object # co2em = co2.Emissions(year=year) # # # Generate environment # environment = env.EnvironmentExtended(timer, weather, prices=market, # location=location, co2em=co2em) # # # # Create occupancy profile # # ##################################################################### # # num_occ = 3 # # print('Calculate occupancy.\n') # # Generate occupancy profile # occupancy_obj = occ.Occupancy(environment, number_occupants=num_occ) # # print('Finished occupancy calculation.\n') # # Generate user air exchange rate profiles # # ##################################################################### # list_air_ex_profiles = \ # calc_user_air_ex_profiles_factors(nb_samples= # nb_samples, # occ_profile=occupancy_obj.occupancy, # temp_profile= # environment.weather.tAmbient, # random_gauss=True) # # list_av_air_ex_rates = [] # # for profile in list_air_ex_profiles: # plt.plot(profile, alpha=0.5) # # av_rate = np.mean(profile) # # print('Average air exchange rate in 1/h:') # print(av_rate) # # list_av_air_ex_rates.append(av_rate) # # plt.xlabel('Time in hours') # plt.ylabel('User air exchange rate in 1/h') # plt.show() # plt.close() # # fig2 = plt.figure() # # the histogram of the data # plt.hist(list_av_air_ex_rates, 50) # plt.xlabel('Average user air exchange rate in 1/h') # plt.ylabel('Number of air exchange rates') # plt.show() # plt.close() def calc_set_temp_samples(nb_samples, mean=20, sdev=2.5): """ Calculate array of indoor set temperature values from gaussian distribution. Parameters ---------- nb_samples : int Number of samples mean : float, optional Mean temperature value in degree Celsius for gaussian distribution (default: 20) sdev : float, optional Standard deviation in degree Celsius for gaussian distribution (default: 2.5) Returns ------- array_set_temp : np.array (of floats) Numpy array of indoor set temperatures in degree Celsius """ array_set_temp = np.random.normal(loc=mean, scale=sdev, size=nb_samples) return array_set_temp def calc_user_air_ex_rates(nb_samples, min_value=0, max_value=1.2, pdf='nakagami'): """ Calculate array of user air exchange rate samples Parameters ---------- nb_samples : int Number of samples min_value : float, optional Minimum user air exchange rate (default: 0) max_value : float, optional Maximum user air exchange rate (default: 1.2) dist : str, optional Probability density function to choose samples (default: 'nakagami') Options: - 'equal' : Equal distribution between min_value and max_value - 'triangle' : Triangular distribution - 'nakagami' : Nakagami distribution Returns ------- array_usr_inf : np.array (of floats) Numpy array holding user infiltration rates in 1/h """ assert pdf in ['equal', 'triangle', 'nakagami'], \ 'Unknown value for pdf input.' # list_usr_inf = [] array_usr_inf = np.zeros(nb_samples) if pdf == 'equal': min_value *= 1000 max_value *= 1000 for i in range(nb_samples): array_usr_inf[i] = rd.randint(min_value, max_value) for i in range(len(array_usr_inf)): array_usr_inf[i] /= 1000 elif pdf == 'triangle': mode = min_value + (max_value - min_value) * 0.2 for i in range(nb_samples): val = np.random.triangular(left=min_value, right=max_value, mode=mode) array_usr_inf[i] = val elif pdf == 'nakagami': array_usr_inf = nakagami.rvs(0.6, scale=0.4, size=nb_samples) return array_usr_inf # Led to problems within monte-carlo simulation, as extrem air exchange # rates can lead to unrealistic thermal peak loads within space heating # profiles # def calc_user_air_ex_profiles_factors(nb_samples, occ_profile, temp_profile, # random_gauss=True): # """ # Calculate set of user air exchange rate profiles. Uses stochastic # air exchange rate user profile generation, based on user_air_exchange.py. # Moreover, random rescaling, based on gaussion distribution, can be # activated # # Parameters # ---------- # nb_samples : int # Number of samples # occ_profile : array (of ints) # Occupancy profile per timestep # temp_profile : array (of floats) # Outdoor temperature profile in degree Celsius per timestep # random_gauss : bool, optional # Defines, if resulting profile should randomly be rescaled with # gaussian distribution rescaling factor (default: True) # # Returns # ------- # list_air_ex_profiles : list (of arrays) # List of air exchange profiles # """ # # list_air_ex_profiles = [] # # for i in range(nb_samples): # # air_exch = usair.gen_user_air_ex_rate(occ_profile=occ_profile, # temp_profile=temp_profile, # b_type='res', # inf_rate=None) # # if random_gauss: # rescale_factor = np.random.normal(loc=1, scale=0.25) # if rescale_factor < 0: # rescale_factor = 0 # air_exch *= rescale_factor # # list_air_ex_profiles.append(air_exch) # # return list_air_ex_profiles def calc_sampling_occ_per_app(nb_samples, method='destatis', min_occ=1, max_occ=5): """ Calculate array of nb. of occupants samples Parameters ---------- nb_samples : int Number of samples method : str, optional Method to calculate occupants per apartment samples (default: 'destatis') Options: - 'equal' : Select samples between min_occ and max_occ from equal distribution - 'destatis' : Select samples with random numbers from Destatis statistics from 2015 min_occ : int, optional Minimal possible number of occupants per apartment (default: 1) Only relevant for method == 'equal' max_occ : int, optional Maximal possible number of occupants per apartment (default: 5) Only relevant for method == 'equal' Returns ------- array_nb_occ : np.array (of ints) Numpy array holding number of occupants per apartment Reference --------- Statistisches Bundesamt (Destatis) (2017): Bevoelkerung in Deutschland. Online verfuegbar unter https://www.destatis.de/DE/ZahlenFakten/Indikatoren/LangeReihen/ Bevoelkerung/lrbev05.html;jsessionid=4AACC10D2225591EC88C40EDEFB5EDAC.cae2, zuletzt geprueft am 05.04.2017. """ assert method in ['equal', 'destatis'] # list_nb_occ = [] array_nb_occ =
np.zeros(nb_samples)
numpy.zeros
# %% import matplotlib.pyplot as plt import numpy as np import sklearn import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from model.inceptionv4 import inceptionv4 from model.mobilenetv2 import mobilenetv2 from model.resnet import resnet18 from model.shufflenetv2 import shufflenetv2 from model.vgg import vgg9_bn from s3_dataset import PlantDataSet, PlantDataSetB # %% def get_acc(net, device, data_loader): ''' get acc ''' correct = 0 total = 0 with torch.no_grad(): net.eval() for data in data_loader: images, labels = data images = images.float().to(device) labels = labels.long().to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() return correct / total def get_pre(net, device, data_loader): ''' 得到整个测试集预测的结果,以及标签 ''' label_all = [] pre_all = [] with torch.no_grad(): net.eval() for data in data_loader: images, labels = data images = images.float().to(device) labels = labels.long().to(device) outputs = net(images) _, predicted = torch.max(outputs.data, 1) label_all.extend(labels.data.cpu().numpy()) pre_all.extend(predicted.data.cpu().numpy()) return pre_all, label_all # %% Func = [vgg9_bn, resnet18, shufflenetv2, mobilenetv2, inceptionv4] Save_path = [ '../model_save/plant_disease2/vgg.pth', '../model_save/plant_disease2/resnet18.pth', '../model_save/plant_disease2/shufflenetv2.pth', '../model_save/plant_disease2/mobilenetv2.pth', '../model_save/plant_disease2/inceptionv4.pth' ] device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') # data_loader_val = DataLoader(PlantDataSetB(flag='val'), # batch_size=64, # shuffle=False) # data_loader_test = DataLoader(PlantDataSetB(flag='test'), # batch_size=64, # shuffle=False) data_loader_val = DataLoader(PlantDataSet(flag='val'), batch_size=64, shuffle=False) data_loader_test = DataLoader(PlantDataSet(flag='test'), batch_size=64, shuffle=False) print('A 域数据集: 校核') for Index in range(1): # 导入模型和权重 net = Func[Index]() path_saved_model = Save_path[Index] net.load_state_dict(torch.load(path_saved_model)) net.to(device) val_acc = get_acc(net, device, data_loader_val) test_acc = get_acc(net, device, data_loader_test) print('{:d}: val_acc:{:.5f}, test_acc:{:.5f}'.format( Index, val_acc, test_acc)) # %% # 计算每个模型在两个测试集上的混淆矩阵 device = torch.device('cuda:1' if torch.cuda.is_available() else 'cpu') Func = [vgg9_bn, resnet18, shufflenetv2, mobilenetv2, inceptionv4] Save_path = [ '../model_save/plant_disease2/vgg.pth', '../model_save/plant_disease2/resnet18.pth', '../model_save/plant_disease2/shufflenetv2.pth', '../model_save/plant_disease2/mobilenetv2.pth', '../model_save/plant_disease2/inceptionv4.pth' ] data_test_a = DataLoader(PlantDataSet(flag='test'), batch_size=64, shuffle=False) data_test_b = DataLoader(PlantDataSetB(flag='test'), batch_size=64, shuffle=False) Index = 1 # 导入模型和权重 net = Func[Index]() path_saved_model = Save_path[Index] net.load_state_dict(torch.load(path_saved_model)) net.to(device) pre, label = get_pre(net, device, data_test_b) pre, label = np.array(pre), np.array(label) # %% import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score # 精度 from sklearn.metrics import confusion_matrix # 混淆矩阵 print('预测精度为:{:.9f}'.format(accuracy_score(label, pre))) # 查看混淆矩阵 domain_A_class = { 'Apple___Apple_scab': 0, 'Apple___Black_rot': 1, 'Apple___Cedar_apple_rust': 2, 'Apple___healthy': 3, 'Blueberry___healthy': 4, 'Cherry_(including_sour)___Powdery_mildew': 5, 'Cherry_(including_sour)___healthy': 6, 'Corn_(maize)___Cercospora_leaf_spot Gray_leaf_spot': 7, 'Corn_(maize)___Common_rust_': 8, 'Corn_(maize)___Northern_Leaf_Blight': 9, 'Corn_(maize)___healthy': 10, 'Grape___Black_rot': 11, 'Grape___Esca_(Black_Measles)': 12, 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)':13, 'Grape___healthy':14, 'Orange___Haunglongbing_(Citrus_greening)':15, 'Peach___Bacterial_spot':16, 'Peach___healthy':17, 'Pepper,_bell___Bacterial_spot':18, 'Pepper,_bell___healthy':19, 'Potato___Early_blight':20, 'Potato___Late_blight':21, 'Potato___healthy':22, 'Raspberry___healthy':23, 'Soybean___healthy':24, 'Squash___Powdery_mildew':25, 'Strawberry___Leaf_scorch':26, 'Strawberry___healthy':27, 'Tomato___Bacterial_spot':28, 'Tomato___Early_blight':29, 'Tomato___Late_blight':30, 'Tomato___Leaf_Mold':31, 'Tomato___Septoria_leaf_spot':32, 'Tomato___Spider_mites Two-spotted_spider_mite':33, 'Tomato___Target_Spot':34, 'Tomato___Tomato_Yellow_Leaf_Curl_Virus':35, 'Tomato___Tomato_mosaic_virus':36, 'Tomato___healthy':37} c_matrix = confusion_matrix(label, pre, labels=list(range(38))) # %% 这个代码留着 def plot_Matrix(cm, classes, title=None, cmap=plt.cm.Blues): plt.rc('font',family='Times New Roman',size='8') # 设置字体样式、大小 # 按行进行归一化 cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") str_cm = cm.astype(np.str).tolist() for row in str_cm: print('\t'.join(row)) # 占比1%以下的单元格,设为0,防止在最后的颜色中体现出来 for i in range(cm.shape[0]): for j in range(cm.shape[1]): if int(cm[i, j]*100 + 0.5) == 0: cm[i, j]=0 fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=cmap) # ax.figure.colorbar(im, ax=ax) # 侧边的颜色条带 ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), xticklabels=classes, yticklabels=classes, title=title, ylabel='Actual', xlabel='Predicted') # 通过绘制格网,模拟每个单元格的边框 ax.set_xticks(np.arange(cm.shape[1]+1)-.5, minor=True) ax.set_yticks(
np.arange(cm.shape[0]+1)
numpy.arange
from __future__ import division, unicode_literals, print_function, absolute_import import re import json import logging from six import string_types from dateutil import parser from io import StringIO try: import cPickle # Python 2.7 except: import _pickle as cPickle import numpy as np import traitlets as tl # Optional dependencies from lazy_import import lazy_module bs4 = lazy_module("bs4") import podpac from podpac.core.utils import _get_from_url, cached_property from podpac.data import DataSource from podpac.compositor import TileCompositorRaw from podpac.interpolators import InterpolationMixin _logger = logging.getLogger(__name__) def _convert_str_to_vals(properties): IGNORE_KEYS = ["sitenumber"] for k, v in properties.items(): if not isinstance(v, string_types) or k in IGNORE_KEYS: continue try: if "," in v: properties[k] = tuple([float(vv) for vv in v.split(",")]) else: properties[k] = float(v) except ValueError: try: properties[k] = np.datetime64(v) except ValueError: pass return properties class COSMOSStation(DataSource): _repr_keys = ["label", "network", "location"] url = tl.Unicode("http://cosmos.hwr.arizona.edu/Probes/StationDat/") station_data = tl.Dict().tag(attr=True) @cached_property def raw_data(self): _logger.info("Downloading station data from {}".format(self.station_data_url)) r = _get_from_url(self.station_data_url) if r is None: raise ConnectionError( "COSMOS data cannot be retrieved. Is the site {} down?".format(self.station_calibration_url) ) return r.text @cached_property def data_columns(self): return self.raw_data.split("\n", 1)[0].split(" ") @property def site_number(self): return str(self.station_data["sitenumber"]) @property def station_data_url(self): return self.url + self.site_number + "/smcounts.txt" @property def station_calibration_url(self): return self.url + self.site_number + "/calibrationInfo.php" @property def station_properties_url(self): return self.url + self.site_number + "/index.php" def get_data(self, coordinates, coordinates_index): data = np.loadtxt(StringIO(self.raw_data), skiprows=1, usecols=self.data_columns.index("SOILM"))[ coordinates_index[0] ] data[data > 100] = np.nan data[data < 0] = np.nan data /= 100.0 # Make it fractional return self.create_output_array(coordinates, data=data.reshape(coordinates.shape)) def get_coordinates(self): lat_lon = self.station_data["location"] time = np.atleast_2d( np.loadtxt( StringIO(self.raw_data), skiprows=1, usecols=[self.data_columns.index("YYYY-MM-DD"), self.data_columns.index("HH:MM")], dtype=str, ) ) if time.size == 0: time = np.datetime64("NaT") else: time =
np.array([t[0] + "T" + t[1] for t in time], np.datetime64)
numpy.array
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data =
np.array([])
numpy.array
import numpy as np import scipy.interpolate as interpolate import matplotlib.pyplot as plt import clusterbuster.mathut as math """ Start with e.g. InterpolateRadio2D(psiFile = '../Analysis_MUSIC2/Hoeft_radio/mach_psi_tablefine(10,3).txt', inter=(10,6)) """ # from http://stackoverflow.com/questions/5328128/scipy-interpolation-of-large-matrix def my_interp(X, Y, Z, x, y, spn=3): xs,ys = map(np.array,(x,y)) z = np.zeros(xs.shape) for i,(x,y) in enumerate(zip(xs,ys)): # get the indices of the nearest x,y xi = np.argmin(np.abs(X[0,:]-x)) yi = np.argmin(np.abs(Y[:,0]-y)) xlo = max(xi-spn, 0) ylo = max(yi-spn, 0) xhi = min(xi+spn, X[0,:].size) yhi = min(yi+spn, Y[:,0].size) # make slices of X,Y,Z that are only a few items wide nX = X[xlo:xhi, ylo:yhi] nY = Y[xlo:xhi, ylo:yhi] nZ = Z[xlo:xhi, ylo:yhi] intp = interpolate.interp2d(nX, nY, nZ) z[i] = intp(x,y)[0] return z # from here on: done by myself def LoadFile_psi(psiFile): """ Just gives the Mach number and Temperature values """ #=== FILE A ===# # read first line .... split it and convert sstring to float science float('1.31E+01') or for a list:map(float, ['3.76E+00', '1.31E+01', '1.14E+01']) with open(psiFile, 'r') as f: first_line = f.readline() psi_x = first_line.split()[2:] # Splits into list without first two elements psi_x = np.asarray( [float(i) for i in psi_x ] ) # Converts strings to floats # Converts strings to floats psi_y = np.loadtxt(psiFile,skiprows=0)[:,0] return psi_x, psi_y def InterpolateRadio2D(psiFile='../Analysis_MUSIC2/Hoeft_radio/mach_psi_table.txt', machFile='../Analysis_MUSIC2/Hoeft_radio/q_mach_machr_table.txt', saveplot='../Analysis_MUSIC2/Hoeft_radio/interpolated', psiFileNew = False, machFileNew = False, inter=(10,3)): # Currently the mach number is interpolated in an logarithmic space which is much sparser at lower mach numbers then anticipated # I suspect an double-exponential function for mach (both efficiency dependency stepsize) # Note that the original grid given in 'Hoeft_radio/mach_psi_table.txt' is (quite) regular in log-loglog space, which makes it very simple to invoke an interpolation function! # Irregular data points would make it nececcary to use functions like scipy.interpolate.griddata(points, values, (grid_x, grid_y), method='cubic') plot_old = False plot_new = False plot_PhD = True ##==== psiFile for psi factor; machfile for mach-numbers conversion factors H_mach = np.loadtxt(machFile,skiprows=0) H_psi = np.loadtxt(psiFile,skiprows=0)[:,1::] # you wont get the temperature values ... read them separetely psi_x,psi_y = LoadFile_psi(psiFile) psi_x = np.log10( psi_x ) # converts to and log10 space psi_y = np.log10(np.log10( psi_y )) # converts to and log10(log10) space X, Y = np.meshgrid(psi_x, psi_y) Z = np.log10(H_psi) #interp_spline = interpolate.interp2d(x, y, Z) #, kind='cubic' interp_spline = interpolate.RectBivariateSpline(psi_y, psi_x, Z) #, bbox=[None, None, None, None], kx=3, ky=3, s=0 xnew = np.arange(psi_x[0], psi_x[-1], (psi_x[-1]-psi_x[0])/(len(psi_x)*inter[0]) ) #np.arange(-4, 2, 4e-2) # ynew = np.arange(psi_y[0], psi_y[-1], (psi_y[-1]-psi_y[0])/(len(psi_y)*inter[1]) ) #np.arange(0.2, 3, 2e-2) # Znew = interp_spline(ynew, xnew ) keV2K = 1.16e7 # Translates keV to Kelvin if plot_old: plt.plot( np.arange(0, len(psi_x), 1 ), psi_x ) plt.plot( np.arange(0, len(psi_y), 1 ), psi_y ) plt.savefig(saveplot + '_linearity.png') fig = plt.figure() ax1 = plt.subplot(121) ax1.pcolor( np.log10(keV2K) + psi_x, psi_y, Z) ax1.set_title("Sparsely sampled function") ax1.set_xlim([3.1, 9]) ax1.set_ylim([psi_y[0], 0.5]) ax1.set_xlabel('$\\mathrm{log_{10}(T)\\,[K]}$ ') ax1.set_ylabel('$\\mathrm{log_{10}(log_{10}(M))\\,[]}$') ax2 = plt.subplot(122) im2 = ax2.pcolor( np.log10(keV2K) + xnew, ynew, Znew) ax2.set_title("Interpolated function") ax2.set_xlim([3.1, 9]) ax2.set_ylim([psi_y[0], 0.5]) ax2.set_xlabel('$\\mathrm{log_{10}(T)\\,[K]}$ ') ax2.set_yticklabels([]) mach = [1.5,2.2,3.0,10.0] c = [plt.cm.rainbow( (np.log10(np.log10(m))-ax1.get_ylim()[0])/abs(ax1.get_ylim()[1]-ax1.get_ylim()[0]) ) for m in mach] for ii,m in enumerate(mach): ax1.plot( [ax1.get_xlim()[0], ax1.get_xlim()[1]] , [np.log10(
np.log10(m)
numpy.log10
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard from op_test import OpTest from test_anchor_generator_op import anchor_generator_in_python from test_generate_proposal_labels_op import _generate_groundtruth from test_generate_proposal_labels_op import _bbox_overlaps, _box_to_delta def rpn_target_assign(anchor_by_gt_overlap, rpn_batch_size_per_im, rpn_positive_overlap, rpn_negative_overlap, rpn_fg_fraction, use_random=True): anchor_to_gt_argmax = anchor_by_gt_overlap.argmax(axis=1) anchor_to_gt_max = anchor_by_gt_overlap[ np.arange(anchor_by_gt_overlap.shape[0]), anchor_to_gt_argmax] gt_to_anchor_argmax = anchor_by_gt_overlap.argmax(axis=0) gt_to_anchor_max = anchor_by_gt_overlap[ gt_to_anchor_argmax, np.arange(anchor_by_gt_overlap.shape[1])] anchors_with_max_overlap = np.where( anchor_by_gt_overlap == gt_to_anchor_max)[0] labels = np.ones((anchor_by_gt_overlap.shape[0], ), dtype=np.int32) * -1 labels[anchors_with_max_overlap] = 1 labels[anchor_to_gt_max >= rpn_positive_overlap] = 1 num_fg = int(rpn_fg_fraction * rpn_batch_size_per_im) fg_inds = np.where(labels == 1)[0] if len(fg_inds) > num_fg and use_random: disable_inds = np.random.choice(fg_inds, size=(len(fg_inds) - num_fg), replace=False) else: disable_inds = fg_inds[num_fg:] labels[disable_inds] = -1 fg_inds = np.where(labels == 1)[0] bbox_inside_weight = np.zeros((len(fg_inds), 4), dtype=np.float32) num_bg = rpn_batch_size_per_im - np.sum(labels == 1) bg_inds =
np.where(anchor_to_gt_max < rpn_negative_overlap)
numpy.where
import numpy as np import matplotlib.pyplot as plt import sklearn.feature_selection as fs from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler import math def main(): two = np.genfromtxt('data/two.csv') two = StandardScaler().fit_transform(two) pca = PCA() pca.fit(two) base_corr = np.corrcoef(two.transpose()) print( "Q1a)\nVariance weights:\nÂ1: {}\nÂ2: {}".format(pca.explained_variance_ratio_[0], pca.explained_variance_ratio_[1])) two = pca.transform(two) pcaed = pca.transform(two) pcaed_corr = np.corrcoef(pcaed.transpose()) print("Q1b)\nrotated by {}°".format(np.degrees(math.acos(pca.components_[0, 0])))) print("Q1c)\nOg:\n{}\nPCA:\n{}".format(base_corr, pcaed_corr)) reduced = pcaed[:, 0] zs = np.zeros((len(reduced))) x = np.array([reduced, zs]).transpose() red_inverse = pca.inverse_transform(x) plt.scatter(two[:, 0], two[:, 1]) plt.scatter(pcaed[:, 0], pcaed[:, 1]) plt.scatter(red_inverse[:, 0], red_inverse[:, 1]) plt.show() print("Q2a)\nBinäre werden zu 0 und 1") zoo = np.genfromtxt("data/zoo_german.csv", delimiter=",", skip_header=1, usecols=list(range(1, 13)) + list(range(15, 18)), dtype=bool, encoding="iso-8859-1") print("Q2b)\nLädt csv mit utf8 statt iso88591 mit Komma Deleimiter, " "nutz nur zeilen 1-12,15-16, skipt header zeile und setzt datentypen zu boolean") selector = fs.VarianceThreshold() selector.fit_transform(zoo) t = np.sort(selector.variances_)[2] selector = fs.VarianceThreshold(threshold=t) selected = selector.fit_transform(zoo) print("Q2c)\nOg shape: {}\nSelectedShape: {}".format(zoo.shape, selected.shape)) holes =
np.genfromtxt('data/two_missing.csv', delimiter=",")
numpy.genfromtxt
from unittest import TestCase import logging import numpy as np import numpy.linalg as la from scipy.linalg import cho_factor, cho_solve from ssmtoybox.bq.bqmtran import GaussianProcessTransform from ssmtoybox.mtran import MonteCarloTransform, UnscentedTransform from ssmtoybox.ssmod import ReentryVehicle2DTransition from ssmtoybox.utils import GaussRV logging.basicConfig(level=logging.DEBUG) def sym(a): return 0.5 * (a + a.T) def cho_inv(a): n = a.shape[0] return cho_solve(cho_factor(a), np.eye(n)) class MultTest(TestCase): def test_dot_matvec_matmat(self): # Does numpy.dot use different subroutines for matrix/vector and matrix/matrix multiplication? # dot internals n, e = 300, 150 A = 10 * np.random.randn(n, n) B = 50 * np.random.randn(e, n) A = sym(A) # symmetrize A b = B[0, :] c = b.dot(A) C = B.dot(A) self.assertTrue(np.all(c == C[0, :]), "MAX DIFF: {:.4e}".format(np.abs(c - C[0, :]).max())) def test_einsum_dot(self): # einsum and dot give different results? dim_in, dim_out = 2, 1 ker_par_mo = np.hstack((np.ones((dim_out, 1)), 1 * np.ones((dim_out, dim_in)))) tf_mo = GaussianProcessTransform(dim_in, dim_out, ker_par_mo, point_str='sr') iK, Q = tf_mo.model.iK, tf_mo.model.Q C1 = iK.dot(Q).dot(iK) C2 = np.einsum('ab, bc, cd', iK, Q, iK) self.assertTrue(np.allclose(C1, C2), "MAX DIFF: {:.4e}".format(np.abs(C1 - C2).max())) def test_cho_dot_ein(self): # attempt to compute the transformed covariance using cholesky decomposition # integrand # input moments mean_in = np.array([6500.4, 349.14, 1.8093, 6.7967, 0.6932]) cov_in = np.diag([1e-6, 1e-6, 1e-6, 1e-6, 1]) f = ReentryVehicle2DTransition(GaussRV(5, mean_in, cov_in), GaussRV(3)).dyn_eval dim_in, dim_out = ReentryVehicle2DTransition.dim_state, 1 # transform ker_par_mo = np.hstack((np.ones((dim_out, 1)), 25 * np.ones((dim_out, dim_in)))) tf_so = GaussianProcessTransform(dim_in, dim_out, ker_par_mo, point_str='sr') # Monte-Carlo for ground truth # tf_ut = UnscentedTransform(dim_in) # tf_ut.apply(f, mean_in, cov_in, np.atleast_1d(1), None) tf_mc = MonteCarloTransform(dim_in, 1000) mean_mc, cov_mc, ccov_mc = tf_mc.apply(f, mean_in, cov_in,
np.atleast_1d(1)
numpy.atleast_1d
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Copyright (c) 2021. by <NAME>, UC3M. + # All rights reserved. This file is part of the Shi-VAE, and is released under the + # "MIT License Agreement". Please see the LICENSE file that should have been included + # as part of this package. + # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import matplotlib import numpy as np import torch from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_auc_score from tqdm import tqdm from lib import utils, plot from lib.loss import compute_avg_error from models.train import BaseTrainer, update_loss_dict matplotlib.use("Pdf") shivae_losses = ['n_elbo', 'nll_loss', 'nll_real', 'nll_pos', 'nll_bin', 'nll_cat', 'kld', 'kld_q_z', 'kld_q_s'] class LinearTempScheduler: r""" Linear Temperature Scheduler. tau = max( temp_end, temp_init - temp_init * slope ) """ def __init__(self, init_temp=3, end_temp=0.01, annealing_epochs=10): r""" Args: init_temp (int): Initial Temperature. end_temp (int): Last Temperature. annealing_epochs (int): Number of annealing epochs. """ self.temp_init = init_temp self.temp_end = end_temp self.annealing_epochs = annealing_epochs self.slope = (init_temp - end_temp) / annealing_epochs def update_temp(self, epoch): r""" Update temperature Args: epoch (int): Current epoch. Returns: Update temperature """ tau = max(self.temp_init - self.slope * epoch, self.temp_end) print('Updated temperature: {}'.format(tau)) return tau class ExpTempScheduler: r""" Exponential Temperature Scheduler. tau = max( temp_end, exp(-alpha * t) ) """ def __init__(self, end_temp, annealing_epochs=20): r""" Args: end_temp (int): Last temperature. annealing_epochs (int): Number of annealing epochs. """ self.temp_end = end_temp self.annealing_epochs = annealing_epochs self.alpha = -
np.log(end_temp)
numpy.log
import numpy as np import torch import torch.nn as nn import cv2 from HPEDA.FSANetDA import FSANet import datasets # import matplotlib.pyplot as plt def predict(model, rgb, pose, batch_size=4, verbose=False): N = len(rgb) bs = batch_size predictions = [] testSetPose = [] for i in range(N // bs): x = rgb[(i) * bs:(i + 1) * bs, :, :, :] # Compute results true_y = pose[(i) * bs:(i + 1) * bs, :] x1 = x.transpose(0, -1, 1, 2) x2 = torch.from_numpy(x1).float().div(255) x3, _ = model(x2.cuda(), alpha=0.1) pred_y = x3.detach().cpu().numpy() # print(true_y.shape, pred_y.shape) predictions.append(pred_y) testSetPose.append(true_y) p_data = np.concatenate(predictions, axis=0) y_data = np.concatenate(testSetPose, axis=0) print(p_data.shape, y_data.shape) return p_data, y_data def load_data_npz(npz_path): d = np.load(npz_path) return d["image"], d["pose"] def convertBGR2RGB(imgArray): rgbArray = [] for img in imgArray: rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) rgbArray.append(rgb) return np.asarray(rgbArray) _IMAGE_SIZE = 64 stage_num = [3, 3, 3] lambda_d = 1 num_classes = 3 num_capsule = 3 dim_capsule = 16 routings = 2 num_primcaps = 7 * 3 m_dim = 5 S_set = [num_capsule, dim_capsule, routings, num_primcaps, m_dim] _TEST_DB_AFLW = "AFLW2000" _TEST_DB_BIWI1 = "BIWI_noTrack" _TEST_DB_BIWI2 = "BIWI_Test" _TEST_DB_POINTING = "Pointing" _TEST_DB_SASE = "SASE" _TEST_DB_SYNTHETIC = "SYNTHETIC" # test_db_list = [_TEST_DB_AFLW, _TEST_DB_BIWI1, _TEST_DB_POINTING, _TEST_DB_SASE] # _TEST_DB_AFLW, , _TEST_DB_BIWI2 test_db_list = [_TEST_DB_SYNTHETIC] # [_TEST_DB_BIWI1] # get device GPU or CPU device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ---UNet with modified loss (surface normal) ------# model = FSANet(S_set).cuda() # get multiple GPU if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs model = nn.DataParallel(model) model.to(device) # ----- Get the optimum epoch ----- # if True: epT = 0 MAET = 10.0 for ep in range(0, 40): modelPath = 'models/BIWIRaw_11-25-2020_21-14-54-n1484-e40-bs8-lr0.0001/weights.epoch{0}_model.pth'. \ format(str(ep)) # print(modelPath) model.load_state_dict(torch.load(modelPath)) model.eval() if True: for test_db_name in test_db_list: if test_db_name == _TEST_DB_AFLW: image, pose = load_data_npz('../Data/RealNPZ/AFLW2000.npz') elif test_db_name == _TEST_DB_BIWI1: image = np.load('/mnt/fastssd/Shubhajit_Stuff/HPECode/Data/BIWI/testImg.npy') pose = np.load('/mnt/fastssd/Shubhajit_Stuff/HPECode/Data/BIWI/testPose.npy') # image, pose = load_data_npz('../Data/RealNPZ/BIWI_noTrack.npz') elif test_db_name == _TEST_DB_BIWI2: image, pose = load_data_npz('../Data/RealNPZ/BIWI_test.npz') elif test_db_name == _TEST_DB_SASE: image = np.load('../Data/RealNPZ/SASERgbData.npy') pose = np.load('../Data/RealNPZ/SASEPoseData.npy') elif test_db_name == _TEST_DB_POINTING: image = np.load('../Data/RealNPZ/PointingRgbData.npy') pose = np.load('../Data/RealNPZ/PointingPoseData.npy') elif test_db_name == _TEST_DB_SYNTHETIC: image = np.load('/mnt/fastssd/Shubhajit_Stuff/HPECode/Data/SynData/rgbData.npy')[0:12000] pose = np.load('/mnt/fastssd/Shubhajit_Stuff/HPECode/Data/SynData/poseData.npy')[0:12000] # image = convertBGR2RGB(image) x_data = [] y_data = [] for i in range(0, pose.shape[0]): temp_pose = pose[i, :] # if (np.max(temp_pose[0]) <= 60.0 and np.min(temp_pose[0]) >= -60.0) and \ # (np.max(temp_pose[1]) <= 50.0 and np.min(temp_pose[1]) >= -50.0) and \ # (np.max(temp_pose[2]) <= 40.0 and np.min(temp_pose[2]) >= -40.0): if np.max(temp_pose) <= 90.0 and np.min(temp_pose) >= -90.0: x_data.append(image[i, :, :, :]) y_data.append(pose[i, :]) x_data = np.array(x_data) y_data = np.array(y_data) p_data, y_data = predict(model, x_data, y_data, batch_size=64) # p_data[:, 2] = -p_data[:, 2] pose_matrix = np.mean(np.abs(p_data - y_data), axis=0) MAE = np.mean(pose_matrix) yaw = pose_matrix[0] pitch = pose_matrix[1] roll = pose_matrix[2] print('\n--------------------------------------------------------------------------------') print(test_db_name, ep, ' : MAE = %3.3f, [yaw,pitch,roll] = [%3.3f, %3.3f, %3.3f]' % (MAE, yaw, pitch, roll)) print('--------------------------------------------------------------------------------') if MAE < MAET: epT = ep MAET = MAE result = (MAE, yaw, pitch, roll) print('BIWI: ', epT, ' : MAE = %3.3f, [yaw,pitch,roll] = [%3.3f, %3.3f, %3.3f]' % result) # 59 # ----- Result for optimum epoch ----- # if False: modelPath = r'../models/MySynth_09-05-2020_18-50-28-n8858-e90-bs8-lr0.0001/weights.epoch72_model.pth' # modelPath = r'models/MySynthTrans_10-13-2020_03-10-10-n168-e50-bs8-lr0.0001/weights.epoch39_model.pth' # print(modelPath) model.load_state_dict(torch.load(modelPath)) model.eval() if True: for test_db_name in test_db_list: if test_db_name == _TEST_DB_AFLW: image, pose = load_data_npz('../Data/RealNPZ/AFLW2000.npz') elif test_db_name == _TEST_DB_BIWI1: image = np.load('../../Data/RealNPZ/BIWI/testImg.npy') pose = np.load('../../Data/RealNPZ/BIWI/testPose.npy') # image, pose = load_data_npz('../Data/RealNPZ/BIWI_noTrack.npz') elif test_db_name == _TEST_DB_BIWI2: image, pose = load_data_npz('../Data/RealNPZ/BIWI_test.npz') elif test_db_name == _TEST_DB_SASE: image = np.load('../Data/RealNPZ/SASERgbData.npy') pose = np.load('../Data/RealNPZ/SASEPoseData.npy') # image = np.delete(image,[1394, 1398, 1403],axis=0) # pose = np.delete(pose,[1394, 1398, 1403],axis=0) image = convertBGR2RGB(image) x_data = [] y_data = [] for i in range(0, pose.shape[0]): temp_pose = pose[i, :] # if ((np.max(temp_pose[0]) <= 90.0 and np.min(temp_pose[0]) >= -90.0) and \ # (np.max(temp_pose[1]) <= 10.0 and np.min(temp_pose[1]) >= -10.0) and \ # (np.max(temp_pose[2]) <= 10.0 and np.min(temp_pose[2]) >= -10.0)): if np.max(temp_pose) <= 90.0 and np.min(temp_pose) >= -90.0: x_data.append(image[i, :, :, :]) y_data.append(pose[i, :]) x_data = np.array(x_data) y_data = np.array(y_data) p_data, y_data = predict(model, x_data, y_data, batch_size=8) # l = 1 # # for y, p in zip(y_data, p_data): # print(l, y, p) # l = l+1 pose_matrix = np.mean(np.abs(p_data - y_data), axis=0) MAE = np.mean(pose_matrix) yaw = pose_matrix[0] pitch = pose_matrix[1] roll = pose_matrix[2] print('\n--------------------------------------------------------------------------------') print(test_db_name, ' : MAE = %3.3f, [yaw,pitch,roll] = [%3.3f, %3.3f, %3.3f]' % (MAE, yaw, pitch, roll)) print('--------------------------------------------------------------------------------') if False: modelPath = r'models/MySynth_09-05-2020_18-50-28-n8858-e90-bs8-lr0.0001/weights.epoch72_model.pth' data_dir = '/mnt/fastssd/Shubhajit_stuff/DA-Code/HeadPoseCode/Data/BIWI/FRData/' filename_path = '/mnt/fastssd/Shubhajit_stuff/DA-Code/HeadPoseCode/Data/BIWI/FRData/data.txt' batch_size = 8 model.load_state_dict(torch.load(modelPath)) model.eval() pose_dataset = datasets.Pose_BIWI_Raw(data_dir, filename_path=filename_path) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, num_workers=2) predictions = [] testSetPose = [] for i, (images, cont_labels) in enumerate(test_loader): # images = Variable(images).cuda() # label_angles = Variable(cont_labels[:, :3]).cuda(non_blocking=True) images = images.cuda() label_angles = cont_labels[:, :3].cuda() # Predict angles = model(images) pred_y = angles.detach().cpu().numpy() true_y = cont_labels.detach().cpu().numpy() predictions.append(pred_y) testSetPose.append(true_y) p_data = np.concatenate(predictions, axis=0) y_data = np.concatenate(testSetPose, axis=0) pose_matrix = np.mean(np.abs(p_data - y_data), axis=0) MAE = np.mean(pose_matrix) yaw = pose_matrix[0] pitch = pose_matrix[1] roll = pose_matrix[2] print('\n--------------------------------------------------------------------------------') print('BIWI', ' : MAE = %3.3f, [yaw,pitch,roll] = [%3.3f, %3.3f, %3.3f]' % (MAE, yaw, pitch, roll)) print('--------------------------------------------------------------------------------') if False: image = np.load('../../Data/RealNPZ/BIWI/testImg.npy') pose = np.load('../../Data/RealNPZ/BIWI/testPose.npy') x_data = [] y_data = [] for i in range(0, pose.shape[0]): temp_pose = pose[i, :] # if (np.max(temp_pose[0]) <= 60.0 and np.min(temp_pose[0]) >= -60.0) and \ # (np.max(temp_pose[1]) <= 50.0 and np.min(temp_pose[1]) >= -50.0) and \ # (np.max(temp_pose[2]) <= 40.0 and np.min(temp_pose[2]) >= -40.0): if np.max(temp_pose) <= 90.0 and np.min(temp_pose) >= -90.0: x_data.append(image[i, :, :, :]) y_data.append(pose[i, :]) x_data =
np.array(x_data)
numpy.array
import numpy as np def init_spin_state_2d(nsize=16): """Initialize spin state""" return 2*np.random.randint(2, size=(nsize, nsize)) - 1 def mcmh_algorithm(state, beta=1): """Apply Monte Carlo Metropolis-Hastings algorithm""" # Get input dimensions height, width = state.shape energy = 0 for i in range(height): for j in range(width): # Periodic neighbors up, down, left, right = ( (i - 1) % height, (i + 1) & height, (j - 1) % width, (j + 1) & width ) # Spin interaction energies e_spin_init = J*( state[i, j]*state[up, j] + state[i, j]*state[down, j] + state[i, j]*state[i, left] + state[i, j]*state[i, right] ) e_spin_flip = J*( -state[i, j]*state[up, j] - state[i, j]*state[down, j] - state[i, j]*state[i, left] - state[i, j]*state[i, right] ) delta_e = e_spin_flip - e_spin_init energy += e_spin_flip # Metropolis updates if delta: state[i, j] = -state[i, j] elif np.random.rand() < np.exp(-beta*delta_e) : state[i, j] = -state[i, j] else: pass return state, energy/nsize**2.,
np.sum(state)
numpy.sum
#!/usr/bin/env python ''' Test script to compare the performances of the generalized poisson llh with the other miminization metrics available in pisa ''' from __future__ import absolute_import, print_function, division __author__ = "<NAME> (<EMAIL>)" # # Standard python imports # import os import pickle from collections import OrderedDict import copy import numpy as np # # Font stuff # import matplotlib as mpl mpl.use('agg') from matplotlib import rcParams FONTSIZE=20 rcParams['font.family'] = 'serif' rcParams['font.size'] = 20 mpl.rc('text', usetex=True) #mpl.rcParams['text.latex.preamble']=[r"\usepackage{amsmath}"] # # pisa tools and objects # from pisa.core.binning import OneDimBinning, MultiDimBinning from pisa.core.map import Map, MapSet from pisa.core.distribution_maker import DistributionMaker from pisa.utils.config_parser import parse_pipeline_config from pisa.core.param import Param, ParamSet from pisa.analysis.analysis import Analysis # debug tools from pisa.utils.log import logging from pisa.utils.profiler import line_profile from pisa.utils.log import set_verbosity, Levels #set_verbosity(Levels.TRACE) ################################################################################## STANDARD_CONFIG = os.environ['PISA'] + \ '/pisa/stages/data/super_simple_pipeline.cfg' TRUE_MU = 20. TRUE_SIGMA = 3.1 NBINS = 31 # # Define formatting properties for all metrics # import seaborn as sns COLORS = sns.color_palette("muted", 8) LIKELIHOOD_FORMATTING = OrderedDict() LIKELIHOOD_FORMATTING['llh'] = {'label':r'Poisson llh', 'marker':'s', 'color': COLORS[0]} LIKELIHOOD_FORMATTING['mcllh_eff'] = {'label':r'Effective llh', 'color': COLORS[1]} LIKELIHOOD_FORMATTING['mcllh_mean'] = {'label':r'Mean llh', 'color': COLORS[2], 'linestyle': '--'} LIKELIHOOD_FORMATTING['generalized_poisson_llh'] = {'label':r'Generalized llh', 'color': COLORS[7]} LIKELIHOOD_FORMATTING['mod_chi2'] = {'label':r'Mod. $\chi^{2}$', 'color': COLORS[3]} ################################################################################ class ToyMCllhParam: ''' Class defining the parameters of the Toy MC ''' def __init__(self): self.n_data = 0. # Number of data points to bin self.signal_fraction = 1. # fraction of those points that will constitute the signal self.true_mu = TRUE_MU # True mean of the signal self.true_sigma = TRUE_SIGMA # True width of the signal self.nbackground_low = 0. # lowest value the background can take self.nbackground_high = 40. # highest value the background can take self.stats_factor = 1. # Statistical factor for the MC # # Binning # self.binning = None @property def nsig(self): ''' number of data points that are part of the signal ''' return int(self.n_data*self.signal_fraction) @property def nbkg(self): ''' number of data points that are part of the background ''' return self.n_data-self.nsig @property def nbins(self): ''' number of bins in the binning ''' assert self.binning is not None, 'ERROR: specify a binning first' return self.binning.tot_num_bins def create_pseudo_data(toymc_params, seed=None): ''' Create pseudo data consisting of a gaussian peak on top of a uniform background ''' if seed is not None: np.random.seed(seed) binning = toymc_params.binning # # Gaussian signal peak # signal = np.random.normal( loc=toymc_params.mu, scale=toymc_params.sigma, size=toymc_params.nsig) # # Uniform background # background = np.random.uniform( high=toymc_params.nbackground_high, low=toymc_params.nbackground_low, size=toymc_params.nbkg) total_data = np.concatenate([signal, background]) counts_data, _ = np.histogram(total_data, bins=binning.bin_edges[0].magnitude) # Convert data histogram into a pisa map data_map = Map(name='total', binning=binning, hist=counts_data) # Set the errors as the sqrt of the counts data_map.set_errors(error_hist=np.sqrt(counts_data)) data_as_mapset = MapSet([data_map]) return data_as_mapset def create_mc_template(toymc_params, config_file=None, seed=None, keep_same_weight=True): ''' Create MC template out of a pisa pipeline ''' if seed is not None: np.random.seed(seed) Config = parse_pipeline_config(config_file) # Change binning Config[('data','pi_simple_signal')]['output_specs'] = toymc_params.binning Config[('likelihood','pi_generalized_llh_params')]['output_specs'] = toymc_params.binning # If keep_same_weight is True, turn off the mean adjust and pseudo weight of pi_generalized_llh if keep_same_weight: Config[('likelihood','pi_generalized_llh_params')]['with_mean_adjust'] = False Config[('likelihood','pi_generalized_llh_params')]['with_pseudo_weight'] = False else: Config[('likelihood','pi_generalized_llh_params')]['with_mean_adjust'] = True Config[('likelihood','pi_generalized_llh_params')]['with_pseudo_weight'] = True new_n_events_data = Param( name='n_events_data', value=toymc_params.n_data, prior=None, range=None, is_fixed=True) new_sig_frac = Param(name='signal_fraction', value=toymc_params.signal_fraction, prior=None, range=None, is_fixed=True) new_stats_factor = Param( name='stats_factor', value=toymc_params.stats_factor, prior=None, range=None, is_fixed=True) # These should match the values of the config file, but we override them just in case we need to change these later new_mu = Param(name='mu', value=toymc_params.mu, prior=None, range=[0, 100], is_fixed=False) new_sigma = Param(name='sigma', value=toymc_params.sigma, prior=None, range=None, is_fixed=True) Config[('data', 'pi_simple_signal')]['params'].update(p=ParamSet( [new_n_events_data, new_sig_frac, new_stats_factor, new_mu, new_sigma])) MCtemplate = DistributionMaker(Config) return MCtemplate ################################################################################## def run_llh_scans(metrics=[], mc_params=None, config_file=None, data_mapset=None, mc_seed=None, results=None): ''' Perform Likelihood scans fover a range of injected mu values metrics: list of strings (names of the likelihood to run) mc_template: DistributionMaker data: MapSet ''' assert isinstance(results, (dict, OrderedDict) ), 'ERROR: results must be a dict' assert 'toymc_params' in results.keys(), 'ERROR: missing toymc_params' for metric in metrics: if metric not in results.keys(): results[metric] = OrderedDict() results[metric]['llh_scan'] = OrderedDict() # # Create the mc template # mc_template = create_mc_template(mc_params, config_file=config_file, seed=mc_seed) # # Collect the llh value at the Truth # for metric in metrics: print(metric) mc_template.params['mu'].value = toymc_params.true_mu new_MC = mc_template.get_outputs(return_sum=True, force_standard_output=False) if metric == 'generalized_poisson_llh': llhval = data_mapset.maps[0].metric_total(new_MC, metric=metric, metric_kwargs={ 'empty_bins': mc_template.empty_bin_indices}) logging.trace('empty_bins: ', mc_template.empty_bin_indices) else: new_MC = new_MC['old_sum'] llhval = data_mapset.metric_total(new_MC, metric=metric) results[metric]['llh_scan']['llh_at_truth'] = llhval results[metric]['llh_scan']['tested_mu'] = np.linspace(10., 30., 50) results[metric]['llh_scan']['scan_values'] = [] # # Scan llh values around the true signal peak value # for tested_mu in results[metric]['llh_scan']['tested_mu']: # # Recompute the MC template with a new value of the mu parameter # mc_template.params['mu'].value = tested_mu new_MC = mc_template.get_outputs(return_sum=True, force_standard_output=False) if metric == 'generalized_poisson_llh': llhval = data_mapset.maps[0].metric_total(new_MC, metric=metric, metric_kwargs={ 'empty_bins': mc_template.empty_bin_indices}) else: new_MC = new_MC['old_sum'] llhval = data_mapset.metric_total(new_MC, metric=metric) results[metric]['llh_scan']['scan_values'].append(llhval) return results def plot_llh_scans(metrics=[], results=None, interactive=False, output_pdf=None, prefix='', save_individual_fig=False): ''' Plot Likelihood scans ''' fig, ax = plt.subplots(figsize=(7, 7)) n = 0 for llh_name in metrics: llhvals = results[llh_name]['llh_scan']['scan_values'] tested_mu = results[llh_name]['llh_scan']['tested_mu'] if 'chi2' in llh_name: TS = llhvals-np.amin(llhvals) else: TS = -2*(llhvals-np.amax(llhvals)) ax.plot(tested_mu, TS, **LIKELIHOOD_FORMATTING[llh_name]) n += 1 ax.set_xlabel(r'injected $\mu$') ax.set_ylabel(r'Test Statistic(-2$\ln[L_{\mu}/L_{o}]$ or $\chi^{2}$)') ax.set_ylim([-10., 500]) ax.plot([15.,25.],[0.,0.],'k') ax.set_title('MC factor = {}'.format(results['toymc_params'].stats_factor)) #ax.set_title('Likelihood scans over mu') ax.legend() fig.tight_layout() if interactive: plt.show() if save_individual_fig: plt.savefig(prefix+'plot_llh_scan.png') if output_pdf is None: return fig else: output_pdf.savefig(fig) plt.close('all') del fig return 1 ################################################################################################### #@line_profile def run_coverage_test(n_trials=100, toymc_params=None, mc_seed = None, config_file=None, metrics=None, results=None, output_stem='coverage_test'): ''' Perform Coverage and bias tests We create n_trials pseudo-dataset, Fit them with each metric at various levels of statistics. and save the resulting llh values and fitted parameters into a file n_trials: int (number of pseudo-experiment to run) toymc_params: ToyMC_LLh object (describe the parameters of the experiment like signal_fraction and stats_factor) mc_infinite_Stats: DistributionMaker (MC template made with an ideal level of stats representing "infinite MC" precision) ''' import time assert isinstance(results, (dict, OrderedDict)), 'ERROR: results must be a dict' assert isinstance(metrics, list), 'ERROR: must specify metrics as a list' assert 'toymc_params' in results.keys(), 'ERROR: missing toymc_params' results['toymc_params'] = toymc_params for metric in metrics: if metric not in results.keys(): results[metric] = OrderedDict() results[metric]['coverage'] = [] # # minimizer settings to pass into the pisa analysis class # minimizer_settings = {"method": {"value": "l-bfgs-b", # "SLSQP", "desc": "The string to pass to scipy.optimize.minimize so it knows what to use" }, "options": {"value": {"disp": 0, "ftol": 1.0e-6, "eps": 1.0e-6, "maxiter": 100 }, "desc": {"disp": "Set to True to print convergence messages", "ftol": "Precision goal for the value of f in the stopping criterion", "eps": "Step size used for numerical approximation of the jacobian.", "maxiter": "Maximum number of iteration" } } } # # Create the mc template # mc_template = create_mc_template(toymc_params, config_file=config_file, seed=mc_seed) # # Create a pseudo-infinite statistics template # infinite_toymc_params = copy.deepcopy(toymc_params) infinite_toymc_params.stats_factor = 100. mc_template_pseudo_infinite = create_mc_template(infinite_toymc_params, config_file=config_file, seed=mc_seed) # # Start pseudo trials # for metric in metrics_to_test: filename = output_stem+'_pseudo_exp_llh_%s.pckl' % metric if os.path.isfile(filename): results[metric]['coverage'] = pickle.load(open(filename,'rb')) else: logging.debug('minimizing: ', metric) to = time.time() trial_i = 0 failed_fits = 0 while trial_i < n_trials and failed_fits<2*n_trials: experiment_result = {} # # Create a pseudo-dataset # data_trial = create_pseudo_data(toymc_params=toymc_params, seed=None) # # Compute the truth llh value of this pseudo experiment # truth - if the truth comes from infinite stats MC # if metric == 'generalized_poisson_llh': mc = mc_template_pseudo_infinite.get_outputs(return_sum=False, force_standard_output=False)[0] llhval_true = data_trial.maps[0].metric_total(mc, metric=metric, metric_kwargs={ 'empty_bins': mc_template_pseudo_infinite.empty_bin_indices}) else: mc = mc_template_pseudo_infinite.get_outputs(return_sum=True) llhval_true = data_trial.metric_total(mc, metric=metric) experiment_result['llh_infinite_stats'] = llhval_true # # truth if the truth comes from low stats MC # if metric == 'generalized_poisson_llh': mc = mc_template.get_outputs(return_sum=False, force_standard_output=False)[0] llhval = data_trial.maps[0].metric_total(mc, metric=metric, metric_kwargs={ 'empty_bins': mc_template.empty_bin_indices}) else: mc = mc_template.get_outputs(return_sum=True) llhval = data_trial.metric_total(mc, metric=metric) experiment_result['llh_lowstats'] = llhval # # # # minimized llh (high stats) # # # logging.debug('\nhigh stats fit:\n') # ana = Analysis() # result_pseudo_truth, _ = ana.fit_hypo(data_trial, # mc_infinite_stats, # metric=metric, # minimizer_settings=minimizer_settings, # hypo_param_selections=None, # check_octant=False, # fit_octants_separately=False, # ) # #except: # # logging.trace('Failed Fit') # # failed_fits += 1 # # continue # experiment_result['infinite_stats_opt'] = {'metric_val': result_pseudo_truth['metric_val'], # 'best_fit_param': result_pseudo_truth['params']['mu']} # # minimized llh (low stats) # logging.debug('\nlow stats fit:\n') ana = Analysis() try: result_lowstats, _ = ana.fit_hypo(data_trial, mc_template, metric=metric, minimizer_settings=minimizer_settings, hypo_param_selections=None, check_octant=False, fit_octants_separately=False, ) except: logging.debug('Failed Fit') failed_fits += 1 continue experiment_result['lowstats_opt'] = {'metric_val': result_lowstats['metric_val'], 'best_fit_param': result_lowstats['params']['mu']} results[metric]['coverage'].append(experiment_result) trial_i += 1 if trial_i==0: raise Exception('ERROR: no fit managed to converge after {} attempst'.format(failed_fits)) t1 = time.time() logging.debug("Time for ", n_trials, " minimizations: ", t1-to, " s") logging.debug("Saving to file...") pickle.dump(results[metric]['coverage'], open(filename, 'wb')) logging.debug("Saved.") return results def plot_coverage_test(output_pdf=None, results=None, metrics=None, stats_factor=None, output_stem=None, n_trials=None, prefix='', save_individual_fig=False, outname='test_coverage.pdf'): ''' plot the results of the coverage test ''' from utils.plotting.standard_modules import Figure assert isinstance(metrics, list), 'ERROR: must specify metrics as a list' from scipy.stats import chi2 if output_pdf is None: output_pdf = PdfPages(outname) coverage_fig = Figure(figsize=(7, 7)) # # produce an example chi2 distribution with d.o.f =1 # # This will help us compare ts distribution directly sample_chi2_distrib = np.random.chisquare(size=n_trials, df=1) for llh_name in metrics: logging.trace('plotting %s'%llh_name) container_ts_truth_high = [] container_ts_truth_low = [] container_ts_lowstat = [] container_ts_highstat = [] llh_bias = [] param_bias = [] val_truth = TRUE_MU container_val_lowstat = [] container_val_highstat = [] # Retrieve data from the coverage test indata = results[llh_name]['coverage'] if len(indata) < 1: print('No successful fits for metric: {}.skipping') for pseudo_exp in indata: val_low = pseudo_exp['lowstats_opt']['best_fit_param'].value.m llh_optimized_low = pseudo_exp['lowstats_opt']['metric_val'] llh_truth_low = pseudo_exp['llh_lowstats'] llh_truth_high = pseudo_exp['llh_infinite_stats'] # # check that all elements of the comparison are finite # good_trial = np.isfinite(val_low) good_trial *= np.isfinite(llh_optimized_low) good_trial *= np.isfinite(llh_truth_low) good_trial *= np.isfinite(llh_truth_high) if good_trial: container_val_lowstat.append(val_low) container_ts_truth_high.append(llh_truth_high) container_ts_truth_low.append(llh_truth_low) ts_low = -2*(llh_optimized_low-llh_truth_low) # We take the absolute value here because we want to know how far # we are from the truth, and we can optimize to llh values above and below the truth container_ts_lowstat.append(np.abs(ts_low)) param_bias.append((val_low-val_truth)/val_truth) else: continue # # First plot: TS distribution # fig_ts_distrib = Figure(figsize=(7,7), title=LIKELIHOOD_FORMATTING[llh_name]['label']) ts_binning = np.linspace(0, 25, 31) c,ts_edges = np.histogram(sample_chi2_distrib, bins=ts_binning) ts_x = ts_edges[:-1]+0.5*(ts_edges[1:]-ts_edges[:-1]) fig_ts_distrib.get_ax().errorbar(ts_x, c, yerr=
np.sqrt(c)
numpy.sqrt
import re import sys from io import StringIO import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.decomposition import NMF, MiniBatchNMF from sklearn.decomposition import non_negative_factorization from sklearn.decomposition import _nmf as nmf # For testing internals from scipy.sparse import csc_matrix import pytest from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.utils._testing import ignore_warnings from sklearn.utils.extmath import squared_norm from sklearn.base import clone from sklearn.exceptions import ConvergenceWarning @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_convergence_warning(Estimator, solver): convergence_warning = ( "Maximum number of iterations 1 reached. Increase it to improve convergence." ) A = np.ones((2, 2)) with pytest.warns(ConvergenceWarning, match=convergence_warning): Estimator(max_iter=1, **solver).fit(A) def test_initialize_nn_output(): # Test that initialization does not return negative values rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) for init in ("random", "nndsvd", "nndsvda", "nndsvdar"): W, H = nmf._initialize_nmf(data, 10, init=init, random_state=0) assert not ((W < 0).any() or (H < 0).any()) @pytest.mark.filterwarnings( r"ignore:The multiplicative update \('mu'\) solver cannot update zeros present in" r" the initialization" ) def test_parameter_checking(): A = np.ones((2, 2)) name = "spam" with ignore_warnings(category=FutureWarning): # TODO remove in 1.2 msg = "Invalid regularization parameter: got 'spam' instead of one of" with pytest.raises(ValueError, match=msg): NMF(regularization=name).fit(A) msg = "Invalid beta_loss parameter: solver 'cd' does not handle beta_loss = 1.0" with pytest.raises(ValueError, match=msg): NMF(solver="cd", beta_loss=1.0).fit(A) msg = "Negative values in data passed to" with pytest.raises(ValueError, match=msg): NMF().fit(-A) clf = NMF(2, tol=0.1).fit(A) with pytest.raises(ValueError, match=msg): clf.transform(-A) with pytest.raises(ValueError, match=msg): nmf._initialize_nmf(-A, 2, "nndsvd") for init in ["nndsvd", "nndsvda", "nndsvdar"]: msg = re.escape( "init = '{}' can only be used when " "n_components <= min(n_samples, n_features)".format(init) ) with pytest.raises(ValueError, match=msg): NMF(3, init=init).fit(A) with pytest.raises(ValueError, match=msg): MiniBatchNMF(3, init=init).fit(A) with pytest.raises(ValueError, match=msg): nmf._initialize_nmf(A, 3, init) @pytest.mark.parametrize( "param, match", [ ({"n_components": 0}, "Number of components must be a positive integer"), ({"max_iter": -1}, "Maximum number of iterations must be a positive integer"), ({"tol": -1}, "Tolerance for stopping criteria must be positive"), ({"init": "wrong"}, "Invalid init parameter"), ({"beta_loss": "wrong"}, "Invalid beta_loss parameter"), ], ) @pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF]) def test_nmf_common_wrong_params(Estimator, param, match): # Check that appropriate errors are raised for invalid values of parameters common # to NMF and MiniBatchNMF. A = np.ones((2, 2)) with pytest.raises(ValueError, match=match): Estimator(**param).fit(A) @pytest.mark.parametrize( "param, match", [ ({"solver": "wrong"}, "Invalid solver parameter"), ], ) def test_nmf_wrong_params(param, match): # Check that appropriate errors are raised for invalid values specific to NMF # parameters A = np.ones((2, 2)) with pytest.raises(ValueError, match=match): NMF(**param).fit(A) @pytest.mark.parametrize( "param, match", [ ({"batch_size": 0}, "batch_size must be a positive integer"), ], ) def test_minibatch_nmf_wrong_params(param, match): # Check that appropriate errors are raised for invalid values specific to # MiniBatchNMF parameters A = np.ones((2, 2)) with pytest.raises(ValueError, match=match): MiniBatchNMF(**param).fit(A) def test_initialize_close(): # Test NNDSVD error # Test that _initialize_nmf error is less than the standard deviation of # the entries in the matrix. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) W, H = nmf._initialize_nmf(A, 10, init="nndsvd") error = linalg.norm(np.dot(W, H) - A) sdev = linalg.norm(A - A.mean()) assert error <= sdev def test_initialize_variants(): # Test NNDSVD variants correctness # Test that the variants 'nndsvda' and 'nndsvdar' differ from basic # 'nndsvd' only where the basic version has zeros. rng = np.random.mtrand.RandomState(42) data = np.abs(rng.randn(10, 10)) W0, H0 = nmf._initialize_nmf(data, 10, init="nndsvd") Wa, Ha = nmf._initialize_nmf(data, 10, init="nndsvda") War, Har = nmf._initialize_nmf(data, 10, init="nndsvdar", random_state=0) for ref, evl in ((W0, Wa), (W0, War), (H0, Ha), (H0, Har)): assert_almost_equal(evl[ref != 0], ref[ref != 0]) # ignore UserWarning raised when both solver='mu' and init='nndsvd' @ignore_warnings(category=UserWarning) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) @pytest.mark.parametrize("init", (None, "nndsvd", "nndsvda", "nndsvdar", "random")) @pytest.mark.parametrize("alpha_W", (0.0, 1.0)) @pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same")) def test_nmf_fit_nn_output(Estimator, solver, init, alpha_W, alpha_H): # Test that the decomposition does not contain negative values A = np.c_[5.0 - np.arange(1, 6), 5.0 + np.arange(1, 6)] model = Estimator( n_components=2, init=init, alpha_W=alpha_W, alpha_H=alpha_H, random_state=0, **solver, ) transf = model.fit_transform(A) assert not ((model.components_ < 0).any() or (transf < 0).any()) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_fit_close(Estimator, solver): rng = np.random.mtrand.RandomState(42) # Test that the fit is not too far away pnmf = Estimator( 5, init="nndsvdar", random_state=0, max_iter=600, **solver, ) X = np.abs(rng.randn(6, 5)) assert pnmf.fit(X).reconstruction_err_ < 0.1 def test_nmf_true_reconstruction(): # Test that the fit is not too far away from an exact solution # (by construction) n_samples = 15 n_features = 10 n_components = 5 beta_loss = 1 batch_size = 3 max_iter = 1000 rng = np.random.mtrand.RandomState(42) W_true = np.zeros([n_samples, n_components]) W_array = np.abs(rng.randn(n_samples)) for j in range(n_components): W_true[j % n_samples, j] = W_array[j % n_samples] H_true = np.zeros([n_components, n_features]) H_array = np.abs(rng.randn(n_components)) for j in range(n_features): H_true[j % n_components, j] = H_array[j % n_components] X = np.dot(W_true, H_true) model = NMF( n_components=n_components, solver="mu", beta_loss=beta_loss, max_iter=max_iter, random_state=0, ) transf = model.fit_transform(X) X_calc = np.dot(transf, model.components_) assert model.reconstruction_err_ < 0.1 assert_allclose(X, X_calc) mbmodel = MiniBatchNMF( n_components=n_components, beta_loss=beta_loss, batch_size=batch_size, random_state=0, max_iter=max_iter, ) transf = mbmodel.fit_transform(X) X_calc = np.dot(transf, mbmodel.components_) assert mbmodel.reconstruction_err_ < 0.1 assert_allclose(X, X_calc, atol=1) @pytest.mark.parametrize("solver", ["cd", "mu"]) def test_nmf_transform(solver): # Test that fit_transform is equivalent to fit.transform for NMF # Test that NMF.transform returns close values rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) m = NMF( solver=solver, n_components=3, init="random", random_state=0, tol=1e-6, ) ft = m.fit_transform(A) t = m.transform(A) assert_allclose(ft, t, atol=1e-1) def test_minibatch_nmf_transform(): # Test that fit_transform is equivalent to fit.transform for MiniBatchNMF # Only guaranteed with fresh restarts rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(6, 5)) m = MiniBatchNMF( n_components=3, random_state=0, tol=1e-3, fresh_restarts=True, ) ft = m.fit_transform(A) t = m.transform(A) assert_allclose(ft, t) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_transform_custom_init(Estimator, solver): # Smoke test that checks if NMF.transform works with custom initialization random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 5)) n_components = 4 avg = np.sqrt(A.mean() / n_components) H_init = np.abs(avg * random_state.randn(n_components, 5)) W_init = np.abs(avg * random_state.randn(6, n_components)) m = Estimator( n_components=n_components, init="custom", random_state=0, tol=1e-3, **solver ) m.fit_transform(A, W=W_init, H=H_init) m.transform(A) @pytest.mark.parametrize("solver", ("cd", "mu")) def test_nmf_inverse_transform(solver): # Test that NMF.inverse_transform returns close values random_state = np.random.RandomState(0) A = np.abs(random_state.randn(6, 4)) m = NMF( solver=solver, n_components=4, init="random", random_state=0, max_iter=1000, ) ft = m.fit_transform(A) A_new = m.inverse_transform(ft) assert_array_almost_equal(A, A_new, decimal=2) def test_mbnmf_inverse_transform(): # Test that MiniBatchNMF.transform followed by MiniBatchNMF.inverse_transform # is close to the identity rng = np.random.RandomState(0) A = np.abs(rng.randn(6, 4)) nmf = MiniBatchNMF( random_state=rng, max_iter=500, init="nndsvdar", fresh_restarts=True, ) ft = nmf.fit_transform(A) A_new = nmf.inverse_transform(ft) assert_allclose(A, A_new, rtol=1e-3, atol=1e-2) @pytest.mark.parametrize("Estimator", [NMF, MiniBatchNMF]) def test_n_components_greater_n_features(Estimator): # Smoke test for the case of more components than features. rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(30, 10)) Estimator(n_components=15, random_state=0, tol=1e-2).fit(A) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) @pytest.mark.parametrize("alpha_W", (0.0, 1.0)) @pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same")) def test_nmf_sparse_input(Estimator, solver, alpha_W, alpha_H): # Test that sparse matrices are accepted as input from scipy.sparse import csc_matrix rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 A_sparse = csc_matrix(A) est1 = Estimator( n_components=5, init="random", alpha_W=alpha_W, alpha_H=alpha_H, random_state=0, tol=0, max_iter=100, **solver, ) est2 = clone(est1) W1 = est1.fit_transform(A) W2 = est2.fit_transform(A_sparse) H1 = est1.components_ H2 = est2.components_ assert_allclose(W1, W2) assert_allclose(H1, H2) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_sparse_transform(Estimator, solver): # Test that transform works on sparse data. Issue #2124 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(3, 2)) A[1, 1] = 0 A = csc_matrix(A) model = Estimator(random_state=0, n_components=2, max_iter=400, **solver) A_fit_tr = model.fit_transform(A) A_tr = model.transform(A) assert_allclose(A_fit_tr, A_tr, atol=1e-1) @pytest.mark.parametrize("init", ["random", "nndsvd"]) @pytest.mark.parametrize("solver", ("cd", "mu")) @pytest.mark.parametrize("alpha_W", (0.0, 1.0)) @pytest.mark.parametrize("alpha_H", (0.0, 1.0, "same")) def test_non_negative_factorization_consistency(init, solver, alpha_W, alpha_H): # Test that the function is called in the same way, either directly # or through the NMF class max_iter = 500 rng = np.random.mtrand.RandomState(42) A = np.abs(rng.randn(10, 10)) A[:, 2 * np.arange(5)] = 0 W_nmf, H, _ = non_negative_factorization( A, init=init, solver=solver, max_iter=max_iter, alpha_W=alpha_W, alpha_H=alpha_H, random_state=1, tol=1e-2, ) W_nmf_2, H, _ = non_negative_factorization( A, H=H, update_H=False, init=init, solver=solver, max_iter=max_iter, alpha_W=alpha_W, alpha_H=alpha_H, random_state=1, tol=1e-2, ) model_class = NMF( init=init, solver=solver, max_iter=max_iter, alpha_W=alpha_W, alpha_H=alpha_H, random_state=1, tol=1e-2, ) W_cls = model_class.fit_transform(A) W_cls_2 = model_class.transform(A) assert_allclose(W_nmf, W_cls) assert_allclose(W_nmf_2, W_cls_2) def test_non_negative_factorization_checking(): A = np.ones((2, 2)) # Test parameters checking is public function nnmf = non_negative_factorization msg = re.escape( "Number of components must be a positive integer; got (n_components=1.5)" ) with pytest.raises(ValueError, match=msg): nnmf(A, A, A, 1.5, init="random") msg = re.escape( "Number of components must be a positive integer; got (n_components='2')" ) with pytest.raises(ValueError, match=msg): nnmf(A, A, A, "2", init="random") msg = re.escape("Negative values in data passed to NMF (input H)") with pytest.raises(ValueError, match=msg): nnmf(A, A, -A, 2, init="custom") msg = re.escape("Negative values in data passed to NMF (input W)") with pytest.raises(ValueError, match=msg): nnmf(A, -A, A, 2, init="custom") msg = re.escape("Array passed to NMF (input H) is full of zeros") with pytest.raises(ValueError, match=msg): nnmf(A, A, 0 * A, 2, init="custom") with ignore_warnings(category=FutureWarning): # TODO remove in 1.2 msg = "Invalid regularization parameter: got 'spam' instead of one of" with pytest.raises(ValueError, match=msg): nnmf(A, A, 0 * A, 2, init="custom", regularization="spam") def _beta_divergence_dense(X, W, H, beta): """Compute the beta-divergence of X and W.H for dense array only. Used as a reference for testing nmf._beta_divergence. """ WH = np.dot(W, H) if beta == 2: return squared_norm(X - WH) / 2 WH_Xnonzero = WH[X != 0] X_nonzero = X[X != 0] np.maximum(WH_Xnonzero, 1e-9, out=WH_Xnonzero) if beta == 1: res = np.sum(X_nonzero * np.log(X_nonzero / WH_Xnonzero)) res += WH.sum() - X.sum() elif beta == 0: div = X_nonzero / WH_Xnonzero res = np.sum(div) - X.size - np.sum(np.log(div)) else: res = (X_nonzero**beta).sum() res += (beta - 1) * (WH**beta).sum() res -= beta * (X_nonzero * (WH_Xnonzero ** (beta - 1))).sum() res /= beta * (beta - 1) return res def test_beta_divergence(): # Compare _beta_divergence with the reference _beta_divergence_dense n_samples = 20 n_features = 10 n_components = 5 beta_losses = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0] # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.clip(X, 0, None, out=X) X_csr = sp.csr_matrix(X) W, H = nmf._initialize_nmf(X, n_components, init="random", random_state=42) for beta in beta_losses: ref = _beta_divergence_dense(X, W, H, beta) loss = nmf._beta_divergence(X, W, H, beta) loss_csr = nmf._beta_divergence(X_csr, W, H, beta) assert_almost_equal(ref, loss, decimal=7) assert_almost_equal(ref, loss_csr, decimal=7) def test_special_sparse_dot(): # Test the function that computes np.dot(W, H), only where X is non zero. n_samples = 10 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.clip(X, 0, None, out=X) X_csr = sp.csr_matrix(X) W = np.abs(rng.randn(n_samples, n_components)) H = np.abs(rng.randn(n_components, n_features)) WH_safe = nmf._special_sparse_dot(W, H, X_csr) WH = nmf._special_sparse_dot(W, H, X) # test that both results have same values, in X_csr nonzero elements ii, jj = X_csr.nonzero() WH_safe_data = np.asarray(WH_safe[ii, jj]).ravel() assert_array_almost_equal(WH_safe_data, WH[ii, jj], decimal=10) # test that WH_safe and X_csr have the same sparse structure assert_array_equal(WH_safe.indices, X_csr.indices) assert_array_equal(WH_safe.indptr, X_csr.indptr) assert_array_equal(WH_safe.shape, X_csr.shape) @ignore_warnings(category=ConvergenceWarning) def test_nmf_multiplicative_update_sparse(): # Compare sparse and dense input in multiplicative update NMF # Also test continuity of the results with respect to beta_loss parameter n_samples = 20 n_features = 10 n_components = 5 alpha = 0.1 l1_ratio = 0.5 n_iter = 20 # initialization rng = np.random.mtrand.RandomState(1337) X = rng.randn(n_samples, n_features) X = np.abs(X) X_csr = sp.csr_matrix(X) W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42) for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5): # Reference with dense array X W, H = W0.copy(), H0.copy() W1, H1, _ = non_negative_factorization( X, W, H, n_components, init="custom", update_H=True, solver="mu", beta_loss=beta_loss, max_iter=n_iter, alpha_W=alpha, l1_ratio=l1_ratio, random_state=42, ) # Compare with sparse X W, H = W0.copy(), H0.copy() W2, H2, _ = non_negative_factorization( X_csr, W, H, n_components, init="custom", update_H=True, solver="mu", beta_loss=beta_loss, max_iter=n_iter, alpha_W=alpha, l1_ratio=l1_ratio, random_state=42, ) assert_allclose(W1, W2, atol=1e-7) assert_allclose(H1, H2, atol=1e-7) # Compare with almost same beta_loss, since some values have a specific # behavior, but the results should be continuous w.r.t beta_loss beta_loss -= 1.0e-5 W, H = W0.copy(), H0.copy() W3, H3, _ = non_negative_factorization( X_csr, W, H, n_components, init="custom", update_H=True, solver="mu", beta_loss=beta_loss, max_iter=n_iter, alpha_W=alpha, l1_ratio=l1_ratio, random_state=42, ) assert_allclose(W1, W3, atol=1e-4) assert_allclose(H1, H3, atol=1e-4) def test_nmf_negative_beta_loss(): # Test that an error is raised if beta_loss < 0 and X contains zeros. # Test that the output has not NaN values when the input contains zeros. n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.clip(X, 0, None, out=X) X_csr = sp.csr_matrix(X) def _assert_nmf_no_nan(X, beta_loss): W, H, _ = non_negative_factorization( X, init="random", n_components=n_components, solver="mu", beta_loss=beta_loss, random_state=0, max_iter=1000, ) assert not np.any(np.isnan(W)) assert not np.any(np.isnan(H)) msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." for beta_loss in (-0.6, 0.0): with pytest.raises(ValueError, match=msg): _assert_nmf_no_nan(X, beta_loss) _assert_nmf_no_nan(X + 1e-9, beta_loss) for beta_loss in (0.2, 1.0, 1.2, 2.0, 2.5): _assert_nmf_no_nan(X, beta_loss) _assert_nmf_no_nan(X_csr, beta_loss) @pytest.mark.parametrize("beta_loss", [-0.5, 0.0]) def test_minibatch_nmf_negative_beta_loss(beta_loss): """Check that an error is raised if beta_loss < 0 and X contains zeros.""" rng = np.random.RandomState(0) X = rng.normal(size=(6, 5)) X[X < 0] = 0 nmf = MiniBatchNMF(beta_loss=beta_loss, random_state=0) msg = "When beta_loss <= 0 and X contains zeros, the solver may diverge." with pytest.raises(ValueError, match=msg): nmf.fit(X) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_regularization(Estimator, solver): # Test the effect of L1 and L2 regularizations n_samples = 6 n_features = 5 n_components = 3 rng = np.random.mtrand.RandomState(42) X = np.abs(rng.randn(n_samples, n_features)) # L1 regularization should increase the number of zeros l1_ratio = 1.0 regul = Estimator( n_components=n_components, alpha_W=0.5, l1_ratio=l1_ratio, random_state=42, **solver, ) model = Estimator( n_components=n_components, alpha_W=0.0, l1_ratio=l1_ratio, random_state=42, **solver, ) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ eps = np.finfo(np.float64).eps W_regul_n_zeros = W_regul[W_regul <= eps].size W_model_n_zeros = W_model[W_model <= eps].size H_regul_n_zeros = H_regul[H_regul <= eps].size H_model_n_zeros = H_model[H_model <= eps].size assert W_regul_n_zeros > W_model_n_zeros assert H_regul_n_zeros > H_model_n_zeros # L2 regularization should decrease the sum of the squared norm # of the matrices W and H l1_ratio = 0.0 regul = Estimator( n_components=n_components, alpha_W=0.5, l1_ratio=l1_ratio, random_state=42, **solver, ) model = Estimator( n_components=n_components, alpha_W=0.0, l1_ratio=l1_ratio, random_state=42, **solver, ) W_regul = regul.fit_transform(X) W_model = model.fit_transform(X) H_regul = regul.components_ H_model = model.components_ assert (linalg.norm(W_model)) ** 2.0 + (linalg.norm(H_model)) ** 2.0 > ( linalg.norm(W_regul) ) ** 2.0 + (linalg.norm(H_regul)) ** 2.0 @ignore_warnings(category=ConvergenceWarning) @pytest.mark.parametrize("solver", ("cd", "mu")) def test_nmf_decreasing(solver): # test that the objective function is decreasing at each iteration n_samples = 20 n_features = 15 n_components = 10 alpha = 0.1 l1_ratio = 0.5 tol = 0.0 # initialization rng = np.random.mtrand.RandomState(42) X = rng.randn(n_samples, n_features) np.abs(X, X) W0, H0 = nmf._initialize_nmf(X, n_components, init="random", random_state=42) for beta_loss in (-1.2, 0, 0.2, 1.0, 2.0, 2.5): if solver != "mu" and beta_loss != 2: # not implemented continue W, H = W0.copy(), H0.copy() previous_loss = None for _ in range(30): # one more iteration starting from the previous results W, H, _ = non_negative_factorization( X, W, H, beta_loss=beta_loss, init="custom", n_components=n_components, max_iter=1, alpha_W=alpha, solver=solver, tol=tol, l1_ratio=l1_ratio, verbose=0, random_state=0, update_H=True, ) loss = ( nmf._beta_divergence(X, W, H, beta_loss) + alpha * l1_ratio * n_features * W.sum() + alpha * l1_ratio * n_samples * H.sum() + alpha * (1 - l1_ratio) * n_features * (W**2).sum() + alpha * (1 - l1_ratio) * n_samples * (H**2).sum() ) if previous_loss is not None: assert previous_loss > loss previous_loss = loss def test_nmf_underflow(): # Regression test for an underflow issue in _beta_divergence rng = np.random.RandomState(0) n_samples, n_features, n_components = 10, 2, 2 X = np.abs(rng.randn(n_samples, n_features)) * 10 W = np.abs(rng.randn(n_samples, n_components)) * 10 H = np.abs(rng.randn(n_components, n_features)) X[0, 0] = 0 ref = nmf._beta_divergence(X, W, H, beta=1.0) X[0, 0] = 1e-323 res = nmf._beta_divergence(X, W, H, beta=1.0) assert_almost_equal(res, ref) @pytest.mark.parametrize( "dtype_in, dtype_out", [ (np.float32, np.float32), (np.float64, np.float64), (np.int32, np.float64), (np.int64, np.float64), ], ) @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_dtype_match(Estimator, solver, dtype_in, dtype_out): # Check that NMF preserves dtype (float32 and float64) X = np.random.RandomState(0).randn(20, 15).astype(dtype_in, copy=False) np.abs(X, out=X) nmf = Estimator(alpha_W=1.0, alpha_H=1.0, tol=1e-2, random_state=0, **solver) assert nmf.fit(X).transform(X).dtype == dtype_out assert nmf.fit_transform(X).dtype == dtype_out assert nmf.components_.dtype == dtype_out @pytest.mark.parametrize( ["Estimator", "solver"], [[NMF, {"solver": "cd"}], [NMF, {"solver": "mu"}], [MiniBatchNMF, {}]], ) def test_nmf_float32_float64_consistency(Estimator, solver): # Check that the result of NMF is the same between float32 and float64 X = np.random.RandomState(0).randn(50, 7)
np.abs(X, out=X)
numpy.abs
import sys import warnings import itertools import platform import pytest from decimal import Decimal import numpy as np from numpy.core import umath from numpy.random import rand, randint, randn from numpy.testing import ( assert_, assert_equal, assert_raises, assert_raises_regex, assert_array_equal, assert_almost_equal, assert_array_almost_equal, assert_warns, HAS_REFCOUNT ) class TestResize(object): def test_copies(self): A = np.array([[1, 2], [3, 4]]) Ar1 = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) assert_equal(np.resize(A, (2, 4)), Ar1) Ar2 = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) assert_equal(np.resize(A, (4, 2)), Ar2) Ar3 = np.array([[1, 2, 3], [4, 1, 2], [3, 4, 1], [2, 3, 4]]) assert_equal(np.resize(A, (4, 3)), Ar3) def test_zeroresize(self): A = np.array([[1, 2], [3, 4]]) Ar = np.resize(A, (0,)) assert_array_equal(Ar, np.array([])) assert_equal(A.dtype, Ar.dtype) Ar = np.resize(A, (0, 2)) assert_equal(Ar.shape, (0, 2)) Ar = np.resize(A, (2, 0)) assert_equal(Ar.shape, (2, 0)) def test_reshape_from_zero(self): # See also gh-6740 A = np.zeros(0, dtype=[('a', np.float32)]) Ar = np.resize(A, (2, 1)) assert_array_equal(Ar, np.zeros((2, 1), Ar.dtype)) assert_equal(A.dtype, Ar.dtype) class TestNonarrayArgs(object): # check that non-array arguments to functions wrap them in arrays def test_choose(self): choices = [[0, 1, 2], [3, 4, 5], [5, 6, 7]] tgt = [5, 1, 5] a = [2, 0, 1] out = np.choose(a, choices) assert_equal(out, tgt) def test_clip(self): arr = [-1, 5, 2, 3, 10, -4, -9] out = np.clip(arr, 2, 7) tgt = [2, 5, 2, 3, 7, 2, 2] assert_equal(out, tgt) def test_compress(self): arr = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] tgt = [[5, 6, 7, 8, 9]] out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt) def test_count_nonzero(self): arr = [[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]] tgt = np.array([2, 3]) out = np.count_nonzero(arr, axis=1) assert_equal(out, tgt) def test_cumproduct(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.all(np.cumproduct(A) == np.array([1, 2, 6, 24, 120, 720]))) def test_diagonal(self): a = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]] out = np.diagonal(a) tgt = [0, 5, 10] assert_equal(out, tgt) def test_mean(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.mean(A) == 3.5) assert_(np.all(np.mean(A, 0) == np.array([2.5, 3.5, 4.5]))) assert_(np.all(np.mean(A, 1) == np.array([2., 5.]))) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.mean([]))) assert_(w[0].category is RuntimeWarning) def test_ptp(self): a = [3, 4, 5, 10, -3, -5, 6.0] assert_equal(np.ptp(a, axis=0), 15.0) def test_prod(self): arr = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] tgt = [24, 1890, 600] assert_equal(np.prod(arr, axis=-1), tgt) def test_ravel(self): a = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] assert_equal(np.ravel(a), tgt) def test_repeat(self): a = [1, 2, 3] tgt = [1, 1, 2, 2, 3, 3] out = np.repeat(a, 2) assert_equal(out, tgt) def test_reshape(self): arr = [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]] tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(np.reshape(arr, (2, 6)), tgt) def test_round(self): arr = [1.56, 72.54, 6.35, 3.25] tgt = [1.6, 72.5, 6.4, 3.2] assert_equal(np.around(arr, decimals=1), tgt) def test_searchsorted(self): arr = [-8, -5, -1, 3, 6, 10] out = np.searchsorted(arr, 0) assert_equal(out, 3) def test_size(self): A = [[1, 2, 3], [4, 5, 6]] assert_(np.size(A) == 6) assert_(np.size(A, 0) == 2) assert_(np.size(A, 1) == 3) def test_squeeze(self): A = [[[1, 1, 1], [2, 2, 2], [3, 3, 3]]] assert_equal(np.squeeze(A).shape, (3, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1))).shape, (3,)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=0).shape, (3, 1)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=-1).shape, (1, 3)) assert_equal(np.squeeze(np.zeros((1, 3, 1)), axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))]).shape, (3,)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=0).shape, (3, 1)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=2).shape, (1, 3)) assert_equal(np.squeeze([np.zeros((3, 1))], axis=-1).shape, (1, 3)) def test_std(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.std(A), 1.707825127659933) assert_almost_equal(np.std(A, 0), np.array([1.5, 1.5, 1.5])) assert_almost_equal(np.std(A, 1), np.array([0.81649658, 0.81649658])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.std([]))) assert_(w[0].category is RuntimeWarning) def test_swapaxes(self): tgt = [[[0, 4], [2, 6]], [[1, 5], [3, 7]]] a = [[[0, 1], [2, 3]], [[4, 5], [6, 7]]] out = np.swapaxes(a, 0, 2) assert_equal(out, tgt) def test_sum(self): m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] tgt = [[6], [15], [24]] out = np.sum(m, axis=1, keepdims=True) assert_equal(tgt, out) def test_take(self): tgt = [2, 3, 5] indices = [1, 2, 4] a = [1, 2, 3, 4, 5] out = np.take(a, indices) assert_equal(out, tgt) def test_trace(self): c = [[1, 2], [3, 4], [5, 6]] assert_equal(np.trace(c), 5) def test_transpose(self): arr = [[1, 2], [3, 4], [5, 6]] tgt = [[1, 3, 5], [2, 4, 6]] assert_equal(np.transpose(arr, (1, 0)), tgt) def test_var(self): A = [[1, 2, 3], [4, 5, 6]] assert_almost_equal(np.var(A), 2.9166666666666665) assert_almost_equal(np.var(A, 0), np.array([2.25, 2.25, 2.25])) assert_almost_equal(np.var(A, 1), np.array([0.66666667, 0.66666667])) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', RuntimeWarning) assert_(np.isnan(np.var([]))) assert_(w[0].category is RuntimeWarning) B = np.array([None, 0]) B[0] = 1j assert_almost_equal(np.var(B), 0.25) class TestIsscalar(object): def test_isscalar(self): assert_(np.isscalar(3.1)) assert_(np.isscalar(np.int16(12345))) assert_(np.isscalar(False)) assert_(np.isscalar('numpy')) assert_(not np.isscalar([3.1])) assert_(not np.isscalar(None)) # PEP 3141 from fractions import Fraction assert_(np.isscalar(Fraction(5, 17))) from numbers import Number assert_(np.isscalar(Number())) class TestBoolScalar(object): def test_logical(self): f = np.False_ t = np.True_ s = "xyz" assert_((t and s) is s) assert_((f and s) is f) def test_bitwise_or(self): f = np.False_ t = np.True_ assert_((t | t) is t) assert_((f | t) is t) assert_((t | f) is t) assert_((f | f) is f) def test_bitwise_and(self): f = np.False_ t = np.True_ assert_((t & t) is t) assert_((f & t) is f) assert_((t & f) is f) assert_((f & f) is f) def test_bitwise_xor(self): f = np.False_ t = np.True_ assert_((t ^ t) is f) assert_((f ^ t) is t) assert_((t ^ f) is t) assert_((f ^ f) is f) class TestBoolArray(object): def setup(self): # offset for simd tests self.t = np.array([True] * 41, dtype=bool)[1::] self.f = np.array([False] * 41, dtype=bool)[1::] self.o = np.array([False] * 42, dtype=bool)[2::] self.nm = self.f.copy() self.im = self.t.copy() self.nm[3] = True self.nm[-2] = True self.im[3] = False self.im[-2] = False def test_all_any(self): assert_(self.t.all()) assert_(self.t.any()) assert_(not self.f.all()) assert_(not self.f.any()) assert_(self.nm.any()) assert_(self.im.any()) assert_(not self.nm.all()) assert_(not self.im.all()) # check bad element in all positions for i in range(256 - 7): d = np.array([False] * 256, dtype=bool)[7::] d[i] = True assert_(np.any(d)) e = np.array([True] * 256, dtype=bool)[7::] e[i] = False assert_(not np.all(e)) assert_array_equal(e, ~d) # big array test for blocked libc loops for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: d = np.array([False] * 100043, dtype=bool) d[i] = True assert_(np.any(d), msg="%r" % i) e = np.array([True] * 100043, dtype=bool) e[i] = False assert_(not np.all(e), msg="%r" % i) def test_logical_not_abs(self): assert_array_equal(~self.t, self.f) assert_array_equal(np.abs(~self.t), self.f) assert_array_equal(np.abs(~self.f), self.t) assert_array_equal(np.abs(self.f), self.f) assert_array_equal(~np.abs(self.f), self.t) assert_array_equal(~np.abs(self.t), self.f) assert_array_equal(np.abs(~self.nm), self.im) np.logical_not(self.t, out=self.o) assert_array_equal(self.o, self.f) np.abs(self.t, out=self.o) assert_array_equal(self.o, self.t) def test_logical_and_or_xor(self): assert_array_equal(self.t | self.t, self.t) assert_array_equal(self.f | self.f, self.f) assert_array_equal(self.t | self.f, self.t) assert_array_equal(self.f | self.t, self.t) np.logical_or(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t & self.t, self.t) assert_array_equal(self.f & self.f, self.f) assert_array_equal(self.t & self.f, self.f) assert_array_equal(self.f & self.t, self.f) np.logical_and(self.t, self.t, out=self.o) assert_array_equal(self.o, self.t) assert_array_equal(self.t ^ self.t, self.f) assert_array_equal(self.f ^ self.f, self.f) assert_array_equal(self.t ^ self.f, self.t) assert_array_equal(self.f ^ self.t, self.t) np.logical_xor(self.t, self.t, out=self.o) assert_array_equal(self.o, self.f) assert_array_equal(self.nm & self.t, self.nm) assert_array_equal(self.im & self.f, False) assert_array_equal(self.nm & True, self.nm) assert_array_equal(self.im & False, self.f) assert_array_equal(self.nm | self.t, self.t) assert_array_equal(self.im | self.f, self.im) assert_array_equal(self.nm | True, self.t) assert_array_equal(self.im | False, self.im) assert_array_equal(self.nm ^ self.t, self.im) assert_array_equal(self.im ^ self.f, self.im) assert_array_equal(self.nm ^ True, self.im) assert_array_equal(self.im ^ False, self.im) class TestBoolCmp(object): def setup(self): self.f = np.ones(256, dtype=np.float32) self.ef = np.ones(self.f.size, dtype=bool) self.d = np.ones(128, dtype=np.float64) self.ed = np.ones(self.d.size, dtype=bool) # generate values for all permutation of 256bit simd vectors s = 0 for i in range(32): self.f[s:s+8] = [i & 2**x for x in range(8)] self.ef[s:s+8] = [(i & 2**x) != 0 for x in range(8)] s += 8 s = 0 for i in range(16): self.d[s:s+4] = [i & 2**x for x in range(4)] self.ed[s:s+4] = [(i & 2**x) != 0 for x in range(4)] s += 4 self.nf = self.f.copy() self.nd = self.d.copy() self.nf[self.ef] = np.nan self.nd[self.ed] = np.nan self.inff = self.f.copy() self.infd = self.d.copy() self.inff[::3][self.ef[::3]] = np.inf self.infd[::3][self.ed[::3]] = np.inf self.inff[1::3][self.ef[1::3]] = -np.inf self.infd[1::3][self.ed[1::3]] = -np.inf self.inff[2::3][self.ef[2::3]] = np.nan self.infd[2::3][self.ed[2::3]] = np.nan self.efnonan = self.ef.copy() self.efnonan[2::3] = False self.ednonan = self.ed.copy() self.ednonan[2::3] = False self.signf = self.f.copy() self.signd = self.d.copy() self.signf[self.ef] *= -1. self.signd[self.ed] *= -1. self.signf[1::6][self.ef[1::6]] = -np.inf self.signd[1::6][self.ed[1::6]] = -np.inf self.signf[3::6][self.ef[3::6]] = -np.nan self.signd[3::6][self.ed[3::6]] = -np.nan self.signf[4::6][self.ef[4::6]] = -0. self.signd[4::6][self.ed[4::6]] = -0. def test_float(self): # offset for alignment test for i in range(4): assert_array_equal(self.f[i:] > 0, self.ef[i:]) assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:]) assert_array_equal(self.f[i:] == 0, ~self.ef[i:]) assert_array_equal(-self.f[i:] < 0, self.ef[i:]) assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:]) r = self.f[i:] != 0 assert_array_equal(r, self.ef[i:]) r2 = self.f[i:] != np.zeros_like(self.f[i:]) r3 = 0 != self.f[i:] assert_array_equal(r, r2) assert_array_equal(r, r3) # check bool == 0x1 assert_array_equal(r.view(np.int8), r.astype(np.int8)) assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) # isnan on amd64 takes the same code path assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:]) assert_array_equal(np.isfinite(self.nf[i:]), ~self.ef[i:]) assert_array_equal(np.isfinite(self.inff[i:]), ~self.ef[i:]) assert_array_equal(np.isinf(self.inff[i:]), self.efnonan[i:]) assert_array_equal(np.signbit(self.signf[i:]), self.ef[i:]) def test_double(self): # offset for alignment test for i in range(2): assert_array_equal(self.d[i:] > 0, self.ed[i:]) assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:]) assert_array_equal(self.d[i:] == 0, ~self.ed[i:]) assert_array_equal(-self.d[i:] < 0, self.ed[i:]) assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:]) r = self.d[i:] != 0 assert_array_equal(r, self.ed[i:]) r2 = self.d[i:] != np.zeros_like(self.d[i:]) r3 = 0 != self.d[i:] assert_array_equal(r, r2) assert_array_equal(r, r3) # check bool == 0x1 assert_array_equal(r.view(np.int8), r.astype(np.int8)) assert_array_equal(r2.view(np.int8), r2.astype(np.int8)) assert_array_equal(r3.view(np.int8), r3.astype(np.int8)) # isnan on amd64 takes the same code path assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:]) assert_array_equal(np.isfinite(self.nd[i:]), ~self.ed[i:]) assert_array_equal(np.isfinite(self.infd[i:]), ~self.ed[i:]) assert_array_equal(np.isinf(self.infd[i:]), self.ednonan[i:]) assert_array_equal(np.signbit(self.signd[i:]), self.ed[i:]) class TestSeterr(object): def test_default(self): err = np.geterr() assert_equal(err, dict(divide='warn', invalid='warn', over='warn', under='ignore') ) def test_set(self): with np.errstate(): err = np.seterr() old = np.seterr(divide='print') assert_(err == old) new = np.seterr() assert_(new['divide'] == 'print') np.seterr(over='raise') assert_(np.geterr()['over'] == 'raise') assert_(new['divide'] == 'print') np.seterr(**old) assert_(np.geterr() == old) @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.") def test_divide_err(self): with np.errstate(divide='raise'): with assert_raises(FloatingPointError): np.array([1.]) / np.array([0.]) np.seterr(divide='ignore') np.array([1.]) / np.array([0.]) def test_errobj(self): olderrobj = np.geterrobj() self.called = 0 try: with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(divide='warn'): np.seterrobj([20000, 1, None]) np.array([1.]) / np.array([0.]) assert_equal(len(w), 1) def log_err(*args): self.called += 1 extobj_err = args assert_(len(extobj_err) == 2) assert_("divide" in extobj_err[0]) with np.errstate(divide='ignore'): np.seterrobj([20000, 3, log_err]) np.array([1.]) / np.array([0.]) assert_equal(self.called, 1) np.seterrobj(olderrobj) with np.errstate(divide='ignore'): np.divide(1., 0., extobj=[20000, 3, log_err]) assert_equal(self.called, 2) finally: np.seterrobj(olderrobj) del self.called def test_errobj_noerrmask(self): # errmask = 0 has a special code path for the default olderrobj = np.geterrobj() try: # set errobj to something non default np.seterrobj([umath.UFUNC_BUFSIZE_DEFAULT, umath.ERR_DEFAULT + 1, None]) # call a ufunc np.isnan(np.array([6])) # same with the default, lots of times to get rid of possible # pre-existing stack in the code for i in range(10000): np.seterrobj([umath.UFUNC_BUFSIZE_DEFAULT, umath.ERR_DEFAULT, None]) np.isnan(np.array([6])) finally: np.seterrobj(olderrobj) class TestFloatExceptions(object): def assert_raises_fpe(self, fpeerr, flop, x, y): ftype = type(x) try: flop(x, y) assert_(False, "Type %s did not raise fpe error '%s'." % (ftype, fpeerr)) except FloatingPointError as exc: assert_(str(exc).find(fpeerr) >= 0, "Type %s raised wrong fpe error '%s'." % (ftype, exc)) def assert_op_raises_fpe(self, fpeerr, flop, sc1, sc2): # Check that fpe exception is raised. # # Given a floating operation `flop` and two scalar values, check that # the operation raises the floating point exception specified by # `fpeerr`. Tests all variants with 0-d array scalars as well. self.assert_raises_fpe(fpeerr, flop, sc1, sc2) self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2) self.assert_raises_fpe(fpeerr, flop, sc1, sc2[()]) self.assert_raises_fpe(fpeerr, flop, sc1[()], sc2[()]) def test_floating_exceptions(self): # Test basic arithmetic function errors with np.errstate(all='raise'): # Test for all real and complex float types for typecode in np.typecodes['AllFloat']: ftype = np.obj2sctype(typecode) if np.dtype(ftype).kind == 'f': # Get some extreme values for the type fi = np.finfo(ftype) ft_tiny = fi.tiny ft_max = fi.max ft_eps = fi.eps underflow = 'underflow' divbyzero = 'divide by zero' else: # 'c', complex, corresponding real dtype rtype = type(ftype(0).real) fi = np.finfo(rtype) ft_tiny = ftype(fi.tiny) ft_max = ftype(fi.max) ft_eps = ftype(fi.eps) # The complex types raise different exceptions underflow = '' divbyzero = '' overflow = 'overflow' invalid = 'invalid' self.assert_raises_fpe(underflow, lambda a, b: a/b, ft_tiny, ft_max) self.assert_raises_fpe(underflow, lambda a, b: a*b, ft_tiny, ft_tiny) self.assert_raises_fpe(overflow, lambda a, b: a*b, ft_max, ftype(2)) self.assert_raises_fpe(overflow, lambda a, b: a/b, ft_max, ftype(0.5)) self.assert_raises_fpe(overflow, lambda a, b: a+b, ft_max, ft_max*ft_eps) self.assert_raises_fpe(overflow, lambda a, b: a-b, -ft_max, ft_max*ft_eps) self.assert_raises_fpe(overflow, np.power, ftype(2), ftype(2**fi.nexp)) self.assert_raises_fpe(divbyzero, lambda a, b: a/b, ftype(1), ftype(0)) self.assert_raises_fpe(invalid, lambda a, b: a/b, ftype(np.inf), ftype(np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a/b, ftype(0), ftype(0)) self.assert_raises_fpe(invalid, lambda a, b: a-b, ftype(np.inf), ftype(np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a+b, ftype(np.inf), ftype(-np.inf)) self.assert_raises_fpe(invalid, lambda a, b: a*b, ftype(0), ftype(np.inf)) def test_warnings(self): # test warning code path with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(all="warn"): np.divide(1, 0.) assert_equal(len(w), 1) assert_("divide by zero" in str(w[0].message)) np.array(1e300) * np.array(1e300) assert_equal(len(w), 2) assert_("overflow" in str(w[-1].message)) np.array(np.inf) - np.array(np.inf) assert_equal(len(w), 3) assert_("invalid value" in str(w[-1].message)) np.array(1e-300) * np.array(1e-300) assert_equal(len(w), 4) assert_("underflow" in str(w[-1].message)) class TestTypes(object): def check_promotion_cases(self, promote_func): # tests that the scalars get coerced correctly. b = np.bool_(0) i8, i16, i32, i64 = np.int8(0), np.int16(0), np.int32(0), np.int64(0) u8, u16, u32, u64 = np.uint8(0), np.uint16(0), np.uint32(0), np.uint64(0) f32, f64, fld = np.float32(0), np.float64(0), np.longdouble(0) c64, c128, cld = np.complex64(0), np.complex128(0), np.clongdouble(0) # coercion within the same kind assert_equal(promote_func(i8, i16), np.dtype(np.int16)) assert_equal(promote_func(i32, i8), np.dtype(np.int32)) assert_equal(promote_func(i16, i64), np.dtype(np.int64)) assert_equal(promote_func(u8, u32), np.dtype(np.uint32)) assert_equal(promote_func(f32, f64), np.dtype(np.float64)) assert_equal(promote_func(fld, f32), np.dtype(np.longdouble)) assert_equal(promote_func(f64, fld), np.dtype(np.longdouble)) assert_equal(promote_func(c128, c64), np.dtype(np.complex128)) assert_equal(promote_func(cld, c128), np.dtype(np.clongdouble)) assert_equal(promote_func(c64, fld), np.dtype(np.clongdouble)) # coercion between kinds assert_equal(promote_func(b, i32), np.dtype(np.int32)) assert_equal(promote_func(b, u8), np.dtype(np.uint8)) assert_equal(promote_func(i8, u8), np.dtype(np.int16)) assert_equal(promote_func(u8, i32), np.dtype(np.int32)) assert_equal(promote_func(i64, u32), np.dtype(np.int64)) assert_equal(promote_func(u64, i32), np.dtype(np.float64)) assert_equal(promote_func(i32, f32), np.dtype(np.float64)) assert_equal(promote_func(i64, f32), np.dtype(np.float64)) assert_equal(promote_func(f32, i16), np.dtype(np.float32)) assert_equal(promote_func(f32, u32), np.dtype(np.float64)) assert_equal(promote_func(f32, c64), np.dtype(np.complex64)) assert_equal(promote_func(c128, f32), np.dtype(np.complex128)) assert_equal(promote_func(cld, f64), np.dtype(np.clongdouble)) # coercion between scalars and 1-D arrays assert_equal(promote_func(np.array([b]), i8), np.dtype(np.int8)) assert_equal(promote_func(np.array([b]), u8), np.dtype(np.uint8)) assert_equal(promote_func(np.array([b]), i32), np.dtype(np.int32)) assert_equal(promote_func(np.array([b]), u32), np.dtype(np.uint32)) assert_equal(promote_func(np.array([i8]), i64), np.dtype(np.int8)) assert_equal(promote_func(u64, np.array([i32])), np.dtype(np.int32)) assert_equal(promote_func(i64, np.array([u32])), np.dtype(np.uint32)) assert_equal(promote_func(np.int32(-1), np.array([u64])), np.dtype(np.float64)) assert_equal(promote_func(f64, np.array([f32])), np.dtype(np.float32)) assert_equal(promote_func(fld, np.array([f32])), np.dtype(np.float32)) assert_equal(promote_func(np.array([f64]), fld), np.dtype(np.float64)) assert_equal(promote_func(fld, np.array([c64])), np.dtype(np.complex64)) assert_equal(promote_func(c64, np.array([f64])), np.dtype(np.complex128)) assert_equal(promote_func(np.complex64(3j), np.array([f64])), np.dtype(np.complex128)) # coercion between scalars and 1-D arrays, where # the scalar has greater kind than the array assert_equal(promote_func(np.array([b]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([b]), i64), np.dtype(np.int64)) assert_equal(promote_func(np.array([b]), u64), np.dtype(np.uint64)) assert_equal(promote_func(np.array([i8]), f64), np.dtype(np.float64)) assert_equal(promote_func(np.array([u16]), f64), np.dtype(np.float64)) # uint and int are treated as the same "kind" for # the purposes of array-scalar promotion. assert_equal(promote_func(np.array([u16]), i32), np.dtype(np.uint16)) # float and complex are treated as the same "kind" for # the purposes of array-scalar promotion, so that you can do # (0j + float32array) to get a complex64 array instead of # a complex128 array. assert_equal(promote_func(np.array([f32]), c128), np.dtype(np.complex64)) def test_coercion(self): def res_type(a, b): return np.add(a, b).dtype self.check_promotion_cases(res_type) # Use-case: float/complex scalar * bool/int8 array # shouldn't narrow the float/complex type for a in [np.array([True, False]), np.array([-3, 12], dtype=np.int8)]: b = 1.234 * a assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype) b = np.longdouble(1.234) * a assert_equal(b.dtype, np.dtype(np.longdouble), "array type %s" % a.dtype) b = np.float64(1.234) * a assert_equal(b.dtype, np.dtype('f8'), "array type %s" % a.dtype) b = np.float32(1.234) * a assert_equal(b.dtype, np.dtype('f4'), "array type %s" % a.dtype) b = np.float16(1.234) * a assert_equal(b.dtype, np.dtype('f2'), "array type %s" % a.dtype) b = 1.234j * a assert_equal(b.dtype, np.dtype('c16'), "array type %s" % a.dtype) b = np.clongdouble(1.234j) * a assert_equal(b.dtype, np.dtype(np.clongdouble), "array type %s" % a.dtype) b = np.complex128(1.234j) * a assert_equal(b.dtype, np.dtype('c16'), "array type %s" % a.dtype) b = np.complex64(1.234j) * a assert_equal(b.dtype, np.dtype('c8'), "array type %s" % a.dtype) # The following use-case is problematic, and to resolve its # tricky side-effects requires more changes. # # Use-case: (1-t)*a, where 't' is a boolean array and 'a' is # a float32, shouldn't promote to float64 # # a = np.array([1.0, 1.5], dtype=np.float32) # t = np.array([True, False]) # b = t*a # assert_equal(b, [1.0, 0.0]) # assert_equal(b.dtype, np.dtype('f4')) # b = (1-t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) # # Probably ~t (bitwise negation) is more proper to use here, # but this is arguably less intuitive to understand at a glance, and # would fail if 't' is actually an integer array instead of boolean: # # b = (~t)*a # assert_equal(b, [0.0, 1.5]) # assert_equal(b.dtype, np.dtype('f4')) def test_result_type(self): self.check_promotion_cases(np.result_type) assert_(np.result_type(None) == np.dtype(None)) def test_promote_types_endian(self): # promote_types should always return native-endian types assert_equal(np.promote_types('<i8', '<i8'), np.dtype('i8')) assert_equal(np.promote_types('>i8', '>i8'), np.dtype('i8')) assert_equal(np.promote_types('>i8', '>U16'), np.dtype('U21')) assert_equal(np.promote_types('<i8', '<U16'), np.dtype('U21')) assert_equal(np.promote_types('>U16', '>i8'), np.dtype('U21')) assert_equal(np.promote_types('<U16', '<i8'), np.dtype('U21')) assert_equal(np.promote_types('<S5', '<U8'), np.dtype('U8')) assert_equal(np.promote_types('>S5', '>U8'), np.dtype('U8')) assert_equal(np.promote_types('<U8', '<S5'), np.dtype('U8')) assert_equal(np.promote_types('>U8', '>S5'), np.dtype('U8')) assert_equal(np.promote_types('<U5', '<U8'), np.dtype('U8')) assert_equal(np.promote_types('>U8', '>U5'), np.dtype('U8')) assert_equal(np.promote_types('<M8', '<M8'), np.dtype('M8')) assert_equal(np.promote_types('>M8', '>M8'), np.dtype('M8')) assert_equal(np.promote_types('<m8', '<m8'), np.dtype('m8')) assert_equal(np.promote_types('>m8', '>m8'), np.dtype('m8')) def test_promote_types_strings(self): assert_equal(np.promote_types('bool', 'S'), np.dtype('S5')) assert_equal(np.promote_types('b', 'S'), np.dtype('S4')) assert_equal(np.promote_types('u1', 'S'), np.dtype('S3')) assert_equal(np.promote_types('u2', 'S'), np.dtype('S5')) assert_equal(np.promote_types('u4', 'S'), np.dtype('S10')) assert_equal(np.promote_types('u8', 'S'), np.dtype('S20')) assert_equal(np.promote_types('i1', 'S'), np.dtype('S4')) assert_equal(np.promote_types('i2', 'S'), np.dtype('S6')) assert_equal(np.promote_types('i4', 'S'), np.dtype('S11')) assert_equal(np.promote_types('i8', 'S'), np.dtype('S21')) assert_equal(np.promote_types('bool', 'U'), np.dtype('U5')) assert_equal(np.promote_types('b', 'U'), np.dtype('U4')) assert_equal(np.promote_types('u1', 'U'), np.dtype('U3')) assert_equal(np.promote_types('u2', 'U'), np.dtype('U5')) assert_equal(np.promote_types('u4', 'U'), np.dtype('U10')) assert_equal(np.promote_types('u8', 'U'), np.dtype('U20')) assert_equal(np.promote_types('i1', 'U'), np.dtype('U4')) assert_equal(np.promote_types('i2', 'U'), np.dtype('U6')) assert_equal(np.promote_types('i4', 'U'), np.dtype('U11')) assert_equal(np.promote_types('i8', 'U'), np.dtype('U21')) assert_equal(np.promote_types('bool', 'S1'), np.dtype('S5')) assert_equal(np.promote_types('bool', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('b', 'S1'), np.dtype('S4')) assert_equal(np.promote_types('b', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u1', 'S1'), np.dtype('S3')) assert_equal(np.promote_types('u1', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u2', 'S1'), np.dtype('S5')) assert_equal(np.promote_types('u2', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u4', 'S1'), np.dtype('S10')) assert_equal(np.promote_types('u4', 'S30'), np.dtype('S30')) assert_equal(np.promote_types('u8', 'S1'), np.dtype('S20')) assert_equal(np.promote_types('u8', 'S30'), np.dtype('S30')) def test_can_cast(self): assert_(np.can_cast(np.int32, np.int64)) assert_(np.can_cast(np.float64, complex)) assert_(not np.can_cast(complex, float)) assert_(np.can_cast('i8', 'f8')) assert_(not np.can_cast('i8', 'f4')) assert_(np.can_cast('i4', 'S11')) assert_(np.can_cast('i8', 'i8', 'no')) assert_(not np.can_cast('<i8', '>i8', 'no')) assert_(np.can_cast('<i8', '>i8', 'equiv')) assert_(not np.can_cast('<i4', '>i8', 'equiv')) assert_(np.can_cast('<i4', '>i8', 'safe')) assert_(not np.can_cast('<i8', '>i4', 'safe')) assert_(np.can_cast('<i8', '>i4', 'same_kind')) assert_(not np.can_cast('<i8', '>u4', 'same_kind')) assert_(np.can_cast('<i8', '>u4', 'unsafe')) assert_(np.can_cast('bool', 'S5')) assert_(not np.can_cast('bool', 'S4')) assert_(np.can_cast('b', 'S4')) assert_(not np.can_cast('b', 'S3')) assert_(np.can_cast('u1', 'S3')) assert_(not np.can_cast('u1', 'S2')) assert_(np.can_cast('u2', 'S5')) assert_(not np.can_cast('u2', 'S4')) assert_(np.can_cast('u4', 'S10')) assert_(not np.can_cast('u4', 'S9')) assert_(np.can_cast('u8', 'S20')) assert_(not np.can_cast('u8', 'S19')) assert_(np.can_cast('i1', 'S4')) assert_(not np.can_cast('i1', 'S3')) assert_(np.can_cast('i2', 'S6')) assert_(not np.can_cast('i2', 'S5')) assert_(np.can_cast('i4', 'S11')) assert_(not np.can_cast('i4', 'S10')) assert_(np.can_cast('i8', 'S21')) assert_(not np.can_cast('i8', 'S20')) assert_(np.can_cast('bool', 'S5')) assert_(not np.can_cast('bool', 'S4')) assert_(np.can_cast('b', 'U4')) assert_(not np.can_cast('b', 'U3')) assert_(np.can_cast('u1', 'U3')) assert_(not np.can_cast('u1', 'U2')) assert_(np.can_cast('u2', 'U5')) assert_(not np.can_cast('u2', 'U4')) assert_(np.can_cast('u4', 'U10')) assert_(not np.can_cast('u4', 'U9')) assert_(np.can_cast('u8', 'U20')) assert_(not np.can_cast('u8', 'U19')) assert_(np.can_cast('i1', 'U4')) assert_(not np.can_cast('i1', 'U3')) assert_(np.can_cast('i2', 'U6')) assert_(not np.can_cast('i2', 'U5')) assert_(np.can_cast('i4', 'U11')) assert_(not np.can_cast('i4', 'U10')) assert_(np.can_cast('i8', 'U21')) assert_(not np.can_cast('i8', 'U20')) assert_raises(TypeError, np.can_cast, 'i4', None) assert_raises(TypeError, np.can_cast, None, 'i4') # Also test keyword arguments assert_(np.can_cast(from_=np.int32, to=np.int64)) def test_can_cast_simple_to_structured(self): # Non-structured can only be cast to structured in 'unsafe' mode. assert_(not np.can_cast('i4', 'i4,i4')) assert_(not np.can_cast('i4', 'i4,i2')) assert_(np.can_cast('i4', 'i4,i4', casting='unsafe')) assert_(np.can_cast('i4', 'i4,i2', casting='unsafe')) # Even if there is just a single field which is OK. assert_(not np.can_cast('i2', [('f1', 'i4')])) assert_(not np.can_cast('i2', [('f1', 'i4')], casting='same_kind')) assert_(np.can_cast('i2', [('f1', 'i4')], casting='unsafe')) # It should be the same for recursive structured or subarrays. assert_(not np.can_cast('i2', [('f1', 'i4,i4')])) assert_(np.can_cast('i2', [('f1', 'i4,i4')], casting='unsafe')) assert_(not np.can_cast('i2', [('f1', '(2,3)i4')])) assert_(np.can_cast('i2', [('f1', '(2,3)i4')], casting='unsafe')) def test_can_cast_structured_to_simple(self): # Need unsafe casting for structured to simple. assert_(not np.can_cast([('f1', 'i4')], 'i4')) assert_(np.can_cast([('f1', 'i4')], 'i4', casting='unsafe')) assert_(np.can_cast([('f1', 'i4')], 'i2', casting='unsafe')) # Since it is unclear what is being cast, multiple fields to # single should not work even for unsafe casting. assert_(not np.can_cast('i4,i4', 'i4', casting='unsafe')) # But a single field inside a single field is OK. assert_(not np.can_cast([('f1', [('x', 'i4')])], 'i4')) assert_(np.can_cast([('f1', [('x', 'i4')])], 'i4', casting='unsafe')) # And a subarray is fine too - it will just take the first element # (arguably not very consistently; might also take the first field). assert_(not np.can_cast([('f0', '(3,)i4')], 'i4')) assert_(np.can_cast([('f0', '(3,)i4')], 'i4', casting='unsafe')) # But a structured subarray with multiple fields should fail. assert_(not np.can_cast([('f0', ('i4,i4'), (2,))], 'i4', casting='unsafe')) def test_can_cast_values(self): # gh-5917 for dt in np.sctypes['int'] + np.sctypes['uint']: ii = np.iinfo(dt) assert_(np.can_cast(ii.min, dt)) assert_(np.can_cast(ii.max, dt)) assert_(not np.can_cast(ii.min - 1, dt)) assert_(not np.can_cast(ii.max + 1, dt)) for dt in np.sctypes['float']: fi = np.finfo(dt) assert_(np.can_cast(fi.min, dt)) assert_(np.can_cast(fi.max, dt)) # Custom exception class to test exception propagation in fromiter class NIterError(Exception): pass class TestFromiter(object): def makegen(self): for x in range(24): yield x**2 def test_types(self): ai32 = np.fromiter(self.makegen(), np.int32) ai64 = np.fromiter(self.makegen(), np.int64) af = np.fromiter(self.makegen(), float) assert_(ai32.dtype == np.dtype(np.int32)) assert_(ai64.dtype == np.dtype(np.int64)) assert_(af.dtype == np.dtype(float)) def test_lengths(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) assert_(len(a) == len(expected)) assert_(len(a20) == 20) assert_raises(ValueError, np.fromiter, self.makegen(), int, len(expected) + 10) def test_values(self): expected = np.array(list(self.makegen())) a = np.fromiter(self.makegen(), int) a20 = np.fromiter(self.makegen(), int, 20) assert_(np.alltrue(a == expected, axis=0)) assert_(np.alltrue(a20 == expected[:20], axis=0)) def load_data(self, n, eindex): # Utility method for the issue 2592 tests. # Raise an exception at the desired index in the iterator. for e in range(n): if e == eindex: raise NIterError('error at index %s' % eindex) yield e def test_2592(self): # Test iteration exceptions are correctly raised. count, eindex = 10, 5 assert_raises(NIterError, np.fromiter, self.load_data(count, eindex), dtype=int, count=count) def test_2592_edge(self): # Test iter. exceptions, edge case (exception at end of iterator). count = 10 eindex = count-1 assert_raises(NIterError, np.fromiter, self.load_data(count, eindex), dtype=int, count=count) class TestNonzero(object): def test_nonzero_trivial(self): assert_equal(np.count_nonzero(np.array([])), 0) assert_equal(np.count_nonzero(np.array([], dtype='?')), 0) assert_equal(np.nonzero(np.array([])), ([],)) assert_equal(np.count_nonzero(np.array([0])), 0) assert_equal(np.count_nonzero(np.array([0], dtype='?')), 0) assert_equal(np.nonzero(np.array([0])), ([],)) assert_equal(np.count_nonzero(np.array([1])), 1) assert_equal(np.count_nonzero(np.array([1], dtype='?')), 1) assert_equal(np.nonzero(np.array([1])), ([0],)) def test_nonzero_zerod(self): assert_equal(np.count_nonzero(np.array(0)), 0) assert_equal(np.count_nonzero(np.array(0, dtype='?')), 0) with assert_warns(DeprecationWarning): assert_equal(np.nonzero(np.array(0)), ([],)) assert_equal(np.count_nonzero(np.array(1)), 1) assert_equal(np.count_nonzero(np.array(1, dtype='?')), 1) with assert_warns(DeprecationWarning): assert_equal(np.nonzero(np.array(1)), ([0],)) def test_nonzero_onedim(self): x = np.array([1, 0, 2, -1, 0, 0, 8]) assert_equal(np.count_nonzero(x), 4) assert_equal(np.count_nonzero(x), 4) assert_equal(np.nonzero(x), ([0, 2, 3, 6],)) x = np.array([(1, 2), (0, 0), (1, 1), (-1, 3), (0, 7)], dtype=[('a', 'i4'), ('b', 'i2')]) assert_equal(np.count_nonzero(x['a']), 3) assert_equal(np.count_nonzero(x['b']), 4) assert_equal(np.nonzero(x['a']), ([0, 2, 3],)) assert_equal(np.nonzero(x['b']), ([0, 2, 3, 4],)) def test_nonzero_twodim(self): x = np.array([[0, 1, 0], [2, 0, 3]]) assert_equal(np.count_nonzero(x), 3) assert_equal(np.nonzero(x), ([0, 1, 1], [1, 0, 2])) x = np.eye(3) assert_equal(np.count_nonzero(x), 3) assert_equal(np.nonzero(x), ([0, 1, 2], [0, 1, 2])) x = np.array([[(0, 1), (0, 0), (1, 11)], [(1, 1), (1, 0), (0, 0)], [(0, 0), (1, 5), (0, 1)]], dtype=[('a', 'f4'), ('b', 'u1')]) assert_equal(np.count_nonzero(x['a']), 4) assert_equal(np.count_nonzero(x['b']), 5) assert_equal(np.nonzero(x['a']), ([0, 1, 1, 2], [2, 0, 1, 1])) assert_equal(np.nonzero(x['b']), ([0, 0, 1, 2, 2], [0, 2, 0, 1, 2])) assert_(not x['a'].T.flags.aligned) assert_equal(np.count_nonzero(x['a'].T), 4) assert_equal(np.count_nonzero(x['b'].T), 5) assert_equal(np.nonzero(x['a'].T), ([0, 1, 1, 2], [1, 1, 2, 0])) assert_equal(np.nonzero(x['b'].T), ([0, 0, 1, 2, 2], [0, 1, 2, 0, 2])) def test_sparse(self): # test special sparse condition boolean code path for i in range(20): c = np.zeros(200, dtype=bool) c[i::20] = True assert_equal(np.nonzero(c)[0], np.arange(i, 200 + i, 20)) c = np.zeros(400, dtype=bool) c[10 + i:20 + i] = True c[20 + i*2] = True assert_equal(np.nonzero(c)[0], np.concatenate((np.arange(10 + i, 20 + i), [20 + i*2]))) def test_return_type(self): class C(np.ndarray): pass for view in (C, np.ndarray): for nd in range(1, 4): shape = tuple(range(2, 2+nd)) x = np.arange(np.prod(shape)).reshape(shape).view(view) for nzx in (np.nonzero(x), x.nonzero()): for nzx_i in nzx: assert_(type(nzx_i) is np.ndarray) assert_(nzx_i.flags.writeable) def test_count_nonzero_axis(self): # Basic check of functionality m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]]) expected = np.array([1, 1, 1, 1, 1]) assert_equal(np.count_nonzero(m, axis=0), expected) expected = np.array([2, 3]) assert_equal(np.count_nonzero(m, axis=1), expected) assert_raises(ValueError, np.count_nonzero, m, axis=(1, 1)) assert_raises(TypeError, np.count_nonzero, m, axis='foo') assert_raises(np.AxisError, np.count_nonzero, m, axis=3) assert_raises(TypeError, np.count_nonzero, m, axis=np.array([[1], [2]])) def test_count_nonzero_axis_all_dtypes(self): # More thorough test that the axis argument is respected # for all dtypes and responds correctly when presented with # either integer or tuple arguments for axis msg = "Mismatch for dtype: %s" def assert_equal_w_dt(a, b, err_msg): assert_equal(a.dtype, b.dtype, err_msg=err_msg) assert_equal(a, b, err_msg=err_msg) for dt in np.typecodes['All']: err_msg = msg % (np.dtype(dt).name,) if dt != 'V': if dt != 'M': m = np.zeros((3, 3), dtype=dt) n = np.ones(1, dtype=dt) m[0, 0] = n[0] m[1, 0] = n[0] else: # np.zeros doesn't work for np.datetime64 m = np.array(['1970-01-01'] * 9) m = m.reshape((3, 3)) m[0, 0] = '1970-01-12' m[1, 0] = '1970-01-12' m = m.astype(dt) expected = np.array([2, 0, 0], dtype=np.intp) assert_equal_w_dt(np.count_nonzero(m, axis=0), expected, err_msg=err_msg) expected = np.array([1, 1, 0], dtype=np.intp) assert_equal_w_dt(np.count_nonzero(m, axis=1), expected, err_msg=err_msg) expected = np.array(2) assert_equal(np.count_nonzero(m, axis=(0, 1)), expected, err_msg=err_msg) assert_equal(np.count_nonzero(m, axis=None), expected, err_msg=err_msg) assert_equal(np.count_nonzero(m), expected, err_msg=err_msg) if dt == 'V': # There are no 'nonzero' objects for np.void, so the testing # setup is slightly different for this dtype m = np.array([np.void(1)] * 6).reshape((2, 3)) expected = np.array([0, 0, 0], dtype=np.intp) assert_equal_w_dt(np.count_nonzero(m, axis=0), expected, err_msg=err_msg) expected = np.array([0, 0], dtype=np.intp) assert_equal_w_dt(np.count_nonzero(m, axis=1), expected, err_msg=err_msg) expected = np.array(0) assert_equal(np.count_nonzero(m, axis=(0, 1)), expected, err_msg=err_msg) assert_equal(np.count_nonzero(m, axis=None), expected, err_msg=err_msg) assert_equal(np.count_nonzero(m), expected, err_msg=err_msg) def test_count_nonzero_axis_consistent(self): # Check that the axis behaviour for valid axes in # non-special cases is consistent (and therefore # correct) by checking it against an integer array # that is then casted to the generic object dtype from itertools import combinations, permutations axis = (0, 1, 2, 3) size = (5, 5, 5, 5) msg = "Mismatch for axis: %s" rng = np.random.RandomState(1234) m = rng.randint(-100, 100, size=size) n = m.astype(object) for length in range(len(axis)): for combo in combinations(axis, length): for perm in permutations(combo): assert_equal( np.count_nonzero(m, axis=perm), np.count_nonzero(n, axis=perm), err_msg=msg % (perm,)) def test_countnonzero_axis_empty(self): a = np.array([[0, 0, 1], [1, 0, 1]]) assert_equal(np.count_nonzero(a, axis=()), a.astype(bool)) def test_array_method(self): # Tests that the array method # call to nonzero works m = np.array([[1, 0, 0], [4, 0, 6]]) tgt = [[0, 1, 1], [0, 0, 2]] assert_equal(m.nonzero(), tgt) def test_nonzero_invalid_object(self): # gh-9295 a = np.array([np.array([1, 2]), 3]) assert_raises(ValueError, np.nonzero, a) class BoolErrors: def __bool__(self): raise ValueError("Not allowed") def __nonzero__(self): raise ValueError("Not allowed") assert_raises(ValueError, np.nonzero, np.array([BoolErrors()])) def test_nonzero_sideeffect_safety(self): # gh-13631 class FalseThenTrue: _val = False def __bool__(self): try: return self._val finally: self._val = True class TrueThenFalse: _val = True def __bool__(self): try: return self._val finally: self._val = False # result grows on the second pass a = np.array([True, FalseThenTrue()]) assert_raises(RuntimeError, np.nonzero, a) a = np.array([[True], [FalseThenTrue()]]) assert_raises(RuntimeError, np.nonzero, a) # result shrinks on the second pass a = np.array([False, TrueThenFalse()]) assert_raises(RuntimeError, np.nonzero, a) a = np.array([[False], [TrueThenFalse()]]) assert_raises(RuntimeError, np.nonzero, a) def test_nonzero_exception_safe(self): # gh-13930 class ThrowsAfter: def __init__(self, iters): self.iters_left = iters def __bool__(self): if self.iters_left == 0: raise ValueError("called `iters` times") self.iters_left -= 1 return True """ Test that a ValueError is raised instead of a SystemError If the __bool__ function is called after the error state is set, Python (cpython) will raise a SystemError. """ # assert that an exception in first pass is handled correctly a = np.array([ThrowsAfter(5)]*10) assert_raises(ValueError, np.nonzero, a) # raise exception in second pass for 1-dimensional loop a = np.array([ThrowsAfter(15)]*10) assert_raises(ValueError, np.nonzero, a) # raise exception in second pass for n-dimensional loop a = np.array([[ThrowsAfter(15)]]*10) assert_raises(ValueError, np.nonzero, a) class TestIndex(object): def test_boolean(self): a = rand(3, 5, 8) V = rand(5, 8) g1 = randint(0, 5, size=15) g2 = randint(0, 8, size=15) V[g1, g2] = -V[g1, g2] assert_((np.array([a[0][V > 0], a[1][V > 0], a[2][V > 0]]) == a[:, V > 0]).all()) def test_boolean_edgecase(self): a = np.array([], dtype='int32') b = np.array([], dtype='bool') c = a[b] assert_equal(c, []) assert_equal(c.dtype, np.dtype('int32')) class TestBinaryRepr(object): def test_zero(self): assert_equal(np.binary_repr(0), '0') def test_positive(self): assert_equal(np.binary_repr(10), '1010') assert_equal(np.binary_repr(12522), '11000011101010') assert_equal(np.binary_repr(10736848), '101000111101010011010000') def test_negative(self): assert_equal(np.binary_repr(-1), '-1') assert_equal(np.binary_repr(-10), '-1010') assert_equal(np.binary_repr(-12522), '-11000011101010') assert_equal(np.binary_repr(-10736848), '-101000111101010011010000') def test_sufficient_width(self): assert_equal(np.binary_repr(0, width=5), '00000') assert_equal(np.binary_repr(10, width=7), '0001010') assert_equal(np.binary_repr(-5, width=7), '1111011') def test_neg_width_boundaries(self): # see gh-8670 # Ensure that the example in the issue does not # break before proceeding to a more thorough test. assert_equal(np.binary_repr(-128, width=8), '10000000') for width in range(1, 11): num = -2**(width - 1) exp = '1' + (width - 1) * '0' assert_equal(np.binary_repr(num, width=width), exp) def test_large_neg_int64(self): # See gh-14289. assert_equal(np.binary_repr(np.int64(-2**62), width=64), '11' + '0'*62) class TestBaseRepr(object): def test_base3(self): assert_equal(np.base_repr(3**5, 3), '100000') def test_positive(self): assert_equal(np.base_repr(12, 10), '12') assert_equal(np.base_repr(12, 10, 4), '000012') assert_equal(np.base_repr(12, 4), '30') assert_equal(np.base_repr(3731624803700888, 36), '10QR0ROFCEW') def test_negative(self): assert_equal(np.base_repr(-12, 10), '-12') assert_equal(np.base_repr(-12, 10, 4), '-000012') assert_equal(np.base_repr(-12, 4), '-30') def test_base_range(self): with assert_raises(ValueError): np.base_repr(1, 1) with assert_raises(ValueError): np.base_repr(1, 37) class TestArrayComparisons(object): def test_array_equal(self): res = np.array_equal(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equal(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equal(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equal(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equal(np.array(['a'], dtype='S1'), np.array(['a'], dtype='S1')) assert_(res) assert_(type(res) is bool) res = np.array_equal(np.array([('a', 1)], dtype='S1,u4'), np.array([('a', 1)], dtype='S1,u4')) assert_(res) assert_(type(res) is bool) def test_none_compares_elementwise(self): a = np.array([None, 1, None], dtype=object) assert_equal(a == None, [True, False, True]) assert_equal(a != None, [False, True, False]) a = np.ones(3) assert_equal(a == None, [False, False, False]) assert_equal(a != None, [True, True, True]) def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool) def assert_array_strict_equal(x, y): assert_array_equal(x, y) # Check flags, 32 bit arches typically don't provide 16 byte alignment if ((x.dtype.alignment <= 8 or np.intp().dtype.itemsize != 4) and sys.platform != 'win32'): assert_(x.flags == y.flags) else: assert_(x.flags.owndata == y.flags.owndata) assert_(x.flags.writeable == y.flags.writeable) assert_(x.flags.c_contiguous == y.flags.c_contiguous) assert_(x.flags.f_contiguous == y.flags.f_contiguous) assert_(x.flags.writebackifcopy == y.flags.writebackifcopy) # check endianness assert_(x.dtype.isnative == y.dtype.isnative) class TestClip(object): def setup(self): self.nr = 5 self.nc = 3 def fastclip(self, a, m, M, out=None, casting=None): if out is None: if casting is None: return a.clip(m, M) else: return a.clip(m, M, casting=casting) else: if casting is None: return a.clip(m, M, out) else: return a.clip(m, M, out, casting=casting) def clip(self, a, m, M, out=None): # use slow-clip selector = np.less(a, m) + 2*np.greater(a, M) return selector.choose((a, m, M), out=out) # Handy functions def _generate_data(self, n, m): return randn(n, m) def _generate_data_complex(self, n, m): return randn(n, m) + 1.j * rand(n, m) def _generate_flt_data(self, n, m): return (randn(n, m)).astype(np.float32) def _neg_byteorder(self, a): a = np.asarray(a) if sys.byteorder == 'little': a = a.astype(a.dtype.newbyteorder('>')) else: a = a.astype(a.dtype.newbyteorder('<')) return a def _generate_non_native_data(self, n, m): data = randn(n, m) data = self._neg_byteorder(data) assert_(not data.dtype.isnative) return data def _generate_int_data(self, n, m): return (10 * rand(n, m)).astype(np.int64) def _generate_int32_data(self, n, m): return (10 * rand(n, m)).astype(np.int32) # Now the real test cases @pytest.mark.parametrize("dtype", '?bhilqpBHILQPefdgFDGO') def test_ones_pathological(self, dtype): # for preservation of behavior described in # gh-12519; amin > amax behavior may still change # in the future arr = np.ones(10, dtype=dtype) expected = np.zeros(10, dtype=dtype) actual = np.clip(arr, 1, 0) if dtype == 'O': assert actual.tolist() == expected.tolist() else: assert_equal(actual, expected) def test_simple_double(self): # Test native double input with scalar min/max. a = self._generate_data(self.nr, self.nc) m = 0.1 M = 0.6 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_simple_int(self): # Test native int input with scalar min/max. a = self._generate_int_data(self.nr, self.nc) a = a.astype(int) m = -2 M = 4 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_array_double(self): # Test native double input with array min/max. a = self._generate_data(self.nr, self.nc) m = np.zeros(a.shape) M = m + 0.5 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_simple_nonnative(self): # Test non native double input with scalar min/max. # Test native double input with non native double scalar min/max. a = self._generate_non_native_data(self.nr, self.nc) m = -0.5 M = 0.6 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_equal(ac, act) # Test native double input with non native double scalar min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 M = self._neg_byteorder(0.6) assert_(not M.dtype.isnative) ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_equal(ac, act) def test_simple_complex(self): # Test native complex input with native double scalar min/max. # Test native input with complex double scalar min/max. a = 3 * self._generate_data_complex(self.nr, self.nc) m = -0.5 M = 1. ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) # Test native input with complex double scalar min/max. a = 3 * self._generate_data(self.nr, self.nc) m = -0.5 + 1.j M = 1. + 2.j ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_clip_complex(self): # Address Issue gh-5354 for clipping complex arrays # Test native complex input without explicit min/max # ie, either min=None or max=None a = np.ones(10, dtype=complex) m = a.min() M = a.max() am = self.fastclip(a, m, None) aM = self.fastclip(a, None, M) assert_array_strict_equal(am, a) assert_array_strict_equal(aM, a) def test_clip_non_contig(self): # Test clip for non contiguous native input and native scalar min/max. a = self._generate_data(self.nr * 2, self.nc * 3) a = a[::2, ::3] assert_(not a.flags['F_CONTIGUOUS']) assert_(not a.flags['C_CONTIGUOUS']) ac = self.fastclip(a, -1.6, 1.7) act = self.clip(a, -1.6, 1.7) assert_array_strict_equal(ac, act) def test_simple_out(self): # Test native double input with scalar min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 M = 0.6 ac = np.zeros(a.shape) act = np.zeros(a.shape) self.fastclip(a, m, M, ac) self.clip(a, m, M, act) assert_array_strict_equal(ac, act) @pytest.mark.parametrize("casting", [None, "unsafe"]) def test_simple_int32_inout(self, casting): # Test native int32 input with double min/max and int32 out. a = self._generate_int32_data(self.nr, self.nc) m = np.float64(0) M = np.float64(2) ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() if casting is None: with assert_warns(DeprecationWarning): # NumPy 1.17.0, 2018-02-24 - casting is unsafe self.fastclip(a, m, M, ac, casting=casting) else: # explicitly passing "unsafe" will silence warning self.fastclip(a, m, M, ac, casting=casting) self.clip(a, m, M, act) assert_array_strict_equal(ac, act) def test_simple_int64_out(self): # Test native int32 input with int32 scalar min/max and int64 out. a = self._generate_int32_data(self.nr, self.nc) m = np.int32(-1) M = np.int32(1) ac = np.zeros(a.shape, dtype=np.int64) act = ac.copy() self.fastclip(a, m, M, ac) self.clip(a, m, M, act) assert_array_strict_equal(ac, act) def test_simple_int64_inout(self): # Test native int32 input with double array min/max and int32 out. a = self._generate_int32_data(self.nr, self.nc) m = np.zeros(a.shape, np.float64) M = np.float64(1) ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() with assert_warns(DeprecationWarning): # NumPy 1.17.0, 2018-02-24 - casting is unsafe self.fastclip(a, m, M, ac) self.clip(a, m, M, act) assert_array_strict_equal(ac, act) def test_simple_int32_out(self): # Test native double input with scalar min/max and int out. a = self._generate_data(self.nr, self.nc) m = -1.0 M = 2.0 ac = np.zeros(a.shape, dtype=np.int32) act = ac.copy() with assert_warns(DeprecationWarning): # NumPy 1.17.0, 2018-02-24 - casting is unsafe self.fastclip(a, m, M, ac) self.clip(a, m, M, act) assert_array_strict_equal(ac, act) def test_simple_inplace_01(self): # Test native double input with array min/max in-place. a = self._generate_data(self.nr, self.nc) ac = a.copy() m = np.zeros(a.shape) M = 1.0 self.fastclip(a, m, M, a) self.clip(a, m, M, ac) assert_array_strict_equal(a, ac) def test_simple_inplace_02(self): # Test native double input with scalar min/max in-place. a = self._generate_data(self.nr, self.nc) ac = a.copy() m = -0.5 M = 0.6 self.fastclip(a, m, M, a) self.clip(ac, m, M, ac) assert_array_strict_equal(a, ac) def test_noncontig_inplace(self): # Test non contiguous double input with double scalar min/max in-place. a = self._generate_data(self.nr * 2, self.nc * 3) a = a[::2, ::3] assert_(not a.flags['F_CONTIGUOUS']) assert_(not a.flags['C_CONTIGUOUS']) ac = a.copy() m = -0.5 M = 0.6 self.fastclip(a, m, M, a) self.clip(ac, m, M, ac) assert_array_equal(a, ac) def test_type_cast_01(self): # Test native double input with scalar min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 M = 0.6 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_type_cast_02(self): # Test native int32 input with int32 scalar min/max. a = self._generate_int_data(self.nr, self.nc) a = a.astype(np.int32) m = -2 M = 4 ac = self.fastclip(a, m, M) act = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_type_cast_03(self): # Test native int32 input with float64 scalar min/max. a = self._generate_int32_data(self.nr, self.nc) m = -2 M = 4 ac = self.fastclip(a, np.float64(m), np.float64(M)) act = self.clip(a, np.float64(m), np.float64(M)) assert_array_strict_equal(ac, act) def test_type_cast_04(self): # Test native int32 input with float32 scalar min/max. a = self._generate_int32_data(self.nr, self.nc) m = np.float32(-2) M = np.float32(4) act = self.fastclip(a, m, M) ac = self.clip(a, m, M) assert_array_strict_equal(ac, act) def test_type_cast_05(self): # Test native int32 with double arrays min/max. a = self._generate_int_data(self.nr, self.nc) m = -0.5 M = 1. ac = self.fastclip(a, m * np.zeros(a.shape), M) act = self.clip(a, m * np.zeros(a.shape), M) assert_array_strict_equal(ac, act) def test_type_cast_06(self): # Test native with NON native scalar min/max. a = self._generate_data(self.nr, self.nc) m = 0.5 m_s = self._neg_byteorder(m) M = 1. act = self.clip(a, m_s, M) ac = self.fastclip(a, m_s, M) assert_array_strict_equal(ac, act) def test_type_cast_07(self): # Test NON native with native array min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 * np.ones(a.shape) M = 1. a_s = self._neg_byteorder(a) assert_(not a_s.dtype.isnative) act = a_s.clip(m, M) ac = self.fastclip(a_s, m, M) assert_array_strict_equal(ac, act) def test_type_cast_08(self): # Test NON native with native scalar min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 M = 1. a_s = self._neg_byteorder(a) assert_(not a_s.dtype.isnative) ac = self.fastclip(a_s, m, M) act = a_s.clip(m, M) assert_array_strict_equal(ac, act) def test_type_cast_09(self): # Test native with NON native array min/max. a = self._generate_data(self.nr, self.nc) m = -0.5 * np.ones(a.shape) M = 1. m_s = self._neg_byteorder(m) assert_(not m_s.dtype.isnative) ac = self.fastclip(a, m_s, M) act = self.clip(a, m_s, M) assert_array_strict_equal(ac, act) def test_type_cast_10(self): # Test native int32 with float min/max and float out for output argument. a = self._generate_int_data(self.nr, self.nc) b = np.zeros(a.shape, dtype=np.float32) m = np.float32(-0.5) M = np.float32(1) act = self.clip(a, m, M, out=b) ac = self.fastclip(a, m, M, out=b) assert_array_strict_equal(ac, act) def test_type_cast_11(self): # Test non native with native scalar, min/max, out non native a = self._generate_non_native_data(self.nr, self.nc) b = a.copy() b = b.astype(b.dtype.newbyteorder('>')) bt = b.copy() m = -0.5 M = 1. self.fastclip(a, m, M, out=b) self.clip(a, m, M, out=bt) assert_array_strict_equal(b, bt) def test_type_cast_12(self): # Test native int32 input and min/max and float out a = self._generate_int_data(self.nr, self.nc) b = np.zeros(a.shape, dtype=np.float32) m = np.int32(0) M = np.int32(1) act = self.clip(a, m, M, out=b) ac = self.fastclip(a, m, M, out=b) assert_array_strict_equal(ac, act) def test_clip_with_out_simple(self): # Test native double input with scalar min/max a = self._generate_data(self.nr, self.nc) m = -0.5 M = 0.6 ac = np.zeros(a.shape) act = np.zeros(a.shape) self.fastclip(a, m, M, ac) self.clip(a, m, M, act) assert_array_strict_equal(ac, act) def test_clip_with_out_simple2(self): # Test native int32 input with double min/max and int32 out a = self._generate_int32_data(self.nr, self.nc) m = np.float64(0) M = np.float64(2) ac =
np.zeros(a.shape, dtype=np.int32)
numpy.zeros
from sgin_utils import classification_metric, sgin_experiment, linear_experiment import torch import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler import random import datetime import time import re import argparse # %% Parse the Argument parser = argparse.ArgumentParser(description='Run ASD Classification Experiment.') parser.add_argument('--models', metavar='N', type=str, nargs='+', required=True, help='the model that will be trained in this experiment. It can contain SGIN, Lasso, or group_lasso') args = parser.parse_args() args.models = [_.lower() for _ in args.models] # convert to lowercase # %% infname = "data_prepare/dummy_et_asd_classification.csv" normalize_features = True df = pd.read_csv(infname) # The label column, "isASD", contains bool values df.isASD = df.isASD.astype(int) features = df.drop(["isASD"], axis=1) assert(features.shape[1] == 9647) # each stimulus is a group. Total 109 groups stimulus_types = [re.findall("^[a-z]+_\d+", _)[0] for _ in features.keys()] unique_type = np.unique(stimulus_types).tolist() open("rst/et_group_names.txt", "w").write("\n".join(unique_type)) feature_groups = [unique_type.index(_) for _ in stimulus_types] feature_groups = np.array(feature_groups) indices = list(df.index) random.seed("ASD") random.shuffle(indices) cross_validation_ids = np.array_split(np.array(indices), 10) random.seed(time.time()) # reset the seed # Save Cross Validation Split f = open("rst/asd_cv_split.txt", "w") for cv_ in cross_validation_ids: f.write("\t".join([str(_) for _ in cv_]) + "\n") f.close() # Save group definition to file f = open("rst/et_group_definition.txt", "w") f.write("\t".join([str(_ + 1) for _ in feature_groups]) + "\n") f.close() # %% def run_asd_experiment(method, lambda_term, **kwargs): print("begin method:", method, "with \\lambda", lambda_term, datetime.datetime.now(), "#" * 20) method = method.lower() all_real = [] all_pred = [] all_prob = [] sparse_features_counts = [] sparse_groups_counts = [] sparse_groups_all = [] if "num_epochs" in kwargs: num_epochs = kwargs["num_epochs"] else: num_epochs = 5 # we will use cross entropy layers = [3000, 500, 2] criterion = torch.nn.CrossEntropyLoss() for cv_id, val_indices in enumerate(cross_validation_ids): num_val = len(val_indices) train_features = features.drop(val_indices).values train_labels = df.isASD.drop(val_indices).values.reshape(-1) val_features = features.ix[val_indices].values.reshape(num_val, -1) val_labels = np.array(df.isASD[val_indices]).reshape(-1) # Normalize Features if normalize_features: scaler = StandardScaler().fit(train_features) train_features = scaler.transform(train_features) val_features = scaler.transform(val_features) print("CV:", cv_id, "Shape Verification:", str(datetime.datetime.now())) if method == "lasso" or method == "linear regression" or \ method == "logistic regression" or method == "group lasso": val_rst, test_rst, n_sparse_features, n_sparse_groups, sparse_groups =\ linear_experiment(train_features, train_labels, val_features, val_labels, None, None, # nothing for testing feature_groups, lambda_term=lambda_term, model_to_use=method) if method == "sgin" or method == "sgin_sgd" or method == "nn" or method == "theory": if method == "sgin": opt_method = "sbcgd" lam = lambda_term elif method == "sgin_sgd": opt_method = "sgd" lam = lambda_term elif method == "nn": opt_method = "sgd" lam = 0 # ignore and override the lambda for standard NN method elif method == "theory": opt_method = "theory" lam = lambda_term val_rst, test_rst, n_sparse_features, n_sparse_groups, sparse_groups =\ sgin_experiment( train_features, train_labels, val_features, val_labels, None, None, # no testing set. We use cross validation here feature_groups, cv_id=cv_id, criterion=criterion, optmizer_method=opt_method, lam=lam, layers=layers, num_epochs=num_epochs, train_batch_size=100, verbose=False) real, pred, prob = val_rst all_real += real all_pred += pred all_prob += prob sparse_features_counts.append(n_sparse_features) sparse_groups_counts.append(n_sparse_groups) sparse_groups_all.append(sparse_groups) classification_metric(all_real, all_pred, all_prob) print("Final Sparsity %d features from %d groups in this Cross Validation:" % (n_sparse_features, n_sparse_groups)) print("#" * 10, "SUMMARY for", method) print("avg sparse features: %.2f; avg sparse groups: %.2f" % (np.mean(sparse_features_counts), np.mean(sparse_groups_counts))) acc, f1, auc, cm, precision, recall, sensitivity, specificity, _ = classification_metric(all_real, all_pred, all_prob) # Cache Result of = open("rst/et_asd_classification_rst.tsv", "a") # with > 9000 features rst = [method, lambda_term, np.mean(sparse_features_counts), np.mean(sparse_groups_counts), np.std(sparse_features_counts), np.std(sparse_groups_counts), acc, f1, auc, cm, precision, recall, sensitivity, specificity, kwargs, sparse_groups_all] rst = [str(_) for _ in rst] of.write("\t".join(rst).replace("\n", " ") + "\n") of.close() print("#" * 200) # %% if __name__ == "__main__": # SGIN lam1 = np.random.uniform(1e-5, 1e-3, size=[20]) lam2 = np.random.uniform(1e-6, 1e-4, size=[10]) lam3 = np.random.uniform(1e-8, 1e-4, size=[10]) nn_lambdas = np.concatenate([lam1, lam2, lam3]) random.shuffle(nn_lambdas) if "sgin" in args.models: for lam in nn_lambdas: run_asd_experiment("SGIN", lambda_term=lam,) # Theory if "theory" in args.models: for lam in nn_lambdas: run_asd_experiment("theory", lambda_term=lam,) # NN if "nn" in args.models: run_asd_experiment("nn", lambda_term=0) # SGIN SGD if "sgd" in args.models: for lam in nn_lambdas: run_asd_experiment("SGIN_sgd", lambda_term=lam) lambdas1 = np.random.uniform(0.01, 0.1, size=[10]) lambdas2 = np.random.uniform(0., 1, size=[10]) lambdas3 = np.random.uniform(0.001, 0.01, size=[10]) lambdas4 = np.logspace(np.log(0.02), np.log(0.000001), 10, base=np.exp(1)) lambdas5 = np.logspace(np.log(1), np.log(0.02), 10, base=np.exp(1)) lambdas6 = np.logspace(np.log(10000), np.log(10), 10, base=
np.exp(1)
numpy.exp
from __future__ import print_function, division, absolute_import import numpy as np from collections import OrderedDict # ==================== Predefined datasets information ==================== # nist15_cluster_lang = OrderedDict([ ['ara', ['ara-arz', 'ara-acm', 'ara-apc', 'ara-ary', 'ara-arb']], ['zho', ['zho-yue', 'zho-cmn', 'zho-cdo', 'zho-wuu']], ['eng', ['eng-gbr', 'eng-usg', 'eng-sas']], ['fre', ['fre-waf', 'fre-hat']], ['qsl', ['qsl-pol', 'qsl-rus']], ['spa', ['spa-car', 'spa-eur', 'spa-lac', 'por-brz']] ]) nist15_lang_list = np.asarray([ # Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard 'ara-arz', 'ara-acm', 'ara-apc', 'ara-ary', 'ara-arb', # Cantonese, Mandarin, Min Dong, Wu 'zho-yue', 'zho-cmn', 'zho-cdo', 'zho-wuu', # British, American, South Asian (Indian) 'eng-gbr', 'eng-usg', 'eng-sas', # West african, Haitian 'fre-waf', 'fre-hat', # Polish, Russian 'qsl-pol', 'qsl-rus', # Caribbean, European, Latin American, Brazilian 'spa-car', 'spa-eur', 'spa-lac', 'por-brz']) def nist15_label(label): ''' Return ------ lang_id : int idx in the list of 20 language, None if not found cluster_id : int idx in the list of 6 clusters, None if not found within_cluster_id : int idx in the list of each clusters, None if not found ''' label = label.replace('spa-brz', 'por-brz') rval = [None, None, None] # lang_id if label not in nist15_lang_list: raise ValueError('Cannot found label:%s' % label) rval[0] = np.argmax(label == nist15_lang_list) # cluster_id for c, x in enumerate(nist15_cluster_lang.iteritems()): j = x[1] if label in j: rval[1] = c rval[2] = j.index(label) return rval # ==================== Timit ==================== # timit_61 = ['aa', 'ae', 'ah', 'ao', 'aw', 'ax', 'ax-h', 'axr', 'ay', 'b', 'bcl', 'ch', 'd', 'dcl', 'dh', 'dx', 'eh', 'el', 'em', 'en', 'eng', 'epi', 'er', 'ey', 'f', 'g', 'gcl', 'h#', 'hh', 'hv', 'ih', 'ix', 'iy', 'jh', 'k', 'kcl', 'l', 'm', 'n', 'ng', 'nx', 'ow', 'oy', 'p', 'pau', 'pcl', 'q', 'r', 's', 'sh', 't', 'tcl', 'th', 'uh', 'uw', 'ux', 'v', 'w', 'y', 'z', 'zh'] timit_39 = ['aa', 'ae', 'ah', 'aw', 'ay', 'b', 'ch', 'd', 'dh', 'dx', 'eh', 'er', 'ey', 'f', 'g', 'hh', 'ih', 'iy', 'jh', 'k', 'l', 'm', 'n', 'ng', 'ow', 'oy', 'p', 'r', 's', 'sh', 'sil', 't', 'th', 'uh', 'uw', 'v', 'w', 'y', 'z'] timit_map = {'ao': 'aa', 'ax': 'ah', 'ax-h': 'ah', 'axr': 'er', 'hv': 'hh', 'ix': 'ih', 'el': 'l', 'em': 'm', 'en': 'n', 'nx': 'n', 'eng': 'ng', 'zh': 'sh', 'ux': 'uw', 'pcl': 'sil', 'tcl': 'sil', 'kcl': 'sil', 'bcl': 'sil', 'dcl': 'sil', 'gcl': 'sil', 'h#': 'sil', 'pau': 'sil', 'epi': 'sil'} def timit_phonemes(phn, map39=False, blank=False): ''' Included blank ''' if type(phn) not in (list, tuple, np.ndarray): phn = [phn] if map39: timit = timit_39 timit_map = timit_map l = 39 else: timit = timit_61 timit_map = {} l = 61 # ====== return phonemes ====== # rphn = [] for p in phn: if p not in timit_map and p not in timit: if blank: rphn.append(l) else: rphn.append(timit.index(timit_map[p]) if p in timit_map else timit.index(p)) return rphn # ==================== Speech Signal Processing ==================== # def read(f, pcm = False): ''' Return ------ waveform (ndarray), sample rate (int) ''' if pcm or (isinstance(f, str) and 'pcm' in f): return np.memmap(f, dtype=np.int16, mode='r') from soundfile import read return read(f) def preprocess(signal, add_noise=False): if len(signal.shape) > 1: signal = signal.ravel() signal = signal[signal != 0] signal = signal.astype(np.float32) if add_noise: signal = signal + 1e-13 * np.random.randn(signal.shape) return signal def logmel(signal, fs, n_filters=40, n_ceps=13, win=0.025, shift=0.01, delta1=True, delta2=True, energy=False, normalize=True, clean=True): import sidekit if len(signal.shape) > 1: signal = signal.ravel() # 1. Some const. # n_filters = 40 # The number of mel filter bands f_min = 0. # The minimal frequency of the filter bank f_max = fs / 2 # overlap = nwin - int(shift * fs) # 2. preprocess. if clean: signal = preprocess(signal) # 3. logmel. logmel = sidekit.frontend.features.mfcc(signal, lowfreq=f_min, maxfreq=f_max, nlinfilt=0, nlogfilt=n_filters, fs=fs, nceps=n_ceps, midfreq=1000, nwin=win, shift=shift, get_spec=False, get_mspec=True) logenergy = logmel[1] logmel = logmel[3].astype(np.float32) # 4. delta. tmp = [logmel] if delta1 or delta2: d1 = sidekit.frontend.features.compute_delta(logmel, win=3, method='filter') d2 = sidekit.frontend.features.compute_delta(d1, win=3, method='filter') if delta1: tmp.append(d1) if delta2: tmp.append(d2) logmel = np.concatenate(tmp, 1) if energy: logmel = np.concatenate((logmel, logenergy.reshape(-1, 1)), axis=1) # 5. VAD and normalize. nwin = int(fs * win) idx = sidekit.frontend.vad.vad_snr(signal, 30, fs=fs, shift=shift, nwin=nwin) # if not returnVAD: # logmel = logmel[idx, :] # Normalize if normalize: mean = np.mean(logmel, axis = 0) var = np.var(logmel, axis = 0) logmel = (logmel - mean) / np.sqrt(var) # return return logmel, idx def mfcc(signal, fs, n_ceps, n_filters=40, win=0.025, shift=0.01, delta1=True, delta2=True, energy=False, normalize=True, clean=True): import sidekit # 1. Const. f_min = 0. # The minimal frequency of the filter bank f_max = fs / 2 # 2. Speech. if clean: signal = preprocess(signal) ##################################### # 3. mfcc. # MFCC mfcc = sidekit.frontend.features.mfcc(signal, lowfreq=f_min, maxfreq=f_max, nlinfilt=0, nlogfilt=n_filters, fs=fs, nceps=n_ceps, midfreq=1000, nwin=win, shift=shift, get_spec=False, get_mspec=False) logenergy = mfcc[1] mfcc = mfcc[0].astype(np.float32) # 4. Add more information. tmp = [mfcc] if delta1 or delta2: d1 = sidekit.frontend.features.compute_delta(mfcc, win=3, method='filter') d2 = sidekit.frontend.features.compute_delta(d1, win=3, method='filter') if delta1: tmp.append(d1) if delta2: tmp.append(d2) mfcc = np.concatenate(tmp, 1) if energy: mfcc = np.concatenate((mfcc, logenergy.reshape(-1, 1)), axis=1) # 5. Vad and normalize. # VAD nwin = int(fs * win) idx = sidekit.frontend.vad.vad_snr(signal, 30, fs=fs, shift=shift, nwin=nwin) # if not returnVAD: # mfcc = mfcc[idx, :] # Normalize if normalize: mean = np.mean(mfcc, axis = 0) var = np.var(mfcc, axis = 0) mfcc = (mfcc - mean) / np.sqrt(var) # return return mfcc, idx def spectrogram(signal, fs, n_ceps=13, n_filters=40, win=0.025, shift=0.01, delta1=True, delta2=True, energy=False, normalize=False, clean=True): import sidekit # 1. Const. f_min = 0. # The minimal frequency of the filter bank f_max = fs / 2 # 2. Speech. if clean: signal = preprocess(signal) # 3. mfcc. # MFCC spt = sidekit.frontend.features.mfcc(signal, lowfreq=f_min, maxfreq=f_max, nlinfilt=0, nlogfilt=n_filters, fs=fs, nceps=n_ceps, midfreq=1000, nwin=win, shift=shift, get_spec=True, get_mspec=False) logenergy = spt[1] spt = spt[2].astype(np.float32) # 4. Add more information. tmp = [spt] if delta1 or delta2: d1 = sidekit.frontend.features.compute_delta(spt, win=3, method='filter') d2 = sidekit.frontend.features.compute_delta(d1, win=3, method='filter') if delta1: tmp.append(d1) if delta2: tmp.append(d2) spt = np.concatenate(tmp, 1) if energy: spt = np.concatenate((spt, logenergy.reshape(-1, 1)), axis=1) # 5. Vad and normalize. # VAD nwin = int(fs * win) idx = sidekit.frontend.vad.vad_snr(signal, 30, fs=fs, shift=shift, nwin=nwin) # if not returnVAD: # spt = spt[idx, :] # Normalize if normalize: mean = np.mean(spt, axis = 0) var = np.var(spt, axis = 0) spt = (spt - mean) /
np.sqrt(var)
numpy.sqrt
#!/usr/bin/env python # coding: utf-8 # # # LMC 3D structure Final Version with Systematics # # np.random.choice([Roger,Hector, Alfred,Luis,Angel,Xavi]) # In[ ]: ####################### #### Load packages #### ####################### from scipy import stats import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib.colors import LogNorm # import warnings import sys import numpy as np import pandas as pd import time import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import ConstantKernel from scipy.optimize import curve_fit from scipy.stats import gaussian_kde from scipy.interpolate import Rbf from scipy.stats import multivariate_normal from scipy.linalg import pinv def rbf(X,y,k): idx = np.random.randint(np.size(X,axis = 0),size = k) centroids = X[idx,:] xcross = np.dot(X,X.T) xnorms = np.repeat(np.diag(np.dot(X,X.T)).reshape(1,-1),np.size(X,axis=0),axis=0) sigma = np.median(xnorms-2.*xcross+xnorms.T) n = X.shape[0] values = [] for x in X: for c in centroids: values.append(np.exp(-np.sum((x-c)**2.)/sigma)) phiX = np.reshape(values,(n,k)) psinv = pinv(np.dot(phiX.T,phiX)) w = np.dot(psinv,np.dot(phiX.T,y)) return w,centroids,sigma def rbf_predict(Xhat,w,centroids,sigma): n = Xhat.shape[0] k = centroids.shape[0] values = [] for x in Xhat: for c in centroids: values.append(np.exp(-np.sum((x-c)**2.)/sigma)) phi_Xhat = np.reshape(values,(n,k)) return np.dot(phi_Xhat,w) def proper2geo_fn(xyz,distCenterLMC,alphaCenterLMC,deltaCenterLMC, posAngleLMC,inclAngleLMC): # Transform samples of location coordinates in the proper frame of the LMC # to the rectangular heliocentric frame # # References: # <NAME> & Cioni (2001) # Weinberg and Nikolaev (2001) # # Parameters: # -xyz A tensor of shape=(N, 3) containing N samples in the # proper LMC frame # -N No of samples # -distCenterLMC Distance to the LMC centre (kpc) # -alphaCenterLMC RA of the LMC centre (rad) # -deltaCenterLMC Dec of the LMC centre (rad) # -posAngleLMC Position angle of the LON measured w.r.t. the North (rad) # -inclAngleLMC Inclination angle (rad) # # Return: A tensor of shape=(N, 3) containing N samples of rectangular # coordinates in the heliocentric frame # Affine transformation from local LMC frame to heliocentric frame s11 = np.sin(alphaCenterLMC) s12 = -np.cos(alphaCenterLMC) * np.sin(deltaCenterLMC) s13 = -np.cos(alphaCenterLMC) * np.cos(deltaCenterLMC) s21 = -np.cos(alphaCenterLMC) s22 = -np.sin(alphaCenterLMC) * np.sin(deltaCenterLMC) s23 = -np.sin(alphaCenterLMC) * np.cos(deltaCenterLMC) s31 = np.zeros([]) s32 = np.cos(deltaCenterLMC) s33 = -np.sin(deltaCenterLMC) matrix = np.stack((s11,s12,s13,s21,s22,s23,s31,s32,s33), axis=-1) # pyformat: disable output_shape = np.concatenate(( np.shape(np.zeros(4))[:-1], (3, 3)), axis=-1) OXYZ2 = np.reshape(matrix, output_shape.astype(int)) LMC_center = np.stack( [ distCenterLMC * np.cos(deltaCenterLMC) * np.cos(alphaCenterLMC), distCenterLMC * np.cos(deltaCenterLMC) * np.sin(alphaCenterLMC), distCenterLMC * np.sin(deltaCenterLMC) ], axis=0) #print("LMC_center",LMC_center) # Linear transformation from proper to local LMC frame s11 = np.cos(posAngleLMC) s12 = -np.sin(posAngleLMC) * np.cos(inclAngleLMC) s13 = -np.sin(posAngleLMC) * np.sin(inclAngleLMC) s21 = np.sin(posAngleLMC) s22 = np.cos(posAngleLMC) * np.cos(inclAngleLMC) s23 = np.cos(posAngleLMC) * np.sin(inclAngleLMC) s31 = np.zeros([]) s32 = -np.sin(inclAngleLMC) s33 = np.cos(inclAngleLMC) matrix2 = np.stack((s11,s12,s13,s21,s22,s23,s31,s32,s33), axis=-1) # pyformat: disable output_shape = np.concatenate(( np.shape(np.zeros(4))[:-1], (3, 3)), axis=-1) OXYZ5 = np.reshape(matrix2, output_shape.astype(int)) #mat1=xyz.dot(OXYZ5) mat1=OXYZ5.dot(xyz.T).T #print("mat1",mat1.shape) #print(OXYZ2.shape) #output0n=mat1.dot(OXYZ2) + np.array(LMC_center) output0n=OXYZ2.dot(mat1.T).T + np.array(LMC_center) #print("output0n",output0n) #mat1 = np.matmul(OXYZ5,xyz) + np.zeros(3) #mat2 = np.matmul(OXYZ2,mat1) + LMC_center return output0n def disk_fn(n, scaleHeight, scaleLength, psiAngle, ellFactor): # Generate samples of location coordinates of the LMC disk in a proper # reference frame and transform them to a proper LMC reference frame # References: # Mancini et al. (2004) # # Parameters: # -N No of samples # -scaleHeight Disk scale height (kpc) # -scaleLength Disk scale length (kpc) # -ellFactor Disk ellipticity factor. For a circular disk set = 1 # -psiAngle Disk minor axis position angle measured w.r.t. LON (rad) # For a circular disk set = 0 # # Return: A tensor of shape=(n, 3) containing N samples of the # star locations in a local LMC reference frame s11 = np.cos(psiAngle) s12 = -np.sin(psiAngle) s13 = np.zeros([]) s21 = np.sin(psiAngle) s22 = np.cos(psiAngle) s23 = np.zeros([]) s31 = np.zeros([]) s32 = np.zeros([]) s33 = np.ones([]) matrix = np.stack((s11,s12,s13,s21,s22,s23,s31,s32,s33), axis=-1) # pyformat: disable output_shape = np.concatenate(( np.shape(np.zeros(4))[:-1], (3, 3)), axis=-1) OXYZ6 = np.reshape(matrix, output_shape.astype(int)) #S3_ = tf.linalg.LinearOperatorFullMatrix(OXYZ6) #S3_ALO = tfb.AffineLinearOperator(shift=tf.zeros(3), scale=S3_) #r = tfd.Gamma(concentration=2, rate=1./scaleLength).sample(n ) r = np.random.gamma(shape = 2,scale = scaleLength, size = n) theta = np.random.uniform(low=0., high=2.*np.pi, size = n) x = ellFactor * r * np.cos(theta) y = r * np.sin(theta) z = np.random.laplace(loc=0., scale=scaleHeight, size=n ) #chain = tfb.Chain([ S3_ALO ]) #output1n=np.stack([x,y,z],axis=1).dot(OXYZ6) output1n=OXYZ6.dot(np.stack([x,y,z],axis=1).T).T # NO entenc perquè pero sembla que així queda ben encarat #print("mat11",output1n.shape) #mat1 = np.matmul(OXYZ6,np.stack([x,y,z],axis=1)) + np.zeros(3) return output1n def geo2plx_fn( x ): # Transform rectangular heliocentric coordinates to (ra,dec,parallax) coordinates x0 = x[..., 0] x1 = x[..., 1] x2 = x[..., 2] y0 = np.array([]) #for element in range(len(x1)): # if x1[element] > 0.: # y0 = np.append(y0,np.dot(180./np.pi,np.arctan2(x1[element],x0[element]))) # else: # y0 = np.append(y0,np.dot(180./np.pi,np.arctan2(x1[element],x0[element]))+360.) #y0 = np.where(x1>0,np.dot(180.0/np.pi,np.arctan2(x1,x0)),np.dot(180.0/np.pi,np.arctan2(x1,x0))+360.) y0 = np.where(x1>0,180.0/np.pi*
np.arctan2(x1,x0)
numpy.arctan2
"""Definitions for common filters.""" import numpy as np import numpy.random as rnd import numpy.linalg as la from scipy.linalg import expm import scipy.integrate as s_integrate import scipy.stats as stats import abc from warnings import warn from copy import deepcopy import matplotlib.pyplot as plt import gncpy.math as gmath import gncpy.plotting as pltUtil import gncpy.distributions as gdistrib import gncpy.dynamics as gdyn import gncpy.errors as gerr class BayesFilter(metaclass=abc.ABCMeta): """Generic base class for Bayesian Filters such as a Kalman Filter. This defines the required functions and provides their recommended function signature for inherited classes. Attributes ---------- use_cholesky_inverse : bool Flag indicating if a cholesky decomposition should be performed before taking the inverse. This can improve numerical stability but may also increase runtime. The default is True. """ def __init__(self, use_cholesky_inverse=True, **kwargs): self.use_cholesky_inverse = use_cholesky_inverse super().__init__(**kwargs) @abc.abstractmethod def predict(self, timestep, *args, **kwargs): """Generic method for the filters prediction step. This must be overridden in the inherited class. It is recommended to keep the same structure/order for the arguments to allow for standardized implementation of wrapper code. """ pass @abc.abstractmethod def correct(self, timestep, meas, *args, **kwargs): """Generic method for the filters correction step. This must be overridden in the inherited class. It is recommended to keep the same structure/order for the arguments to allow for standardized implementation of wrapper code. """ pass @abc.abstractmethod def set_state_model(self, **kwargs): """Generic method for tsetting the state model. This must be overridden in the inherited class. The signature for this is arbitrary. """ pass @abc.abstractmethod def set_measurement_model(self, **kwargs): """Generic method for tsetting the measurement model. This must be overridden in the inherited class. The signature for this is arbitrary. """ pass class KalmanFilter(BayesFilter): """Implementation of a discrete time Kalman Filter. Notes ----- This is loosely based on :cite:`Crassidis2011_OptimalEstimationofDynamicSystems` Attributes ---------- cov : N x N numpy array Covariance matrix meas_noise : Nm x Nm numpy array Measurement noise matrix proc_noise : N x N numpy array Process noise matrix dt : float, optional Time difference between simulation steps. """ def __init__(self, cov=np.array([[]]), meas_noise=np.array([[]]), dt=None, **kwargs): self.cov = cov self.meas_noise = meas_noise self.proc_noise = np.array([[]]) self.dt = dt self._dyn_obj = None self._state_mat = np.array([[]]) self._input_mat = np.array([[]]) self._get_state_mat = None self._get_input_mat = None self._meas_mat = np.array([[]]) self._meas_fnc = None super().__init__(**kwargs) def set_state_model(self, state_mat=None, input_mat=None, cont_time=False, state_mat_fun=None, input_mat_fun=None, dyn_obj=None): r"""Sets the state model equation for the filter. If the continuous time model is used then a `dt` must be provided, see the note for algorithm details. Alternatively, if the system is time varying then functions can be specified to return the matrices at each time step. Note ----- This can use a continuous or discrete model. The continuous model will be automatically discretized so standard matrix equations can be used. If the discrete model is used it is assumed to have the form .. math:: x_{k+1} = F x_k + G u_k If the continuous model is used it is assumed to have the form .. math:: \dot{x} = A x + B u and is discretized according to .. math:: expm\left[\begin{bmatrix} A & B\\ 0 & 0 \end{bmatrix}dt\right]=\begin{bmatrix} F & G\\ 0 & I \end{bmatrix} Parameters ---------- state_mat : N x N numpy array, optional State matrix, continuous or discrete case. The default is None. input_mat : N x Nu numpy array, optional Input matrixx, continuous or discrete case. The default is None. cont_time : bool, optional Flag inidicating if the continuous model is provided. The default is False. state_mat_fun : callable, optional Function that returns the `state_mat`, must take timestep and `*args`. The default is None. input_mat_fun : callable, optional Function that returns the `input_mat`, must take timestep, and `*args`. The default is None. dyn_obj : :class:`gncpy.dynamics.LinearDynamicsBase`, optional Sets the dynamics according to the class. The default is None. Raises ------ RuntimeError If the improper combination of input arguments are specified. Returns ------- None. """ have_obj = dyn_obj is not None have_mats = state_mat is not None have_funs = state_mat_fun is not None if have_obj: self._dyn_obj = dyn_obj elif have_mats and not cont_time: self._state_mat = state_mat self._input_mat = input_mat elif have_mats: if self.dt is None: msg = 'dt must be specified when using continuous time model' raise RuntimeError(msg) n_cols = state_mat.shape[1] + input_mat.shape[1] big_mat = np.vstack((np.hstack((state_mat, input_mat)), np.zeros((input_mat.shape[1], n_cols)))) res = expm(big_mat * self.dt) r_s = 0 r_e = state_mat.shape[0] c_s = 0 c_e = state_mat.shape[1] self._state_mat = res[r_s:r_e, c_s:c_e] c_s = c_e c_e = res.shape[1] self._input_mat = res[r_s:r_e, c_s:c_e] elif have_funs: self._get_state_mat = state_mat_fun self._get_input_mat = input_mat_fun else: raise RuntimeError('Invalid combination of inputs') def set_measurement_model(self, meas_mat=None, meas_fun=None): r"""Sets the measurement model for the filter. This can either set the constant measurement matrix, or the matrix can be time varying. Notes ----- This assumes a measurement model of the form .. math:: \tilde{y}_{k+1} = H_{k+1} x_{k+1}^- where :math:`H_{k+1}` can be constant over time. Parameters ---------- meas_mat : Nm x N numpy array, optional Measurement matrix that transforms the state to estimated measurements. The default is None. meas_fun : callable, optional Function that returns the matrix for transforming the state to estimated measurements. Must take timestep, and `*args` as arguments. The default is None. Raises ------ RuntimeError Rasied if no arguments are specified. Returns ------- None. """ if meas_mat is not None: self._meas_mat = meas_mat elif meas_fun is not None: self._meas_fnc = meas_fun else: raise RuntimeError('Invalid combination of inputs') def _predict_next_state(self, timestep, cur_state, cur_input, state_mat_args, input_mat_args): if self._dyn_obj is not None: next_state = self._dyn_obj.propagate_state(timestep, cur_state, u=cur_input, state_args=state_mat_args, ctrl_args=input_mat_args) state_mat = self._dyn_obj.get_state_mat(timestep, *state_mat_args) else: if self._get_state_mat is not None: state_mat = self._get_state_mat(timestep, *state_mat_args) elif self._state_mat is not None: state_mat = self._state_mat else: raise RuntimeError('State model not set') if self._get_input_mat is not None: input_mat = self._get_input_mat(timestep, *input_mat_args) elif self._input_mat is not None: input_mat = self._input_mat else: input_mat = None next_state = state_mat @ cur_state if input_mat is not None and cur_input is not None: next_state += input_mat @ cur_input return next_state, state_mat def predict(self, timestep, cur_state, cur_input=None, state_mat_args=(), input_mat_args=()): """Implements a discrete time prediction step for a Kalman Filter. Parameters ---------- timestep : float Current timestep. cur_state : N x 1 numpy array Current state. cur_input : N x Nu numpy array, optional Current input. The default is None. state_mat_args : tuple, optional keyword arguments for the get state matrix function if one has been specified or the propagate state function if using a dynamic object. The default is (). input_mat_args : tuple, optional keyword arguments for the get input matrix function if one has been specified or the propagate state function if using a dynamic object. The default is (). Raises ------ RuntimeError If the state model has not been set Returns ------- next_state : N x 1 numpy array Next state. """ next_state, state_mat = self._predict_next_state(timestep, cur_state, cur_input, state_mat_args, input_mat_args) self.cov = state_mat @ self.cov @ state_mat.T + self.proc_noise self.cov = (self.cov + self.cov.T) * 0.5 return next_state def _get_meas_mat(self, t, state, n_meas, meas_fun_args): # time varying matrix if self._meas_fnc is not None: meas_mat = self._meas_fnc(t, *meas_fun_args) else: # constant matrix meas_mat = self._meas_mat return meas_mat def _est_meas(self, timestep, cur_state, n_meas, meas_fun_args): meas_mat = self._get_meas_mat(timestep, cur_state, n_meas, meas_fun_args) est_meas = meas_mat @ cur_state return est_meas, meas_mat def correct(self, timestep, meas, cur_state, meas_fun_args=()): """Implementss a discrete time correction step for a Kalman Filter. Parameters ---------- timestep : float Current timestep. meas : Nm x 1 numpy array Current measurement. cur_state : N x 1 numpy array Current state. meas_fun_args : tuple, optional Arguments for the measurement matrix function if one has been specified. The default is (). Returns ------- next_state : N x 1 numpy array The corrected state. meas_fit_prob : float Goodness of fit of the measurement based on the state and covariance assuming Gaussian noise. """ est_meas, meas_mat = self._est_meas(timestep, cur_state, meas.size, meas_fun_args) # get the Kalman gain cov_meas_T = self.cov @ meas_mat.T inov_cov = meas_mat @ cov_meas_T + self.meas_noise inov_cov = (inov_cov + inov_cov.T) * 0.5 if self.use_cholesky_inverse: sqrt_inv_inov_cov = la.inv(la.cholesky(inov_cov)) inv_inov_cov = sqrt_inv_inov_cov.T @ sqrt_inv_inov_cov else: inv_inov_cov = la.inv(inov_cov) kalman_gain = cov_meas_T @ inv_inov_cov # update the state with measurement inov = meas - est_meas next_state = cur_state + kalman_gain @ inov # update the covariance n_states = cur_state.shape[0] self.cov = (np.eye(n_states) - kalman_gain @ meas_mat) @ self.cov # calculate the measuremnt fit probability assuming Gaussian meas_fit_prob = np.exp(-0.5 * (meas.size * np.log(2 * np.pi) + np.log(la.det(inov_cov)) + inov.T @ inv_inov_cov @ inov)) meas_fit_prob = meas_fit_prob.item() return (next_state, meas_fit_prob) class ExtendedKalmanFilter(KalmanFilter): """Implementation of a continuous-discrete time Extended Kalman Filter. This is loosely based on :cite:`Crassidis2011_OptimalEstimationofDynamicSystems` Attributes ---------- cont_cov : bool, optional Flag indicating if a continuous model of the covariance matrix should be used in the filter update step. The default is True. integrator_type : string, optional integrator type as defined by scipy's integrate.ode function. The default is `dopri5`. Only used if a dynamic object is not specified. integrator_params : dict, optional additional parameters for the integrator. The default is {}. Only used if a dynamic object is not specified. """ def __init__(self, cont_cov=True, dyn_obj=None, ode_lst=None, **kwargs): self.cont_cov = cont_cov self.integrator_type = 'dopri5' self.integrator_params = {} self._dyn_obj = None self._ode_lst = None if dyn_obj is not None or ode_lst is not None: self.set_state_model(dyn_obj=dyn_obj, ode_lst=ode_lst) self._integrator = None super().__init__(**kwargs) def set_state_model(self, dyn_obj=None, ode_lst=None): r"""Sets the state model equations. This allows for setting the differential equations directly .. math:: \dot{x} = f(t, x, u) or setting a :class:`gncpy.dynamics.NonlinearDynamicsBase` object. If the object is specified then a local copy is created. Parameters ---------- dyn_obj : :class:`gncpy.dynamics.NonlinearDynamicsBase`, optional Sets the dynamics according to the class. The default is None. ode_lst : list, optional callable functions, 1 per ode/state. The callabale must have the signature `f(t, x, *f_args)` just like scipy.integrate's ode function. The default is None. Raises ------ RuntimeError If neither argument is specified. Returns ------- None. """ if dyn_obj is not None: self._dyn_obj = deepcopy(dyn_obj) elif ode_lst is not None and len(ode_lst) > 0: self._ode_lst = ode_lst else: msg = 'Invalid state model specified. Check arguments' raise RuntimeError(msg) def _predict_next_state(self, timestep, cur_state, dyn_fun_params): if self._dyn_obj is not None: next_state = self._dyn_obj.propagate_state(timestep, cur_state, state_args=dyn_fun_params) state_mat = self._dyn_obj.get_state_mat(timestep, cur_state, dyn_fun_params) dt = self._dyn_obj.dt elif self._ode_lst is not None: next_state = np.nan * np.ones(cur_state.shape) for ii, f in enumerate(self._ode_lst): self._integrator = s_integrate.ode(f) self._integrator.set_integrator(self.integrator_type, **self.integrator_params) self._integrator.set_initial_value(cur_state, timestep) self._integrator.set_f_params(*dyn_fun_params) next_time = timestep + self.dt next_state[ii, 0] = self._integrator.integrate(next_time) if not self._integrator.successful(): msg = 'Integration failed at time {}'.format(timestep) raise RuntimeError(msg) state_mat = gmath.get_state_jacobian(timestep, cur_state, self._ode_lst, dyn_fun_params) dt = self.dt else: raise RuntimeError('State model not set') return next_state, state_mat, dt def predict(self, timestep, cur_state, dyn_fun_params=()): r"""Prediction step of the EKF. This assumes continuous time dynamics and integrates the ode's to get the next state. .. math:: x_{k+1} = \int_t^{t+dt} f(t, x, \phi) dt for arbitrary parameters :math:`\phi` Parameters ---------- timestep : float Current timestep. cur_state : N x 1 numpy array Current state. dyn_fun_params : tuple, optional Extra arguments to be passed to the dynamics function. The default is (). Raises ------ RuntimeError Integration fails, or state model not set. Returns ------- next_state : N x 1 numpy array The predicted state. """ next_state, state_mat, dt = self._predict_next_state(timestep, cur_state, dyn_fun_params) if self.cont_cov: def ode(t, x, n_states, F, proc_noise): P = x.reshape((n_states, n_states)) P_dot = F @ P + P @ F.T + proc_noise return P_dot.ravel() integrator = s_integrate.ode(ode) integrator.set_integrator(self.integrator_type, **self.integrator_params) integrator.set_initial_value(self.cov.flatten(), timestep) integrator.set_f_params(cur_state.size, state_mat, self.proc_noise) tmp = integrator.integrate(timestep + dt) if not integrator.successful(): msg = 'Failed to integrate covariance at {}'.format(timestep) raise RuntimeError(msg) self.cov = tmp.reshape(self.cov.shape) else: self.cov = state_mat @ self.cov @ state_mat.T + self.proc_noise return next_state def _get_meas_mat(self, t, state, n_meas, meas_fun_args): # non-linear mapping, potentially time varying if self._meas_fnc is not None: # calculate partial derivatives meas_mat = np.zeros((n_meas, state.size)) for ii, h in enumerate(self._meas_fnc): res = gmath.get_jacobian(state.copy(), lambda _x, *_f_args: h(t, _x, *_f_args), f_args=meas_fun_args) meas_mat[[ii], :] = res.T else: # constant matrix meas_mat = self._meas_mat return meas_mat def _est_meas(self, timestep, cur_state, n_meas, meas_fun_args): meas_mat = self._get_meas_mat(timestep, cur_state, n_meas, meas_fun_args) if self._meas_fnc is not None: est_meas = np.nan * np.ones((n_meas, 1)) for ii, h in enumerate(self._meas_fnc): est_meas[ii] = h(timestep, cur_state, *meas_fun_args) else: est_meas = meas_mat @ cur_state return est_meas, meas_mat def set_measurement_model(self, meas_mat=None, meas_fun_lst=None): r"""Sets the measurement model for the filter. This can either set the constant measurement matrix, or a set of non-linear functions (potentially time varying) to map states to measurements. Notes ----- The constant matrix assumes a measurement model of the form .. math:: \tilde{y}_{k+1} = H x_{k+1}^- and the non-linear case assumes .. math:: \tilde{y}_{k+1} = h(t, x_{k+1}^-) Parameters ---------- meas_mat : Nm x N numpy array, optional Measurement matrix that transforms the state to estimated measurements. The default is None. meas_fun_lst : list, optional Non-linear functions that return the expected measurement for the given state. Each function must have the signature `h(t, x, *args)`. The default is None. Raises ------ RuntimeError Rasied if no arguments are specified. Returns ------- None. """ super().set_measurement_model(meas_mat=meas_mat, meas_fun=meas_fun_lst) class StudentsTFilter(KalmanFilter): r"""Implementation of a Students T filter. This is based on :cite:`Liu2018_AStudentsTMixtureProbabilityHypothesisDensityFilterforMultiTargetTrackingwithOutliers` and :cite:`Roth2013_AStudentsTFilterforHeavyTailedProcessandMeasurementNoise` and uses moment matching to limit the degree of freedom growth. Notes ----- This models the multi-variate Student's t-distribution as .. math:: \begin{align} p(x) &= \frac{\Gamma(\frac{\nu + 2}{2})}{\Gamma(\frac{\nu}{2})} \frac{1}{(\nu \pi)^{d/2}} \frac{1}{\sqrt{\vert \Sigma \vert}}\left( 1 + \frac{\Delta^2}{\nu}\right)^{-\frac{\nu + 2}{\nu}} \\ \Delta^2 &= (x - m)^T \Sigma^{-1} (x - m) \end{align} or compactly as :math:`St(x; m,\Sigma, \nu) = p(x)` for scale matrix :math:`\Sigma` and degree of freedom :math:`\nu` Attributes ---------- scale : N x N numpy array, optional Scaling matrix of the Students T distribution. The default is np.array([[]]). dof : int , optional Degree of freedom for the state distribution. The default is 3. proc_noise_dof : int, optional Degree of freedom for the process noise model. The default is 3. meas_noise_dof : int, optional Degree of freedom for the measurement noise model. The default is 3. use_moment_matching : bool, optional Flag indicating if moment matching is used to maintain the heavy tail property as the filter propagates over time. The default is True. """ def __init__(self, scale=
np.array([[]])
numpy.array
import numpy as np import torch import cv2 import math def iou(tens1, tens2): assert tens1.size() == tens2.size() squeeze = False if tens1.dim() == 2 and tens2.dim() == 2: squeeze = True tens1 = tens1.unsqueeze(0) tens2 = tens2.unsqueeze(0) assert tens1.dim() == 3 assert tens1.size(-1) == 4 and tens2.size(-1) == 4 maxs = torch.max(tens1[:,:,:2], tens2[:,:,:2]) mins = torch.min(tens1[:,:,2:], tens2[:,:,2:]) diff = torch.clamp(mins - maxs, min=0.0) intersection = diff[:,:,0] * diff[:,:,1] diff1 = torch.clamp(tens1[:,:,2:] - tens1[:,:,:2], min=0.0) area1 = diff1[:,:,0] * diff1[:,:,1] diff2 = torch.clamp(tens2[:,:,2:] - tens2[:,:,:2], min=0.0) area2 = diff2[:,:,0] * diff2[:,:,1] iou = intersection/(area1 + area2 - intersection) if squeeze: iou = iou.squeeze(0) return iou def bbox_iou(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): """ Returns the IoU of two bounding boxes """ if not x1y1x2y2: # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 else: # Get the coordinates of bounding boxes b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] # get the corrdinates of the intersection rectangle inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) # Intersection area inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp( inter_rect_y2 - inter_rect_y1 + 1, min=0 ) # Union Area b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1) union = (b1_area + b2_area - inter_area + 1e-16) iou = inter_area / union return iou def bbox_iou_v5(box1, box2, x1y1x2y2=True, GIoU=False, DIoU=False, CIoU=False): # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4 # box2 = box2.t() # Get the coordinates of bounding boxes if x1y1x2y2: # x1, y1, x2, y2 = box1 b1_x1, b1_y1, b1_x2, b1_y2 = box1[0], box1[1], box1[2], box1[3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[0], box2[1], box2[2], box2[3] else: # transform from xywh to xyxy b1_x1, b1_x2 = box1[0] - box1[2] / 2, box1[0] + box1[2] / 2 b1_y1, b1_y2 = box1[1] - box1[3] / 2, box1[1] + box1[3] / 2 b2_x1, b2_x2 = box2[0] - box2[2] / 2, box2[0] + box2[2] / 2 b2_y1, b2_y2 = box2[1] - box2[3] / 2, box2[1] + box2[3] / 2 # Intersection area inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \ (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0) # Union Area w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 union = (w1 * h1 + 1e-16) + w2 * h2 - inter iou = inter / union # iou if GIoU or DIoU or CIoU: cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height if GIoU: # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf c_area = cw * ch + 1e-16 # convex area return iou - (c_area - union) / c_area # GIoU if DIoU or CIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1 # convex diagonal squared c2 = cw ** 2 + ch ** 2 + 1e-16 # centerpoint distance squared rho2 = ((b2_x1 + b2_x2) - (b1_x1 + b1_x2)) ** 2 / 4 + ((b2_y1 + b2_y2) - (b1_y1 + b1_y2)) ** 2 / 4 if DIoU: return iou - rho2 / c2 # DIoU elif CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47 v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2) with torch.no_grad(): alpha = v / (1 - iou + v) return iou - (rho2 / c2 + v * alpha) # CIoU return iou def get_batch_statistics(outputs, targets, iou_threshold): """ Compute true positives, predicted scores and predicted labels per sample """ batch_metrics = [] # TPs, confs, preds = [], [], [] for sample_i in range(len(outputs)): if outputs[sample_i] is None: continue output = outputs[sample_i] pred_boxes = output[:, :4] pred_scores = output[:, 4] pred_labels = output[:, -1] true_positives = np.zeros(pred_boxes.shape[0]) annotations = targets[targets[:, 0] == sample_i][:, 1:] target_labels = annotations[:, 0] if len(annotations) else [] if len(annotations): detected_boxes = [] target_boxes = annotations[:, 1:] for pred_i, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)): # If targets are found break if len(detected_boxes) == len(annotations): break # Ignore if label is not one of the target labels if pred_label not in target_labels: continue iou, box_index = bbox_iou(pred_box.unsqueeze(0), target_boxes).max(0) if iou >= iou_threshold and box_index not in detected_boxes: true_positives[pred_i] = 1 detected_boxes += [box_index] batch_metrics.append([true_positives, pred_scores.cpu().data.numpy(), pred_labels.cpu().data.numpy()]) return batch_metrics def mark_target(self, img, targets, index): # img = cv2.UMat(img).get() for target in targets: target = target.numpy() if target[0] == index: box = target[2:] cls_id = int(target[1]) color = self.colors[cls_id] xmin, ymin, xmax, ymax = int(box[0]), int(box[1]), int(box[2]), int(box[3]) xmax += xmin ymax += ymin # img = np.array(img, dtype=np.uint8) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) text_size = cv2.getTextSize(self.classes[cls_id] , cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] cv2.rectangle(img, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1) cv2.putText( img, self.classes[cls_id], (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) # print("Object: {}, Bounding box: ({},{}) ({},{})".format(classes[cls_id], xmin, xmax, ymin, ymax)) # cv2.imshow('win', img) # cv2.waitKey() return img def mark_pred(self, pred_img, pred_boxes): # pred_img = np.array(pred_img.permute(1, 2, 0).cpu()*255, dtype=np.uint8) # Re multiply # for pred_boxes in suppress_output: if type(None) == type(pred_boxes): return pred_img for target in pred_boxes: target = target.cpu().numpy() # (x1, y1, x2, y2, object_conf, class_score, class_pred) box = target[:4] cls_id = int(target[6]) color = self.colors[cls_id] xmin, ymin, xmax, ymax = int(box[0]), int(box[1]), int(box[2]), int(box[3]) xmax += xmin ymax += ymin cv2.rectangle(pred_img, (xmin, ymin), (xmax, ymax), color, 2) text_size = cv2.getTextSize(self.classes[cls_id] , cv2.FONT_HERSHEY_PLAIN, 1, 1)[0] cv2.rectangle(pred_img, (xmin, ymin), (xmin + text_size[0] + 3, ymin + text_size[1] + 4), color, -1) cv2.putText( pred_img, self.classes[cls_id], (xmin, ymin + text_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, (255, 255, 255), 1) # print("Object: {}, Bounding box: ({},{}) ({},{})".format(classes[cls_id], xmin, xmax, ymin, ymax)) # cv2.imshow('win', pred_img) # cv2.waitKey() return pred_img def ap_per_class(tp, conf, pred_cls, target_cls): """ Compute the average precision, given the recall and precision curves. Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. # Arguments tp: True positives (list). conf: Objectness value from 0-1 (list). pred_cls: Predicted object classes (list). target_cls: True object classes (list). # Returns The average precision as computed in py-faster-rcnn. """ # Sort by objectness i = np.argsort(-conf) tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] # Find unique classes unique_classes = np.unique(target_cls) # Create Precision-Recall curve and compute AP for each class ap, p, r = [], [], [] # for c in tqdm(unique_classes, desc="Computing AP"): for c in unique_classes: i = pred_cls == c n_gt = (target_cls == c).sum() # Number of ground truth objects n_p = i.sum() # Number of predicted objects if n_p == 0 and n_gt == 0: continue elif n_p == 0 or n_gt == 0: ap.append(0) r.append(0) p.append(0) else: # Accumulate FPs and TPs fpc = (1 - tp[i]).cumsum() tpc = (tp[i]).cumsum() # Recall recall_curve = tpc / (n_gt + 1e-16) r.append(recall_curve[-1]) # Precision precision_curve = tpc / (tpc + fpc) p.append(precision_curve[-1]) # AP from recall-precision curve ap.append(compute_ap(recall_curve, precision_curve)) # Compute F1 score (harmonic mean of precision and recall) p, r, ap = np.array(p), np.array(r), np.array(ap) f1 = 2 * p * r / (p + r + 1e-16) return p, r, ap, f1, unique_classes.astype("int32") def compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], recall, [1.0])) mpre = np.concatenate(([0.0], precision, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] =
np.maximum(mpre[i - 1], mpre[i])
numpy.maximum
#!/usr/bin/env python from argparse import ArgumentParser from distributed import Client, Future import numpy as np import os import sys import time def init_julia(re, im, n): '''Initialize the complex domain. Positional arguments: re -- minimum and maximum real value as 2-tuple im -- minimum and maximum imaginary value as 2-tuple n -- number of real and imaginary points as 2-tuple ''' re_vals, im_vals = np.meshgrid( np.linspace(re[0], re[1], n[0]), np.linspace(im[0], im[1], n[1]) ) domain = re_vals + im_vals*1j return domain.flatten() def init_pyx(dask_worker): import pyximport pyximport.install() sys.path.insert(0, os.getcwd()) # sys.path.insert(0, '/scratch/leuven/301/vsc30140/julia_set/') from julia_cython import julia_set def init_omp_pyx(dask_worker): import pyximport pyximport.install() sys.path.insert(0, os.getcwd()) # sys.path.insert(0, '/scratch/leuven/301/vsc30140/julia_set/') from julia_cython_omp import julia_set if __name__ == '__main__': arg_parser = ArgumentParser(description='Compute julia set') arg_parser.add_argument('--re_min', type=float, default=-1.8, help='minimum real value') arg_parser.add_argument('--re_max', type=float, default=1.8, help='maximum real value') arg_parser.add_argument('--im_min', type=float, default=-1.8, help='minimum imaginary value') arg_parser.add_argument('--im_max', type=float, default=1.8, help='maximum imaginary value') arg_parser.add_argument('--max_norm', type=float, default=2.0, help='maximum complex norm for z') arg_parser.add_argument('--n_re', type=int, default=100, help='number of points on the real axis') arg_parser.add_argument('--n_im', type=int, default=100, help='number of points on the imaginary axis') arg_parser.add_argument('--max_iters', type=int, default=300, help='maximum number of iterations') arg_parser.add_argument('--implementation', default='python', choices=['python', 'cython', 'cython_omp'], help='implementation to use') arg_parser.add_argument('--partitions', type=int, default=100, help='number of partitions for dask workers') arg_parser.add_argument('--host', required=True, help='hostname of the dask scheduler') arg_parser.add_argument('--port', type=int, required=True, help='port of the dask scheduler') options = arg_parser.parse_args() client = Client(f'{options.host}:{options.port:d}') if options.implementation == 'python': from julia_python import julia_set elif options.implementation == 'cython': from julia_cython import julia_set client.register_worker_callbacks(init_pyx) elif options.implementation == 'cython_omp': from julia_cython_omp import julia_set client.register_worker_callbacks(init_omp_pyx) else: msg = '{0} version not implemented\n' sys.stderr.write(msg.format(options.implementation)) sys.exit(1) domain = init_julia( (options.re_min, options.re_max), (options.im_min, options.im_max), (options.n_re, options.n_im) ) domains =
np.array_split(domain, options.partitions)
numpy.array_split
from collections import Iterable from typing import Union, List, Tuple import numpy as np from functools import partial from scipy import ndimage as ndi import cv2 import random from .utils import clipBBoxes from .base import AugBase # -------------- channel aug_cuda --------------- # class RGB2Gray(AugBase): def __init__(self): super().__init__() self.always = True @property def canBackward(self): return True def _backward_params(self, result): self._init_params(result) self.params = True def apply_to_img(self, result): if self.isForwarding: assert self.channels == 3 and self.dim == 2, f"{self.channels} {self.dim}" result['img'] = cv2.cvtColor(np.moveaxis(result['img'], 0, -1), cv2.COLOR_RGB2GRAY)[None, ...] result['img_shape'] = result['img'].shape else: assert self.channels == 1 result['img'] = np.repeat(result['img'], 3, axis=0).astype(np.uint8) result['img_shape'] = result['img'].shape return result class Gray2RGB(AugBase): def __init__(self): super().__init__() self.always = True @property def canBackward(self): return True def _backward_params(self, result): self._init_params(result) self.params = True def apply_to_img(self, result): if self.isForwarding: assert self.channels == 1 result['img'] = np.repeat(result['img'], 3, axis=0).astype(np.uint8) result['img_shape'] = result['img'].shape else: assert self.channels == 3 and self.dim == 2 result['img'] = result['img'][[0], ...] result['img_shape'] = result['img'].shape return result class ChannelSelect(AugBase): def __init__(self, index: (list, tuple, int)): super().__init__() self.always = True if isinstance(index, (int, float)): index = [int(index)] self.index = index assert isinstance(self.index, (list, tuple)) def __repr__(self): repr_str = self.__class__.__name__ repr_str += '(channel_index={})'.format(self.index) return repr_str @property def canBackward(self): return True def _forward_params(self, result): self._init_params(result) self.params = tuple([self.index, self.channels]) result[self.key_name] = self.params def _backward_params(self, result): self._init_params(result) params = result.pop(self.key_name, None) if params: self.params = params def apply_to_img(self, result): if self.isForwarding: index, _ = self.params result['img'] = result['img'].take(indices=index, axis=0) result['img_shape'] = result['img'].shape else: _, channels = self.params result['img'] =
np.repeat(result['img'], channels, axis=0)
numpy.repeat
# -*- coding: utf-8 -*- """ This is the offline RANSAC calculation for hypergraph propagation. To use: under Hypergraph_Propagation_and_Community_Selection_for_Objects_Retrieval/ import pre_match pre_match(0,100000,2) This is the cpu version. To open multi threads for accelarating dataset with R1M distractors, several cpus and a large amount of memory are needed. You may want to change the (#get the pre matching pairs) and (#load the local descriptors) code based on your equipment. We would be grateful if anyone offers a gpu version geometric-verification code. Created on Sat Mar 13 09:57:28 2021 @author: <NAME> """ import numpy as np import pickle from utils.image_reranking import MatchFeatures dataset='rparis6k' #dataset='roxford5k' with open('data/'+dataset[:-2]+'/gnd_'+dataset+'.pkl','rb') as f: roxford=pickle.load(f) #oxford 的features vecs=np.load('features/'+dataset[:-2]+'_np_delg_features/a_global_vecs.npy').T #(2048,6322) qvecs=np.load('features/'+dataset[:-2]+'_np_delg_features/a_global_qvecs.npy').T #(2048,70) qscores=np.dot(vecs.T,qvecs) #(4993,70) qranks=np.argsort(-qscores,axis=0) #(4993, 70) qscore_ranks=np.sort(-qscores,axis=0) #(4993,70) scores=np.dot(vecs.T,vecs) #(4993,4993) ranks=np.argsort(-scores,axis=0) #(4993,4993) graph_dir='graph/delg/'+dataset[:-2]+'/' #'graph/delg/rparis/' #get the pre matching pairs def sp_pairs(): all_pairs_200=set() # 记录所有可能需要计算ransac的pairs,既每张图片与其global的前200张 for i in range(vecs.shape[1]): top200=list(ranks[:200,i]) for x in top200: if 'imlist_'+str(x)+'_imlist_'+str(i) not in all_pairs_200: all_pairs_200.add('imlist_'+str(i)+'_imlist_'+str(x)) all_pairs_200=list(all_pairs_200)
np.save(graph_dir+'pre_pairs.npy',all_pairs_200)
numpy.save
# ============================ libraries ===================================== import numpy as np ### ========================== functions ===================================== def test_year_quarter_by_park(park): if park == "Gonarezhou" or park == "mbe" or park == "mbe_gun" or park == "CRNP": return 2018, 1 elif park == "AMWS": return 2017, 4 elif park == "MFNP" or park == "QENP": return 2015, None elif park == "Mondulkiri": return 2017, 4 elif park == "Dja": return 2018, 1 elif park == "MPF": return 2017, 1 elif park == "SWS": return 2018, 1 else: raise Exception("Park '{}' not implemented.".format(park)) # TODO: kai says this may not be used anymore def selected_threshold_by_park(park): if park == "QENP": return np.arange(0, 8, 0.5) elif park == "MFNP": return np.arange(0, 8, 0.5) elif park == "CRNP": return np.arange(0, 1.2, 0.1) elif park == "Gonarezhou": return np.arange(0, 15, 1.5) elif park == "AMWS": return np.arange(0, 1.2, 0.05) elif park == "mbe" or park == "mbe_gun": return np.arange(0, 1.65, 0.15) # elif park == "Mondulkiri": # return np.arange(0, 12, 0.5) elif park == "Dja": return np.arange(0, 7, 0.5) elif park == "MPF": #return np.arange(0, 15, 1.5) #return np.arange(0, 7, 0.5) # return np.arange(0, 12, 0.5) # for full data return
np.arange(0, 5, 0.3)
numpy.arange
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue May 12 18:28:54 2020 @author: Dr <NAME> (CIMAT-CONACYT, Mexico) jac at cimat.mx Instantaneous reproduction numbers calculations. Rts_P, Implementation of Cori et al (2013) Rts_AR, new filtering version using an autoregressive linear model of Capistrán, Capella and Christen (2020): https://arxiv.org/abs/2012.02168, 05DIC2021 01FEB2021: Some buggs were corrected to avoid error when too low counts are used and for prediction when g=1. Go directly to __main__ for examples. """ import os from datetime import date, timedelta from pickle import load, dump from numpy import arange, diff, loadtxt, zeros, flip, array, log, quantile, ones from numpy import savetxt, linspace, exp, cumsum, where, append, sqrt from numpy import sum as np_sum from scipy.stats import erlang, gamma, nbinom, uniform, beta from scipy.stats import t as t_student from matplotlib.pyplot import subplots, rcParams, close from matplotlib.dates import drange from pytwalk import pytwalk from plotfrozen import PlotFrozenDist def Rts_P( data, tau=7, n=30, IP_dist=erlang( a=3, scale=8/3),\ Rt_pr_a=5, Rt_pr_b=5/5, q=[10,25,50,75,90]): """Calculate Rt as in: <NAME>, <NAME>, <NAME>, <NAME>, A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics, American Journal of Epidemiology, Volume 178, Issue 9, 1 November 2013, Pages 1505–1512, https://doi.org/10.1093/aje/kwt133 data: array with case incidence. tau: Use a window tau (default 7) to calculate R_{t,\tau}'s. n: calculate n R_{t,\tau}'s to the past n days (default 30). IP_dist: 'frozen' infectiousness profile distribution, default erlang( a=3, scale=8/3), chosen for covid19. Only the cdf is needed, ie. IP_dist.cdf(i), to calculate w_s. Rt_pr_a=5, Rt_pr_b=5/5, parameters for the gamma prior for R_t. q=[10,25,50,75,90], quantiles to use to calulate in the post. dust for R_t. If q ia a single integer, return a simulation of the Rts of size q, for each Rt Returns: a (len(q), n) array with quantiles of the R_{t,\tau}'s. """ if isinstance( q, list): ## Return a list of quantiles q = array(q)/100 rt = zeros(( len(q), n)) simulate = False else: ## If q ia a single integer, return a simulation of the Rts of size q, for each Rt if q == 2: # return a and b of post gamma rt = zeros(( q, n)) else: rt = zeros(( q, n)) simulate = True m = len(data) w = diff(IP_dist.cdf( arange( 0, m+1))) w /= sum(w) w = flip(w) for t in range(max(m-n,0), m): S1 = 0.0 S2 = 0.0 if sum(data[:t]) <= 10:# Only for more than 10 counts continue for k in range(tau): I = data[:(t-k)] ## window of reports S2 += data[(t-k)] S1 += sum(I * w[(m-(t-k)):]) #\Gamma_k #print( (Rt_pr_a+S2) * (1/(S1 + 1/Rt_pr_b)), (Rt_pr_a+S2), 1/(S1 + 1/Rt_pr_b)) if simulate: if q == 2: #Return Rt_pr_a+S2, scale=1/(S1 + 1/Rt_pr_b) rt[:,t-(m-n)] = Rt_pr_a+S2, 1/(S1 + 1/Rt_pr_b) else: rt[:,t-(m-n)] = gamma.rvs( Rt_pr_a+S2, scale=1/(S1 + 1/Rt_pr_b), size=q) else: rt[:,t-(m-n)] = gamma.ppf( q, Rt_pr_a+S2, scale=1/(S1 + 1/Rt_pr_b)) return rt def PlotRts_P( data_fnam, init_date, trim=0,\ tau=7, n=30, IP_dist=erlang( a=3, scale=8/3), Rt_pr_a=5, Rt_pr_b=5/5,\ q=[10,25,50,75,90], csv_fnam=None, color='blue', median_color='red', alpha=0.25, ax=None): """Makes a board with the Rt evolution for the past n days (n=30). All parameters are passed to function Rts_P. csv_fnam is an optional file name toi save the Rts info. ax is an Axis hadle to for the plot, if None, it creates one and retruns it. """ if type(data_fnam) == str: data =
loadtxt(data_fnam)
numpy.loadtxt
import copy import numpy as np import matplotlib.pyplot as plt import scipy as sp from scipy.special import logit,expit import time from numpy import random,linalg,corrcoef,ones,float32,float64,c_,exp,log from numpy import zeros,mean,where,array,unique,equal import torch import torchvision import torchvision.transforms as transforms from mnist import MNIST mndata = MNIST('/mnist/') images, labels = mndata.load_training() y=np.array(labels).astype(float32) x=
np.array(images)
numpy.array
# Imports import torch from itertools import count from torch.autograd import Variable from utils import * import random import numpy as np USE_CUDA = torch.cuda.is_available() dtype = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def deep_Q_learning(env, optimizer_spec, exploration_params, replay_buffer_size=100000, start_learning=50000, batch_size=128, gamma=0.99, target_update_freq=10000, save_fig=True, save_model=False): """ Implementation of DQN learning procedure :param env: gym environment :param architecture: dict. with input_size, hidden_size and output_size (2-layer NN) :param optimizer_spec: optimizer and its params :param encode_type: how to encode state - one_hot or ??? :param exploration_params: dict. with final epsilon and num. of time steps until final epsilon :param replay_buffer_size: size of replay memory :param start_learning: num. iterations before start learning (filling the buffer) :param batch_size: batch size for optimization steps :param gamma: discount factor of MDP :param target_update_freq: num. of iterations between target network update :param save_fig: flag for saving plots :param save_model: flag for saving optimal weirhts of the net at the end of training session Algorithm saves a trained network """ def select_epsilon_greedy_action(model, state, exploration_params, t): """ :param model: Q network :param state: current state of env - in 3D image difference :param exploration_params: final epsilon and num. timesteps until final epsilon :param t: current timestep :return: Algorithm returns an action chosen by an epsilon greedy policy """ # Compute current epsilon fraction = min(1.0, float(t) /exploration_params["timesteps"]) epsilon = 1 + fraction * (exploration_params["final_eps"] - 1) num_actions = model.head.out_features # output size of Q network is as action space sample = random.random() if sample <= epsilon: return random.randrange(num_actions), epsilon else: return int(model(Variable(state)).data.argmax()), epsilon num_actions = env.action_space.n # Initialize network and target network Q = DQN(num_actions).to(device) Q_target = DQN(num_actions).to(device) # Construct optimizer optimizer = optimizer_spec.constructor(Q.parameters(), **optimizer_spec.kwargs) # Construct the replay buffer replay_buffer = PriorReplayMemory(replay_buffer_size) # Initialize episodic reward list episodic_rewards = [] avg_episodic_rewards = [] stdev_episodic_rewards = [] best_avg_episodic_reward = -np.inf acc_episodic_reward = 0.0 num_param_updates = 0 episodes_passed = 0 stopping_counter = 0 _ = env.reset() current_screen = get_screen(env) state = current_screen for t in count(): # Stop if last average accumulated episodic reward over 10 episodes is above -150 if len(avg_episodic_rewards) > 0: if avg_episodic_rewards[-1] > -115: stopping_counter += 1 if stopping_counter >= 11: if save_model: torch.save(Q, 'stable_trained_Acrobot_model_v4') break else: stopping_counter = 0 # Choose random action if not yet start learning if t > start_learning: action, eps_val = select_epsilon_greedy_action(Q, state, exploration_params, t) else: action = random.randrange(num_actions) eps_val = 1.0 # Advance one step _, reward, done, _ = env.step(action) last_screen = current_screen current_screen = get_screen(env) next_state = current_screen - last_screen # Construct priority for the current sample # Q value for state-action pair that were taken current_Q_value = Q(state)[0][action] # Best Q value from next state - using Q_target as estimator next_Q_value = Q_target(next_state).detach().max(1)[0] # Compute estimated Q values (based on Q_target) target_Q_value = reward + (gamma * next_Q_value) # Compute Bellman error bellman_error = target_Q_value - current_Q_value.squeeze() # document accumulated reward acc_episodic_reward = acc_episodic_reward + reward # Save and insert transition to replay buffer transition = Transition(state=state, action=action, reward=reward, next_state=next_state, done=int(done)) replay_buffer.insert(transition, np.abs(bellman_error.data)) # Resets the environment when reaching an episode boundary. if done: # Resets the environment when finishing an episode _ = env.reset() current_screen = get_screen(env) next_state = current_screen # Document statistics episodic_rewards.append(acc_episodic_reward) acc_episodic_reward = 0.0 episodes_passed += 1 # Compute average reward and variance (standard deviation) if len(episodic_rewards) <= 10: avg_episodic_rewards.append(np.mean(np.array(episodic_rewards))) if len(episodic_rewards) >= 2: stdev_episodic_rewards.append(np.std(np.array(episodic_rewards))) else: avg_episodic_rewards.append(np.mean(np.array(episodic_rewards[-10:]))) stdev_episodic_rewards.append(np.std(
np.array(episodic_rewards[-10:])
numpy.array
from __future__ import print_function import sys import numpy as np from numpy import ma from numpy.lib.stride_tricks import as_strided import warnings import getopt import os python3 = sys.version_info[0] > 2 if python3: # no unicode type in python 3, use bytes instead when testing # for a string-like object unicode = str else: range = xrange try: bytes except NameError: # no bytes type in python < 2.6 bytes = str def _safecast(a,b): # check to see if array a can be safely cast # to array b. A little less picky than numpy.can_cast. try: is_safe = ((a == b) | (np.isnan(a) & np.isnan(b))).all() #is_safe = np.allclose(a, b, equal_nan=True) # numpy 1.10.0 except: try: is_safe = (a == b).all() # string arrays. except: is_safe = False return is_safe def _sortbylist(A,B): # sort one list (A) using the values from another list (B) return [A[i] for i in sorted(range(len(A)), key=B.__getitem__)] def _find_dim(grp, dimname): # find Dimension instance given group and name. # look in current group, and parents. group = grp dim = None while 1: try: dim = group.dimensions[dimname] break except: try: group = group.parent except: raise ValueError("cannot find dimension %s in this group or parent groups" % dimname) return dim def _walk_grps(topgrp): """Iterate through all (sub-) groups of topgrp, similar to os.walktree. """ grps = topgrp.groups.values() yield grps for grp in topgrp.groups.values(): for children in _walk_grps(grp): yield children def _quantize(data,least_significant_digit): """ quantize data to improve compression. data is quantized using around(scale*data)/scale, where scale is 2**bits, and bits is determined from the least_significant_digit. For example, if least_significant_digit=1, bits will be 4. """ precision = pow(10.,-least_significant_digit) exp = np.log10(precision) if exp < 0: exp = int(np.floor(exp)) else: exp = int(np.ceil(exp)) bits = np.ceil(np.log2(pow(10.,-exp))) scale = pow(2.,bits) datout = np.around(scale*data)/scale if ma.isMA(datout): datout.set_fill_value(data.fill_value) return datout else: return datout def _StartCountStride(elem, shape, dimensions=None, grp=None, datashape=None,\ put=False, use_get_vars = False): """Return start, count, stride and indices needed to store/extract data into/from a netCDF variable. This function is used to convert a slicing expression into a form that is compatible with the nc_get_vars function. Specifically, it needs to interpret integers, slices, Ellipses, and 1-d sequences of integers and booleans. Numpy uses "broadcasting indexing" to handle array-valued indices. "Broadcasting indexing" (a.k.a "fancy indexing") treats all multi-valued indices together to allow arbitrary points to be extracted. The index arrays can be multidimensional, and more than one can be specified in a slice, as long as they can be "broadcast" against each other. This style of indexing can be very powerful, but it is very hard to understand, explain, and implement (and can lead to hard to find bugs). Most other python packages and array processing languages (such as netcdf4-python, xray, biggus, matlab and fortran) use "orthogonal indexing" which only allows for 1-d index arrays and treats these arrays of indices independently along each dimension. The implementation of "orthogonal indexing" used here requires that index arrays be 1-d boolean or integer. If integer arrays are used, the index values must be sorted and contain no duplicates. In summary, slicing netcdf4-python variable objects with 1-d integer or boolean arrays is allowed, but may give a different result than slicing a numpy array. Numpy also supports slicing an array with a boolean array of the same shape. For example x[x>0] returns a 1-d array with all the positive values of x. This is also not supported in netcdf4-python, if x.ndim > 1. Orthogonal indexing can be used in to select netcdf variable slices using the dimension variables. For example, you can use v[lat>60,lon<180] to fetch the elements of v obeying conditions on latitude and longitude. Allow for this sort of simple variable subsetting is the reason we decided to deviate from numpy's slicing rules. This function is used both by the __setitem__ and __getitem__ method of the Variable class. Parameters ---------- elem : tuple of integer, slice, ellipsis or 1-d boolean or integer sequences used to slice the netCDF Variable (Variable[elem]). shape : tuple containing the current shape of the netCDF variable. dimensions : sequence The name of the dimensions. __setitem__. grp : netCDF Group The netCDF group to which the variable being set belongs to. datashape : sequence The shape of the data that is being stored. Only needed by __setitem__ put : True|False (default False). If called from __setitem__, put is True. Returns ------- start : ndarray (..., n) A starting indices array of dimension n+1. The first n dimensions identify different independent data chunks. The last dimension can be read as the starting indices. count : ndarray (..., n) An array of dimension (n+1) storing the number of elements to get. stride : ndarray (..., n) An array of dimension (n+1) storing the steps between each datum. indices : ndarray (..., n) An array storing the indices describing the location of the data chunk in the target/source array (__getitem__/__setitem__). Notes: netCDF data is accessed via the function: nc_get_vars(grpid, varid, start, count, stride, data) Assume that the variable has dimension n, then start is a n-tuple that contains the indices at the beginning of data chunk. count is a n-tuple that contains the number of elements to be accessed. stride is a n-tuple that contains the step length between each element. """ # Adapted from pycdf (http://pysclint.sourceforge.net/pycdf) # by <NAME>.. # Modified by <NAME> to handle efficiently fancy indexing with # sequences of integers or booleans. nDims = len(shape) if nDims == 0: nDims = 1 shape = (1,) # is there an unlimited dimension? (only defined for __setitem__) if put: hasunlim = False unlimd={} if dimensions: for i in range(nDims): dimname = dimensions[i] # is this dimension unlimited? # look in current group, and parents for dim. dim = _find_dim(grp, dimname) unlimd[dimname]=dim.isunlimited() if unlimd[dimname]: hasunlim = True else: hasunlim = False # When a single array or (non-tuple) sequence of integers is given # as a slice, assume it applies to the first dimension, # and use ellipsis for remaining dimensions. if np.iterable(elem): if type(elem) == np.ndarray or (type(elem) != tuple and \ np.array([_is_int(e) for e in elem]).all()): elem = [elem] for n in range(len(elem)+1,nDims+1): elem.append(slice(None,None,None)) else: # Convert single index to sequence elem = [elem] # ensure there is at most 1 ellipse # we cannot use elem.count(Ellipsis), as with fancy indexing would occur # np.array() == Ellipsis which gives ValueError: The truth value of an # array with more than one element is ambiguous. Use a.any() or a.all() if sum(1 for e in elem if e is Ellipsis) > 1: raise IndexError("At most one ellipsis allowed in a slicing expression") # replace boolean arrays with sequences of integers. newElem = [] IndexErrorMsg=\ "only integers, slices (`:`), ellipsis (`...`), and 1-d integer or boolean arrays are valid indices" i=0 for e in elem: # string-like object try to cast to int # needs to be done first, since strings are iterable and # hard to distinguish from something castable to an iterable numpy array. if type(e) in [str,bytes,unicode]: try: e = int(e) except: raise IndexError(IndexErrorMsg) ea = np.asarray(e) # Raise error if multidimensional indexing is used. if ea.ndim > 1: raise IndexError("Index cannot be multidimensional") # set unlim to True if dimension is unlimited and put==True # (called from __setitem__) if hasunlim and put and dimensions: try: dimname = dimensions[i] unlim = unlimd[dimname] except IndexError: # more slices than dimensions (issue 371) unlim = False else: unlim = False # convert boolean index to integer array. if np.iterable(ea) and ea.dtype.kind =='b': # check that boolen array not too long if not unlim and shape[i] != len(ea): msg=""" Boolean array must have the same shape as the data along this dimension.""" raise IndexError(msg) ea = np.flatnonzero(ea) # an iterable (non-scalar) integer array. if np.iterable(ea) and ea.dtype.kind == 'i': # convert negative indices in 1d array to positive ones. ea = np.where(ea < 0, ea + shape[i], ea) if np.any(ea < 0): raise IndexError("integer index out of range") # if unlim, let integer index be longer than current dimension # length. if ea.shape != (0,): elen = shape[i] if unlim: elen = max(ea.max()+1,elen) if ea.max()+1 > elen: msg="integer index exceeds dimension size" raise IndexError(msg) newElem.append(ea) # integer scalar elif ea.dtype.kind == 'i': newElem.append(e) # slice or ellipsis object elif type(e) == slice or type(e) == type(Ellipsis): if not use_get_vars and type(e) == slice and e.step not in [None,-1,1] and\ dimensions is not None and grp is not None: # convert strided slice to integer sequence if possible # (this will avoid nc_get_vars, which is slow - issue #680). start = e.start if e.start is not None else 0 step = e.step if e.stop is None and dimensions is not None and grp is not None: stop = len(_find_dim(grp, dimensions[i])) else: stop = e.stop if stop < 0: stop = len(_find_dim(grp, dimensions[i])) + stop try: ee = np.arange(start,stop,e.step) if len(ee) > 0: e = ee except: pass newElem.append(e) else: # castable to a scalar int, otherwise invalid try: e = int(e) newElem.append(e) except: raise IndexError(IndexErrorMsg) if type(e)==type(Ellipsis): i+=1+nDims-len(elem) else: i+=1 elem = newElem # replace Ellipsis and integer arrays with slice objects, if possible. newElem = [] for e in elem: ea = np.asarray(e) # Replace ellipsis with slices. if type(e) == type(Ellipsis): # The ellipsis stands for the missing dimensions. newElem.extend((slice(None, None, None),) * (nDims - len(elem) + 1)) # Replace sequence of indices with slice object if possible. elif np.iterable(e) and len(e) > 1: start = e[0] stop = e[-1]+1 step = e[1]-e[0] try: ee = range(start,stop,step) except ValueError: # start, stop or step is not valid for a range ee = False if ee and len(e) == len(ee) and (e == np.arange(start,stop,step)).all(): # don't convert to slice unless abs(stride) == 1 # (nc_get_vars is very slow, issue #680) if not use_get_vars and step not in [1,-1]: newElem.append(e) else: newElem.append(slice(start,stop,step)) else: newElem.append(e) elif np.iterable(e) and len(e) == 1: newElem.append(slice(e[0], e[0] + 1, 1)) else: newElem.append(e) elem = newElem # If slice doesn't cover all dims, assume ellipsis for rest of dims. if len(elem) < nDims: for n in range(len(elem)+1,nDims+1): elem.append(slice(None,None,None)) # make sure there are not too many dimensions in slice. if len(elem) > nDims: raise ValueError("slicing expression exceeds the number of dimensions of the variable") # Compute the dimensions of the start, count, stride and indices arrays. # The number of elements in the first n dimensions corresponds to the # number of times the _get method will be called. sdim = [] for i, e in enumerate(elem): # at this stage e is a slice, a scalar integer, or a 1d integer array. # integer array: _get call for each True value if np.iterable(e): sdim.append(
np.alen(e)
numpy.alen
''' script for generating the MTL and fiberassign on DR9SV imaging. ''' import os import glob import h5py import numpy as np import numpy.lib.recfunctions as rfn import fitsio import healpy as hp from astropy.table import Table from pydl.pydlutils.spheregroup import spherematch # -- desitarget -- from desitarget.targets import calc_priority, main_cmx_or_sv, set_obsconditions from desitarget.sv1.sv1_targetmask import desi_mask, bgs_mask, mws_mask # -- plotting -- import matplotlib as mpl import matplotlib.pyplot as plt if os.environ['NERSC_HOST'] != 'cori': mpl.rcParams['text.usetex'] = True mpl.rcParams['font.family'] = 'serif' mpl.rcParams['axes.linewidth'] = 1.5 mpl.rcParams['axes.xmargin'] = 1 mpl.rcParams['xtick.labelsize'] = 'x-large' mpl.rcParams['xtick.major.size'] = 5 mpl.rcParams['xtick.major.width'] = 1.5 mpl.rcParams['ytick.labelsize'] = 'x-large' mpl.rcParams['ytick.major.size'] = 5 mpl.rcParams['ytick.major.width'] = 1.5 mpl.rcParams['legend.frameon'] = False dir_dat = '/global/cscratch1/sd/chahah/feasibgs/survey_validation/' dir_cfs = '/global/cfs/cdirs/desi/users/chahah/' if not os.path.isdir(dir_dat): dir_dat = '/Users/ChangHoon/data/feasiBGS/survey_validation/' f_svfields = 'BGS_SV_30_3x_superset60_Apr2020v2.fits' ###################################################################### # constructing MTLs ###################################################################### def mtl_dr9sv(seed=0, clobber=False): ''' make MTL using DR9SV imaging ''' np.random.seed(seed) ######################################################################### # compile sv tiles ######################################################################### # read SV tiles sv = fitsio.read(os.path.join(dir_dat, f_svfields)) # new SV tiles print('%i BGS SV tiles' % len(sv['RA'])) # get SV tiles *outside* of the DR9 SV imaging region in_dr9 = _in_DR9_SVregion(sv['RA'], sv['DEC']) print('%i tiles outside of DR9' % np.sum(~in_dr9)) ######################################################################### # compile targets and match to truth table and SN host ######################################################################### # read targets from DR9SV and DR8 cut out ftargets = [ 'sv1-targets-dr9-hp-X.spec_truth.sn_host.fits', 'sv1-targets-dr8.sv_cutout.spec_truth.sn_host.fits' ] ntargets = len(ftargets) for i, _ftarget in enumerate(ftargets): ftarget = os.path.join(dir_dat, 'sv.spec_truth', _ftarget) if not os.path.isfile(ftarget) or clobber: # read target files with truth tables _f = os.path.join(dir_dat, 'sv.spec_truth', _ftarget.replace('.spec_truth.sn_host.fits', '.spec_truth.fits')) __f = os.path.join(dir_dat, 'sv.spec_truth', _ftarget.replace('.spec_truth.sn_host.fits', '.fits')) if not os.path.isfile(_f) or clobber: print('... matching %s to truth table' % __f) _target = fitsio.read(os.path.join(dir_dat, __f)) target = match2spectruth(_target) fitsio.write(_f, target, clobber=True) else: target = fitsio.read(_f) print('... matching %s to SN host' % _ftarget) target = match2snhost(target) fitsio.write(ftarget, target, clobber=True) else: print('... reading %s targets' % ftarget) target = fitsio.read(ftarget) # construct MTLs for set of targets mtl = make_mtl(target, seed=seed) fmtl = os.path.join(dir_dat, 'mtl', 'mtl.bgs.dr9sv.%iof%i.seed%i.fits' % (i+1, ntargets, seed)) mtl.write(fmtl, format='fits', overwrite=True) return None def make_mtl(targets, seed=None): ''' construct mtl given targets. notes: ----- * At the moment, highest priority is set for targets with spectroscopic redshifts or are SN hosts. ''' assert 'IN_SPECTRUTH' in targets.dtype.names assert 'HAS_SN' in targets.dtype.names np.random.seed(seed) # determine whether the input targets are main survey, cmx or SV. colnames, masks, survey = main_cmx_or_sv(targets) # ADM set the first column to be the "desitarget" column desi_target, desi_mask = colnames[0], masks[0] n = len(targets) # ADM if the input target columns were incorrectly called NUMOBS or PRIORITY # ADM rename them to NUMOBS_INIT or PRIORITY_INIT. for name in ['NUMOBS', 'PRIORITY']: targets.dtype.names = [name+'_INIT' if col == name else col for col in targets.dtype.names] # ADM if a redshift catalog was passed, order it to match the input targets # ADM catalog on 'TARGETID'. ztargets = Table() ztargets['TARGETID'] = targets['TARGETID'] ztargets['NUMOBS'] = np.zeros(n, dtype=np.int32) ztargets['Z'] = -1 * np.ones(n, dtype=np.float32) ztargets['ZWARN'] = -1 * np.ones(n, dtype=np.int32) # ADM if zcat wasn't passed, there is a one-to-one correspondence # ADM between the targets and the zcat. zmatcher = np.arange(n) # ADM extract just the targets that match the input zcat. targets_zmatcher = targets[zmatcher] # ADM use passed value of NUMOBS_INIT instead of calling the memory-heavy calc_numobs. # ztargets['NUMOBS_MORE'] = np.maximum(0, calc_numobs(ztargets) - ztargets['NUMOBS']) ztargets['NUMOBS_MORE'] = np.maximum(0, targets_zmatcher['NUMOBS_INIT'] - ztargets['NUMOBS']) # ADM need a minor hack to ensure BGS targets are observed once # ADM (and only once) every time during the BRIGHT survey, regardless # ADM of how often they've previously been observed. I've turned this # ADM off for commissioning. Not sure if we'll keep it in general. # ADM only if we're considering bright survey conditions. ii = targets_zmatcher[desi_target] & desi_mask.BGS_ANY > 0 ztargets['NUMOBS_MORE'][ii] = 1 # ADM assign priorities, note that only things in the zcat can have changed priorities. # ADM anything else will be assigned PRIORITY_INIT, below. priority = calc_priority(targets_zmatcher, ztargets, 'BRIGHT') # set subpriority in order to tune the SV target densities # BGS target classes: BRIGHT, FAINT, EXTFAINT, FIBERMAG, LOWQ # initial DR8 target density ---> desired density # BRIGHT: 882.056980 ---> 540 = 63% 0.62 - 1 # FAINT: 746.769486 ---> 300 = 41% 0.41 - 1 # EXTFAINT: 623.470673 ---> 150 = 24% 0 - 1 # FIBERMAG: 207.534409 ---> 150 = 71% 0.66 - 1 # LOW Q: 55.400240 ---> 60 = 100% 0.76 - 1 # (depending on imaging LOWQ varies a lot! DES~50/deg2, DECALS~114/deg2, North~185/deg2) # bgs bitmask bitmask_bgs = targets['SV1_BGS_TARGET'] has_spec = targets['IN_SPECTRUTH'] # objects in spectroscopic truth table has_sn = targets['HAS_SN'] # BGS objects with spectra or hosts SN special = np.zeros(n).astype(bool) #(has_spec | has_sn) bgs_special = special & (bitmask_bgs).astype(bool) bgs_all = ~special & (bitmask_bgs).astype(bool) bgs_bright = ~special & (bitmask_bgs & bgs_mask.mask('BGS_BRIGHT')).astype(bool) bgs_faint = ~special & (bitmask_bgs & bgs_mask.mask('BGS_FAINT')).astype(bool) bgs_extfaint = ~special & (bitmask_bgs & bgs_mask.mask('BGS_FAINT_EXT')).astype(bool) # extended faint bgs_fibmag = ~special & (bitmask_bgs & bgs_mask.mask('BGS_FIBMAG')).astype(bool) # fiber magn limited bgs_lowq = ~special & (bitmask_bgs & bgs_mask.mask('BGS_LOWQ')).astype(bool) # low quality n_bgs = np.sum(bgs_special) + np.sum(bgs_all) n_bgs_special = np.sum(bgs_special) n_bgs_bright = np.sum(bgs_bright) n_bgs_faint = np.sum(bgs_faint) n_bgs_extfaint = np.sum(bgs_extfaint) n_bgs_fibmag = np.sum(bgs_fibmag) n_bgs_lowq = np.sum(bgs_lowq) # target classes with spectra n_bgs_sp, n_bgs_bright_sp, n_bgs_faint_sp, n_bgs_extfaint_sp, n_bgs_fibmag_sp, n_bgs_lowq_sp = \ bgs_targetclass(targets['SV1_BGS_TARGET'][special]) #f_special = 1. # keep 100% #f_bright = 0.45 / n_bgs_bright #f_faint = 0.25 / n_bgs_faint #f_extfaint = 0.125 / n_bgs_extfaint #f_fibmag = 0.125 / n_bgs_fibmag #f_lowq = 0.05 / n_bgs_lowq f_bright = 540. / (n_bgs_bright + n_bgs_bright_sp) f_faint = 300. / (n_bgs_faint + n_bgs_faint_sp) f_extfaint = 150. / (n_bgs_extfaint + n_bgs_extfaint_sp) f_fibmag = 150. / (n_bgs_fibmag + n_bgs_fibmag_sp) f_lowq = 60. / (n_bgs_lowq + n_bgs_lowq_sp) f_ref = np.min([f_bright, f_faint, f_extfaint, f_fibmag, f_lowq]) r_special = 1.#(1. - f_ref / f_special) r_bright = (1. - f_ref / f_bright) r_faint = (1. - f_ref / f_faint) r_extfaint = (1. - f_ref / f_extfaint) r_fibmag = (1. - f_ref / f_fibmag) r_lowq = (1. - f_ref / f_lowq) subpriority = np.random.uniform(0., 1., n) subpriority[bgs_special] = np.random.uniform(r_special, 1., np.sum(bgs_special)) subpriority[bgs_bright] = np.random.uniform(r_bright, 1., np.sum(bgs_bright)) subpriority[bgs_faint] = np.random.uniform(r_faint, 1., np.sum(bgs_faint)) subpriority[bgs_extfaint] = np.random.uniform(f_extfaint, 1, np.sum(bgs_extfaint)) subpriority[bgs_fibmag] = np.random.uniform(r_fibmag, 1, np.sum(bgs_fibmag)) subpriority[bgs_lowq] = np.random.uniform(r_lowq, 1, np.sum(bgs_lowq)) _sample = (bitmask_bgs).astype(bool) & (subpriority > 0.943)#np.random.uniform(0., 1., n)) _n_bgs, _n_bgs_bright, _n_bgs_faint, _n_bgs_extfaint, _n_bgs_fibmag, _n_bgs_lowq = \ bgs_targetclass(targets['SV1_BGS_TARGET'][_sample]) # set priority of all BGS targets equal priority[bgs_all] = 2000 print('---------------------------------') print('total n_bgs = %i' % n_bgs) print('approx. target class fractions') print(' orig frac exp. frac (target frac)') print(' ------------------------------------') #print(' BGS special %i %.3f' % (n_bgs_special, n_bgs_special/n_bgs)) #print(' BGS Bright %i %.3f (0.45)' % (n_bgs_bright, n_bgs_bright/n_bgs)) #print(' BGS Faint %i %.3f (0.25)' % (n_bgs_faint, n_bgs_faint/n_bgs)) #print(' BGS Ext.Faint %i %.3f (0.125)' % (n_bgs_extfaint, n_bgs_extfaint/n_bgs)) #print(' BGS Fib.Mag %i %.3f (0.125)' % (n_bgs_fibmag, n_bgs_fibmag/n_bgs)) #print(' BGS Low Q. %i %.3f (0.05)' % (n_bgs_lowq, n_bgs_lowq/n_bgs)) print(' BGS Bright %.3f %.3f (0.45)' % (n_bgs_bright/n_bgs, _n_bgs_bright/_n_bgs)) print(' BGS Faint %.3f %.3f (0.25)' % (n_bgs_faint/n_bgs, _n_bgs_faint/_n_bgs)) print(' BGS Ext.Faint %.3f %.3f (0.125)' % (n_bgs_extfaint/n_bgs, _n_bgs_extfaint/_n_bgs)) print(' BGS Fib.Mag %.3f %.3f (0.125)' % (n_bgs_fibmag/n_bgs, _n_bgs_fibmag/_n_bgs)) print(' BGS Low Q. %.3f %.3f (0.05)' % (n_bgs_lowq/n_bgs, _n_bgs_lowq/_n_bgs)) # If priority went to 0==DONOTOBSERVE or 1==OBS or 2==DONE, then NUMOBS_MORE should also be 0. # ## mtl['NUMOBS_MORE'] = ztargets['NUMOBS_MORE'] #ii = (priority <= 2) #log.info('{:d} of {:d} targets have priority zero, setting N_obs=0.'.format(np.sum(ii), n)) #ztargets['NUMOBS_MORE'][ii] = 0 # - Set the OBSCONDITIONS mask for each target bit. obsconmask = set_obsconditions(targets) # ADM set up the output mtl table. mtl = Table(targets) mtl.meta['EXTNAME'] = 'MTL' # ADM any target that wasn't matched to the ZCAT should retain its # ADM original (INIT) value of PRIORITY and NUMOBS. mtl['NUMOBS_MORE'] = mtl['NUMOBS_INIT'] mtl['PRIORITY'] = mtl['PRIORITY_INIT'] # ADM now populate the new mtl columns with the updated information. mtl['OBSCONDITIONS'] = obsconmask mtl['PRIORITY'][zmatcher] = priority mtl['SUBPRIORITY'][zmatcher] = subpriority mtl['NUMOBS_MORE'][zmatcher] = ztargets['NUMOBS_MORE'] # Filtering can reset the fill_value, which is just wrong wrong wrong # See https://github.com/astropy/astropy/issues/4707 # and https://github.com/astropy/astropy/issues/4708 mtl['NUMOBS_MORE'].fill_value = -1 return mtl def match2spectruth(targets): ''' match target table to spectroscopic truth table ''' assert 'BRICKID' in targets.dtype.names assert 'BRICK_OBJID' in targets.dtype.names isbgs = (targets['SV1_BGS_TARGET']).astype(bool) targ_brickid = targets['BRICKID'][isbgs] targ_objid = targets['BRICK_OBJID'][isbgs] # read in spectroscopic truth table spectruth = h5py.File(os.path.join(dir_dat, 'bgs_truth_table.hdf5'), 'r') st_brickid = spectruth['BRICKID'][...] st_objid = spectruth['OBJID'][...] in_spectruth = np.zeros(targets.shape[0]).astype(bool) gama_cataid = np.repeat(-999, targets.shape[0]) #in_spectruth.dtype.names = ['ID', 'IN_SPECTRUTH'] ii = np.arange(targets.shape[0]) indices, cataid = [], [] uniq_brickid = np.unique(targ_brickid) for brickid in uniq_brickid: in_targbrick = (targ_brickid == brickid) in_specbrick = (st_brickid == brickid) #in_spec = np.isin(targ_objid[in_targbrick], st_objid[in_specbrick]) _, in_spec, in_targ = np.intersect1d(targ_objid[in_targbrick], st_objid[in_specbrick], return_indices=True) if len(in_spec) > 0: #print(len(in_spec)) #print(targets['RA'][isbgs][in_targbrick][in_spec] - spectruth['RA'][...][in_specbrick][in_targ]) #print(targets['DEC'][isbgs][in_targbrick][in_spec] - spectruth['DEC'][...][in_specbrick][in_targ]) #print(spectruth['GAMA_CATAID'][...][in_specbrick][in_targ]) indices.append(ii[isbgs][in_targbrick][in_spec]) cataid.append(spectruth['GAMA_CATAID'][...][in_specbrick][in_targ]) in_spectruth[np.concatenate(indices)] = True gama_cataid[np.concatenate(indices)] = np.concatenate(cataid) print('%i BGS SV targets have spectra' % np.sum(in_spectruth)) targets = rfn.append_fields(targets, ['IN_SPECTRUTH'], [in_spectruth]) targets = rfn.append_fields(targets, ['GAMA_CATAID'], [gama_cataid]) return targets def match2snhost(targets): ''' match target table to supernovae hosts compiled by Segev ''' assert 'BRICKID' in targets.dtype.names assert 'BRICK_OBJID' in targets.dtype.names isbgs = (targets['SV1_BGS_TARGET']).astype(bool) targ_ra = targets['RA'][isbgs] targ_dec = targets['DEC'][isbgs] # read in supernovae hosts snhost = fitsio.read(os.path.join(dir_dat, 'snhost_dr8_target.fits')) sn_ra = snhost['RA'] sn_dec = snhost['DEC'] has_sn = np.zeros(targets.shape[0]).astype(bool) # spherematch compiled hosts m_targ, m_sn, d_match = spherematch(targ_ra, targ_dec, sn_ra, sn_dec, 0.000277778, maxmatch=1) has_sn[m_targ] = True print('%i BGS SV targets are supernova hosts' % np.sum(has_sn)) targets = rfn.append_fields(targets, ['HAS_SN'], [has_sn]) return targets def _in_DR9_SVregion(ras, decs): ''' DR9 imaging SV region listed in https://desi.lbl.gov/trac/wiki/TargetSelectionWG/SVFields_for_DR9 ''' sv_regions = {} sv_regions['01_s82'] = [30.,40.,-7.,2.] sv_regions['02_egs'] = [210.,220.,50.,55.] sv_regions['03_gama09'] = [129.,141.,-2.,3.] sv_regions['04_gama12'] = [175.,185.,-3.,2.] sv_regions['05_gama15'] = [212.,222.,-2.,3.] sv_regions['06_overlap'] = [135.,160.,30.,35.] sv_regions['07_refnorth'] = [215.,230.,41.,46.] sv_regions['08_ages'] = [215.,220.,30.,40.] sv_regions['09_sagittarius'] = [200.,210.,5.,10.] sv_regions['10_highebv_n'] = [140.,150.,65.,70.] sv_regions['11_highebv_s'] = [240.,245.,20.,25.] sv_regions['12_highstardens_n'] = [273.,283.,40.,45.] sv_regions['13_highstardens_s'] = [260.,270.,15.,20.] n_tiles = len(ras) in_dr9 = np.zeros(n_tiles).astype(bool) for i, ra, dec in zip(range(n_tiles), ras, decs): for k in sv_regions.keys(): if ((ra >= sv_regions[k][0]) & (ra <= sv_regions[k][1]) & (dec >= sv_regions[k][2]) & (dec <= sv_regions[k][3])): in_dr9[i] = True return in_dr9 def bgs_targetclass(bitmask_bgs): n_bgs = np.float(np.sum(bitmask_bgs.astype(bool))) n_bgs_bright = np.sum((bitmask_bgs & bgs_mask.mask('BGS_BRIGHT')).astype(bool)) n_bgs_faint = np.sum((bitmask_bgs & bgs_mask.mask('BGS_FAINT')).astype(bool)) n_bgs_extfaint = np.sum((bitmask_bgs & bgs_mask.mask('BGS_FAINT_EXT')).astype(bool)) # extended faint n_bgs_fibmag = np.sum((bitmask_bgs & bgs_mask.mask('BGS_FIBMAG')).astype(bool)) # fiber magnitude limited n_bgs_lowq = np.sum((bitmask_bgs & bgs_mask.mask('BGS_LOWQ')).astype(bool)) # low quality return n_bgs, n_bgs_bright, n_bgs_faint, n_bgs_extfaint, n_bgs_fibmag, n_bgs_lowq def check_targets_dr9sv(): ''' ''' # read SV tiles sv = fitsio.read(os.path.join(dir_dat, f_svfields)) # new SV tiles print('%i BGS SV tiles' % len(sv['RA'])) ftargets = ['sv1-targets-dr9-hp-X.fits', 'sv1-targets-dr8.sv_cutout.fits'] ntargets = len(ftargets) # plot confirming coverage fig = plt.figure(figsize=(10,7)) sub = fig.add_subplot(111) targs = [] for i, _ftarget in enumerate(ftargets): ftarget = os.path.join(dir_dat, 'sv.spec_truth', _ftarget.replace('.fits', '.spec_truth.sn_host.fits')) targ = fitsio.read(ftarget) sub.scatter(targ['RA'][::100], targ['DEC'][::100], c='k') targs.append(targ) for ra, dec in zip(sv['RA'], sv['DEC']): circ = plt.Circle((ra, dec), 1.6275, fill=False, edgecolor='C1', linewidth=3) sub.add_artist(circ) sub.set_xlabel('RA', fontsize=25) sub.set_xlim(0., 360.) sub.set_ylabel('DEC', fontsize=25) sub.set_ylim(-40., 85) fig.savefig(os.path.join(dir_dat, 'sv.spec_truth', 'check_dr9sv_targets.png'), bbox_inches='tight') # plot confirming coverage tile by tile fig = plt.figure(figsize=(20,12)) bkgd = fig.add_subplot(111, frameon=False) for i, ra, dec in zip(range(len(sv['RA'])), sv['RA'], sv['DEC']): sub = fig.add_subplot(6,10,i+1) for targ in targs: sub.scatter(targ['RA'][::100], targ['DEC'][::100], c='k', s=1) circ = plt.Circle((ra, dec), 1.6275, fill=False, edgecolor='C1', linewidth=3) sub.add_artist(circ) sub.set_xlim(ra - 2.5, ra + 2.5) sub.set_ylim(dec - 2.5, dec + 2.5) bkgd.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) bkgd.set_xlabel(r'RA', labelpad=7, fontsize=25) bkgd.set_ylabel(r'DEC', labelpad=7, fontsize=25) fig.savefig(os.path.join(dir_dat, 'sv.spec_truth', 'check_dr9sv_targets.tile_by_tile.png'), bbox_inches='tight') return None def check_mtl_dr9sv(): ''' check the target fraction of the MTLs ''' mtls = [] for fmtl in glob.glob(os.path.join(dir_dat, 'mtl', 'mtl*.fits')): print('--- %s ---' % fmtl) # read MTL mtl = fitsio.read(fmtl) assigned = mtl['SUBPRIORITY'] > 0.943 n_bgs, n_bgs_bright, n_bgs_faint, n_bgs_extfaint, n_bgs_fibmag, n_bgs_lowq = \ bgs_targetclass(mtl['SV1_BGS_TARGET'][assigned]) print('total n_bgs = %i' % n_bgs) print(' nobj frac (expected frac)') print(' ------------------------------------') print(' BGS Bright %i %.3f (0.45)' % (n_bgs_bright, n_bgs_bright/n_bgs)) print(' BGS Faint %i %.3f (0.25)' % (n_bgs_faint, n_bgs_faint/n_bgs)) print(' BGS Ext.Faint %i %.3f (0.125)' % (n_bgs_extfaint, n_bgs_extfaint/n_bgs)) print(' BGS Fib.Mag %i %.3f (0.125)' % (n_bgs_fibmag, n_bgs_fibmag/n_bgs)) print(' BGS Low Q. %i %.3f (0.05)' % (n_bgs_lowq, n_bgs_lowq/n_bgs)) mtls.append(mtl) # read SV tiles sv = fitsio.read(os.path.join(dir_dat, f_svfields)) # plot confirming coverage fig = plt.figure(figsize=(10,5)) sub = fig.add_subplot(111) for mtl in mtls: sub.scatter(mtl['RA'][::100], mtl['DEC'][::100], c='k', s=1) for ra, dec in zip(sv['RA'], sv['DEC']): circ = plt.Circle((ra, dec), 1.6275, fill=False, edgecolor='C1', linewidth=3) sub.add_artist(circ) sub.set_xlabel('RA', fontsize=25) sub.set_xlim(0., 360.) sub.set_ylabel('DEC', fontsize=25) sub.set_ylim(-40., 85) fig.savefig(os.path.join(dir_dat, 'mtl', 'mtl_dr9sv_check.png'), bbox_inches='tight') # plot confirming coverage tile by tile fig = plt.figure(figsize=(20,12)) bkgd = fig.add_subplot(111, frameon=False) for i, ra, dec in zip(range(len(sv['RA'])), sv['RA'], sv['DEC']): sub = fig.add_subplot(6,10,i+1) for mtl in mtls: sub.scatter(mtl['RA'][::100], mtl['DEC'][::100], c='k', s=1) circ = plt.Circle((ra, dec), 1.6275, fill=False, edgecolor='C1', linewidth=3) sub.add_artist(circ) sub.set_xlim(ra - 2.5, ra + 2.5) sub.set_ylim(dec - 2.5, dec + 2.5) bkgd.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False) bkgd.set_xlabel(r'RA', labelpad=7, fontsize=25) bkgd.set_ylabel(r'DEC', labelpad=7, fontsize=25) fig.savefig(os.path.join(dir_dat, 'mtl', 'mtl_dr9sv_check.tile_by_tile.png'), bbox_inches='tight') return None def _dr8_target_cutouts(): ''' combine dr8 target files for SV tiles that are outside of the dr9sv region. * April 9, 2020: Turns out some of the BGS SV fields are chopped up! ''' # read SV tiles sv = fitsio.read(os.path.join(dir_dat, f_svfields)) # new SV tiles print('%i BGS SV tiles' % len(sv['RA'])) # get SV tiles *outside* of the DR9 SV imaging region in_dr9 = _in_DR9_SVregion(sv['RA'], sv['DEC']) print('%i tiles outside of DR9' % np.sum(~in_dr9)) # for tiles outside of DR9SV read all dr8 healpix that sufficiently covers # the tiles ras, decs = [], [] for ra, dec in zip(sv['RA'][~in_dr9], sv['DEC'][~in_dr9]): corners_ra = [ra - 2., ra + 2., ra + 2., ra - 2.] corners_dec = [dec + 2., dec + 2., dec - 2., dec - 2.] ras += corners_ra decs += corners_dec phi = np.deg2rad(ras) theta = 0.5 * np.pi - np.deg2rad(decs) ipixs = np.unique(hp.ang2pix(2, theta, phi, nest=True)) print(' reading in healpixels', ipixs) targs = [] for i, ipix in enumerate(ipixs): fpix = os.path.join(dir_dat, 'sv.spec_truth', 'sv1-targets-dr8-hp-%i.spec_truth.sn_host.fits' % ipix) if not os.path.isfile(fpix): ftarg = os.path.join(dir_dat, 'sv1-targets-dr8-hp-%i.fits' % ipix) ftrue = fpix.replace('.spec_truth.sn_host.fits', '.spec_truth.fits') if not os.path.isfile(ftrue): # read target files with truth tables print('... matching %s to truth table' % ftarg) _targ = fitsio.read(ftarg) targ = match2spectruth(_targ) fitsio.write(ftrue, targ) else: targ = fitsio.read(ftrue) print('... matching %s to SN host' % os.path.basename(ftrue)) targ = match2snhost(targ) fitsio.write(fpix, targ) else: print('reading ... %s' % fpix) targ = fitsio.read(fpix) near_tile = np.zeros(len(targ)).astype(bool) for ra, dec in zip(sv['RA'][~in_dr9], sv['DEC'][~in_dr9]): near_tile |= ((targ['RA'] > ra - 2.) & (targ['RA'] < ra + 2.) & (targ['DEC'] > dec - 2.) & (targ['DEC'] < dec + 2.)) assert np.sum(near_tile) > 0 if i == 0: targs = targ[near_tile] else: targs = np.concatenate([targs, targ[near_tile]]) fitsio.write(os.path.join(dir_dat, 'sv.spec_truth', 'sv1-targets-dr8.sv_cutout.spec_truth.sn_host.fits'), targs, clobber=True) # plot confirming coverage fig = plt.figure(figsize=(10,7)) sub = fig.add_subplot(111) sub.scatter(targs['RA'], targs['DEC'], c='k') for ra, dec in zip(sv['RA'][~in_dr9], sv['DEC'][~in_dr9]): circ = plt.Circle((ra, dec), 1.6275, fill=False, edgecolor='C1', linewidth=3) sub.add_artist(circ) sub.set_xlabel('RA', fontsize=25) sub.set_xlim(0., 360.) sub.set_ylabel('DEC', fontsize=25) sub.set_ylim(-40., 85) fig.savefig(os.path.join(dir_dat, 'sv.spec_truth', 'sv1-targets-dr8.sv_cutout.png'), bbox_inches='tight') return None def _dr8_skies_cutouts(): ''' compiled skies file for BGS SV tiles outside of the dr9sv regions ''' sv = fitsio.read(os.path.join(dir_dat, f_svfields)) # new SV tiles in_dr9 = _in_DR9_SVregion(sv['RA'], sv['DEC']) print("%i tiles outside of DR9SV" % (np.sum(~in_dr9))) # DR8 sky files fskies = glob.glob('/global/cfs/cdirs/desi/target/catalogs/dr8/0.37.0/skies/*fits') dr8_skies = [] for fsky in fskies: print('... reading %s' % fsky) sky = fitsio.read(fsky) keep = np.zeros(len(sky['RA'])).astype(bool) for tile_ra, tile_dec in zip(sv['RA'][~in_dr9], sv['DEC'][~in_dr9]): keep = keep | (np.sqrt((sky['RA'] - tile_ra)**2 + (sky['DEC'] - tile_dec)**2) < 2.) dr8_skies.append(sky[keep]) dr8_skies = np.concatenate(dr8_skies) # only kep unique TARGTEID _, uniq = np.unique(dr8_skies['TARGETID'], return_index=True) fitsio.write(os.path.join(dir_dat, 'mtl', 'dr8_skies_cutout.fits'), dr8_skies[uniq], clobber=True) return None ###################################################################### # fiberassign ###################################################################### def run_fiberassign(sky_supp=False): ''' generate script for running fiberassign (for posterity) and run it ''' assert os.environ['NERSC_HOST'] == 'cori' if not sky_supp: dir_out = '/global/cfs/cdirs/desi/users/chahah/fba_dr9sv.spec_truth.Apr2020' else: dir_out = '/global/cfs/cdirs/desi/users/chahah/fba_dr9sv.spec_truth.Apr2020.sky_supp' dir_mtl = '/global/cfs/cdirs/desi/users/chahah/mtl_apr2020' fmtls = glob.glob(os.path.join(dir_mtl, 'mtl*fits')) fskies = glob.glob(os.path.join('/global/cfs/cdirs/desi/target/catalogs/dr9sv/0.37.0/skies/', 'skies*.fits')) fskies += [os.path.join(dir_mtl, 'dr8_skies_cutout.fits')] if sky_supp: fsupps = glob.glob(os.path.join( '/global/cfs/cdirs/desi/target/catalogs/dr9sv/0.37.0/skies/skies-supp', 'skies*.fits')) fskies += fsupps scrpt = '\n'.join([ '#!/bin/bash', 'export DESIMODEL="/global/cscratch1/sd/chahah/feasibgs/desimodel_0.12.0"', '', 'odir="%s"' % dir_out, 'tfile="%s"' % os.path.join(dir_dat, f_svfields), '', 'export OMP_NUM_THREADS=32', '', 'mkdir ${odir}', 'rm ${odir}/*.fits', '', #'export DESI_LOGLEVEL=DEBUG', 'fba_run --targets %s --sky %s --footprint ${tfile} --standards_per_petal 20 --sky_per_petal 80 --write_all_targets --dir ${odir} --overwrite | tee log.o' % (' '.join(fmtls), ' '.join(fskies)), '', 'fba_merge_results --targets %s --dir ${odir}' % (' '.join(fmtls + fskies)) ]) f = open('cori_dr9sv_fba.sh','w') f.write(scrpt) f.close() os.system('sh cori_dr9sv_fba.sh') os.system('cp cori_dr9sv_fba.sh %s/cori_dr9sv_fba.sh' % dir_out) return None def check_fba(sky_supp=False): ''' test target densities in the fiberassign output of DR9SV ''' # all the fiberassign output files if not sky_supp: dir_fba = os.path.join(dir_cfs, 'fba_dr9sv.spec_truth.Apr2020') else: dir_fba = os.path.join(dir_cfs, 'fba_dr9sv.spec_truth.sky_supp') f_fbas = glob.glob(os.path.join(dir_fba, 'fiberassign*.fits')) # sarah's fiberassign files #f_fbas = glob.glob(os.path.join(dir_fba, 'fba_dr9sv.sarah', # 'fiberassign*.fits')) n_zero = 0 n_nosky = 0 tbl = ['\t'.join(['TILEID', 'SV1_BGS_TARGET', 'BGS_BRIGHT (0.45)', 'BGS_FAINT (0.25)' 'BGS_FAINT_EXT (0.125)', 'BGS_FIBMAG (0.125)', 'BGS_LOWQ (0.05)', 'MWS', 'STD', 'SKY', 'BAD', 'BLANK'])] __n_bgs_bright, __n_bgs_faint, __n_bgs_extfaint, __n_bgs_fibmag, __n_bgs_lowq, __n_sky = [], [], [], [], [], [] for i, f in enumerate(f_fbas): # read in tile tile_i = fitsio.read(f) if i == 0: tile = tile_i else: tile = np.concatenate([tile, tile_i]) _n_bgs, _n_bgs_bright, _n_bgs_faint, _n_bgs_extfaint, _n_bgs_fibmag, _n_bgs_lowq = \ bgs_targetclass(tile_i['SV1_BGS_TARGET']) _n_mws = np.sum(tile_i['SV1_MWS_TARGET'].astype(bool)) _n_std = np.sum(~tile_i['SV1_MWS_TARGET'].astype(bool) & (tile_i['SV1_DESI_TARGET'] & desi_mask.mask('STD_FAINT|STD_WD|STD_BRIGHT')).astype(bool)) _n_sky = np.sum(tile_i['OBJTYPE'] == 'SKY') _n_bad = np.sum(tile_i['OBJTYPE'] == 'BAD') _n_blank = np.sum(tile_i['OBJTYPE'] == '') if _n_bgs + _n_mws + _n_std + _n_sky + _n_bad + _n_blank < 5000: print('--- %s ---' % f.split('-')[-1].split('.')[0]) notdesi = ~(tile_i['SV1_DESI_TARGET'].astype(bool)) notbgs = ~(tile_i['SV1_BGS_TARGET'].astype(bool)) notmws = ~(tile_i['SV1_MWS_TARGET'].astype(bool)) notsky = (tile_i['OBJTYPE'] != 'SKY') notbad = (tile_i['OBJTYPE'] != 'BAD') print(5000 - (_n_bgs + _n_mws + _n_std + _n_sky + _n_bad)) print(np.sum(notdesi & notbgs & notmws)) print(np.sum(notdesi & notbgs & notmws & notsky & notbad)) print(tile_i['OBJTYPE'][notdesi & notbgs & notmws & notsky & notbad] ) raise ValueError #not_any = ((tile_i['OBJTYPE'] != 'SKY') & # (tile_i['OBJTYPE'] != 'BAD') & # (tile_i['SV1_BGS_TARGET'] == 0) & # (tile_i['SV1_MWS_TARGET'] == 0)) ##print(tile_i['SV1_DESI_TARGET'][not_any]) #for i in range(58): # if np.sum((tile_i['SV1_DESI_TARGET'][not_any] & # desi_mask.mask(i)).astype(bool)) > 0: # print('%i %s' % # (np.sum((tile_i['SV1_DESI_TARGET'][not_any] & desi_mask.mask(i)).astype(bool)), # desi_mask.bitname(i))) __n_bgs_bright.append(_n_bgs_bright/_n_bgs) __n_bgs_faint.append(_n_bgs_faint/_n_bgs) __n_bgs_extfaint.append(_n_bgs_extfaint/_n_bgs) __n_bgs_fibmag.append(_n_bgs_fibmag/_n_bgs) __n_bgs_lowq.append(_n_bgs_lowq/_n_bgs) print('---------------------------------') print('tiles: %s' % os.path.basename(f)) print('total n_bgs = %i' % _n_bgs) print(' nobj frac (expected frac)') print(' ------------------------------------') print(' BGS Bright %i %.3f (0.45)' % (_n_bgs_bright, _n_bgs_bright/_n_bgs)) print(' BGS Faint %i %.3f (0.25)' % (_n_bgs_faint, _n_bgs_faint/_n_bgs)) print(' BGS Ext.Faint %i %.3f (0.125)' % (_n_bgs_extfaint, _n_bgs_extfaint/_n_bgs)) print(' BGS Fib.Mag %i %.3f (0.125)' % (_n_bgs_fibmag, _n_bgs_fibmag/_n_bgs)) print(' BGS Low Q. %i %.3f (0.05)' % (_n_bgs_lowq, _n_bgs_lowq/_n_bgs)) print(' SKY %i' % _n_sky) print(' BAD %i' % _n_bad) __n_sky.append(_n_sky) tbl.append('\t'.join([ '%s' % f.split('-')[-1].split('.')[0], '%i' % _n_bgs, '%i (%.3f)' % (_n_bgs_bright, _n_bgs_bright/_n_bgs), '%i (%.3f)' % (_n_bgs_faint, _n_bgs_faint/_n_bgs), '%i (%.3f)' % (_n_bgs_extfaint, _n_bgs_extfaint/_n_bgs), '%i (%.3f)' % (_n_bgs_fibmag, _n_bgs_fibmag/_n_bgs), '%i (%.3f)' % (_n_bgs_lowq, _n_bgs_lowq/_n_bgs), '%i' % _n_mws, '%i' % _n_std, '%i' % _n_sky, '%i' % _n_bad, '%i' % _n_blank])) # tiles with no sky targets if _n_sky == 0: n_nosky += 1 # tiles with no BGS targets if _n_bgs == 0: n_zero += 1 print('---------------------------------') print('%i tiles with zero BGS targets' % n_zero) print('%i tiles with zero SKY targets' % n_nosky) n_bgs, n_bgs_bright, n_bgs_faint, n_bgs_extfaint, n_bgs_fibmag, n_bgs_lowq = \ bgs_targetclass(tile['SV1_BGS_TARGET']) n_mws = np.sum(tile['SV1_MWS_TARGET'].astype(bool)) n_std = np.sum((tile['SV1_DESI_TARGET'] & desi_mask.mask('STD_FAINT|STD_WD|STD_BRIGHT')).astype(bool)) n_sky = np.sum(tile['OBJTYPE'] == 'SKY') n_bad = np.sum(tile['OBJTYPE'] == 'BAD') n_blank = np.sum(tile['OBJTYPE'] == '') print('---------------------------------') print('total n_bgs = %i' % n_bgs) print('total n_bgs = %i' % np.sum(tile['SV1_BGS_TARGET'] != 0)) print(' nobj frac (expected frac)') print(' ------------------------------------') print(' BGS Bright %i %.3f, %.3f-%.3f (0.45)' % (n_bgs_bright, n_bgs_bright/n_bgs, np.min(__n_bgs_bright), np.max(__n_bgs_bright))) print(' BGS Faint %i %.3f, %.3f-%.3f (0.25)' % (n_bgs_faint, n_bgs_faint/n_bgs, np.min(__n_bgs_faint), np.max(__n_bgs_faint))) print(' BGS Ext.Faint %i %.3f, %.3f-%.3f (0.125)' % (n_bgs_extfaint, n_bgs_extfaint/n_bgs, np.min(__n_bgs_extfaint), np.max(__n_bgs_extfaint))) print(' BGS Fib.Mag %i %.3f, %.3f-%.3f (0.125)' % (n_bgs_fibmag, n_bgs_fibmag/n_bgs, np.min(__n_bgs_fibmag), np.max(__n_bgs_fibmag))) print(' BGS Low Q. %i %.3f, %.3f-%.3f (0.05)' % (n_bgs_lowq, n_bgs_lowq/n_bgs, np.min(__n_bgs_lowq), np.max(__n_bgs_lowq))) print(' SKY %i' % (np.mean(__n_sky))) tbl.append('---------------------------------') print(' BGS Bright %i' %
np.sum((tile['SV1_BGS_TARGET'] & 2**0) != 0)
numpy.sum
import numpy as np import math import random import matplotlib.pyplot as plt from scipy import stats # declare number of particles used for object track estimation particles = 100 # declare arrays likelihood = np.empty(particles) # calculate likelihood of estimate provided by the particle position estimated = np.empty(observations) # stores estimated path of the particle # initial particle position particle_estimate =
np.random.uniform(-0.5,1,(particles))
numpy.random.uniform
# -*- coding: utf-8 -*- """ Created on Fri Oct 5 14:53:10 2018 @author: gregz """ import os.path as op import sys from astropy.io import fits from astropy.table import Table from utils import biweight_location import numpy as np from scipy.interpolate import LSQBivariateSpline, interp1d from astropy.convolution import Gaussian1DKernel, interpolate_replace_nans from astropy.convolution import convolve from scipy.signal import medfilt, savgol_filter from skimage.feature import register_translation import argparse as ap from input_utils import setup_logging import warnings from astropy.modeling.models import Polynomial2D from astropy.modeling.fitting import LevMarLSQFitter get_newwave = True def get_script_path(): return op.dirname(op.realpath(sys.argv[0])) DIRNAME = get_script_path() blueinfo = [['BL', 'uv', 'multi_503_056_7001', [3640., 4640.], ['LL', 'LU'], [4350., 4375.]], ['BR', 'orange', 'multi_503_056_7001', [4660., 6950.], ['RU', 'RL'], [6270., 6470.]]] redinfo = [['RL', 'red', 'multi_502_066_7002', [6450., 8400.], ['LL', 'LU'], [7225., 7425.]], ['RR', 'farred', 'multi_502_066_7002', [8275., 10500.], ['RU', 'RL'], [9280., 9530.]]] parser = ap.ArgumentParser(add_help=True) parser.add_argument("-b", "--basedir", help='''base directory for reductions''', type=str, default=None) parser.add_argument("-s", "--side", help='''blue for LRS2-B and red for LRS2-R''', type=str, default='blue') parser.add_argument("-scd", "--scidateobsexp", help='''Example: "20180112,lrs20000027,exp01"''', type=str, default=None) parser.add_argument("-skd", "--skydateobsexp", help='''Example: "20180112,lrs20000027,exp01"''', type=str, default=None) targs = ["-b", "/Users/gregz/cure/reductions", "-s", "red", "-scd", "20181108,lrs20000025,exp01", "-skd", "20181108,lrs20000024,exp01"] args = parser.parse_args(args=targs) args.log = setup_logging('test_skysub') if args.scidateobsexp is None: args.log.error('--scidateobsexp/-scd was not set.') sys.exit(1) if args.skydateobsexp is None: args.log.error('--skydateobsexp/-skd was not set.') sys.exit(1) if args.side == 'blue': list_of_blue = [args.scidateobsexp.split(',') + args.skydateobsexp.split(',')] if args.side == 'red': list_of_red = [args.scidateobsexp.split(',') + args.skydateobsexp.split(',')] basedir = op.join(args.basedir, '%s/lrs2/%s/%s/lrs2/%s') skyline_file = op.join(DIRNAME, 'lrs2_config/%s_skylines.dat') def make_frame(xloc, yloc, data, wave, dw, Dx, Dy, wstart=5700., wend=5800., scale=0.4, seeing_fac=1.3): seeing = seeing_fac * scale a, b = data.shape x = np.arange(xloc.min()-scale, xloc.max()+1*scale, scale) y = np.arange(yloc.min()-scale, yloc.max()+1*scale, scale) xgrid, ygrid = np.meshgrid(x, y) zgrid = np.zeros((b,)+xgrid.shape) area = 3. / 4. * np.sqrt(3.) * 0.59**2 for k in np.arange(b): sel = np.isfinite(data[:, k]) D = np.sqrt((xloc[:, np.newaxis, np.newaxis] - Dx[k] - xgrid)**2 + (yloc[:, np.newaxis, np.newaxis] - Dy[k] - ygrid)**2) W = np.exp(-0.5 / (seeing/2.35)**2 * D**2) N = W.sum(axis=0) zgrid[k, :, :] = ((data[sel, k][:, np.newaxis, np.newaxis] * W[sel]).sum(axis=0) / N / scale**2 / area) wi = np.searchsorted(wave, wstart, side='left') we =
np.searchsorted(wave, wend, side='right')
numpy.searchsorted
import numpy as np from scipy.linalg import eigh import voice_activity_detector import features_extraction import statistics import utils def get_sigma(ubm, space_dimension): sigma = np.zeros(shape=(len(ubm.covariances) * len(ubm.covariances[0]))) k = 0 for i in range(len(ubm.covariances[0])): for j in range(len(ubm.covariances)): sigma[k] = ubm.covariances[j][i] k += 1 repeat_sigma = np.repeat(np.transpose(sigma)[:, np.newaxis], space_dimension, axis=1) return repeat_sigma def save_i_vector_model(path, i_vector, speaker, components_number): f = open( path + "/ivectors/" + speaker + "_ivector_model_" + str(components_number) + ".txt", "wb") np.save(f, i_vector) f.close def load_i_vector_model(path, speaker, components_number): f = open( path + "/ivectors/" + speaker + "_ivector_model_" + str(components_number) + ".txt", "rb") i_vector = np.load(f) f.close return i_vector def save_i_vectors(path, i_vectors, speaker, components_number): f = open( path + "/ivectors/" + speaker + "_ivector_" + str( components_number) + ".txt", "wb") np.save(f, i_vectors) f.close def extract_i_vector_from_signal(ubm, utterance_path, t_matrix, space_dimension, mfcc_number, frame_duration, step_duration, sigma): t_matrix_divides_sigma = np.divide(t_matrix, sigma) t_matrix_divides_sigma_transpose = np.transpose(t_matrix_divides_sigma) identity_matrix = np.eye(space_dimension, dtype=float) vad_object = voice_activity_detector.Vad(utterance_path, 2) signal_samples, sample_rate = vad_object.get_speech_signal() del vad_object mfcc = features_extraction.FeaturesExtraction(mfcc_number, True, frame_duration, step_duration) features = mfcc.extract_mfcc_from_signal(signal_samples, sample_rate) log_likelihood = statistics.log_likelihood_computation(features, ubm) n, f, s = statistics.statistics_computation(log_likelihood, features) # first order statistics are centered by the mean vector f = np.subtract(f, np.multiply(np.transpose( np.repeat(n[:, np.newaxis], np.shape(ubm.means)[1], axis=1)), np.transpose(ubm.means))) # i-vector computation i1 = np.matmul(np.transpose( np.multiply(t_matrix_divides_sigma, np.repeat( np.transpose(np.repeat(n, np.shape(features)[1]))[:, np.newaxis], space_dimension, axis=1))), t_matrix) i2 = np.matmul(np.linalg.pinv(np.add(identity_matrix, i1)), t_matrix_divides_sigma_transpose) i3 = [] for i in range(np.shape(f)[1]): if i == 0: i3 = np.transpose(f)[i] else: i3 = np.concatenate((i3, np.transpose(f)[i]), axis=0) i_vector =
np.matmul(i2, i3)
numpy.matmul
import numpy as np import torch from torch.utils.data import DataLoader from torch.utils.data.sampler import BatchSampler from tqdm import tqdm class BalancedBatchSampler(BatchSampler): """ BatchSampler - from a MNIST-like dataset, samples n_classes and within these classes samples n_samples. Returns batches of size n_classes * n_samples """ def __init__(self, dataset, n_classes, n_samples): loader = DataLoader(dataset) self.labels_list = [] for i, data in enumerate(tqdm(loader)): label = data["label"] # print(label) self.labels_list.append(label) self.labels = torch.LongTensor(self.labels_list) self.labels_set = list(set(self.labels.numpy())) print(f"Label set: {self.labels_set}") self.label_to_indices = {label: np.where(self.labels.numpy() == label)[0] for label in self.labels_set} self.array_of_labels = [] for l in self.labels_set:
np.random.shuffle(self.label_to_indices[l])
numpy.random.shuffle
import gym import time import tensorflow as tf import tflearn import numpy as np import matplotlib import seaborn as sns env = gym.make("CartPole-v0") observation = tflearn.input_data(shape=[None, 4]) net = tflearn.fully_connected(observation, 256, activation="relu") net = tflearn.fully_connected(net, 256, activation="relu") net = tflearn.fully_connected(net, 256, activation="relu") out = tflearn.fully_connected(net, 2, activation="softmax") reward_holder = tf.placeholder(tf.float32, [None]) action_holder = tf.placeholder(tf.int32, [None]) responsible_outputs = tf.gather(tf.reshape(out, [-1]), tf.range(0, tf.shape(out)[0] * tf.shape(out)[1], 2) + action_holder) loss = -tf.reduce_mean(tf.log(responsible_outputs) * reward_holder) optimizer = tf.train.AdamOptimizer() update = optimizer.minimize(loss) gamma = 0.99 def discount_reward(rewards): running_reward = 0 result = np.zeros_like(rewards) for i in reversed(range(len(rewards))): result[i] = rewards[i] + gamma * running_reward running_reward += rewards[i] return result num_episodes = 1500 max_time = 200 all_rewards = [] saver = tf.train.Saver() train_data = [] with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(num_episodes): obs = env.reset() episode_reward = 0 ep_history = [] for j in range(max_time): #Choose an action a_one_hot = sess.run(out, feed_dict={observation: [obs]}).reshape(2) action = np.random.choice(a_one_hot, p=a_one_hot) action =
np.argmax(a_one_hot == action)
numpy.argmax
#%% [markdown] # # Evaluate clustering concordance #%% import datetime import pprint import time import matplotlib.pyplot as plt import networkx as nx import numpy as np import pandas as pd import seaborn as sns from anytree import LevelOrderGroupIter, Node, NodeMixin, Walker from matplotlib.colors import ListedColormap from mpl_toolkits.axes_grid1 import make_axes_locatable from sklearn.metrics import adjusted_rand_score, rand_score from giskard.plot import stacked_barplot from graspologic.align import OrthogonalProcrustes, SeedlessProcrustes from graspologic.cluster import DivisiveCluster from graspologic.embed import ( AdjacencySpectralEmbed, OmnibusEmbed, select_dimension, selectSVD, ) from graspologic.plot import pairplot from graspologic.utils import ( augment_diagonal, binarize, is_fully_connected, multigraph_lcc_intersection, pass_to_ranks, to_laplacian, ) from pkg.data import load_adjacency, load_maggot_graph, load_node_meta from pkg.io import savefig from pkg.plot import set_theme from pkg.utils import get_paired_inds, get_paired_subgraphs, set_warnings from src.visualization import CLASS_COLOR_DICT as palette from src.visualization import adjplot # TODO fix graspologic version and replace here from pkg.flow import signal_flow from pkg.utils import get_paired_inds set_warnings() t0 = time.time() def stashfig(name, **kwargs): foldername = "cluster_concordance" savefig(name, foldername=foldername, **kwargs) set_theme() #%% [markdown] # ### Load the data #%% mg = load_maggot_graph() mg = mg[mg.nodes["paper_clustered_neurons"] | mg.nodes["accessory_neurons"]] mg.to_largest_connected_component() mg.fix_pairs() mg.nodes["sf"] = signal_flow(mg.sum.adj) mg.nodes["_inds"] = range(len(mg.nodes)) lp_inds, rp_inds = get_paired_inds(mg.nodes) (mg.nodes.iloc[lp_inds]["pair"] == mg.nodes.iloc[rp_inds].index).all() #%% [markdown] # ## Evaluate cluster concordance between same or different hemispheres #%% [markdown] # ## Run multiple rounds of embedding/clustering each hemisphere independently #%% def preprocess_adjs(adjs, method="ase"): """Preprocessing necessary prior to embedding a graph, opetates on a list Parameters ---------- adjs : list of adjacency matrices [description] method : str, optional [description], by default "ase" Returns ------- [type] [description] """ adjs = [pass_to_ranks(a) for a in adjs] adjs = [a + 1 / a.size for a in adjs] if method == "ase": adjs = [augment_diagonal(a) for a in adjs] elif method == "lse": # haven't really used much. a few params to look at here adjs = [to_laplacian(a) for a in adjs] return adjs def svd(X, n_components=None): return selectSVD(X, n_components=n_components, algorithm="full")[0] n_omni_components = 8 # this is used for all of the embedings initially n_svd_components = 16 # this is for the last step method = "ase" # one could also do LSE n_init = 1 cluster_kws = dict(affinity=["euclidean", "manhattan", "cosine"]) rows = [] for side in ["left", "right"]: # TODO this is ignoring the contralateral connections! print("Preprocessing...") # side_mg = mg[mg.nodes[side]] # side_mg.to_largest_connected_component() # adj = side_mg.sum.adj if side == "left": inds = lp_inds else: inds = rp_inds adj = mg.sum.adj[
np.ix_(inds, inds)
numpy.ix_
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Scoring functions relating to loads.""" import json import os import makani from makani.analysis.aero import apparent_wind_util from makani.analysis.control import geometry from makani.control import control_types from makani.lib.python import c_helpers from makani.lib.python.batch_sim import scoring_functions import numpy as np from scipy import interpolate import scoring_functions_util as scoring_util _FLIGHT_MODE_HELPER = c_helpers.EnumHelper('FlightMode', control_types) class YbAccelerationScoringFunction( scoring_functions.DoubleSidedLimitScoringFunction): """Tests if the body-y acceleration falls outside of acceptable limits.""" def __init__(self, bad_lower_limit, good_lower_limit, good_upper_limit, bad_upper_limit, severity): super(YbAccelerationScoringFunction, self).__init__( 'Acceleration', 'm/s^2', bad_lower_limit, good_lower_limit, good_upper_limit, bad_upper_limit, severity) def GetSystemLabels(self): return ['loads'] def GetValue(self, output): return np.array([output['yb_accel_min'], output['yb_accel_max']]) def GetOutput(self, timeseries): return { 'yb_accel_min': np.min(timeseries['yb_accel']), 'yb_accel_max': np.max(timeseries['yb_accel']) } def GetTimeSeries(self, params, sim, control): yb_accel = self._SelectTelemetry(sim, control, 'wing_acc')['y'] return {'yb_accel': yb_accel} class ZgAccelerationScoringFunction( scoring_functions.SingleSidedLimitScoringFunction): """Tests the kite vertical acceleration in ground frame.""" def __init__(self, good_limit, bad_limit, severity): super(ZgAccelerationScoringFunction, self).__init__( 'Wing Accel Zg', 'm/s^2', good_limit, bad_limit, severity) def GetSystemLabels(self): return ['controls'] def GetValue(self, output): return np.array([output['zg_accel_min'], output['zg_accel_max']]) def GetOutput(self, timeseries): return { 'zg_accel_min': np.min(timeseries['zg_accel']), 'zg_accel_max': np.max(timeseries['zg_accel']) } def GetTimeSeries(self, params, sim, control): zg_accel = self._SelectTelemetry(sim, control, 'wing_acc')['z'] return {'zg_accel': zg_accel} class MaxServoMoment( scoring_functions.SingleSidedLimitScoringFunction): """Tests if a maximum hinge moment limit is met on any of the servos.""" def __init__(self, good_limit, bad_limit, severity): super(MaxServoMoment, self).__init__( 'Max Servo Moment', 'N.m', good_limit, bad_limit, severity) def GetSystemLabels(self): return ['loads'] def GetValue(self, output): return output['servo_moment_max'] def GetOutput(self, timeseries): max_moment = np.max(timeseries['servo_torques_abs'], axis=0) return { 'servo_moment_max': max_moment.tolist() } def GetTimeSeries(self, params, sim, control): servo_torques = self._SelectTelemetry(sim, control, 'servo_shaft_torques') servo_torques_abs = np.abs(np.array(servo_torques)) return {'servo_torques_abs': servo_torques_abs} class MaxElevatorServoMoment( scoring_functions.SingleSidedLimitScoringFunction): """Tests the maximum hinge moment for the elevator servo pair.""" def __init__(self, good_limit, bad_limit, severity): super(MaxElevatorServoMoment, self).__init__( 'Max Elevator Servo Moment', 'N.m', good_limit, bad_limit, severity) def GetSystemLabels(self): return ['loads'] def GetValue(self, output): return output['elev_hm_max'] def GetOutput(self, timeseries): return {'elev_hm_max': np.max(timeseries['elev_hm'])} def GetTimeSeries(self, params, sim, control): servo_torques = self._SelectTelemetry(sim, control, 'servo_shaft_torques') if scoring_util.IsSelectionValid(servo_torques): elev_hm_1 = servo_torques[:, 6] elev_hm_2 = servo_torques[:, 7] else: # Servo_torques are returned as np.array([float('nan')]) for flight logs. elev_hm_1 = np.array([float('nan')]) elev_hm_2 = np.array([float('nan')]) summed_moment = np.abs(elev_hm_1) + np.abs(elev_hm_2) return {'elev_hm': summed_moment} class MaxRudderServoMoment( scoring_functions.SingleSidedLimitScoringFunction): """Tests the maximum hinge moment for the rudder servo pair.""" def __init__(self, good_limit, bad_limit, severity): super(MaxRudderServoMoment, self).__init__( 'Max Rudder Servo Moment', 'N.m', good_limit, bad_limit, severity) def GetSystemLabels(self): return ['loads'] def GetValue(self, output): return output['rud_hm_max'] def GetOutput(self, timeseries): return {'rud_hm_max': np.max(timeseries['rud_hm'])} def GetTimeSeries(self, params, sim, control): servo_torques = self._SelectTelemetry(sim, control, 'servo_shaft_torques') if scoring_util.IsSelectionValid(servo_torques): rud_hm_1 = servo_torques[:, 8] rud_hm_2 = servo_torques[:, 9] else: # Servo_torques are returned as np.array([float('nan')]) for flight logs. rud_hm_1 = np.array([float('nan')]) rud_hm_2 = np.array([float('nan')]) summed_moment = np.abs(rud_hm_1) + np.abs(rud_hm_2) return {'rud_hm': summed_moment} class MaxRotorInPlaneMoment( scoring_functions.SingleSidedLimitScoringFunction): """Tests if the limit on maximum rotor in-plane moment is met.""" def __init__(self, good_limit, bad_limit, severity): super(MaxRotorInPlaneMoment, self).__init__( 'Max Rotor In-plane Moment', 'N.m', good_limit, bad_limit, severity) # TODO: Pull stability tables based on rotor rev. path = 'database/m600/rotor_rev4_stability_tables.json' with open(os.path.join(makani.HOME, path), 'r') as f: lookup_tables = json.load(f) self._omegas = lookup_tables['omegas'] self._v_freestreams = lookup_tables['v_freestreams'] self._my_a_cw = np.array(lookup_tables['My_a_cw']) self._mz_a_cw = np.array(lookup_tables['Mz_a_cw']) self._my_a_ccw = np.array(lookup_tables['My_a_ccw']) self._mz_a_ccw = np.array(lookup_tables['Mz_a_ccw']) def GetSystemLabels(self): return ['loads', 'experimental'] def GetValue(self, output): return output['rotor_moment_max'] def GetOutput(self, timeseries): rotor_moments = timeseries['rotor_moments'] m_max = 0.0 for nr in rotor_moments: m_res = np.linalg.norm(rotor_moments[nr], axis=1) if m_res.size != 0: m_max = max(m_max, m_res.max()) return {'rotor_moment_max': m_max} def GetTimeSeries(self, params, sim, control): # TODO: This scoring function takes a while to evaluate, needs # some attention to reduce execution time. # Table look-up v = self._v_freestreams o = self._omegas my_cw_lookup = interpolate.RectBivariateSpline(v, o, self._my_a_cw.T, kx=1, ky=1) mz_cw_lookup = interpolate.RectBivariateSpline(v, o, self._mz_a_cw.T, kx=1, ky=1) my_ccw_lookup = interpolate.RectBivariateSpline(v, o, self._my_a_ccw.T, kx=1, ky=1) mz_ccw_lookup = interpolate.RectBivariateSpline(v, o, self._mz_a_ccw.T, kx=1, ky=1) rotors_dir = params['system_params']['rotors']['dir'] rotors_axis = params['system_params']['rotors']['axis'] # Note: rotors_inertia is rotational inertia of rotor and motor. rotors_inertia = params['system_params']['rotors']['I'] param_names = ['airspeed', 'alpha', 'beta', 'rotor_speeds', 'rotor_gyro_moments', 'body_rates'] (vapp, alpha, beta, rotor_omega, gyro_moments_xyz, body_rates) = self._SelectTelemetry(sim, control, param_names) # Transformation: Standard kite body (b) to standard hub fixed (h) # (x-forward, z-downward) dcm_b2h = np.array(geometry.AngleToDcm(0.0, np.deg2rad(-3.0), 0.0)) # Transformation: Geometric hub fixed (gh, X-rearward, Z-upward)) to # standard hub fixed (h) dcm_gh2h = np.array(geometry.AngleToDcm(0.0, np.pi, 0.0)) # Kite apparent speed components in (h) vk = vapp[np.newaxis].T * np.matmul(dcm_b2h, np.transpose( np.array([[-np.cos(alpha)*np.cos(beta)], [-np.sin(beta)], [-np.sin(alpha)*np.cos(beta)]]), (2, 0, 1)))[:, :, 0] # Rotor apparent speed in spherical coordinates va = np.linalg.norm(vk, axis=1) a = -np.arctan2(np.hypot(vk[:, 1], vk[:, 2]), vk[:, 0]) t = -np.arctan2(vk[:, 2], vk[:, 1]) # Geometric wind aligned (gw) to geometric hub fixed (gh) # TODO: Vectorize this function. dcm_gw2gh = np.ndarray((len(t), 3, 3)) for i in range(len(t)): dcm_gw2gh[i, :, :] = geometry.AngleToDcm(0.0, 0.0, t[i]) # Gyroscopic moment components in (h) if scoring_util.IsSelectionValid(gyro_moments_xyz): gyro_moment_y = gyro_moments_xyz['y'] gyro_moment_z = gyro_moments_xyz['z'] else: angular_momentum_h = (rotors_inertia[0, :] * rotor_omega * rotors_dir[0, :]) axis = np.concatenate([rotors_axis['x'], rotors_axis['y'], rotors_axis['z']]) angular_momentum_b = np.multiply( np.transpose(angular_momentum_h[np.newaxis], (1, 0, 2)), axis[np.newaxis]) body_omega = np.concatenate([[body_rates['x']], [body_rates['y']], [body_rates['z']]]) gyro_moment_b = np.cross(angular_momentum_b, np.transpose(body_omega[np.newaxis], (2, 1, 0)), axis=1) gyro_moment_y = gyro_moment_b[:, 1, :] gyro_moment_z = gyro_moment_b[:, 2, :] gyro_moment = np.zeros((gyro_moment_y.shape[0], gyro_moment_y.shape[1], 3, 1)) gyro_moment[:, :, 1, 0] = gyro_moment_y gyro_moment[:, :, 2, 0] = gyro_moment_z m_gyro = np.matmul(dcm_b2h, gyro_moment)[:, :, :, 0] v_freestream_in_range = np.logical_and( va >= np.min(self._v_freestreams), va <= np.max(self._v_freestreams)) # Loop on 8 rotors m_totals = {} for nr in range(0, 8): rotor_omega_cur = rotor_omega[:, nr] omega_in_range = np.logical_and( rotor_omega_cur >= np.min(self._omegas), rotor_omega_cur <= np.max(self._omegas)) in_range = np.logical_and(omega_in_range, v_freestream_in_range) # Table look-up if rotors_dir[0, nr] > 0: my_aero_w = (my_cw_lookup(va[in_range], rotor_omega_cur[in_range], grid=False) * a[in_range]) mz_aero_w = (mz_cw_lookup(va[in_range], rotor_omega_cur[in_range], grid=False) * a[in_range]) else: my_aero_w = (my_ccw_lookup(va[in_range], rotor_omega_cur[in_range], grid=False) * a[in_range]) mz_aero_w = (mz_ccw_lookup(va[in_range], rotor_omega_cur[in_range], grid=False) * a[in_range]) # Aerodynamic moment components in (h) m_aero_w = np.zeros((my_aero_w.shape[0], 3, 1)) m_aero_w[:, 1, 0] = my_aero_w m_aero_w[:, 2, 0] = mz_aero_w m_aero = np.matmul(dcm_gh2h, np.matmul(dcm_gw2gh[in_range, :, :], m_aero_w))[:, :, 0] # Total resultant in-plane moment m_totals[nr] = m_aero + m_gyro[in_range, nr] return { 'rotor_moments': m_totals } class MaxWingBendingFailureIndex( scoring_functions.SingleSidedLimitScoringFunction): """Tests if the limit on maximum wing bending is met.""" def __init__(self, good_limit, bad_limit, severity, aero_tension_limit=1.0, accel_limit=1.0, domega_limit=1.0): super(MaxWingBendingFailureIndex, self).__init__( 'Max Wing Bending Failure Index', '-', good_limit, bad_limit, severity) self._aero_tension_limit = aero_tension_limit self._accel_limit = accel_limit self._domega_limit = domega_limit def GetSystemLabels(self): return ['loads'] def GetValue(self, output): return output['wing_bending_failure_index'] def GetOutput(self, timeseries): wing_bending_failure_indices = timeseries['wing_bending_failure_indices'] return { 'wing_bending_failure_index': np.max(wing_bending_failure_indices) } def GetTimeSeries(self, params, sim, control): # Exclude Perched, PilotHover, HoverAscend and HoverDescend flight modes. flight_mode_exclusion_list = ['kFlightModePilotHover', 'kFlightModePerched', 'kFlightModeHoverAscend', 'kFlightModeHoverDescend'] flight_modes = [] for name in _FLIGHT_MODE_HELPER.Names(): if name not in flight_mode_exclusion_list: flight_modes.append(name) tension, wing_acc, omega_i, domega_i, time_i = ( self._SelectTelemetry(sim, control, ['tether_tension', 'wing_acc', 'body_rates', 'angular_acc', 'time'], flight_modes=flight_modes)) # Check if body rates data exist. These may not exist if the relevant # flight modes do not exist. if not (scoring_util.IsSelectionValid(omega_i) and scoring_util.IsSelectionValid(wing_acc)): return {'wing_bending_failure_indices': np.array(float('nan'))} # Create angular acceleration data for flight logs. if scoring_util.IsSelectionValid(domega_i): domega = domega_i else: domega = {'x': np.gradient(omega_i['x'], time_i), 'y':
np.gradient(omega_i['y'], time_i)
numpy.gradient
# https://stackoverflow.com/questions/34276663/tkinter-gui-layout-using-frames-and-grid import time import traceback import multiprocessing as mp from multiprocessing.managers import BaseManager import threading import logging import numpy as np import tkinter as tk from PIL import Image, ImageTk from config import Config from message import Message from messagebus_manager import MessageBusManager, ProcessNames #class MessageBusManager(BaseManager): # pass class ProcessMessages (threading.Thread): def __init__(self, _name, config, mbus, on_state_change, on_error): threading.Thread.__init__(self) self.name = _name self.config = config self.message_bus = mbus self.callback = on_state_change self.on_error_callback = on_error self.daemon = True return def run(self): self.config.log.info("control tower message processing thread has started (%s)" % self.name ) self.message_bus.subscribe(topic = "map_updates", subscriber=self.name) while True: try: msg = self.message_bus.receive(self.name, latest_message=True) # latest=True becasue we only care about latest (discard older messages) self.config.log.info("control tower received message %s" % msg.cmd ) data =
np.array(msg.params['grid'])
numpy.array
import importlib import time from abc import ABCMeta, abstractmethod import numpy as np from scipy.spatial.distance import jensenshannon from scipy.stats import gaussian_kde from ..core.prior import PriorDict from ..core.sampler.base_sampler import SamplerError from ..core.utils import logger, reflect from ..gw.source import PARAMETER_SETS class ProposalCycle(object): def __init__(self, proposal_list): self.proposal_list = proposal_list self.weights = [prop.weight for prop in self.proposal_list] self.normalized_weights = [w / sum(self.weights) for w in self.weights] self.weighted_proposal_list = [ np.random.choice(self.proposal_list, p=self.normalized_weights) for _ in range(10 * int(1 / min(self.normalized_weights))) ] self.nproposals = len(self.weighted_proposal_list) self._position = 0 @property def position(self): return self._position @position.setter def position(self, position): self._position = np.mod(position, self.nproposals) def get_proposal(self): prop = self.weighted_proposal_list[self._position] self.position += 1 return prop def __str__(self): string = "ProposalCycle:\n" for prop in self.proposal_list: string += f" {prop}\n" return string class BaseProposal(object): _accepted = 0 _rejected = 0 __metaclass__ = ABCMeta def __init__(self, priors, weight=1, subset=None): self._str_attrs = ["acceptance_ratio", "n"] self.parameters = priors.non_fixed_keys self.weight = weight self.subset = subset # Restrict to a subset if self.subset is not None: self.parameters = [p for p in self.parameters if p in subset] self._str_attrs.append("parameters") self.ndim = len(self.parameters) self.prior_boundary_dict = {key: priors[key].boundary for key in priors} self.prior_minimum_dict = {key: np.max(priors[key].minimum) for key in priors} self.prior_maximum_dict = {key: np.min(priors[key].maximum) for key in priors} self.prior_width_dict = {key: np.max(priors[key].width) for key in priors} @property def accepted(self): return self._accepted @accepted.setter def accepted(self, accepted): self._accepted = accepted @property def rejected(self): return self._rejected @rejected.setter def rejected(self, rejected): self._rejected = rejected @property def acceptance_ratio(self): if self.n == 0: return np.nan else: return self.accepted / self.n @property def n(self): return self.accepted + self.rejected def __str__(self): msg = [f"{type(self).__name__}("] for attr in self._str_attrs: val = getattr(self, attr, "N/A") if isinstance(val, (float, int)): val = f"{val:1.2g}" msg.append(f"{attr}:{val},") return "".join(msg) + ")" def apply_boundaries(self, point): for key in self.parameters: boundary = self.prior_boundary_dict[key] if boundary is None: continue elif boundary == "periodic": point[key] = self.apply_periodic_boundary(key, point[key]) elif boundary == "reflective": point[key] = self.apply_reflective_boundary(key, point[key]) else: raise SamplerError(f"Boundary {boundary} not implemented") return point def apply_periodic_boundary(self, key, val): minimum = self.prior_minimum_dict[key] width = self.prior_width_dict[key] return minimum + np.mod(val - minimum, width) def apply_reflective_boundary(self, key, val): minimum = self.prior_minimum_dict[key] width = self.prior_width_dict[key] val_normalised = (val - minimum) / width val_normalised_reflected = reflect(np.array(val_normalised)) return minimum + width * val_normalised_reflected def __call__(self, chain): sample, log_factor = self.propose(chain) sample = self.apply_boundaries(sample) return sample, log_factor @abstractmethod def propose(self, chain): """Propose a new point This method must be overwritten by implemented proposals. The propose method is called by __call__, then boundaries applied, before returning the proposed point. Parameters ---------- chain: bilby.core.sampler.bilby_mcmc.chain.Chain The chain to use for the proposal Returns ------- proposal: bilby.core.sampler.bilby_mcmc.Sample The proposed point log_factor: float The natural-log of the additional factor entering the acceptance probability to ensure detailed balance. For symmetric proposals, a value of 0 should be returned. """ pass @staticmethod def check_dependencies(warn=True): """Check the dependencies required to use the proposal Parameters ---------- warn: bool If true, print a warning Returns ------- check: bool If true, dependencies exist """ return True class FixedGaussianProposal(BaseProposal): """A proposal using a fixed non-correlated Gaussian distribution Parameters ---------- priors: bilby.core.prior.PriorDict The set of priors weight: float Weighting factor subset: list A list of keys for which to restrict the proposal to (other parameters will be kept fixed) sigma: float The scaling factor for proposals """ def __init__(self, priors, weight=1, subset=None, sigma=0.01): super(FixedGaussianProposal, self).__init__(priors, weight, subset) self.sigmas = {} for key in self.parameters: if np.isinf(self.prior_width_dict[key]): self.prior_width_dict[key] = 1 if isinstance(sigma, float): self.sigmas[key] = sigma elif isinstance(sigma, dict): self.sigmas[key] = sigma[key] else: raise SamplerError("FixedGaussianProposal sigma not understood") def propose(self, chain): sample = chain.current_sample for key in self.parameters: sigma = self.prior_width_dict[key] * self.sigmas[key] sample[key] += sigma * np.random.randn() log_factor = 0 return sample, log_factor class AdaptiveGaussianProposal(BaseProposal): def __init__( self, priors, weight=1, subset=None, sigma=1, scale_init=1e0, stop=1e5, target_facc=0.234, ): super(AdaptiveGaussianProposal, self).__init__(priors, weight, subset) self.sigmas = {} for key in self.parameters: if np.isinf(self.prior_width_dict[key]): self.prior_width_dict[key] = 1 if isinstance(sigma, (float, int)): self.sigmas[key] = sigma elif isinstance(sigma, dict): self.sigmas[key] = sigma[key] else: raise SamplerError("AdaptiveGaussianProposal sigma not understood") self.target_facc = target_facc self.scale = scale_init self.stop = stop self._str_attrs.append("scale") self._last_accepted = 0 def propose(self, chain): sample = chain.current_sample self.update_scale(chain) if np.random.random() < 1e-3: factor = 1e1 elif np.random.random() < 1e-4: factor = 1e2 else: factor = 1 for key in self.parameters: sigma = factor * self.scale * self.prior_width_dict[key] * self.sigmas[key] sample[key] += sigma * np.random.randn() log_factor = 0 return sample, log_factor def update_scale(self, chain): """ The adaptation of the scale follows (35)/(36) of https://arxiv.org/abs/1409.7215 """ if 0 < self.n < self.stop: s_gamma = (self.stop / self.n) ** 0.2 - 1 if self.accepted > self._last_accepted: self.scale += s_gamma * (1 - self.target_facc) / 100 else: self.scale -= s_gamma * self.target_facc / 100 self._last_accepted = self.accepted self.scale = max(self.scale, 1 / self.stop) class DifferentialEvolutionProposal(BaseProposal): """A proposal using Differential Evolution Parameters ---------- priors: bilby.core.prior.PriorDict The set of priors weight: float Weighting factor subset: list A list of keys for which to restrict the proposal to (other parameters will be kept fixed) mode_hopping_frac: float The fraction of proposals which use 'mode hopping' """ def __init__(self, priors, weight=1, subset=None, mode_hopping_frac=0.5): super(DifferentialEvolutionProposal, self).__init__(priors, weight, subset) self.mode_hopping_frac = mode_hopping_frac def propose(self, chain): theta = chain.current_sample theta1 = chain.random_sample theta2 = chain.random_sample if np.random.rand() > self.mode_hopping_frac: gamma = 1 else: # Base jump size gamma = np.random.normal(0, 2.38 / np.sqrt(2 * self.ndim)) # Scale uniformly in log between 0.1 and 10 times gamma *= np.exp(np.log(0.1) + np.log(100.0) * np.random.rand()) for key in self.parameters: theta[key] += gamma * (theta2[key] - theta1[key]) log_factor = 0 return theta, log_factor class UniformProposal(BaseProposal): """A proposal using uniform draws from the prior support Parameters ---------- priors: bilby.core.prior.PriorDict The set of priors weight: float Weighting factor subset: list A list of keys for which to restrict the proposal to (other parameters will be kept fixed) """ def __init__(self, priors, weight=1, subset=None): super(UniformProposal, self).__init__(priors, weight, subset) def propose(self, chain): sample = chain.current_sample for key in self.parameters: sample[key] = np.random.uniform( self.prior_minimum_dict[key], self.prior_maximum_dict[key] ) log_factor = 0 return sample, log_factor class PriorProposal(BaseProposal): """A proposal using draws from the prior distribution Note: for priors which use interpolation, this proposal can be problematic as the proposal gets pickled in multiprocessing. Either, use serial processing (npool=1) or fall back to a UniformProposal. Parameters ---------- priors: bilby.core.prior.PriorDict The set of priors weight: float Weighting factor subset: list A list of keys for which to restrict the proposal to (other parameters will be kept fixed) """ def __init__(self, priors, weight=1, subset=None): super(PriorProposal, self).__init__(priors, weight, subset) self.priors = PriorDict({key: priors[key] for key in self.parameters}) def propose(self, chain): sample = chain.current_sample lnp_theta = self.priors.ln_prob(sample.as_dict(self.parameters)) prior_sample = self.priors.sample() for key in self.parameters: sample[key] = prior_sample[key] lnp_thetaprime = self.priors.ln_prob(sample.as_dict(self.parameters)) log_factor = lnp_theta - lnp_thetaprime return sample, log_factor _density_estimate_doc = """ A proposal using draws from a {estimator} fit to the chain Parameters ---------- priors: bilby.core.prior.PriorDict The set of priors weight: float Weighting factor subset: list A list of keys for which to restrict the proposal to (other parameters will be kept fixed) first_fit: int The number of steps to take before first fitting the KDE fit_multiplier: int The multiplier for the next fit nsamples_for_density: int The number of samples to use when fitting the KDE fallback: bilby.core.sampler.bilby_mcmc.proposal.BaseProposal A proposal to use before first training scale_fits: int A scaling factor for both the initial and subsequent updates """ class DensityEstimateProposal(BaseProposal): def __init__( self, priors, weight=1, subset=None, first_fit=1000, fit_multiplier=10, nsamples_for_density=1000, fallback=AdaptiveGaussianProposal, scale_fits=1, ): super(DensityEstimateProposal, self).__init__(priors, weight, subset) self.nsamples_for_density = nsamples_for_density self.fallback = fallback(priors, weight, subset) self.fit_multiplier = fit_multiplier * scale_fits # Counters self.steps_since_refit = 0 self.next_refit_time = first_fit * scale_fits self.density = None self.trained = False self._str_attrs.append("trained") density_name = None __doc__ = _density_estimate_doc.format(estimator=density_name) def _fit(self, dataset): raise NotImplementedError def _evaluate(self, point): raise NotImplementedError def _sample(self, nsamples=None): raise NotImplementedError def refit(self, chain): current_density = self.density start = time.time() # Draw two (possibly overlapping) data sets for training and verification dataset = [] verification_dataset = [] nsamples_for_density = min(chain.position, self.nsamples_for_density) for _ in range(nsamples_for_density): s = chain.random_sample dataset.append([s[key] for key in self.parameters]) s = chain.random_sample verification_dataset.append([s[key] for key in self.parameters]) # Fit the density self.density = self._fit(np.array(dataset).T) # Print a log message took = time.time() - start logger.info( f"{self.density_name} construction at {self.steps_since_refit} finished" f" for length {chain.position} chain, took {took:0.2f}s." f" Current accept-ratio={self.acceptance_ratio:0.2f}" ) # Reset counters for next training self.steps_since_refit = 0 self.next_refit_time *= self.fit_multiplier # Verify training hasn't overconstrained new_draws = np.atleast_2d(self._sample(1000)) verification_dataset = np.array(verification_dataset) fail_parameters = [] for ii, key in enumerate(self.parameters): std_draws = np.std(new_draws[:, ii]) std_verification = np.std(verification_dataset[:, ii]) if std_draws < 0.1 * std_verification: fail_parameters.append(key) if len(fail_parameters) > 0: logger.info( f"{self.density_name} construction failed verification and is discarded" ) self.density = current_density else: self.trained = True def propose(self, chain): self.steps_since_refit += 1 # Check if we refit testA = self.steps_since_refit >= self.next_refit_time if testA: self.refit(chain) # If KDE is yet to be fitted, use the fallback if self.trained is False: return self.fallback.propose(chain) # Grab the current sample and it's probability under the KDE theta = chain.current_sample ln_p_theta = self._evaluate(list(theta.as_dict(self.parameters).values())) # Sample and update theta new_sample = self._sample(1) for key, val in zip(self.parameters, new_sample): theta[key] = val # Calculate the probability of the new sample and the KDE ln_p_thetaprime = self._evaluate(list(theta.as_dict(self.parameters).values())) # Calculate Q(theta|theta') / Q(theta'|theta) log_factor = ln_p_theta - ln_p_thetaprime return theta, log_factor class KDEProposal(DensityEstimateProposal): density_name = "Gaussian KDE" __doc__ = _density_estimate_doc.format(estimator=density_name) def _fit(self, dataset): return gaussian_kde(dataset) def _evaluate(self, point): return self.density.logpdf(point)[0] def _sample(self, nsamples=None): return np.atleast_1d(np.squeeze(self.density.resample(nsamples))) class GMMProposal(DensityEstimateProposal): density_name = "Gaussian Mixture Model" __doc__ = _density_estimate_doc.format(estimator=density_name) def _fit(self, dataset): from sklearn.mixture import GaussianMixture density = GaussianMixture(n_components=10) density.fit(dataset.T) return density def _evaluate(self, point): return np.squeeze(self.density.score_samples(np.atleast_2d(point))) def _sample(self, nsamples=None): return np.squeeze(self.density.sample(n_samples=nsamples)[0]) def check_dependencies(warn=True): if importlib.util.find_spec("sklearn") is None: if warn: logger.warning( "Unable to utilise GMMProposal as sklearn is not installed" ) return False else: return True class NormalizingFlowProposal(DensityEstimateProposal): density_name = "Normalizing Flow" __doc__ = _density_estimate_doc.format(estimator=density_name) + ( """ js_factor: float The factor to use in determining the max-JS factor to terminate training. max_training_epochs: int The maximum bumber of traning steps to take """ ) def __init__( self, priors, weight=1, subset=None, first_fit=1000, fit_multiplier=10, max_training_epochs=1000, scale_fits=1, nsamples_for_density=1000, js_factor=10, fallback=AdaptiveGaussianProposal, ): super(NormalizingFlowProposal, self).__init__( priors=priors, weight=weight, subset=subset, first_fit=first_fit, fit_multiplier=fit_multiplier, nsamples_for_density=nsamples_for_density, fallback=fallback, scale_fits=scale_fits, ) self.setup_flow() self.setup_optimizer() self.max_training_epochs = max_training_epochs self.js_factor = js_factor def setup_flow(self): if self.ndim < 3: self.setup_basic_flow() else: self.setup_NVP_flow() def setup_NVP_flow(self): from .flows import NVPFlow self.flow = NVPFlow( features=self.ndim, hidden_features=self.ndim * 2, num_layers=2, num_blocks_per_layer=2, batch_norm_between_layers=True, batch_norm_within_layers=True, ) def setup_basic_flow(self): from .flows import BasicFlow self.flow = BasicFlow(features=self.ndim) def setup_optimizer(self): from torch import optim self.optimizer = optim.Adam(self.flow.parameters()) def get_training_data(self, chain): training_data = [] nsamples_for_density = min(chain.position, self.nsamples_for_density) for _ in range(nsamples_for_density): s = chain.random_sample training_data.append([s[key] for key in self.parameters]) return training_data def _calculate_js(self, validation_samples, training_samples_draw): # Calculate the maximum JS between the validation and draw max_js = 0 for i in range(self.ndim): A = validation_samples[:, i] B = training_samples_draw[:, i] xmin = np.min([np.min(A), np.min(B)]) xmax = np.min([np.max(A), np.max(B)]) xval = np.linspace(xmin, xmax, 100) Apdf = gaussian_kde(A)(xval) Bpdf = gaussian_kde(B)(xval) js = jensenshannon(Apdf, Bpdf) max_js = max(max_js, js) return np.power(max_js, 2) def train(self, chain): logger.info("Starting NF training") import torch start = time.time() training_samples = np.array(self.get_training_data(chain)) validation_samples = np.array(self.get_training_data(chain)) training_tensor = torch.tensor(training_samples, dtype=torch.float32) max_js_threshold = self.js_factor / self.nsamples_for_density for epoch in range(1, self.max_training_epochs + 1): self.optimizer.zero_grad() loss = -self.flow.log_prob(inputs=training_tensor).mean() loss.backward() self.optimizer.step() # Draw from the current flow self.flow.eval() training_samples_draw = ( self.flow.sample(self.nsamples_for_density).detach().numpy() ) self.flow.train() if np.mod(epoch, 10) == 0: max_js_bits = self._calculate_js( validation_samples, training_samples_draw ) if max_js_bits < max_js_threshold: logger.info( f"Training complete after {epoch} steps, " f"max_js_bits={max_js_bits:0.5f}<{max_js_threshold}" ) break took = time.time() - start logger.info( f"Flow training step ({self.steps_since_refit}) finished" f" for length {chain.position} chain, took {took:0.2f}s." f" Current accept-ratio={self.acceptance_ratio:0.2f}" ) self.steps_since_refit = 0 self.next_refit_time *= self.fit_multiplier self.trained = True def propose(self, chain): import torch self.steps_since_refit += 1 theta = chain.current_sample # Check if we retrain the NF testA = self.steps_since_refit >= self.next_refit_time if testA: self.train(chain) if self.trained is False: return self.fallback.propose(chain) self.flow.eval() theta_prime_T = self.flow.sample(1) logp_theta_prime = self.flow.log_prob(theta_prime_T).detach().numpy()[0] theta_T = torch.tensor( np.atleast_2d([theta[key] for key in self.parameters]), dtype=torch.float32 ) logp_theta = self.flow.log_prob(theta_T).detach().numpy()[0] log_factor = logp_theta - logp_theta_prime flow_sample_values = np.atleast_1d(np.squeeze(theta_prime_T.detach().numpy())) for key, val in zip(self.parameters, flow_sample_values): theta[key] = val return theta, float(log_factor) def check_dependencies(warn=True): if importlib.util.find_spec("nflows") is None: if warn: logger.warning( "Unable to utilise NormalizingFlowProposal as nflows is not installed" ) return False else: return True class FixedJumpProposal(BaseProposal): def __init__(self, priors, jumps=1, subset=None, weight=1, scale=1e-4): super(FixedJumpProposal, self).__init__(priors, weight, subset) self.scale = scale if isinstance(jumps, (int, float)): self.jumps = {key: jumps for key in self.parameters} elif isinstance(jumps, dict): self.jumps = jumps else: raise SamplerError("jumps not understood") def propose(self, chain): sample = chain.current_sample for key, jump in self.jumps.items(): sign =
np.random.randint(2)
numpy.random.randint
import torch import torch.utils.data as utils import DCE_matt as dce import pydcemri.dcemri as classic import copy import numpy as np import model import pickle import time import train from tqdm import tqdm def run_simulations(hp, SNR=15, eval=False, var_seq=False): print(hp.device) if hp.network.nn == 'lsq': hp.simulations.num_samples = hp.simulations.num_samples_leval rep1 = hp.acquisition.rep1-1 rep2 = hp.acquisition.rep2-1 if hp.create_data: # create simulation parameters test = np.random.uniform(0, 1, (hp.simulations.num_samples, 1)) vp = hp.simulations.vp_min + (test * (hp.simulations.vp_max - hp.simulations.vp_min)) test = np.random.uniform(0, 1, (hp.simulations.num_samples, 1)) ve = hp.simulations.ve_min + (test * (hp.simulations.ve_max - hp.simulations.ve_min)) test = np.random.uniform(0, 1, (hp.simulations.num_samples, 1)) kep = hp.simulations.kep_min + (test * (hp.simulations.kep_max - hp.simulations.kep_min)) Tonset = np.random.uniform(hp.simulations.Tonset_min, hp.simulations.Tonset_max, (hp.simulations.num_samples, 1)) test = np.random.uniform(0, 1, (hp.simulations.num_samples, 1)) R1 = hp.simulations.R1_min + (test * (hp.simulations.R1_max - hp.simulations.R1_min)) hp.acquisition.FAlist = np.array([hp.acquisition.FA2]) del test hp.acquisition.timing = np.arange(0, rep2 + rep1) * hp.simulations.time / 60 num_time = len(hp.acquisition.timing) X_dw = np.zeros((hp.simulations.num_samples, num_time)) R1eff = np.zeros((hp.simulations.num_samples, num_time)) C = np.zeros((hp.simulations.num_samples, num_time)) test = np.random.uniform(0, 1, (hp.simulations.num_samples)) # vary the Hct value from 0.3 to 0.6 if hp.network.aif: Hct = 0.3 + (test * (0.3)) else: Hct = None aif = hp.aif.aif aif['ab'] /= (1-hp.aif.Hct) if hp.network.full_aif or eval: AIF_curves = np.zeros((len(Hct), rep2)) for aa in tqdm(range(len(kep))): if hp.network.aif: aif = hp.aif.aif.copy() aif['ab'] /= (1-Hct[aa]) C[aa, :] = dce.Cosine8AIF_ExtKety(hp.acquisition.timing, aif, kep[aa][0], (Tonset[aa][0] + rep1*hp.simulations.time)/60, ve[aa][0], vp[aa][0]) R1eff[aa, :] = classic.con_to_R1eff(C[aa, :], R1[aa][0], hp.acquisition.r1) X_dw[aa, :] = classic.r1eff_to_dce(R1eff[aa, :], hp.acquisition.TR, hp.acquisition.FAlist) if hp.network.full_aif or eval: AIF_curves[aa] = dce.Cosine8AIF(hp.acquisition.timing, aif['ab'], aif['ar'], aif['ae'], aif['mb'], aif['mm'], aif['mr'], aif['me'], aif['tr'], aif['t0']) # scale the signal to the baseline signal S0_out = np.mean(X_dw[:, :rep2//10], axis=1) dce_signal_scaled = X_dw / S0_out[:, None] # vary SNR from 7 to 100 if SNR == 'all': SNR = np.linspace(7, 100, num=hp.simulations.num_samples) noise = np.random.normal(0, 1/SNR, (num_time, hp.simulations.num_samples)).T dce_signal_noisy = dce_signal_scaled + noise del noise, X_dw, R1eff, C hp.acquisition.timing = torch.FloatTensor(hp.acquisition.timing) # if not lsq, convert to concentration and save data if hp.network.nn != 'lsq': S0 = np.mean(dce_signal_noisy[:, :rep2//10], axis=1) R1eff2 = dce.dce_to_r1eff(dce_signal_noisy, S0, R1.squeeze(), hp.acquisition.TR, hp.acquisition.FA2) C1 = dce.r1eff_to_conc(R1eff2, R1, hp.acquisition.r1) dce_signal_noisy = C1 if hp.network.full_aif or eval: data = [dce_signal_noisy, hp, Hct, kep, ve, vp, Tonset, AIF_curves] else: data = [dce_signal_noisy, hp, Hct, kep, ve, vp, Tonset] # change name when varying SNR or acquisition points if eval: if var_seq: hp.create_name_copy = hp.create_name.replace('.p', '')+'seq_'+str(hp.acquisition.rep2)+'.p' else: hp.create_name_copy = hp.create_name.replace('.p', '')+'_'+str(SNR)+'.p' else: hp.create_name_copy = hp.create_name pickle.dump(data, open(hp.create_name_copy, "wb")) hp.acquisition.timing = hp.acquisition.timing.to(hp.device) else: print('load simulation data') begin = time.time() if eval: if var_seq: hp.create_name_copy = hp.create_name.replace('.p', '')+'seq_'+str(hp.acquisition.rep2)+'.p' else: hp.create_name_copy = hp.create_name.replace('.p', '')+'_'+str(SNR)+'.p' else: hp.create_name_copy = hp.create_name if hp.network.full_aif or eval: dce_signal_noisy, hp_data, Hct, kep, ve, vp, Tonset, AIF_curves = pickle.load(open(hp.create_name_copy, "rb")) else: dce_signal_noisy, hp_data, Hct, kep, ve, vp, Tonset = pickle.load(open(hp.create_name_copy, "rb")) time_passed = time.time() - begin print('{} data points, loading time:{:2f} s'.format(len(dce_signal_noisy), time_passed)) hp.acquisition = hp_data.acquisition hp.aif = hp_data.aif hp.acquisition.timing = hp.acquisition.timing.to(hp.device) # executing non-linear least squares fit on data if hp.network.nn == 'lsq': out = np.zeros((4, hp.simulations.num_samples_leval)) for i in tqdm(range(hp.simulations.num_samples)): aif = hp.aif.aif.copy() aif['ab'] /= (1-Hct[i]) params = dce.fit_tofts_model(np.expand_dims(dce_signal_noisy[i], axis=0), hp.acquisition.timing.cpu().numpy(), aif, X0=(np.mean(kep), np.mean(Tonset)/60, np.mean(ve), np.mean(vp))) out[0, i] = params[0] out[1, i] = params[1] out[2, i] = params[2] out[3, i] = params[3] # loading model for evaluation on neural networks elif eval: net = model.DCE_NET(hp).to(hp.device) net.load_state_dict(torch.load('pretrained/pretrained_'+hp.exp_name+'.pt')) net.to(hp.device) if hp.network.full_aif: Hct = np.concatenate([Hct[:, np.newaxis], AIF_curves], axis=1) # start training for neural networks else: if hp.network.full_aif: Hct = np.concatenate([Hct[:, np.newaxis], AIF_curves], axis=1) if hp.pretrained: net = model.DCE_NET(hp).to(hp.device) net.load_state_dict(torch.load(hp.pretrain_name)) net.to(hp.device) net = train.train(dce_signal_noisy, hp, net=net, Hct=Hct, orig_params=torch.Tensor([np.squeeze(kep), np.squeeze(ve), np.squeeze(vp), (np.squeeze(Tonset)+rep1*hp.simulations.time) / 60])) else: net = train.train(dce_signal_noisy, hp, Hct=Hct, orig_params=torch.Tensor([np.squeeze(kep), np.squeeze(ve), np.squeeze(vp), (np.squeeze(Tonset)+rep1*hp.simulations.time) / 60])) torch.save(net.state_dict(), 'pretrained/pretrained_'+hp.exp_name+'.pt') # evaluate on current dataset if hp.network.nn != 'lsq': out = predict_DCE(dce_signal_noisy, copy.deepcopy(net), hp, Hct=Hct) param_results = sim_results(out, hp, kep, ve, vp, Tonset) return param_results def predict_DCE(C1, net, hp, Hct=None, one_dim=True): net.eval() first_params = True C1[np.isnan(C1)] = 0 # perform interpolation for FCN when acquisition points is lower than max rep if hp.network.nn == 'linear' and C1.shape[1] < hp.max_rep: delta = (C1.shape[1]-1) / (hp.max_rep-1) C = np.zeros((C1.shape[0], hp.max_rep)) for i in tqdm(range(len(C1))): C[i] = np.array([train.interpolate(C1[i], j*delta) for j in range(hp.max_rep)]) C1 = C hp.acquisition.timing = torch.arange(hp.max_rep, device=hp.device) * hp.simulations.time / 60 print('using full network with voxel-wise aif') # temporal framework if one_dim: if hp.network.full_aif: C1 = np.concatenate([Hct, C1], axis=1) else: C1 = np.concatenate([Hct[:, np.newaxis], C1], axis=1) ke = torch.zeros(len(C1)) ve = torch.zeros(len(C1)) vp = torch.zeros(len(C1)) dt = torch.zeros(len(C1)) X = torch.zeros((len(C1), 160)) # spatiotemporal framework else: Hct = np.expand_dims(Hct, axis=(1, 2, 3)) Hct = np.repeat(np.repeat(Hct, C1.shape[1], axis=1), C1.shape[2], axis=2) C1 = np.concatenate([Hct, C1], axis=3) C1 = np.moveaxis(C1, 3, 1) ke = torch.zeros((C1.shape[0], C1.shape[2], C1.shape[3])) ve = torch.zeros((C1.shape[0], C1.shape[2], C1.shape[3])) vp = torch.zeros((C1.shape[0], C1.shape[2], C1.shape[3])) dt = torch.zeros((C1.shape[0], C1.shape[2], C1.shape[3])) X = torch.zeros((C1.shape[0], 160, C1.shape[2], C1.shape[3])) C1 = torch.from_numpy(C1.astype(np.float32)) inferloader = utils.DataLoader(C1, batch_size=hp.training.val_batch_size, shuffle=False, drop_last=False) # perform inference size = hp.training.val_batch_size with torch.no_grad(): for i, X_batch in enumerate(tqdm(inferloader, position=0, leave=True), 0): X_batch = X_batch.to(hp.device) if hp.network.full_aif: X_dw, ket, dtt, vet, vpt = net(X_batch[:, hp.acquisition.rep2:], Hct=X_batch[:, :hp.acquisition.rep2]) else: X_dw, ket, dtt, vet, vpt = net(X_batch[:, 1:], Hct=X_batch[:, :1]) ke[i*size:(i+1)*size] = ket.cpu().squeeze() ve[i*size:(i+1)*size] = vet.cpu().squeeze() vp[i*size:(i+1)*size] = vpt.cpu().squeeze() dt[i*size:(i+1)*size] = dtt.cpu().squeeze() X[i*size:(i+1)*size] = X_dw.cpu().squeeze() # if first_params: # ke = ket.cpu().numpy() # dt = dtt.cpu().numpy() # ve = vet.cpu().numpy() # vp = vpt.cpu().numpy() # X = X_dw.cpu().numpy() # first_params = False # else: # ke = np.concatenate((ke, ket.cpu().numpy()), axis=0) # dt = np.concatenate((dt, dtt.cpu().numpy()), axis=0) # ve = np.concatenate((ve, vet.cpu().numpy()), axis=0) # vp = np.concatenate((vp, vpt.cpu().numpy()), axis=0) # X = np.concatenate((X, X_dw.cpu().numpy()), axis=0) ke = np.array(ke) ve = np.array(ve) vp = np.array(vp) dt = np.array(dt) X = np.array(X) params = [ke, dt, ve, vp, X] return params def sim_results(paramsNN_full, hp, kep, ve, vp, Tonset, Hct=None): # calculate the random and systematic error of every parameter rep1 = hp.acquisition.rep1 - 1 error_ke = paramsNN_full[0] - np.squeeze(kep) randerror_ke = np.std(error_ke) syserror_ke = np.mean(error_ke) del error_ke error_ve = paramsNN_full[2] - np.squeeze(ve) randerror_ve = np.std(error_ve) syserror_ve = np.mean(error_ve) del error_ve error_vp = paramsNN_full[3] - np.squeeze(vp) randerror_vp = np.std(error_vp) syserror_vp = np.mean(error_vp) del error_vp error_dt = paramsNN_full[1] - (np.squeeze(Tonset) + rep1 * hp.simulations.time) / 60 randerror_dt = np.std(error_dt) syserror_dt = np.mean(error_dt) del error_dt normke = np.mean(kep) normve = np.mean(ve) normvp = np.mean(vp) normdt =
np.mean(Tonset / 60)
numpy.mean
import numpy as np from skopt.learning import GaussianProcessRegressor, RandomForestRegressor from skopt.learning.gaussian_process.kernels import Matern, WhiteKernel from scipy.optimize import fmin_l_bfgs_b from .acq import * from tqdm import tqdm_notebook def transform(x, space): return (x - space[None, :, 0]) / (space[:, 1] - space[:, 0])[None, :] def reverse_transform(x, space): return x * (space[:, 1] - space[:, 0])[None, :] + space[None, :, 0] def gpbo_cycle(ndim, space, target_f, n_iters=10, acq_function=ei, model=None, n_multi_start=100, show_progress=True): xrange = (lambda title, n: tqdm_notebook(range(n), postfix=title)) if show_progress else (lambda title, n: range(n)) space =
np.array(space)
numpy.array
import vsketch import numpy as np from shapely.geometry import LineString, MultiLineString from shapely.ops import clip_by_rect import sys sys.path.append('./') from tiles import * # Declare global constants ROWS = 150 COLS = 150 SCALE = 50 # Store global state here GRID = np.zeros((ROWS, COLS, 2)) VISITED = np.zeros((ROWS, COLS)) FRONTIER = [] TILES = [ SINGLETON, STAIRCASE_1, STAIRCASE_2, ROD_1, ROD_2, ROD_3, PLANE_1, PLANE_2, L1, L2, L3, L4, BIG ] class TilingSketch(vsketch.SketchClass): def to_cartesian(self, i, j): return (j-i) * SCALE, (i+j) * SCALE / (3 ** .5) def hatch(self, coords, num_lines=5): p1, p2, p3 = coords lines =
np.arange(num_lines)
numpy.arange
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Helper functions to work with distributions.""" import numbers import numpy as np import scipy.integrate from astropy.coordinates import Angle from astropy.time import TimeDelta __all__ = [ "get_random_state", "sample_sphere", "sample_sphere_distance", "sample_powerlaw", "sample_times", "normalize", "draw", "pdf", ] def normalize(func, x_min, x_max): """Normalize a 1D function over a given range.""" def f(x): return func(x) / scipy.integrate.quad(func, x_min, x_max)[0] return f def pdf(func): """One-dimensional PDF of a given radial surface density.""" def f(x): return x * func(x) return f def draw(low, high, size, dist, random_state="random-seed", *args, **kwargs): """Allows drawing of random numbers from any distribution.""" from .inverse_cdf import InverseCDFSampler n = 1000 x = np.linspace(low, high, n) pdf = dist(x) sampler = InverseCDFSampler(pdf=pdf, random_state=random_state) idx = sampler.sample(size) x_sampled = np.interp(idx, np.arange(n), x) return np.squeeze(x_sampled) def get_random_state(init): """Get a `numpy.random.RandomState` instance. The purpose of this utility function is to have a flexible way to initialise a `~numpy.random.RandomState` instance, a.k.a. a random number generator (``rng``). See :ref:`dev_random` for usage examples and further information. Parameters ---------- init : {int, 'random-seed', 'global-rng', `~numpy.random.RandomState`} Available options to initialise the RandomState object: * ``int`` -- new RandomState instance seeded with this integer (calls `~numpy.random.RandomState` with ``seed=init``) * ``'random-seed'`` -- new RandomState instance seeded in a random way (calls `~numpy.random.RandomState` with ``seed=None``) * ``'global-rng'``, return the RandomState singleton used by ``numpy.random``. * `~numpy.random.RandomState` -- do nothing, return the input. Returns ------- random_state : `~numpy.random.RandomState` RandomState instance. """ if isinstance(init, (numbers.Integral, np.integer)): return
np.random.RandomState(init)
numpy.random.RandomState
""" Various low-dimensional dynamical systems in Python. For flows that occur on unbounded intervals (eg non-autonomous systems), coordinates are transformed to a basis where the domain remains bounded Requirements: + numpy + scipy + sdeint (for integration with noise) + numba (optional, for faster integration) """ import numpy as np from .base import DynSys, DynSysDelay, staticjit class Lorenz(DynSys): @staticjit def _rhs(x, y, z, t, beta, rho, sigma): xdot = sigma * (y - x) ydot = x * (rho - z) - y zdot = x * y - beta * z return xdot, ydot, zdot @staticjit def _jac(x, y, z, t, beta, rho, sigma): row1 = [-sigma, sigma, 0] row2 = [rho - z, -1, -x] row3 = [y, x, -beta] return [row1, row2, row3] class LorenzBounded(DynSys): @staticjit def _rhs(x, y, z, t, beta, r, rho, sigma): f = 1 - (x ** 2 + y ** 2 + z ** 2) / r ** 2 xdot = sigma * (y - x) * f ydot = (x * (rho - z) - y) * f zdot = (x * y - beta * z) * f return xdot, ydot, zdot class LorenzCoupled(DynSys): @staticjit def _rhs(x1, y1, z1, x2, y2, z2, t, beta, eps, rho, rho1, rho2, sigma): x1dot = sigma * (y1 - x1) y1dot = x1 * (rho1 - z1) - y1 z1dot = x1 * y1 - beta * z1 x2dot = sigma * (y2 - x2) + eps * (x1 - x2) y2dot = x2 * (rho2 - z2) - y2 z2dot = x2 * y2 - beta * z2 return x1dot, y1dot, z1dot, x2dot, y2dot, z2dot class Lorenz96(DynSys): def rhs(self, X, t): Xdot = np.zeros_like(X) Xdot[0] = (X[1] - X[-2]) * X[-1] - X[0] + self.f Xdot[1] = (X[2] - X[-1]) * X[0] - X[1] + self.f Xdot[-1] = (X[0] - X[-3]) * X[-2] - X[-1] + self.f Xdot[2:-1] = (X[3:] - X[:-3]) * X[1:-2] - X[2:-1] + self.f return Xdot class Lorenz84(DynSys): @staticjit def _rhs(x, y, z, t, a, b, f, g): xdot = -a * x - y ** 2 - z ** 2 + a * f ydot = -y + x * y - b * x * z + g zdot = -z + b * x * y + x * z return xdot, ydot, zdot class Rossler(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = -y - z ydot = x + a * y zdot = b + z * (x - c) return xdot, ydot, zdot class Thomas(DynSys): @staticjit def _rhs(x, y, z, t, a, b): xdot = -a * x + b * np.sin(y) ydot = -a * y + b * np.sin(z) zdot = -a * z + b * np.sin(x) return xdot, ydot, zdot class ThomasLabyrinth(Thomas): pass class DoublePendulum(DynSys): @staticjit def _rhs(th1, th2, p1, p2, t, d, m): g = 9.82 pre = 6 / (m * d ** 2) denom = 16 - 9 * np.cos(th1 - th2) ** 2 th1_dot = pre * (2 * p1 - 3 * np.cos(th1 - th2) * p2) / denom th2_dot = pre * (8 * p2 - 3 * np.cos(th1 - th2) * p1) / denom p1_dot = ( -0.5 * (m * d ** 2) * (th1_dot * th2_dot * np.sin(th1 - th2) + 3 * (g / d) * np.sin(th1)) ) p2_dot = ( -0.5 * (m * d ** 2) * (-th1_dot * th2_dot * np.sin(th1 - th2) + 3 * (g / d) * np.sin(th2)) ) return th1_dot, th2_dot, p1_dot, p2_dot @staticjit def _postprocessing(th1, th2, p1, p2): return np.sin(th1), np.sin(th2), p1, p2 class SwingingAtwood(DynSys): @staticjit def _rhs(r, th, pr, pth, t, m1, m2): g = 9.82 rdot = pr / (m1 + m2) thdot = pth / (m1 * r ** 2) prdot = pth ** 2 / (m1 * r ** 3) - m2 * g + m1 * g * np.cos(th) pthdot = -m1 * g * r * np.sin(th) return rdot, thdot, prdot, pthdot @staticjit def _postprocessing(r, th, pr, pth): return r, np.sin(th), pr, pth class GuckenheimerHolmes(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c, d, e, f): xdot = a * x - b * y + c * z * x + d * z * (x ** 2 + y ** 2) ydot = a * y + b * x + c * z * y zdot = e - z ** 2 - f * (x ** 2 + y ** 2) - a * z ** 3 return xdot, ydot, zdot class HenonHeiles(DynSys): @staticjit def _rhs(x, y, px, py, t, lam): xdot = px ydot = py pxdot = -x - 2 * lam * x * y pydot = -y - lam * (x ** 2 - y ** 2) return xdot, ydot, pxdot, pydot class Halvorsen(DynSys): @staticjit def _rhs(x, y, z, t, a, b): xdot = -a * x - b * (y + z) - y ** 2 ydot = -a * y - b * (z + x) - z ** 2 zdot = -a * z - b * (x + y) - x ** 2 return xdot, ydot, zdot class Chua(DynSys): @staticjit def _rhs(x, y, z, t, alpha, beta, m0, m1): ramp_x = m1 * x + 0.5 * (m0 - m1) * (np.abs(x + 1) - np.abs(x - 1)) xdot = alpha * (y - x - ramp_x) ydot = x - y + z zdot = -beta * y return xdot, ydot, zdot class MultiChua(DynSys): def diode(self, x): m, c = self.m, self.c total = m[-1] * x for i in range(1, 6): total += 0.5 * (m[i - 1] - m[i]) * (np.abs(x + c[i]) - np.abs(x - c[i])) return total def rhs(self, X, t): x, y, z = X xdot = self.a * (y - self.diode(x)) ydot = x - y + z zdot = -self.b * y return (xdot, ydot, zdot) class Duffing(DynSys): @staticjit def _rhs(x, y, z, t, alpha, beta, delta, gamma, omega): xdot = y ydot = -delta * y - beta * x - alpha * x ** 3 + gamma * np.cos(z) zdot = omega return xdot, ydot, zdot @staticjit def _postprocessing(x, y, z): return x, y, np.cos(z) class MackeyGlass(DynSysDelay): @staticjit def _rhs(x, xt, t, beta, gamma, n, tau): xdot = beta * (xt / (1 + xt ** n)) - gamma * x return xdot class IkedaDelay(DynSysDelay): @staticjit def _rhs(x, xt, t, c, mu, tau, x0): xdot = mu * np.sin(xt - x0) - c * x return xdot class SprottDelay(IkedaDelay): pass class VossDelay(DynSysDelay): @staticjit def _rhs(x, xt, t, alpha, tau): f = -10.44 * xt ** 3 - 13.95 * xt ** 2 - 3.63 * xt + 0.85 xdot = -alpha * x + f return xdot class ScrollDelay(DynSysDelay): @staticjit def _rhs(x, xt, t, alpha, beta, tau): f = np.tanh(10 * xt) xdot = -alpha * xt + beta * f return xdot class PiecewiseCircuit(DynSysDelay): @staticjit def _rhs(x, xt, t, alpha, beta, c, tau): f = -((xt / c) ** 3) + 3 * xt / c xdot = -alpha * xt + beta * f return xdot # ## this was not chaotic # class ENSODelay(DynSysDelay): # @staticjit # def _rhs(x, xt, t, alpha, beta, tau): # xdot = x - x**3 - alpha * xt + beta # return xdot class DoubleGyre(DynSys): @staticjit def _rhs(x, y, z, t, alpha, eps, omega): a = eps * np.sin(z) b = 1 - 2 * eps * np.sin(z) f = a * x ** 2 + b * x dx = -alpha * np.pi * np.sin(np.pi * f) * np.cos(np.pi * y) dy = alpha * np.pi * np.cos(np.pi * f) * np.sin(np.pi * y) * (2 * a * x + b) dz = omega return dx, dy, dz @staticjit def _postprocessing(x, y, z): return x, y, np.sin(z) class BlinkingRotlet(DynSys): @staticjit def _rotlet(r, theta, a, b, bc): """A rotlet velocity field""" kappa = a ** 2 + (b ** 2 * r ** 2) / a ** 2 - 2 * b * r * np.cos(theta) gamma = (1 - r ** 2 / a ** 2) * (a ** 2 - (b ** 2 * r ** 2) / a ** 2) iota = (b ** 2 * r) / a ** 2 - b * np.cos(theta) zeta = b ** 2 + r ** 2 - 2 * b * r * np.cos(theta) nu = a ** 2 + b ** 2 - (2 * b ** 2 * r ** 2) / a ** 2 vr = b * np.sin(theta) * (-bc * (gamma / kappa ** 2) - 1 / kappa + 1 / zeta) vth = ( bc * (gamma * iota) / kappa ** 2 + bc * r * nu / (a ** 2 * kappa) + iota / kappa - (r - b * np.cos(theta)) / zeta ) return vr, vth @staticjit def _protocol(t, tau, stiffness=20): return 0.5 + 0.5 * np.tanh(tau * stiffness * np.sin(2 * np.pi * t / tau)) def rhs(self, X, t): r, theta, tt = X weight = self._protocol(tt, self.tau) dr1, dth1 = self._rotlet(r, theta, self.a, self.b, self.bc) dr2, dth2 = self._rotlet(r, theta, self.a, -self.b, self.bc) dr = weight * dr1 + (1 - weight) * dr2 dth = (weight * dth1 + (1 - weight) * dth2) / r dtt = 1 return self.sigma * dr, self.sigma * dth, dtt def _postprocessing(self, r, th, tt): return r * np.cos(th), r * np.sin(th), np.sin(2 * np.pi * tt / self.tau) class BlinkingVortex(BlinkingRotlet): pass class OscillatingFlow(DynSys): @staticjit def _rhs(x, y, z, t, b, k, omega, u): f = x + b * np.sin(z) dx = u * np.cos(k * y) * np.sin(k * f) dy = -u * np.sin(k * y) * np.cos(k * f) dz = omega return dx, dy, dz def _postprocessing(self, x, y, z): return np.cos(self.k * x), y, np.sin(z) class BickleyJet(DynSys): @staticjit def _rhs(y, x, z, t, ell, eps, k, omega, sigma, u): sechy = 1 / np.cosh(y / ell) inds = np.arange(3) un = k[inds] * (x - z * sigma[inds]) dx = u * sechy ** 2 * (-1 - 2 * np.dot(np.cos(un), eps) * np.tanh(y / ell)) dy = ell * u * sechy ** 2 * np.dot(eps * k, np.sin(un)) dz = omega return dy, dx, dz def _postprocessing(self, x, y, z): km = np.min(self.k) sm = np.min(self.sigma) return x, np.sin(km * y), np.sin(self.omega * z * km * sm) class ArnoldBeltramiChildress(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): dx = a * np.sin(z) + c * np.cos(y) dy = b * np.sin(x) + a * np.cos(z) dz = c * np.sin(y) + b * np.cos(x) return dx, dy, dz @staticjit def _postprocessing(x, y, z): return np.sin(x), np.cos(y), np.sin(z) class JerkCircuit(DynSys): @staticjit def _rhs(x, y, z, t, eps, y0): xdot = y ydot = z zdot = -z - x - eps * (np.exp(y / y0) - 1) return xdot, ydot, zdot class ForcedBrusselator(DynSys): @staticjit def _rhs(x, y, z, t, a, b, f, w): xdot = a + x ** 2 * y - (b + 1) * x + f * np.cos(z) ydot = b * x - x ** 2 * y zdot = w return xdot, ydot, zdot @staticjit def _postprocessing(x, y, z): return x, y, np.sin(z) class WindmiReduced(DynSys): @staticjit def _rhs(i, v, p, t, a1, b1, b2, b3, d1, vsw): idot = a1 * (vsw - v) vdot = b1 * i - b2 * p ** 1 / 2 - b3 * v pdot = ( vsw ** 2 - p ** (5 / 4) * vsw ** (1 / 2) * (1 + np.tanh(d1 * (i - 1))) / 2 ) return idot, vdot, pdot class MooreSpiegel(DynSys): @staticjit def _rhs(x, y, z, t, a, b, eps): xdot = y ydot = a * z zdot = -z + eps * y - y * x ** 2 - b * x return xdot, ydot, zdot class CoevolvingPredatorPrey(DynSys): @staticjit def _rhs(x, y, alpha, t, a1, a2, a3, b1, b2, d1, d2, delta, k1, k2, k4, vv): xdot = x * ( -((a3 * y) / (1 + b2 * x)) + (a1 * alpha * (1 - k1 * x * (-alpha + alpha * delta))) / (1 + b1 * alpha) - d1 * ( 1 - k2 * (-(alpha ** 2) + (alpha * delta) ** 2) + k4 * (-(alpha ** 4) + (alpha * delta) ** 4) ) ) ydot = (-d2 + (a2 * x) / (1 + b2 * x)) * y alphadot = vv * ( -((a1 * k1 * x * alpha * delta) / (1 + b1 * alpha)) - d1 * (-2 * k2 * alpha * delta ** 2 + 4 * k4 * alpha ** 3 * delta ** 4) ) return xdot, ydot, alphadot class KawczynskiStrizhak(DynSys): @staticjit def _rhs(x, y, z, t, beta, gamma, kappa, mu): xdot = gamma * (y - x ** 3 + 3 * mu * x) ydot = -2 * mu * x - y - z + beta zdot = kappa * (x - z) return xdot, ydot, zdot class BelousovZhabotinsky(DynSys): @staticjit def _rhs( x, z, v, t, c1, c10, c11, c12, c13, c2, c3, c4, c5, c6, c7, c8, c9, ci, kf, t0, y0, yb1, yb2, yb3, z0, ): ybar = (1 / y0) * yb1 * z * v / (yb2 * x + yb3 + kf) if x < 0.0: x = 0 rf = (ci - z0 * z) * np.sqrt(x) xdot = c1 * x * ybar + c2 * ybar + c3 * x ** 2 + c4 * rf + c5 * x * z - kf * x zdot = (c6 / z0) * rf + c7 * x * z + c8 * z * v + c9 * z - kf * z vdot = c10 * x * ybar + c11 * ybar + c12 * x ** 2 + c13 * z * v - kf * v return xdot * t0, zdot * t0, vdot * t0 class IsothermalChemical(DynSys): @staticmethod def _rhs(alpha, beta, gamma, t, delta, kappa, mu, sigma): alphadot = mu * (kappa + gamma) - alpha * beta ** 2 - alpha betadot = (alpha * beta ** 2 + alpha - beta) / sigma gammadot = (beta - gamma) / delta return alphadot, betadot, gammadot class VallisElNino(DynSys): @staticmethod def _rhs(x, y, z, t, b, c, p): xdot = b * y - c * (x + p) ydot = -y + x * z zdot = -z - x * y + 1 return xdot, ydot, zdot class RabinovichFabrikant(DynSys): @staticjit def _rhs(x, y, z, t, a, g): xdot = y * (z - 1 + x ** 2) + g * x ydot = x * (3 * z + 1 - x ** 2) + g * y zdot = -2 * z * (a + x * y) return (xdot, ydot, zdot) class NoseHoover(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = y ydot = -x + y * z zdot = a - y ** 2 return xdot, ydot, zdot class Dadras(DynSys): @staticjit def _rhs(x, y, z, t, c, e, o, p, r): xdot = y - p * x + o * y * z ydot = r * y - x * z + z zdot = c * x * y - e * z return xdot, ydot, zdot class RikitakeDynamo(DynSys): @staticjit def _rhs(x, y, z, t, a, mu): xdot = -mu * x + y * z ydot = -mu * y + x * (z - a) zdot = 1 - x * y return xdot, ydot, zdot class NuclearQuadrupole(DynSys): @staticjit def _rhs(q1, q2, p1, p2, t, a, b, d): q1dot = a * p1 q2dot = a * p2 p1dot = ( -(a * q1) + (3 * b * (q1 ** 2 - q2 ** 2)) / np.sqrt(2) - d * q1 * (q1 ** 2 + q2 ** 2) ) p2dot = -(q2 * (a + 3 * np.sqrt(2) * b * q1 + d * (q1 ** 2 + q2 ** 2))) return q1dot, q2dot, p1dot, p2dot class PehlivanWei(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y - y * z ydot = y + y * z - 2 * x zdot = 2 - x * y - y ** 2 return xdot, ydot, zdot class SprottTorus(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y + 2 * x * y + x * z ydot = 1 - 2 * x ** 2 + y * z zdot = x - x ** 2 - y ** 2 return xdot, ydot, zdot class SprottJerk(DynSys): @staticjit def _rhs(x, y, z, t, mu): xdot = y ydot = z zdot = -x + y ** 2 - mu * z return xdot, ydot, zdot ## Not chaotic # class JerkCircuit(DynSys): # def rhs(self, X, t): # x, y, z = X # xdot = y # ydot = z # zdot = -z - x - self.eps*(np.exp(y/self.y0) - 1) # return (xdot, ydot, zdot) class SprottA(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y ydot = -x + y * z zdot = 1 - y ** 2 return xdot, ydot, zdot class SprottB(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y * z ydot = x - y zdot = 1 - x * y return xdot, ydot, zdot class SprottC(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y * z ydot = x - y zdot = 1 - x ** 2 return xdot, ydot, zdot class SprottD(DynSys): @staticjit def _rhs(x, y, z, t): xdot = -y ydot = x + z zdot = x * z + 3 * y ** 2 return xdot, ydot, zdot class SprottE(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y * z ydot = x ** 2 - y zdot = 1 - 4 * x return xdot, ydot, zdot class SprottF(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = y + z ydot = -x + a * y zdot = x ** 2 - z return xdot, ydot, zdot class SprottG(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = a * x + z ydot = x * z - y zdot = -x + y return xdot, ydot, zdot class SprottH(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = -y + z ** 2 ydot = x + a * y zdot = x - z return xdot, ydot, zdot class SprottI(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = -a * y ydot = x + z zdot = x + y ** 2 - z return xdot, ydot, zdot class SprottJ(DynSys): @staticjit def _rhs(x, y, z, t): xdot = 2 * z ydot = -2 * y + z zdot = -x + y + y ** 2 return (xdot, ydot, zdot) class SprottK(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = x * y - z ydot = x - y zdot = x + a * z return xdot, ydot, zdot class SprottL(DynSys): @staticjit def _rhs(x, y, z, t, a, b): xdot = y + b * z ydot = a * x ** 2 - y zdot = 1 - x return xdot, ydot, zdot class SprottM(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = -z ydot = -(x ** 2) - y zdot = a * (1 + x) + y return xdot, ydot, zdot class SprottN(DynSys): @staticjit def _rhs(x, y, z, t): xdot = -2 * y ydot = x + z ** 2 zdot = 1 + y - 2 * z return xdot, ydot, zdot class SprottO(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = y ydot = x - z zdot = x + x * z + a * y return xdot, ydot, zdot class SprottP(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = a * y + z ydot = -x + y ** 2 zdot = x + y return xdot, ydot, zdot class SprottQ(DynSys): @staticjit def _rhs(x, y, z, t, a, b): xdot = -z ydot = x - y zdot = a * x + y ** 2 + b * z return (xdot, ydot, zdot) class SprottR(DynSys): @staticjit def _rhs(x, y, z, t, a, b): xdot = a - y ydot = b + z zdot = x * y - z return xdot, ydot, zdot class SprottS(DynSys): @staticjit def _rhs(x, y, z, t): xdot = -x - 4 * y ydot = x + z ** 2 zdot = 1 + x return xdot, ydot, zdot class SprottMore(DynSys): @staticjit def _rhs(x, y, z, t): xdot = y ydot = -x - np.sign(z) * y zdot = y ** 2 - np.exp(-(x ** 2)) return xdot, ydot, zdot class Arneodo(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c, d): xdot = y ydot = z zdot = -a * x - b * y - c * z + d * x ** 3 return xdot, ydot, zdot class Coullet(Arneodo): pass class Rucklidge(DynSys): @staticjit def _rhs(x, y, z, t, a, b): xdot = -a * x + b * y - y * z ydot = x zdot = -z + y ** 2 return xdot, ydot, zdot class Sakarya(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c, h, p, q, r, s): xdot = a * x + h * y + s * y * z ydot = -b * y - p * x + q * x * z zdot = c * z - r * x * y return xdot, ydot, zdot class LiuChen(Sakarya): pass class RayleighBenard(DynSys): @staticjit def _rhs(x, y, z, t, a, b, r): xdot = a * (y - x) ydot = r * y - x * z zdot = x * y - b * z return xdot, ydot, zdot class Finance(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = (1 / b - a) * x + z + x * y ydot = -b * y - x ** 2 zdot = -x - c * z return xdot, ydot, zdot class Bouali2(DynSys): @staticjit def _rhs(x, y, z, t, a, b, bb, c, g, m, y0): xdot = a * x * (y0 - y) - b * z ydot = -g * y * (1 - x ** 2) zdot = -m * x * (1.5 - bb * z) - c * z return xdot, ydot, zdot class Bouali(Bouali2): pass class LuChenCheng(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = -(a * b) / (a + b) * x - y * z + c ydot = a * y + x * z zdot = b * z + x * y return xdot, ydot, zdot class LuChen(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = a * (y - x) ydot = -x * z + c * y zdot = x * y - b * z return xdot, ydot, zdot class QiChen(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = a * (y - x) + y * z ydot = c * x + y - x * z zdot = x * y - b * z return xdot, ydot, zdot class ZhouChen(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c, d, e): xdot = a * x + b * y + y * z ydot = c * y - x * z + d * y * z zdot = e * z - x * y return xdot, ydot, zdot class BurkeShaw(DynSys): @staticjit def _rhs(x, y, z, t, e, n): xdot = -n * (x + y) ydot = y - n * x * z zdot = n * x * y + e return xdot, ydot, zdot class Chen(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = a * (y - x) ydot = (c - a) * x - x * z + c * y zdot = x * y - b * z return xdot, ydot, zdot class ChenLee(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c): xdot = a * x - y * z ydot = b * y + x * z zdot = c * z + x * y / 3 return xdot, ydot, zdot class WangSun(DynSys): @staticjit def _rhs(x, y, z, t, a, b, d, e, f, q): xdot = a * x + q * y * z ydot = b * x + d * y - x * z zdot = e * z + f * x * y return xdot, ydot, zdot class YuWang(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c, d): xdot = a * (y - x) ydot = b * x - c * x * z zdot = np.exp(x * y) - d * z return xdot, ydot, zdot class YuWang2(DynSys): @staticjit def _rhs(x, y, z, t, a, b, c, d): xdot = a * (y - x) ydot = b * x - c * x * z zdot = np.cosh(x * y) - d * z return xdot, ydot, zdot class SanUmSrisuchinwong(DynSys): @staticjit def _rhs(x, y, z, t, a): xdot = y - x ydot = -z * np.tanh(x) zdot = -a + x * y + np.abs(y) return xdot, ydot, zdot class DequanLi(DynSys): @staticjit def _rhs(x, y, z, t, a, c, d, eps, f, k): xdot = a * (y - x) + d * x * z ydot = k * x + f * y - x * z zdot = c * z + x * y - eps * x ** 2 return xdot, ydot, zdot class PanXuZhou(DequanLi): pass class Tsucs2(DequanLi): pass class ArnoldWeb(DynSys): @staticjit def _rhs(p1, p2, x1, x2, z, t, mu, w): denom = 4 +
np.cos(z)
numpy.cos
# Copyright 2019 The TensorNetwork Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from typing import List, Union, Tuple, Optional # pylint: disable=line-too-long from tensornetwork.contractors.custom_path_solvers.pathsolvers import full_solve_complete def ncon_solver(tensors: List[np.ndarray], labels: List[List[int]], max_branch: Optional[int] = None): """ Solve for the contraction order of a tensor network (encoded in the `ncon` syntax) that minimizes the computational cost. Args: tensors: list of the tensors in the network. labels: list of the tensor connections (in standard `ncon` format). max_branch: maximum number of contraction paths to search at each step. Returns: np.ndarray: the cheapest contraction order found (in ncon format). float: the cost of the network contraction, given as log10(total_FLOPS). bool: specifies if contraction order is guaranteed optimal. """ # build log-adjacency matrix log_adj = ncon_to_adj(tensors, labels) # run search algorithm order, costs, is_optimal = full_solve_complete(log_adj, max_branch=max_branch) # put contraction order back into ncon format con_order = ord_to_ncon(labels, order) return con_order, costs, is_optimal def ncon_to_adj(tensors: List[np.ndarray], labels: List[List[int]]): """ Create a log-adjacency matrix, where element [i,j] is the log10 of the total dimension of the indices connecting ith and jth tensors, for a network defined in the `ncon` syntax. Args: tensors: list of the tensors in the network. labels: list of the tensor connections (in standard `ncon` format). Returns: np.ndarray: the log-adjacency matrix. """ # process inputs N = len(labels) ranks = [len(labels[i]) for i in range(N)] flat_labels = np.hstack([labels[i] for i in range(N)]) tensor_counter = np.hstack( [i * np.ones(ranks[i], dtype=int) for i in range(N)]) index_counter = np.hstack([np.arange(ranks[i]) for i in range(N)]) # build log-adjacency index-by-index log_adj = np.zeros([N, N]) unique_labels = np.unique(flat_labels) for ele in unique_labels: # identify tensor/index location of each edge tnr = tensor_counter[flat_labels == ele] ind = index_counter[flat_labels == ele] if len(ind) == 1: # external index log_adj[tnr[0], tnr[0]] += np.log10(tensors[tnr[0]].shape[ind[0]]) elif len(ind) == 2: # internal index if tnr[0] != tnr[1]: # ignore partial traces log_adj[tnr[0], tnr[1]] += np.log10(tensors[tnr[0]].shape[ind[0]]) log_adj[tnr[1], tnr[0]] += np.log10(tensors[tnr[0]].shape[ind[0]]) return log_adj def ord_to_ncon(labels: List[List[int]], orders: np.ndarray): """ Produces a `ncon` compatible index contraction order from the sequence of pairwise contractions. Args: labels: list of the tensor connections (in standard `ncon` format). orders: array of dim (2,N-1) specifying the set of N-1 pairwise tensor contractions. Returns: np.ndarray: the contraction order (in `ncon` format). """ N = len(labels) orders = orders.reshape(2, N - 1) new_labels = [np.array(labels[i]) for i in range(N)] con_order = np.zeros([0], dtype=int) # remove all partial trace indices for counter, temp_label in enumerate(new_labels): uni_inds, counts = np.unique(temp_label, return_counts=True) tr_inds = uni_inds[np.flatnonzero(counts == 2)] con_order = np.concatenate((con_order, tr_inds)) new_labels[counter] = temp_label[np.isin(temp_label, uni_inds[counts == 1])] for i in range(N - 1): # find common indices between tensor pair cont_many, A_cont, B_cont = np.intersect1d( new_labels[orders[0, i]], new_labels[orders[1, i]], return_indices=True) temp_labels = np.append( np.delete(new_labels[orders[0, i]], A_cont), np.delete(new_labels[orders[1, i]], B_cont)) con_order = list(np.concatenate((con_order, cont_many), axis=0)) # build new set of labels new_labels[orders[0, i]] = temp_labels del new_labels[orders[1, i]] return con_order def ncon_cost_check(tensors: List[np.ndarray], labels: List[Union[List[int], Tuple[int]]], con_order: Optional[Union[List[int], str]] = None): """ Checks the computational cost of an `ncon` contraction (without actually doing the contraction). Ignore the cost contributions from partial traces (which are always sub-leading). Args: tensors: list of the tensors in the network. labels: length-N list of lists (or tuples) specifying the network connections. The jth entry of the ith list in labels labels the edge connected to the jth index of the ith tensor. Labels should be positive integers for internal indices and negative integers for free indices. con_order: optional argument to specify the order for contracting the positive indices. Defaults to ascending order if omitted. Returns: float: the cost of the network contraction, given as log10(total_FLOPS). """ total_cost = np.float('-inf') N = len(tensors) tensor_dims = [np.array(np.log10(ele.shape)) for ele in tensors] connect_list = [np.array(ele) for ele in labels] # generate contraction order if necessary flat_connect = np.concatenate(connect_list) if con_order is None: con_order = np.unique(flat_connect[flat_connect > 0]) else: con_order = np.array(con_order) # do all partial traces for counter, temp_connect in enumerate(connect_list): uni_inds, counts = np.unique(temp_connect, return_counts=True) tr_inds = np.isin(temp_connect, uni_inds[counts == 1]) tensor_dims[counter] = tensor_dims[counter][tr_inds] connect_list[counter] = temp_connect[tr_inds] con_order = con_order[np.logical_not( np.isin(con_order, uni_inds[counts == 2]))] # do all binary contractions while len(con_order) > 0: # identify tensors to be contracted cont_ind = con_order[0] locs = [ ele for ele in range(len(connect_list)) if sum(connect_list[ele] == cont_ind) > 0 ] # identify indices to be contracted c1 = connect_list.pop(locs[1]) c0 = connect_list.pop(locs[0]) cont_many, A_cont, B_cont = np.intersect1d( c0, c1, assume_unique=True, return_indices=True) # identify dimensions of contracted d1 = tensor_dims.pop(locs[1]) d0 = tensor_dims.pop(locs[0]) single_cost = np.sum(d0) + np.sum(d1) - np.sum(d0[A_cont]) total_cost = single_cost + np.log10(1 + 10**(total_cost - single_cost)) # update lists tensor_dims.append(np.append(np.delete(d0, A_cont),
np.delete(d1, B_cont)
numpy.delete
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' """ Common file to have methods of func manager (mainly smooth max and it derivative) in other repositories """ # pylint: disable=unsubscriptable-object import numpy as np from sos_trades_core.tools.base_functions.exp_min import compute_dfunc_with_exp_min, compute_func_with_exp_min import warnings def smooth_maximum(cst, alpha=3): """ Function """ max_exp = 650 # max value for exponent input, higher value gives infinity min_exp = -300 max_alphax = np.max(alpha * cst) k = max_alphax - max_exp # Deal with underflow . max with exp(-300) exp_func = np.maximum(min_exp, np.multiply(alpha, cst) - k) den = np.sum(np.exp(exp_func)) num = np.sum(cst * np.exp(exp_func)) if den != 0: result = num / den else: result = np.max(cst) print('Warning in smooth_maximum! den equals 0, hard max is used') return result def smooth_maximum_vect(cst, alpha=3): """ Vectorized version of smooth_maximum function """ cst_array = np.array(cst) max_exp = 650 # max value for exponent input, higher value gives infinity min_exp = -300 max_alphax = np.amax(alpha * cst_array, axis=1) k = max_alphax - max_exp # Deal with underflow . max with exp(-300) exp_func = np.maximum(min_exp, alpha * cst_array - np.repeat(k, cst_array.shape[1]).reshape(cst_array.shape)) den = np.sum(np.exp(exp_func), axis=1) num = np.sum(cst_array * np.exp(exp_func), axis=1) result = np.where(den != 0, num / den, np.amax(cst_array, axis=1)) if (den == 0).any(): print('Warning in smooth_maximum! den equals 0, hard max is used') return result def get_dsmooth_dvariable(cst, alpha=3): max_exp = 650.0 # max value for exponent input, higher value gives infinity min_exp = -300 alphaxcst = alpha * np.array(cst) max_alphax = np.max(alphaxcst) #index_max = alphaxcst.index(max_alphax) k = max_alphax - max_exp exp_func = np.maximum(min_exp, alpha * np.array(cst) - k) den = np.sum(np.exp(exp_func)) num = np.sum(np.array(cst) * np.exp(exp_func)) d_den = [] d_num = [] grad_value = [] for elem in cst: if alpha * elem == max_alphax: dden = np.sum([-alpha * np.exp(max(min_exp, alpha * elem_cst - k)) for elem_cst in cst if elem_cst * alpha != max_alphax]) # derivative of den wto cstmax is 0 dden = dden + 0.0 d_den.append(dden) dnum = np.sum([-alpha * elem_cst * np.exp(max(min_exp, alpha * elem_cst - k)) for elem_cst in cst if elem_cst * alpha != max_alphax]) dnum = dnum + 1.0 * np.exp(alpha * np.array(elem) - k) d_num.append(dnum) #grad_val_i = dnum / den - (num / den) * (dden / den) else: exp_func = max(min_exp, alpha * elem - k) dden = alpha * np.exp(exp_func) d_den.append(dden) dnum = elem * (alpha * np.exp(exp_func) ) + np.exp(exp_func) d_num.append(dnum) # add if den != 0 grad_val_i = dnum / den - (num / den) * (dden / den) grad_value.append(grad_val_i) return grad_value def get_dsmooth_dvariable_vect(cst, alpha=3): cst_array = np.array(cst) max_exp = 650.0 # max value for exponent input, higher value gives infinity min_exp = -300 alphaxcst = alpha * cst_array max_alphax = np.amax(alphaxcst, axis=1) k = max_alphax - max_exp exp_func = np.maximum(min_exp, alpha * cst_array - np.repeat(k, cst_array.shape[1]).reshape(cst_array.shape)) den = np.sum(np.exp(exp_func), axis=1) num = np.sum(cst_array * np.exp(exp_func), axis=1) # Vectorized calculation exp_func = np.maximum(min_exp, alpha * cst_array - np.repeat(k, cst_array.shape[1]).reshape(cst_array.shape)) dden = alpha * np.exp(exp_func) dnum = cst_array * (alpha * np.exp(exp_func) ) + np.exp(exp_func) grad_value = dnum / np.repeat(den, cst_array.shape[1]).reshape(cst_array.shape) - (np.repeat(num, cst_array.shape[1]).reshape( cst_array.shape) / np.repeat(den, cst_array.shape[1]).reshape(cst_array.shape)) * (dden / np.repeat(den, cst_array.shape[1]).reshape(cst_array.shape)) # Special case for max element max_elem = np.amax(cst_array * np.sign(alpha), axis=1) * np.sign(alpha) non_max_idx = np.array([cst_array[i] != max_elem[i] for i in np.arange(cst_array.shape[0])]).reshape(cst_array.shape[0], cst_array.shape[1]) dden_max = np.sum(-alpha * non_max_idx * np.exp(np.maximum(min_exp, alpha * cst_array - np.repeat(k, cst_array.shape[1]).reshape(cst_array.shape))), axis=1) dnum_max = np.sum(-alpha * cst_array * non_max_idx * np.exp(np.maximum(min_exp, alpha * cst_array - np.repeat(k, cst_array.shape[1]).reshape(cst_array.shape))), axis=1) # derivative of den wto cstmax is 0 dden_max = dden_max + 0.0 dnum_max = dnum_max + 1.0 * np.exp(alpha * max_elem - k) grad_val_max = dnum_max / den - (num / den) * (dden_max / den) for i in np.arange(cst_array.shape[0]): grad_value[i][np.logical_not(non_max_idx)[i]] = grad_val_max[i] return grad_value def soft_maximum_vect(cst, k=7e2): """ Soft maximum function to get the maximum between array of values while always remaining above or equal to the maximum and ensuring gradient continuity. The default value of k is intended for arrays scaled between [-1.0, 1.0], the formula will overflow if k*max(array)>=710. Quasi-arithmetic mean function. https://www.johndcook.com/blog/2010/01/13/soft-maximum/ https://www.johndcook.com/blog/2010/01/20/how-to-compute-the-soft-maximum/ """ cst_array = np.array(cst) cst_array_limited = np.sign(cst_array)*compute_func_with_exp_min(np.abs(cst_array), 1.0E-15/k) if 'complex' in str(cst_array.dtype): cst_array_limited += np.imag(cst_array)*1j if np.amax(abs(cst_array_limited))*k>709: raise ValueError('The absolute value of k*max(cst_array) is too high and would cause a floating point error') result = np.log(np.sum(np.exp(k*cst_array_limited), axis=1))/k return result def get_dsoft_maximum_vect(cst, k=7e2): """ Return derivative of soft maximum """ cst_array = np.array(cst) cst_array_limited = np.sign(cst_array)*compute_func_with_exp_min(
np.abs(cst_array)
numpy.abs
import numpy as np import sys entrada = sys.argv[1] try: arquivo = open(entrada,'r')#abre o arquivo except: print("Arquivo não encontrado!") exit(0) linhas = arquivo.readlines()#le as linhas do arquivo e coloca na variavel linha arquivo.close()#fecha o arquivo processos = []#vetor de processos ''' A entrada é composta por uma série números inteiros, um por linha, indicando, primeiro a quantidade de quadros disponíveis na memória RAM e, em seguida, a sequência de referências à memória. ''' ''' A saída é composta por linhas contendo a sigla de cada um dos três algoritmos e a quantidade de faltas de página obtidas com a utilização de cada um deles. ''' for i in linhas: processos.append(int(i.replace("\n",""))) quantMaxMoldura = processos[0]#qauntidade máxima de processos na moldura del(processos[0]) def segundaChance(passoApasso = False): '''Considere que o bit R de todas as páginas é zerada a cada 4(quatro) referências à memória.''' moldura = []#lista de moldura contém o processo e o bit de referencia filaMolduraEnvelhecimento = []#possui a fila do processo mais velho p o mais novo, referente aos processos que estao na moldura numFaltas = 0 #numero de falta é incrementado cada vez que um processo entra na moldura for indice,processo in enumerate(processos): if (indice%4 == 0 and indice != 0): #se tiver sido 4 referencias a memória entao coloca o bit R de cada processo da moldura para False for k in moldura: k[1] = False if (passoApasso): print("Bit R dos processos na moldura foram resetados!\n") if len(moldura) < quantMaxMoldura:#se a moldura tiver com vaga so add o processo try:#verifica se o processo já foi adiconado na moldura, se tiver sido, nao faz nada list(np.array(moldura)[:,0]).index(processo) except (ValueError , IndexError):#se nao tiver sido adiocionado a moldura entao adiociona moldura.append([processo,True])#salva o processo, o bit de referencia e o tempo virtual atual numFaltas+=1 filaMolduraEnvelhecimento.append(processo) else: try:#ve se o processo está na com o status de bit R False coloca para true moldura[moldura.index([processo,False])][1] = True except ValueError:#se entrar aqui é pq o processo não está false ou nao está na moldura try: moldura.index([processo,True])#verifica se tem o processo com bit R True, se tiver nao faz nada except:#se entrar aqui é pq o processo não está na moldura, algum tem que sair para este entrar, o processo que sai é o mais velho com bit de referencia 0 numFaltas+=1 for indice, i in enumerate(filaMolduraEnvelhecimento): if moldura[list(np.array(moldura)[:,0]).index(i)][1] == False:#ve qual processo na moldura que precisa ser substituido indiceSubstituicao = list(np.array(moldura)[:,0]).index(i)#pega o indice, na matriz moldura, do processo que deve ser substituido moldura[indiceSubstituicao][0] = processo #coloca o novo processo na moldura moldura[indiceSubstituicao][1] = True #seta o bit R para True filaMolduraEnvelhecimento+=filaMolduraEnvelhecimento[:indice]#coloca os processos que n foram substiuidos para o final da fila filaMolduraEnvelhecimento+=[processo]#add no final da fila no processo que entrou del(filaMolduraEnvelhecimento[:(indice+1)])#retira os processos que foram para o final da fila do começo da fila e retira o processo que foi tirado da moldura break if (passoApasso): for i in moldura: print(i) print("Processo",processo,"chegou!") print("Numero de faltas:",numFaltas) print("Fila atual:",filaMolduraEnvelhecimento,"\n") return numFaltas def otimo(passoApasso = False): moldura = []#lista de moldura contém o processo e o bit de referencia numFaltas = 0 #numero de falta é incrementado cada vez que um processo entra na moldura for indice,processo in enumerate(processos): if len(moldura) < quantMaxMoldura:#se a moldura tiver com vaga so add a pagina e o OT de cada uma é vazio = None try:#verifica se o processo já foi adiconado na moldura list(np.array(moldura)[:,0]).index(processo) except (ValueError , IndexError): moldura.append([processo,-1])#salva o processo e o OT vazios, -1 foi adotado para valor vazio numFaltas+=1 else: try: list(np.array(moldura)[:,0]).index(processo)#confere se a pagina já tá na moldura, se tiver nao faz nada, só reseta a moldura for i in moldura: i[1] = -1 except ValueError:#se nao estiver ver qual é a pagina q deve ser substituida da moldura, a pagina a ser substituidade é aquela que tiver o maior valor de distancia numFaltas+=1 for k in range(len(moldura)):#percorre as paginas da moldura indiceSubstituicao = list(np.array(moldura)[:,0]).index(moldura[k][0])#pega o indice, na matriz moldura, do processo que deve ser substituido try:#se entrar aqui é porque achou a pagina em algum lugar mais a frente indiceOP = processos[(indice+1):].index(moldura[k][0]) + 1 moldura[indiceSubstituicao][1] = indiceOP #seta o valor correspondente ao OP except ValueError:# se der erro é porque o processo nao se encontra a frente, logo atribui o valor infinito para ele indiceOP = float('inf') #inf significa valor infinito(numero muito grande) moldura[indiceSubstituicao][1] = indiceOP #seta o valor correspondente ao OP maiorDaMoldura = max(list(np.array(moldura)[:,1]))#pega o que tem maior valor na moldura indiceMaiorDaMoldura = list(np.array(moldura)[:,1]).index(maiorDaMoldura)#indice do que tem o maior valor na moldura moldura[indiceMaiorDaMoldura][0] = processo #subistui o processo no primeiro que encontrar que tiver maior valor moldura[indiceMaiorDaMoldura][1] = -1 #valor nulo para esse novo valor que entrar if (passoApasso): for i in moldura: print(i) print("Processo",processo,"chegou!") print("Numero de faltas:",numFaltas,"\n") return numFaltas def conjuntoDeTrabalho(passoApasso = False): moldura = []#[PROCESSO, BIT R, ULTIMO USO] numFaltas = 0 limiar = quantMaxMoldura/2 + 1 for indice,processo in enumerate(processos): if (indice%4 == 0 and indice != 0): #se tiver sido 4 referencias a memória entao coloca o bit R de cada processo da moldura para False for k in moldura: k[1] = False if (passoApasso): print("Bit R dos processos na moldura foram resetados!\n") if len(moldura) < quantMaxMoldura :#se a moldura tiver com vaga so add o processo try:#verifica se o processo já foi adicionado, se tiver sido, nao faz nada indiceNaMoldura = list(
np.array(moldura)
numpy.array
# Copyright (c) 2003-2019 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy as np import os import coord import time import treecorr from test_helper import get_from_wiki, get_script_name, do_pickle, CaptureLog from test_helper import assert_raises, timer, assert_warns from numpy import sin, cos, tan, arcsin, arccos, arctan, arctan2, pi @timer def test_direct(): # If the catalogs are small enough, we can do a direct calculation to see if comes out right. # This should exactly match the treecorr result if brute_force=True ngal = 200 s = 10. rng = np.random.RandomState(8675309) x1 = rng.normal(0,s, (ngal,) ) y1 = rng.normal(0,s, (ngal,) ) w1 = rng.random_sample(ngal) g11 = rng.normal(0,0.2, (ngal,) ) g21 = rng.normal(0,0.2, (ngal,) ) x2 = rng.normal(0,s, (ngal,) ) y2 = rng.normal(0,s, (ngal,) ) w2 = rng.random_sample(ngal) g12 = rng.normal(0,0.2, (ngal,) ) g22 = rng.normal(0,0.2, (ngal,) ) cat1 = treecorr.Catalog(x=x1, y=y1, w=w1, g1=g11, g2=g21) cat2 = treecorr.Catalog(x=x2, y=y2, w=w2, g1=g12, g2=g22) min_sep = 1. max_sep = 50. nbins = 50 bin_size = np.log(max_sep/min_sep) / nbins gg = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, brute=True) gg.process(cat1, cat2) true_npairs = np.zeros(nbins, dtype=int) true_weight = np.zeros(nbins, dtype=float) true_xip = np.zeros(nbins, dtype=complex) true_xim = np.zeros(nbins, dtype=complex) for i in range(ngal): # It's hard to do all the pairs at once with numpy operations (although maybe possible). # But we can at least do all the pairs for each entry in cat1 at once with arrays. rsq = (x1[i]-x2)**2 + (y1[i]-y2)**2 r = np.sqrt(rsq) logr = np.log(r) expmialpha = ((x1[i]-x2) - 1j*(y1[i]-y2)) / r ww = w1[i] * w2 xip = ww * (g11[i] + 1j*g21[i]) * (g12 - 1j*g22) xim = ww * (g11[i] + 1j*g21[i]) * (g12 + 1j*g22) * expmialpha**4 index = np.floor(np.log(r/min_sep) / bin_size).astype(int) mask = (index >= 0) & (index < nbins) np.add.at(true_npairs, index[mask], 1) np.add.at(true_weight, index[mask], ww[mask]) np.add.at(true_xip, index[mask], xip[mask]) np.add.at(true_xim, index[mask], xim[mask]) true_xip /= true_weight true_xim /= true_weight print('true_npairs = ',true_npairs) print('diff = ',gg.npairs - true_npairs) np.testing.assert_array_equal(gg.npairs, true_npairs) print('true_weight = ',true_weight) print('diff = ',gg.weight - true_weight) np.testing.assert_allclose(gg.weight, true_weight, rtol=1.e-5, atol=1.e-8) print('true_xip = ',true_xip) print('gg.xip = ',gg.xip) print('gg.xip_im = ',gg.xip_im) np.testing.assert_allclose(gg.xip, true_xip.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xip_im, true_xip.imag, rtol=1.e-4, atol=1.e-8) print('true_xim = ',true_xim) print('gg.xim = ',gg.xim) print('gg.xim_im = ',gg.xim_im) np.testing.assert_allclose(gg.xim, true_xim.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xim_im, true_xim.imag, rtol=1.e-4, atol=1.e-8) try: import fitsio except ImportError: print('Skipping FITS tests, since fitsio is not installed') return # Check that running via the corr2 script works correctly. config = treecorr.config.read_config('configs/gg_direct.yaml') cat1.write(config['file_name']) cat2.write(config['file_name2']) treecorr.corr2(config) data = fitsio.read(config['gg_file_name']) np.testing.assert_allclose(data['r_nom'], gg.rnom) np.testing.assert_allclose(data['npairs'], gg.npairs) np.testing.assert_allclose(data['weight'], gg.weight) np.testing.assert_allclose(data['xip'], gg.xip, rtol=1.e-3) np.testing.assert_allclose(data['xip_im'], gg.xip_im, rtol=1.e-3) np.testing.assert_allclose(data['xim'], gg.xim, rtol=1.e-3) np.testing.assert_allclose(data['xim_im'], gg.xim_im, rtol=1.e-3) # Repeat with binslop = 0. # And don't do any top-level recursion so we actually test not going to the leaves. gg = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, bin_slop=0, max_top=0) gg.process(cat1, cat2) np.testing.assert_array_equal(gg.npairs, true_npairs) np.testing.assert_allclose(gg.weight, true_weight, rtol=1.e-5, atol=1.e-8) np.testing.assert_allclose(gg.xip, true_xip.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xip_im, true_xip.imag, rtol=1.e-4, atol=1.e-8) print('true_xim = ',true_xim) print('gg.xim = ',gg.xim) print('gg.xim_im = ',gg.xim_im) print('diff = ',gg.xim - true_xim.real) print('max diff = ',np.max(np.abs(gg.xim - true_xim.real))) print('rel diff = ',(gg.xim - true_xim.real)/true_xim.real) # This is the one that is highly affected by the approximation from averaging the shears # before projecting, rather than averaging each shear projected to its own connecting line. np.testing.assert_allclose(gg.xim, true_xim.real, rtol=1.e-3, atol=3.e-4) np.testing.assert_allclose(gg.xim_im, true_xim.imag, atol=1.e-3) # Check a few basic operations with a GGCorrelation object. do_pickle(gg) gg2 = gg.copy() gg2 += gg np.testing.assert_allclose(gg2.npairs, 2*gg.npairs) np.testing.assert_allclose(gg2.weight, 2*gg.weight) np.testing.assert_allclose(gg2.meanr, 2*gg.meanr) np.testing.assert_allclose(gg2.meanlogr, 2*gg.meanlogr) np.testing.assert_allclose(gg2.xip, 2*gg.xip) np.testing.assert_allclose(gg2.xip_im, 2*gg.xip_im) np.testing.assert_allclose(gg2.xim, 2*gg.xim) np.testing.assert_allclose(gg2.xim_im, 2*gg.xim_im) gg2.clear() gg2 += gg np.testing.assert_allclose(gg2.npairs, gg.npairs) np.testing.assert_allclose(gg2.weight, gg.weight) np.testing.assert_allclose(gg2.meanr, gg.meanr) np.testing.assert_allclose(gg2.meanlogr, gg.meanlogr) np.testing.assert_allclose(gg2.xip, gg.xip) np.testing.assert_allclose(gg2.xip_im, gg.xip_im) np.testing.assert_allclose(gg2.xim, gg.xim) np.testing.assert_allclose(gg2.xim_im, gg.xim_im) ascii_name = 'output/gg_ascii.txt' gg.write(ascii_name, precision=16) gg3 = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins) gg3.read(ascii_name) np.testing.assert_allclose(gg3.npairs, gg.npairs) np.testing.assert_allclose(gg3.weight, gg.weight) np.testing.assert_allclose(gg3.meanr, gg.meanr) np.testing.assert_allclose(gg3.meanlogr, gg.meanlogr) np.testing.assert_allclose(gg3.xip, gg.xip) np.testing.assert_allclose(gg3.xip_im, gg.xip_im) np.testing.assert_allclose(gg3.xim, gg.xim) np.testing.assert_allclose(gg3.xim_im, gg.xim_im) fits_name = 'output/gg_fits.fits' gg.write(fits_name) gg4 = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins) gg4.read(fits_name) np.testing.assert_allclose(gg4.npairs, gg.npairs) np.testing.assert_allclose(gg4.weight, gg.weight) np.testing.assert_allclose(gg4.meanr, gg.meanr) np.testing.assert_allclose(gg4.meanlogr, gg.meanlogr) np.testing.assert_allclose(gg4.xip, gg.xip) np.testing.assert_allclose(gg4.xip_im, gg.xip_im) np.testing.assert_allclose(gg4.xim, gg.xim) np.testing.assert_allclose(gg4.xim_im, gg.xim_im) with assert_raises(TypeError): gg2 += config gg4 = treecorr.GGCorrelation(min_sep=min_sep/2, max_sep=max_sep, nbins=nbins) with assert_raises(ValueError): gg2 += gg4 gg5 = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep*2, nbins=nbins) with assert_raises(ValueError): gg2 += gg5 gg6 = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins*2) with assert_raises(ValueError): gg2 += gg6 @timer def test_direct_spherical(): # Repeat in spherical coords ngal = 100 s = 10. rng = np.random.RandomState(8675309) x1 = rng.normal(0,s, (ngal,) ) y1 = rng.normal(0,s, (ngal,) ) + 200 # Put everything at large y, so small angle on sky z1 = rng.normal(0,s, (ngal,) ) w1 = rng.random_sample(ngal) g11 = rng.normal(0,0.2, (ngal,) ) g21 = rng.normal(0,0.2, (ngal,) ) x2 = rng.normal(0,s, (ngal,) ) y2 = rng.normal(0,s, (ngal,) ) + 200 z2 = rng.normal(0,s, (ngal,) ) w2 = rng.random_sample(ngal) g12 = rng.normal(0,0.2, (ngal,) ) g22 = rng.normal(0,0.2, (ngal,) ) ra1, dec1 = coord.CelestialCoord.xyz_to_radec(x1,y1,z1) ra2, dec2 = coord.CelestialCoord.xyz_to_radec(x2,y2,z2) cat1 = treecorr.Catalog(ra=ra1, dec=dec1, ra_units='rad', dec_units='rad', w=w1, g1=g11, g2=g21) cat2 = treecorr.Catalog(ra=ra2, dec=dec2, ra_units='rad', dec_units='rad', w=w2, g1=g12, g2=g22) min_sep = 1. max_sep = 10. nbins = 50 bin_size = np.log(max_sep/min_sep) / nbins gg = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, sep_units='deg', brute=True) gg.process(cat1, cat2) r1 = np.sqrt(x1**2 + y1**2 + z1**2) r2 = np.sqrt(x2**2 + y2**2 + z2**2) x1 /= r1; y1 /= r1; z1 /= r1 x2 /= r2; y2 /= r2; z2 /= r2 north_pole = coord.CelestialCoord(0*coord.radians, 90*coord.degrees) true_npairs = np.zeros(nbins, dtype=int) true_weight = np.zeros(nbins, dtype=float) true_xip = np.zeros(nbins, dtype=complex) true_xim = np.zeros(nbins, dtype=complex) rad_min_sep = min_sep * coord.degrees / coord.radians c1 = [coord.CelestialCoord(r*coord.radians, d*coord.radians) for (r,d) in zip(ra1, dec1)] c2 = [coord.CelestialCoord(r*coord.radians, d*coord.radians) for (r,d) in zip(ra2, dec2)] for i in range(ngal): for j in range(ngal): rsq = (x1[i]-x2[j])**2 + (y1[i]-y2[j])**2 + (z1[i]-z2[j])**2 r = np.sqrt(rsq) logr = np.log(r) index = np.floor(np.log(r/rad_min_sep) / bin_size).astype(int) if index < 0 or index >= nbins: continue # Rotate shears to coordinates where line connecting is horizontal. # Original orientation is where north is up. theta1 = 90*coord.degrees - c1[i].angleBetween(north_pole, c2[j]) theta2 = 90*coord.degrees - c2[j].angleBetween(north_pole, c1[i]) exp2theta1 = np.cos(2*theta1) + 1j * np.sin(2*theta1) exp2theta2 = np.cos(2*theta2) + 1j * np.sin(2*theta2) g1 = g11[i] + 1j * g21[i] g2 = g12[j] + 1j * g22[j] g1 *= exp2theta1 g2 *= exp2theta2 ww = w1[i] * w2[j] xip = ww * g1 * np.conjugate(g2) xim = ww * g1 * g2 true_npairs[index] += 1 true_weight[index] += ww true_xip[index] += xip true_xim[index] += xim true_xip /= true_weight true_xim /= true_weight print('true_npairs = ',true_npairs) print('diff = ',gg.npairs - true_npairs) np.testing.assert_array_equal(gg.npairs, true_npairs) print('true_weight = ',true_weight) print('diff = ',gg.weight - true_weight) np.testing.assert_allclose(gg.weight, true_weight, rtol=1.e-5, atol=1.e-8) print('true_xip = ',true_xip) print('gg.xip = ',gg.xip) print('gg.xip_im = ',gg.xip_im) np.testing.assert_allclose(gg.xip, true_xip.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xip_im, true_xip.imag, rtol=1.e-4, atol=1.e-8) print('true_xim = ',true_xim) print('gg.xim = ',gg.xim) print('gg.xim_im = ',gg.xim_im) np.testing.assert_allclose(gg.xim, true_xim.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xim_im, true_xim.imag, rtol=1.e-4, atol=1.e-8) try: import fitsio except ImportError: print('Skipping FITS tests, since fitsio is not installed') return # Check that running via the corr2 script works correctly. config = treecorr.config.read_config('configs/gg_direct_spherical.yaml') cat1.write(config['file_name']) cat2.write(config['file_name2']) treecorr.corr2(config) data = fitsio.read(config['gg_file_name']) np.testing.assert_allclose(data['r_nom'], gg.rnom) np.testing.assert_allclose(data['npairs'], gg.npairs) np.testing.assert_allclose(data['weight'], gg.weight) np.testing.assert_allclose(data['xip'], gg.xip, rtol=1.e-3) np.testing.assert_allclose(data['xip_im'], gg.xip_im, rtol=1.e-3) np.testing.assert_allclose(data['xim'], gg.xim, rtol=1.e-3) np.testing.assert_allclose(data['xim_im'], gg.xim_im, rtol=1.e-3) # Repeat with binslop = 0 # And don't do any top-level recursion so we actually test not going to the leaves. gg = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, sep_units='deg', bin_slop=0, max_top=0) gg.process(cat1, cat2) np.testing.assert_array_equal(gg.npairs, true_npairs) np.testing.assert_allclose(gg.weight, true_weight, rtol=1.e-5, atol=1.e-8) np.testing.assert_allclose(gg.xip, true_xip.real, rtol=1.e-3, atol=1.e-6) np.testing.assert_allclose(gg.xip_im, true_xip.imag, rtol=1.e-3, atol=1.e-6) diff = np.abs(gg.xim - true_xim.real) reldiff = diff / true_xim.real np.testing.assert_allclose(gg.xim, true_xim.real, rtol=1.e-3, atol=2.e-4) np.testing.assert_allclose(gg.xim_im, true_xim.imag, rtol=1.e-3, atol=2.e-4) @timer def test_pairwise(): # Test the pairwise option. ngal = 1000 s = 10. rng = np.random.RandomState(8675309) x1 = rng.normal(0,s, (ngal,) ) y1 = rng.normal(0,s, (ngal,) ) w1 = rng.random_sample(ngal) g11 = rng.normal(0,0.2, (ngal,) ) g21 = rng.normal(0,0.2, (ngal,) ) x2 = rng.normal(0,s, (ngal,) ) y2 = rng.normal(0,s, (ngal,) ) w2 = rng.random_sample(ngal) g12 = rng.normal(0,0.2, (ngal,) ) g22 = rng.normal(0,0.2, (ngal,) ) w1 = np.ones_like(w1) w2 = np.ones_like(w2) cat1 = treecorr.Catalog(x=x1, y=y1, w=w1, g1=g11, g2=g21) cat2 = treecorr.Catalog(x=x2, y=y2, w=w2, g1=g12, g2=g22) min_sep = 5. max_sep = 50. nbins = 10 bin_size = np.log(max_sep/min_sep) / nbins gg = treecorr.GGCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins) with assert_warns(FutureWarning): gg.process_pairwise(cat1, cat2) gg.finalize(cat1.varg, cat2.varg) true_npairs = np.zeros(nbins, dtype=int) true_weight = np.zeros(nbins, dtype=float) true_xip = np.zeros(nbins, dtype=complex) true_xim = np.zeros(nbins, dtype=complex) rsq = (x1-x2)**2 + (y1-y2)**2 r = np.sqrt(rsq) logr = np.log(r) expmialpha = ((x1-x2) - 1j*(y1-y2)) / r ww = w1 * w2 xip = ww * (g11 + 1j*g21) * (g12 - 1j*g22) xim = ww * (g11 + 1j*g21) * (g12 + 1j*g22) * expmialpha**4 index = np.floor(np.log(r/min_sep) / bin_size).astype(int) mask = (index >= 0) & (index < nbins) np.add.at(true_npairs, index[mask], 1) np.add.at(true_weight, index[mask], ww[mask]) np.add.at(true_xip, index[mask], xip[mask]) np.add.at(true_xim, index[mask], xim[mask]) true_xip /= true_weight true_xim /= true_weight np.testing.assert_array_equal(gg.npairs, true_npairs) np.testing.assert_allclose(gg.weight, true_weight, rtol=1.e-5, atol=1.e-8) np.testing.assert_allclose(gg.xip, true_xip.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xip_im, true_xip.imag, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xim, true_xim.real, rtol=1.e-4, atol=1.e-8) np.testing.assert_allclose(gg.xim_im, true_xim.imag, rtol=1.e-4, atol=1.e-8) # If cats have names, then the logger will mention them. # Also, test running with optional args. cat1.name = "first" cat2.name = "second" with CaptureLog() as cl: gg.logger = cl.logger with assert_warns(FutureWarning): gg.process_pairwise(cat1, cat2, metric='Euclidean', num_threads=2) assert "for cats first, second" in cl.output @timer def test_gg(): # cf. http://adsabs.harvard.edu/abs/2002A%26A...389..729S for the basic formulae I use here. # # Use gamma_t(r) = gamma0 r^2/r0^2 exp(-r^2/2r0^2) # i.e. gamma(r) = -gamma0 exp(-r^2/2r0^2) (x+iy)^2 / r0^2 # # The Fourier transform is: gamma~(k) = -2 pi gamma0 r0^4 k^2 exp(-r0^2 k^2/2) / L^2 # P(k) = (1/2pi) <|gamma~(k)|^2> = 2 pi gamma0^2 r0^8 k^4 / L^4 exp(-r0^2 k^2) # xi+(r) = (1/2pi) int( dk k P(k) J0(kr) ) # = pi/16 gamma0^2 (r0/L)^2 exp(-r^2/4r0^2) (r^4 - 16r^2r0^2 + 32r0^4)/r0^4 # xi-(r) = (1/2pi) int( dk k P(k) J4(kr) ) # = pi/16 gamma0^2 (r0/L)^2 exp(-r^2/4r0^2) r^4/r0^4 # Note: I'm not sure I handled the L factors correctly, but the units at the end need # to be gamma^2, so it needs to be (r0/L)^2. gamma0 = 0.05 r0 = 10. if __name__ == "__main__": ngal = 1000000 L = 50.*r0 # Not infinity, so this introduces some error. Our integrals were to infinity. tol_factor = 1 else: ngal = 100000 L = 50.*r0 # Rather than have a single set tolerance, we tune the tolerances for the above # __main__ setup, but scale up by a factor of 5 for the quicker run. tol_factor = 5 rng = np.random.RandomState(8675309) x = (rng.random_sample(ngal)-0.5) * L y = (rng.random_sample(ngal)-0.5) * L r2 = (x**2 + y**2)/r0**2 g1 = -gamma0 * np.exp(-r2/2.) * (x**2-y**2)/r0**2 g2 = -gamma0 * np.exp(-r2/2.) * (2.*x*y)/r0**2 cat = treecorr.Catalog(x=x, y=y, g1=g1, g2=g2, x_units='arcmin', y_units='arcmin') gg = treecorr.GGCorrelation(bin_size=0.1, min_sep=1., max_sep=100., sep_units='arcmin', verbose=1) gg.process(cat) # log(<R>) != <logR>, but it should be close: print('meanlogr - log(meanr) = ',gg.meanlogr - np.log(gg.meanr)) np.testing.assert_allclose(gg.meanlogr, np.log(gg.meanr), atol=1.e-3) r = gg.meanr temp = np.pi/16. * gamma0**2 * (r0/L)**2 * np.exp(-0.25*r**2/r0**2) true_xip = temp * (r**4 - 16.*r**2*r0**2 + 32.*r0**4)/r0**4 true_xim = temp * r**4/r0**4 print('gg.xip = ',gg.xip) print('true_xip = ',true_xip) print('ratio = ',gg.xip / true_xip) print('diff = ',gg.xip - true_xip) print('max diff = ',max(abs(gg.xip - true_xip))) # It's within 10% everywhere except at the zero crossings. np.testing.assert_allclose(gg.xip, true_xip, rtol=0.1 * tol_factor, atol=1.e-7 * tol_factor) print('xip_im = ',gg.xip_im) np.testing.assert_allclose(gg.xip_im, 0, atol=2.e-7 * tol_factor) print('gg.xim = ',gg.xim) print('true_xim = ',true_xim) print('ratio = ',gg.xim / true_xim) print('diff = ',gg.xim - true_xim) print('max diff = ',max(abs(gg.xim - true_xim))) np.testing.assert_allclose(gg.xim, true_xim, rtol=0.1 * tol_factor, atol=2.e-7 * tol_factor) print('xim_im = ',gg.xim_im) np.testing.assert_allclose(gg.xim_im, 0, atol=1.e-7 * tol_factor) # Should also work as a cross-correlation with itself gg.process(cat,cat) np.testing.assert_allclose(gg.meanlogr, np.log(gg.meanr), atol=1.e-3) assert max(abs(gg.xip - true_xip)) < 3.e-7 * tol_factor assert max(abs(gg.xip_im)) < 2.e-7 * tol_factor assert max(abs(gg.xim - true_xim)) < 3.e-7 * tol_factor assert max(abs(gg.xim_im)) < 1.e-7 * tol_factor # We check the accuracy of the MapSq calculation below in test_mapsq. # Here we just check that it runs, round trips correctly through an output file, # and gives the same answer when run through corr2. mapsq, mapsq_im, mxsq, mxsq_im, varmapsq = gg.calculateMapSq() print('mapsq = ',mapsq) print('mxsq = ',mxsq) mapsq_file = 'output/gg_m2.txt' gg.writeMapSq(mapsq_file, precision=16) data = np.genfromtxt(os.path.join('output','gg_m2.txt'), names=True) np.testing.assert_allclose(data['Mapsq'], mapsq) np.testing.assert_allclose(data['Mxsq'], mxsq) # Check that we get the same result using the corr2 function: cat.write(os.path.join('data','gg.dat')) config = treecorr.read_config('configs/gg.yaml') config['verbose'] = 0 config['precision'] = 8 treecorr.corr2(config) corr2_output = np.genfromtxt(os.path.join('output','gg.out'), names=True, skip_header=1) print('gg.xip = ',gg.xip) print('from corr2 output = ',corr2_output['xip']) print('ratio = ',corr2_output['xip']/gg.xip) print('diff = ',corr2_output['xip']-gg.xip) np.testing.assert_allclose(corr2_output['xip'], gg.xip, rtol=1.e-4) print('gg.xim = ',gg.xim) print('from corr2 output = ',corr2_output['xim']) print('ratio = ',corr2_output['xim']/gg.xim) print('diff = ',corr2_output['xim']-gg.xim) np.testing.assert_allclose(corr2_output['xim'], gg.xim, rtol=1.e-4) print('xip_im from corr2 output = ',corr2_output['xip_im']) print('max err = ',max(abs(corr2_output['xip_im']))) np.testing.assert_allclose(corr2_output['xip_im'], 0, atol=2.e-7 * tol_factor) print('xim_im from corr2 output = ',corr2_output['xim_im']) print('max err = ',max(abs(corr2_output['xim_im']))) np.testing.assert_allclose(corr2_output['xim_im'], 0, atol=2.e-7 * tol_factor) # Check m2 output corr2_output2 = np.genfromtxt(os.path.join('output','gg_m2.out'), names=True) print('mapsq = ',mapsq) print('from corr2 output = ',corr2_output2['Mapsq']) print('ratio = ',corr2_output2['Mapsq']/mapsq) print('diff = ',corr2_output2['Mapsq']-mapsq) np.testing.assert_allclose(corr2_output2['Mapsq'], mapsq, rtol=1.e-4) print('mxsq = ',mxsq) print('from corr2 output = ',corr2_output2['Mxsq']) print('ratio = ',corr2_output2['Mxsq']/mxsq) print('diff = ',corr2_output2['Mxsq']-mxsq) np.testing.assert_allclose(corr2_output2['Mxsq'], mxsq, rtol=1.e-4) # OK to have m2 output, but not gg del config['gg_file_name'] treecorr.corr2(config) corr2_output2 = np.genfromtxt(os.path.join('output','gg_m2.out'), names=True) np.testing.assert_allclose(corr2_output2['Mapsq'], mapsq, rtol=1.e-4) np.testing.assert_allclose(corr2_output2['Mxsq'], mxsq, rtol=1.e-4) try: import fitsio except ImportError: print('Skipping FITS tests, since fitsio is not installed') return # Check the fits write option out_file_name = os.path.join('output','gg_out.fits') gg.write(out_file_name) data = fitsio.read(out_file_name) np.testing.assert_allclose(data['r_nom'], np.exp(gg.logr)) np.testing.assert_allclose(data['meanr'], gg.meanr) np.testing.assert_allclose(data['meanlogr'], gg.meanlogr) np.testing.assert_allclose(data['xip'], gg.xip) np.testing.assert_allclose(data['xim'], gg.xim) np.testing.assert_allclose(data['xip_im'], gg.xip_im) np.testing.assert_allclose(data['xim_im'], gg.xim_im) np.testing.assert_allclose(data['sigma_xip'], np.sqrt(gg.varxip)) np.testing.assert_allclose(data['sigma_xim'], np.sqrt(gg.varxim)) np.testing.assert_allclose(data['weight'], gg.weight) np.testing.assert_allclose(data['npairs'], gg.npairs) # Check the read function gg2 = treecorr.GGCorrelation(bin_size=0.1, min_sep=1., max_sep=100., sep_units='arcmin') gg2.read(out_file_name) np.testing.assert_allclose(gg2.logr, gg.logr) np.testing.assert_allclose(gg2.meanr, gg.meanr) np.testing.assert_allclose(gg2.meanlogr, gg.meanlogr) np.testing.assert_allclose(gg2.xip, gg.xip) np.testing.assert_allclose(gg2.xim, gg.xim) np.testing.assert_allclose(gg2.xip_im, gg.xip_im) np.testing.assert_allclose(gg2.xim_im, gg.xim_im) np.testing.assert_allclose(gg2.varxip, gg.varxip) np.testing.assert_allclose(gg2.varxim, gg.varxim) np.testing.assert_allclose(gg2.weight, gg.weight) np.testing.assert_allclose(gg2.npairs, gg.npairs) assert gg2.coords == gg.coords assert gg2.metric == gg.metric assert gg2.sep_units == gg.sep_units assert gg2.bin_type == gg.bin_type # Also check the Schneider version. mapsq, mapsq_im, mxsq, mxsq_im, varmapsq = gg.calculateMapSq(m2_uform='Schneider') print('Schneider mapsq = ',mapsq) print('mxsq = ',mxsq) print('max = ',max(abs(mxsq))) # And GamSq. gamsq, vargamsq = gg.calculateGamSq() print('gamsq = ',gamsq) gamsq, vargamsq, gamsq_e, gamsq_b, vargamsq_eb = gg.calculateGamSq(eb=True) print('gamsq_e = ',gamsq_e) print('gamsq_b = ',gamsq_b) # The Gamsq columns were already output in the above m2_output run of corr2. np.testing.assert_allclose(corr2_output2['Gamsq'], gamsq, rtol=1.e-4) @timer def test_mapsq(): # Use the same gamma(r) as in test_gg. # This time, rather than use a smaller catalog in the nosetests run, we skip the run # in that case and just read in the output file. This way we can test the Map^2 formulae # on the more precise output. # When running from the command line, the output file is made from scratch. gamma0 = 0.05 r0 = 10. L = 50.*r0 cat_name = os.path.join('data','gg_map.dat') out_name = os.path.join('data','gg_map.out') gg = treecorr.GGCorrelation(bin_size=0.1, min_sep=1, nbins=47, sep_units='arcmin', verbose=1) if __name__ == "__main__": ngal = 1000000 rng =
np.random.RandomState(8675309)
numpy.random.RandomState
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np from pyapprox.multivariate_polynomials import PolynomialChaosExpansion from pyapprox.utilities import evaluate_tensor_product_function,\ gradient_of_tensor_product_function def get_quadrature_weights_from_samples(compute_basis_matrix,indices,samples): """ Get the quadrature weights from a set of samples. The number os samples must equal the number of terms in the polynomial basis. Parameters ---------- compute_basis_matrix : callable compute_basis_matrix(samples,indices) Function used to construct the basis matrix eavluate at samples. indices : np.ndarray (num_vars, num_indices) The mutivariate indices definining the polynomial basis samples : np.ndarray (num_vars, num_samples) The samples for which quadrature weights are desired. Return ------ weights : np.ndarray (num_samples) The quadrature weights. """ assert samples.shape[1]==indices.shape[1] basis_matrix = compute_basis_matrix(indices,samples) basis_matrix_inv = np.linalg.inv(basis_matrix) weights = basis_matrix_inv[0,:] return weights def leja_objective_and_gradient(samples, leja_sequence, poly, new_indices, coeff, weight_function, weight_function_deriv, deriv_order=0): """ Evaluate the Leja objective at a set of samples. Parameters ---------- samples : np.ndarray (num_vars, num_samples) The sample at which to evaluate the leja_objective leja_sequence : np.ndarray (num_vars, num_leja_samples) The sample already in the Leja sequence deriv_order : integer Flag specifiying whether to compute gradients of the objective new_indices : np.ndarray (num_vars, num_new_indices) The new indices that are considered when choosing next sample in the Leja sequence coeff : np.ndarray (num_indices, num_new_indices) The coefficient of the approximation that interpolates the polynomial terms specified by new_indices Return ------ residuals : np.ndarray(num_new_indices,num_samples): objective_vals : np.ndarray (num_samples) The values of the objective at samples objective_grads : np.ndarray (num_vars,num_samples) The gradient of the objective at samples. Return only if deriv_order==1 """ assert samples.ndim == 2 num_vars, num_samples = samples.shape assert num_samples == 1 indices = poly.indices.copy() poly.set_indices(new_indices) basis_matrix_for_new_indices_at_samples = poly.basis_matrix( samples,{'deriv_order':deriv_order}) if deriv_order==1: basis_deriv_matrix_for_new_indices_at_samples = \ basis_matrix_for_new_indices_at_samples[1:,:] basis_matrix_for_new_indices_at_samples = \ basis_matrix_for_new_indices_at_samples[:1,:] poly.set_indices(indices) basis_matrix_at_samples = poly.basis_matrix( samples[:,:1],{'deriv_order':deriv_order}) if deriv_order==1: basis_deriv_matrix_at_samples = basis_matrix_at_samples[1:,:] basis_matrix_at_samples = basis_matrix_at_samples[:1,:] weights = weight_function(samples) # to avoid division by zero weights = np.maximum(weights,0) assert weights.ndim==1 sqrt_weights = np.sqrt(weights) poly_vals = np.dot(basis_matrix_at_samples,coeff) unweighted_residual = basis_matrix_for_new_indices_at_samples-poly_vals residual = sqrt_weights*unweighted_residual num_residual_entries = residual.shape[1] if deriv_order==0: return (residual,) poly_derivs = np.dot(basis_deriv_matrix_at_samples,coeff) weight_derivs = weight_function_deriv(samples) unweighted_residual_derivs = \ poly_derivs-basis_deriv_matrix_for_new_indices_at_samples jacobian = np.zeros((num_residual_entries,num_vars),dtype=float) I = np.where(weights>0)[0] for dd in range(num_vars): jacobian[I,dd]=( unweighted_residual[0,I]*weight_derivs[dd,I]/(2.0*sqrt_weights[I])- unweighted_residual_derivs[dd,I]*sqrt_weights[I]) assert residual.ndim==2 return residual, jacobian def compute_coefficients_of_leja_interpolant(leja_sequence, poly,new_indices, weight_function): weights = weight_function(leja_sequence) # to avoid division by zero weights = np.maximum(weights, 0) assert weights.ndim == 1 sqrt_weights = np.sqrt(weights) indices = poly.indices.copy() poly.set_indices(new_indices) #basis_matrix_for_new_indices_at_leja = poly.basis_matrix(leja_sequence) basis_matrix_for_new_indices_at_leja = ( poly.basis_matrix(leja_sequence).T*sqrt_weights).T poly.set_indices(indices) # replace with more efficient procedure that just updates LU and # uses backwards subtitution #basis_matrix_at_leja = poly.basis_matrix(leja_sequence) basis_matrix_at_leja = (poly.basis_matrix(leja_sequence).T*sqrt_weights).T out = np.linalg.lstsq( basis_matrix_at_leja, basis_matrix_for_new_indices_at_leja, rcond=None) coeffs = out[0] return coeffs def leja_objective(samples, leja_sequence, poly, new_indices, coeff, weight_function, weight_function_deriv): objective_vals = np.empty((samples.shape[1]),dtype=float) for ii in range(samples.shape[1]): residual = leja_objective_and_gradient( samples[:,ii:ii+1], leja_sequence, poly, new_indices, coeff, weight_function, weight_function_deriv)[0] objective_vals[ii] = 0.5*np.dot(residual.squeeze(),residual.squeeze()) return objective_vals def compute_finite_difference_derivative(func,sample,fd_eps=1e-6): assert sample.ndim==2 num_vars = sample.shape[0] fd_samples = np.empty((num_vars,num_vars+1)) fd_samples[:,0] = sample[:,0].copy() for dd in range(num_vars): fd_samples[:,dd+1]=sample[:,0].copy() fd_samples[dd,dd+1]+=fd_eps objective_at_fd_samples = func(fd_samples) fd_deriv = np.empty((num_vars,1)) for dd in range(num_vars): fd_deriv[dd]=\ (objective_at_fd_samples[dd+1]-objective_at_fd_samples[0])/(fd_eps) return fd_deriv class LejaObjective(): def __init__(self,poly,weight_function,weight_function_deriv): self.poly=poly self.unscaled_weight_function = weight_function self.unscaled_weight_function_deriv = weight_function_deriv self.set_scale(1) def set_scale(self,scale): """ scale objective function by a scalar. This can make finding values of small objectives easier. """ assert scale>0 self.scale=max(scale,1e-8) self.weight_function = \ lambda x: self.unscaled_weight_function(x)/self.scale self.weight_function_deriv = \ lambda x: self.unscaled_weight_function_deriv(x)/self.scale def precompute_residual_and_jacobian(self,sample,leja_sequence, new_indices,coeffs): self.sample=sample if sample.ndim==1: sample = sample[:,np.newaxis] self.residual, self.jacobian = leja_objective_and_gradient( sample, leja_sequence, self.poly, new_indices, coeffs, self.weight_function, self.weight_function_deriv, deriv_order=1) def gradient(self,sample,leja_sequence,new_indices,coeffs): assert np.allclose(sample,self.sample) if sample.ndim==1: sample = sample[:,np.newaxis] # from functools import partial # func = partial(leja_objective,leja_sequence=leja_sequence, # poly=self.poly, # new_indices=new_indices, coeff=coeffs, # weight_function=self.weight_function, # weight_function_deriv=self.weight_function_deriv) # fd_eps=1e-7 # fd_deriv = -compute_finite_difference_derivative( # func,sample,fd_eps=fd_eps) gradient = -np.dot(self.jacobian.T,self.residual) #print('gk',sample,gradient) return gradient def __call__(self,sample,leja_sequence,new_indices,coeffs): self.precompute_residual_and_jacobian( sample, leja_sequence,new_indices,coeffs) val = -0.5*np.dot(self.residual,self.residual) #print('val',sample,val) return val def jacobian(self,sample,leja_sequence,new_indices,coeffs): assert np.allclose(sample,self.sample) return self.jacobian def plot(self,leja_sequence,poly,new_indices,coeffs,ranges): import matplotlib.pyplot as plt if leja_sequence.shape[0]==1: num_samples = 400 samples = np.linspace( ranges[0],ranges[1],num_samples).reshape(1,num_samples) objective_vals = -leja_objective( samples, leja_sequence, poly, new_indices, coeffs, self.weight_function, self.weight_function_deriv) # print(self.weight_function(samples)) # unweighted_objective_vals = -leja_objective( # samples, leja_sequence, poly, new_indices, coeffs, # lambda x: np.ones(x.shape[1]), lambda x: np.zeros(x.shape[1])) # print(unweighted_objective_vals) #objective_vals = np.array([self(samples[:,ii],leja_sequence,new_indices,coeffs) for ii in range(num_samples)]).squeeze() plt.plot(samples[0,:],objective_vals,lw=3) plt.plot(leja_sequence[0,:],leja_sequence[0,:]*0.0,'o', label='Leja sequence') #plt.ylim(-1,1) from scipy.optimize import fmin_l_bfgs_b def optimize(obj,initial_guess,ranges,objective_args,scale): bounds = [] for i in range(len(ranges)//2): bounds.append([ranges[2*i],ranges[2*i+1]]) obj.set_scale(scale) tol = 1e-8 callback=None out = fmin_l_bfgs_b( func=obj, x0=initial_guess, bounds=bounds, args=objective_args, factr = tol/np.finfo(float).eps, pgtol = tol, maxiter=1000, iprint=0, #approx_grad=True) fprime=obj.gradient,callback=callback) optimal_sample = out[0] obj_val = out[1]*obj.scale num_fn_evals = out[2]['funcalls'] #print ('initial_guess',initial_guess) #print ('\tFunction evaluations: %d'%(num_fn_evals)) #print (optimal_sample) obj.set_scale(1) return optimal_sample, obj_val def get_initial_guesses_1d(leja_sequence,ranges): eps = 1e-6 # must be larger than optimization tolerance intervals = np.sort(leja_sequence) if ranges[0] != None and (leja_sequence.min()>ranges[0]+eps): intervals =
np.hstack(([[ranges[0]]],intervals))
numpy.hstack
# -*- coding: utf-8 -*- import numpy as np import unittest from ..utils import ShearFrame from .. import * class TestShearFrame(unittest.TestCase): def setUp(self): self.n = 5 self.m = 1e3 self.k = 1e6 self.shear_frame = ShearFrame(self.n, self.m, self.k) def get_natural_frequencies(self): k, m, n = self.k, self.m, self.n freqs = np.array([ 2 * np.sqrt(k / m) * np.sin(np.pi / 2 * (2*r-1) / (2*n+1)) for r in range(1, self.n+1)]) return freqs def get_mode_shapes(self): Q = [] for r in range(1, self.n+1): q = np.array([np.sin(i*np.pi*(2*r-1)/(2*self.n+1)) for i in range(1, self.n+1)]) q /= np.linalg.norm(q, 2) Q.append(q) Q = np.array(Q).T return Q def test_sf_k(self): assert self.k == self.shear_frame.k def test_sf_m(self): assert self.m == self.shear_frame.m def test_sf_n(self): assert self.n == self.shear_frame.n def test_eigvals(self): fn_true = self.get_natural_frequencies() M, K = self.shear_frame.M, self.shear_frame.K l, Q = np.linalg.eig(np.linalg.solve(M, K)) fn = np.sqrt(l) fn.sort() np.testing.assert_almost_equal(fn_true, fn) def test_eigvecs(self): M, K = self.shear_frame.M, self.shear_frame.K l, Q = np.linalg.eig(np.linalg.solve(M, K)) n = np.argsort(l) Q = Q[:, n] Q_true = self.get_mode_shapes() np.testing.assert_almost_equal(np.abs(Q),
np.abs(Q_true)
numpy.abs
#------------------------------------------- # # FILENAME: IFI_compare_RadIA_PIREP.py # # CREATED: 12.15.2021 - dserke # # PURPOSE: 1) ingest matched RadIA and PIREPs csv file, 2) manipulate and plot the data # #------------------------------------------- #------------------------------------------- # IMPORT LIBRARIES #------------------------------------------- import pandas as pd import geopandas as gpd import numpy as np from numpy import * import csv import wradlib as wrl import matplotlib as mpl from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap from mpl_toolkits.axes_grid1 import make_axes_locatable import warnings warnings.filterwarnings('ignore') #------------------------------------------- # DEFINE INPUT PATHS #------------------------------------------- # ... define raduis (r) of earth in km r_km = 6378.1 ft_TO_m = 0.3048 nbins = 1832.0 range_res_m = 250.0 bw_deg = 1.0 # half power beam width (deg) vol_deg = [0.5, 1.5, 2.5, 3.5, 4.5] lat_KBBX = 39.4969580 lon_KBBX = -121.6316557 alt_KBBX_m = 221.0 * ft_TO_m sitecoords = (lon_KBBX, lat_KBBX, alt_KBBX_m) # ... define base path dir base_path_dir = '/d1/serke/projects/' # ... paths to Rv3 INTs and PIRP csv data files Rv3PIR_dir = base_path_dir+'RADIA_FAA/data/RadIAv3PIREPs/' # ... names of Rv3 INTs and PIRP csv data files # ... NOTE: currently, these files just represent ICICLE F17 Rv3PIR_FZDZ_name = 'exfout_MrmsPostProcessor_fzdz_interest.csv' Rv3PIR_SSLW_name = 'exfout_MrmsPostProcessor_slw_interest.csv' Rv3PIR_PIRP_name = 'exmatch_MrmsPostProcessor.csv' # ... path to NEXRAD site location csv nexrad_sites_dir = base_path_dir+'case_studies/SNOWIE_2017/data/RadIA_data/nexrad_site_data/' nexrad_sites_name = 'nexrad_site_whdr.csv' #------------------------------------------- # LOAD INPUT DATASETS #------------------------------------------- # ... radar data into radar object Rv3PIR_FZDZ = pd.read_csv(Rv3PIR_dir+Rv3PIR_FZDZ_name, header=0, index_col=0) Rv3PIR_SSLW = pd.read_csv(Rv3PIR_dir+Rv3PIR_SSLW_name, header=0, index_col=0) Rv3PIR_PIRP = pd.read_csv(Rv3PIR_dir+Rv3PIR_PIRP_name, header=0, index_col=0) # ... radar site location dataset nexrad_sites = pd.read_csv(nexrad_sites_dir+nexrad_sites_name, header=0, index_col=1) # ... low res countries dataset countries = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) #------------------------------------------- # MANIPULATE INPUT DATA #------------------------------------------- # Data from full month Feb2019 ICICLE have a few missing RadIA matchups (rows) # ... find missing integers in RadIA FZDZ/SSLW lists def find_missing(input): return [x for x in range(input[0], input[-1]+1) if x not in input] missing_SSLW_inds = find_missing(Rv3PIR_SSLW.index) missing_FZDZ_inds = find_missing(Rv3PIR_FZDZ.index) # ... exclude the inds missing from FZDZ/SSLW dfs from the PIRP df Rv3PIR_PIRP.drop(Rv3PIR_PIRP.index[[missing_SSLW_inds]], inplace=True) # ... exclude ind 0 from the PIRP df #Rv3PIR_PIRP.drop(Rv3PIR_PIRP.index[[0]], inplace=True) Rv3PIR_FZDZ.index = Rv3PIR_FZDZ.index-1 Rv3PIR_SSLW.index = Rv3PIR_SSLW.index-1 # ... define function for distance between two lat/lon points def haversine_distance(lat1, lon1, lat2, lon2): phi1 = np.radians(lat1) phi2 = np.radians(lat2) delta_phi = np.radians(lat2 - lat1) delta_lambda = np.radians(lon2 - lon1) a =
np.sin(delta_phi / 2)
numpy.sin
from typing import Any, Dict, Union import numpy as np from numpy.core.defchararray import center import panda_gym from panda_gym.envs.core import Task from panda_gym.utils import distance class ReachBimanual(Task): def __init__( self, sim, get_ee_position0, get_ee_position1, reward_type="sparse", distance_threshold=0.05, goal_range=0.35, has_object = False, absolute_pos = False, obj_not_in_hand_rate = 1, ) -> None: super().__init__(sim) self.has_object = has_object self.absolute_pos = absolute_pos self.object_size = 0.04 self.reward_type = reward_type self.distance_threshold = distance_threshold self.obj_not_in_hand_rate = obj_not_in_hand_rate self.get_ee_position0 = get_ee_position0 self.get_ee_position1 = get_ee_position1 self.goal_range_low = np.array([goal_range / 4, goal_range / 4, -goal_range/1.5]) self.goal_range_high = np.array([goal_range, goal_range, goal_range/1.5]) obj_xyz_range=[0.3, 0.3, 0] self.obj_range_low = np.array([0.1, -obj_xyz_range[1] / 2, self.object_size/2]) self.obj_range_high = np.array(obj_xyz_range) + self.obj_range_low with self.sim.no_rendering(): self._create_scene() self.sim.place_visualizer(target_position=np.zeros(3), distance=0.9, yaw=45, pitch=-30) self._max_episode_steps = 50 def _create_scene(self) -> None: self.sim.create_plane(z_offset=-0.4) self.sim.create_table(length=1., width=0.7, height=0.4, x_offset=-0.575) self.sim.create_table(length=1., width=0.7, height=0.4, x_offset=0.575) self.sim.create_sphere( body_name="target0", radius=0.02, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.1, 0.9, 0.1, 0.3]), ) self.sim.create_sphere( body_name="target1", radius=0.02, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.9, 0.1, 0.1, 0.3]), ) self.sim.create_sphere( body_name="target2", radius=0.03, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.1, 0.1, 0.9, 0.5]), ) if self.has_object: self.sim.create_box( body_name="object0", half_extents=np.ones(3) * self.object_size / 2, mass=0.5, position=np.array([0.0, 0.0, self.object_size / 2]), rgba_color=np.array([0.1, 0.9, 0.1, 1.0]), ) self.sim.create_box( body_name="object1", half_extents=
np.ones(3)
numpy.ones
"""Lower-level plotting tools. Routines that may be of use to users wishing for more fine-grained control may wish to use. - ``make_1d_axes`` - ``make_2d_axes`` to create a set of axes and legend proxies. """ import numpy as np import pandas import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from matplotlib.gridspec import GridSpec as GS, GridSpecFromSubplotSpec as SGS try: from astropy.visualization import hist except ImportError: pass try: from anesthetic.kde import fastkde_1d, fastkde_2d except ImportError: pass import matplotlib.cbook as cbook import matplotlib.lines as mlines from matplotlib.ticker import MaxNLocator from matplotlib.colors import LinearSegmentedColormap from matplotlib.transforms import Affine2D from anesthetic.utils import check_bounds, nest_level from anesthetic.utils import (sample_compression_1d, quantile, triangular_sample_compression_2d, iso_probability_contours, iso_probability_contours_from_samples, scaled_triangulation, match_contour_to_contourf) from anesthetic.boundary import cut_and_normalise_gaussian class AxesSeries(pandas.Series): """Anesthetic's axes version of `pandas.Series`.""" @property def _constructor(self): return AxesSeries @property def _constructor_expanddim(self): return AxesDataFrame class AxesDataFrame(pandas.DataFrame): """Anesthetic's axes version of `pandas.DataFrame`.""" @property def _constructor(self): return AxesDataFrame @property def _constructor_sliced(self): return AxesSeries def axlines(self, params, values, **kwargs): """Add vertical and horizontal lines across all axes. Parameters ---------- params : str or list(str) parameter label(s). Should match the size of `values`. values : float or list(float) value(s) at which vertical and horizontal lines shall be added. Should match the size of `params`. kwargs Any kwarg that can be passed to `plt.axvline` or `plt.axhline`. """ params = np.ravel(params) values = np.ravel(values) if params.size != values.size: raise ValueError("The sizes of `params` and `values` must match " "exactly, but params.size=%s and values.size=%s." % (params.size, values.size)) for i, param in enumerate(params): if param in self.columns: for ax in self.loc[:, param]: if ax is not None: ax.axvline(values[i], **kwargs) if param in self.index: for ax in self.loc[param, self.columns != param]: if ax is not None: ax.axhline(values[i], **kwargs) def axspans(self, params, vmins, vmaxs, **kwargs): """Add vertical and horizontal spans across all axes. Parameters ---------- params : str or list(str) parameter label(s). Should match the size of `vmins` and `vmaxs`. vmins : float or list(float) Minimum value of the vertical and horizontal axes spans. Should match the size of `params`. vmaxs : float or list(float) Maximum value of the vertical and horizontal axes spans. Should match the size of `params`. kwargs Any kwarg that can be passed to `plt.axvspan` or `plt.axhspan`. """ kwargs = normalize_kwargs(kwargs, dict(color=['c'])) params = np.ravel(params) vmins = np.ravel(vmins) vmaxs = np.ravel(vmaxs) if params.size != vmins.size: raise ValueError("The sizes of `params`, `vmins` and `vmaxs` must " "match exactly, but params.size=%s, " "vmins.size=%s and vmaxs.size=%s." % (params.size, vmins.size, vmaxs.size)) for i, param in enumerate(params): if param in self.columns: for ax in self.loc[:, param]: if ax is not None: ax.axvspan(vmins[i], vmaxs[i], **kwargs) if param in self.index: for ax in self.loc[param, self.columns != param]: if ax is not None: ax.axhspan(vmins[i], vmaxs[i], **kwargs) def make_1d_axes(params, **kwargs): """Create a set of axes for plotting 1D marginalised posteriors. Parameters ---------- params: list(str) names of parameters. tex: dict(str:str), optional Dictionary mapping params to tex plot labels. fig: matplotlib.figure.Figure, optional Figure to plot on. Default: matplotlib.pyplot.figure() ncols: int Number of columns in the plot option, default ceil(sqrt(num_params)) subplot_spec: matplotlib.gridspec.GridSpec, optional gridspec to plot array as part of a subfigure Default: None Returns ------- fig: matplotlib.figure.Figure New or original (if supplied) figure object axes: pandas.Series(matplotlib.axes.Axes) Pandas array of axes objects """ axes = AxesSeries(index=np.atleast_1d(params), dtype=object) axes[:] = None tex = kwargs.pop('tex', {}) fig = kwargs.pop('fig') if 'fig' in kwargs else plt.figure() ncols = kwargs.pop('ncols', int(np.ceil(np.sqrt(len(axes))))) nrows = int(np.ceil(len(axes)/float(ncols))) if 'subplot_spec' in kwargs: grid = SGS(nrows, ncols, wspace=0, subplot_spec=kwargs.pop('subplot_spec')) else: grid = GS(nrows, ncols, wspace=0) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) tex = {p: tex[p] if p in tex else p for p in axes.index} for p, g in zip(axes.index, grid): axes[p] = ax = fig.add_subplot(g) ax.set_xlabel(tex[p]) ax.set_yticks([]) for x, ax in axes.dropna().iteritems(): ax.xaxis.set_major_locator(MaxNLocator(2, integer=True)) return fig, axes def make_2d_axes(params, **kwargs): """Create a set of axes for plotting 2D marginalised posteriors. Parameters ---------- params: lists of parameters Can be either: * list(str) if the x and y axes are the same * [list(str),list(str)] if the x and y axes are different Strings indicate the names of the parameters tex: dict(str:str), optional Dictionary mapping params to tex plot labels. Default: params upper, lower, diagonal: logical, optional Whether to create 2D marginalised plots above or below the diagonal, or to create a 1D marginalised plot on the diagonal. Default: True fig: matplotlib.figure.Figure, optional Figure to plot on. Default: matplotlib.pyplot.figure() ticks: str If 'outer', plot ticks only on the very left and very bottom. If 'inner', plot ticks also in inner subplots. If None, plot no ticks at all. Default: 'outer' subplot_spec: matplotlib.gridspec.GridSpec, optional gridspec to plot array as part of a subfigure. Default: None Returns ------- fig: matplotlib.figure.Figure New or original (if supplied) figure object axes: pandas.DataFrame(matplotlib.axes.Axes) Pandas array of axes objects """ if nest_level(params) == 2: xparams, yparams = params else: xparams = yparams = params ticks = kwargs.pop('ticks', 'outer') upper = kwargs.pop('upper', True) lower = kwargs.pop('lower', True) diagonal = kwargs.pop('diagonal', True) axes = AxesDataFrame(index=np.atleast_1d(yparams), columns=np.atleast_1d(xparams), dtype=object) axes[:][:] = None all_params = list(axes.columns) + list(axes.index) for j, y in enumerate(axes.index): for i, x in enumerate(axes.columns): if all_params.index(x) < all_params.index(y): if lower: axes[x][y] = -1 elif all_params.index(x) > all_params.index(y): if upper: axes[x][y] = +1 elif diagonal: axes[x][y] = 0 axes.dropna(axis=0, how='all', inplace=True) axes.dropna(axis=1, how='all', inplace=True) tex = kwargs.pop('tex', {}) tex = {p: tex[p] if p in tex else p for p in all_params} fig = kwargs.pop('fig') if 'fig' in kwargs else plt.figure() spec = kwargs.pop('subplot_spec', None) if axes.shape[0] != 0 and axes.shape[1] != 0: if spec is not None: grid = SGS(*axes.shape, hspace=0, wspace=0, subplot_spec=spec) else: grid = GS(*axes.shape, hspace=0, wspace=0) if kwargs: raise TypeError('Unexpected **kwargs: %r' % kwargs) if axes.size == 0: return fig, axes position = axes.copy() axes[:][:] = None for j, y in enumerate(axes.index[::-1]): for i, x in enumerate(axes.columns): if position[x][y] is not None: sx = list(axes[x].dropna()) sx = sx[0] if sx else None sy = list(axes.T[y].dropna()) sy = sy[0] if sy else None axes[x][y] = fig.add_subplot(grid[axes.index.size-1-j, i], sharex=sx, sharey=sy) if position[x][y] == 0: axes[x][y].twin = axes[x][y].twinx() axes[x][y].twin.set_yticks([]) axes[x][y].twin.set_ylim(0, 1.1) axes[x][y].set_zorder(axes[x][y].twin.get_zorder() + 1) axes[x][y].lines = axes[x][y].twin.lines axes[x][y].patches = axes[x][y].twin.patches axes[x][y].collections = axes[x][y].twin.collections axes[x][y].containers = axes[x][y].twin.containers make_diagonal(axes[x][y]) axes[x][y].position = 'diagonal' axes[x][y].twin.xaxis.set_major_locator( MaxNLocator(3, prune='both')) else: if position[x][y] == 1: axes[x][y].position = 'upper' elif position[x][y] == -1: axes[x][y].position = 'lower' axes[x][y].yaxis.set_major_locator( MaxNLocator(3, prune='both')) axes[x][y].xaxis.set_major_locator( MaxNLocator(3, prune='both')) for y, ax in axes.bfill(axis=1).iloc[:, 0].dropna().iteritems(): ax.set_ylabel(tex[y]) for x, ax in axes.ffill(axis=0).iloc[-1, :].dropna().iteritems(): ax.set_xlabel(tex[x]) # left and right ticks and labels for y, ax in axes.iterrows(): ax_ = ax.dropna() if len(ax_) and ticks == 'inner': for i, a in enumerate(ax_): if i == 0: # first column if a.position == 'diagonal' and len(ax_) == 1: a.tick_params('y', left=False, labelleft=False) else: a.tick_params('y', left=True, labelleft=True) elif a.position == 'diagonal': # not first column tl = a.yaxis.majorTicks[0].tick1line.get_markersize() a.tick_params('y', direction='out', length=tl/2, left=True, labelleft=False) else: # not diagonal and not first column a.tick_params('y', direction='inout', left=True, labelleft=False) elif len(ax_) and ticks == 'outer': # no inner ticks for a in ax_[1:]: a.tick_params('y', left=False, labelleft=False) elif len(ax_) and ticks is None: # no ticks at all for a in ax_: a.tick_params('y', left=False, right=False, labelleft=False, labelright=False) else: raise ValueError( "ticks=%s was requested, but ticks can only be one of " "['outer', 'inner', None]." % ticks) # bottom and top ticks and labels for x, ax in axes.iteritems(): ax_ = ax.dropna() if len(ax_): if ticks == 'inner': for i, a in enumerate(ax_): if i == len(ax_) - 1: # bottom row a.tick_params('x', bottom=True, labelbottom=True) else: # not bottom row a.tick_params('x', direction='inout', bottom=True, labelbottom=False) if a.position == 'diagonal': a.twin.tick_params('x', direction='inout', bottom=True, labelbottom=False) elif ticks == 'outer': # no inner ticks for a in ax_[:-1]: a.tick_params('x', bottom=False, labelbottom=False) elif ticks is None: # no ticks at all for a in ax_: a.tick_params('x', bottom=False, top=False, labelbottom=False, labeltop=False) else: raise ValueError( "ticks=%s was requested, but ticks can only be one of " "['outer', 'inner', None]." % ticks) return fig, axes def fastkde_plot_1d(ax, data, *args, **kwargs): """Plot a 1d marginalised distribution. This functions as a wrapper around matplotlib.axes.Axes.plot, with a kernel density estimation computation provided by the package fastkde in between. All remaining keyword arguments are passed onwards. Parameters ---------- ax: matplotlib.axes.Axes axis object to plot on data: np.array Uniformly weighted samples to generate kernel density estimator. xmin, xmax: float lower/upper prior bound optional, default None levels: list values at which to draw iso-probability lines. optional, default [0.95, 0.68] facecolor: bool or string If set to True then the 1d plot will be shaded with the value of the ``color`` kwarg. Set to a string such as 'blue', 'k', 'r', 'C1' ect. to define the color of the shading directly. optional, default False Returns ------- lines: matplotlib.lines.Line2D A list of line objects representing the plotted data (same as matplotlib matplotlib.axes.Axes.plot command) """ kwargs = normalize_kwargs( kwargs, dict(linewidth=['lw'], linestyle=['ls'], color=['c'], facecolor=['fc'], edgecolor=['ec'])) if len(data) == 0: return np.zeros(0), np.zeros(0) if data.max()-data.min() <= 0: return levels = kwargs.pop('levels', [0.95, 0.68]) xmin = kwargs.pop('xmin', None) xmax = kwargs.pop('xmax', None) density = kwargs.pop('density', False) cmap = kwargs.pop('cmap', None) color = kwargs.pop('color', (next(ax._get_lines.prop_cycler)['color'] if cmap is None else cmap(0.68))) facecolor = kwargs.pop('facecolor', False) if 'edgecolor' in kwargs: edgecolor = kwargs.pop('edgecolor') if edgecolor: color = edgecolor else: edgecolor = color q = kwargs.pop('q', '5sigma') q = quantile_plot_interval(q=q) try: x, p, xmin, xmax = fastkde_1d(data, xmin, xmax) except NameError: raise ImportError("You need to install fastkde to use fastkde") p /= p.max() i = ((x > quantile(x, q[0], p)) & (x < quantile(x, q[1], p))) area = np.trapz(x=x[i], y=p[i]) if density else 1 ans = ax.plot(x[i], p[i]/area, color=color, *args, **kwargs) ax.set_xlim(xmin, xmax, auto=True) if facecolor and facecolor not in [None, 'None', 'none']: if facecolor is True: facecolor = color c = iso_probability_contours(p[i], contours=levels) cmap = basic_cmap(facecolor) fill = [] for j in range(len(c)-1): fill.append(ax.fill_between(x[i], p[i], where=p[i] >= c[j], color=cmap(c[j]), edgecolor=edgecolor)) return ans, fill return ans def kde_plot_1d(ax, data, *args, **kwargs): """Plot a 1d marginalised distribution. This functions as a wrapper around matplotlib.axes.Axes.plot, with a kernel density estimation computation provided by scipy.stats.gaussian_kde in between. All remaining keyword arguments are passed onwards. Parameters ---------- ax: matplotlib.axes.Axes axis object to plot on. data: np.array Samples to generate kernel density estimator. weights: np.array, optional Sample weights. ncompress: int, optional Degree of compression. Default 1000 xmin, xmax: float lower/upper prior bound. optional, default None levels: list values at which to draw iso-probability lines. optional, default [0.95, 0.68] facecolor: bool or string If set to True then the 1d plot will be shaded with the value of the ``color`` kwarg. Set to a string such as 'blue', 'k', 'r', 'C1' ect. to define the color of the shading directly. optional, default False Returns ------- lines: matplotlib.lines.Line2D A list of line objects representing the plotted data (same as matplotlib matplotlib.axes.Axes.plot command) """ if len(data) == 0: return np.zeros(0),
np.zeros(0)
numpy.zeros
from math import fabs import numpy as np from numba import jit from numba.extending import overload @overload(np.clip) def np_clip(a, a_min, a_max, out=None): """ Numba Overload of np.clip :type a: np.ndarray :type a_min: int :type a_max: int :type out: np.ndarray :rtype: np.ndarray """ if out is None: out = np.empty_like(a) for i in range(len(a)): if a[i] < a_min: out[i] = a_min elif a[i] > a_max: out[i] = a_max else: out[i] = a[i] return out @jit(nopython=True) def convolve(data, kernel): """ Convolution 1D Array :type data: np.ndarray :type kernel: np.ndarray :rtype: np.ndarray """ size_data = len(data) size_kernel = len(kernel) size_out = size_data - size_kernel + 1 out = np.array([np.nan] * size_out) kernel = np.flip(kernel) for i in range(size_out): window = data[i:i + size_kernel] out[i] = sum([window[j] * kernel[j] for j in range(size_kernel)]) return out @jit(nopython=True) def sma(data, period): """ Simple Moving Average :type data: np.ndarray :type period: int :rtype: np.ndarray """ size = len(data) out = np.array([np.nan] * size) for i in range(period - 1, size): window = data[i - period + 1:i + 1] out[i] = np.mean(window) return out @jit(nopython=True) def wma(data, period): """ Weighted Moving Average :type data: np.ndarray :type period: int :rtype: np.ndarray """ weights = np.arange(period, 0, -1) weights = weights / weights.sum() out = convolve(data, weights) return np.concatenate((np.array([np.nan] * (len(data) - len(out))), out)) @jit(nopython=True) def cma(data): """ Cumulative Moving Average :type data: np.ndarray :rtype: np.ndarray """ size = len(data) out = np.array([np.nan] * size) last_sum = np.array([np.nan] * size) last_sum[1] = sum(data[:2]) for i in range(2, size): last_sum[i] = last_sum[i - 1] + data[i] out[i] = last_sum[i] / (i + 1) return out @jit(nopython=True) def ema(data, period, smoothing=2.0): """ Exponential Moving Average :type data: np.ndarray :type period: int :type smoothing: float :rtype: np.ndarray """ size = len(data) weight = smoothing / (period + 1) out = np.array([np.nan] * size) out[0] = data[0] for i in range(1, size): out[i] = (data[i] * weight) + (out[i - 1] * (1 - weight)) out[:period - 1] = np.nan return out @jit(nopython=True) def ewma(data, period, alpha=1.0): """ Exponential Weighted Moving Average :type data: np.ndarray :type period: int :type alpha: float :rtype: np.ndarray """ weights = (1 - alpha) ** np.arange(period) weights /= np.sum(weights) out = convolve(data, weights) return np.concatenate((np.array([np.nan] * (len(data) - len(out))), out)) @jit(nopython=True) def dema(data, period, smoothing=2.0): """ Double Exponential Moving Average :type data: np.ndarray :type period: int :type smoothing: float :rtype: np.ndarray """ return (2 * ema(data, period, smoothing)) - ema(ema(data, period, smoothing), period, smoothing) @jit(nopython=True) def trix(data, period, smoothing=2.0): """ Triple Exponential Moving Average :type data: np.ndarray :type period: int :type smoothing: float :rtype: np.ndarray """ return ((3 * ema(data, period, smoothing) - (3 * ema(ema(data, period, smoothing), period, smoothing))) + ema(ema(ema(data, period, smoothing), period, smoothing), period, smoothing)) @jit(nopython=True) def macd(data, fast, slow, smoothing=2.0): """ Moving Average Convergence Divergence :type data: np.ndarray :type fast: int :type slow: int :type smoothing: float :rtype: np.ndarray """ return ema(data, fast, smoothing) - ema(data, slow, smoothing) @jit(nopython=True) def stoch(c_close, c_high, c_low, period_k, period_d): """ Stochastic :type c_close: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period_k: int :type period_d: int :rtype: (np.ndarray, np.ndarray) """ size = len(c_close) k = np.array([np.nan] * size) for i in range(period_k - 1, size): e = i + 1 s = e - period_k ml = np.min(c_low[s:e]) k[i] = ((c_close[i] - ml) / (np.max(c_high[s:e]) - ml)) * 100 return k, sma(k, period_d) @jit(nopython=True) def kdj(c_close, c_high, c_low, period_rsv=9, period_k=3, period_d=3, weight_k=3, weight_d=2): """ KDJ :type c_close: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period_rsv: int :type period_k: int :type period_d: int :type weight_k: int :type weight_d: int :rtype: (np.ndarray, np.ndarray, np.ndarray) """ size = len(c_close) rsv = np.array([np.nan] * size) for i in range(period_k - 1, size): e = i + 1 s = e - period_k ml = np.min(c_low[s:e]) rsv[i] = ((c_close[i] - ml) / (np.max(c_high[s:e]) - ml)) * 100 k = sma(rsv, period_rsv) d = sma(k, period_d) return k, d, (weight_k * k) - (weight_d * d) @jit(nopython=True) def wpr(c_close, c_high, c_low, period): """ William %R :type c_close: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period: int :rtype: (np.ndarray, np.ndarray) """ size = len(c_close) out = np.array([np.nan] * size) for i in range(period - 1, size): e = i + 1 s = e - period mh = np.max(c_high[s:e]) out[i] = ((mh - c_close[i]) / (mh - np.min(c_low[s:e]))) * -100 return out @jit(nopython=True) def rsi(data, period, smoothing=2.0, f_sma=True, f_clip=True, f_abs=True): """ Relative Strengh Index :type data: np.ndarray :type period: int :type smoothing: float :type f_sma: bool :type f_clip: bool :type f_abs: bool :rtype: np.ndarray """ size = len(data) delta = np.array([np.nan] * size) up = np.array([np.nan] * size) down = np.array([np.nan] * size) delta = np.diff(data) if f_clip: up, down = np.clip(delta, a_min=0, a_max=np.max(delta)), np.clip(delta, a_min=np.min(delta), a_max=0) else: up, down = delta.copy(), delta.copy() up[delta < 0] = 0.0 down[delta > 0] = 0.0 if f_abs: for i, x in enumerate(down): down[i] = fabs(x) else: down = np.abs(down) rs = sma(up, period) / sma(down, period) if f_sma else ema(up, period - 1, smoothing) / ema( down, period - 1, smoothing) out = np.array([np.nan] * size) out[1:] = (100 - 100 / (1 + rs)) return out @jit(nopython=True) def srsi(data, period, smoothing=2.0, f_sma=True, f_clip=True, f_abs=True): """ Stochastic Relative Strengh Index :type data: np.ndarray :type period: int :type smoothing: float :type f_sma: bool :type f_clip: bool :type f_abs: bool :rtype: np.ndarray """ r = rsi(data, period, smoothing, f_sma, f_clip, f_abs)[period:] s = np.array([np.nan] * len(r)) for i in range(period - 1, len(r)): window = r[i + 1 - period:i + 1] mw = np.min(window) s[i] = ((r[i] - mw) / (np.max(window) - mw)) * 100 return np.concatenate((np.array([np.nan] * (len(data) - len(s))), s)) @jit(nopython=True) def bollinger_bands(data, period, dev_up=2.0, dev_down=2.0): """ Bollinger Bands :type data: np.ndarray :type period: int :type dev_up: float :type dev_down: float :rtype: (np.ndarray, np.ndarray, np.ndarray, np.ndarray) :return: middle, up, down, width """ size = len(data) bb_up = np.array([np.nan] * size) bb_down = np.array([np.nan] * size) bb_width = np.array([np.nan] * size) bb_mid = sma(data, period) for i in range(period - 1, size): std_dev = np.std(data[i - period + 1:i + 1]) mid = bb_mid[i] bb_up[i] = mid + (std_dev * dev_up) bb_down[i] = mid - (std_dev * dev_down) bb_width[i] = bb_up[i] - bb_down[i] return bb_mid, bb_up, bb_down, bb_width @jit(nopython=True) def keltner_channel(c_close, c_open, c_high, c_low, period, smoothing=2.0): """ Keltner Channel :type c_close: np.ndarray :type c_open: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period: int :type smoothing: float :rtype: (np.ndarray, np.ndarray, np.ndarray, np.ndarray) :return: middle, up, down, width """ e = ema(c_close, period, smoothing) aa = 2 * atr(c_open, c_high, c_low, period) up = e + aa down = e - aa return e, up, down, up - down @jit(nopython=True) def donchian_channel(c_high, c_low, period): """ Donchian Channel :type c_high: np.ndarray :type c_low: np.ndarray :type period: int :rtype: (np.ndarray, np.ndarray, np.ndarray, np.ndarray) :return: middle, up, down, width """ size = len(c_high) out_up = np.array([np.nan] * size) out_down = np.array([np.nan] * size) for i in range(period - 1, size): e = i + 1 s = e - period out_up[i] = np.max(c_high[s:e]) out_down[i] = np.min(c_low[s:e]) return (out_up + out_down) / 2, out_up, out_down, out_up - out_down @jit(nopython=True) def heiken_ashi(c_open, c_high, c_low, c_close): """ Heiken Ashi :type c_open: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type c_close: np.ndarray :rtype: (np.ndarray, np.ndarray, np.ndarray, np.ndarray) :return: open, high, low, close """ ha_close = (c_open + c_high + c_low + c_close) / 4 ha_open = np.empty_like(ha_close) ha_open[0] = (c_open[0] + c_close[0]) / 2 for i in range(1, len(c_close)): ha_open[i] = (c_open[i - 1] + c_close[i - 1]) / 2 ha_high = np.maximum(np.maximum(ha_open, ha_close), c_high) ha_low = np.minimum(np.minimum(ha_open, ha_close), c_low) return ha_open, ha_high, ha_low, ha_close @jit(nopython=True) def ichimoku(data, tenkansen=9, kinjunsen=26, senkou_b=52, shift=26): """ Ichimoku :type data: np.ndarray :type tenkansen: int :type kinjunsen: int :type senkou_b: int :type shift: int :rtype: (np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray) :return: tenkansen, kinjunsen, chikou, senkou a, senkou b """ size = len(data) n_tenkansen = np.array([np.nan] * size) n_kinjunsen = np.array([np.nan] * size) n_senkou_b = np.array([np.nan] * (size + shift)) for i in range(tenkansen - 1, size): window = data[i + 1 - tenkansen:i + 1] n_tenkansen[i] = (np.max(window) + np.min(window)) / 2 for i in range(kinjunsen - 1, size): window = data[i + 1 - kinjunsen:i + 1] n_kinjunsen[i] = (np.max(window) + np.min(window)) / 2 for i in range(senkou_b - 1, size): window = data[i + 1 - senkou_b:i + 1] n_senkou_b[i + shift] = (np.max(window) + np.min(window)) / 2 return \ n_tenkansen, n_kinjunsen, np.concatenate(((data[shift:]), (np.array([np.nan] * (size - shift))))), \ np.concatenate((np.array([np.nan] * shift), ((n_tenkansen + n_kinjunsen) / 2))), n_senkou_b @jit(nopython=True) def volume_profile(c_close, c_volume, bins=10): """ Volume Profile :type c_close: np.ndarray :type c_volume: np.ndarray :type bins: int :rtype: (np.ndarray, np.ndarray) :return: count, price """ min_close = np.min(c_close) max_close = np.max(c_close) norm = 1.0 / (max_close - min_close) sum_h = np.array([0.0] * bins) for i in range(len(c_close)): sum_h[int((c_close[i] - min_close) * bins * norm)] += c_volume[i] ** 2 sq = np.sqrt(sum_h) return sq / sum(sq), np.linspace(min_close, max_close, bins) @jit(nopython=True) def tr(c_open, c_high, c_low): """ True Range :type c_open: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :rtype: np.ndarray """ return np.maximum(np.maximum(c_open - c_low, np.abs(c_high - c_open)), np.abs(c_low - c_open)) @jit(nopython=True) def atr(c_open, c_high, c_low, period): """ Average True Range :type c_open: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period: int :rtype: np.ndarray """ return sma(tr(c_open, c_high, c_low), period) @jit(nopython=True) def adx(c_open, c_high, c_low, period_adx, period_dm, smoothing=2.0): """ Average Directionnal Index :type c_open: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type period_adx: int :type period_dm: int :type smoothing: float :rtype: np.ndarray """ up = np.concatenate((np.array([np.nan]), c_high[1:] - c_high[:-1])) down = np.concatenate((np.array([np.nan]), c_low[:-1] - c_low[1:])) dm_up = np.array([0] * len(up)) up_ids = up > down dm_up[up_ids] = up[up_ids] dm_up[dm_up < 0] = 0 dm_down = np.array([0] * len(down)) down_ids = down > up dm_down[down_ids] = down[down_ids] dm_down[dm_down < 0] = 0 avg_tr = atr(c_open, c_high, c_low, period_dm) dm_up_avg = 100 * ema(dm_up, period_dm, smoothing) / avg_tr dm_down_avg = 100 * ema(dm_down, period_dm, smoothing) / avg_tr return ema(100 * np.abs(dm_up_avg - dm_down_avg) / (dm_up_avg + dm_down_avg), period_adx, smoothing) @jit(nopython=True) def obv(c_close, c_volume): """ On Balance Volume :type c_close: np.ndarray :type c_volume: np.ndarray :rtype: np.ndarray """ size = len(c_close) out = np.array([np.nan] * size) out[0] = 1 for i in range(1, size): if c_close[i] > c_close[i - 1]: out[i] = out[i - 1] + c_volume[i] elif c_close[i] < c_close[i - 1]: out[i] = out[i - 1] - c_volume[i] else: out[i] = out[i - 1] return out @jit(nopython=True) def momentum(data, period): """ Momentum :type data: np.ndarray :type period: int :rtype: np.ndarray """ size = len(data) out = np.array([np.nan] * size) for i in range(period - 1, size): out[i] = data[i] - data[i - period + 1] return out @jit(nopython=True) def roc(data, period): """ Rate Of Change :type data: np.ndarray :type period: int :rtype: np.ndarray """ size = len(data) out = np.array([np.nan] * size) for i in range(period - 1, size): p = data[i - period + 1] out[i] = ((data[i] - p) / p) * 100 return out @jit(nopython=True) def aroon(data, period): """ Aroon :type data: np.ndarray :type period: int :rtype: (np.ndarray, np.ndarray) """ size = len(data) out_up = np.array([np.nan] * size) out_down = np.array([np.nan] * size) for i in range(period - 1, size): window = np.flip(data[i + 1 - period:i + 1]) out_up[i] = ((period - window.argmax()) / period) * 100 out_down[i] = ((period - window.argmin()) / period) * 100 return out_up, out_down @jit(nopython=True) def cmf(c_close, c_high, c_low, c_volume, period): """ Chaikin Money Flow :type c_close: np.ndarray :type c_high: np.ndarray :type c_low: np.ndarray :type c_volume: np.ndarray :type period: int :rtype: np.ndarray """ size = len(c_close) out = np.array([np.nan] * size) for i in range(period - 1, size): e = i + 1 s = e - period w_close = c_close[s:e] w_high = c_high[s:e] w_low = c_low[s:e] w_vol = c_volume[s:e] out[i] = sum((((w_close - w_low) - (w_high - w_close)) / (w_high - w_low)) * w_vol) / sum(w_vol) return out @jit(nopython=True) def vix(c_close, c_low, period): """ Volatility Index :type c_close: np.ndarray :type c_low: np.ndarray :type period: int :rtype: np.ndarray """ size = len(c_close) out = np.array([np.nan] * size) for i in range(period - 1, size): hc = np.max(c_close[i + 1 - period:i + 1]) out[i] = ((hc - c_low[i]) / hc) * 100 return out @jit(nopython=True) def fdi(c_close, period): """ Fractal Dimension Index :type c_close: np.ndarray :type period: int :rtype: np.ndarray """ size = len(c_close) out = np.array([np.nan] * size) for i in range(period - 1, size): window = c_close[i + 1 - period:i + 1] pdiff = 0 length = 0 hc = np.max(window) lc = np.min(window) for j in (range(1, period - 1)): if hc > lc: diff = (window[-j] - lc) / (hc - lc) length += np.sqrt(((diff - pdiff) + (1 / (period ** 2))) ** 2) if j > 1 else 0 pdiff = diff out[i] = (1 + (np.log(length) + np.log(2)) / np.log(2 * period)) if length > 0 else 0 return out @jit(nopython=True) def entropy(c_close, c_volume, period, bins=2): """ Entropy (Experimental) :type c_close: np.ndarray :type c_volume: np.ndarray :type period: int :type bins: int :rtype: np.ndarray """ size = len(c_close) out = np.array([np.nan] * size) sum_f = 0 for i in range(period - 1, size): e = i + 1 s = e - period close_w = c_close[s:e] volume_w = c_volume[s:e] min_w = np.min(close_w) norm = 1.0 / (np.max(close_w) - min_w) sum_h = np.array([0.0] * bins) for j in range(period): sum_h[int((close_w[j] - min_w) * bins * norm)] += volume_w[j] ** 2 count = np.sqrt(sum_h) count = count / sum(count) count = count[
np.nonzero(count)
numpy.nonzero
""" Some functions for working with the Abel habit model. """ import numpy as np from numpy import sqrt, exp from scipy.stats import norm import quantecon as qe inv_sqrt_2pi = 1 / sqrt(2 * np.pi) class AbelModel: """ Represents the model. """ def __init__(self, β=0.99, γ=2.5, ρ=0.9, σ=0.002, x0=0.1, α=1, grid_size=60): self.β, self.γ, self.ρ, self.σ = β, γ, ρ, σ self.α, self.x0 = α, x0 # derived constants self.b = x0 + σ**2 * (1 - γ) self.k0 = β * exp(self.b * (1 - γ) + σ**2 * (1 - γ)**2 / 2) self.k1 = (ρ - α) * (1 - γ) # Parameters in the stationary distribution self.svar = σ**2 / (1 - ρ**2) self.ssd = sqrt(self.svar) self.smean = self.b / (1 - ρ) # A discrete approximation of the stationary dist std_range, n = 3, 20 mc = qe.tauchen(0, 1, std_range, n) w_vec = mc.state_values self.sx_vec = self.smean + self.ssd * w_vec self.sp_vec = mc.P[0, :] # Any row # A grid of points for interpolation a, b = self.smean + 3 * self.ssd, self.smean - 3 * self.ssd self.x_grid = np.linspace(a, b, grid_size) def sim_state(self, x0=None, num_paths=1000, ts_length=1000): """ Simulate the state process. If x0 is None, then draw from the stationary distribution. """ ρ, b, σ = self.ρ, self.b, self.σ X = np.ones((num_paths, ts_length)) W = np.random.randn(num_paths, ts_length) if x0 is None: X[:, 0] = self.smean else: X[:, 0] = x0 for t in range(ts_length-1): X[:, t+1] = ρ * X[:, t] + b + σ * W[:, t+1] return X def A(self, g, Ag, std_range=3, shock_state_size=20): """ Apply A to g and return Ag. The argument g is a vector, which is converted to a function by linear interpolation. Integration uses Gaussian quadrature. """ # Unpack parameters β, γ, ρ, σ, x0, α = self.β, self.γ, self.ρ, self.σ, self.x0, self.α b, k0, k1 = self.b, self.k0, self.k1 # Extract state and probs for N(0, 1) shocks mc = qe.tauchen(0, 1, std_range, shock_state_size) w_vec = mc.state_values p_vec = mc.P[0, :] # Any row, all columns # Interpolate g and allocate memory for new g g_func = lambda x: np.interp(x, self.x_grid, g) # Apply the operator K to g, computing Kg and || Kg || for (i, x) in enumerate(self.x_grid): mf = k0 * exp(k1 * x) Ag[i] = mf * np.dot(g_func(ρ * x + b + w_vec), p_vec) # Calculate the norm of Ag Ag_func = lambda x: np.interp(x, self.x_grid, Ag) r = np.sqrt(np.dot(Ag_func(self.sx_vec)**2, self.sp_vec)) return r def local_spec_rad_iterative(self, tol=1e-7, max_iter=5000): """ Compute the spectral radius of the operator A associated with the Abel model self via the local spectral radios """ n = len(self.x_grid) g_in = np.ones(n) g_out = np.ones(n) error = tol + 1 r = 1 i = 1 while error > tol and i < max_iter: s = self.A(g_in, g_out) new_r = s**(1/i) error = abs(new_r - r) g_in = np.copy(g_out) i += 1 r = new_r print(f"Converged in {i} iterations") return r def local_spec_rad_simulation(self, num_paths=1000, ts_length=1000): X = self.sim_state(num_paths=num_paths, ts_length=ts_length) A = self.k0 * np.exp(self.k1 * X) A = np.prod(A, axis=1) return A.mean()**(1/ts_length) def spec_rad_analytic(self): # Unpack parameters β, γ, ρ, σ, x0, α = self.β, self.γ, self.ρ, self.σ, self.x0, self.α b, k0, k1 = self.b, self.k0, self.k1 s = k1 * b / (1 - ρ) t = k1**2 * σ**2 / (2 * (1 - ρ)**2) return k0 * exp(s + t) def calin_test(self): """ Implements the contraction test of Calin et al. A return value < 1 indicates contraction. """ # Unpack ρ, σ, γ, x0 = self.ρ, self.σ, self.γ, self.x0 α, k0, k1, b = self.α, self.k0, self.k1, self.b # Set up phi = norm() theta = x0 + σ**2 * (1 + ρ - α) * (1 - γ) z = abs(ρ * k1) * σ / (1 - abs(ρ)) t1 = k0 * (1 + 2 * phi.cdf(z)) t2 = x0 * k1 t3 = σ**2 * (1 - γ)**2 * (ρ - α) * (2 + ρ - α) / 2 t4 = (ρ * k1 * σ)**2 / (2 * (1 - abs(ρ))**2) t5 = abs(ρ * k1 * theta) / (1 - abs(ρ)) return t1 *
exp(t2 + t3 + t4 + t5)
numpy.exp
""" Tools for making FSPS templates """ import os from collections import OrderedDict import numpy as np import astropy.units as u from astropy.cosmology import WMAP9 FLAM_CGS = u.erg/u.second/u.cm**2/u.Angstrom LINE_CGS = 1.e-17*u.erg/u.second/u.cm**2 try: from dust_attenuation.baseclasses import BaseAttAvModel except: BaseAttAvModel = object from astropy.modeling import Parameter import astropy.units as u try: from fsps import StellarPopulation except: # Broken, but imports StellarPopulation = object from . import utils from . import templates DEFAULT_LABEL = 'fsps_tau{tau:3.1f}_logz{logzsol:4.2f}_tage{tage:4.2f}_av{Av:4.2f}' WG00_DEFAULTS = dict(geometry='shell', dust_type='mw', dust_distribution='homogeneous') class Zafar15(BaseAttAvModel): """ Quasar extinction curve from Zafar et al. (2015) https://ui.adsabs.harvard.edu/abs/2015A%26A...584A.100Z/abstract """ name = 'Zafar+15' #bump_ampl = 1. Rv = 2.21 # err 0.22 @staticmethod def Alam(mu, Rv): """ klam, eq. 1 """ x = 1/mu # My fit coeffs = np.array([0.05694421, 0.57778243, -0.12417444]) Alam = np.polyval(coeffs, x)*2.21/Rv # Only above x > 5.90 fuv = x > 5.90 if fuv.sum() > 0: Afuv = 1/Rv*(-4.678+2.355*x + 0.622*(x-5.90)**2) + 1. Alam[fuv] = Afuv[fuv] return Alam def evaluate(self, x, Av): if not hasattr(x, 'unit'): xin = np.atleast_1d(x)*u.micron else: xin = np.atleast_1d(x) mu = xin.to(u.micron).value alam = self.Alam(mu, self.Rv) #*self.Rv # Rv = Av/EBV # EBV=Av/Rv # Ax = Alam/Av # # klam = Alam/EBV # Alam = klam*EBV = klam*Av/Rv return np.maximum(alam*Av, 0.) class ExtinctionModel(BaseAttAvModel): """ Modify `dust_extinction.averages.G03_SMCBar` to work as Att """ #from dust_extinction.averages import G03_SMCBar #SMCBar = G03_SMCBar() curve_type = 'smc' init_curve = None #@property def _curve_model(self): if self.init_curve == self.curve_type: return 0 if self.curve_type.upper() == 'SMC': from dust_extinction.averages import G03_SMCBar as curve elif self.curve_type.upper() == 'LMC': from dust_extinction.averages import G03_LMCAvg as curve elif self.curve_type.upper() in ['MW','F99']: from dust_extinction.parameter_averages import F99 as curve else: raise ValueError(f'curve_type {self.curve_type} not recognized') self.curve = curve() self.init_curve = self.curve_type def evaluate(self, x, Av): self._curve_model() if not hasattr(x, 'unit'): xin = np.atleast_1d(x)*u.Angstrom else: xin = np.atleast_1d(x) xinv = 1./xin.to(u.micron) if self.curve_type.upper() in ['MW','F99']: curve = self.curve klam = curve.evaluate(1/np.clip(xinv, 0.301/u.micron, 9.99/u.micron), Rv=curve.Rv) else: klam = self.curve.evaluate(1/np.clip(xinv, 0.301/u.micron, 9.99/u.micron)) return klam*Av class SMC(BaseAttAvModel): """ Modify `dust_extinction.averages.G03_SMCBar` to work as Att """ from dust_extinction.averages import G03_SMCBar SMCBar = G03_SMCBar() def evaluate(self, x, Av): if not hasattr(x, 'unit'): xin = np.atleast_1d(x)*u.Angstrom else: xin = np.atleast_1d(x) xinv = 1./xin.to(u.micron) klam = self.SMCBar.evaluate(1/np.clip(xinv, 0.301/u.micron, 9.99/u.micron)) return klam*Av class Reddy15(BaseAttAvModel): """ Attenuation curve from Reddy et al. (2015) With optional UV bump https://ui.adsabs.harvard.edu/abs/2015ApJ...806..259R/abstract """ name = 'Reddy+15' #bump_ampl = 1. bump_ampl = Parameter(description="Amplitude of UV bump", default=2., min=0., max=10.) bump_gamma = 0.04 bump_x0 = 0.2175 Rv = 2.505 @staticmethod def _left(mu): """ klam, mu < 0.6 micron """ return -5.726 + 4.004/mu - 0.525/mu**2 + 0.029/mu**3 + 2.505 @staticmethod def _right(mu): """ klam, mu > 0.6 micron """ return -2.672 - 0.010/mu + 1.532/mu**2 - 0.412/mu**3 + 2.505 @property def koffset(self): """ Force smooth transition at 0.6 micron """ return self._left(0.6) - self._right(0.6) def evaluate(self, x, Av, bump_ampl): if not hasattr(x, 'unit'): xin = np.atleast_1d(x)*u.Angstrom else: xin = np.atleast_1d(x) mu = xin.to(u.micron).value left = mu < 0.6 klam = mu*0. # Reddy Eq. 8 kleft = self._left(mu) kright = self._right(mu) klam[left] = self._left(mu[left]) klam[~left] = self._right(mu[~left]) + self.koffset # Rv = Av/EBV # EBV=Av/Rv # klam = Alam/EBV # Alam = klam*EBV = klam*Av/Rv return np.maximum((klam + self.uv_bump(mu, bump_ampl))*Av/self.Rv, 0.) def uv_bump(self, mu, bump_ampl): """ Drude profile for computing the UV bump. Parameters ---------- x: np array (float) expects wavelengths in [micron] x0: float Central wavelength of the UV bump (in microns). gamma: float Width (FWHM) of the UV bump (in microns). ampl: float Amplitude of the UV bump. Returns ------- np array (float) lorentzian-like Drude profile Raises ------ ValueError Input x values outside of defined range """ return bump_ampl * (mu**2 * self.bump_gamma**2 / ((mu**2 - self.bump_x0**2)**2 + mu**2 * self.bump_gamma**2)) class KC13(BaseAttAvModel): """ Kriek & Conroy (2013) attenuation model, extends Noll 2009 with UV bump amplitude correlated with the slope, delta. Slightly different from KC13 since the N09 model uses Leitherer (2002) below 1500 Angstroms. """ name = 'Kriek+Conroy2013' delta = Parameter(description="delta: slope of the power law", default=0., min=-3., max=3.) #extra_bump = 1. extra_params = {'extra_bump':1.} def _init_N09(self): from dust_attenuation import averages, shapes, radiative_transfer # Allow extrapolation shapes.x_range_N09 = [0.9e-4, 2.e8] averages.x_range_C00 = [0.9e-4, 2.e8] averages.x_range_L02 = [0.9e-4, 0.18] self.N09 = shapes.N09() def evaluate(self, x, Av, delta): import dust_attenuation if not hasattr(self, 'N09'): self._init_N09() #Av = np.polyval(self.coeffs['Av'], tau_V) x0 = 0.2175 gamma = 0.0350 ampl = (0.85 - 1.9*delta)*self.extra_params['extra_bump'] if not hasattr(x, 'unit'): xin = np.atleast_1d(x)*u.Angstrom else: xin = x if dust_attenuation.__version__ >= '0.0.dev131': return self.N09.evaluate(xin, x0, gamma, ampl, delta, Av) else: return self.N09.evaluate(xin, Av, x0, gamma, ampl, delta) class ParameterizedWG00(BaseAttAvModel): coeffs = {'Av': np.array([-0.001, 0.026, 0.643, -0.016]), 'x0': np.array([ 3.067e-19, -7.401e-18, 6.421e-17, -2.370e-16, 3.132e-16, 2.175e-01]), 'gamma': np.array([ 2.101e-06, -4.135e-05, 2.719e-04, -7.178e-04, 3.376e-04, 4.270e-02]), 'ampl': np.array([-1.906e-03, 4.374e-02, -3.501e-01, 1.228e+00, -2.151e+00, 8.880e+00]), 'slope': np.array([-4.084e-05, 9.984e-04, -8.893e-03, 3.670e-02, -7.325e-02, 5.891e-02])} # Turn off bump include_bump = 0.25 wg00_coeffs = {'geometry': 'shell', 'dust_type': 'mw', 'dust_distribution': 'homogeneous'} name = 'ParameterizedWG00' # def __init__(self, Av=1.0, **kwargs): # """ # Version of the N09 curves fit to the WG00 curves up to tauV=10 # """ # from dust_attenuation import averages, shapes, radiative_transfer # # # Allow extrapolation # shapes.x_range_N09 = [0.01, 1000] # averages.x_range_C00 = [0.01, 1000] # averages.x_range_L02 = [0.01, 0.18] # # self.N09 = shapes.N09() def _init_N09(self): from dust_attenuation import averages, shapes, radiative_transfer # Allow extrapolation shapes.x_range_N09 = [0.009, 2.e8] averages.x_range_C00 = [0.009, 2.e8] averages.x_range_L02 = [0.009, 0.18] self.N09 = shapes.N09() def get_tau(self, Av): """ Get the WG00 tau_V for a given Av """ tau_grid = np.arange(0, 10, 0.01) av_grid = np.polyval(self.coeffs['Av'], tau_grid) return np.interp(Av, av_grid, tau_grid, left=0., right=tau_grid[-1]) def evaluate(self, x, Av): import dust_attenuation if not hasattr(self, 'N09'): self._init_N09() tau_V = self.get_tau(Av) #Av = np.polyval(self.coeffs['Av'], tau_V) x0 = np.polyval(self.coeffs['x0'], tau_V) gamma = np.polyval(self.coeffs['gamma'], tau_V) if self.include_bump: ampl =
np.polyval(self.coeffs['ampl'], tau_V)
numpy.polyval
import ipdb import torch import torch.nn.functional as F import time import os import sys import numpy as np from numpy import nonzero from imageio import imwrite from utils import AverageMeter from models.sal_losses import cc_score, nss_score, similarity, auc_judd, auc_shuff_np def normalize_data(data): data_min = np.min(data) data_max = np.max(data) data_norm = np.clip((data - data_min) * (255.0 / (data_max - data_min)), 0, 255).astype(np.uint8) return data_norm def save_video_results(output_buffer, save_path): video_outputs = torch.stack(output_buffer) for i in range(video_outputs.size()[0]): save_name = os.path.join(save_path, 'pred_sal_{0:06d}.jpg'.format(i + 9)) imwrite(save_name, normalize_data(video_outputs[i][0].numpy())) def test(data_loader, model, opt): print('test') model.eval() with torch.no_grad(): batch_time = AverageMeter() data_time = AverageMeter() end_time = time.time() output_buffer = [] previous_video_id = '' cc = AverageMeter() nss = AverageMeter() sim = AverageMeter() auc_j = AverageMeter() for i, (data, targets, valid) in enumerate(data_loader): data_time.update(time.time() - end_time) if not opt.no_cuda: targets['salmap'] = targets['salmap'].cuda() targets['binmap'] = targets['binmap'].cuda() valid['sal'] = valid['sal'].cuda() inputs = data['rgb'] curr_batch_size = inputs.size()[0] targets['salmap'] = targets['salmap'].float() targets['binmap'] = targets['binmap'].float() valid['sal'] = valid['sal'].float() while inputs.size()[0] < opt.batch_size: inputs = torch.cat((inputs, inputs[0:1, :]), 0) while data['audio'].size(0) < opt.batch_size: data['audio'] = torch.cat((data['audio'], data['audio'][0:1, :]), 0) outputs = model(inputs, data['audio']) ipdb.set_trace() outputs['sal'][-1] = outputs['sal'][-1][0:curr_batch_size, :] cc_test = cc_score(outputs['sal'][-1], targets['salmap'], valid['sal']) nss_test = nss_score(outputs['sal'][-1], targets['binmap'], valid['sal']) sim_test = similarity(outputs['sal'][-1], targets['salmap']) auc_j_test = auc_judd(outputs['sal'][-1], targets['binmap']) auc_j.update(torch.mean(auc_j_test), nonzero(valid['sal'])[:, 0].size(0)) if not opt.no_sigmoid_in_test: outputs['sal'] = torch.sigmoid(outputs['sal'][-1]) if sum(valid['sal']) > 0: cc_tmp = cc_test / nonzero(valid['sal'])[:, 0].size(0) nss_tmp = nss_test /
nonzero(valid['sal'])
numpy.nonzero
# -*- coding: utf-8 -*- from _functools import partial from numerik import nr_ls import numpy as np # noinspection PyAugmentAssignment def calc_xieq( n0, mm, z, s_index, kc, nu_ij, neq_0, xieq_0, t_abs, method, max_it, tol, method_loops, notify_status_func, process_func_handle): """Newton method for non-linear algebraic system, with line-search :return: tuple with neq, xieq, f_0 :param n0: np.matrix (n x 1) - mol - alimentación :param mm: np.matrix (n x 1) - masa molar :param z: np.matrix (n x 1) - carga - alimentación :param s_index: int - índice de solvente :param kc: np.matrix (nr x 1) - "Cte." de equilibrio en reacción j @ T :param nu_ij: np.matrix (n x nr) - Coefs. esteq. componente i en reacción j :param t_abs: float - temperatura T en Kelvin :param neq_0: np.matrix (n x 1) - mol - estimado inicial, equilibrio :param xieq_0: np.matrix (nr x 1) - avance de reacción j - estimado inicial, equilibrio :param method: str - método en uso: 'ideal_solution', 'davies', 'debye-hueckel' :param max_it: int - máximo de iteraciones :param tol: float - error, tolerancia máxima :param method_loops: list (1 x 2): ciclos completados [backtrack, totales] :param notify_status_func: función a llamar cada avance de iteración :param process_func_handle: función a llamar para cancelación """ n = len(n0) nr = nu_ij.shape[1] mm_0 = mm[s_index].item() a_m = a_m_d_h(t_abs) meq_0 = neq_0 / (mm_0 * neq_0[s_index]) ionic_str_eq_0 = 1 / 2.0 * np.power(z, 2).T * meq_0 gammaeq = np.ones([n, 1]) gammaeq_0 = gammaeq neq = neq_0 meq = meq_0 xieq = xieq_0 ionic_str_eq = ionic_str_eq_0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent ionic_str_eq_adim = ionic_str_eq / m0_ref f = partial( f_gl_0_ideal, n0=n0, nu_ij=nu_ij, n=n, nr=nr, kc=kc, mm_0=mm_0, s_index=s_index) j = partial( jac_ideal, n0=n0, nu_ij=nu_ij, n=n, nr=nr, kc=kc, mm_0=mm_0, s_index=s_index) # x is [n_0, n_1, n_2, ..., n_n, xi_1, xi_2, xi_3, ..., xi_{nr}] x0 = np.concatenate([neq_0, xieq_0]) component_order = [s_index] component_order.extend( [index for (index, x) in enumerate(meq_0) if index != s_index] ) component_order_map = \ sorted([(origindex, orderedindex) for (orderedindex, origindex) in enumerate(component_order)], key=lambda y: y[0]) return_to_original_indexes = [x[1] for x in component_order_map] if method == 'ideal_solution': # case already contemplated above pass elif method == 'davies' or method == 'debye-hueckel': # x is [n_0, m_1, m_2, ..., m_n, xi_1, xi_2, ..., xi_{nr}, \gamma_1, # \gamma_2, ..., \gamma_n, I] ordered_meq_0 = np.matrix( [meq_0[index].item() for index in component_order] ).T ordered_gammaeq_0 = np.matrix( [gammaeq_0[index].item() for index in component_order] ).T ordered_nu_ij = np.concatenate( [nu_ij[index] for index in component_order] ) ordered_n0 = np.matrix( [n0[index].item() for index in component_order] ).T ordered_z = np.matrix( [z[index].item() for index in component_order] ).T ordered_neq_0 = np.matrix( [neq_0[index].item() for index in component_order] ).T if method == 'davies': ordered_gammaeq_0[0] = gamma_solvent_id(mm_0, ordered_meq_0[1:]) ordered_gammaeq_0[1:] = np.multiply( gamma_davies(ordered_z[1:], ionic_str_eq_adim, a_m), gamma_setchenow(ordered_z[1:], ionic_str_eq_adim, 0.1)) f = partial( f_gl_0_davies, n0=ordered_n0, nu_ij=ordered_nu_ij, n=n, nr=nr, kc=kc, z=ordered_z, mm_0=mm_0, a_m=a_m) j = partial( jac_davies, n0=ordered_n0, nu_ij=ordered_nu_ij, n=n, nr=nr, kc=kc, z=ordered_z, mm_0=mm_0, a_m=a_m) elif method == 'debye-hueckel': ordered_gammaeq_0[0] = gamma_solvent_id(mm_0, ordered_meq_0[1:]) ordered_gammaeq_0[1:] = np.multiply( gamma_d_h(ordered_z[1:], ionic_str_eq_adim, a_m), gamma_setchenow(ordered_z[1:], ionic_str_eq_adim, 0.1)) f = partial( f_gl_0_d_h, n0=ordered_n0, nu_ij=ordered_nu_ij, n=n, nr=nr, kc=kc, z=ordered_z, mm_0=mm_0, a_m=a_m) j = partial( jac_d_h, n0=ordered_n0, nu_ij=ordered_nu_ij, n=n, nr=nr, kc=kc, z=ordered_z, mm_0=mm_0, a_m=a_m) x0 = np.concatenate( [ ordered_neq_0[0], ordered_meq_0[1:], xieq_0, ordered_gammaeq_0, ionic_str_eq_0 ]) progress_k, stop, outer_it_k, outer_it_j, \ lambda_ls, accum_step, x, \ diff, f_val, lambda_ls_y, \ method_loops = \ nr_ls(x0=x0, f=f, j=j, tol=tol, max_it=max_it, inner_loop_condition=lambda x_vec: all([item >= 0 for item in x_vec[0:n]]), notify_status_func=notify_status_func, method_loops=method_loops, process_func_handle=process_func_handle) if method == 'ideal_solution': neq = x[0:n] xieq = x[n:n + nr] meq = neq / (neq[s_index] * mm_0) gammaeq = gammaeq_0 ionic_str_eq = 1 / 2.0 * np.power(z, 2).T * meq elif method == 'davies' or method == 'debye-hueckel': neq0 = x[0:n][0] meq[1:n] = x[0:n][1:n] meq[0] = 1 / mm_0 neq = meq * neq0 * mm_0 # Reorder to output original order meq = meq[return_to_original_indexes] neq = neq[return_to_original_indexes] xieq = x[n:n + nr] gammaeq = x[n + nr:n + nr + n][return_to_original_indexes] ionic_str_eq = x[n + nr + n] return neq, meq, xieq, gammaeq, ionic_str_eq, method_loops def f_gl_0_ideal(x, n0, nu_ij, n, nr, kc, mm_0, s_index): neq = x[0:n, 0] n0_mm0 = neq[s_index] * mm_0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent meq = neq / n0_mm0 # mol/gsolvent xieq = x[n:n + nr, 0] result = np.matrix(np.empty([n + nr, 1], dtype=float)) result[0:n] = -neq + n0 + nu_ij * xieq result[n:n + nr] = -kc + np.prod(np.power(meq / m0_ref, nu_ij), 0).T return result def jac_ideal(x, n0, nu_ij, n, nr, kc, mm_0, s_index): neq = x[0:n, 0] n0_mm0 = neq[s_index] * mm_0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent meq = neq / n0_mm0 diag_1_ov_meq = np.diagflat(np.power(meq, -1), 0) diag_quotient = np.diagflat(np.prod(np.power(meq / m0_ref, nu_ij), 0)) result = np.matrix(np.zeros([n + nr, n + nr], dtype=float)) result[0:n, 0:n] = -1 * np.eye(n).astype(float) result[0:n, n:n + nr] = nu_ij # Return Jacobian terms as n calculated from molality (m) result[n:n + nr, 0:n] = \ diag_quotient * nu_ij.T * diag_1_ov_meq * 1 / n0_mm0 return result def f_gl_0_davies(x, n0, nu_ij, n, nr, kc, z, mm_0, a_m): # f(x) = 0, objective function set for Davies model. neq = np.zeros([n, 1]) meq = np.zeros([n, 1]) # x is [n0 m1 m2 ... m_n xi1 xi2 ... xi_nr gamma1 gamma2 ... gamma_n # ionic_str] neq[0] = x[0] meq[1:n] = x[1:n] xieq = x[n:n + nr] gammaeq = x[n + nr:n + nr + n] ionic_str = x[n + nr + n] # calculate neq for all components n0_mm0 = neq[0] * mm_0 meq[0] = 1 / mm_0 neq = meq * n0_mm0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent ionic_str_adim = ionic_str / m0_ref result = np.matrix(np.empty([n + nr + n + 1, 1], dtype=float)) result[0:n] = -neq + n0 + nu_ij * xieq result[n:n + nr] = -kc + np.multiply( np.prod(np.power(meq / m0_ref, nu_ij), 0).T, np.prod(np.power(gammaeq, nu_ij), 0).T ) result[n + nr] = \ -gammaeq[0] + gamma_solvent_id(mm_0, meq[1:n]) result[n + nr + 1:n + nr + n] = \ - gammaeq[1:] + \ + np.multiply( gamma_davies(z[1:], ionic_str_adim, a_m), gamma_setchenow(z[1:], ionic_str_adim, 0.1)) result[n + nr + n] = \ -ionic_str + 1 / 2.0 * np.power(z, 2).T * meq return result def jac_davies(x, n0, nu_ij, n, nr, kc, z, mm_0, a_m): # j(x), Jacobian matrix for Davies model. neq = np.zeros([n, 1]) meq = np.zeros([n, 1]) # x is [n0 m1 m2 ... m_n xi1 xi2 ... xi_nr gamma1 gamma2 ... gamma_n # ionic_str] neq[0] = x[0].item() meq[1:n] = x[1:n] xieq = x[n:n + nr] gammaeq = x[n + nr:n + nr + n] ionic_str = x[n + nr + n].item() # calculate neq for all components n0_mm0 = (neq[0] * mm_0).item() meq[0] = 1 / mm_0 neq = meq * n0_mm0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent ionic_str_adim = ionic_str / m0_ref sqrt_ionic_str_adim = np.sqrt(ionic_str_adim) diag_quotient = np.diagflat( np.prod( np.power( np.multiply(gammaeq, meq / m0_ref), nu_ij), 0) ) result = np.matrix( np.zeros([n + nr + n + 1, n + nr + n + 1], dtype=float) ) result[0:n, 0:n] = \ np.diagflat( np.concatenate( [-1.0 * np.matrix([1]), -n0_mm0 * np.matrix(np.ones([n - 1, 1]))] ) ) result[1:n, 0] = -meq[1:] * mm_0 result[0:n, n:n + nr] = nu_ij result[n + nr:n + nr + n + 1, n + nr: n + nr + n + 1] = \ -1.0 * np.eye(n + 1) result[n:n + nr, 0:n] = \ diag_quotient * nu_ij.T * np.diagflat( np.concatenate( [np.matrix(0.0), 1 / meq[1:]] ) ) result[n:n + nr, n + nr:n + nr + n] = \ diag_quotient * nu_ij.T * np.diagflat( 1 / gammaeq ) gamma0_ov_phi = np.exp(-1.0 * mm_0 * sum(meq[1:])).item() result[n + nr, 1:n] = -1.0 * mm_0 * gamma0_ov_phi factor_1 = \ sqrt_ionic_str_adim / (1 + sqrt_ionic_str_adim) \ - 0.3 * ionic_str_adim dfactor_1_di = \ (1 / m0_ref) * (-0.3 + 1 / (2 * sqrt_ionic_str_adim * (1 + sqrt_ionic_str_adim) ** 2)) factor_2 = np.power(10, -a_m * np.power(z[1:], 2) * factor_1 + (1 - np.power(np.sign(z[1:]), 2)) * 0.1 * ionic_str_adim) result[n + nr + 1:n + nr + n, n + nr + n] = \ np.multiply( np.log(10.0) * ( -a_m * np.power(z[1:], 2) * dfactor_1_di + (1 - np.power(np.sign(z[1:]), 2)) * 0.1 / m0_ref), factor_2) result[n + nr + n, 1:n] = \ 1 / 2.0 * np.power(z[1:].T, 2.0) return result def f_gl_0_d_h(x, n0, nu_ij, n, nr, kc, z, mm_0, a_m): # f(x) = 0, objective function set for Debye-Hueckel model. neq = np.zeros([n, 1]) meq = np.zeros([n, 1]) # x is [n0 m1 m2 ... m_n xi1 xi2 ... xi_nr gamma1 gamma2 ... gamma_n # ionic_str] neq[0] = x[0] meq[1:n] = x[1:n] xieq = x[n:n + nr] gammaeq = x[n + nr:n + nr + n] ionic_str = x[n + nr + n] # calculate neq for all components n0_mm0 = neq[0] * mm_0 meq[0] = 1 / mm_0 neq = meq * n0_mm0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent ionic_str_adim = ionic_str / m0_ref result = np.matrix(np.empty([n + nr + n + 1, 1], dtype=float)) result[0:n] = -neq + n0 + nu_ij * xieq result[n:n + nr] = -kc + np.multiply( np.prod(np.power(meq / m0_ref, nu_ij), 0).T, np.prod(np.power(gammaeq, nu_ij), 0).T ) result[n + nr] = \ -gammaeq[0] + gamma_solvent_id(mm_0, meq[1:n]) result[n + nr + 1:n + nr + n] = \ - gammaeq[1:] + \ + np.multiply( gamma_d_h(z[1:], ionic_str_adim, a_m), gamma_setchenow(z[1:], ionic_str_adim, 0.1)) result[n + nr + n] = \ -ionic_str + 1 / 2.0 * np.power(z, 2).T * meq return result def jac_d_h(x, n0, nu_ij, n, nr, kc, z, mm_0, a_m): # j(x), Jacobian matrix for Debye-Hueckel model. neq = np.zeros([n, 1]) meq = np.zeros([n, 1]) # x is [n0 m1 m2 ... m_n xi1 xi2 ... xi_nr gamma1 gamma2 ... gamma_n # ionic_str] neq[0] = x[0].item() meq[1:n] = x[1:n] xieq = x[n:n + nr] gammaeq = x[n + nr:n + nr + n] ionic_str = x[n + nr + n].item() # calculate neq for all components n0_mm0 = (neq[0] * mm_0).item() meq[0] = 1 / mm_0 neq = meq * n0_mm0 m0_ref = 1 / 1000.0 # ref. 1mol/kgsolvent conv. to mol/gsolvent ionic_str_adim = ionic_str / m0_ref sqrt_ionic_str_adim = np.sqrt(ionic_str_adim) diag_quotient = np.diagflat( np.prod( np.power( np.multiply(gammaeq, meq / m0_ref), nu_ij), 0) ) result = np.matrix( np.zeros([n + nr + n + 1, n + nr + n + 1], dtype=float) ) result[0:n, 0:n] = \ np.diagflat( np.concatenate( [-1.0 * np.matrix([1]), -n0_mm0 * np.matrix(np.ones([n - 1, 1]))] ) ) result[1:n, 0] = -meq[1:] * mm_0 result[0:n, n:n + nr] = nu_ij result[n + nr:n + nr + n + 1, n + nr: n + nr + n + 1] = \ -1.0 * np.eye(n + 1) result[n:n + nr, 0:n] = \ diag_quotient * nu_ij.T * np.diagflat( np.concatenate( [
np.matrix(0.0)
numpy.matrix
import random import numpy as np from scipy.sparse import csc_matrix, lil_matrix def binary_search(array, x): """ Binary search :param array: array: Must be sorted :param x: value to search :return: position where it is found, -1 if not found """ lower = 0 upper = len(array) while lower < upper: # use < instead of <= mid = lower + (upper - lower) // 2 # // is the integer division val = array[mid] if x == val: return mid elif x > val: if lower == mid: break lower = mid elif x < val: upper = mid return -1 def slice(A: csc_matrix, rows, cols): """ CSC matrix sub-matrix view Only works if rows is sorted :param A: CSC matrix to get the view from :param rows: array of selected rows: must be sorted! to use the binary search :param cols: array of columns: should be sorted :return: """ n_rows = len(rows) n_cols = len(cols) n = 0 p = 0 new_val = np.empty(A.nnz) new_row_ind = np.empty(A.nnz) new_col_ptr = np.empty(n_cols + 1) new_col_ptr[p] = 0 for j in cols: # sliced columns for k in range(A.indptr[j], A.indptr[j + 1]): # columns from A found_idx = binary_search(rows, A.indices[k]) # look for the row index of A in the rows vector if found_idx > -1: new_val[n] = A.data[k] new_row_ind[n] = found_idx n += 1 p += 1 new_col_ptr[p] = n new_col_ptr[p] = n new_val = np.resize(new_val, n) new_row_ind = np.resize(new_row_ind, n) return csc_matrix((new_val, new_row_ind, new_col_ptr), shape=(n_rows, n_cols)) def csc_sub_matrix(Am, Annz, Ap, Ai, Ax, rows, cols): """ CSC matrix sub-matrix slice Works for sorted and unsorted versions of "rows", but "rows" cannot contain duplicates :param Am: number of rows :param Annz: number of non-zero entries :param Ap: Column pointers :param Ai: Row indices :param Ax: Data :param rows: array of selected rows: must be sorted! to use the binary search :param cols: array of columns: should be sorted :return: new_val, new_row_ind, new_col_ptr, n_rows, n_cols """ n_rows = len(rows) n_cols = len(cols) nnz = 0 p = 0 new_val = np.empty(Annz) new_row_ind = np.empty(Annz) new_col_ptr = np.empty(n_cols + 1) new_col_ptr[p] = 0 # generate lookup -> index lookup lookup = np.zeros(Am, dtype=int) lookup[rows] = np.arange(len(rows), dtype=int) for j in cols: # sliced columns for k in range(Ap[j], Ap[j + 1]): # columns from A # row index translation to the "rows" space i = Ai[k] ii = lookup[i] if rows[ii] == i: # entry found new_val[nnz] = Ax[k] new_row_ind[nnz] = ii nnz += 1 p += 1 new_col_ptr[p] = nnz new_col_ptr[p] = nnz new_val = np.resize(new_val, nnz) new_row_ind = np.resize(new_row_ind, nnz) return new_val, new_row_ind, new_col_ptr, n_rows, n_cols def slice2(A: csc_matrix, rows, cols): """ CSC matrix sub-matrix view Works for unsorted versions of rows, but rows cannot contain repetitions :param A: CSC matrix to get the view from :param rows: array of selected rows: must be sorted! to use the binary search :param cols: array of columns: should be sorted :return: """ new_val, new_row_ind, new_col_ptr, n_rows, n_cols = csc_sub_matrix(Am=A.shape[0], Annz=A.nnz, Ap=A.indptr, Ai=A.indices, Ax=A.data, rows=rows, cols=cols) return csc_matrix((new_val, new_row_ind, new_col_ptr), shape=(n_rows, n_cols)) def slice_r(A: csc_matrix, rows): """ CSC matrix sub-matrix view :param A: CSC matrix to get the view from :param rows: array of selected rows: must be sorted! to use the binary search :return: """ n_rows = len(rows) n_cols = A.shape[1] n = 0 p = 0 new_val =
np.empty(A.nnz)
numpy.empty
from io import FileIO import numpy as np from scipy import ndimage from matplotlib import pyplot as plt import yaml import csv from PIL import Image import ReferenceModification.LibFunctions as lib class TrackMap: def __init__(self, map_name) -> None: self.map_name = map_name # map info self.resolution = None self.origin = None self.n_obs = None self.map_height = None self.map_width = None self.start_pose = None self.obs_size = None self.end_goal = None self.map_img = None self.dt_img = None self.obs_img = None #TODO: combine to single image with dt for faster scan self.load_map() self.ss = None self.wpts = None self.t_pts = None self.nvecs = None self.ws = None self.ref_pts = None # std wpts that aren't expanded self.ss_normal = None # not expanded self.diffs = None self.l2s = None try: # raise FileNotFoundError self._load_csv_track() except FileNotFoundError: print(f"Problem Loading map - generate new one") def load_map(self): file_name = 'maps/' + self.map_name + '.yaml' with open(file_name) as file: documents = yaml.full_load(file) yaml_file = dict(documents.items()) try: self.resolution = yaml_file['resolution'] self.origin = yaml_file['origin'] self.n_obs = yaml_file['n_obs'] self.obs_size = yaml_file['obs_size'] map_img_path = 'maps/' + yaml_file['image'] self.start_pose = np.array(yaml_file['start_pose']) except Exception as e: print(f"Problem loading, check key: {e}") raise FileIO("Problem loading map yaml file") self.end_goal = self.start_pose[0:2] self.map_img = np.array(Image.open(map_img_path).transpose(Image.FLIP_TOP_BOTTOM)) self.map_img = self.map_img.astype(np.float64) if len(self.map_img.shape) == 3: self.map_img = self.map_img[:, :, 0] self.obs_img =
np.zeros_like(self.map_img)
numpy.zeros_like
import os, sys, math import torch import matplotlib.pyplot as plt def convert_grid2prob(grid, threshold=0.1, temperature=1): threshold = torch.max(grid) - threshold*(torch.max(grid)-torch.min(grid)) grid[grid>threshold] = torch.tensor(float('inf')) prob = torch.exp(-temperature*grid) / torch.sum(torch.exp(-temperature*grid)) return prob def convert_coords2px(coords, x_range, y_range, x_max_px, y_max_px, y_flip=False): if not isinstance(x_range, (tuple, list)): x_range = (0, x_range) if not isinstance(y_range, (tuple, list)): y_range = (0, y_range) x_ratio_coords2idx = x_max_px / (x_range[1]-x_range[0]) y_ratio_coords2idx = y_max_px / (y_range[1]-y_range[0]) px_idx_x = coords[:,0]*x_ratio_coords2idx if y_flip: px_idx_y = y_max_px-coords[:,1]*y_ratio_coords2idx else: px_idx_y = coords[:,1]*y_ratio_coords2idx px_idx_x[px_idx_x>=x_max_px] = x_max_px-1 px_idx_y[px_idx_y>=y_max_px] = y_max_px-1 px_idx_x[px_idx_x<0] = 0 px_idx_y[px_idx_y<0] = 0 px_idx = torch.stack((px_idx_x, px_idx_y), dim=1) return px_idx.int() def convert_px2cell(pxs, x_grid, y_grid, device='cuda'): # pixel to grid cell index cell_idx = torch.zeros_like(pxs) for i in range(pxs.shape[0]): cell_idx[i,0] = torch.where( pxs[i,0]>=torch.tensor(x_grid).to(device) )[0][-1] cell_idx[i,1] = torch.where( pxs[i,1]>=torch.tensor(y_grid).to(device) )[0][-1] return cell_idx.int() def get_weight(grid, index, sigma=1, rho=0): # grid is HxW # index is a pair of numbers # return weight in [0,1] grid = grid.cpu() index = index.cpu() if sigma <= 0: # one-hot weight = torch.zeros_like(grid) weight[index[1],index[0]] = 1 return weight if not isinstance(sigma, (tuple, list)): sigma = (sigma, sigma) sigma_x, sigma_y = sigma[0], sigma[1] x = torch.arange(0, grid.shape[0]) y = torch.arange(0, grid.shape[1]) x, y = torch.meshgrid(x, y) in_exp = -1/(2*(1-rho**2)) * ((x-index[1])**2/(sigma_x**2) + (y-index[0])**2/(sigma_y**2) - 2*rho*(x-index[0])/(sigma_x)*(y-index[1])/(sigma_y)) z = 1/(2*math.pi*sigma_x*sigma_y*math.sqrt(1-rho**2)) * torch.exp(in_exp) weight = z/z.max() weight[weight<0.1] = 0 return weight def loss_nll(data, label, device='cuda'): # data is the energy grid, label should be the index (i,j) meaning which grid to choose # data - BxCxHxW # label - BxC weight = torch.tensor([]).to(device) # in batch for i in range(data.shape[0]): w = get_weight(data[i,0,:,:], label[i,:]) weight = torch.cat((weight, w.unsqueeze(0).to(device))) # Gaussian fashion [CxHxW] numerator_in_log = torch.logsumexp(-data+torch.log(weight.unsqueeze(1)), dim=(2,3)) denominator_in_log = torch.logsumexp(-data, dim=(2,3)) l2 = torch.sum(torch.pow(data,2),dim=(2,3)) / (data.shape[2]*data.shape[3]) nll = - numerator_in_log + denominator_in_log + 0.00*l2 return torch.mean(nll) def loss_mse(data, labels): # for batch # data, labels - BxMxC squared_diff = torch.square(data-labels) squared_sum = torch.sum(squared_diff, dim=2) # BxM loss = squared_sum/data.shape[0] # BxM return loss def loss_msle(data, labels): # for batch # data, labels - BxMxC squared_diff = torch.square(torch.log(data)-torch.log(labels)) squared_sum = torch.sum(squared_diff, dim=2) # BxM loss = squared_sum/data.shape[0] # BxM return loss def loss_mae(data, labels): # for batch # data, labels - BxMxC abs_diff = torch.abs(data-labels) abs_sum = torch.sum(abs_diff, dim=2) # BxM loss = abs_sum/data.shape[0] # BxM return loss if __name__ == '__main__': import numpy as np from pathlib import Path from torchvision import transforms sys.path.append(str(Path(__file__).resolve().parents[1])) from data_handle.data_handler import ToTensor, Rescale from data_handle.data_handler import ImageStackDataset, DataHandler project_dir = Path(__file__).resolve().parents[2] data_dir = os.path.join(project_dir, 'Data/MAD_1n1e') csv_path = os.path.join(project_dir, 'Data/MAD_1n1e/all_data.csv') composed = transforms.Compose([Rescale((200,200), tolabel=False), ToTensor()]) dataset = ImageStackDataset(csv_path=csv_path, root_dir=data_dir, channel_per_image=1, transform=composed, T_channel=False) myDH = DataHandler(dataset, batch_size=2, shuffle=False, validation_prop=0.2, validation_cache=5) img = torch.cat((dataset[0]['image'].unsqueeze(0), dataset[1]['image'].unsqueeze(0)), dim=0) # BxCxHxW label = torch.cat((dataset[0]['label'].unsqueeze(0), dataset[1]['label'].unsqueeze(0)), dim=0) print(img.shape) print(label) x_grid =
np.arange(0, 201, 8)
numpy.arange
import numpy as np from itertools import product from itertools import permutations import matplotlib.pyplot as plt import pickle import os import stimulus import parameters import analysis class Motifs: def __init__(self, data_dir, file_prefix, N = None): self.motifs = {} self.motif_sizes = [2,3,4] data_files = os.listdir(data_dir) for f in data_files: if f.startswith(file_prefix): print('Processing ', f) self.current_filename = f W, v = self.make_matrix(data_dir + f, 'elim_lesion', N) print(type(W)) if type(W) is list: for i,w1 in enumerate(W): self.find_motifs(w1, v) else: self.find_motifs(W, v) self.print_motif_list() def make_matrix(self, filename, method, N): x = pickle.load(open(filename, 'rb')) beh_threshold = 0.1 val_th = 0.1 ind_accurate = np.where(np.array(x['accuracy_hist']) > 0.98)[0] #N = np.argmax(ind_accurate) #N = 6 print('N = ', N) if method == 'elim_lesion' or method == 'elim': parameters.update_parameters(x['par']) s = stimulus.Stimulus() trial_info = s.generate_trial() if method == 'lesion': significant_weights_rnn = x['model_performance']['accuracy'][-1] - x['lesion_accuracy_rnn'][0,:,:] > beh_threshold significant_weights_out = x['model_performance']['accuracy'][-1] - x['lesion_accuracy_out'][0,:,:] > beh_threshold v = np.array([0]*x['parameters']['num_exc_units'] + [1]*x['parameters']['num_inh_units'] \ + [2]*x['parameters']['n_output']) W = np.vstack((significant_weights_rnn, significant_weights_out)) d = W.shape[0] - W.shape[1] W = np.hstack((W, np.zeros((W.shape[0], d)))) elif method == 'elim': num_units = 50 - N w1 = np.zeros((num_units, num_units)) w2 = np.zeros((3, num_units)) ind = np.where(x['gate_hist'][N]>0)[0] for i in range(num_units): for j in range(num_units): w1[i,j] = x['weights_hist'][N]['w_rnn'][ind[i], ind[j]] > val_th for j in range(3): w2[j,i] = x['weights_hist'][N]['w_out'][j, ind[i]] > val_th n_exc = int(np.sum(x['gate_hist'][N][:x['par']['num_exc']])) n_inh = int(np.sum(x['gate_hist'][N][x['par']['num_exc']:])) v = np.array([0]*n_exc + [1]*n_inh + [2]*x['par']['n_output']) W = np.vstack((w1, w2)) d = W.shape[0] - W.shape[1] W = np.hstack((W, np.zeros((W.shape[0], d)))) elif method == 'elim_lesion': num_units = 50 - N r = analysis.lesion_weights(trial_info, x['par']['h_init'], x['par']['syn_x_init'], x['par']['syn_u_init'], \ x['weights_hist'][N], x['gate_hist'][N]) #plt.imshow(np.squeeze(r['lesion_accuracy_rnn']), aspect='auto', interpolation = 'none') #plt.colorbar() #plt.show() w1_full = np.tile(x['accuracy_hist'][N],(x['par']['n_hidden'],x['par']['n_hidden'])) - np.squeeze(r['lesion_accuracy_rnn']) > beh_threshold w2_full = np.tile(x['accuracy_hist'][N],(x['par']['n_output'],x['par']['n_hidden'])) - np.squeeze(r['lesion_accuracy_out']) > beh_threshold w1 = np.zeros((num_units, num_units)) w2 = np.zeros((3, num_units)) ind = np.where(x['gate_hist'][N]>0)[0] for i in range(num_units): for j in range(num_units): w1[i,j] = w1_full[ind[i], ind[j]] for j in range(3): w2[j,i] = w2_full[j, ind[i]] #plt.imshow(w1, aspect='auto', interpolation = 'none') #plt.colorbar() #plt.show() print('accuracy ', x['accuracy_hist'][N]) n_exc = int(np.sum(x['gate_hist'][N][:x['par']['num_exc']])) n_inh = int(np.sum(x['gate_hist'][N][x['par']['num_exc']:])) v = np.array([0]*n_exc + [1]*n_inh + [2]*x['par']['n_output']) W = np.vstack((w1, w2)) d = W.shape[0] - W.shape[1] W = np.hstack((W, np.zeros((W.shape[0], d)))) plt.imshow(W, aspect='auto', interpolation = 'none') plt.colorbar() plt.show() print(v) elif method == 'stacked': W = [] for i in range(x['W_rnn'].shape[0]): w1 = np.reshape(x['W_rnn'][i,:], (50,50))>0.2 w2 = np.reshape(x['W_out'][i,:], (3,50))>0.2 v = np.array([0]*40 + [1]*10 + [2]*3) W1 = np.vstack((w1, w2)) d = W1.shape[0] - W1.shape[1] W1 = np.hstack((W1, np.zeros((W1.shape[0], d)))) W.append(W1) return W, v def connection_probs(self): unique_labels = np.unique(self.v).tolist() # [Inhibitory, Excitatory, Output] N = len(unique_labels) total = np.zeros([N,N], dtype=np.float32) connection = np.zeros([N,N], dtype=np.float32) for (i, v_in), (j, v_out) in product(enumerate(input_labels), enumerate(output_labels)): l_in = unique_labels.index(v_in) l_out = unique_labels.index(v_out) if i != j: total[l_in, l_out] += 1 if self.W[j,i] > 0: connection[l_in, l_out] += 1 self.p_connection = np.zeros((N,N), dtype = np.float32) for n1, n2 in product(range(N), range(N)): self.p_connection[n1, n2] = connection[n1, n2]/total[n1,n2] if total[n1,n2] != 0 else -1 def find_motifs(self, W ,v): W, v = self.prune_network(W, v) for i in self.motif_sizes: self.find_motif_set_size(W, v, i) def return_motifs(self): return self.motifs def find_motif_set_size(self,W, v, c): N = W.shape[0] for i0 in range(N): ind0 = np.where((W[:, i0] > 0) + (W[i0, :] > 0))[0] for i1 in np.setdiff1d(ind0, i0): if c == 2: self.motif_properties(W, v, [i0, i1]) else: ind1 = np.where((W[:, i1] > 0) + (W[i1, :] > 0))[0] for i2 in np.setdiff1d(ind1,[i0,i1]): if c == 3: self.motif_properties(W, v, [i0, i1, i2]) else: ind2 = np.where((W[:, i2] > 0) + (W[i2, :] > 0))[0] for i3 in np.setdiff1d(ind2,[i0,i1,i2]): if c == 4: self.motif_properties(W, v, [i0, i1, i2, i3]) else: ind3 = np.where((W[:, i3] > 0) + (W[i3, :] > 0))[0] for i4 in np.setdiff1d(ind3,[i0,i1,i2,i3]): if c == 5: self.motif_properties(W, v, [i0, i1, i2, i3, i4]) else: ind4 =
np.where((W[:, i4] > 0) + (W[i4, :] > 0))
numpy.where
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ["MKL_THREADING_LAYER"] = "GNU" os.environ["CUDA_VISIBLE_DEVICES"] = "3" import numpy as np import numpy.random as npr import tensorflow as tf import pickle import sys import argparse import traceback #my imports from pddm.policies.policy_random import Policy_Random from pddm.utils.helper_funcs import * from pddm.regressors.dynamics_model import Dyn_Model from pddm.policies.mpc_rollout import MPCRollout from pddm.utils.loader import Loader from pddm.utils.saver import Saver from pddm.utils.data_processor import DataProcessor from pddm.utils.data_structures import * from pddm.utils.convert_to_parser_args import convert_to_parser_args from pddm.utils import config_reader ##############added by Hamada########## from pddm.utils.utils import eei_inverted_pendulum #from pddm.palameter.palameter SCRIPT_DIR = os.path.dirname(__file__) def run_job(args, simulation_version,control_delta,reward_type,use_different_env,save_dir=None): # Continue training from an existing iteration if args.continue_run>-1: save_dir = os.path.join(SCRIPT_DIR, args.continue_run_filepath) tf.reset_default_graph() with tf.Session(config=get_gpu_config(args.use_gpu, args.gpu_frac)) as sess: ############################################## ### initialize some commonly used parameters (from args) ############################################## env_name = args.env_name continue_run = args.continue_run K = args.K num_iters = args.num_iters num_trajectories_per_iter = args.num_trajectories_per_iter horizon = args.horizon ### set seeds npr.seed(args.seed) tf.set_random_seed(args.seed) ####################### ### hardcoded args ####################### ### data types args.tf_datatype = tf.float32 args.np_datatype = np.float32 ### supervised learning noise, added to the training dataset args.noiseToSignal = 0.01 ### these are for *during* MPC rollouts, # they allow you to run the H-step candidate actions on the real dynamics # and compare the model's predicted outcomes vs. the true outcomes execute_sideRollouts = False plot_sideRollouts = False ######################################## ### create loader, env, rand policy ######################################## loader = Loader(save_dir) env, dt_from_xml = create_env(env_name) if use_different_env: if env_name=="pddm_vreacher-v0": differnt_env, dt_from_xml = create_env('pddm_vreacher_ngr-v0') elif env_name=="pddm_vreacher-v11": differnt_env, dt_from_xml = create_env('pddm_vreacher_ngr-v11') elif env_name == "pddm_vreacher-v14": differnt_env, dt_from_xml = create_env('pddm_vreacher_ngr-v14') elif env_name == "pddm_vreacher-v214": differnt_env, dt_from_xml = create_env('pddm_vreacher_ngr-v214') elif env_name == "pddm_cheetah-v0": differnt_env, dt_from_xml = create_env('pddm_cheetah_cgr-v0') elif env_name == "pddm_cheetah-v2": differnt_env, dt_from_xml = create_env('pddm_cheetah_cgr-v2') elif env_name == "pddm_cheetah-v6": differnt_env, dt_from_xml = create_env('pddm_cheetah_cgr-v6') elif env_name == "pddm_cheetah_pre-v2": differnt_env, dt_from_xml = create_env('pddm_cheetah_pre_cgr-v2') elif env_name == "pddm_vreacher_ngr-v214": differnt_env, dt_from_xml = create_env('pddm_vreacher-v214') elif env_name == "pddm_v4reacher-v4": differnt_env, dt_from_xml = create_env('pddm_v4reacher_ngr-v4') #env.env.env.render() args.dt_from_xml = dt_from_xml random_policy = Policy_Random(env.env) if use_different_env: random_policy_diff = Policy_Random(differnt_env.env) ##hamada added ### set seeds #env.env.env.seed(args.seed) #doing a render here somehow allows it to not produce a seg fault error later when visualizing if args.visualize_MPC_rollout: render_env(env) render_stop(env) print("simulation frame skip and dt check {} and {} ".format(env.env.env.frame_skip,env.env.env.dt)) ################################################# ### initialize or load in info ################################################# #check for a variable which indicates that we should duplicate each data point #e.g., for baoding, since ballA/B are interchangeable, we store as 2 different points if 'duplicateData_switchObjs' in dir(env.unwrapped_env): duplicateData_switchObjs = True indices_for_switching = [env.unwrapped_env.objInfo_start1, env.unwrapped_env.objInfo_start2, env.unwrapped_env.targetInfo_start1, env.unwrapped_env.targetInfo_start2] else: duplicateData_switchObjs = False indices_for_switching=[] #initialize data processor data_processor = DataProcessor(args, duplicateData_switchObjs, indices_for_switching) #start a fresh run if continue_run==-1: #random training/validation data if args.load_existing_random_data: rollouts_trainRand, rollouts_valRand = loader.load_initialData() else: """#training rollouts_trainRand = collect_random_rollouts( env, random_policy, args.num_rand_rollouts_train, args.rand_rollout_length, dt_from_xml, args) #validation rollouts_valRand = collect_random_rollouts( env, random_policy, args.num_rand_rollouts_val, args.rand_rollout_length, dt_from_xml, args)""" if use_different_env: print("use_different_env") # training rollouts_trainRand = collect_random_rollouts( env, random_policy, args.num_rand_rollouts_train, args.rand_rollout_length, dt_from_xml, args) # validation rollouts_valRand = collect_random_rollouts( env, random_policy, args.num_rand_rollouts_val, args.rand_rollout_length, dt_from_xml, args) # convert (rollouts --> dataset) dataset_trainRand = data_processor.convertRolloutsToDatasets( rollouts_trainRand) dataset_valRand = data_processor.convertRolloutsToDatasets( rollouts_valRand) ####for different env # training different env rollouts_trainRand_diff = collect_random_rollouts( differnt_env, random_policy_diff, args.num_rand_rollouts_train, args.rand_rollout_length, dt_from_xml, args) # validation different env rollouts_valRand_diff = collect_random_rollouts( differnt_env, random_policy_diff, args.num_rand_rollouts_val, args.rand_rollout_length, dt_from_xml, args) # convert (rollouts --> dataset) dataset_trainRand_diff = data_processor.convertRolloutsToDatasets( rollouts_trainRand_diff) dataset_valRand_diff = data_processor.convertRolloutsToDatasets( rollouts_valRand_diff) # concat this dataset with the existing dataset_trainRand dataset_trainRand = concat_datasets(dataset_trainRand, dataset_trainRand_diff) dataset_valRand = concat_datasets(dataset_valRand, dataset_valRand_diff) else: #default rollouts_trainRand = collect_random_rollouts( env, random_policy, args.num_rand_rollouts_train, args.rand_rollout_length, dt_from_xml, args) # validation rollouts_valRand = collect_random_rollouts( env, random_policy, args.num_rand_rollouts_val, args.rand_rollout_length, dt_from_xml, args) # convert (rollouts --> dataset) dataset_trainRand = data_processor.convertRolloutsToDatasets( rollouts_trainRand) dataset_valRand = data_processor.convertRolloutsToDatasets( rollouts_valRand) #onPol train/val data dataset_trainOnPol = Dataset() rollouts_trainOnPol = [] rollouts_valOnPol = [] #lists for saving trainingLoss_perIter = [] rew_perIter = [] scores_perIter = [] trainingData_perIter = [] if simulation_version=="inverted_pendulum" or simulation_version=="reacher": EEIss_perIter=[] ERss_perIter = [] ENEss_perIter = [] if use_different_env: rew_perIter_diff = [] scores_perIter_diff = [] #initialize counter counter = 0 #continue from an existing run else: #load data iter_data = loader.load_iter(continue_run-1) #random data rollouts_trainRand, rollouts_valRand = loader.load_initialData() #onPol data rollouts_trainOnPol = iter_data.train_rollouts_onPol rollouts_valOnPol = iter_data.val_rollouts_onPol #convert (rollouts --> dataset) dataset_trainRand = data_processor.convertRolloutsToDatasets( rollouts_trainRand) dataset_valRand = data_processor.convertRolloutsToDatasets( rollouts_valRand) #lists for saving trainingLoss_perIter = iter_data.training_losses rew_perIter = iter_data.rollouts_rewardsPerIter scores_perIter = iter_data.rollouts_scoresPerIter trainingData_perIter = iter_data.training_numData if simulation_version=="inverted_pendulum" or simulation_version=="reacher": EEIss_perIter=iter_data.rollouts_EEIPerIter ERss_perIter = iter_data.rollouts_ERPerIter ENEss_perIter = iter_data.rollouts_ENEPerIter #initialize counter counter = continue_run #how many iters to train for num_iters += continue_run ### check data dims inputSize, outputSize, acSize = check_dims(dataset_trainRand, env) ### amount of data numData_train_rand = get_num_data(rollouts_trainRand) if use_different_env: numData_train_rand = get_num_data(rollouts_trainRand)+get_num_data(rollouts_trainRand_diff) ############################################## ### dynamics model + controller ############################################## dyn_models = Dyn_Model(inputSize, outputSize, acSize, sess, params=args) mpc_rollout = MPCRollout(env, dyn_models, random_policy, execute_sideRollouts, plot_sideRollouts, args,save_dir,counter,simulation_version,control_delta,reward_type) if use_different_env: mpc_rollout_diff = MPCRollout(differnt_env, dyn_models, random_policy, execute_sideRollouts, plot_sideRollouts, args, save_dir, counter,simulation_version, control_delta, reward_type) ### init TF variables sess.run(tf.global_variables_initializer()) ############################################## ### saver ############################################## saver = Saver(save_dir, sess) if use_different_env: print("use_different_env") rollouts_valRand = rollouts_valRand + rollouts_valRand_diff rollouts_trainRand = rollouts_trainRand + rollouts_trainRand_diff saver.save_initialData(args, rollouts_trainRand, rollouts_valRand) ############################################## ### THE MAIN LOOP ############################################## firstTime = True rollouts_info_prevIter, list_mpes, list_scores, list_rewards = None, None, None, None while counter < num_iters: #init vars for this iteration saver_data = DataPerIter() saver.iter_num = counter #onPolicy validation doesn't exist yet, so just make it same as rand validation if counter==0: rollouts_valOnPol = rollouts_valRand #convert (rollouts --> dataset) dataset_trainOnPol = data_processor.convertRolloutsToDatasets( rollouts_trainOnPol) dataset_valOnPol = data_processor.convertRolloutsToDatasets( rollouts_valOnPol) # amount of data numData_train_onPol = get_num_data(rollouts_trainOnPol) # mean/std of all data data_processor.update_stats(dyn_models, dataset_trainRand, dataset_trainOnPol) #preprocess datasets to mean0/std1 + clip actions preprocessed_data_trainRand = data_processor.preprocess_data( dataset_trainRand) preprocessed_data_valRand = data_processor.preprocess_data( dataset_valRand) preprocessed_data_trainOnPol = data_processor.preprocess_data( dataset_trainOnPol) preprocessed_data_valOnPol = data_processor.preprocess_data( dataset_valOnPol) #convert datasets (x,y,z) --> training sets (inp, outp) inputs, outputs = data_processor.xyz_to_inpOutp( preprocessed_data_trainRand) inputs_val, outputs_val = data_processor.xyz_to_inpOutp( preprocessed_data_valRand) inputs_onPol, outputs_onPol = data_processor.xyz_to_inpOutp( preprocessed_data_trainOnPol) inputs_val_onPol, outputs_val_onPol = data_processor.xyz_to_inpOutp( preprocessed_data_valOnPol) ##################################### ## Training the model ##################################### if (not (args.print_minimal)): print("\n#####################################") print("Training the dynamics model..... iteration ", counter) print("#####################################\n") print(" amount of random data: ", numData_train_rand) print(" amount of onPol: data: ", numData_train_onPol) ### copy train_onPol until it's big enough if len(inputs_onPol)>0: while inputs_onPol.shape[0]<inputs.shape[0]: inputs_onPol = np.concatenate([inputs_onPol, inputs_onPol]) outputs_onPol = np.concatenate( [outputs_onPol, outputs_onPol]) ### copy val_onPol until it's big enough while inputs_val_onPol.shape[0]<args.batchsize: inputs_val_onPol = np.concatenate( [inputs_val_onPol, inputs_val_onPol], 0) outputs_val_onPol = np.concatenate( [outputs_val_onPol, outputs_val_onPol], 0) #re-initialize all vars (randomly) if training from scratch ##restore model if doing continue_run if args.warmstart_training: if firstTime: if continue_run>0: restore_path = save_dir + '/models/model_aggIter' + str(continue_run-1) + '.ckpt' saver.tf_saver.restore(sess, restore_path) print("\n\nModel restored from ", restore_path, "\n\n") else: sess.run(tf.global_variables_initializer()) #number of training epochs if counter==0: nEpoch_use = args.nEpoch_init else: nEpoch_use = args.nEpoch #train model or restore model if args.always_use_savedModel: if continue_run>0: restore_path = save_dir + '/models/model_aggIter' + str(continue_run-1) + '.ckpt' else: restore_path = save_dir + '/models/finalModel.ckpt' saver.tf_saver.restore(sess, restore_path) print("\n\nModel restored from ", restore_path, "\n\n") #empty vars, for saving training_loss = 0 training_lists_to_save = dict( training_loss_list = 0, val_loss_list_rand = 0, val_loss_list_onPol = 0, val_loss_list_xaxis = 0, rand_loss_list = 0, onPol_loss_list = 0,) else: ## train model training_loss, training_lists_to_save = dyn_models.train( inputs, outputs, inputs_onPol, outputs_onPol, nEpoch_use, inputs_val=inputs_val, outputs_val=outputs_val, inputs_val_onPol=inputs_val_onPol, outputs_val_onPol=outputs_val_onPol) #saving rollout info rollouts_info = [] list_rewards = [] list_scores = [] list_mpes = [] list_EEIss =[] list_ERss = [] list_ENEss = [] list_rewards_diff=[] list_scores_diff=[] if not args.print_minimal: print("\n#####################################") print("performing on-policy MPC rollouts... iter ", counter) print("#####################################\n") for rollout_num in range(num_trajectories_per_iter): ########################################### ########## perform 1 MPC rollout ########################################### if not args.print_minimal: print("\n####################### Performing MPC rollout #", rollout_num) #reset env randomly starting_observation, starting_state = env.reset(return_start_state=True) rollout_info = mpc_rollout.perform_rollout( starting_state, starting_observation, counter, rollout_num, controller_type=args.controller_type, take_exploratory_actions=False) if use_different_env: rollout_info_diff = mpc_rollout_diff.perform_rollout( starting_state, starting_observation, counter, rollout_num, controller_type=args.controller_type, take_exploratory_actions=False) ################added by Hamada#### # Note: can sometimes set take_exploratory_actions=True # in order to use ensemble disagreement for exploration ########################################### ####### save rollout info (if long enough) ########################################### if len(rollout_info['observations']) > K: list_rewards.append(rollout_info['rollout_rewardTotal']) list_scores.append(rollout_info['rollout_meanFinalScore']) list_mpes.append(np.mean(rollout_info['mpe_1step'])) rollouts_info.append(rollout_info) if use_different_env: rollouts_info.append(rollout_info_diff) list_rewards_diff.append(rollout_info_diff['rollout_rewardTotal']) list_scores_diff.append(rollout_info_diff['rollout_meanFinalScore']) if simulation_version == "inverted_pendulum" or simulation_version == "reacher" : list_EEIss.append(rollout_info['Final_EEI']) list_ERss.append(rollout_info['Final_ER']) list_ENEss.append(rollout_info['Final_ENE']) rollouts_info_prevIter = rollouts_info.copy() # visualize, if desired if args.visualize_MPC_rollout: print("\n\nPAUSED FOR VISUALIZATION. Continue when ready to visualize.") import IPython IPython.embed() for vis_index in range(len(rollouts_info)): visualize_rendering(rollouts_info[vis_index], env, args) ######################################################### ### aggregate some random rollouts into training data ######################################################### num_rand_rollouts = 5 rollouts_rand = collect_random_rollouts( env, random_policy, num_rand_rollouts, args.rollout_length, dt_from_xml, args) #convert (rollouts --> dataset) dataset_rand_new = data_processor.convertRolloutsToDatasets( rollouts_rand) #concat this dataset with the existing dataset_trainRand dataset_trainRand = concat_datasets(dataset_trainRand, dataset_rand_new) if use_different_env: rollouts_rand_diff = collect_random_rollouts( differnt_env, random_policy_diff, num_rand_rollouts, args.rollout_length, dt_from_xml, args) # convert (rollouts --> dataset) dataset_rand_new_diff = data_processor.convertRolloutsToDatasets(rollouts_rand_diff) # concat this dataset with the existing dataset_trainRand dataset_trainRand = concat_datasets(dataset_trainRand, dataset_rand_new_diff) ######################################################### ### aggregate MPC rollouts into train/val ######################################################### num_mpc_rollouts = len(rollouts_info) print("length MPC rollout {}".format(num_mpc_rollouts)) rollouts_train = [] rollouts_val = [] for i in range(num_mpc_rollouts): rollout = Rollout(rollouts_info[i]['observations'], rollouts_info[i]['actions'], rollouts_info[i]['rollout_rewardTotal'], rollouts_info[i]['starting_state']) if i<int(num_mpc_rollouts * 0.9): rollouts_train.append(rollout) else: rollouts_val.append(rollout) #aggregate into training data if counter==0: rollouts_valOnPol = [] rollouts_trainOnPol = rollouts_trainOnPol + rollouts_train rollouts_valOnPol = rollouts_valOnPol + rollouts_val ######################################################### ### save everything about this iter of model training ######################################################### trainingData_perIter.append(numData_train_rand + numData_train_onPol) trainingLoss_perIter.append(training_loss) ### stage relevant info for saving saver_data.training_numData = trainingData_perIter saver_data.training_losses = trainingLoss_perIter saver_data.training_lists_to_save = training_lists_to_save # Note: the on-policy rollouts include curr iter's rollouts # (so next iter can be directly trained on these) saver_data.train_rollouts_onPol = rollouts_trainOnPol saver_data.val_rollouts_onPol = rollouts_valOnPol saver_data.normalization_data = data_processor.get_normalization_data() saver_data.counter = counter ### save all info from this training iteration saver.save_model() saver.save_training_info(saver_data) ######################################################### ### save everything about this iter of MPC rollouts ######################################################### # append onto rewards/scores rew_perIter.append([np.mean(list_rewards), np.std(list_rewards)]) scores_perIter.append([np.mean(list_scores), np.std(list_scores)]) ##aded hamada if simulation_version=="inverted_pendulum" or simulation_version=="reacher": print("EEI {}".format(np.array(list_EEIss))) print("EEI shape {}".format(
np.array(list_EEIss)
numpy.array
#!/usr/bin/env python3 import os import glob import re import sys import math TIMEOUT = 100 # use cases and their directory names tests = [ "CP3-4.8.5", "CP1-4.8.5", "CP3-4.8.9", "CP1-4.8.9", "noSeqCon-CP3-4.8.5", "noSeqCon-CP1-4.8.5", "noSeqCon-CP3-4.8.9", "noSeqCon-CP1-4.8.9", "nolambda-CP3-4.8.5", "nolambda-CP1-4.8.5", "nolambda-CP3-4.8.9", "nolambda-CP1-4.8.9" ] loc_orig_5 = os.path.join('Logs_DLL_8.20', 'Logs_orig_4.8.5', '*.trace') loc_orig_9 = os.path.join('Logs_DLL_8.20', 'Logs_orig_4.8.9', '*.trace') loc_noseqcon_5 = os.path.join('Logs_DLL_8.20', 'Logs_noseqcon_4.8.5', '*.trace') loc_noseqcon_9 = os.path.join('Logs_DLL_8.20', 'Logs_noseqcon_4.8.9', '*.trace') loc_nolambda_5 = os.path.join('Logs_DLL_8.20', 'Logs_nolambda_4.8.5', '*.trace') loc_nolambda_9 = os.path.join('Logs_DLL_8.20', 'Logs_nolambda_4.8.9', '*.trace') file_orig_5 = glob.glob(loc_orig_5) file_orig_9 = glob.glob(loc_orig_9) file_noseqcon_5 = glob.glob(loc_noseqcon_5) file_noseqcon_9 = glob.glob(loc_noseqcon_9) file_nolambda_5 = glob.glob(loc_nolambda_5) file_nolambda_9 = glob.glob(loc_nolambda_9) allinfo_Expand = {} allinfo_Remove = {} allinfo_InsertAfter = {} allinfo_InsertBefore = {} def get_time (files, index): for f in files: outfile = open(f, 'r') data = outfile.readlines() outfile.close() for i in range(0, len(data)): if 'Verifying Impl$$_module.__default.Expand ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_Expand[tests[index]] = allinfo_Expand.get(tests[index], []) allinfo_Expand[tests[index]] += [float(time[0][0])] else: allinfo_Expand[tests[index+1]] = allinfo_Expand.get(tests[index+1], []) allinfo_Expand[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_Expand[tests[index]] = allinfo_Expand.get(tests[index], []) allinfo_Expand[tests[index]] += [float(TIMEOUT)] else: allinfo_Expand[tests[index+1]] = allinfo_Expand.get(tests[index+1], []) allinfo_Expand[tests[index+1]] += [float(TIMEOUT)] else: allinfo_Expand[tests[index]] = allinfo_Expand.get(tests[index], []) allinfo_Expand[tests[index+1]] = allinfo_Expand.get(tests[index+1], []) if 'Verifying Impl$$_module.__default.Remove ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_Remove[tests[index]] = allinfo_Remove.get(tests[index], []) allinfo_Remove[tests[index]] += [float(time[0][0])] else: allinfo_Remove[tests[index+1]] = allinfo_Remove.get(tests[index+1], []) allinfo_Remove[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_Remove[tests[index]] = allinfo_Remove.get(tests[index], []) allinfo_Remove[tests[index]] += [float(TIMEOUT)] else: allinfo_Remove[tests[index+1]] = allinfo_Remove.get(tests[index+1], []) allinfo_Remove[tests[index+1]] += [float(TIMEOUT)] else: allinfo_Remove[tests[index]] = allinfo_Remove.get(tests[index], []) allinfo_Remove[tests[index+1]] = allinfo_Remove.get(tests[index+1], []) if 'Verifying Impl$$_module.__default.InsertAfter ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_InsertAfter[tests[index]] = allinfo_InsertAfter.get(tests[index], []) allinfo_InsertAfter[tests[index]] += [float(time[0][0])] else: allinfo_InsertAfter[tests[index+1]] = allinfo_InsertAfter.get(tests[index+1], []) allinfo_InsertAfter[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_InsertAfter[tests[index]] = allinfo_InsertAfter.get(tests[index], []) allinfo_InsertAfter[tests[index]] += [float(TIMEOUT)] else: allinfo_InsertAfter[tests[index+1]] = allinfo_InsertAfter.get(tests[index+1], []) allinfo_InsertAfter[tests[index+1]] += [float(TIMEOUT)] else: allinfo_InsertAfter[tests[index]] = allinfo_InsertAfter.get(tests[index], []) allinfo_InsertAfter[tests[index+1]] = allinfo_InsertAfter.get(tests[index+1], []) if 'Verifying Impl$$_module.__default.InsertBefore ...' in data[i]: time = re.findall("\[([0-9.]*) s, ([0-9.]*) proof obligations\] ([a-z]+)", data[i + 1]) if len(time) > 0: if time[0][2] == "verified": if 'CP3' in f: allinfo_InsertBefore[tests[index]] = allinfo_InsertBefore.get(tests[index], []) allinfo_InsertBefore[tests[index]] += [float(time[0][0])] else: allinfo_InsertBefore[tests[index+1]] = allinfo_InsertBefore.get(tests[index+1], []) allinfo_InsertBefore[tests[index+1]] += [float(time[0][0])] else: if time[0][2] == "timed": if 'CP3' in f: allinfo_InsertBefore[tests[index]] = allinfo_InsertBefore.get(tests[index], []) allinfo_InsertBefore[tests[index]] += [float(TIMEOUT)] else: allinfo_InsertBefore[tests[index+1]] = allinfo_InsertBefore.get(tests[index+1], []) allinfo_InsertBefore[tests[index+1]] += [float(TIMEOUT)] else: allinfo_InsertBefore[tests[index]] = allinfo_InsertBefore.get(tests[index], []) allinfo_InsertBefore[tests[index+1]] = allinfo_InsertBefore.get(tests[index+1], []) get_time(file_orig_5, 0) get_time(file_orig_9, 2) get_time(file_noseqcon_5, 4) get_time(file_noseqcon_9, 6) get_time(file_nolambda_5, 8) get_time(file_nolambda_9, 10) # print(allinfo_Expand) # print(allinfo_Remove) # print(allinfo_InsertAfter) # print(allinfo_InsertBefore) # print a CSV def show_csv(allinfo, info): for test in tests: if test in allinfo: times = allinfo[test] print(test + ", " + info), for i in times: print(", " + str(i)), print ("\n"), # show_csv(allinfo_Expand, "Expand") # show_csv(allinfo_Remove, "Remove") # show_csv(allinfo_InsertAfter, "InsertAfter") # show_csv(allinfo_InsertBefore, "InsertBefore") import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.rcParams.update({'font.size': 20}) Expand_cp3_5 = np.array(allinfo_Expand[tests[0]]) Expand_cp1_5 = np.array(allinfo_Expand[tests[1]]) Expand_cp3_9 = np.array(allinfo_Expand[tests[2]]) Expand_cp1_9 = np.array(allinfo_Expand[tests[3]]) Expand_noseqcon_cp3_5 = np.array(allinfo_Expand[tests[4]]) Expand_noseqcon_cp1_5 = np.array(allinfo_Expand[tests[5]]) Expand_noseqcon_cp3_9 = np.array(allinfo_Expand[tests[6]]) Expand_noseqcon_cp1_9 = np.array(allinfo_Expand[tests[7]]) Expand_nolambda_cp3_5 = np.array(allinfo_Expand[tests[8]]) Expand_nolambda_cp1_5 = np.array(allinfo_Expand[tests[9]]) Expand_nolambda_cp3_9 = np.array(allinfo_Expand[tests[10]]) Expand_nolambda_cp1_9 = np.array(allinfo_Expand[tests[11]]) Expand_cp3_5_mean = np.mean(Expand_cp3_5) Expand_cp3_5_std = np.std(Expand_cp3_5) Expand_cp1_5_mean = np.mean(Expand_cp1_5) Expand_cp1_5_std = np.std(Expand_cp1_5) Expand_cp3_9_mean = np.mean(Expand_cp3_9) Expand_cp3_9_std = np.std(Expand_cp3_9) Expand_cp1_9_mean = np.mean(Expand_cp1_9) Expand_cp1_9_std = np.std(Expand_cp1_9) Expand_noseqcon_cp3_5_mean = np.mean(Expand_noseqcon_cp3_5) Expand_noseqcon_cp3_5_std = np.std(Expand_noseqcon_cp3_5) Expand_noseqcon_cp1_5_mean = np.mean(Expand_noseqcon_cp1_5) Expand_noseqcon_cp1_5_std = np.std(Expand_noseqcon_cp1_5) Expand_noseqcon_cp3_9_mean = np.mean(Expand_noseqcon_cp3_9) Expand_noseqcon_cp3_9_std = np.std(Expand_noseqcon_cp3_9) Expand_noseqcon_cp1_9_mean =
np.mean(Expand_noseqcon_cp1_9)
numpy.mean
from robot.ur_robot import URRobot from vision.realsense_d415_tcp import RealsenseD415TCP import utils.utils as utils import vision.utils as visionutils from utils.config_loader import ConfigLoader from datetime import datetime import numpy as np import cv2 import json import time from scipy import optimize import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import argparse import os class Configuration(object): def __init__(self, config_file): config = ConfigLoader.load(args.config_file) #creates a class which instance attributes are based on the config dictionary for k, v in config.items(): setattr(self, k, v) # Checkerboard size as a tuple. self.checkerboard_size = (self.checkerboard_size, self.checkerboard_size) self.reference_point_offset = np.array(self.reference_point_offset) self.tool_orientation = np.array(self.tool_orientation) self.workspace_limits = np.array(self.workspace_limits) @staticmethod def dump_sample_file(): config = { "calibration_type": "EYE_IN_HAND", "robot_config_file":"PATH/TO/FILE", "camera_config_file":"PATH/TO/FILE", "workspace_limits": [[-0.490, 0.390], [-0.645, -0.185], [0.462, 0.710]], "calib_grid_step": 0.05, "reference_point_offset": [[0.74550],[-0.00895],[0.04900], [1]], "tool_orientation": [1.226,-2.890,0.00], "checkerboard_size": 3 } with open('configurations/sample_configuration.json', 'w') as fp: json.dump(config, fp) def calibrate(config): # Construct 3D calibration grid across workspace gridspace_x = np.linspace(config.workspace_limits[0][0], config.workspace_limits[0][1], int(1 + (config.workspace_limits[0][1] - config.workspace_limits[0][0])/config.calib_grid_step)) gridspace_y = np.linspace(config.workspace_limits[1][0], config.workspace_limits[1][1], int(1 + (config.workspace_limits[1][1] - config.workspace_limits[1][0])/config.calib_grid_step)) gridspace_z = np.linspace(config.workspace_limits[2][0], config.workspace_limits[2][1], int(1 + (config.workspace_limits[2][1] - config.workspace_limits[2][0])/config.calib_grid_step)) calib_grid_x, calib_grid_y, calib_grid_z = np.meshgrid(gridspace_x, gridspace_y, gridspace_z) num_calib_grid_pts = calib_grid_x.shape[0]*calib_grid_x.shape[1]*calib_grid_x.shape[2] calib_grid_x.shape = (num_calib_grid_pts,1) calib_grid_y.shape = (num_calib_grid_pts,1) calib_grid_z.shape = (num_calib_grid_pts,1) calib_grid_pts = np.concatenate((calib_grid_x, calib_grid_y, calib_grid_z), axis=1) #measured_pts: points generated by sampling out of the config.workspace_limits[] + checkerboard offset from tool. # It is the position of the tool when taking a picture, ideally this is the position of the center of the checkerboard in robot world coordinates. # This is achieved easily when the camera is fixed and the robot moves the checkerboard in the image. # As the robot position + checkerboard offset from tool = the position of the center of the fixed checkerboard in robot world coordinates. measured_pts = [] #obseverved_pts: This is the position X,Y,Z in meters of the center of the checkerboard with respect to the origin of the camera in the camera world coordinates. observed_pts = [] #observed_pix: Pixel locations of the center of the checkerboard in the image. observed_pix = [] print(f'Going to calibrate in {num_calib_grid_pts} different points.') # Connect to the robot print('Connecting to robot...') robot = URRobot(config.robot_config_file) # Slow down robot to SAFE values robot.activate_safe_mode() robot.go_home() # Connect to the camera print('Connecting to camera...') camera = RealsenseD415TCP(config.camera_config_file) # Move robot to each calibration point in workspace print('Collecting data...') for calib_pt_idx in range(num_calib_grid_pts): tool_position = calib_grid_pts[calib_pt_idx,:] print('Calibration point: ', calib_pt_idx, '/', num_calib_grid_pts) robot.move_to_pose(tool_position, config.tool_orientation) time.sleep(1) # Wait for a coherent pair of frames: depth and color camera_color_img, camera_depth_img = camera.get_state() if not (camera_depth_img is None and camera_color_img is None): checkerboard_pix = visionutils.find_checkerboard(camera_color_img, config.checkerboard_size) if checkerboard_pix is not None: checkerboard_z = camera_depth_img[checkerboard_pix[1]][checkerboard_pix[0]] checkerboard_x = np.multiply(checkerboard_pix[0]-camera.intrinsics[0][2], checkerboard_z/camera.intrinsics[0][0]) checkerboard_y = np.multiply(checkerboard_pix[1]-camera.intrinsics[1][2], checkerboard_z/camera.intrinsics[1][1]) if checkerboard_z != 0: observed_pts.append([checkerboard_x, checkerboard_y, checkerboard_z]) observed_pix.append(checkerboard_pix) # Get current robot pose current_pose = robot.get_cartesian_pose() if config.calibration_type == "EYE_IN_HAND": rot_vec = np.array(current_pose) rot_vec.shape = (1,6) T_be = utils.V2T(rot_vec) invT_be = np.linalg.inv(T_be) # Save calibration point and observed checkerboard center checker2tool = np.dot(invT_be, config.reference_point_offset) checker2tool = checker2tool[:3, 0] measured_pts.append(checker2tool) print('Measured points: ', checker2tool) else: # "EYE_TO_HAND" tool_position = current_pose[:3] + config.reference_point_offset.flatten()[:3] measured_pts.append(tool_position) print('Measured points: ', tool_position) # Save calibration point and observed checkerboard center print('Observed points: ', [checkerboard_x,checkerboard_y,checkerboard_z]) print('Checkerboard pix: ', checkerboard_pix) else: print('checkerboard Z == 0') else: print('No checkerboard found') else: print('No depth or color frames') # Move robot back to home pose measured_pts = np.asarray(measured_pts) observed_pts = np.asarray(observed_pts) observed_pix = np.asarray(observed_pix) world2camera = np.eye(4) print('Total valid points: ', measured_pts.shape[0], '/', num_calib_grid_pts) # Estimate rigid transform with SVD (from <NAME>) def get_rigid_transform(A, B): assert len(A) == len(B) N = A.shape[0]; # Total points centroid_A = np.mean(A, axis=0) # Find centroids centroid_B = np.mean(B, axis=0) AA = A - np.tile(centroid_A, (N, 1)) # Centre the points BB = B - np.tile(centroid_B, (N, 1)) H = np.dot(np.transpose(AA), BB) # Dot is matrix multiplication for array U, S, Vt = np.linalg.svd(H) # Find the rotation matrix R R = np.dot(Vt.T, U.T) if np.linalg.det(R) < 0: # Special reflection case Vt[2,:] *= -1 R = np.dot(Vt.T, U.T) t = np.dot(-R, centroid_A.T) + centroid_B.T # Find the traslation t return R, t def get_rigid_transform_error(z_scale): nonlocal measured_pts, observed_pts, observed_pix, world2camera # Apply z offset and compute new observed points using camera intrinsics observed_z = observed_pts[:,2:] * z_scale observed_x = np.multiply(observed_pix[:,[0]]-camera.intrinsics[0][2],observed_z/camera.intrinsics[0][0]) observed_y = np.multiply(observed_pix[:,[1]]-camera.intrinsics[1][2],observed_z/camera.intrinsics[1][1]) new_observed_pts = np.concatenate((observed_x, observed_y, observed_z), axis=1) # Estimate rigid transform between measured points and new observed points R, t = get_rigid_transform(np.asarray(measured_pts), np.asarray(new_observed_pts)) t.shape = (3,1) world2camera = np.concatenate((np.concatenate((R, t), axis=1),np.array([[0, 0, 0, 1]])), axis=0) # Compute rigid transform error registered_pts = np.dot(R,np.transpose(measured_pts)) + np.tile(t,(1,measured_pts.shape[0])) error = np.transpose(registered_pts) - new_observed_pts error = np.sum(np.multiply(error,error)) rmse = np.sqrt(error/measured_pts.shape[0]) return rmse # Optimize z scale w.r.t. rigid transform error print('Calibrating...') z_scale_init = 1 optim_result = optimize.minimize(get_rigid_transform_error, np.asarray(z_scale_init), method='Nelder-Mead') camera_depth_offset = optim_result.x # Save camera optimized offset and camera pose now = datetime.now() date_time = now.strftime("%Y-%m-%d_%H:%M:%S") print('Saving...') path_dir = os.path.join(os.getcwd(), 'calibrations') if not os.path.exists(path_dir): os.makedirs(path_dir) np.savetxt('./calibrations/' + date_time + '_' + config.calibration_type + '_camera_depth_scale.txt', camera_depth_offset, delimiter=' ') get_rigid_transform_error(camera_depth_offset) camera_pose =
np.linalg.inv(world2camera)
numpy.linalg.inv
import numpy as np import os import inspect from scipy.interpolate import RectBivariateSpline from . import GP_matrix as GP class Emulator: """The Mira-Titan Universe emulator for the halo mass function. Attributes ----------------- param_limits : dictionary Lower and upper limits of the cosmological parameters. z_arr : array Redshifts of the emulator output. """ # Cosmology parameters param_names = ['Ommh2', 'Ombh2', 'Omnuh2', 'n_s', 'h', 'sigma_8', 'w_0', 'w_b'] param_limits = { 'Ommh2': (.12, .155), 'Ombh2': (.0215, .0235), 'Omnuh2': (0, .01), 'n_s': (.85, 1.05), 'h': (.55, .85), 'sigma_8': (.7, .9), 'w_0': (-1.3, -.7), 'w_b': (.3, 1.3), } # Emulator redshifts z_arr = np.array([2.02, 1.61, 1.01, 0.656, 0.434, 0.242, 0.101, 0.0]) z_arr_asc = z_arr[::-1] def __init__(self): """No arguments are required when initializing an `Emulator` instance. Upon initialization, a bunch of matrix operations are performed which takes a few seconds.""" data_path = os.path.join(os.path.dirname(os.path.abspath(inspect.stack()[0][1])), 'data') # Basis functions and PCA standardization parameters # They have different lengths so they are stored in separate files self.__PCA_means, self.__PCA_transform = [], [] for i in range(len(self.z_arr)): filename = os.path.join(data_path, 'PCA_mean_std_transform_%d.npy'%i) _tmp = np.load(filename) self.__PCA_means.append(_tmp[0,:]) self.__PCA_transform.append(_tmp[1:,:]) self.__GP_means = np.load(os.path.join(data_path, 'GP_params_mean.npy')) self.__GP_std = np.load(os.path.join(data_path, 'GP_params_std.npy')) self.__facs = np.load(os.path.join(data_path, 'facs.npy')) # GP input data params_design = np.load(os.path.join(data_path, 'params_design_w0wb.npy')) hyper_params = np.load(os.path.join(data_path, 'hyperparams.npy')) input_means = np.load(os.path.join(data_path, 'means.npy')) cov_mat_data = np.load(os.path.join(data_path, 'cov_n.npy')) N_PC = input_means.shape[2] self.__GPreg = [GP.GaussianProcess(params_design, input_means[z_id], cov_mat_data[z_id], hyper_params[z_id,:N_PC], hyper_params[z_id,N_PC:].reshape(N_PC,-1)) for z_id in range(len(self.z_arr))] def predict(self, requested_cosmology, z, m, get_errors=True, N_draw=1000): """Emulate the halo mass function dn/dlnM for the desired set of cosmology parameters, redshifts, and masses. :param requested_cosmology: The set of cosmology parameters for which the mass function is requested. The parameters are `Ommh2`, `Ombh2`, `Omnuh2`, `n_s`, `h`, `sigma_8`, `w_0`, `w_a`. :type requested_cosmology: dict :param z: The redshift(s) for which the mass function is requested. :type z: float or array :param m: The mass(es) for which the mass function is requested, in units [Msun/h]. :type z: float or array :param get_errors: Whether or not to compute error estimates (faster in the latter case). Default is `True`. :type get_errors: bool, optional :param N_draw: How many sample mass functions to draw when computing the error estimate. Applies only if `get_errors` is `True`. :type N_draw: int, optional Returns ------- HMF: array_like The mass function dN/dlnM in units[(h/Mpc)^3] and with shape [len(z), len(m)]. HMF_rel_err: array_like The relative error on dN/dlnM, with shape [len(z), len(m)]. Returns 0 if `get_errors` is `False`. For requested redshifts that are between the redshifts for which the underlying emulator is defined, the weighted errors from the neighboring redshifts are added in quadrature. """ # Validate requested z and m if np.any(z<0): raise ValueError("z must be >= 0") if np.any(z>self.z_arr_asc[-1]): raise ValueError("z must be <= 2.02") if np.any(m<1e13): raise ValueError("m must be >= 1e13") if np.any(m>1e16): raise ValueError("m must be <= 1e16") z = np.atleast_1d(z) m = np.atleast_1d(m) # Do we want error estimates? if not get_errors: N_draw = 0 # Call the actual emulator emu_dict = self.predict_raw_emu(requested_cosmology, N_draw=N_draw) # Set up interpolation grids HMF_interp_input = np.log(np.nextafter(0,1)) * np.ones((len(self.z_arr_asc), 3001)) for i,emu_z in enumerate(self.z_arr_asc): HMF_interp_input[i,:len(emu_dict[emu_z]['HMF'])] =
np.log(emu_dict[emu_z]['HMF'])
numpy.log
import os # os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = '1,3' import numpy as np import torch import time from tensorboardX import SummaryWriter from fastprogress import master_bar, progress_bar from torch.autograd import Variable from sklearn.utils.class_weight import compute_class_weight from config import * from utils.graph_utils import * from utils.google_tsp_reader import GoogleTSPReader from utils.plot_utils import * from models.gcn_model import ResidualGatedGCNModel from utils.model_utils import * from datetime import datetime # setting random seed to 1 if torch.cuda.is_available(): #print("CUDA available, using GPU ID {}".format(config.gpu_id)) dtypeFloat = torch.cuda.FloatTensor dtypeLong = torch.cuda.LongTensor torch.cuda.manual_seed_all(1) else: #print("CUDA not available") dtypeFloat = torch.FloatTensor dtypeLong = torch.LongTensor torch.manual_seed(1) def train_one_epoch(net, optimizer, config, master_bar, num_neighbors = 20): # Set training mode net.train() # Assign parameters num_nodes = config.num_nodes #num_neighbors = np.random.choice(config.num_neighbors)#config.num_neighbors batch_size = config.batch_size batches_per_epoch = config.batches_per_epoch accumulation_steps = config.accumulation_steps train_filepath = config.train_filepath # modify loss_type = config.loss_type num_neg = config.num_neg if loss_type == 'FL': gamma = config.gamma else: gamma = 0 # Load TSP data dataset = GoogleTSPReader(num_nodes, num_neighbors, batch_size, train_filepath, augmentation = True) if batches_per_epoch != -1: batches_per_epoch = min(batches_per_epoch, dataset.max_iter) else: batches_per_epoch = dataset.max_iter # Convert dataset to iterable dataset = iter(dataset) # Initially set loss class weights as None edge_cw = None # Initialize running data running_loss = 0.0 # running_err_edges = 0.0 # running_err_tour = 0.0 # running_err_tsp = 0.0 running_pred_tour_len = 0.0 running_gt_tour_len = 0.0 running_nb_data = 0 running_nb_batch = 0 start_epoch = time.time() for batch_num in progress_bar(range(batches_per_epoch), parent=master_bar): # Generate a batch of TSPs try: batch = next(dataset) except StopIteration: break # Convert batch to torch Variables x_edges = Variable(torch.LongTensor(batch.edges).type(dtypeLong), requires_grad=False) x_edges_values = Variable(torch.FloatTensor(batch.edges_values).type(dtypeFloat), requires_grad=False) x_nodes = Variable(torch.LongTensor(batch.nodes).type(dtypeLong), requires_grad=False) x_nodes_coord = Variable(torch.FloatTensor(batch.nodes_coord).type(dtypeFloat), requires_grad=False) y_edges = Variable(torch.LongTensor(batch.edges_target).type(dtypeLong), requires_grad=False) y_nodes = Variable(torch.LongTensor(batch.nodes_target).type(dtypeLong), requires_grad=False) # Compute class weights (if uncomputed) if type(edge_cw) != torch.Tensor: edge_labels = y_edges.cpu().numpy().flatten() edge_cw = compute_class_weight("balanced", classes=np.unique(edge_labels), y=edge_labels) # Forward pass y_preds, loss = net.forward(x_edges, x_edges_values, x_nodes, x_nodes_coord, y_edges, edge_cw, num_neg, loss_type, gamma) loss = loss.mean() # Take mean of loss across multiple GPUs loss = loss / accumulation_steps # Scale loss by accumulation steps loss.backward() # Backward pass if (batch_num+1) % accumulation_steps == 0: optimizer.step() optimizer.zero_grad() # Compute error metrics and mean tour lengths # err_edges, err_tour, err_tsp, tour_err_idx, tsp_err_idx = edge_error(y_preds, y_edges, x_edges) pred_tour_len = mean_tour_len_edges(x_edges_values, y_preds) gt_tour_len = np.mean(batch.tour_len) # Update running data running_nb_data += batch_size running_loss += batch_size* loss.data.item()* accumulation_steps # Re-scale loss # running_err_edges += batch_size* err_edges # running_err_tour += batch_size* err_tour # running_err_tsp += batch_size* err_tsp running_pred_tour_len += batch_size* pred_tour_len running_gt_tour_len += batch_size* gt_tour_len running_nb_batch += 1 # Log intermediate statistics result = ('loss:{loss:.4f} pred_tour_len:{pred_tour_len:.3f} gt_tour_len:{gt_tour_len:.3f}'.format( loss=running_loss/running_nb_data, pred_tour_len=running_pred_tour_len/running_nb_data, gt_tour_len=running_gt_tour_len/running_nb_data)) master_bar.child.comment = result # Compute statistics for full epoch loss = running_loss/ running_nb_data err_edges = 0 # running_err_edges/ running_nb_data err_tour = 0 # running_err_tour/ running_nb_data err_tsp = 0 # running_err_tsp/ running_nb_data pred_tour_len = running_pred_tour_len/ running_nb_data gt_tour_len = running_gt_tour_len/ running_nb_data return time.time()-start_epoch, loss, err_edges, err_tour, err_tsp, pred_tour_len, gt_tour_len def metrics_to_str(epoch, time, learning_rate, loss, err_edges, err_tour, err_tsp, pred_tour_len, gt_tour_len, num_neighbors=20): result = ( 'epoch:{epoch:0>2d}\t' 'time:{time:.1f}h\t' 'lr:{learning_rate:.2e}\t' 'loss:{loss:.4f}\t' # 'err_edges:{err_edges:.2f}\t' # 'err_tour:{err_tour:.2f}\t' # 'err_tsp:{err_tsp:.2f}\t' 'pred_tour_len:{pred_tour_len:.3f}\t' 'gt_tour_len:{gt_tour_len:.3f}\t' 'num_neighbors:{num_neighbors:0>2d}'.format( epoch=epoch, time=time/3600, learning_rate=learning_rate, loss=loss, # err_edges=err_edges, # err_tour=err_tour, # err_tsp=err_tsp, pred_tour_len=pred_tour_len, gt_tour_len=gt_tour_len, num_neighbors=num_neighbors)) return result def test(net, config, master_bar, mode='test', num_neighbors = 20): # Set evaluation mode net.eval() # Assign parameters num_nodes = config.num_nodes #num_neighbors = np.random.choice(config.num_neighbors)#config.num_neighbors batch_size = config.batch_size batches_per_epoch = config.batches_per_epoch beam_size = config.beam_size val_filepath = config.val_filepath test_filepath = config.test_filepath # modify num_neg = config.num_neg loss_type = config.loss_type if loss_type == 'FL': gamma = config.gamma else: gamma = 0 # Load TSP data if mode == 'val': dataset = GoogleTSPReader(num_nodes, num_neighbors, batch_size=batch_size, filepath=val_filepath) elif mode == 'test': dataset = GoogleTSPReader(num_nodes, num_neighbors, batch_size=batch_size, filepath=test_filepath) batches_per_epoch = dataset.max_iter # Convert dataset to iterable dataset = iter(dataset) # Initially set loss class weights as None edge_cw = None # Initialize running data running_loss = 0.0 # running_err_edges = 0.0 # running_err_tour = 0.0 # running_err_tsp = 0.0 running_pred_tour_len = 0.0 running_gt_tour_len = 0.0 running_nb_data = 0 running_nb_batch = 0 with torch.no_grad(): start_test = time.time() for batch_num in progress_bar(range(batches_per_epoch), parent=master_bar): # Generate a batch of TSPs try: batch = next(dataset) except StopIteration: break # Convert batch to torch Variables x_edges = Variable(torch.LongTensor(batch.edges).type(dtypeLong), requires_grad=False) x_edges_values = Variable(torch.FloatTensor(batch.edges_values).type(dtypeFloat), requires_grad=False) x_nodes = Variable(torch.LongTensor(batch.nodes).type(dtypeLong), requires_grad=False) x_nodes_coord = Variable(torch.FloatTensor(batch.nodes_coord).type(dtypeFloat), requires_grad=False) y_edges = Variable(torch.LongTensor(batch.edges_target).type(dtypeLong), requires_grad=False) y_nodes = Variable(torch.LongTensor(batch.nodes_target).type(dtypeLong), requires_grad=False) # Compute class weights (if uncomputed) if type(edge_cw) != torch.Tensor: edge_labels = y_edges.cpu().numpy().flatten() edge_cw = compute_class_weight("balanced", classes=np.unique(edge_labels), y=edge_labels) # Forward pass --- modify y_preds, loss = net.forward(x_edges, x_edges_values, x_nodes, x_nodes_coord, y_edges, edge_cw, num_neg, loss_type, gamma) loss = loss.mean() # Take mean of loss across multiple GPUs # Compute error metrics # err_edges, err_tour, err_tsp, tour_err_idx, tsp_err_idx = edge_error(y_preds, y_edges, x_edges) # Get batch beamsearch tour prediction if mode == 'val': # Validation: faster 'vanilla' beamsearch bs_nodes = beamsearch_tour_nodes( y_preds, beam_size, batch_size, num_nodes, dtypeFloat, dtypeLong, probs_type='logits') elif mode == 'test': # Testing: beamsearch with shortest tour heuristic bs_nodes = beamsearch_tour_nodes_shortest( y_preds, x_edges_values, beam_size, batch_size, num_nodes, dtypeFloat, dtypeLong, probs_type='logits') # Compute mean tour length pred_tour_len = mean_tour_len_nodes(x_edges_values, bs_nodes) gt_tour_len =
np.mean(batch.tour_len)
numpy.mean
""" analysis_dev_baseline.py Obtain fitting parameters for the baseline system, based on the experimental results. ##################### RESULT ##################### drums = (8.242079921128573, -2.193882033832822) vocals = (10.729872914688878, -3.22347120307927) bass = (10.359737286288485 -3.277817921881511) other = (11.848966992443225 -4.081261039251299) speech = (6.661884937528991 -1.4516773850817029) """ import numpy as np import os from utils.datasets import get_audio_files_DSD, get_audio_files_librispeech import matplotlib.pyplot as plt import scipy.optimize import librosa.core colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Set to your path result_folder_path = '/Users/andres.perez/source/ambisonic_rt_estimation/results_dev_baseline' main_path = '/Volumes/Dinge/datasets' # Path of the dataset # %% SETUP fs = 8000 instrument_idx = 1 instruments = ['bass', 'drums', 'other', 'vocals', 'speech'] instrument = instruments[instrument_idx] result_folder_path = os.path.join(result_folder_path, instrument) # Number of iterations I = 10 # Get audio files subset = 'Dev' ######################## # Length and offset audio_file_length = 20. # seconds audio_file_length_samples = int(audio_file_length * fs) audio_file_offset = 5. # seconds audio_file_offset_samples = int(audio_file_offset * fs) if instrument != 'speech': # Get audio files # Dataset audio_files = get_audio_files_DSD(main_path, mixtures=False, dataset_instrument=instrument, dataset_type=subset) else: audio_files_all = get_audio_files_librispeech(main_path, dataset_type=subset) sizes = np.empty(len(audio_files_all)) # Filter out by length for af_idx, af in enumerate(audio_files_all): s_t, sr_lib = librosa.core.load(af, sr=None, mono=True) sizes[af_idx] = s_t.size / sr_lib # mask = np.logical_and(sizes > audio_file_length, sizes < audio_file_length+audio_file_offset) mask = sizes > audio_file_length+audio_file_offset indices = np.argwhere(mask).flatten() audio_files = np.asarray(audio_files_all)[indices] N = len(audio_files) # %% Get data # File name: "ir_idx" _ "af_idx" # Some of the af_idx are missing. That's because baseline didn't work. We will just skip those files across all IRs. # Resulting file: np.asarray([rt60_true[ir_idx], baseline_rt60]) result_types = ['rt60_true', 'baseline_rt60'] T = len(result_types) results = np.empty((I, N, T)) results.fill(np.nan) for i in range(I): for a in range(N): # Construct file name file_name = str(i) + '_' + str(a) + '.npy' file_path = os.path.join(result_folder_path, file_name) # Ingest it if it exists if os.path.exists(file_path): results[i, a] = np.load(file_path) # %% Statistical analysis # Sort by increasing true RT60 iii = np.argsort(results[:, 0, 0]) # Mean and std plt.figure() plt.title('RT60 Estimation - Mean and std') plt.grid() plt.xlabel('IR index') plt.ylabel('RT60 (s)') x = np.arange(I) # True measured RT60 plt.plot(x, results[:, 0, 0][iii], '-o', color=colors[0], markersize=4, label='True') formats = ['--p'] labels = ['Baseline'] t = 1 mean_values = np.nanmean(results[:, :, t][iii], axis=1) std_values = np.nanstd (results[:, :, t][iii], axis=1) plt.errorbar(x+(t/25), mean_values, yerr=std_values, markersize=4, c=colors[t], fmt=formats[t-1], label=labels[t-1]) ## Linear regression def line(x, m, n): return m * x + n p0 = 2, 1 # initial guess popt, pcov = scipy.optimize.curve_fit(line, mean_values, results[:, 0, 0][iii], p0, sigma=std_values, absolute_sigma=True) yfit = line(mean_values, *popt) m, n = popt plt.plot(x, mean_values*m+n, ':o', markersize=4, c=colors[2], label='mean, linear regression') plt.legend() print('INSTRUMENT: ', instrument) print('--------------------------------------------') print(' m, n : ', m, n) print(pcov) var = np.sum(np.diag(pcov)) std = np.sqrt(var) # joint standard deviation is sqrt of sum of variances https://socratic.org/statistics/random-variables/addition-rules-for-variances print(std) # %% ##################### ALL TOGETHER ##################### folder_path = os.path.join('/Users/andres.perez/source/dereverberation/experiment/results_dev_baseline') instruments = ['bass', 'drums', 'other', 'vocals', 'speech'] C = len(instruments) r = np.empty((I, N, C)) r.fill(np.nan) for i in range(I): for a in range(N): # Construct file name file_name = str(i) + '_' + str(a) + '.npy' for inst_idx, inst in enumerate(instruments): file_path = os.path.join(folder_path, inst, file_name) # print(file_path) # Ingest it if it exists if os.path.exists(file_path): r[i, a, inst_idx] = np.load(file_path)[-1] plt.figure() plt.title('Baseline - mean dev results') for inst_idx, inst in enumerate(instruments): mean_values = np.nanmean(r[:, :, inst_idx][iii], axis=1) std_values = np.nanstd(r[:, :, inst_idx][iii], axis=1) # plt.errorbar(np.arange(I), mean_values, yerr=std_values, label=inst) plt.errorbar(np.arange(I), mean_values, label=inst) plt.grid() plt.legend() # %% ##################### FIGURE 1 - DRUMS AND SPEECH RESULTS ##################### # File name: "ir_idx" _ "af_idx" # Some of the af_idx are missing. That's because baseline didn't work. We will just skip those files across all IRs. # Resulting file: np.asarray([rt60_true[ir_idx], baseline_rt60]) instruments = ['speech', 'drums'] # instruments = ['bass', 'drums', 'other', 'vocals', 'speech'] C = len(instruments) result_types = ['rt60_true', 'baseline_rt60'] T = len(result_types) results =
np.empty((C, I, N, T))
numpy.empty
# Copyright (c) MW-Pose Group, 2020 from .structures import BaseStructure import numpy as np import cv2 class Heatmap(BaseStructure): def __init__(self, heatmap): super(Heatmap, self).__init__(heatmap) def resize(self, size): pass class HeatmapMask(BaseStructure): def __init__(self, mask): super(HeatmapMask, self).__init__(mask) def resize(self, size): pass def get_max_pred(heatmaps): num_joints = heatmaps.shape[0] width = heatmaps.shape[2] heatmaps_reshaped = heatmaps.reshape((num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 1) maxvals = np.max(heatmaps_reshaped, 1) maxvals = maxvals.reshape((num_joints, 1)) idx = idx.reshape((num_joints, 1)) preds = np.tile(idx, (1, 2)).astype(np.float32) preds[:, 0] = (preds[:, 0]) % width preds[:, 1] = np.floor((preds[:, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals def get_3rd_point(a, b): """Return vector c that perpendicular to (a - b).""" direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): """Rotate the point by `rot_rad` degree.""" sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def get_affine_transform(center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): scale = np.array([scale, scale]) scale_tmp = scale src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(
np.float32(dst)
numpy.float32
""" Module to read / write Fortran unformatted sequential files. This is in the spirit of code written by <NAME> and <NAME>. """ from __future__ import division, print_function, absolute_import import warnings import numpy as np __all__ = ['FortranFile'] class FortranFile(object): """ A file object for unformatted sequential files from Fortran code. Parameters ---------- filename: file or str Open file object or filename. mode : {'r', 'w'}, optional Read-write mode, default is 'r'. header_dtype : data-type Data type of the header. Size and endiness must match the input/output file. Notes ----- These files are broken up into records of unspecified types. The size of each record is given at the start (although the size of this header is not standard) and the data is written onto disk without any formatting. Fortran compilers supporting the BACKSPACE statement will write a second copy of the size to facilitate backwards seeking. This class only supports files written with both sizes for the record. It also does not support the subrecords used in Intel and gfortran compilers for records which are greater than 2GB with a 4-byte header. An example of an unformatted sequential file in Fortran would be written as:: OPEN(1, FILE=myfilename, FORM='unformatted') WRITE(1) myvariable Since this is a non-standard file format, whose contents depend on the compiler and the endianness of the machine, caution is advised. Files from gfortran 4.8.0 and gfortran 4.1.2 on x86_64 are known to work. Consider using Fortran direct-access files or files from the newer Stream I/O, which can be easily read by `numpy.fromfile`. Examples -------- To create an unformatted sequential Fortran file: >>> from scipy.io import FortranFile >>> f = FortranFile('test.unf', 'w') >>> f.write_record(np.array([1,2,3,4,5],dtype=np.int32)) >>> f.write_record(np.linspace(0,1,20).reshape((5,-1))) >>> f.close() To read this file: >>> from scipy.io import FortranFile >>> f = FortranFile('test.unf', 'r') >>> print(f.read_ints(dtype=np.int32)) [1 2 3 4 5] >>> print(f.read_reals(dtype=np.float).reshape((5,-1))) [[ 0. 0.05263158 0.10526316 0.15789474] [ 0.21052632 0.26315789 0.31578947 0.36842105] [ 0.42105263 0.47368421 0.52631579 0.57894737] [ 0.63157895 0.68421053 0.73684211 0.78947368] [ 0.84210526 0.89473684 0.94736842 1. ]] >>> f.close() """ def __init__(self, filename, mode='r', header_dtype=np.uint32): if header_dtype is None: raise ValueError('Must specify dtype') header_dtype = np.dtype(header_dtype) if header_dtype.kind != 'u': warnings.warn("Given a dtype which is not unsigned.") if mode not in 'rw' or len(mode) != 1: raise ValueError('mode must be either r or w') if hasattr(filename, 'seek'): self._fp = filename else: self._fp = open(filename, '%sb' % mode) self._header_dtype = header_dtype def _read_size(self): return np.fromfile(self._fp, dtype=self._header_dtype, count=1) def write_record(self, s): """ Write a record (including sizes) to the file. Parameters ---------- s : array_like The data to write. """ s = np.array(s, order='F')
np.array([s.nbytes],dtype=self._header_dtype)
numpy.array
""" {This script calculates spread in velocity dispersion (sigma) from mocks for red and blue galaxies as well as smf for red and blue galaxies. It then finds a non-gaussian distribution that best fits the error in spread distributions in each bin.} """ from cosmo_utils.utils import work_paths as cwpaths from scipy.stats import normaltest as nt from chainconsumer import ChainConsumer from multiprocessing import Pool import matplotlib.pyplot as plt from scipy.stats import chi2 from matplotlib import rc from scipy import stats import pandas as pd import numpy as np import emcee import math import os __author__ = '{<NAME>}' rc('font', **{'family': 'sans-serif', 'sans-serif': ['Helvetica']}, size=20) rc('text', usetex=True) rc('axes', linewidth=2) rc('xtick.major', width=2, size=7) rc('ytick.major', width=2, size=7) def reading_catls(filename, catl_format='.hdf5'): """ Function to read ECO/RESOLVE catalogues. Parameters ---------- filename: string path and name of the ECO/RESOLVE catalogue to read catl_format: string, optional (default = '.hdf5') type of file to read. Options: - '.hdf5': Reads in a catalogue in HDF5 format Returns ------- mock_pd: pandas DataFrame DataFrame with galaxy/group information Examples -------- # Specifying `filename` >>> filename = 'ECO_catl.hdf5' # Reading in Catalogue >>> mock_pd = reading_catls(filename, format='.hdf5') >>> mock_pd.head() x y z vx vy vz \ 0 10.225435 24.778214 3.148386 356.112457 -318.894409 366.721832 1 20.945772 14.500367 -0.237940 168.731766 37.558834 447.436951 2 21.335835 14.808488 0.004653 967.204407 -701.556763 -388.055115 3 11.102760 21.782235 2.947002 611.646484 -179.032089 113.388794 4 13.217764 21.214905 2.113904 120.689598 -63.448833 400.766541 loghalom cs_flag haloid halo_ngal ... cz_nodist vel_tot \ 0 12.170 1 196005 1 ... 2704.599189 602.490355 1 11.079 1 197110 1 ... 2552.681697 479.667489 2 11.339 1 197131 1 ... 2602.377466 1256.285409 3 11.529 1 199056 1 ... 2467.277182 647.318259 4 10.642 1 199118 1 ... 2513.381124 423.326770 vel_tan vel_pec ra_orig groupid M_group g_ngal g_galtype \ 0 591.399858 -115.068833 215.025116 0 11.702527 1 1 1 453.617221 155.924074 182.144134 1 11.524787 4 0 2 1192.742240 394.485714 182.213220 1 11.524787 4 0 3 633.928896 130.977416 210.441320 2 11.502205 1 1 4 421.064495 43.706352 205.525386 3 10.899680 1 1 halo_rvir 0 0.184839 1 0.079997 2 0.097636 3 0.113011 4 0.057210 """ ## Checking if file exists if not os.path.exists(filename): msg = '`filename`: {0} NOT FOUND! Exiting..'.format(filename) raise ValueError(msg) ## Reading file if catl_format=='.hdf5': mock_pd = pd.read_hdf(filename) else: msg = '`catl_format` ({0}) not supported! Exiting...'.format(catl_format) raise ValueError(msg) return mock_pd def std_func(bins, mass_arr, vel_arr): last_index = len(bins)-1 i = 0 std_arr = [] for index1, bin_edge in enumerate(bins): cen_deltav_arr = [] if index1 == last_index: break for index2, stellar_mass in enumerate(mass_arr): if stellar_mass >= bin_edge and stellar_mass < bins[index1+1]: cen_deltav_arr.append(vel_arr[index2]) N = len(cen_deltav_arr) mean = 0 diff_sqrd_arr = [] for value in cen_deltav_arr: diff = value - mean diff_sqrd = diff**2 diff_sqrd_arr.append(diff_sqrd) mean_diff_sqrd = np.mean(diff_sqrd_arr) std = np.sqrt(mean_diff_sqrd) std_arr.append(std) return std_arr def get_deltav_sigma_mocks(survey, path): """ Calculate spread in velocity dispersion from survey mocks Parameters ---------- survey: string Name of survey path: string Path to mock catalogs Returns --------- std_red_arr: numpy array Spread in velocity dispersion of red galaxies centers_red_arr: numpy array Bin centers of central stellar mass for red galaxies std_blue_arr: numpy array Spread in velocity dispersion of blue galaxies centers_blue_arr: numpy array Bin centers of central stellar mass for blue galaxies """ if survey == 'eco': mock_name = 'ECO' num_mocks = 8 min_cz = 3000 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 151829.26 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolvea': mock_name = 'A' num_mocks = 59 min_cz = 4500 max_cz = 7000 mag_limit = -17.33 mstar_limit = 8.9 volume = 13172.384 # Survey volume without buffer [Mpc/h]^3 elif survey == 'resolveb': mock_name = 'B' num_mocks = 104 min_cz = 4500 max_cz = 7000 mag_limit = -17 mstar_limit = 8.7 volume = 4709.8373 # Survey volume without buffer [Mpc/h]^3 std_red_arr = [] centers_red_arr = [] std_blue_arr = [] centers_blue_arr = [] box_id_arr = np.linspace(5001,5008,8) for box in box_id_arr: box = int(box) temp_path = path + '{0}/{1}_m200b_catls/'.format(box, mock_name) for num in range(num_mocks): filename = temp_path + '{0}_cat_{1}_Planck_memb_cat.hdf5'.format( mock_name, num) mock_pd = reading_catls(filename) # Using the same survey definition as in mcmc smf i.e excluding the # buffer mock_pd = mock_pd.loc[(mock_pd.cz.values >= min_cz) & \ (mock_pd.cz.values <= max_cz) & \ (mock_pd.M_r.values <= mag_limit) & \ (mock_pd.logmstar.values >= mstar_limit)] logmstar_arr = mock_pd.logmstar.values u_r_arr = mock_pd.u_r.values colour_label_arr = np.empty(len(mock_pd), dtype='str') # Using defintions from Moffett paper for idx, value in enumerate(logmstar_arr): if value <= 9.1: if u_r_arr[idx] > 1.457: colour_label = 'R' else: colour_label = 'B' elif value > 9.1 and value < 10.1: divider = 0.24 * value - 0.7 if u_r_arr[idx] > divider: colour_label = 'R' else: colour_label = 'B' elif value >= 10.1: if u_r_arr[idx] > 1.7: colour_label = 'R' else: colour_label = 'B' colour_label_arr[idx] = colour_label mock_pd['colour_label'] = colour_label_arr mock_pd.logmstar = np.log10((10**mock_pd.logmstar) / 2.041) red_subset_grpids = np.unique(mock_pd.groupid.loc[(mock_pd.\ colour_label == 'R') & (mock_pd.g_galtype == 1)].values) blue_subset_grpids = np.unique(mock_pd.groupid.loc[(mock_pd.\ colour_label == 'B') & (mock_pd.g_galtype == 1)].values) # Calculating spread in velocity dispersion for galaxies in groups # with a red central red_deltav_arr = [] red_cen_stellar_mass_arr = [] for key in red_subset_grpids: group = mock_pd.loc[mock_pd.groupid == key] cen_stellar_mass = group.logmstar.loc[group.g_galtype.\ values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: red_deltav_arr.append(val) red_cen_stellar_mass_arr.append(cen_stellar_mass) # print(max(red_cen_stellar_mass_arr)) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a red_stellar_mass_bins = np.linspace(8.6,11.5,6) elif survey == 'resolveb': red_stellar_mass_bins = np.linspace(8.4,11.0,6) std_red = std_func(red_stellar_mass_bins, red_cen_stellar_mass_arr, red_deltav_arr) std_red = np.array(std_red) std_red_arr.append(std_red) # Calculating spread in velocity dispersion for galaxies in groups # with a blue central blue_deltav_arr = [] blue_cen_stellar_mass_arr = [] for key in blue_subset_grpids: group = mock_pd.loc[mock_pd.groupid == key] cen_stellar_mass = group.logmstar.loc[group.g_galtype\ .values == 1].values[0] mean_cz_grp = np.round(np.mean(group.cz.values),2) deltav = group.cz.values - len(group)*[mean_cz_grp] for val in deltav: blue_deltav_arr.append(val) blue_cen_stellar_mass_arr.append(cen_stellar_mass) # print(max(blue_cen_stellar_mass_arr)) if survey == 'eco' or survey == 'resolvea': # TODO : check if this is actually correct for resolve a blue_stellar_mass_bins = np.linspace(8.6,10.5,6) elif survey == 'resolveb': blue_stellar_mass_bins = np.linspace(8.4,10.4,6) std_blue = std_func(blue_stellar_mass_bins, \ blue_cen_stellar_mass_arr, blue_deltav_arr) std_blue = np.array(std_blue) std_blue_arr.append(std_blue) centers_red = 0.5 * (red_stellar_mass_bins[1:] + \ red_stellar_mass_bins[:-1]) centers_blue = 0.5 * (blue_stellar_mass_bins[1:] + \ blue_stellar_mass_bins[:-1]) centers_red_arr.append(centers_red) centers_blue_arr.append(centers_blue) std_red_arr = np.array(std_red_arr) centers_red_arr = np.array(centers_red_arr) std_blue_arr = np.array(std_blue_arr) centers_blue_arr = np.array(centers_blue_arr) return std_red_arr, std_blue_arr, centers_red_arr, centers_blue_arr def lnprob(theta, x_vals, y_vals, err_tot): """ Calculates log probability for emcee Parameters ---------- theta: array Array of parameter values x_vals: array Array of x-axis values y_vals: array Array of y-axis values err_tot: array Array of error values of mass function Returns --------- lnp: float Log probability given a model chi2: float Value of chi-squared given a model """ m, b = theta if -5.0 < m < 0.5 and 0.0 < b < 10.0: try: model = m * x_vals + b chi2 = chi_squared(y_vals, model, err_tot) lnp = -chi2 / 2 if math.isnan(lnp): raise ValueError except (ValueError, RuntimeWarning, UserWarning): lnp = -np.inf chi2 = -np.inf else: chi2 = -np.inf lnp = -np.inf return lnp, chi2 def chi_squared(data, model, err_data): """ Calculates chi squared Parameters ---------- data: array Array of data values model: array Array of model values err_data: float Error in data values Returns --------- chi_squared: float Value of chi-squared given a model """ chi_squared_arr = (data - model)**2 / (err_data**2) chi_squared = np.sum(chi_squared_arr) return chi_squared global model_init global survey global path_to_proc global mf_type survey = 'resolveb' machine = 'mac' mf_type = 'smf' dict_of_paths = cwpaths.cookiecutter_paths() path_to_raw = dict_of_paths['raw_dir'] path_to_proc = dict_of_paths['proc_dir'] path_to_external = dict_of_paths['ext_dir'] path_to_data = dict_of_paths['data_dir'] if machine == 'bender': halo_catalog = '/home/asadm2/.astropy/cache/halotools/halo_catalogs/'\ 'vishnu/rockstar/vishnu_rockstar_test.hdf5' elif machine == 'mac': halo_catalog = path_to_raw + 'vishnu_rockstar_test.hdf5' if survey == 'eco': catl_file = path_to_raw + "eco/eco_all.csv" elif survey == 'resolvea' or survey == 'resolveb': catl_file = path_to_raw + "resolve/RESOLVE_liveJune2018.csv" if survey == 'eco': path_to_mocks = path_to_data + 'mocks/m200b/eco/' elif survey == 'resolvea': path_to_mocks = path_to_data + 'mocks/m200b/resolvea/' elif survey == 'resolveb': path_to_mocks = path_to_data + 'mocks/m200b/resolveb/' std_red_mocks, std_blue_mocks, centers_red_mocks, \ centers_blue_mocks = get_deltav_sigma_mocks(survey, path_to_mocks) ## Histogram of red and blue sigma in bins of central stellar mass to see if the ## distribution of values to take std of is normal or lognormal nrows = 2 ncols = 5 if survey == 'eco' or survey == 'resolvea': red_stellar_mass_bins = np.linspace(8.6,11.5,6) blue_stellar_mass_bins = np.linspace(8.6,10.5,6) elif survey == 'resolveb': red_stellar_mass_bins = np.linspace(8.4,11.0,6) blue_stellar_mass_bins = np.linspace(8.4,10.4,6) fig3, axs = plt.subplots(nrows, ncols) for i in range(0, nrows, 1): for j in range(0, ncols, 1): if i == 0: # row 1 for all red bins axs[i, j].hist(np.log10(std_red_mocks.T[j]), histtype='step', \ color='indianred', linewidth=4, linestyle='-') # first red bin axs[i, j].set_title('[{0}-{1}]'.format(np.round( red_stellar_mass_bins[j],2), np.round( red_stellar_mass_bins[j+1],2)), fontsize=20) k2, p = nt(np.log10(std_red_mocks.T[j]), nan_policy="omit") axs[i, j].text(0.7, 0.7, "{0}".format(np.round(p, 2)), transform=axs[i, j].transAxes) else: # row 2 for all blue bins axs[i, j].hist(np.log10(std_blue_mocks.T[j]), histtype='step', \ color='cornflowerblue', linewidth=4, linestyle='-') axs[i, j].set_title('[{0}-{1}]'.format(np.round( blue_stellar_mass_bins[j],2), np.round( blue_stellar_mass_bins[j+1],2)), fontsize=20) k2, p = nt(np.log10(std_blue_mocks.T[j]), nan_policy="omit") axs[i, j].text(0.7, 0.7, "{0}".format(np.round(p, 2)), transform=axs[i, j].transAxes) for ax in axs.flat: ax.set(xlabel=r'\boldmath$\sigma \left[km/s\right]$') for ax in axs.flat: ax.label_outer() plt.show() ## Measuring fractional error in sigma of red and blue galaxies in all 5 bins sigma_av_red = [] frac_err_red = [] for idx in range(len(std_red_mocks.T)): mean = np.mean(std_red_mocks.T[idx][~np.isnan(std_red_mocks.T[idx])]) sigma_av_red.append(mean) frac_err = (std_red_mocks.T[idx][~np.isnan(std_red_mocks.T[idx])] \ - mean)/mean frac_err_red.append(frac_err) frac_err_red = np.array(frac_err_red, dtype=list) sigma_av_blue = [] frac_err_blue = [] for idx in range(len(std_blue_mocks.T)): mean = np.mean(std_blue_mocks.T[idx][~np.isnan(std_blue_mocks.T[idx])]) sigma_av_blue.append(mean) frac_err = (std_blue_mocks.T[idx][~np.isnan(std_blue_mocks.T[idx])] \ - mean)/mean frac_err_blue.append(frac_err) frac_err_blue = np.array(frac_err_blue, dtype=list) ## Fit fractional error distributions nrows = 2 ncols = 5 if survey == 'eco' or survey == 'resolvea': red_stellar_mass_bins = np.linspace(8.6,11.5,6) blue_stellar_mass_bins = np.linspace(8.6,10.5,6) elif survey == 'resolveb': red_stellar_mass_bins = np.linspace(8.4,11.0,6) blue_stellar_mass_bins = np.linspace(8.4,10.4,6) max_red_arr = np.empty(len(frac_err_red)) max_blue_arr = np.empty(len(frac_err_blue)) for idx in range(len(frac_err_red)): max_red = plt.hist(frac_err_red[idx], density=True)[0].max() max_blue = plt.hist(frac_err_blue[idx], density=True)[0].max() max_red_arr[idx] = max_red + 0.05 max_blue_arr[idx] = max_blue + 0.05 print(np.mean(frac_err_red[idx])) print(np.mean(frac_err_blue[idx])) plt.clf() red_a = [] red_loc = [] red_scale = [] blue_a = [] blue_loc = [] blue_scale = [] fig3, axs = plt.subplots(nrows, ncols) for i in range(0, nrows, 1): for j in range(0, ncols, 1): if i == 0: # row 1 for all red bins frac_err_arr = frac_err_red[j] axs[i,j].hist(frac_err_arr, density=True, histtype='step', linewidth=3, color='k') # find minimum and maximum of xticks, so we know # where we should compute theoretical distribution xt = axs[i,j].get_xticks() xmin, xmax = min(xt), max(xt) lnspc = np.linspace(xmin, xmax, len(frac_err_arr)) loc_log, scale_log = stats.logistic.fit(frac_err_arr) pdf_logistic = stats.logistic.pdf(lnspc, loc_log, scale_log) axs[i,j].plot(lnspc, pdf_logistic, label="Logistic") # a_beta, b_beta, loc_beta, scale_beta = stats.beta.fit(frac_err_arr) # pdf_beta = stats.beta.pdf(lnspc, a_beta, b_beta, loc_beta, # scale_beta) # axs[i,j].plot(lnspc, pdf_beta, label="Beta") loc_norm, scale_norm = stats.norm.fit(frac_err_arr) pdf_norm = stats.norm.pdf(lnspc, loc_norm, scale_norm) axs[i,j].plot(lnspc, pdf_norm, label="Normal") a_sn, loc_sn, scale_sn = stats.skewnorm.fit(frac_err_arr) pdf_skewnorm = stats.skewnorm.pdf(lnspc, a_sn, loc_sn, scale_sn) axs[i,j].plot(lnspc, pdf_skewnorm, label="Skew-normal") red_a.append(a_sn) red_loc.append(loc_sn) red_scale.append(scale_sn) # a_w, loc_w, scale_w = stats.weibull_min.fit(frac_err_arr) # pdf_weibull = stats.weibull_min.pdf(lnspc, a_w, loc_w, scale_w) # axs[i,j].plot(lnspc, pdf_weibull, label="Weibull") # a_g,loc_g,scale_g = stats.gamma.fit(frac_err_arr) # pdf_gamma = stats.gamma.pdf(lnspc, a_g, loc_g, scale_g) # axs[i,j].plot(lnspc, pdf_gamma, label="Gamma") axs[i,j].set_title('[{0}-{1}]'.format(np.round( red_stellar_mass_bins[j],2), np.round( red_stellar_mass_bins[j+1],2)),fontsize=20, color='indianred') textstr = '\n'.join(( r'$\mu=%.2f$' % (a_sn, ), r'$loc=%.2f$' % (loc_sn, ), r'$scale=%.2f$' % (scale_sn, ))) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) axs[i,j].set_ylim(0, max_red_arr[j]) # axs[i, j].text(0.4, 0.8, textstr, fontsize=12, bbox=props, # transform=axs[i, j].transAxes) else: # row 2 for all blue bins frac_err_arr = frac_err_blue[j] axs[i,j].hist(frac_err_arr, density=True, histtype='step', linewidth=3, color='k') # find minimum and maximum of xticks, so we know # where we should compute theoretical distribution xt = axs[i,j].get_xticks() xmin, xmax = min(xt), max(xt) lnspc = np.linspace(xmin, xmax, len(frac_err_arr)) loc_log, scale_log = stats.logistic.fit(frac_err_arr) pdf_logistic = stats.logistic.pdf(lnspc, loc_log, scale_log) axs[i,j].plot(lnspc, pdf_logistic, label="Logistic") # a_beta, b_beta, loc_beta, scale_beta = stats.beta.fit(frac_err_arr) # pdf_beta = stats.beta.pdf(lnspc, a_beta, b_beta, loc_beta, # scale_beta) # axs[i,j].plot(lnspc, pdf_beta, label="Beta") loc_norm, scale_norm = stats.norm.fit(frac_err_arr) pdf_norm = stats.norm.pdf(lnspc, loc_norm, scale_norm) axs[i,j].plot(lnspc, pdf_norm, label="Normal") a_sn, loc_sn, scale_sn = stats.skewnorm.fit(frac_err_arr) pdf_skewnorm = stats.skewnorm.pdf(lnspc, a_sn, loc_sn, scale_sn) axs[i,j].plot(lnspc, pdf_skewnorm, label="Skew-normal") blue_a.append(a_sn) blue_loc.append(loc_sn) blue_scale.append(scale_sn) # a_w, loc_w, scale_w = stats.weibull_min.fit(frac_err_arr) # pdf_weibull = stats.weibull_min.pdf(lnspc, a_w, loc_w, scale_w) # axs[i,j].plot(lnspc, pdf_weibull, label="Weibull") # a_g, loc_g, scale_g = stats.gamma.fit(frac_err_arr) # pdf_gamma = stats.gamma.pdf(lnspc, a_g, loc_g,scale_g) # axs[i,j].plot(lnspc, pdf_gamma, label="Gamma") axs[i,j].set_title('[{0}-{1}]'.format(np.round( blue_stellar_mass_bins[j],2), np.round( blue_stellar_mass_bins[j+1],2)), fontsize=20, color='cornflowerblue') textstr = '\n'.join(( r'$\mu=%.2f$' % (a_sn, ), r'$loc=%.2f$' % (loc_sn, ), r'$scale=%.2f$' % (scale_sn, ))) props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) axs[i,j].set_ylim(0, max_blue_arr[j]) # axs[i, j].text(0.4, 0.8, textstr, fontsize=12, bbox=props, # transform=axs[i, j].transAxes) red_a = np.array(red_a) red_loc = np.array(red_loc) red_scale = np.array(red_scale) blue_a = np.array(blue_a) blue_loc = np.array(blue_loc) blue_scale = np.array(blue_scale) a_arr = (np.array((red_a, blue_a))).flatten() loc_arr = (np.array((red_loc, blue_loc))).flatten() scale_arr = (np.array((red_scale, blue_scale))).flatten() axs[0,0].legend(loc='center right', prop={'size': 8}) axs[1,2].set(xlabel=r'\boldmath$(\sigma - \bar \sigma )/ \bar \sigma$') plt.show() ## Simulating errors np.random.seed(30) m_true_arr = np.round(np.random.uniform(-4.9, 0.4, size=500),2) b_true_arr = np.round(np.random.uniform(1, 7, size=500),2) ## Keeping data fixed m_true = m_true_arr[50] b_true = b_true_arr[50] N=10 x = np.sort(10*np.random.rand(N)) samples_arr = [] chi2_arr = [] yerr_arr = [] for i in range(500): print(i) ## Mimicking non-gaussian errors from mocks # yerr = stats.skewnorm.rvs(a_arr, loc_arr, scale_arr) ## Corresponding gaussian distributions var_arr = stats.skewnorm.stats(a_arr, loc_arr, scale_arr, moments='mvsk')[1] # mu_arr = stats.skewnorm.stats(a_arr, loc_arr, scale_arr, moments='mvsk')[0] std_arr = np.sqrt(var_arr) ## Simulating gaussian errors with mean of 0 and same sigma as corresponding ## non-gaussian fits yerr = stats.norm.rvs(np.zeros(10), std_arr) y = m_true * x + b_true y_new = y + y*yerr pos = [0,5] + 1e-4 * np.random.randn(64, 2) nwalkers, ndim = pos.shape nsteps = 5000 sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob, args=(x, y_new, std_arr)) sampler.run_mcmc(pos, nsteps, store=True, progress=True) flat_samples = sampler.get_chain(discard=100, thin=15, flat=True) chi2 = sampler.get_blobs(discard=100, thin=15, flat=True) samples_arr.append(flat_samples) chi2_arr.append(chi2) yerr_arr.append(yerr) non_gaussian_samples_arr = np.array(samples_arr) non_gaussian_chi2_arr = np.array(chi2_arr) non_gaussian_yerr_arr = np.array(yerr_arr) gaussian_samples_arr = np.array(samples_arr) gaussian_chi2_arr = np.array(chi2_arr) gaussian_yerr_arr =
np.array(yerr_arr)
numpy.array
# MIT License # # Copyright (c) 2018-2021 Tskit Developers # Copyright (c) 2015-2018 University of Oxford # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Test cases for the low level C interface to tskit. """ import collections import inspect import itertools import os import random import tempfile import msprime import numpy as np import pytest import _tskit import tskit def get_tracked_sample_counts(st, tracked_samples): """ Returns a list giving the number of samples in the specified list that are in the subtree rooted at each node. """ nu = [0 for j in range(st.get_num_nodes())] for j in tracked_samples: # Duplicates not permitted. assert nu[j] == 0 u = j while u != _tskit.NULL: nu[u] += 1 u = st.get_parent(u) return nu def get_sample_counts(tree_sequence, st): """ Returns a list of the sample node counts for the specified tree. """ nu = [0 for j in range(st.get_num_nodes())] for j in range(tree_sequence.get_num_samples()): u = j while u != _tskit.NULL: nu[u] += 1 u = st.get_parent(u) return nu class LowLevelTestCase: """ Superclass of tests for the low-level interface. """ def verify_tree_dict(self, n, pi): """ Verifies that the specified tree in dict format is a consistent coalescent history for a sample of size n. """ assert len(pi) <= 2 * n - 1 # _tskit.NULL should not be a node assert _tskit.NULL not in pi # verify the root is equal for all samples root = 0 while pi[root] != _tskit.NULL: root = pi[root] for j in range(n): k = j while pi[k] != _tskit.NULL: k = pi[k] assert k == root # 0 to n - 1 inclusive should always be nodes for j in range(n): assert j in pi num_children = collections.defaultdict(int) for j in pi.keys(): num_children[pi[j]] += 1 # nodes 0 to n are samples. for j in range(n): assert pi[j] != 0 assert num_children[j] == 0 # All non-sample nodes should be binary for j in pi.keys(): if j > n: assert num_children[j] >= 2 def get_example_tree_sequence( self, sample_size=10, length=1, mutation_rate=1, random_seed=1 ): ts = msprime.simulate( sample_size, recombination_rate=0.1, mutation_rate=mutation_rate, random_seed=random_seed, length=length, ) return ts.ll_tree_sequence def get_example_tree_sequences(self): yield self.get_example_tree_sequence() yield self.get_example_tree_sequence(2, 10) yield self.get_example_tree_sequence(20, 10) yield self.get_example_migration_tree_sequence() def get_example_migration_tree_sequence(self): pop_configs = [msprime.PopulationConfiguration(5) for _ in range(2)] migration_matrix = [[0, 1], [1, 0]] ts = msprime.simulate( population_configurations=pop_configs, migration_matrix=migration_matrix, mutation_rate=1, record_migrations=True, random_seed=1, ) return ts.ll_tree_sequence def verify_iterator(self, iterator): """ Checks that the specified non-empty iterator implements the iterator protocol correctly. """ list_ = list(iterator) assert len(list_) > 0 for _ in range(10): with pytest.raises(StopIteration): next(iterator) class MetadataTestMixin: metadata_tables = [ "node", "edge", "site", "mutation", "migration", "individual", "population", ] class TestTableCollection(LowLevelTestCase): """ Tests for the low-level TableCollection class """ def test_file_errors(self): tc1 = _tskit.TableCollection(1) self.get_example_tree_sequence().dump_tables(tc1) def loader(*args): tc = _tskit.TableCollection(1) tc.load(*args) for func in [tc1.dump, loader]: with pytest.raises(TypeError): func() for bad_type in [None, [], {}]: with pytest.raises(TypeError): func(bad_type) def test_dump_equality(self, tmp_path): for ts in self.get_example_tree_sequences(): tc = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tc) with open(tmp_path / "tmp.trees", "wb") as f: tc.dump(f) with open(tmp_path / "tmp.trees", "rb") as f: tc2 = _tskit.TableCollection() tc2.load(f) assert tc.equals(tc2) def test_reference_deletion(self): ts = msprime.simulate(10, mutation_rate=1, random_seed=1) tc = ts.tables._ll_tables # Get references to all the tables tables = [ tc.individuals, tc.nodes, tc.edges, tc.migrations, tc.sites, tc.mutations, tc.populations, tc.provenances, ] del tc for _ in range(10): for table in tables: assert len(str(table)) > 0 def test_set_sequence_length_errors(self): tables = _tskit.TableCollection(1) with pytest.raises(TypeError): del tables.sequence_length for bad_value in ["sdf", None, []]: with pytest.raises(TypeError): tables.sequence_length = bad_value def test_set_sequence_length(self): tables = _tskit.TableCollection(1) assert tables.sequence_length == 1 for value in [-1, 1e6, 1e-22, 1000, 2 ** 32, -10000]: tables.sequence_length = value assert tables.sequence_length == value def test_set_metadata_errors(self): tables = _tskit.TableCollection(1) with pytest.raises(AttributeError): del tables.metadata for bad_value in ["bytes only", 59, 43.4, None, []]: with pytest.raises(TypeError): tables.metadata = bad_value def test_set_metadata(self): tables = _tskit.TableCollection(1) assert tables.metadata == b"" for value in [b"foo", b"", "💩".encode(), b"null char \0 in string"]: tables.metadata = value tables.metadata_schema = "Test we have two separate fields" assert tables.metadata == value def test_set_metadata_schema_errors(self): tables = _tskit.TableCollection(1) with pytest.raises(AttributeError): del tables.metadata_schema for bad_value in [59, 43.4, None, []]: with pytest.raises(TypeError): tables.metadata_schema = bad_value def test_set_metadata_schema(self): tables = _tskit.TableCollection(1) assert tables.metadata_schema == "" for value in ["foo", "", "💩", "null char \0 in string"]: tables.metadata_schema = value tables.metadata = b"Test we have two separate fields" assert tables.metadata_schema == value def test_simplify_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.simplify() with pytest.raises(ValueError): tc.simplify("asdf") with pytest.raises(TypeError): tc.simplify([0, 1], keep_unary="sdf") with pytest.raises(TypeError): tc.simplify([0, 1], keep_unary_in_individuals="abc") with pytest.raises(TypeError): tc.simplify([0, 1], keep_input_roots="sdf") with pytest.raises(TypeError): tc.simplify([0, 1], filter_populations="x") with pytest.raises(_tskit.LibraryError): tc.simplify([0, -1]) def test_link_ancestors_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.link_ancestors() with pytest.raises(TypeError): tc.link_ancestors([0, 1]) with pytest.raises(ValueError): tc.link_ancestors(samples=[0, 1], ancestors="sdf") with pytest.raises(ValueError): tc.link_ancestors(samples="sdf", ancestors=[0, 1]) with pytest.raises(_tskit.LibraryError): tc.link_ancestors(samples=[0, 1], ancestors=[11, -1]) with pytest.raises(_tskit.LibraryError): tc.link_ancestors(samples=[0, -1], ancestors=[11]) def test_link_ancestors(self): ts = msprime.simulate(2, random_seed=1) tc = ts.tables._ll_tables edges = tc.link_ancestors([0, 1], [3]) assert isinstance(edges, _tskit.EdgeTable) del edges assert tc.edges.num_rows == 2 def test_subset_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.subset(np.array(["a"])) with pytest.raises(ValueError): tc.subset(np.array([[1], [2]], dtype="int32")) with pytest.raises(TypeError): tc.subset() with pytest.raises(_tskit.LibraryError): tc.subset(np.array([100, 200], dtype="int32")) def test_union_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables tc2 = tc with pytest.raises(TypeError): tc.union(tc2, np.array(["a"])) with pytest.raises(ValueError): tc.union(tc2, np.array([0], dtype="int32")) with pytest.raises(TypeError): tc.union(tc2) with pytest.raises(TypeError): tc.union() node_mapping = np.arange(ts.num_nodes, dtype="int32") node_mapping[0] = 1200 with pytest.raises(_tskit.LibraryError): tc.union(tc2, node_mapping) node_mapping = np.array( [node_mapping.tolist(), node_mapping.tolist()], dtype="int32" ) with pytest.raises(ValueError): tc.union(tc2, node_mapping) with pytest.raises(ValueError): tc.union(tc2, np.array([[1], [2]], dtype="int32")) def test_equals_bad_args(self): ts = msprime.simulate(10, random_seed=1242) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.equals() with pytest.raises(TypeError): tc.equals(None) assert tc.equals(tc) with pytest.raises(TypeError): tc.equals(tc, no_such_arg=1) bad_bool = "x" with pytest.raises(TypeError): tc.equals(tc, ignore_metadata=bad_bool) with pytest.raises(TypeError): tc.equals(tc, ignore_ts_metadata=bad_bool) with pytest.raises(TypeError): tc.equals(tc, ignore_provenance=bad_bool) with pytest.raises(TypeError): tc.equals(tc, ignore_timestamps=bad_bool) def test_asdict(self): for ts in self.get_example_tree_sequences(): tc = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tc) d = tc.asdict() # Method is tested extensively elsewhere, just basic sanity check here assert isinstance(d, dict) assert len(d) > 0 def test_fromdict(self): for ts in self.get_example_tree_sequences(): tc1 = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tc1) d = tc1.asdict() tc2 = _tskit.TableCollection(sequence_length=0) tc2.fromdict(d) assert tc1.equals(tc2) def test_asdict_bad_args(self): ts = msprime.simulate(10, random_seed=1242) tc = ts.tables._ll_tables for bad_type in [None, 0.1, "str"]: with pytest.raises(TypeError): tc.asdict(force_offset_64=bad_type) def test_fromdict_bad_args(self): tc = _tskit.TableCollection(0) for bad_type in [None, 0.1, "str"]: with pytest.raises(TypeError): tc.fromdict(bad_type) class TestIbd: def test_uninitialised(self): result = _tskit.IbdResult.__new__(_tskit.IbdResult) with pytest.raises(SystemError): result.get(0, 1) with pytest.raises(SystemError): result.print_state() with pytest.raises(SystemError): result.total_segments def test_find_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables with pytest.raises(TypeError): tc.find_ibd() for bad_samples in ["sdf", None, {}]: with pytest.raises(ValueError): tc.find_ibd(bad_samples) for not_enough_samples in [[], [0]]: with pytest.raises(ValueError): tc.find_ibd(not_enough_samples) # input array must be 2D with pytest.raises(ValueError): tc.find_ibd([[[1], [1]]]) # Input array must be (n, 2) with pytest.raises(ValueError): tc.find_ibd([[1, 1, 1]]) for bad_float in ["sdf", None, {}]: with pytest.raises(TypeError): tc.find_ibd([(0, 1)], min_length=bad_float) with pytest.raises(TypeError): tc.find_ibd([(0, 1)], max_time=bad_float) with pytest.raises(_tskit.LibraryError): tc.find_ibd([(0, 1)], max_time=-1) with pytest.raises(_tskit.LibraryError): tc.find_ibd([(0, 1)], min_length=-1) def test_get_output(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables pairs = [(0, 1), (2, 3)] result = tc.find_ibd(pairs) assert isinstance(result, _tskit.IbdResult) for pair in pairs: value = result.get(*pair) assert isinstance(value, dict) assert len(value) == 3 assert list(value["left"]) == [0] assert list(value["right"]) == [1] assert len(value["node"]) == 1 def test_get_bad_args(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables pairs = [(0, 1), (2, 3)] result = tc.find_ibd(pairs) with pytest.raises(TypeError): result.get() with pytest.raises(TypeError): result.get("0", 1) with pytest.raises(_tskit.LibraryError): result.get(0, 0) # TODO this should probably be a KeyError, but let's not # worry about it for now. with pytest.raises(_tskit.LibraryError): result.get(0, 2) def test_print_state(self): ts = msprime.simulate(10, random_seed=1) tc = ts.tables._ll_tables pairs = [(0, 1), (2, 3)] result = tc.find_ibd(pairs) with pytest.raises(TypeError): result.print_state() with tempfile.TemporaryFile("w+") as f: result.print_state(f) f.seek(0) output = f.read() assert len(output) > 0 assert "IBD" in output def test_direct_instantiation(self): # Nobody should do this, but just in case result = _tskit.IbdResult() assert result.total_segments == 0 with tempfile.TemporaryFile("w+") as f: result.print_state(f) f.seek(0) output = f.read() assert len(output) > 0 assert "IBD" in output class TestTableMethods: """ Tests for the low-level table methods. """ @pytest.mark.parametrize("table_name", tskit.TABLE_NAMES) def test_table_extend(self, table_name, ts_fixture): table = getattr(ts_fixture.tables, table_name) assert len(table) >= 5 ll_table = table.ll_table table_copy = table.copy() ll_table.extend(table_copy.ll_table, row_indexes=[]) assert table == table_copy ll_table.clear() ll_table.extend(table_copy.ll_table, row_indexes=range(len(table_copy))) assert table == table_copy @pytest.mark.parametrize("table_name", tskit.TABLE_NAMES) @pytest.mark.parametrize( ["row_indexes", "expected_rows"], [ ([0], [0]), ([4] * 1000, [4] * 1000), ([4, 1, 3, 0, 0], [4, 1, 3, 0, 0]), (np.array([0, 1, 4], dtype=np.uint8), [0, 1, 4]), (np.array([3, 3, 3], dtype=np.uint16), [3, 3, 3]), (np.array([4, 2, 1], dtype=np.int8), [4, 2, 1]), (np.array([4, 2], dtype=np.int16), [4, 2]), (np.array([0, 1], dtype=np.int32), [0, 1]), (range(2, -1, -1), [2, 1, 0]), ], ) def test_table_extend_types( self, ts_fixture, table_name, row_indexes, expected_rows ): table = getattr(ts_fixture.tables, table_name) assert len(table) >= 5 ll_table = table.ll_table table_copy = table.copy() ll_table.extend(table_copy.ll_table, row_indexes=row_indexes) assert len(table) == len(table_copy) + len(expected_rows) for i, expected_row in enumerate(expected_rows): assert table[len(table_copy) + i] == table_copy[expected_row] @pytest.mark.parametrize( ["table_name", "column_name"], [ (t, c) for t in tskit.TABLE_NAMES for c in getattr(tskit, f"{t[:-1].capitalize()}Table").column_names if c[-7:] != "_offset" ], ) def test_table_update(self, ts_fixture, table_name, column_name): table = getattr(ts_fixture.tables, table_name) copy = table.copy() ll_table = table.ll_table # Find the first row where this column differs to get a value to swap in other_row_index = -1 for i, row in enumerate(table): if not np.array_equal( getattr(table[0], column_name), getattr(row, column_name) ): other_row_index = i assert other_row_index != -1 # No-op update should not create a change args = ll_table.get_row(0) ll_table.update_row(0, *args) table.assert_equals(copy) # Modify the column under test in the first row new_args = list(ll_table.get_row(0)) arg_index = list(inspect.signature(table.add_row).parameters.keys()).index( column_name ) new_args[arg_index] = ll_table.get_row(other_row_index)[arg_index] ll_table.update_row(0, *new_args) for a, b in zip(ll_table.get_row(0), new_args): np.array_equal(a, b) def test_update_defaults(self): t = tskit.IndividualTable() assert t.add_row(flags=1, location=[1, 2], parents=[3, 4], metadata=b"FOO") == 0 t.ll_table.update_row(0) assert t.flags[0] == 0 assert len(t.location) == 0 assert t.location_offset[0] == 0 assert len(t.parents) == 0 assert t.parents_offset[0] == 0 assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.NodeTable() assert ( t.add_row(flags=1, time=2, population=3, individual=4, metadata=b"FOO") == 0 ) t.ll_table.update_row(0) assert t.time[0] == 0 assert t.flags[0] == 0 assert t.population[0] == tskit.NULL assert t.individual[0] == tskit.NULL assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.EdgeTable() assert t.add_row(1, 2, 3, 4, metadata=b"FOO") == 0 t.ll_table.update_row(0, 1, 2, 3, 4) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.MigrationTable() assert t.add_row(1, 2, 3, 4, 5, 6, b"FOO") == 0 t.ll_table.update_row(0, 1, 2, 3, 4, 5, 6) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 t = tskit.MutationTable() assert t.add_row(1, 2, "A", 3, b"FOO", 4) == 0 t.ll_table.update_row(0, 1, 2, "A", 3) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 assert tskit.is_unknown_time(t.time[0]) t = tskit.PopulationTable() assert t.add_row(b"FOO") == 0 t.ll_table.update_row(0) assert len(t.metadata) == 0 assert t.metadata_offset[0] == 0 def test_update_bad_data(self): t = tskit.IndividualTable() t.add_row() with pytest.raises(TypeError): t.ll_table.update_row(0, flags="x") with pytest.raises(TypeError): t.ll_table.update_row(0, metadata=123) with pytest.raises(ValueError): t.ll_table.update_row(0, location="1234") with pytest.raises(ValueError): t.ll_table.update_row(0, parents="forty-two") t = tskit.NodeTable() t.add_row() with pytest.raises(TypeError): t.ll_table.update_row(0, flags="x") with pytest.raises(TypeError): t.ll_table.update_row(0, time="x") with pytest.raises(TypeError): t.ll_table.update_row(0, individual="x") with pytest.raises(TypeError): t.ll_table.update_row(0, population="x") with pytest.raises(TypeError): t.ll_table.update_row(0, metadata=123) t = tskit.EdgeTable() t.add_row(1, 2, 3, 4) with pytest.raises(TypeError): t.ll_table.update_row(0, left="x", right=0, parent=0, child=0) with pytest.raises(TypeError): t.ll_table.update_row( 0, ) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, 0, 0, metadata=123) t = tskit.SiteTable() t.add_row(0, "A") with pytest.raises(TypeError): t.ll_table.update_row(0, "x", "A") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, "A", metadata=[0, 1, 2]) t = tskit.MutationTable() t.add_row(0, 0, "A") with pytest.raises(TypeError): t.ll_table.update_row(0, "0", 0, "A") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, "0", "A") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, "A", parent=None) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, "A", metadata=[0]) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, "A", time="A") t = tskit.MigrationTable() with pytest.raises(TypeError): t.add_row(left="x", right=0, node=0, source=0, dest=0, time=0) with pytest.raises(TypeError): t.ll_table.update_row( 0, ) with pytest.raises(TypeError): t.ll_table.update_row(0, 0, 0, 0, 0, 0, 0, metadata=123) t = tskit.ProvenanceTable() t.add_row("a", "b") with pytest.raises(TypeError): t.ll_table.update_row(0, 0, "b") with pytest.raises(TypeError): t.ll_table.update_row(0, "a", 0) t = tskit.PopulationTable() t.add_row() with pytest.raises(TypeError): t.ll_table.update_row(0, metadata=[0]) class TestTableMethodsErrors: """ Tests for the error handling of errors in the low-level tables. """ def yield_tables(self, ts): for table in ts.tables.name_map.values(): yield table.ll_table @pytest.mark.parametrize( "table_name", tskit.TABLE_NAMES, ) def test_table_extend_bad_args(self, ts_fixture, table_name): table = getattr(ts_fixture.tables, table_name) ll_table = table.ll_table ll_table_copy = table.copy().ll_table with pytest.raises( _tskit.LibraryError, match="Tables can only be extended using rows from a different table", ): ll_table.extend(ll_table, row_indexes=[]) with pytest.raises(TypeError): ll_table.extend(None, row_indexes=[]) with pytest.raises(ValueError): ll_table.extend(ll_table_copy, row_indexes=5) with pytest.raises(TypeError): ll_table.extend(ll_table_copy, row_indexes=[None]) with pytest.raises(ValueError, match="object too deep"): ll_table.extend(ll_table_copy, row_indexes=[[0, 1], [2, 3]]) with pytest.raises(ValueError, match="object too deep"): ll_table.extend(ll_table_copy, row_indexes=[[0, 1]]) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.extend(ll_table_copy, row_indexes=[-1]) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.extend(ll_table_copy, row_indexes=[1000]) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.extend(ll_table_copy, row_indexes=range(10000000, 10000001)) # Uncastable types for dtype in [np.uint32, np.int64, np.uint64, np.float32, np.float64]: with pytest.raises(TypeError, match="Cannot cast"): ll_table.extend(ll_table_copy, row_indexes=np.array([0], dtype=dtype)) @pytest.mark.parametrize("table_name", tskit.TABLE_NAMES) def test_update_bad_row_index(self, ts_fixture, table_name): table = getattr(ts_fixture.tables, table_name) ll_table = table.ll_table row_data = ll_table.get_row(0) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.update_row(-1, *row_data) with pytest.raises(ValueError, match="tskit ids must be"): ll_table.update_row(-42, *row_data) with pytest.raises(TypeError): ll_table.update_row([], *row_data) with pytest.raises(TypeError): ll_table.update_row("abc", *row_data) with pytest.raises(_tskit.LibraryError, match="out of bounds"): ll_table.update_row(10000, *row_data) with pytest.raises(OverflowError, match="Value too large for tskit id type"): ll_table.update_row(2 ** 62, *row_data) def test_equals_bad_args(self, ts_fixture): for ll_table in self.yield_tables(ts_fixture): assert ll_table.equals(ll_table) with pytest.raises(TypeError): ll_table.equals(None) with pytest.raises(TypeError): ll_table.equals(ll_table, no_such_arg="") uninit_other = type(ll_table).__new__(type(ll_table)) with pytest.raises(SystemError): ll_table.equals(uninit_other) def test_get_row_bad_args(self, ts_fixture): for ll_table in self.yield_tables(ts_fixture): assert ll_table.get_row(0) is not None with pytest.raises(TypeError): ll_table.get_row(no_such_arg="") @pytest.mark.parametrize("table", ["nodes", "individuals"]) def test_flag_underflow_overflow(self, table): tables = _tskit.TableCollection(1) table = getattr(tables, table) table.add_row(flags=0) table.add_row(flags=(1 << 32) - 1) with pytest.raises(OverflowError, match="unsigned int32 >= than 2\\^32"): table.add_row(flags=1 << 32) with pytest.raises(OverflowError, match="int too big to convert"): table.add_row(flags=1 << 64) with pytest.raises(OverflowError, match="int too big to convert"): table.add_row(flags=1 << 256) with pytest.raises( ValueError, match="Can't convert negative value to unsigned int" ): table.add_row(flags=-1) def test_index(self): tc = msprime.simulate(10, random_seed=42).tables._ll_tables assert tc.indexes["edge_insertion_order"].dtype == np.int32 assert tc.indexes["edge_removal_order"].dtype == np.int32 assert np.array_equal( tc.indexes["edge_insertion_order"], np.arange(18, dtype=np.int32) ) assert np.array_equal( tc.indexes["edge_removal_order"], np.arange(18, dtype=np.int32)[::-1] ) tc.drop_index() assert tc.indexes == {} tc.build_index() assert np.array_equal( tc.indexes["edge_insertion_order"], np.arange(18, dtype=np.int32) ) assert np.array_equal( tc.indexes["edge_removal_order"], np.arange(18, dtype=np.int32)[::-1] ) modify_indexes = tc.indexes modify_indexes["edge_insertion_order"] = np.arange(42, 42 + 18, dtype=np.int32) modify_indexes["edge_removal_order"] = np.arange( 4242, 4242 + 18, dtype=np.int32 ) tc.indexes = modify_indexes assert np.array_equal( tc.indexes["edge_insertion_order"], np.arange(42, 42 + 18, dtype=np.int32) ) assert np.array_equal( tc.indexes["edge_removal_order"], np.arange(4242, 4242 + 18, dtype=np.int32) ) def test_no_indexes(self): tc = msprime.simulate(10, random_seed=42).tables._ll_tables tc.drop_index() assert tc.indexes == {} def test_bad_indexes(self): tc = msprime.simulate(10, random_seed=42).tables._ll_tables for col in ("insertion", "removal"): d = tc.indexes d[f"edge_{col}_order"] = d[f"edge_{col}_order"][:-1] with pytest.raises( ValueError, match="^edge_insertion_order and" " edge_removal_order must be the same" " length$", ): tc.indexes = d d = tc.indexes for col in ("insertion", "removal"): d[f"edge_{col}_order"] = d[f"edge_{col}_order"][:-1] with pytest.raises( ValueError, match="^edge_insertion_order and edge_removal_order must be" " the same length as the number of edges$", ): tc.indexes = d # Both columns must be provided, if one is for col in ("insertion", "removal"): d = tc.indexes del d[f"edge_{col}_order"] with pytest.raises( TypeError, match="^edge_insertion_order and " "edge_removal_order must be specified " "together$", ): tc.indexes = d tc = msprime.simulate( 10, recombination_rate=10, random_seed=42 ).tables._ll_tables modify_indexes = tc.indexes shape = modify_indexes["edge_insertion_order"].shape modify_indexes["edge_insertion_order"] = np.zeros(shape, dtype=np.int32) modify_indexes["edge_removal_order"] = np.zeros(shape, dtype=np.int32) tc.indexes = modify_indexes ts = _tskit.TreeSequence() with pytest.raises( _tskit.LibraryError, match="^Bad edges: contradictory children for a given" " parent over an interval$", ): ts.load_tables(tc, build_indexes=False) modify_indexes["edge_insertion_order"] = np.full(shape, 2 ** 30, dtype=np.int32) modify_indexes["edge_removal_order"] = np.full(shape, 2 ** 30, dtype=np.int32) tc.indexes = modify_indexes ts = _tskit.TreeSequence() with pytest.raises(_tskit.LibraryError, match="^Edge out of bounds$"): ts.load_tables(tc, build_indexes=False) class TestTreeSequence(LowLevelTestCase, MetadataTestMixin): """ Tests for the low-level interface for the TreeSequence. """ def setUp(self): fd, self.temp_file = tempfile.mkstemp(prefix="msp_ll_ts_") os.close(fd) def tearDown(self): os.unlink(self.temp_file) def test_file_errors(self): ts1 = self.get_example_tree_sequence() def loader(*args): ts2 = _tskit.TreeSequence() ts2.load(*args) for func in [ts1.dump, loader]: with pytest.raises(TypeError): func() for bad_type in [None, [], {}]: with pytest.raises(TypeError): func(bad_type) def test_initial_state(self): # Check the initial state to make sure that it is empty. ts = _tskit.TreeSequence() with pytest.raises(ValueError): ts.get_num_samples() with pytest.raises(ValueError): ts.get_sequence_length() with pytest.raises(ValueError): ts.get_num_trees() with pytest.raises(ValueError): ts.get_num_edges() with pytest.raises(ValueError): ts.get_num_mutations() with pytest.raises(ValueError): ts.get_num_migrations() with pytest.raises(ValueError): ts.get_num_migrations() with pytest.raises(ValueError): ts.get_genotype_matrix() with pytest.raises(ValueError): ts.dump() def test_num_nodes(self): for ts in self.get_example_tree_sequences(): max_node = 0 for j in range(ts.get_num_edges()): _, _, parent, child, _ = ts.get_edge(j) for node in [parent, child]: if node > max_node: max_node = node assert max_node + 1 == ts.get_num_nodes() def test_dump_equality(self, tmp_path): for ts in self.get_example_tree_sequences(): tables = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tables) tables.compute_mutation_times() ts = _tskit.TreeSequence() ts.load_tables(tables) with open(tmp_path / "temp.trees", "wb") as f: ts.dump(f) with open(tmp_path / "temp.trees", "rb") as f: ts2 = _tskit.TreeSequence() ts2.load(f) tc = _tskit.TableCollection(ts.get_sequence_length()) ts.dump_tables(tc) tc2 = _tskit.TableCollection(ts2.get_sequence_length()) ts2.dump_tables(tc2) assert tc.equals(tc2) def verify_mutations(self, ts): mutations = [ts.get_mutation(j) for j in range(ts.get_num_mutations())] assert ts.get_num_mutations() > 0 assert len(mutations) == ts.get_num_mutations() # Check the form of the mutations for j, (position, nodes, index) in enumerate(mutations): assert j == index for node in nodes: assert isinstance(node, int) assert node >= 0 assert node <= ts.get_num_nodes() assert isinstance(position, float) assert position > 0 assert position < ts.get_sequence_length() # mutations must be sorted by position order. assert mutations == sorted(mutations) def test_get_edge_interface(self): for ts in self.get_example_tree_sequences(): num_edges = ts.get_num_edges() # We don't accept Python negative indexes here. with pytest.raises(IndexError): ts.get_edge(-1) for j in [0, 10, 10 ** 6]: with pytest.raises(IndexError): ts.get_edge(num_edges + j) for x in [None, "", {}, []]: with pytest.raises(TypeError): ts.get_edge(x) def test_get_node_interface(self): for ts in self.get_example_tree_sequences(): num_nodes = ts.get_num_nodes() # We don't accept Python negative indexes here. with pytest.raises(IndexError): ts.get_node(-1) for j in [0, 10, 10 ** 6]: with pytest.raises(IndexError): ts.get_node(num_nodes + j) for x in [None, "", {}, []]: with pytest.raises(TypeError): ts.get_node(x) def test_get_genotype_matrix_interface(self): for ts in self.get_example_tree_sequences(): num_samples = ts.get_num_samples() num_sites = ts.get_num_sites() G = ts.get_genotype_matrix() assert G.shape == (num_sites, num_samples) with pytest.raises(TypeError): ts.get_genotype_matrix(isolated_as_missing=None) with pytest.raises(TypeError): ts.get_genotype_matrix(alleles="XYZ") with pytest.raises(ValueError): ts.get_genotype_matrix(alleles=tuple()) G = ts.get_genotype_matrix(isolated_as_missing=False) assert G.shape == (num_sites, num_samples) def test_get_genotype_matrix_missing_data(self): tables = _tskit.TableCollection(1) tables.nodes.add_row(flags=1, time=0) tables.nodes.add_row(flags=1, time=0) tables.sites.add_row(0.1, "A") tables.build_index() ts = _tskit.TreeSequence(0) ts.load_tables(tables) G = ts.get_genotype_matrix(isolated_as_missing=False) assert np.all(G == 0) G = ts.get_genotype_matrix(isolated_as_missing=True) assert np.all(G == -1) G = ts.get_genotype_matrix() assert np.all(G == -1) def test_get_migration_interface(self): ts = self.get_example_migration_tree_sequence() for bad_type in ["", None, {}]: with pytest.raises(TypeError): ts.get_migration(bad_type) num_records = ts.get_num_migrations() # We don't accept Python negative indexes here. with pytest.raises(IndexError): ts.get_migration(-1) for j in [0, 10, 10 ** 6]: with pytest.raises(IndexError): ts.get_migration(num_records + j) def test_get_samples(self): for ts in self.get_example_tree_sequences(): # get_samples takes no arguments. with pytest.raises(TypeError): ts.get_samples(0) assert np.array_equal( np.arange(ts.get_num_samples(), dtype=np.int32), ts.get_samples() ) def test_genealogical_nearest_neighbours(self): for ts in self.get_example_tree_sequences(): with pytest.raises(TypeError): ts.genealogical_nearest_neighbours() with pytest.raises(TypeError): ts.genealogical_nearest_neighbours(focal=None) with pytest.raises(TypeError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets={}, ) with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets=[], ) bad_array_values = ["", {}, "x", [[[0], [1, 2]]]] for bad_array_value in bad_array_values: with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=bad_array_value, reference_sets=[[0], [1]], ) with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets=[[0], bad_array_value], ) with pytest.raises(ValueError): ts.genealogical_nearest_neighbours( focal=ts.get_samples(), reference_sets=[bad_array_value], ) focal = ts.get_samples() A = ts.genealogical_nearest_neighbours(focal, [focal[2:], focal[:2]]) assert A.shape == (len(focal), 2) def test_mean_descendants(self): for ts in self.get_example_tree_sequences(): with pytest.raises(TypeError): ts.mean_descendants() with pytest.raises(TypeError): ts.mean_descendants(reference_sets={}) with pytest.raises(ValueError): ts.mean_descendants(reference_sets=[]) bad_array_values = ["", {}, "x", [[[0], [1, 2]]]] for bad_array_value in bad_array_values: with pytest.raises(ValueError): ts.mean_descendants( reference_sets=[[0], bad_array_value], ) with pytest.raises(ValueError): ts.mean_descendants(reference_sets=[bad_array_value]) focal = ts.get_samples() A = ts.mean_descendants([focal[2:], focal[:2]]) assert A.shape == (ts.get_num_nodes(), 2) def test_metadata_schemas(self): tables = _tskit.TableCollection(1.0) # Set the schema for table_name in self.metadata_tables: table = getattr(tables, f"{table_name}s") table.metadata_schema = f"{table_name} test metadata schema" # Read back via ll tree sequence tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) schemas = ts.get_table_metadata_schemas() for table_name in self.metadata_tables: assert getattr(schemas, table_name) == f"{table_name} test metadata schema" # Clear and read back again for table_name in self.metadata_tables: getattr(tables, f"{table_name}s").metadata_schema = "" ts = _tskit.TreeSequence() ts.load_tables(tables) schemas = ts.get_table_metadata_schemas() for table_name in self.metadata_tables: assert getattr(schemas, table_name) == "" def test_metadata(self): tables = _tskit.TableCollection(1) tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata() == b"" for value in [b"foo", b"", "💩".encode(), b"null char \0 in string"]: tables.metadata = value ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata() == value def test_metadata_schema(self): tables = _tskit.TableCollection(1) tables.build_index() ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata_schema() == "" for value in ["foo", "", "💩", "null char \0 in string"]: tables.metadata_schema = value ts = _tskit.TreeSequence() ts.load_tables(tables) assert ts.get_metadata_schema() == value def test_kc_distance_errors(self): ts1 = self.get_example_tree_sequence(10) with pytest.raises(TypeError): ts1.get_kc_distance() with pytest.raises(TypeError): ts1.get_kc_distance(ts1) for bad_tree in [None, "tree", 0]: with pytest.raises(TypeError): ts1.get_kc_distance(bad_tree, lambda_=0) for bad_value in ["tree", [], None]: with pytest.raises(TypeError): ts1.get_kc_distance(ts1, lambda_=bad_value) # Different numbers of samples fail. ts2 = self.get_example_tree_sequence(11) self.verify_kc_library_error(ts1, ts2) # Different sequence lengths fail. ts2 = self.get_example_tree_sequence(10, length=11) self.verify_kc_library_error(ts1, ts2) def verify_kc_library_error(self, ts1, ts2): with pytest.raises(_tskit.LibraryError): ts1.get_kc_distance(ts2, 0) def test_kc_distance(self): ts1 = self.get_example_tree_sequence(10, random_seed=123456) ts2 = self.get_example_tree_sequence(10, random_seed=1234) for lambda_ in [-1, 0, 1, 1000, -1e300]: x1 = ts1.get_kc_distance(ts2, lambda_) x2 = ts2.get_kc_distance(ts1, lambda_) assert x1 == x2 def test_load_tables_build_indexes(self): for ts in self.get_example_tree_sequences(): tables = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts.dump_tables(tables) tables.drop_index() # Tables not in tc but rebuilt ts2 = _tskit.TreeSequence() ts2.load_tables(tables, build_indexes=True) tables2 = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts2.dump_tables(tables2) assert tables2.has_index() # Tables not in tc, not rebuilt so error ts3 = _tskit.TreeSequence() with pytest.raises( _tskit.LibraryError, match="Table collection must be indexed" ): ts3.load_tables(tables) # Tables in tc, not rebuilt tables.build_index() ts4 = _tskit.TreeSequence() ts4.load_tables(tables, build_indexes=False) tables4 = _tskit.TableCollection(sequence_length=ts.get_sequence_length()) ts4.dump_tables(tables4) assert tables4.has_index() def test_clear_table(self, ts_fixture): tables = _tskit.TableCollection( sequence_length=ts_fixture.get_sequence_length() ) ts_fixture.ll_tree_sequence.dump_tables(tables) tables.clear() data_tables = [t for t in tskit.TABLE_NAMES if t != "provenances"] for table in data_tables: assert getattr(tables, f"{table}").num_rows == 0 assert len(getattr(tables, f"{table}").metadata_schema) != 0 assert tables.provenances.num_rows > 0 assert len(tables.metadata) > 0 assert len(tables.metadata_schema) > 0 tables.clear(clear_provenance=True) assert tables.provenances.num_rows == 0 for table in data_tables: assert len(getattr(tables, f"{table}").metadata_schema) != 0 assert len(tables.metadata) > 0 assert len(tables.metadata_schema) > 0 tables.clear(clear_metadata_schemas=True) for table in data_tables: assert len(getattr(tables, f"{table}").metadata_schema) == 0 assert len(tables.metadata) > 0 assert len(tables.metadata_schema) > 0 tables.clear(clear_ts_metadata_and_schema=True) assert len(tables.metadata) == 0 assert len(tables.metadata_schema) == 0 class StatsInterfaceMixin: """ Tests for the interface on specific stats. """ def test_mode_errors(self): _, f, params = self.get_example() for bad_mode in ["", "not a mode", "SITE", "x" * 8192]: with pytest.raises(ValueError): f(mode=bad_mode, **params) for bad_type in [123, {}, None, [[]]]: with pytest.raises(TypeError): f(mode=bad_type, **params) def test_window_errors(self): ts, f, params = self.get_example() del params["windows"] for bad_array in ["asdf", None, [[[[]], [[]]]], np.zeros((10, 3, 4))]: with pytest.raises(ValueError): f(windows=bad_array, **params) for bad_windows in [[], [0]]: with pytest.raises(ValueError): f(windows=bad_windows, **params) L = ts.get_sequence_length() bad_windows = [ [L, 0], [0.1, L], [-1, L], [0, L + 0.1], [0, 0.1, 0.1, L], [0, -1, L], [0, 0.1, 0.05, 0.2, L], ] for bad_window in bad_windows: with pytest.raises(_tskit.LibraryError): f(windows=bad_window, **params) def test_windows_output(self): ts, f, params = self.get_example() del params["windows"] for num_windows in range(1, 10): windows = np.linspace(0, ts.get_sequence_length(), num=num_windows + 1) assert windows.shape[0] == num_windows + 1 sigma = f(windows=windows, **params) assert sigma.shape[0] == num_windows class WeightMixin(StatsInterfaceMixin): def get_example(self): ts, method = self.get_method() params = { "weights": np.ones((ts.get_num_samples(), 2)), "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_bad_weights(self): ts, f, params = self.get_example() del params["weights"] n = ts.get_num_samples() with pytest.raises(_tskit.LibraryError): f(weights=np.ones((n, 0)), **params) for bad_weight_shape in [(n - 1, 1), (n + 1, 1), (0, 3)]: with pytest.raises(ValueError): f(weights=np.ones(bad_weight_shape), **params) def test_output_dims(self): ts, method, params = self.get_example() weights = params["weights"] nw = weights.shape[1] windows = [0, ts.get_sequence_length()] for mode in ["site", "branch"]: out = method(weights[:, [0]], windows, mode=mode) assert out.shape == (1, 1) out = method(weights, windows, mode=mode) assert out.shape == (1, nw) out = method(weights[:, [0, 0, 0]], windows, mode=mode) assert out.shape == (1, 3) mode = "node" N = ts.get_num_nodes() out = method(weights[:, [0]], windows, mode=mode) assert out.shape == (1, N, 1) out = method(weights, windows, mode=mode) assert out.shape == (1, N, nw) out = method(weights[:, [0, 0, 0]], windows, mode=mode) assert out.shape == (1, N, 3) class WeightCovariateMixin(StatsInterfaceMixin): def get_example(self): ts, method = self.get_method() params = { "weights": np.ones((ts.get_num_samples(), 2)), "covariates": np.array( [np.arange(ts.get_num_samples()), np.arange(ts.get_num_samples()) ** 2] ).T, "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_output_dims(self): ts, method, params = self.get_example() weights = params["weights"] nw = weights.shape[1] windows = [0, ts.get_sequence_length()] for covariates in (params["covariates"], params["covariates"][:, :0]): for mode in ["site", "branch"]: out = method(weights[:, [0]], covariates, windows, mode=mode) assert out.shape == (1, 1) out = method(weights, covariates, windows, mode=mode) assert out.shape == (1, nw) out = method(weights[:, [0, 0, 0]], covariates, windows, mode=mode) assert out.shape == (1, 3) mode = "node" N = ts.get_num_nodes() out = method(weights[:, [0]], covariates, windows, mode=mode) assert out.shape == (1, N, 1) out = method(weights, covariates, windows, mode=mode) assert out.shape == (1, N, nw) out = method(weights[:, [0, 0, 0]], covariates, windows, mode=mode) assert out.shape == (1, N, 3) class SampleSetMixin(StatsInterfaceMixin): def test_bad_sample_sets(self): ts, f, params = self.get_example() del params["sample_set_sizes"] del params["sample_sets"] with pytest.raises(_tskit.LibraryError): f(sample_sets=[], sample_set_sizes=[], **params) n = ts.get_num_samples() samples = ts.get_samples() for bad_set_sizes in [[], [1], [n - 1], [n + 1], [n - 3, 1, 1], [1, n - 2]]: with pytest.raises(ValueError): f(sample_set_sizes=bad_set_sizes, sample_sets=samples, **params) N = ts.get_num_nodes() for bad_node in [-1, N, N + 1, -N]: with pytest.raises(_tskit.LibraryError): f(sample_set_sizes=[2], sample_sets=[0, bad_node], **params) for bad_sample in [n, n + 1, N - 1]: with pytest.raises(_tskit.LibraryError): f(sample_set_sizes=[2], sample_sets=[0, bad_sample], **params) class OneWaySampleStatsMixin(SampleSetMixin): """ Tests for one-way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [ts.get_num_samples()], "sample_sets": ts.get_samples(), "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() result = method( [ts.get_num_samples()], ts.get_samples(), [0, ts.get_sequence_length()] ) assert result.shape == (1, 1) result = method( [ts.get_num_samples()], ts.get_samples(), [0, ts.get_sequence_length()], mode="node", ) assert result.shape == (1, ts.get_num_nodes(), 1) result = method( [ts.get_num_samples()], ts.get_samples(), ts.get_breakpoints(), mode="node" ) assert result.shape == (ts.get_num_trees(), ts.get_num_nodes(), 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: pi = method([n], samples, windows, mode=mode) assert pi.shape == (1, 1) pi = method([2, n - 2], samples, windows, mode=mode) assert pi.shape == (1, 2) pi = method([2, 2, n - 4], samples, windows, mode=mode) assert pi.shape == (1, 3) pi = method(np.ones(n).astype(np.uint32), samples, windows, mode=mode) assert pi.shape == (1, n) mode = "node" N = ts.get_num_nodes() pi = method([n], samples, windows, mode=mode) assert pi.shape == (1, N, 1) pi = method([2, n - 2], samples, windows, mode=mode) assert pi.shape == (1, N, 2) pi = method([2, 2, n - 4], samples, windows, mode=mode) assert pi.shape == (1, N, 3) pi = method(np.ones(n).astype(np.uint32), samples, windows, mode=mode) assert pi.shape == (1, N, n) def test_polarised(self): # TODO move this to the top level. ts, method = self.get_method() samples = ts.get_samples() n = len(samples) windows = [0, ts.get_sequence_length()] method([n], samples, windows, polarised=True) method([n], samples, windows, polarised=False) class TestDiversity(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.diversity class TestTraitCovariance(LowLevelTestCase, WeightMixin): """ Tests for trait covariance. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.trait_covariance class TestTraitCorrelation(LowLevelTestCase, WeightMixin): """ Tests for trait correlation. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.trait_correlation class TestTraitLinearModel(LowLevelTestCase, WeightCovariateMixin): """ Tests for trait correlation. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.trait_linear_model class TestSegregatingSites(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.segregating_sites class TestY1(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.Y1 class TestAlleleFrequencySpectrum(LowLevelTestCase, OneWaySampleStatsMixin): """ Tests for the diversity method. """ def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.allele_frequency_spectrum def test_basic_example(self): ts = self.get_example_tree_sequence() n = ts.get_num_samples() result = ts.allele_frequency_spectrum( [n], ts.get_samples(), [0, ts.get_sequence_length()] ) assert result.shape == (1, n + 1) result = ts.allele_frequency_spectrum( [n], ts.get_samples(), [0, ts.get_sequence_length()], polarised=True ) assert result.shape == (1, n + 1) def test_output_dims(self): ts = self.get_example_tree_sequence() samples = ts.get_samples() L = ts.get_sequence_length() n = len(samples) for mode in ["site", "branch"]: for s in [[n], [n - 2, 2], [n - 4, 2, 2], [1] * n]: s = np.array(s, dtype=np.uint32) windows = [0, L] for windows in [[0, L], [0, L / 2, L], np.linspace(0, L, num=10)]: jafs = ts.allele_frequency_spectrum( s, samples, windows, mode=mode, polarised=True ) assert jafs.shape == tuple([len(windows) - 1] + list(s + 1)) jafs = ts.allele_frequency_spectrum( s, samples, windows, mode=mode, polarised=False ) assert jafs.shape == tuple([len(windows) - 1] + list(s + 1)) def test_node_mode_not_supported(self): ts = self.get_example_tree_sequence() with pytest.raises(_tskit.LibraryError): ts.allele_frequency_spectrum( [ts.get_num_samples()], ts.get_samples(), [0, ts.get_sequence_length()], mode="node", ) class TwoWaySampleStatsMixin(SampleSetMixin): """ Tests for the two way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [2, ts.get_num_samples() - 2], "sample_sets": ts.get_samples(), "indexes": [[0, 1]], "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() div = method( [2, ts.get_num_samples() - 2], ts.get_samples(), [[0, 1]], windows=[0, ts.get_sequence_length()], ) assert div.shape == (1, 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: div = method([2, 2, n - 4], samples, [[0, 1]], windows, mode=mode) assert div.shape == (1, 1) div = method([2, 2, n - 4], samples, [[0, 1], [1, 2]], windows, mode=mode) assert div.shape == (1, 2) div = method( [2, 2, n - 4], samples, [[0, 1], [1, 2], [0, 1]], windows, mode=mode ) assert div.shape == (1, 3) N = ts.get_num_nodes() mode = "node" div = method([2, 2, n - 4], samples, [[0, 1]], windows, mode=mode) assert div.shape == (1, N, 1) div = method([2, 2, n - 4], samples, [[0, 1], [1, 2]], windows, mode=mode) assert div.shape == (1, N, 2) div = method( [2, 2, n - 4], samples, [[0, 1], [1, 2], [0, 1]], windows, mode=mode ) assert div.shape == (1, N, 3) def test_set_index_errors(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) def f(indexes): method([2, 2, n - 4], samples, indexes, windows) for bad_array in ["wer", {}, [[[], []], [[], []]]]: with pytest.raises(ValueError): f(bad_array) for bad_dim in [[[]], [[1], [1]]]: with pytest.raises(ValueError): f(bad_dim) class ThreeWaySampleStatsMixin(SampleSetMixin): """ Tests for the two way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [1, 1, ts.get_num_samples() - 2], "sample_sets": ts.get_samples(), "indexes": [[0, 1, 2]], "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() div = method( [1, 1, ts.get_num_samples() - 2], ts.get_samples(), [[0, 1, 2]], windows=[0, ts.get_sequence_length()], ) assert div.shape == (1, 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: div = method([2, 2, n - 4], samples, [[0, 1, 2]], windows, mode=mode) assert div.shape == (1, 1) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3]], windows, mode=mode ) assert div.shape == (1, 2) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3], [0, 1, 2]], windows, mode=mode, ) assert div.shape == (1, 3) N = ts.get_num_nodes() mode = "node" div = method([2, 2, n - 4], samples, [[0, 1, 2]], windows, mode=mode) assert div.shape == (1, N, 1) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3]], windows, mode=mode ) assert div.shape == (1, N, 2) div = method( [1, 1, 2, n - 4], samples, [[0, 1, 2], [1, 2, 3], [0, 1, 2]], windows, mode=mode, ) assert div.shape == (1, N, 3) def test_set_index_errors(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) def f(indexes): method([2, 2, n - 4], samples, indexes, windows) for bad_array in ["wer", {}, [[[], []], [[], []]]]: with pytest.raises(ValueError): f(bad_array) for bad_dim in [[[]], [[1], [1]], [(0, 1)], [(0, 1, 2, 3)]]: with pytest.raises(ValueError): f(bad_dim) class FourWaySampleStatsMixin(SampleSetMixin): """ Tests for the four way sample stats. """ def get_example(self): ts, method = self.get_method() params = { "sample_set_sizes": [1, 1, 1, ts.get_num_samples() - 3], "sample_sets": ts.get_samples(), "indexes": [[0, 1, 2, 3]], "windows": [0, ts.get_sequence_length()], } return ts, method, params def test_basic_example(self): ts, method = self.get_method() div = method( [1, 1, 1, ts.get_num_samples() - 3], ts.get_samples(), [[0, 1, 2, 3]], windows=[0, ts.get_sequence_length()], ) assert div.shape == (1, 1) def test_output_dims(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) for mode in ["site", "branch"]: div = method([2, 1, 1, n - 4], samples, [[0, 1, 2, 3]], windows, mode=mode) assert div.shape == (1, 1) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4]], windows, mode=mode, ) assert div.shape == (1, 2) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4], [0, 1, 2, 4]], windows, mode=mode, ) assert div.shape == (1, 3) N = ts.get_num_nodes() mode = "node" div = method([2, 1, 1, n - 4], samples, [[0, 1, 2, 3]], windows, mode=mode) assert div.shape == (1, N, 1) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4]], windows, mode=mode, ) assert div.shape == (1, N, 2) div = method( [1, 1, 1, 1, n - 4], samples, [[0, 1, 2, 3], [1, 2, 3, 4], [0, 1, 2, 4]], windows, mode=mode, ) assert div.shape == (1, N, 3) def test_set_index_errors(self): ts, method = self.get_method() samples = ts.get_samples() windows = [0, ts.get_sequence_length()] n = len(samples) def f(indexes): method([2, 1, 1, n - 4], samples, indexes, windows) for bad_array in ["wer", {}, [[[], []], [[], []]]]: with pytest.raises(ValueError): f(bad_array) for bad_dim in [[[]], [[1], [1]], [(0, 1)], [(0, 1, 2, 3, 4)]]: with pytest.raises(ValueError): f(bad_dim) class TestDivergence(LowLevelTestCase, TwoWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.divergence class TestY2(LowLevelTestCase, TwoWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.Y2 class Testf2(LowLevelTestCase, TwoWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.f2 class TestY3(LowLevelTestCase, ThreeWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.Y3 class Testf3(LowLevelTestCase, ThreeWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.f3 class Testf4(LowLevelTestCase, FourWaySampleStatsMixin): def get_method(self): ts = self.get_example_tree_sequence() return ts, ts.f4 class TestGeneralStatsInterface(LowLevelTestCase, StatsInterfaceMixin): """ Tests for the general stats interface. """ def get_example(self): ts = self.get_example_tree_sequence() W = np.zeros((ts.get_num_samples(), 1)) params = { "weights": W, "summary_func": lambda x: np.cumsum(x), "output_dim": 1, "windows": ts.get_breakpoints(), } return ts, ts.general_stat, params def test_basic_example(self): ts = self.get_example_tree_sequence() W = np.zeros((ts.get_num_samples(), 1)) sigma = ts.general_stat( W, lambda x: np.cumsum(x), 1, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 1) def test_non_numpy_return(self): ts = self.get_example_tree_sequence() W = np.ones((ts.get_num_samples(), 3)) sigma = ts.general_stat( W, lambda x: [sum(x)], 1, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 1) sigma = ts.general_stat( W, lambda x: [2, 2], 2, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 2) def test_complicated_numpy_function(self): ts = self.get_example_tree_sequence(sample_size=20, length=30, random_seed=325) W = np.zeros((ts.get_num_samples(), 4)) def f(x): y = np.sum(x * x), np.prod(x + np.arange(x.shape[0])) return y sigma = ts.general_stat(W, f, 2, ts.get_breakpoints(), mode="branch") assert sigma.shape == (ts.get_num_trees(), 2) def test_input_dims(self): ts = self.get_example_tree_sequence() for k in range(1, 20): W = np.zeros((ts.get_num_samples(), k)) sigma = ts.general_stat( W, lambda x: np.cumsum(x), k, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), k) sigma = ts.general_stat( W, lambda x: [np.sum(x)], 1, ts.get_breakpoints(), mode="branch" ) assert sigma.shape == (ts.get_num_trees(), 1) def test_W_errors(self): ts = self.get_example_tree_sequence() n = ts.get_num_samples() for bad_array in [[], [0, 1], [[[[]], [[]]]], np.zeros((10, 3, 4))]: with pytest.raises(ValueError): ts.general_stat(bad_array, lambda x: x, 1, ts.get_breakpoints()) for bad_size in [n - 1, n + 1, 0]: W = np.zeros((bad_size, 1)) with pytest.raises(ValueError): ts.general_stat(W, lambda x: x, 1, ts.get_breakpoints()) def test_summary_func_errors(self): ts = self.get_example_tree_sequence() W = np.zeros((ts.get_num_samples(), 1)) for bad_type in ["sdf", 1, {}]: with pytest.raises(TypeError): ts.general_stat(W, bad_type, 1, ts.get_breakpoints()) # Wrong numbers of arguments to f with pytest.raises(TypeError): ts.general_stat(W, lambda: 0, 1, ts.get_breakpoints()) with pytest.raises(TypeError): ts.general_stat(W, lambda x, y: None, 1, ts.get_breakpoints()) # Exceptions within f are correctly raised. for exception in [ValueError, TypeError]: def f(x): raise exception("test") with pytest.raises(exception): ts.general_stat(W, f, 1, ts.get_breakpoints()) # Wrong output dimensions for bad_array in [[1, 1], range(10)]: with pytest.raises(ValueError): ts.general_stat(W, lambda x: bad_array, 1, ts.get_breakpoints()) with pytest.raises(ValueError): ts.general_stat(W, lambda x: [1], 2, ts.get_breakpoints()) # Bad arrays returned from f for bad_array in [["sdf"], 0, "w4", None]: with pytest.raises(ValueError): ts.general_stat(W, lambda x: bad_array, 1, ts.get_breakpoints()) class TestTreeDiffIterator(LowLevelTestCase): """ Tests for the low-level tree diff iterator. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.TreeDiffIterator(ts) def test_constructor(self): with pytest.raises(TypeError): _tskit.TreeDiffIterator() with pytest.raises(TypeError): _tskit.TreeDiffIterator(None) ts = self.get_example_tree_sequence() before = list(_tskit.TreeDiffIterator(ts)) iterator = _tskit.TreeDiffIterator(ts) del ts # We should keep a reference to the tree sequence. after = list(iterator) assert before == after def test_iterator(self): ts = self.get_example_tree_sequence() self.verify_iterator(_tskit.TreeDiffIterator(ts)) class TestVariantGenerator(LowLevelTestCase): """ Tests for the VariantGenerator class. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.VariantGenerator(ts) def test_constructor(self): with pytest.raises(TypeError): _tskit.VariantGenerator() with pytest.raises(TypeError): _tskit.VariantGenerator(None) ts = self.get_example_tree_sequence() with pytest.raises(ValueError): _tskit.VariantGenerator(ts, samples={}) with pytest.raises(TypeError): _tskit.VariantGenerator(ts, impute_missing_data=None) with pytest.raises(_tskit.LibraryError): _tskit.VariantGenerator(ts, samples=[-1, 2]) with pytest.raises(TypeError): _tskit.VariantGenerator(ts, alleles=1234) def test_alleles(self): ts = self.get_example_tree_sequence() for bad_type in [["a", "b"], "sdf", 234]: with pytest.raises(TypeError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=bad_type) with pytest.raises(ValueError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=tuple()) for bad_allele_type in [None, 0, b"x", []]: with pytest.raises(TypeError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=(bad_allele_type,)) too_many_alleles = tuple(str(j) for j in range(128)) with pytest.raises(_tskit.LibraryError): _tskit.VariantGenerator(ts, samples=[1, 2], alleles=too_many_alleles) def test_iterator(self): ts = self.get_example_tree_sequence() self.verify_iterator(_tskit.VariantGenerator(ts)) def test_missing_data(self): tables = _tskit.TableCollection(1) tables.nodes.add_row(flags=1, time=0) tables.nodes.add_row(flags=1, time=0) tables.sites.add_row(0.1, "A") tables.build_index() ts = _tskit.TreeSequence(0) ts.load_tables(tables) variant = list(_tskit.VariantGenerator(ts))[0] _, genotypes, alleles = variant assert np.all(genotypes == -1) assert alleles == ("A", None) class TestLdCalculator(LowLevelTestCase): """ Tests for the LdCalculator class. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.LdCalculator(ts) def test_constructor(self): with pytest.raises(TypeError): _tskit.LdCalculator() with pytest.raises(TypeError): _tskit.LdCalculator(None) def test_get_r2(self): ts = self.get_example_tree_sequence() calc = _tskit.LdCalculator(ts) n = ts.get_num_sites() for bad_id in [-1, n, n + 1]: with pytest.raises(_tskit.LibraryError): calc.get_r2(0, bad_id) with pytest.raises(_tskit.LibraryError): calc.get_r2(bad_id, 0) def test_get_r2_array(self): ts = self.get_example_tree_sequence() calc = _tskit.LdCalculator(ts) with pytest.raises(TypeError): calc.get_r2_array() with pytest.raises(TypeError): calc.get_r2_array(None) # Doesn't support buffer protocol, so raises typeerror with pytest.raises(TypeError): calc.get_r2_array(None, 0) n = ts.get_num_sites() assert n > 2 with pytest.raises(BufferError): calc.get_r2_array(bytes(100), 0) buff = bytearray(1024) with pytest.raises(ValueError): calc.get_r2_array(buff, 0, max_distance=-1) with pytest.raises(ValueError): calc.get_r2_array(buff, 0, direction=1000) # TODO this API is poor, we should explicitly catch these negative # size errors. for bad_max_mutations in [-2, -3]: with pytest.raises(BufferError): calc.get_r2_array(buff, 0, max_mutations=bad_max_mutations) for bad_start_pos in [-1, n, n + 1]: with pytest.raises(_tskit.LibraryError): calc.get_r2_array(buff, bad_start_pos) class TestLsHmm(LowLevelTestCase): """ Tests for the LsHmm class. """ def test_uninitialised_tree_sequence(self): ts = _tskit.TreeSequence() with pytest.raises(ValueError): _tskit.LsHmm(ts, None, None) def test_constructor(self): ts = self.get_example_tree_sequence() with pytest.raises(TypeError): _tskit.LsHmm() with pytest.raises(TypeError): _tskit.LsHmm(None) values = np.zeros(ts.get_num_sites()) for bad_array in ["asdf", [[], []], None]: with pytest.raises(ValueError): _tskit.LsHmm(ts, bad_array, values) with pytest.raises(ValueError): _tskit.LsHmm(ts, values, bad_array) def test_bad_rate_arrays(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() assert m > 0 values = np.zeros(m) for bad_size in [0, m - 1, m + 1, m + 2]: bad_array = np.zeros(bad_size) with pytest.raises(ValueError): _tskit.LsHmm(ts, bad_array, values) with pytest.raises(ValueError): _tskit.LsHmm(ts, values, bad_array) def test_haplotype_input(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() fm = _tskit.CompressedMatrix(ts) vm = _tskit.ViterbiMatrix(ts) ls_hmm = _tskit.LsHmm(ts, np.zeros(m), np.zeros(m)) for bad_size in [0, m - 1, m + 1, m + 2]: bad_array = np.zeros(bad_size, dtype=np.int8) with pytest.raises(ValueError): ls_hmm.forward_matrix(bad_array, fm) with pytest.raises(ValueError): ls_hmm.viterbi_matrix(bad_array, vm) for bad_array in [[0.002], [[], []], None]: with pytest.raises(ValueError): ls_hmm.forward_matrix(bad_array, fm) with pytest.raises(ValueError): ls_hmm.viterbi_matrix(bad_array, vm) def test_output_type_errors(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() h = np.zeros(m, dtype=np.int8) ls_hmm = _tskit.LsHmm(ts, np.zeros(m), np.zeros(m)) for bad_type in [ls_hmm, None, m, []]: with pytest.raises(TypeError): ls_hmm.forward_matrix(h, bad_type) with pytest.raises(TypeError): ls_hmm.viterbi_matrix(h, bad_type) other_ts = self.get_example_tree_sequence() output = _tskit.CompressedMatrix(other_ts) with pytest.raises(_tskit.LibraryError): ls_hmm.forward_matrix(h, output) output = _tskit.ViterbiMatrix(other_ts) with pytest.raises(_tskit.LibraryError): ls_hmm.viterbi_matrix(h, output) def test_empty_forward_matrix(self): for mu in [0, 1]: ts = self.get_example_tree_sequence(mutation_rate=mu) m = ts.get_num_sites() fm = _tskit.CompressedMatrix(ts) assert fm.num_sites == m assert np.array_equal(np.zeros(m), fm.normalisation_factor) assert np.array_equal(np.zeros(m, dtype=np.uint32), fm.num_transitions) F = fm.decode() assert np.all(F >= 0) for j in range(m): assert fm.get_site(j) == [] def test_empty_viterbi_matrix(self): for mu in [0, 1]: ts = self.get_example_tree_sequence(mutation_rate=mu) m = ts.get_num_sites() vm = _tskit.ViterbiMatrix(ts) assert vm.num_sites == m # TODO we should have the same semantics for 0 sites if m == 0: h = vm.traceback() assert len(h) == 0 else: with pytest.raises(_tskit.LibraryError): vm.traceback() def verify_compressed_matrix(self, ts, output): S = output.normalisation_factor N = output.num_transitions assert np.all(0 < S) assert np.all(S < 1) assert np.all(N > 0) F = output.decode() assert F.shape == (ts.get_num_sites(), ts.get_num_samples()) assert np.all(F >= 0) m = ts.get_num_sites() for j in range(m): site_list = output.get_site(j) assert len(site_list) == N[j] for item in site_list: assert len(item) == 2 node, value = item assert 0 <= node < ts.get_num_nodes() assert 0 <= value <= 1 for site in [m, m + 1, 2 * m]: with pytest.raises(ValueError): output.get_site(site) def test_forward_matrix(self): ts = self.get_example_tree_sequence() m = ts.get_num_sites() output = _tskit.CompressedMatrix(ts) ls_hmm = _tskit.LsHmm(ts,
np.zeros(m)
numpy.zeros
""" Author: <NAME> Copyright: (C) 2019-2020 <http://www.dei.unipd.it/ Department of Information Engineering> (DEI), <http://www.unipd.it/ University of Padua>, Italy License: <http://www.apache.org/licenses/LICENSE-2.0 Apache License, Version 2.0> """ import os import torch from model_3 import Model import tensorflow as tf import data_utils as du import numpy as np import util PROG_NAME = 'MP_Prob_p_we' def convert_we_dict_to_emb_matrix(wed, we_size=50): np.random.seed(0) max_k = -1 for k, v in wed.items(): if int(k) > max_k: max_k = k W_init_embed = np.float32(
np.random.uniform(-0.02, 0.02, [max_k + 1, we_size])
numpy.random.uniform
from logging import log import numpy as np import pandas as pd from scipy import interpolate import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk) from matplotlib.backend_bases import key_press_handler from matplotlib.figure import Figure from matplotlib.font_manager import FontProperties from matplotlib.ticker import ScalarFormatter from flask import Flask, render_template, request from tkinter import * from tkinter import ttk import sys import os import shutil import random from matplotlib.ticker import MaxNLocator from pathlib import Path import math import copy #from decimal import Decimal, ROUND_HALF_UP def readinput(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") symbol = csv_input['Symbol'] value = csv_input['Value'] unit = csv_input['Unit'] valueDict = {} unitDict = {} for i, j, k in zip(symbol, value, unit): valueDict[i] = float(j) unitDict[i] = str(k) return valueDict, unitDict def CeqLHVFunc(filename,fuelName): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] CeqLHV = csv_input['CeqLHV'] fuelDict = {} for i, j in zip(fuelType, CeqLHV): fuelDict[i] = float(j) return fuelDict[fuelName] def Cco2Func(filename,fuelName): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] Cco2 = csv_input['Cco2'] Cco2Dict = {} for i, j in zip(fuelType, Cco2): Cco2Dict[i] = float(j) return Cco2Dict[fuelName] def initialFleetFunc(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") year = csv_input['Year'] TEU = csv_input['TEU'] iniFleetDict = {} k = 0 for i, j in zip(year, TEU): iniFleetDict.setdefault(k,{}) iniFleetDict[k]['year'] = int(i) iniFleetDict[k]['TEU'] = float(j) k += 1 return iniFleetDict def decisionListFunc(filename): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",").fillna(0) Year = csv_input['Year'] Order = csv_input['Order'] fuelType = csv_input['Fuel type'] WPS = csv_input['WPS'] SPS = csv_input['SPS'] CCS = csv_input['CCS'] CAP = csv_input['CAP'] Speed = csv_input['Speed'] Fee = csv_input['Fee'] valueDict = {} for i, j, k, l, m, n, o, p, q in zip(Year, Order, fuelType, WPS, SPS, CCS, CAP, Speed, Fee): valueDict.setdefault(int(i),{}) valueDict[int(i)]['Order'] = int(j) valueDict[int(i)]['fuelType'] = k valueDict[int(i)]['WPS'] = int(l) valueDict[int(i)]['SPS'] = int(m) valueDict[int(i)]['CCS'] = int(n) valueDict[int(i)]['CAP'] = float(o) valueDict[int(i)]['Speed'] = float(p) valueDict[int(i)]['Fee'] = float(q) return valueDict def fleetPreparationFunc(fleetAll,initialFleetFile,numCompany,startYear,lastYear,elapsedYear,tOpSch,tbid,valueDict,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): fleetAll.setdefault(numCompany,{}) fleetAll[numCompany].setdefault('total',{}) fleetAll[numCompany]['total']['sale'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['g'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['gTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['saleTilde'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['cta'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['overDi'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costShipBasicHFO'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costShip'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costFuel'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['dcostFuel'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costAdd'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costAll'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['maxCta'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['rocc'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costRfrb'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['dcostEco'] = np.zeros(lastYear-startYear+1) #fleetAll[numCompany]['total']['dCostCnt'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['costCnt'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['nTransCnt'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['atOnce'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['mSubs'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['mTax'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['balance'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['demand'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['profit'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['profitSum'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['gSum'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['Idx'] = np.zeros(lastYear-startYear+1) fleetAll[numCompany]['total']['lastOrderFuel'] = 'HFO/Diesel' fleetAll[numCompany]['total']['lastOrderCAP'] = 20000 initialFleets = initialFleetFunc(initialFleetFile) for i in range(len(initialFleets)): orderYear = initialFleets[i]['year'] - tbid iniT = startYear - initialFleets[i]['year'] iniCAPcnt = initialFleets[i]['TEU'] fleetAll = orderShipFunc(fleetAll,numCompany,'HFO',0,0,0,iniCAPcnt,tOpSch,tbid,iniT,orderYear,elapsedYear,valueDict,NShipFleet,True,parameterFile2,parameterFile12,parameterFile3,parameterFile5) return fleetAll def unitCostFuelFunc(filename,fuelName,year): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") measureYear = np.array(csv_input['Year'],dtype='float64') measureHFO = np.array(csv_input['HFO'],dtype='float64') measure = np.array(csv_input[fuelName],dtype='float64') fittedHFO = interpolate.interp1d(measureYear, measureHFO) fitted = interpolate.interp1d(measureYear, measure) if year >= 2020: interp = fitted(year) interpHFO = fittedHFO(year) else: interp = measure[0] interpHFO = measureHFO[0] return interp, interpHFO def rShipBasicFunc(filename,fuelName,CAPcnt): csv_input = pd.read_csv(filepath_or_buffer=filename, encoding="utf_8", sep=",") fuelType = csv_input['Fuel type'] rShipBasic = csv_input['rShipBasic'] fuelDict = {} for i, j in zip(fuelType, rShipBasic): fuelDict[i] = float(j) return fuelDict[fuelName] def wDWTFunc(kDWT1,CAPcnt,kDWT2): wDWT = kDWT1*CAPcnt+kDWT2 return wDWT def wFLDFunc(kFLD1,wDWT,kFLD2): wFLD = kFLD1*wDWT+kFLD2 return wFLD def dFunc(Dyear,Hday,v,Rrun): d = Dyear*Hday*v*Rrun return d def fShipFunc(kShip1,kShip2,wDWT,wFLD,rocc,CNM2km,v,d,rWPS,windPr,CeqLHV): fShipORG = (kShip1/1000)*(wFLD-(1-kShip2*rocc)*wDWT)*(wFLD**(-1/3))*((CNM2km*v)**2)*CNM2km*d if windPr: fShip = CeqLHV*fShipORG*(1-rWPS) else: fShip = CeqLHV*fShipORG return fShipORG, fShip def fAuxFunc(Dyear,Hday,Rrun,kAux1,kAux2,wDWT,rSPS,solar,CeqLHV): fAuxORG = Dyear*Hday*Rrun*(kAux1+kAux2*wDWT)/1000 if solar: fAux = CeqLHV*fAuxORG*(1-rSPS) else: fAux = CeqLHV*fAuxORG return fAuxORG, fAux def gFunc(Cco2ship,fShip,Cco2aux,fAux,rCCS,CCS): gORG = Cco2ship*fShip+Cco2aux*fAux if CCS: g = gORG*(1-rCCS) else: g = gORG return gORG, g def maxCtaFunc(CAPcnt,d): maxCta = CAPcnt*d return maxCta def ctaFunc(CAPcnt,rocc,d): cta = CAPcnt*rocc*d return cta def costFuelFunc(unitCostFuelHFO, unitCostFuel, fShipORG, fAuxORG, fShip, fAux): costFuelORG = unitCostFuelHFO*(fShipORG+fAuxORG) costFuel = unitCostFuel*(fShip+fAux) dcostFuel = costFuel - costFuelORG return costFuelORG, costFuel, dcostFuel def costShipFunc(kShipBasic1, CAPcnt, kShipBasic2, rShipBasic, dcostWPS, dcostSPS, dcostCCS, flagWPS, flagSPS, flagCCS): costShipBasicHFO = kShipBasic1 * CAPcnt + kShipBasic2 costShipBasic = rShipBasic * costShipBasicHFO cAdditionalEquipment = 0 if flagWPS: cAdditionalEquipment += dcostWPS elif flagSPS: cAdditionalEquipment += dcostSPS elif flagCCS: cAdditionalEquipment += dcostCCS costShipAdd = cAdditionalEquipment * costShipBasicHFO costShip = costShipBasic + costShipAdd return costShipBasicHFO, costShipBasic, costShipAdd, costShip def additionalShippingFeeFunc(tOp, tOpSch, dcostFuelAll, costShipAll, costShipBasicHFO): if tOp <= tOpSch: dcostShipping = dcostFuelAll + (costShipAll-costShipBasicHFO)/tOpSch else: dcostShipping = dcostFuelAll return dcostShipping def demandScenarioFunc(year,kDem1,kDem2,kDem3,kDem4): Di = (kDem1*year**2 + kDem2*year + kDem3)*1000000000/kDem4 return Di def playOrderFunc(cost,playOrder): unique, counts = np.unique(cost, return_counts=True) if np.amax(counts) == 1: playOrderNew = playOrder[np.argsort(cost)] elif np.amax(counts) == 2: minCost = np.amin(cost) maxCost = np.amax(cost) if minCost == unique[counts == 1]: playOrderNew = np.zeros(3) playOrderNew[0] = playOrder[cost == minCost] playOrderNew[1:3] = np.random.permutation(playOrder[cost!=minCost]) else: playOrderNew = np.zeros(3) playOrderNew[2] = playOrder[cost == maxCost] playOrderNew[0:2] = np.random.permutation(playOrder[cost!=maxCost]) else: playOrderNew = np.random.permutation(playOrder) return playOrderNew def rEEDIreqCurrentFunc(wDWT,rEEDIreq): if wDWT >= 200000: rEEDIreqCurrent = rEEDIreq[0] elif wDWT >= 120000: rEEDIreqCurrent = rEEDIreq[1] else: rEEDIreqCurrent = rEEDIreq[2] return rEEDIreqCurrent def EEDIreqFunc(kEEDI1,wDWT,kEEDI2,rEEDIreq): EEDIref = kEEDI1*wDWT**kEEDI2 EEDIreq = (1-rEEDIreq)*EEDIref return EEDIref, EEDIreq def EEDIattFunc(wDWT,wMCR,kMCR1,kMCR2,kMCR3,kPAE1,kPAE2,rCCS,vDsgn,rWPS,Cco2ship,SfcM,SfcA,rSPS,Cco2aux,EEDIreq,flagWPS,flagSPS,flagCCS): if wDWT < wMCR: MCRM = kMCR1*wDWT + kMCR2 else: MCRM = kMCR3 PA = kPAE1*MCRM+kPAE2 def _EEDIcalc(vDsgnRed): if flagWPS: rWPStemp = rWPS else: rWPStemp = 0 if flagSPS: rSPStemp = rSPS else: rSPStemp = 0 if flagCCS: rCCStemp = rCCS else: rCCStemp = 0 return ((1-rCCStemp)/(0.7*wDWT*vDsgnRed))*((1-rWPStemp)*Cco2ship*0.75*MCRM*SfcM*(vDsgnRed/vDsgn)**3 + (1-rSPStemp)*Cco2aux*PA*SfcA) vDsgnRed = vDsgn EEDIatt = _EEDIcalc(vDsgnRed) while EEDIatt > EEDIreq: vDsgnRed -= 1 if vDsgnRed == 0: break EEDIatt = _EEDIcalc(vDsgnRed) return MCRM, PA, EEDIatt, vDsgnRed def regPreFunc(nDec): regDec = {} regDec['rEEDIreq'] = np.zeros((nDec,3)) regDec['Subsidy'] = np.zeros(nDec) regDec['Ctax'] = np.zeros(nDec) regDec['rEEDIreq'][0,0] = 0.5 regDec['rEEDIreq'][0,1] = 0.45 regDec['rEEDIreq'][0,2] = 0.35 return regDec def regDecFunc(regDec,nReg,currentYear): def _regDecGui1(regDec,nReg,currentYear): def _buttonCommand(regDec,nReg,root): if float(v1.get()) <= 100 and float(v2.get()) <= 100 and float(v3.get()) <= 100 and float(v1.get()) >= 0 and float(v2.get()) >= 0 and float(v3.get()) >= 0: regDec['rEEDIreq'][nReg,0] = float(v1.get()) / 100 regDec['rEEDIreq'][nReg,1] = float(v2.get()) / 100 regDec['rEEDIreq'][nReg,2] = float(v3.get()) / 100 root.quit() root.destroy() else: button['state'] = 'disabled' def _buttonCommandCheck(): if float(v1.get()) <= 100 and float(v2.get()) <= 100 and float(v3.get()) <= 100 and float(v1.get()) >= 0 and float(v2.get()) >= 0 and float(v3.get()) >= 0: button['state'] = 'normal' else: button['state'] = 'disabled' root = Tk() root.title('Regulator : Reduction Rate for EEXI / EEDI in '+str(currentYear)) width = 600 height = 300 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) root['bg'] = '#a3d6cc' style = ttk.Style() style.theme_use('default') style.configure('new.TFrame', foreground='black', background='#a3d6cc') style.configure('new.TLabel', foreground='black', background='#a3d6cc') style.configure('new.TButton', foreground='black', background='#a3d6cc') style.configure('new.TCheckbutton', foreground='black', background='#a3d6cc') style.configure('new.TEntry', foreground='black', background='#a3d6cc') # Frame frame = ttk.Frame(root, style='new.TFrame', padding=20) frame.pack() # Checkbutton v1 = StringVar() if nReg == 0: v1.set('0') # 初期化 else: v1.set(str(100*regDec['rEEDIreq'][nReg-1,0])) # 初期化 cb1 = ttk.Entry(frame, style='new.TEntry', textvariable=v1) label1 = ttk.Label(frame, style='new.TLabel',text='wDWT >= 200,000', padding=(5, 2)) label11 = ttk.Label(frame, style='new.TLabel',text='% <= 100%', padding=(5, 2)) label111 = ttk.Label(frame, style='new.TLabel',text='0% <=', padding=(5, 2)) labelExpl = ttk.Label(frame, style='new.TLabel', text='Guide: Input reduction rate for EEXI / EEDI, and then click "Check" & "Next".', padding=(5, 2)) # Checkbutton v2 = StringVar() if nReg == 0: v2.set('0') # 初期化 else: v2.set(str(100*regDec['rEEDIreq'][nReg-1,1])) # 初期化 cb2 = ttk.Entry(frame, style='new.TEntry', textvariable=v2) label2 = ttk.Label(frame, style='new.TLabel',text='120,000 <= wDWT < 200,000', padding=(5, 2)) label22 = ttk.Label(frame, style='new.TLabel',text='% <= 100%', padding=(5, 2)) label222 = ttk.Label(frame, style='new.TLabel',text='0% <=', padding=(5, 2)) # Checkbutton v3 = StringVar() if nReg == 0: v3.set('0') # 初期化 else: v3.set(str(100*regDec['rEEDIreq'][nReg-1,2])) # 初期化 cb3 = ttk.Entry(frame, style='new.TEntry', textvariable=v3) label3 = ttk.Label(frame, style='new.TLabel',text='wDWT < 120,000', padding=(5, 2)) label33 = ttk.Label(frame, style='new.TLabel',text='% <= 100%', padding=(5, 2)) label333 = ttk.Label(frame, style='new.TLabel',text='0% <=', padding=(5, 2)) # Button button = ttk.Button(frame, style='new.TButton',text='Next', state='disabled', command=lambda: _buttonCommand(regDec,nReg,root)) button1 = ttk.Button(frame, style='new.TButton',text='Check', command=lambda: _buttonCommandCheck()) # Layout label11.grid(row=0, column=3) cb1.grid(row=0, column=2) label111.grid(row=0, column=1) label1.grid(row=0, column=0) label22.grid(row=1, column=3) cb2.grid(row=1, column=2) label222.grid(row=1, column=1) label2.grid(row=1, column=0) label33.grid(row=2, column=3) cb3.grid(row=2, column=2) label333.grid(row=2, column=1) label3.grid(row=2, column=0) button.grid(row=3, column=3) button1.grid(row=3, column=2) labelExpl.grid(row=5, column=0, columnspan=3) root.deiconify() root.mainloop() return regDec def _regDecGui2(regDec,nReg,currentYear): def _buttonCommand(regDec,nReg,root): if float(v1.get()) <= 100 and float(v1.get()) >= 0 and float(v2.get()) >= 0: regDec['Subsidy'][nReg] = float(v1.get()) / 100 regDec['Ctax'][nReg] = float(v2.get()) root.quit() root.destroy() else: button['state'] = 'disabled' def _buttonCommandCheck(): if float(v1.get()) <= 100 and float(v1.get()) >= 0 and float(v2.get()) >= 0: button['state'] = 'normal' else: button['state'] = 'disabled' root = Tk() root.title('Regulator : Subsidy & Carbon tax in'+str(currentYear)) width = 800 height = 300 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) root['bg'] = '#a3d6cc' style = ttk.Style() style.theme_use('default') style.configure('new.TFrame', foreground='black', background='#a3d6cc') style.configure('new.TLabel', foreground='black', background='#a3d6cc') style.configure('new.TButton', foreground='black', background='#a3d6cc') style.configure('new.TCheckbutton', foreground='black', background='#a3d6cc') style.configure('new.TEntry', foreground='black', background='#a3d6cc') # Frame frame = ttk.Frame(root, style='new.TFrame', padding=20) frame.pack() # Checkbutton v1 = StringVar() if nReg == 0: v1.set('0') # 初期化 else: v1.set(str(int(100*regDec['Subsidy'][nReg-1]))) # 初期化 cb1 = ttk.Entry(frame, style='new.TEntry', textvariable=v1) label1 = ttk.Label(frame, style='new.TLabel', text='Subsidy rate', padding=(5, 2)) label11 = ttk.Label(frame, style='new.TLabel', text='% <= 100%', padding=(5, 2)) label111 = ttk.Label(frame, style='new.TLabel', text='0% <=', padding=(5, 2)) labelExpl = ttk.Label(frame, style='new.TLabel', text='Guide: Input subsidy and carbon tax, and then click "Check" & "Next".', padding=(5, 2)) # Checkbutton v2 = StringVar() if nReg == 0: v2.set('0') # 初期化 else: v2.set(str(int(regDec['Ctax'][nReg-1]))) # 初期化 cb2 = ttk.Entry(frame, style='new.TEntry', textvariable=v2) label2 = ttk.Label(frame, style='new.TLabel', text='Carbon tax [$/ton]', padding=(5, 2)) #label22 = ttk.Label(frame, style='new.TLabel', text='% <= 100%', padding=(5, 2)) label222 = ttk.Label(frame, style='new.TLabel', text='0 <=', padding=(5, 2)) # Button button = ttk.Button(frame, style='new.TButton', text='Next', state='disabled', command=lambda: _buttonCommand(regDec,nReg,root)) button1 = ttk.Button(frame, style='new.TButton', text='Check', command=lambda: _buttonCommandCheck()) # Layout label11.grid(row=0, column=3) cb1.grid(row=0, column=2) label111.grid(row=0, column=1) label1.grid(row=0, column=0) #label22.grid(row=1, column=3) cb2.grid(row=1, column=2) label222.grid(row=1, column=1) label2.grid(row=1, column=0) button.grid(row=3, column=3) button1.grid(row=3, column=2) labelExpl.grid(row=5, column=0, columnspan=3) root.deiconify() root.mainloop() return regDec regDec = _regDecGui1(regDec,nReg,currentYear) regDec = _regDecGui2(regDec,nReg,currentYear) return regDec def scrapRefurbishFunc(fleetAll,numCompany,elapsedYear,currentYear,valueDict,tOpSch,rEEDIreq): def _scrapOrRefurbishGui(fleetAll,numCompany,tOpSch,valueDict,currentYear,rEEDIreq): def _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v,Sys): NumFleet = len(fleetAll[numCompany]) numAlive = 0 for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] fleetAll[numCompany][keyFleet][Sys] = int(v[numAlive].get()) rEEDIreqCurrent = rEEDIreqCurrentFunc(fleetAll[numCompany][keyFleet]['wDWT'],rEEDIreq) fleetAll[numCompany][keyFleet]['EEDIref'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp] = EEDIreqFunc(valueDict['kEEDI1'],fleetAll[numCompany][keyFleet]['wDWT'],valueDict['kEEDI2'],rEEDIreqCurrent) fleetAll[numCompany][keyFleet]['MCRM'][tOpTemp], fleetAll[numCompany][keyFleet]['PA'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp], fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp] = EEDIattFunc(fleetAll[numCompany][keyFleet]['wDWT'],valueDict['wMCR'],valueDict['kMCR1'],valueDict['kMCR2'],valueDict['kMCR3'],valueDict['kPAE1'],valueDict['kPAE2'],valueDict['rCCS'],valueDict['vDsgn'],valueDict['rWPS'],fleetAll[numCompany][keyFleet]['Cco2ship'],valueDict['SfcM'],valueDict['SfcA'],valueDict['rSPS'],fleetAll[numCompany][keyFleet]['Cco2aux'],fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp],fleetAll[numCompany][keyFleet]['WPS'],fleetAll[numCompany][keyFleet]['SPS'],fleetAll[numCompany][keyFleet]['CCS']) label14[numAlive]['text'] = str(int(fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp])) label15[numAlive]['text'] = str('{:.3g}'.format(fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp])) label16[numAlive]['text'] = str('{:.3g}'.format(fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp])) if valueDict['vMin'] < fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]: button2['state'] = 'normal' numAlive += 1 #fleetAll[numCompany][keyFleet] = fleetAll[numCompany][keyFleet] def _buttonCommandNext(root,fleetAll,numCompany,tOpSch): NumFleet = len(fleetAll[numCompany]) j = 0 goAhead = True for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if valueDict['vMin'] > fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp] and v4[j].get() != '1': goAhead = False j += 1 if goAhead: j = 0 for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: if v4[j].get() == '1': fleetAll[numCompany][keyFleet]['tOp'] = tOpSch j += 1 root.quit() root.destroy() else: button2['state'] = 'disabled' def _buttonCommandCheck(fleetAll,valueDict,rEEDIreq): NumFleet = len(fleetAll[numCompany]) numAlive = 0 goAhead = True for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] fleetAll[numCompany][keyFleet]['WPS'] = int(v1[numAlive].get()) fleetAll[numCompany][keyFleet]['SPS'] = int(v2[numAlive].get()) fleetAll[numCompany][keyFleet]['CCS'] = int(v3[numAlive].get()) rEEDIreqCurrent = rEEDIreqCurrentFunc(fleetAll[numCompany][keyFleet]['wDWT'],rEEDIreq) fleetAll[numCompany][keyFleet]['EEDIref'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp] = EEDIreqFunc(valueDict['kEEDI1'],fleetAll[numCompany][keyFleet]['wDWT'],valueDict['kEEDI2'],rEEDIreqCurrent) fleetAll[numCompany][keyFleet]['MCRM'][tOpTemp], fleetAll[numCompany][keyFleet]['PA'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp], fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp] = EEDIattFunc(fleetAll[numCompany][keyFleet]['wDWT'],valueDict['wMCR'],valueDict['kMCR1'],valueDict['kMCR2'],valueDict['kMCR3'],valueDict['kPAE1'],valueDict['kPAE2'],valueDict['rCCS'],valueDict['vDsgn'],valueDict['rWPS'],fleetAll[numCompany][keyFleet]['Cco2ship'],valueDict['SfcM'],valueDict['SfcA'],valueDict['rSPS'],fleetAll[numCompany][keyFleet]['Cco2aux'],fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp],fleetAll[numCompany][keyFleet]['WPS'],fleetAll[numCompany][keyFleet]['SPS'],fleetAll[numCompany][keyFleet]['CCS']) if valueDict['vMin'] > fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp] and v4[numAlive].get() != '1': goAhead = False numAlive += 1 if goAhead: button2['state'] = 'normal' def _buttonCommandNext2(root): root.quit() root.destroy() def _buttonCommandAtOnce(Sys): NumFleet = len(fleetAll[numCompany]) j = 0 for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: if Sys == 'WPS': if label10[j].state() != ('disabled', 'selected'): if v1[j].get() == '1': v1[j].set('0') elif v1[j].get() == '0': v1[j].set('1') fleetAll[numCompany][keyFleet][Sys] = int(v1[j].get()) elif Sys == 'SPS': if label11[j].state() != ('disabled', 'selected'): if v2[j].get() == '1': v2[j].set('0') elif v2[j].get() == '0': v2[j].set('1') fleetAll[numCompany][keyFleet][Sys] = int(v2[j].get()) elif Sys == 'CCS': if label12[j].state() != ('disabled', 'selected') and label12[j].state() != ('disabled',): if v3[j].get() == '1': v3[j].set('0') elif v3[j].get() == '0': v3[j].set('1') fleetAll[numCompany][keyFleet][Sys] = int(v3[j].get()) tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] rEEDIreqCurrent = rEEDIreqCurrentFunc(fleetAll[numCompany][keyFleet]['wDWT'],rEEDIreq) fleetAll[numCompany][keyFleet]['EEDIref'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp] = EEDIreqFunc(valueDict['kEEDI1'],fleetAll[numCompany][keyFleet]['wDWT'],valueDict['kEEDI2'],rEEDIreqCurrent) fleetAll[numCompany][keyFleet]['MCRM'][tOpTemp], fleetAll[numCompany][keyFleet]['PA'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp], fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp] = EEDIattFunc(fleetAll[numCompany][keyFleet]['wDWT'],valueDict['wMCR'],valueDict['kMCR1'],valueDict['kMCR2'],valueDict['kMCR3'],valueDict['kPAE1'],valueDict['kPAE2'],valueDict['rCCS'],valueDict['vDsgn'],valueDict['rWPS'],fleetAll[numCompany][keyFleet]['Cco2ship'],valueDict['SfcM'],valueDict['SfcA'],valueDict['rSPS'],fleetAll[numCompany][keyFleet]['Cco2aux'],fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp],fleetAll[numCompany][keyFleet]['WPS'],fleetAll[numCompany][keyFleet]['SPS'],fleetAll[numCompany][keyFleet]['CCS']) label14[j]['text'] = str(int(fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp])) label15[j]['text'] = str('{:.3g}'.format(fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp])) label16[j]['text'] = str('{:.3g}'.format(fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp])) if valueDict['vMin'] < fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]: button2['state'] = 'normal' fleetAll[numCompany][keyFleet] = fleetAll[numCompany][keyFleet] j += 1 root = Tk() root.title('Company '+str(numCompany)+' : Scrap or Refurbish in '+str(currentYear)) width = 1000 height = 500 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) canvas = Canvas(root, width=width, height=height) # Frame style = ttk.Style() style.theme_use('default') if numCompany == 1: color = '#ffcccc' elif numCompany == 2: color = '#ffedab' elif numCompany == 3: color = '#a4a8d4' root['bg'] = color style.configure('new.TFrame', foreground='black', background=color) style.configure('new.TLabel', foreground='black', background=color) style.configure('new.TButton', foreground='black', background=color) style.configure('new.TCheckbutton', foreground='black', background=color) frame = ttk.Frame(root, style='new.TFrame', padding=20) frame.pack() frame.bind("<Configure>", lambda e: canvas.configure(scrollregion=canvas.bbox("all"))) vbar = Scrollbar(root, orient="vertical") vbar.config(command=canvas.yview) vbar.pack(side=RIGHT,fill="y") canvas['bg'] = color canvas.create_window((placeX, placeY), window=frame, anchor=CENTER) canvas.pack() canvas.update_idletasks() canvas.configure(yscrollcommand=vbar.set) canvas.yview_moveto(0) # Label label0 = ttk.Label(frame, style='new.TLabel', text='No.', padding=(5, 2)) labelDeli = ttk.Label(frame, style='new.TLabel',text='Delivery year', padding=(5, 2)) label1 = ttk.Label(frame, style='new.TLabel',text='Fuel type', padding=(5, 2)) label2 = ttk.Label(frame, style='new.TLabel',text='Capacity [TEU]', padding=(5, 2)) label3 = ttk.Label(frame, style='new.TLabel',text='WPS', padding=(5, 2)) label4 = ttk.Label(frame, style='new.TLabel',text='SPS', padding=(5, 2)) label5 = ttk.Label(frame, style='new.TLabel',text='CCS', padding=(5, 2)) label7 = ttk.Label(frame, style='new.TLabel',text='Maximum speed [kt]', padding=(5, 2)) label152 = ttk.Label(frame, style='new.TLabel',text='EEXIreq [g/(ton*NM)]', padding=(5, 2)) label162 = ttk.Label(frame, style='new.TLabel',text='EEXIatt [g/(ton*NM)]', padding=(5, 2)) labelScrap = ttk.Label(frame, style='new.TLabel',text='Scrap', padding=(5, 2)) label00 = [] labelDeli1 = [] label8 = [] label9 = [] label10 = [] label11 = [] label12 = [] label14 = [] label15 = [] label16 = [] buttonScrap = [] v1 = [] v2 = [] v3 = [] v4 = [] NumFleet = len(fleetAll[numCompany]) for keyFleet in range(1,NumFleet): fleetAll[numCompany][keyFleet] = fleetAll[numCompany][keyFleet] if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: labelDeli1.append(ttk.Label(frame, style='new.TLabel',text=str(fleetAll[numCompany][keyFleet]['delivery']), padding=(5, 2))) label00.append(ttk.Label(frame, style='new.TLabel',text=str(keyFleet), padding=(5, 2))) tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if fleetAll[numCompany][keyFleet]['fuelName'] == 'HFO': label8.append(ttk.Label(frame, style='new.TLabel',text='HFO/Diesel', padding=(5, 2))) else: label8.append(ttk.Label(frame, style='new.TLabel',text=fleetAll[numCompany][keyFleet]['fuelName'], padding=(5, 2))) label9.append(ttk.Label(frame, style='new.TLabel',text=str(int(fleetAll[numCompany][keyFleet]['CAPcnt'])), padding=(5, 2))) v1.append(StringVar()) if fleetAll[numCompany][keyFleet]['WPS']: v1[-1].set('1') label10.append(ttk.Checkbutton(frame, style='new.TCheckbutton', padding=(10), state='disable', command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v1,'WPS'),variable=v1[-1])) else: v1[-1].set('0') label10.append(ttk.Checkbutton(frame, style='new.TCheckbutton',padding=(10), command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v1,'WPS'),variable=v1[-1])) v2.append(StringVar()) if fleetAll[numCompany][keyFleet]['SPS']: v2[-1].set('1') label11.append(ttk.Checkbutton(frame, style='new.TCheckbutton',padding=(10), state='disable', command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v2,'SPS'),variable=v2[-1])) else: v2[-1].set('0') label11.append(ttk.Checkbutton(frame, style='new.TCheckbutton',padding=(10), command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v2,'SPS'),variable=v2[-1])) v3.append(StringVar()) if fleetAll[numCompany][keyFleet]['CCS']: v3[-1].set('1') label12.append(ttk.Checkbutton(frame, style='new.TCheckbutton',padding=(10), state='disable', command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v3,'CCS'),variable=v3[-1])) elif currentYear < valueDict['addSysYear']+2: v3[-1].set('0') label12.append(ttk.Checkbutton(frame, style='new.TCheckbutton', padding=(10), state='disable', command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v3,'CCS'),variable=v3[-1])) else: v3[-1].set('0') label12.append(ttk.Checkbutton(frame, style='new.TCheckbutton',padding=(10), command=lambda: _buttonCommandCheckButton(fleetAll,valueDict,rEEDIreq,v3,'CCS'),variable=v3[-1])) label14.append(ttk.Label(frame, style='new.TLabel',text=str(int(fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp])), padding=(5, 2))) label15.append(ttk.Label(frame, style='new.TLabel',text='{:.3g}'.format(fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp]), padding=(5, 2))) label16.append(ttk.Label(frame, style='new.TLabel',text='{:.3g}'.format(fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp]), padding=(5, 2))) v4.append(StringVar()) buttonScrap.append(ttk.Checkbutton(frame, style='new.TCheckbutton',padding=(10), variable=v4[-1])) labelExpl = ttk.Label(frame, style='new.TLabel', text='Guide: Check additional systems and scrap button if you want, and then click "Check" & "Next". You can check all the button at once by "Check all at once".', padding=(5, 2)) labelExpl2 = ttk.Label(frame, style='new.TLabel', text='Guide: You have no fleet. Click "Next".', padding=(5, 2)) # Button button1 = ttk.Button(frame, style='new.TButton', text='Check', command=lambda: _buttonCommandCheck(fleetAll,valueDict,rEEDIreq)) button2 = ttk.Button(frame, style='new.TButton', text='Next', state='disabled', command=lambda: _buttonCommandNext(root,fleetAll,numCompany,tOpSch)) buttonWPS = ttk.Button(frame, style='new.TButton', text='Check all WPS at once', command=lambda: _buttonCommandAtOnce('WPS')) buttonSPS = ttk.Button(frame, style='new.TButton', text='Check all SPS at once', command=lambda: _buttonCommandAtOnce('SPS')) buttonCCS = ttk.Button(frame, style='new.TButton', text='Check all CCS at once', command=lambda: _buttonCommandAtOnce('CCS')) button22 = ttk.Button(frame, style='new.TButton',text='Next', command=lambda: _buttonCommandNext2(root)) # Layout if len(label8) > 0: label0.grid(row=0, column=0) labelDeli.grid(row=0, column=1) label1.grid(row=0, column=2) label2.grid(row=0, column=3) label3.grid(row=0, column=4) label4.grid(row=0, column=5) label5.grid(row=0, column=6) label7.grid(row=0, column=7) label152.grid(row=0, column=8) label162.grid(row=0, column=9) labelScrap.grid(row=0, column=10) for i, j in enumerate(label8): labelDeli1[i].grid(row=i+1, column=1, pady=0) label00[i].grid(row=i+1, column=0, pady=0) label8[i].grid(row=i+1, column=2, pady=0) label9[i].grid(row=i+1, column=3, pady=0) label10[i].grid(row=i+1, column=4, pady=0) label11[i].grid(row=i+1, column=5, pady=0) label12[i].grid(row=i+1, column=6, pady=0) label14[i].grid(row=i+1, column=7, pady=0) label15[i].grid(row=i+1, column=8, pady=0) label16[i].grid(row=i+1, column=9, pady=0) buttonScrap[i].grid(row=i+1, column=10, pady=0) button1.grid(row=i+2, column=9) button2.grid(row=i+2, column=10) buttonWPS.grid(row=i+2, column=1) buttonSPS.grid(row=i+2, column=2) buttonCCS.grid(row=i+2, column=3) labelExpl.grid(row=i+3, column=0, columnspan=10) else: labelExpl2.grid(row=0, column=0) button22.grid(row=0, column=1) root.deiconify() root.mainloop() return fleetAll def _dcostCntGui(fleetAll,numCompany,elapsedYear): def _buttonCommand(fleetAll,numCompany,elapsedYear,root,v): fleetAll[numCompany]['total']['dcostCnt'][elapsedYear] = v.get() root.destroy() root.quit() root = Tk() root.title('Company '+str(numCompany)+' : Additional Shipping Fee Per Container in '+str(currentYear)) width = 500 height = 200 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) # Frame style = ttk.Style() style.theme_use('default') if numCompany == 1: color = '#ffcccc' elif numCompany == 2: color = '#ffedab' elif numCompany == 3: color = '#a4a8d4' root['bg'] = color style.configure('new.TFrame', foreground='black', background=color) style.configure('new.TLabel', foreground='black', background=color) style.configure('new.TButton', foreground='black', background=color) style.configure('new.TCheckbutton', foreground='black', background=color) style.configure('new.TEntry', foreground='black', background=color) frame = ttk.Frame(root, style='new.TFrame', padding=20) frame.pack() v1 = StringVar() if elapsedYear == 0: v1.set('0') else: v1.set(str(int(fleetAll[numCompany]['total']['dcostCnt'][elapsedYear-1]))) cb1 = ttk.Entry(frame, style='new.TEntry', textvariable=v1) label1 = ttk.Label(frame, style='new.TLabel', text='Additional container fee dC (-1000 <= dC <= 1000)', padding=(5, 2)) label2 = ttk.Label(frame, style='new.TLabel', text='Nominal shipping cost: 1500 $/container', padding=(5, 2)) label3 = ttk.Label(frame, style='new.TLabel', text='$', padding=(5, 2)) labelExpl = ttk.Label(frame, style='new.TLabel', text='Guide: Input additional shipping fee per container, and then click "Complete".', padding=(5, 2)) button = ttk.Button(frame, style='new.TButton', text='Complete', command=lambda: _buttonCommand(fleetAll,numCompany,elapsedYear,root,v1)) label1.grid(row=1, column=0) label2.grid(row=0, column=0) label3.grid(row=1, column=2) cb1.grid(row=1, column=1) button.grid(row=2, column=1) labelExpl.grid(row=3, column=0,columnspan=5) root.deiconify() root.mainloop() return fleetAll # calculate EEDI NumFleet = len(fleetAll[numCompany]) for keyFleet in range(1,NumFleet): tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: rEEDIreqCurrent = rEEDIreqCurrentFunc(fleetAll[numCompany][keyFleet]['wDWT'],rEEDIreq) fleetAll[numCompany][keyFleet]['EEDIref'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp] = EEDIreqFunc(valueDict['kEEDI1'],fleetAll[numCompany][keyFleet]['wDWT'],valueDict['kEEDI2'],rEEDIreqCurrent) fleetAll[numCompany][keyFleet]['MCRM'][tOpTemp], fleetAll[numCompany][keyFleet]['PA'][tOpTemp], fleetAll[numCompany][keyFleet]['EEDIatt'][tOpTemp], fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp] = EEDIattFunc(fleetAll[numCompany][keyFleet]['wDWT'],valueDict['wMCR'],valueDict['kMCR1'],valueDict['kMCR2'],valueDict['kMCR3'],valueDict['kPAE1'],valueDict['kPAE2'],valueDict['rCCS'],valueDict['vDsgn'],valueDict['rWPS'],fleetAll[numCompany][keyFleet]['Cco2ship'],valueDict['SfcM'],valueDict['SfcA'],valueDict['rSPS'],fleetAll[numCompany][keyFleet]['Cco2aux'],fleetAll[numCompany][keyFleet]['EEDIreq'][tOpTemp],fleetAll[numCompany][keyFleet]['WPS'],fleetAll[numCompany][keyFleet]['SPS'],fleetAll[numCompany][keyFleet]['CCS']) # decide to scrap or refurbish currently alive fleet fleetAll = _scrapOrRefurbishGui(fleetAll,numCompany,tOpSch,valueDict,currentYear,rEEDIreq) for keyFleet in range(1,NumFleet): tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: cAdditionalEquipment = 0 if fleetAll[numCompany][keyFleet]['lastWPS'] != fleetAll[numCompany][keyFleet]['WPS'] and fleetAll[numCompany][keyFleet]['WPS']: cAdditionalEquipment += valueDict['dcostWPS'] elif fleetAll[numCompany][keyFleet]['lastSPS'] != fleetAll[numCompany][keyFleet]['SPS'] and fleetAll[numCompany][keyFleet]['SPS']: cAdditionalEquipment += valueDict['dcostSPS'] elif fleetAll[numCompany][keyFleet]['lastCCS'] != fleetAll[numCompany][keyFleet]['CCS'] and fleetAll[numCompany][keyFleet]['CCS']: cAdditionalEquipment += valueDict['dcostCCS'] fleetAll[numCompany][keyFleet]['lastWPS'] = fleetAll[numCompany][keyFleet]['WPS'] fleetAll[numCompany][keyFleet]['lastSPS'] = fleetAll[numCompany][keyFleet]['SPS'] fleetAll[numCompany][keyFleet]['lastCCS'] = fleetAll[numCompany][keyFleet]['CCS'] fleetAll[numCompany][keyFleet]['costRfrb'][tOpTemp] = cAdditionalEquipment * fleetAll[numCompany][keyFleet]['costShipBasicHFO'] # decide additional shipping fee per container #_dcostCntGui(fleetAll,numCompany,elapsedYear) return fleetAll def orderShipFunc(fleetAll,numCompany,fuelName,WPS,SPS,CCS,CAPcnt,tOpSch,tbid,iniT,currentYear,elapsedYear,valueDict,NShipFleet,ifIni,parameterFile2,parameterFile12,parameterFile3,parameterFile5): NumFleet = len(fleetAll[numCompany]) fleetAll[numCompany].setdefault(NumFleet,{}) fleetAll[numCompany][NumFleet]['fuelName'] = fuelName fleetAll[numCompany][NumFleet]['WPS'] = WPS fleetAll[numCompany][NumFleet]['SPS'] = SPS fleetAll[numCompany][NumFleet]['CCS'] = CCS fleetAll[numCompany][NumFleet]['lastWPS'] = WPS fleetAll[numCompany][NumFleet]['lastSPS'] = SPS fleetAll[numCompany][NumFleet]['lastCCS'] = CCS fleetAll[numCompany][NumFleet]['CAPcnt'] = float(CAPcnt) fleetAll[numCompany][NumFleet]['wDWT'] = wDWTFunc(valueDict["kDWT1"],fleetAll[numCompany][NumFleet]['CAPcnt'],valueDict["kDWT2"]) fleetAll[numCompany][NumFleet]['wFLD'] = wFLDFunc(valueDict["kFLD1"],fleetAll[numCompany][NumFleet]['wDWT'],valueDict["kFLD2"]) fleetAll[numCompany][NumFleet]['CeqLHVship'] = CeqLHVFunc(parameterFile2,fleetAll[numCompany][NumFleet]['fuelName']) fleetAll[numCompany][NumFleet]['CeqLHVaux'] = CeqLHVFunc(parameterFile12,fleetAll[numCompany][NumFleet]['fuelName']) fleetAll[numCompany][NumFleet]['Cco2ship'] = Cco2Func(parameterFile3,fleetAll[numCompany][NumFleet]['fuelName']) if fuelName == 'HFO': fleetAll[numCompany][NumFleet]['Cco2aux'] = Cco2Func(parameterFile3,'Diesel') else: fleetAll[numCompany][NumFleet]['Cco2aux'] = Cco2Func(parameterFile3,fleetAll[numCompany][NumFleet]['fuelName']) fleetAll[numCompany][NumFleet]['rShipBasic'] = rShipBasicFunc(parameterFile5,fleetAll[numCompany][NumFleet]['fuelName'],fleetAll[numCompany][NumFleet]['CAPcnt']) fleetAll[numCompany][NumFleet]['delivery'] = currentYear+tbid fleetAll[numCompany][NumFleet]['tOp'] = iniT fleetAll[numCompany][NumFleet]['costShipBasicHFO'], fleetAll[numCompany][NumFleet]['costShipBasic'], fleetAll[numCompany][NumFleet]['costShipAdd'], fleetAll[numCompany][NumFleet]['costShip'] = costShipFunc(valueDict["kShipBasic1"], fleetAll[numCompany][NumFleet]["CAPcnt"], valueDict["kShipBasic2"], fleetAll[numCompany][NumFleet]['rShipBasic'], valueDict["dcostWPS"], valueDict["dcostSPS"], valueDict["dcostCCS"], fleetAll[numCompany][NumFleet]['WPS'], fleetAll[numCompany][NumFleet]['SPS'], fleetAll[numCompany][NumFleet]['CCS']) if iniT == 0 and not ifIni: fleetAll[numCompany]['total']['costShip'][elapsedYear+2] += NShipFleet * fleetAll[numCompany][NumFleet]['costShip'] fleetAll[numCompany]['total']['costShipBasicHFO'][elapsedYear+2] += NShipFleet * fleetAll[numCompany][NumFleet]['costShipBasicHFO'] fleetAll[numCompany][NumFleet]['v'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['d'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['fShipORG'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['fAuxORG'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['gORG'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['costFuelORG'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['costFuel'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['dcostFuel'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['fShip'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['fAux'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['g'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['cta'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['dcostShipping'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['gTilde'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['costRfrb'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['EEDIref'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['EEDIreq'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['EEDIatt'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['vDsgnRed'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['MCRM'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['PA'] = np.zeros(tOpSch) fleetAll[numCompany][NumFleet]['year'] = np.zeros(tOpSch) return fleetAll def orderPhaseFunc(fleetAll,numCompany,valueDict,elapsedYear,tOpSch,tbid,currentYear,rEEDIreq,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): def _orderShipGui(fleetAll,numCompany,valueDict,elapsedYear,tOpSch,tbid,currentYear,rEEDIreq,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): def _EEDIcalc(rEEDIreq,parameterFile3,valueDict): fuelType = v1.get() CAP = float(v2.get()) WPS = int(v3.get()) SPS = int(v4.get()) CCS = int(v5.get()) wDWT = wDWTFunc(valueDict['kDWT1'],CAP,valueDict['kDWT2']) rEEDIreqCurrent = rEEDIreqCurrentFunc(wDWT,rEEDIreq) if fuelType == 'HFO/Diesel': Cco2ship = Cco2Func(parameterFile3,'HFO') Cco2aux = Cco2Func(parameterFile3,'Diesel') else: Cco2ship = Cco2Func(parameterFile3,fuelType) Cco2aux = Cco2Func(parameterFile3,fuelType) _, EEDIreq = EEDIreqFunc(valueDict['kEEDI1'],wDWT,valueDict['kEEDI2'],rEEDIreqCurrent) _, _, EEDIatt, vDsgnRed = EEDIattFunc(wDWT,valueDict['wMCR'],valueDict['kMCR1'],valueDict['kMCR2'],valueDict['kMCR3'],valueDict['kPAE1'],valueDict['kPAE2'],valueDict['rCCS'],valueDict['vDsgn'],valueDict['rWPS'],Cco2ship,valueDict['SfcM'],valueDict['SfcA'],valueDict['rSPS'],Cco2aux,EEDIreq,WPS,SPS,CCS) return CAP, vDsgnRed, EEDIreq, EEDIatt def _buttonCommandAnother(fleetAll,numCompany,tOpSch,tbid,currentYear,elapsedYear,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): CAP, vDsgnRed, EEDIreq, EEDIatt = _EEDIcalc(rEEDIreq,parameterFile3,valueDict) if valueDict['vMin'] <= vDsgnRed and CAP >= 8000 and CAP <= 24000: if v1.get() == 'HFO/Diesel': fuelName = 'HFO' else: fuelName = v1.get() fleetAll = orderShipFunc(fleetAll,numCompany,fuelName,int(v3.get()),int(v4.get()),int(v5.get()),float(v2.get()),tOpSch,tbid,0,currentYear,elapsedYear,valueDict,NShipFleet,False,parameterFile2,parameterFile12,parameterFile3,parameterFile5) fleetAll[numCompany]['total']['lastOrderFuel'] = v1.get() fleetAll[numCompany]['total']['lastOrderCAP'] = v2.get() cb1.delete(0,"end") cb1.insert(0, fleetAll[numCompany]['total']['lastOrderCAP']) v3.set('0') v4.set('0') v5.set('0') cb2.var = v3 cb3.var = v4 cb4.var = v5 label6['text'] = 'None' label7['text'] = 'None' label8['text'] = 'None' button1['state'] = 'disabled' button2['state'] = 'disabled' else: button1['state'] = 'disabled' button2['state'] = 'disabled' def _buttonCommandComplete(root,fleetAll,numCompany,tOpSch,tbid,currentYear,elapsedYear,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5): CAP, vDsgnRed, EEDIreq, EEDIatt = _EEDIcalc(rEEDIreq,parameterFile3,valueDict) if valueDict['vMin'] <= vDsgnRed and CAP >= 8000 and CAP <= 24000: if v1.get() == 'HFO/Diesel': fuelName = 'HFO' else: fuelName = v1.get() fleetAll = orderShipFunc(fleetAll,numCompany,fuelName,int(v3.get()),int(v4.get()),int(v5.get()),float(v2.get()),tOpSch,tbid,0,currentYear,elapsedYear,valueDict,NShipFleet,False,parameterFile2,parameterFile12,parameterFile3,parameterFile5) fleetAll[numCompany]['total']['lastOrderFuel'] = v1.get() fleetAll[numCompany]['total']['lastOrderCAP'] = v2.get() root.quit() root.destroy() else: button1['state'] = 'disabled' button2['state'] = 'disabled' def _buttonCommandCheck(valueDict,parameterFile3,rEEDIreq): CAP, vDsgnRed, EEDIreq, EEDIatt = _EEDIcalc(rEEDIreq,parameterFile3,valueDict) label6['text'] = str(str(int(vDsgnRed))) label7['text'] = str('{:.3g}'.format(EEDIreq)) label8['text'] = str('{:.3g}'.format(EEDIatt)) if valueDict['vMin'] < vDsgnRed: button1['state'] = 'normal' button2['state'] = 'normal' if CAP >= 8000 and CAP <= 24000: button1['state'] = 'normal' button2['state'] = 'normal' def _buttonCommandNoOrder(root): root.quit() root.destroy() root = Tk() root.title('Company '+str(numCompany)+' : Order Ship in '+str(currentYear)) width = 1000 height = 300 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) # Frame style = ttk.Style() style.theme_use('default') if numCompany == 1: color = '#ffcccc' elif numCompany == 2: color = '#ffedab' elif numCompany == 3: color = '#a4a8d4' root['bg'] = color style.configure('new.TFrame', foreground='black', background=color) style.configure('new.TLabel', foreground='black', background=color) style.configure('new.TButton', foreground='black', background=color) style.configure('new.TCheckbutton', foreground='black', background=color) style.configure('new.TEntry', foreground='black', background=color) style.configure('new.TCombobox', foreground='black', background=color) frame = ttk.Frame(root, style='new.TFrame', padding=20) frame.pack() # Label label1 = ttk.Label(frame, style='new.TLabel', text='Fuel type', padding=(5, 2)) label2 = ttk.Label(frame, style='new.TLabel', text='Capacity (8000<=Capacity<=24000) [TEU]', padding=(5, 2)) label3 = ttk.Label(frame, style='new.TLabel', text='Maximum speed [kt]', padding=(5, 2)) label4 = ttk.Label(frame, style='new.TLabel', text='EEDIreq [g/(ton*NM)]', padding=(5, 2)) label5 = ttk.Label(frame, style='new.TLabel', text='EEDIatt [g/(ton*NM)]', padding=(5, 2)) label6 = ttk.Label(frame, style='new.TLabel', text='None', padding=(5, 2)) label7 = ttk.Label(frame, style='new.TLabel', text='None', padding=(5, 2)) label8 = ttk.Label(frame, style='new.TLabel', text='None', padding=(5, 2)) label9 = ttk.Label(frame, style='new.TLabel', text='WPS', padding=(5, 2)) label10 = ttk.Label(frame, style='new.TLabel', text='SPS', padding=(5, 2)) label11 = ttk.Label(frame, style='new.TLabel', text='CCS', padding=(5, 2)) labelExpl = ttk.Label(frame, style='new.TLabel', text='Guide: When you want to order a fleet, select the setting and click "another fleet" or "complete". Ohterwise, click "No order".', padding=(5, 2)) # List box if currentYear < valueDict['addSysYear']: fuelTypeList = ['HFO/Diesel','LNG'] else: fuelTypeList = ['HFO/Diesel','LNG','NH3','H2'] v1 = StringVar() lb = ttk.Combobox(frame, style='new.TCombobox', textvariable=v1,values=fuelTypeList) if elapsedYear == 0: lb.set('HFO/Diesel') else: lb.set(fleetAll[numCompany]['total']['lastOrderFuel']) # Entry v2 = StringVar() if elapsedYear == 0: v2.set('20000') else: v2.set(str(fleetAll[numCompany]['total']['lastOrderCAP'])) cb1 = ttk.Entry(frame, style='new.TEntry', textvariable=v2) # Checkbutton v3 = StringVar() v3.set('0') # 初期化 cb2 = ttk.Checkbutton(frame, style='new.TCheckbutton', padding=(10), text='WPS', variable=v3) # Checkbutton v4 = StringVar() v4.set('0') # 初期化 cb3 = ttk.Checkbutton(frame, style='new.TCheckbutton', padding=(10), text='SPS', variable=v4) # Checkbutton v5 = StringVar() if currentYear >= valueDict['addSysYear']: v5.set('0') # 初期化 cb4 = ttk.Checkbutton(frame, style='new.TCheckbutton', padding=(10), text='CCS', variable=v5) else: v5.set('0') # 初期化 cb4 = ttk.Checkbutton(frame, state='disable', style='new.TCheckbutton', padding=(10), text='CCS', variable=v5) # Button button1 = ttk.Button(frame, style='new.TButton', text='Another fleet', state='disabled', command=lambda: _buttonCommandAnother(fleetAll,numCompany,tOpSch,tbid,currentYear,elapsedYear,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5)) button2 = ttk.Button(frame, style='new.TButton', text='Complete', state='disabled', command=lambda: _buttonCommandComplete(root,fleetAll,numCompany,tOpSch,tbid,currentYear,elapsedYear,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5)) button3 = ttk.Button(frame, style='new.TButton', text='EEDI check', command=lambda: _buttonCommandCheck(valueDict,parameterFile3,rEEDIreq)) button4 = ttk.Button(frame, style='new.TButton', text='No order', command=lambda: _buttonCommandNoOrder(root)) # Layout label1.grid(row=0, column=0) label2.grid(row=0, column=1) label3.grid(row=2, column=1) label4.grid(row=2, column=2) label5.grid(row=2, column=3) label6.grid(row=3, column=1) label7.grid(row=3, column=2) label8.grid(row=3, column=3) label9.grid(row=0, column=2) label10.grid(row=0, column=3) label11.grid(row=0, column=4) cb1.grid(row=1, column=1) cb2.grid(row=1, column=2) cb3.grid(row=1, column=3) cb4.grid(row=1, column=4) lb.grid(row=1, column=0) button1.grid(row=4, column=2) button2.grid(row=4, column=4) button3.grid(row=4, column=1) button4.grid(row=4, column=0) labelExpl.grid(row=5, column=0, columnspan=5) root.deiconify() root.mainloop() return fleetAll fleetAll = _orderShipGui(fleetAll,numCompany,valueDict,elapsedYear,tOpSch,tbid,currentYear,rEEDIreq,NShipFleet,parameterFile2,parameterFile12,parameterFile3,parameterFile5) return fleetAll def yearlyCtaFunc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,v,valueDict): NumFleet = len(fleetAll[numCompany]) j = 0 maxCta = 0 currentYear = startYear+elapsedYear for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] fleetAll[numCompany][keyFleet]['v'][tOpTemp] = float(v[j].get()) # input for each fleet fleetAll[numCompany][keyFleet]['d'][tOpTemp] = dFunc(valueDict["Dyear"],valueDict["Hday"],fleetAll[numCompany][keyFleet]['v'][tOpTemp],valueDict["Rrun"]) maxCta += NShipFleet * maxCtaFunc(fleetAll[numCompany][keyFleet]['CAPcnt'],fleetAll[numCompany][keyFleet]['d'][tOpTemp]) j += 1 fleetAll[numCompany]['total']['maxCta'][elapsedYear] = maxCta return fleetAll def yearlyOperationFunc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict,rSubs,rTax,parameterFile4): NumFleet = len(fleetAll[numCompany]) currentYear = startYear+elapsedYear fleetAll[numCompany]['total']['costRfrb'][elapsedYear] = 0 fleetAll[numCompany]['total']['g'][elapsedYear] = 0 fleetAll[numCompany]['total']['cta'][elapsedYear] = 0 fleetAll[numCompany]['total']['costFuel'][elapsedYear] = 0 for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] unitCostFuel, unitCostFuelHFO = unitCostFuelFunc(parameterFile4,fleetAll[numCompany][keyFleet]['fuelName'],currentYear) fleetAll[numCompany][keyFleet]['cta'][tOpTemp] = ctaFunc(fleetAll[numCompany][keyFleet]['CAPcnt'],fleetAll[numCompany]['total']['rocc'][elapsedYear],fleetAll[numCompany][keyFleet]['d'][tOpTemp]) fleetAll[numCompany][keyFleet]['fShipORG'][tOpTemp], fleetAll[numCompany][keyFleet]['fShip'][tOpTemp] = fShipFunc(valueDict["kShip1"],valueDict["kShip2"],fleetAll[numCompany][keyFleet]['wDWT'],fleetAll[numCompany][keyFleet]['wFLD'],fleetAll[numCompany]['total']['rocc'][elapsedYear],valueDict["CNM2km"],fleetAll[numCompany][keyFleet]['v'][tOpTemp],fleetAll[numCompany][keyFleet]['d'][tOpTemp],valueDict["rWPS"],fleetAll[numCompany][keyFleet]['WPS'],fleetAll[numCompany][keyFleet]['CeqLHVship']) fleetAll[numCompany][keyFleet]['fAuxORG'][tOpTemp], fleetAll[numCompany][keyFleet]['fAux'][tOpTemp] = fAuxFunc(valueDict["Dyear"],valueDict["Hday"],valueDict["Rrun"],valueDict["kAux1"],valueDict["kAux2"],fleetAll[numCompany][keyFleet]['wDWT'],valueDict["rSPS"],fleetAll[numCompany][keyFleet]['SPS'],fleetAll[numCompany][keyFleet]['CeqLHVaux']) fleetAll[numCompany][keyFleet]['gORG'][tOpTemp], fleetAll[numCompany][keyFleet]['g'][tOpTemp] = gFunc(fleetAll[numCompany][keyFleet]['Cco2ship'],fleetAll[numCompany][keyFleet]['fShip'][tOpTemp],fleetAll[numCompany][keyFleet]['Cco2aux'],fleetAll[numCompany][keyFleet]['fAux'][tOpTemp],valueDict["rCCS"],fleetAll[numCompany][keyFleet]['CCS']) fleetAll[numCompany][keyFleet]['costFuelORG'][tOpTemp], fleetAll[numCompany][keyFleet]['costFuel'][tOpTemp], fleetAll[numCompany][keyFleet]['dcostFuel'][tOpTemp] = costFuelFunc(unitCostFuelHFO, unitCostFuel, fleetAll[numCompany][keyFleet]['fShipORG'][tOpTemp], fleetAll[numCompany][keyFleet]['fAuxORG'][tOpTemp], fleetAll[numCompany][keyFleet]['fShip'][tOpTemp], fleetAll[numCompany][keyFleet]['fAux'][tOpTemp]) fleetAll[numCompany][keyFleet]['dcostShipping'][tOpTemp] = additionalShippingFeeFunc(tOpTemp, tOpSch, fleetAll[numCompany][keyFleet]['dcostFuel'][tOpTemp], fleetAll[numCompany][keyFleet]['costShip'], fleetAll[numCompany][keyFleet]['costShipBasicHFO']) fleetAll[numCompany][keyFleet]['gTilde'][tOpTemp] = fleetAll[numCompany][keyFleet]['g'][tOpTemp] / fleetAll[numCompany][keyFleet]['cta'][tOpTemp] fleetAll[numCompany]['total']['costRfrb'][elapsedYear] += NShipFleet * fleetAll[numCompany][keyFleet]['costRfrb'][tOpTemp] fleetAll[numCompany]['total']['g'][elapsedYear] += NShipFleet * fleetAll[numCompany][keyFleet]['g'][tOpTemp] fleetAll[numCompany]['total']['cta'][elapsedYear] += NShipFleet * fleetAll[numCompany][keyFleet]['cta'][tOpTemp] fleetAll[numCompany]['total']['costFuel'][elapsedYear] += NShipFleet * fleetAll[numCompany][keyFleet]['costFuel'][tOpTemp] fleetAll[numCompany]['total']['dcostFuel'][elapsedYear] += NShipFleet * fleetAll[numCompany][keyFleet]['dcostFuel'][tOpTemp] for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: fleetAll[numCompany][keyFleet]['year'][fleetAll[numCompany][keyFleet]['tOp']] = currentYear fleetAll[numCompany][keyFleet]['tOp'] += 1 fleetAll[numCompany]['total']['costAll'][elapsedYear] = fleetAll[numCompany]['total']['costFuel'][elapsedYear] + fleetAll[numCompany]['total']['costShip'][elapsedYear] + fleetAll[numCompany]['total']['costRfrb'][elapsedYear] fleetAll[numCompany]['total']['dcostEco'][elapsedYear] = fleetAll[numCompany]['total']['dcostFuel'][elapsedYear] + fleetAll[numCompany]['total']['costShip'][elapsedYear]-fleetAll[numCompany]['total']['costShipBasicHFO'][elapsedYear] + fleetAll[numCompany]['total']['costRfrb'][elapsedYear] fleetAll[numCompany]['total']['nTransCnt'][elapsedYear] = fleetAll[numCompany]['total']['cta'][elapsedYear] / valueDict['dJPNA'] fleetAll[numCompany]['total']['costCnt'][elapsedYear] = (valueDict['costCntMax']-valueDict['costCntMin']) / (1+math.e**(-valueDict['aSgmd']*(fleetAll[numCompany]['total']['rocc'][elapsedYear]-valueDict['roccNom']))) + valueDict['costCntMin'] fleetAll[numCompany]['total']['sale'][elapsedYear] = fleetAll[numCompany]['total']['nTransCnt'][elapsedYear] * fleetAll[numCompany]['total']['costCnt'][elapsedYear] fleetAll[numCompany]['total']['gTilde'][elapsedYear] = fleetAll[numCompany]['total']['g'][elapsedYear] / fleetAll[numCompany]['total']['cta'][elapsedYear] fleetAll[numCompany]['total']['costTilde'][elapsedYear] = fleetAll[numCompany]['total']['costAll'][elapsedYear] / fleetAll[numCompany]['total']['cta'][elapsedYear] fleetAll[numCompany]['total']['saleTilde'][elapsedYear] = fleetAll[numCompany]['total']['sale'][elapsedYear] / fleetAll[numCompany]['total']['cta'][elapsedYear] fleetAll[numCompany]['total']['mSubs'][elapsedYear] = rSubs * fleetAll[numCompany]['total']['dcostEco'][elapsedYear] fleetAll[numCompany]['total']['mTax'][elapsedYear] = rTax * fleetAll[numCompany]['total']['g'][elapsedYear] fleetAll[numCompany]['total']['balance'][elapsedYear] = fleetAll[numCompany]['total']['mTax'][elapsedYear] - fleetAll[numCompany]['total']['mSubs'][elapsedYear] fleetAll[numCompany]['total']['profit'][elapsedYear] = fleetAll[numCompany]['total']['sale'][elapsedYear] - fleetAll[numCompany]['total']['costAll'][elapsedYear] - fleetAll[numCompany]['total']['balance'][elapsedYear] fleetAll[numCompany]['total']['profitSum'][elapsedYear] += fleetAll[numCompany]['total']['profit'][elapsedYear] fleetAll[numCompany]['total']['gSum'][elapsedYear] += fleetAll[numCompany]['total']['g'][elapsedYear] fleetAll[numCompany]['total']['Idx'][elapsedYear] = fleetAll[numCompany]['total']['profitSum'][elapsedYear] / fleetAll[numCompany]['total']['gSum'][elapsedYear] return fleetAll def decideSpeedFunc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict): def _surviceSpeedGui(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict): def _buttonCommandNext(root,fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict): NumFleet = len(fleetAll[numCompany]) j = 0 goAhead = True for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if float(v13[j].get()) < 12 or float(v13[j].get()) > fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]: goAhead = False j += 1 if goAhead: fleetAll = yearlyCtaFunc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,v13,valueDict) fleetAll[numCompany]['total']['atOnce'][elapsedYear] = float(vAtOnce.get()) root.quit() root.destroy() else: button2['state'] = 'disabled' def _buttonCommandNext2(root): root.quit() root.destroy() def _buttonCommandCalc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict): fleetAll = yearlyCtaFunc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,v13,valueDict) #labelRes4['text'] = str('{:.3g}'.format(fleetAll[numCompany]['total']['cta'][elapsedYear])) #labelRes6['text'] = str('{:.4g}'.format(fleetAll[numCompany]['total']['rocc'][elapsedYear])) #labelRes8['text'] = str('{:.3g}'.format(fleetAll[numCompany]['total']['costFuel'][elapsedYear])) #labelRes10['text'] = str('{:.3g}'.format(fleetAll[numCompany]['total']['g'][elapsedYear])) button2['state'] = 'normal' NumFleet = len(fleetAll[numCompany]) j = 0 for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if float(v13[j].get()) < 12 or float(v13[j].get()) > fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]: button2['state'] = 'disabled' j += 1 def _buttonCommandAtOnce(): NumFleet = len(fleetAll[numCompany]) j = 0 for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] #if fleetAll[numCompany][keyFleet]['v'][tOpTemp-1] == 0: # v13[j].set(str(int(min([float(vAtOnce.get()),fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]])))) #else: # v13[j].set(str(int(min([float(vAtOnce.get()),fleetAll[numCompany][keyFleet]['v'][tOpTemp-1]])))) v13[j].set(str(int(min([float(vAtOnce.get()),fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]])))) j += 1 button1['state'] = 'normal' root = Tk() root.title('Company '+str(numCompany)+' : Service Speed in '+str(startYear+elapsedYear)) width = 1100 height = 400 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) canvas = Canvas(root, width=width, height=height) # Frame style = ttk.Style() style.theme_use('default') if numCompany == 1: color = '#ffcccc' elif numCompany == 2: color = '#ffedab' elif numCompany == 3: color = '#a4a8d4' root['bg'] = color style.configure('new.TFrame', foreground='black', background=color) style.configure('new.TLabel', foreground='black', background=color) style.configure('new.TButton', foreground='black', background=color) style.configure('new.TCheckbutton', foreground='black', background=color) style.configure('new.TEntry', foreground='black', background=color) frame = ttk.Frame(root, style='new.TFrame', padding=20) frame.pack() frame.bind("<Configure>", lambda e: canvas.configure(scrollregion=canvas.bbox("all"))) vbar = Scrollbar(root, orient="vertical") vbar.config(command=canvas.yview) vbar.pack(side=RIGHT,fill="y") canvas['bg'] = color canvas.create_window((placeX, placeY), window=frame, anchor=CENTER) canvas.pack() canvas.update_idletasks() canvas.configure(yscrollcommand=vbar.set) canvas.yview_moveto(0) # Label labelAtOnce = ttk.Label(frame, style='new.TLabel', text='Input all service speeds at once (12<=) [kt]:', padding=(5, 2)) vAtOnce = StringVar() if elapsedYear == 0: vAtOnce.set('18') else: vAtOnce.set(str(int(fleetAll[numCompany]['total']['atOnce'][elapsedYear-1]))) labelAtOnce2 = ttk.Entry(frame, style='new.TEntry', textvariable=vAtOnce) #labelRes1 = ttk.Label(frame, style='new.TLabel',text='Assigned demand [TEU*NM]:', padding=(5, 2)) #labelRes2 = ttk.Label(frame, style='new.TLabel',text=str('{:.3g}'.format(Di)), padding=(5, 2)) #labelRes3 = ttk.Label(frame, style='new.TLabel',text='Cargo trasnsport amount [TEU*NM]:', padding=(5, 2)) #labelRes4 = ttk.Label(frame, style='new.TLabel',text='None', padding=(5, 2)) #labelRes5 = ttk.Label(frame, style='new.TLabel',text='Occupancy rate [%]:', padding=(5, 2)) #labelRes6 = ttk.Label(frame, style='new.TLabel',text='None', padding=(5, 2)) #labelRes7 = ttk.Label(frame, style='new.TLabel',text='Fuel cost [$]:', padding=(5, 2)) #labelRes8 = ttk.Label(frame, style='new.TLabel',text='None', padding=(5, 2)) #labelRes9 = ttk.Label(frame, style='new.TLabel',text='CO2 [ton]:', padding=(5, 2)) #labelRes10 = ttk.Label(frame, style='new.TLabel',text='None', padding=(5, 2)) label0 = ttk.Label(frame, style='new.TLabel',text='No.', padding=(5, 2)) label1 = ttk.Label(frame, style='new.TLabel',text='Fuel type', padding=(5, 2)) label2 = ttk.Label(frame, style='new.TLabel',text='Capacity [TEU]', padding=(5, 2)) label3 = ttk.Label(frame, style='new.TLabel',text='WPS', padding=(5, 2)) label4 = ttk.Label(frame, style='new.TLabel',text='SPS', padding=(5, 2)) label5 = ttk.Label(frame, style='new.TLabel',text='CCS', padding=(5, 2)) label6 = ttk.Label(frame, style='new.TLabel',text='Service speed (12<=) [kt]', padding=(5, 2)) label7 = ttk.Label(frame, style='new.TLabel',text='Maximum speed [kt]', padding=(5, 2)) label00 = [] label8 = [] label9 = [] label10 = [] label11 = [] label12 = [] label13 = [] label14 = [] v13 = [] currentYear = startYear+elapsedYear NumFleet = len(fleetAll[numCompany]) for keyFleet in range(1,NumFleet): if fleetAll[numCompany][keyFleet]['delivery'] <= currentYear and fleetAll[numCompany][keyFleet]['tOp'] < tOpSch: label00.append(ttk.Label(frame, style='new.TLabel',text=str(keyFleet), padding=(5, 2))) tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] if fleetAll[numCompany][keyFleet]['fuelName'] == 'HFO': label8.append(ttk.Label(frame, style='new.TLabel',text='HFO/Diesel', padding=(5, 2))) else: label8.append(ttk.Label(frame, style='new.TLabel',text=fleetAll[numCompany][keyFleet]['fuelName'], padding=(5, 2))) label9.append(ttk.Label(frame, style='new.TLabel',text=str(int(fleetAll[numCompany][keyFleet]['CAPcnt'])), padding=(5, 2))) if fleetAll[numCompany][keyFleet]['WPS']: label10.append(ttk.Label(frame, style='new.TLabel',text='Yes', padding=(5, 2))) else: label10.append(ttk.Label(frame, style='new.TLabel',text='No', padding=(5, 2))) if fleetAll[numCompany][keyFleet]['SPS']: label11.append(ttk.Label(frame, style='new.TLabel',text='Yes', padding=(5, 2))) else: label11.append(ttk.Label(frame, style='new.TLabel',text='No', padding=(5, 2))) if fleetAll[numCompany][keyFleet]['CCS']: label12.append(ttk.Label(frame, style='new.TLabel',text='Yes', padding=(5, 2))) else: label12.append(ttk.Label(frame, style='new.TLabel',text='No', padding=(5, 2))) tOpTemp = fleetAll[numCompany][keyFleet]['tOp'] v13.append(StringVar()) if fleetAll[numCompany][keyFleet]['v'][tOpTemp-1] == 0: #v13[-1].set(str(int(fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp]))) v13[-1].set(str(int(18))) else: v13[-1].set(str(int(fleetAll[numCompany][keyFleet]['v'][tOpTemp-1]))) #v13[-1].set('None') label13.append(ttk.Entry(frame, style='new.TEntry',textvariable=v13[-1])) label14.append(ttk.Label(frame, style='new.TLabel',text=str(int(fleetAll[numCompany][keyFleet]['vDsgnRed'][tOpTemp])), padding=(5, 2))) labelExpl = ttk.Label(frame, style='new.TLabel', text='Guide: Input a service speed for all fleets at first and click "Input", and then change each speed if you want. After inputting all values, click "Check" and "Next".', padding=(5, 2)) labelExpl2 = ttk.Label(frame, style='new.TLabel', text='Guide: You have no fleet. Click "Next".', padding=(5, 2)) # Button button1 = ttk.Button(frame, style='new.TButton',text='Check', state='disabled', command=lambda: _buttonCommandCalc(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict)) button2 = ttk.Button(frame, style='new.TButton',text='Next', state='disabled', command=lambda: _buttonCommandNext(root,fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict)) button22 = ttk.Button(frame, style='new.TButton',text='Next', command=lambda: _buttonCommandNext2(root)) button3 = ttk.Button(frame, style='new.TButton',text='Input', command=lambda: _buttonCommandAtOnce()) # Layout if len(label8) > 0: #labelRes1.grid(row=0, column=1) #labelRes2.grid(row=0, column=2) #labelRes3.grid(row=0, column=1) #labelRes4.grid(row=0, column=2) #labelRes5.grid(row=1, column=1) #labelRes6.grid(row=1, column=2) #labelRes7.grid(row=1, column=4) #labelRes8.grid(row=1, column=5) #labelRes9.grid(row=2, column=1) #labelRes10.grid(row=2, column=2) label0.grid(row=3, column=0) label1.grid(row=3, column=1) label2.grid(row=3, column=2) label3.grid(row=3, column=3) label4.grid(row=3, column=4) label5.grid(row=3, column=5) label6.grid(row=3, column=6) label7.grid(row=3, column=7) for i, j in enumerate(label8): label00[i].grid(row=i+4, column=0) label8[i].grid(row=i+4, column=1) label9[i].grid(row=i+4, column=2) label10[i].grid(row=i+4, column=3) label11[i].grid(row=i+4, column=4) label12[i].grid(row=i+4, column=5) label13[i].grid(row=i+4, column=6) label14[i].grid(row=i+4, column=7) labelAtOnce.grid(row=i+5, column=1) labelAtOnce2.grid(row=i+5, column=2) button3.grid(row=i+5, column=3) button1.grid(row=i+5, column=6) button2.grid(row=i+5, column=7) labelExpl.grid(row=i+6, column=0,columnspan=8) else: labelExpl2.grid(row=0, column=0) button22.grid(row=0, column=1) root.deiconify() root.mainloop() return fleetAll fleetAll = _surviceSpeedGui(fleetAll,numCompany,startYear,elapsedYear,NShipFleet,tOpSch,valueDict) return fleetAll def outputGuiFunc(fleetAll,startYear,elapsedYear,lastYear,tOpSch,unitDict): def _eachFrame(frame,fig,keyi,keyList,root): ''' def _on_key_press(event): #print("you pressed {}".format(event.key)) key_press_handler(event, canvas, toolbar) ''' def _buttonCommandNext(root,fig): for keyi in keyList: if type(fleetAll[1]['total'][keyi]) is np.ndarray: fig[keyi].clf() plt.close(fig[keyi]) root.quit() # stops mainloop root.destroy() # this is necessary on Windows to prevent def _buttonCommandShow(frameShow): frameShow.tkraise() frameEach = frame[keyi] frameEach.grid(row=0, column=0, sticky="nsew") # Canvas canvas = FigureCanvasTkAgg(fig[keyi], master=frameEach) canvas.draw() canvas.get_tk_widget().place(relx=0.03, rely=0.1) ''' toolbar = NavigationToolbar2Tk(canvas, root) toolbar.update() canvas.get_tk_widget().grid(row=1, column=0) canvas.mpl_connect("key_press_event", _on_key_press) ''' # Button button1 = Button(master=frameEach, text="Next Year", command=lambda: _buttonCommandNext(root,fig)) button1.place(relx=0.22, rely=0.9) button2 = Button(master=frameEach, text="Show", command=lambda: _buttonCommandShow(frame[v.get()])) button2.place(relx=0.59, rely=0.9) # List box v = StringVar() lb = ttk.Combobox(frameEach,textvariable=v,values=keyList) lb.set(keyi) lb.place(relx=0.66, rely=0.9) # Tkinter Class root = Tk() root.title('Result in '+str(startYear+elapsedYear)) root.geometry('800x600+300+200') width = 800 height = 600 placeX = root.winfo_screenwidth()/2 - width/2 placeY = root.winfo_screenheight()/2 - height/2 widgetSize = str(width)+'x'+str(height)+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) fig = {} frame = {} keyList = list(fleetAll[1]['total'].keys()) for keyi in keyList: if type(fleetAll[1]['total'][keyi]) is np.ndarray: fig[keyi] = outputAllCompany2Func(fleetAll,startYear,elapsedYear,keyi,unitDict) frame[keyi] = ttk.Frame(root, height=height, width=width) for keyi in keyList: if type(fleetAll[1]['total'][keyi]) is np.ndarray: _eachFrame(frame,fig,keyi,keyList,root) frame[keyList[0]].tkraise() # root mainloop() def outputGui2Func(fleetAll,valueDict,startYear,elapsedYear,lastYear,tOpSch,unitDict): def _eachFrameCO2(frame,fig,keyi,ifTotal): def _buttonCommandShow(totalOrTilde): if totalOrTilde == 'Total': frameTotal[keyi].tkraise() else: frameComp[keyi].tkraise() frameEach = frame[keyi] frameEach.grid(row=0, column=1, pady=0,sticky="nsew") # Canvas canvas = FigureCanvasTkAgg(fig[keyi], master=frameEach) canvas.draw() canvas.get_tk_widget().place(relx=0.03, rely=0.1) # Button v1 = StringVar() button1 = ttk.Combobox(frameEach,textvariable=v1,values=['Total','Each company']) if ifTotal: button1.set('Total') else: button1.set('Each company') button1.place(relx=0.45, rely=0.9) button2 = Button(master=frameEach, text="Show", command=lambda: _buttonCommandShow(v1.get())) button2.place(relx=0.8, rely=0.9) def _eachFrameProfit(frame,fig,keyi): frameEach = frame[keyi] frameEach.grid(row=0, column=0, pady=0,sticky="nsew") # Canvas canvas = FigureCanvasTkAgg(fig[keyi], master=frameEach) canvas.draw() canvas.get_tk_widget().place(relx=0.03, rely=0.1) def _eachFrameIndex(frame,fig,keyi): frameEach = frame[keyi] frameEach.grid(row=1, column=0, pady=0,sticky="nsew") # Canvas canvas = FigureCanvasTkAgg(fig[keyi], master=frameEach) canvas.draw() canvas.get_tk_widget().place(relx=0.03, rely=0.1) def _eachFrameSel(frame,fig,keyi,keyList,ifSelTotal): def _buttonCommandShow(keyi,ifTotal): if ifTotal == 'Total': frameSelTotal[keyi].tkraise() else: frameSel[keyi].tkraise() def _buttonCommandNext(root,fig): for keyi in keyList: if type(fleetAll[1]['total'][keyi]) is np.ndarray: fig[keyi].clf() figTotal[keyi].clf() plt.close(fig[keyi]) root.quit() # stops mainloop root.destroy() # this is necessary on Windows to prevent frameEach = frame[keyi] frameEach.grid(row=1, column=1, pady=0, sticky="nsew") # Canvas canvas = FigureCanvasTkAgg(fig[keyi], master=frameEach) canvas.draw() canvas.get_tk_widget().place(relx=0.03, rely=0.1) # List box v1 = StringVar() lb = ttk.Combobox(frameEach,textvariable=v1,values=keyList) lb.set(keyi) lb.place(relx=0.45, rely=0.9) # Button v2 = StringVar() button1 = ttk.Combobox(frameEach,textvariable=v2,values=['Total','Each company']) if ifSelTotal: button1.set('Total') else: button1.set('Each company') button1.place(relx=0.02, rely=0.9) button2 = Button(master=frameEach, text="Show", command=lambda: _buttonCommandShow(v1.get(),v2.get())) button2.place(relx=0.8, rely=0.9) buttonNext = Button(master=root, text="Next Year", command=lambda: _buttonCommandNext(root,fig)) buttonNext.place(relx=0.9, rely=0.9) # Tkinter Class root = Tk() root.title('Result in '+str(startYear+elapsedYear)) width = root.winfo_screenwidth()-400 height = root.winfo_screenheight()-80 placeX = 0 placeY = 0 widgetSize = str(int(width))+'x'+str(int(height))+'+'+str(int(placeX))+'+'+str(int(placeY)) root.geometry(widgetSize) fig = {} frameComp = {} frameTotal = {} frameSel = {} frameSelTotal = {} figTotal = {} removeList = [] keyList = list(fleetAll[1]['total'].keys()) figWidth,figHeight = width/2-50, height/2 for keyi in keyList: if type(fleetAll[1]['total'][keyi]) is np.ndarray: fig[keyi] = outputAllCompany2Func(fleetAll,valueDict,startYear,elapsedYear,keyi,unitDict,figWidth/100-1,figHeight/100-1) figTotal[keyi] = outputAllCompanyTotalFunc(fleetAll,valueDict,startYear,elapsedYear,keyi,unitDict,figWidth/100-1,figHeight/100-1) frameComp[keyi] = ttk.Frame(root, height=figHeight, width=figWidth) frameTotal[keyi] = ttk.Frame(root, height=figHeight, width=figWidth) frameSel[keyi] = ttk.Frame(root, height=figHeight, width=figWidth) frameSelTotal[keyi] = ttk.Frame(root, height=figHeight, width=figWidth) else: removeList.append(keyi) for keyi in removeList: keyList.remove(keyi) _eachFrameCO2(frameComp,fig,'g',False) _eachFrameCO2(frameTotal,figTotal,'g',True) _eachFrameProfit(frameComp,fig,'profit') _eachFrameIndex(frameComp,fig,'Idx') for keyi in keyList: if type(fleetAll[1]['total'][keyi]) is np.ndarray: _eachFrameSel(frameSel,fig,keyi,keyList,False) _eachFrameSel(frameSelTotal,figTotal,keyi,keyList,True) #frame[keyList[0]].tkraise() # root mainloop() return fleetAll def outputEachCompanyFunc(fleetAll,numCompany,startYear,elapsedYear,lastYear,tOpSch,decisionListName): fig, ax = plt.subplots(2, 2, figsize=(10.0, 10.0)) plt.subplots_adjust(wspace=0.4, hspace=0.6) fleetAll[numCompany]['total'] = fleetAll[numCompany]['total'] SPlot = fleetAll[numCompany]['total']['S'][:elapsedYear+1] ax[0,0].plot(fleetAll['year'][:elapsedYear+1],fleetAll[numCompany]['total']['S'][:elapsedYear+1]) ax[0,0].set_title(r"$ ( \Delta C_{shipping} - \alpha g) \ / \ cta$") ax[0,0].set_xlabel('Year') ax[0,0].yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) ax[0,0].ticklabel_format(style="sci", axis="y",scilimits=(0,0)) #ax[0].set_ylabel('Year') gTildePlot = fleetAll[numCompany]['total']['gTilde'][:elapsedYear+1]*1000000 ax[1,0].plot(fleetAll['year'][:elapsedYear+1],fleetAll[numCompany]['total']['gTilde'][:elapsedYear+1]*1000000) ax[1,0].set_title("g / cta") ax[1,0].set_xlabel('Year') ax[1,0].set_ylabel('g / (TEU $\cdot$ NM)') #ax[1,0].yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) ax[1,0].ticklabel_format(style="sci", axis="y",scilimits=(0,0)) gPlot = fleetAll[numCompany]['total']['g'][:elapsedYear+1]/1000000 ax[0,1].plot(fleetAll['year'][:elapsedYear+1],fleetAll[numCompany]['total']['g'][:elapsedYear+1]/1000000) ax[0,1].set_title("g") ax[0,1].set_xlabel('Year') ax[0,1].set_ylabel('Millions ton') ax[0,1].yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) ax[0,1].ticklabel_format(style="sci", axis="y",scilimits=(0,0)) dcostShippingTildePlot = fleetAll[numCompany]['total']['dcostShippingTilde'][:elapsedYear+1] ax[1,1].plot(fleetAll['year'][:elapsedYear+1],fleetAll[numCompany]['total']['dcostShippingTilde'][:elapsedYear+1]) ax[1,1].set_title("$\Delta C_{shipping} \ / \ cta$") ax[1,1].set_xlabel('Year') ax[1,1].set_ylabel('\$ / (TEU $\cdot$ NM)') ax[1,1].yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) ax[1,1].ticklabel_format(style="sci", axis="y",scilimits=(0,0)) #if i == 1: # ax2.bar(fleetAll['year'][:elapsedYear+1], simu) #else: # ax2.bar(fleetAll['year'][:elapsedYear+1], simu, bottom=simuSum) #fig.tight_layout() if os.name == 'nt': plt.show() elif os.name == 'posix': plt.savefig("Company"+str(numCompany)+decisionListName+".jpg") np.savetxt("Company"+str(numCompany)+decisionListName+'_S.csv',SPlot) np.savetxt("Company"+str(numCompany)+decisionListName+'_gTilde.csv',gTildePlot) np.savetxt("Company"+str(numCompany)+decisionListName+'_g.csv',gPlot) np.savetxt("Company"+str(numCompany)+decisionListName+'_dcostShippingTilde.csv',dcostShippingTildePlot) def outputAllCompanyFunc(fleetAll,startYear,elapsedYear,lastYear,tOpSch,unitDict): currentYear = startYear+elapsedYear if elapsedYear > 0: year = fleetAll['year'][:elapsedYear+1] fig, axes = plt.subplots(3, 6, figsize=(16.0, 9.0)) plt.subplots_adjust(wspace=0.4, hspace=0.6) for numCompany in range(1,4): for ax, keyi in zip(fig.axes, fleetAll[numCompany]['total'].keys()): ax.plot(year,fleetAll[numCompany]['total'][keyi][:elapsedYear+1],label="Company"+str(numCompany)) ax.set_title(keyi) ax.set_xlabel('Year') ax.legend() #ax.ticklabel_format(style="sci", axis="y",scilimits=(0,0)) ax.set_ylabel(unitDict[keyi]) ax.title.set_size(10) ax.xaxis.label.set_size(10) #ax.get_xaxis().get_major_formatter().set_useOffset(False) #ax.get_xaxis().set_major_locator(MaxNLocator(integer=True)) ax.set_xticks(year) ax.yaxis.label.set_size(10) else: fig, axes = plt.subplots(3, 6, figsize=(16.0, 9.0)) plt.subplots_adjust(wspace=0.4, hspace=0.6) for numCompany in range(1,4): for ax, keyi in zip(fig.axes, fleetAll[numCompany]['total'].keys()): ax.scatter(startYear,fleetAll[numCompany]['total'][keyi][0],label="Company"+str(numCompany)) ax.set_title(keyi) ax.set_xlabel('Year') ax.legend() #ax.ticklabel_format(style="sci", axis="y",scilimits=(0,0)) ax.set_ylabel(unitDict[keyi]) ax.title.set_size(10) ax.xaxis.label.set_size(10) #ax.set_xticks(np.array([startYear-1,startYear,startYear+1])) ax.set_xticks(np.array([startYear])) ax.yaxis.label.set_size(10) ''' if os.name == 'nt': plt.show() elif os.name == 'posix': plt.savefig("TotalValues.jpg") for j, listName in enumerate(decisionListNameList,1): valueName = [] outputList = [] for i, keyi in enumerate(fleetAll[j]['total'].keys(),1): valueName.append(keyi) outputList.append(fleetAll[j]['total'][keyi][:elapsedYear+1]) outputData = np.stack(outputList,1) outputDf = pd.DataFrame(data=outputData, index=year, columns=valueName, dtype='float') outputDf.to_csv("Company"+str(j)+'_'+listName+'.csv') ''' ''' figDict = {} for j, listName in enumerate(decisionListNameList,1): for keyFleet in fleetAll[j].keys(): valueName = [] outputList = [] if type(keyFleet) is int: for keyValue in fleetAll[j][keyFleet].keys(): if type(fleetAll[j][keyFleet][keyValue]) is np.ndarray: valueName.append(keyValue) #if keyFleet == 1 and j == 1: # fig, ax = plt.subplots(1, 1, figsize=(12.0, 8.0)) # figDict.setdefault(keyValue,ax) plotArr = np.zeros(lastYear-startYear+1) if fleetAll[j][keyFleet]['delivery'] >= startYear: plotArr[fleetAll[j][keyFleet]['delivery']-startYear:fleetAll[j][keyFleet]['delivery']-startYear+fleetAll[j][keyFleet]['tOp']] = fleetAll[j][keyFleet][keyValue][:fleetAll[j][keyFleet]['tOp']] else: plotArr[:tOpSch-startYear+fleetAll[j][keyFleet]['delivery']] = fleetAll[j][keyFleet][keyValue][startYear-fleetAll[j][keyFleet]['delivery']:fleetAll[j][keyFleet]['tOp']] outputList.append(plotArr) #figDict[keyValue].plot(year,plotArr,label="Fleet"+str(keyFleet)) #figDict[keyValue].set_title(keyValue) #figDict[keyValue].set_xlabel('Year') #figDict[keyValue].legend() #figDict[keyValue].ticklabel_format(style="sci", axis="y",scilimits=(0,0)) #figDict[keyValue].set_ylabel(unitDict[keyValue]) #if j == len(decisionListNameList) and keyFleet == len(list(fleetAll[j].keys()))-1 and os.name == 'nt': # plt.show() #elif j == len(decisionListNameList) and keyFleet == len(list(fleetAll[j].keys()))-1 and os.name == 'posix': # plt.savefig(str(keyValue)+".jpg") if os.name == 'posix': outputData = np.stack(outputList,1) outputDf = pd.DataFrame(data=outputData, index=year, columns=valueName, dtype='float') outputDf.to_csv("Company"+str(j)+'_'+listName+'_'+'Fleet'+str(keyFleet)+'.csv') ''' return fig def outputAllCompany2Func(fleetAll,valueDict,startYear,elapsedYear,keyi,unitDict,figWidth,figHeight): plt.rcParams.update({'figure.max_open_warning': 0}) currentYear = startYear+elapsedYear #fig, ax = plt.subplots(1, 1, figsize=(figWidth, figHeight)) fig = Figure(figsize=(figWidth, figHeight)) ax = fig.add_subplot(1,1,1) #plt.subplots_adjust(wspace=0.4, hspace=0.6) ticArr = np.array([2020,2025,2030,2035,2040,2045,2050]) if elapsedYear > 0: year = fleetAll['year'][:elapsedYear+1] for numCompany in range(1,4): if numCompany == 1: color = 'tomato' elif numCompany == 2: color = 'gold' elif numCompany == 3: color = 'royalblue' ax.plot(year,fleetAll[numCompany]['total'][keyi][:elapsedYear+1],color=color, marker=".",label="Company"+str(numCompany)) ax.set_title(keyi) ax.set_xlabel('Year') ax.ticklabel_format(style="sci", axis="y",scilimits=(0,0)) ax.set_ylabel(unitDict[keyi]) #ax.title.set_size(10) #ax.xaxis.label.set_size(10) #ax.get_xaxis().get_major_formatter().set_useOffset(False) #ax.get_xaxis().set_major_locator(MaxNLocator(integer=True)) ax.set_xticks(ticArr) #ax.yaxis.label.set_size(10) else: for numCompany in range(1,4): if numCompany == 1: color = 'tomato' elif numCompany == 2: color = 'gold' elif numCompany == 3: color = 'royalblue' ax.scatter(startYear,fleetAll[numCompany]['total'][keyi][0],color=color,label="Company"+str(numCompany)) ax.set_title(keyi) ax.set_xlabel('Year') ax.ticklabel_format(style="sci", axis="y",scilimits=(0,0)) ax.set_ylabel(unitDict[keyi]) #ax.title.set_size(10) #ax.xaxis.label.set_size(10) #ax.set_xticks(np.array([startYear-1,startYear,startYear+1])) ax.set_xticks(np.array([startYear])) #ax.yaxis.label.set_size(10) if keyi == 'g': IMOgoal = np.full(ticArr.shape,valueDict['IMOgoal']/3) color = 'olivedrab' ax.plot(ticArr,IMOgoal,color=color, marker=".",label="IMO goal") y_min, y_max = ax.get_ylim() ax.set_ylim(0, y_max) ax.legend() return fig def outputAllCompanyTotalFunc(fleetAll,valueDict,startYear,elapsedYear,keyi,unitDict,figWidth,figHeight): plt.rcParams.update({'figure.max_open_warning': 0}) currentYear = startYear+elapsedYear #fig, ax = plt.subplots(1, 1, figsize=(figWidth, figHeight)) fig = Figure(figsize=(figWidth, figHeight)) ax = fig.add_subplot(1,1,1) #plt.subplots_adjust(wspace=0.4, hspace=0.6) ticArr =
np.array([2020,2025,2030,2035,2040,2045,2050])
numpy.array
import math import random import numpy # ALERT! number of human / non-human feature vectors must be the same! class NeuralNetwork: def __init__(self, human_feature_vectors, nonhuman_feature_vectors, hidden_layer_neurons): self.epochs = 22 self.learning_rate = 0.1 self.human_feature_vectors = human_feature_vectors print('human feature vectors dimensions: ' + str(len(self.human_feature_vectors)) + ' x ' + str(len(self.human_feature_vectors[0]))) self.nonhuman_feature_vectors = nonhuman_feature_vectors # hidden_layer_neurons should be 200 or 400 self.hidden_layer_neurons = hidden_layer_neurons # hidden layer weights should be 7524 x 200 self.hidden_layer_weights = numpy.array(self.create_random_matrix(self.hidden_layer_neurons, len(self.human_feature_vectors[0]))) # hidden layer bias should be 1 x 200 self.hidden_layer_bias = numpy.array([[-1.0] * self.hidden_layer_neurons] * 1) # output layer weights should be 200 x 1 self.output_layer_weights = self.create_random_matrix(1, self.hidden_layer_neurons) self.output_layer_bias = [[-1.0]] # dummy value for hidden_layer_output self.hidden_layer_output = numpy.array([0.0]) # dummy value for predicted output self.predicted_output = numpy.array([0.0]) # FIXME dummy value for output layer delta - needs to be 1 x 10 self.output_layer_delta =
numpy.array([0.0])
numpy.array
# coding: utf-8 # pylint: disable=R0914 """tests aero cards""" import os from collections import defaultdict import unittest from io import StringIO from typing import Tuple, Optional, Any import numpy as np from cpylog import SimpleLogger import pyNastran from pyNastran.bdf.bdf import BDF, CORD2R, BDFCard, SET1, read_bdf from pyNastran.bdf.test.test_bdf import run_bdf from pyNastran.bdf.cards.aero.aero import ( AEFACT, AELIST, AEPARM, CAERO1, CAERO2, CAERO3, CAERO4, #CAERO5, PAERO1, PAERO2, PAERO4, #PAERO3, PAERO5, AESURF, AESURFS, AELINK, AECOMP, SPLINE1, SPLINE2, #, SPLINE3, SPLINE4, SPLINE5 build_caero_paneling ) from pyNastran.bdf.cards.aero.dynamic_loads import AERO, FLFACT, FLUTTER, GUST, MKAERO1, MKAERO2 from pyNastran.bdf.cards.aero.static_loads import AESTAT, AEROS, CSSCHD, TRIM, TRIM2, DIVERG from pyNastran.bdf.cards.test.utils import save_load_deck IS_MATPLOTLIB = False if IS_MATPLOTLIB: import matplotlib.pyplot as plt ROOTPATH = pyNastran.__path__[0] MODEL_PATH = os.path.join(ROOTPATH, '..', 'models') #test_path = os.path.join(ROOTPATH, 'bdf', 'cards', 'test') COMMENT_BAD = 'this is a bad comment' COMMENT_GOOD = 'this is a good comment\n' class TestAero(unittest.TestCase): """ The Aero cards are: * AEFACT * AELINK * AELIST * AEPARM * AESTAT * AESURF / AESURFS * AERO / AEROS * CSSCHD * CAERO1 / CAERO2 / CAERO3 / CAERO4 / CAERO5 * FLFACT * FLUTTER * GUST * MKAERO1 / MKAERO2 * PAERO1 / PAERO2 / PAERO3 * SPLINE1 / SPLINE2 / SPLINE4 / SPLINE5 """ def test_aestat_1(self): log = SimpleLogger(level='warning') model = BDF(log=log) lines = ['AESTAT 502 PITCH'] card = model._process_card(lines) card = BDFCard(card) size = 8 card = AESTAT.add_card(card) card.write_card(size, 'dummy') card.raw_fields() def test_aecomp_1(self): """checks the AECOMP card""" #sid = 10 #aesid = 0 #lalpha = None #lmach = None #lschd = None #sid = 5 #aesid = 50 #lalpha = 12 #lmach = 15 name = 'WING' list_type = 'AELIST' # or SET1, CAEROx aelist_ids = [75, 76] card = ['AECOMP', name, list_type] + aelist_ids bdf_card = BDFCard(card, has_none=True) aecomp1 = AECOMP.add_card(bdf_card, comment='aecomp card') aecomp1.validate() aecomp1.write_card() #label = 'ELEV' #cid1 = 0 #alid1 = 37 #aesurf = AESURF(aesid, label, cid1, alid1) #aefact_sid = alid1 #Di = [0., 0.5, 1.] #aefact_elev = AEFACT(aefact_sid, Di) #aefact_sid = lalpha #Di = [0., 5., 10.] #aefact_alpha = AEFACT(aefact_sid, Di) #aefact_sid = lmach #Di = [0., 0.7, 0.8] #aefact_mach = AEFACT(aefact_sid, Di) #aefact_sid = lschd #Di = [0., 15., 30., 45.] #aefact_delta = AEFACT(aefact_sid, Di) log = SimpleLogger(level='warning') model = BDF(log=log) data = ['AELIST', 75, 1001, 'THRU', 1075, 1101, 'THRU', 1109, 1201, 1202] model.add_card(data, data[0], COMMENT_BAD, is_list=True) data = ['AELIST', 76, 2000, 'THRU', 2010] model.add_card(data, data[0], COMMENT_BAD, is_list=True) #model.add_aesurf(aesurf) #model.add_aefact(aefact_elev) #model.add_aefact(aefact_alpha) #model.add_aefact(aefact_mach) #model.add_aefact(aefact_delta) aecomp1.safe_cross_reference(model) aecomp1.uncross_reference() aecomp1.cross_reference(model) aecomp1.write_card() aecomp1.uncross_reference() aecomp1.write_card() model.validate() save_load_deck(model) #----------- aecomp2 = AECOMP(name, list_type, aelist_ids, comment='cssch card') aecomp2.validate() aecomp2.write_card() list_type = 'INVALID' aecomp3 = AECOMP(name, list_type, aelist_ids, comment='cssch card') with self.assertRaises(RuntimeError): aecomp3.validate() name = 'MYCOMP' list_type = 'AELIST' lists = 10 model.add_aecomp(name, list_type, lists) lists = 42.0 with self.assertRaises(TypeError): AECOMP(name, list_type, lists) def test_aefact_1(self): """checks the AEFACT card""" data = ['AEFACT', 97, .3, 0.7, 1.0] log = SimpleLogger(level='warning') model = BDF(log=log) model.add_card(data, data[0], COMMENT_BAD, is_list=True) data = ['AEFACT', 97, .3, 0.7, 1.0] model.add_card(data, data[0], COMMENT_BAD, is_list=True) data = ['AEFACT', '98', '.3', '0.7', '1.0'] model.add_card(data, data[0], COMMENT_GOOD, is_list=True) msg = '$this is a bad comment\nAEFACT 97 .3 .7 1.\n' aefact97 = model.aefacts[97] aefact98 = model.aefacts[98] self.assertTrue(all(aefact97.fractions == [.3, .7, 1.0])) self.assertTrue(all(aefact98.fractions == [.3, .7, 1.0])) out = aefact97.write_card(8, None) self.assertEqual(msg, out) msg = '$this is a good comment\nAEFACT 98 .3 .7 1.\n' out = aefact98.write_card(8, None) self.assertEqual(msg, out) #data = ['AEFACT', 99, .3, 0.7, 1.0, None, 'cat'] #with self.assertRaises(SyntaxError): #model.add_card(data, data[0], comment_good, is_list=True) #data = ['AEFACT', 100, .3, 0.7, 1.0, 'cat'] #with self.assertRaises(SyntaxError): #model.add_card(data, data[0], comment_good, is_list=True) #data = ['AEFACT', 101, .3, 0.7, 1.0, 2] #with self.assertRaises(SyntaxError): #model.add_card(data, data[0], comment_good, is_list=True) fractions = [1., 2., 3.] aefact = AEFACT(200, fractions, comment='') aefact.validate() aefact.write_card() #model = BDF() #aefact.cross_reference(model) #aefact.write_card() #aefact.uncross_reference() #aefact.write_card() def test_aelink_1(self): log = SimpleLogger(level='warning') model = BDF(log=log) idi = 10 label = 'CS' independent_labels = ['A', 'B', 'C'] linking_coefficients = [1.0, 2.0] aelink = AELINK(idi, label, independent_labels, linking_coefficients, comment='') assert aelink.aelink_id == idi with self.assertRaises(RuntimeError): aelink.validate() str(aelink) aelink.write_card() card = ['AELINK', idi, label, independent_labels[0], linking_coefficients[0], independent_labels[1], linking_coefficients[1], independent_labels[2]] with self.assertRaises(AssertionError): model.add_card(card, 'AELINK') card = ['AELINK', idi, label, independent_labels[0], linking_coefficients[0], independent_labels[1], linking_coefficients[1]] model.add_card(card, 'AELINK', comment='cat') #print(model.aelinks[idi]) assert model.aelinks[idi][0].comment == '$cat\n', 'comment=%r' % str(model.aelinks[idi][0].comment) #------------------------------- idi = 11 label = 'LABEL' independent_labels = ['pig', 'frog', 'dog'] linking_coefficients = [] aelink2 = model.add_aelink(idi, label, independent_labels, linking_coefficients) with self.assertRaises(RuntimeError): model.validate() aelink2.linking_coefficients = [1.0, 2.0, 3.0] assert aelink2.linking_coefficients == [1., 2., 3.] #------------------------------- idi = 'ALWAYS' label = 'LABEL' independent_labels = ['pig', 'frog', 'dog'] linking_coefficients = [1.0, 2.0, 3.0] model.add_aelink(idi, label, independent_labels, linking_coefficients) model.validate() model.cross_reference() def test_aelink_2(self): log = SimpleLogger(level='warning') model = BDF(log=log) idi = 31 label = 'LABEL' independent_labels = ['pig', 'frog', 'dog'] linking_coefficients = [1.0, 2.0, 3.0] model.add_aelink(idi, label, independent_labels, linking_coefficients) save_load_deck(model, run_renumber=False) def test_aelist_1(self): """checks the AELIST card""" log = SimpleLogger(level='warning') model = BDF(log=log) data = ['AELIST', 75, 1001, 'THRU', 1075, 1101, 'THRU', 1109, 1201, 1202] model.add_card(data, data[0], COMMENT_BAD, is_list=True) elements = list(range(1001, 1076)) + list(range(1101, 1110)) + [1201, 1202] aelist = AELIST(74, elements) aelist.validate() aelist.write_card() aelist75 = model.aelists[75] #print(aelist.elements) #print(elements) self.assertTrue(elements == aelist75.elements) elements = list(range(1001, 1076)) + list(range(1101, 1110)) + [1108, 1202] data = ['AELIST', 76, 1001, 'THRU', 1075, 1101, 'THRU', 1109, 1108, 1202] model.add_card(data, data[0], COMMENT_BAD, is_list=True) aelist76 = model.aelists[76] #print(aelist76 .elements) #print(elements) self.assertFalse(elements == aelist76.elements) elements = list(set(elements)) elements.sort() self.assertTrue(elements == aelist76.elements) elements = [1000, 1000, 1000, 2000, 1000, 2000] aelist = AELIST(75, elements) aelist.clean_ids() str(aelist.write_card()) elements = 42 AELIST(76, elements) elements = 42.0 with self.assertRaises(TypeError): AELIST(77, elements) def test_aeparm_1(self): """checks the AEPARM card""" aeparm_id = 100 aeparm = AEPARM.add_card(BDFCard(['AEPARM', aeparm_id, 'THRUST', 'lb']), comment='aeparm_comment') model = BDF(debug=False) aeparm = model.add_aeparm(aeparm_id, 'THRUST', 'lb', comment='aeparm_comment') assert aeparm.aeparm_id == aeparm_id aeparm.validate() aeparm.cross_reference(None) aeparm.uncross_reference() aeparm.safe_cross_reference(None) aeparm.write_card() save_load_deck(model) # def test_aestat_1(self): # def test_aesurf_1(self): def test_aesurfs_1(self): """checks the AESURFS cards""" aesid = 6001 label = 'ELEV' list1 = 6002 list2 = 6003 card = ['AESURFS', aesid, label, None, list1, None, list2] bdf_card = BDFCard(card, has_none=True) log = SimpleLogger(level='warning') model = BDF(log=log) model.add_card(bdf_card, 'AESURFS', comment='aesurfs', is_list=True, has_none=True) aesurfs = AESURFS(aesid, label, list1, list2, comment='aesurfs') str(aesurfs) aesurfs.write_card() model.add_set1(6002, [1, 2, 3]) model.add_grid(1, [0., 0., 0.]) model.add_grid(2, [0., 0., 0.]) model.add_grid(3, [0., 0., 0.]) model.validate() save_load_deck(model) def test_aero_1(self): """checks the AERO card""" acsid = 0. velocity = None cref = 1.0 rho_ref = 1.0 aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0, sym_xy=0, comment='aero card') with self.assertRaises(TypeError): aero.validate() assert aero.is_symmetric_xy is False assert aero.is_symmetric_xz is False assert aero.is_anti_symmetric_xy is False assert aero.is_anti_symmetric_xz is False #aero.set_ground_effect(True) #assert aero.is_symmetric_xy is False #assert aero.is_symmetric_xz is False #assert aero.is_anti_symmetric_xy is True #assert aero.is_anti_symmetric_xz is False #aero.set_ground_effect(False) #assert aero.is_symmetric_xy is False #assert aero.is_symmetric_xz is False #assert aero.is_anti_symmetric_xy is False #assert aero.is_anti_symmetric_xz is False aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=1, sym_xy=1, comment='aero card') assert aero.is_symmetric_xy is True assert aero.is_symmetric_xz is True assert aero.is_anti_symmetric_xy is False assert aero.is_anti_symmetric_xz is False aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=-1, sym_xy=-1, comment='aero card') assert aero.is_symmetric_xy is False assert aero.is_symmetric_xz is False assert aero.is_anti_symmetric_xy is True assert aero.is_anti_symmetric_xz is True aero.set_ground_effect(True) def test_aero_2(self): """checks the AERO card""" acsid = 0 velocity = None cref = 1.0 rho_ref = 1.0 aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0., sym_xy=0, comment='aero card') with self.assertRaises(TypeError): aero.validate() aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0, sym_xy=0., comment='aero card') with self.assertRaises(TypeError): aero.validate() aero = AERO(velocity, cref, rho_ref, acsid=acsid, sym_xz=0, sym_xy=0., comment='aero card') with self.assertRaises(TypeError): aero.validate() aero = AERO(velocity, cref, rho_ref, acsid=None, sym_xz=0, sym_xy=0, comment='aero card') aero.validate() aero.write_card() aero.raw_fields() model = BDF() aero.cross_reference(model) aero.write_card() aero.raw_fields() aero.uncross_reference() aero.write_card() aero.raw_fields() def test_aeros_1(self): """checks the AEROS card""" #acsid = 0. #velocity = None cref = 1.0 bref = 2.0 sref = 100. acsid = 0 rcsid = 0 aeros = AEROS.add_card(BDFCard(['AERO', acsid, rcsid, cref, bref, sref])) aeros = AEROS(cref, bref, sref, acsid, rcsid, sym_xz=0, sym_xy=0, comment='aeros card') aeros.validate() aeros.write_card() aeros.raw_fields() acsid = None rcsid = None sym_xz = None sym_xy = None aeros = AEROS(cref, bref, sref, acsid, rcsid, sym_xz=sym_xz, sym_xy=sym_xy, comment='aeros card') aeros.validate() aeros.write_card() aeros.raw_fields() cref = 1 bref = 2 sref = 3 acsid = 42. rcsid = 43. sym_xz = 44. sym_xy = 45. aeros = AEROS(cref, bref, sref, acsid, rcsid, sym_xz=sym_xz, sym_xy=sym_xy) with self.assertRaises(TypeError): aeros.validate() def test_caero1_paneling_nspan_nchord_1(self): """checks the CAERO1/PAERO1/AEFACT card""" log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. model.add_paero1(pid, caero_body_ids=None, comment='') eid = 10000000 caero = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=2, lchord=0, comment='') npoints, nelements = caero.get_npanel_points_elements() npoints_expected = 12 # 4*3 nelements_expected = 6 # 2*3 x, y = caero.xy chord_expected = np.array([0., 0.5, 1.]) span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) assert np.allclose(x, chord_expected) assert np.allclose(y, span_expected) assert npoints_expected == npoints assert nelements_expected == nelements def test_caero1_paneling_nspan_lchord(self): """checks the CAERO1/PAERO1/AEFACT card""" fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') pid = 1 igroup = 1 p1 = [0., 0., 0.] p4 = [1., 15., 0.] x12 = 1. x43 = 1. model.add_paero1(pid, caero_body_ids=None, comment='') eid = 10000000 chord_aefact_id = 10000 model.add_aefact(chord_aefact_id, [0., 0.5, 1.0]) caero = model.add_caero1(eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=3, lspan=0, nchord=0, lchord=chord_aefact_id, comment='') model.cross_reference() npoints, nelements = caero.get_npanel_points_elements() npoints_expected = 12 # 4*3 nelements_expected = 6 # 2*3 assert npoints_expected == npoints assert nelements_expected == nelements del model.caeros[eid] del model.aefacts[chord_aefact_id] points, elements = caero.panel_points_elements() x, y = caero.xy chord_expected = np.array([0., 0.5, 1.]) span_expected = np.array([0., 1 / 3, 2 / 3, 1.]) assert np.allclose(x, chord_expected) assert np.allclose(y, span_expected) if IS_MATPLOTLIB: caero.plot(ax) fig.show() def test_caero1_paneling_transpose(self): fig, ax = _setup_aero_plot() log = SimpleLogger(level='warning') model = BDF(log=log) cref = 1.0 bref = 1.0 sref = 1.0 model.add_aeros(cref, bref, sref, acsid=0, rcsid=0, sym_xz=0, sym_xy=0, comment='') #['CAERO1', '2000', '2000', '0', '15', '10', '1', '0', None, '7.314386', '0.', '-0.18288', '1.463854', '8.222755', '1.573341', '-0.18288', '0.365963'] #card_lines = [ #'CAERO1,2000,2000,0,15,10,1,0,1', #'+,7.314386,0.,-0.18288,1.463854,8.222755,1.573341,-0.18288,0.365963', #] #model.add_card(card_lines, 'CAERO1', comment='', ifile=None, is_list=False, has_none=True) eid = 2000 #caero = model.caeros[eid] #print(caero.get_stats()) pid = 1 igroup = 1 p1 = [7.3, 0., 0.] p4 = [8.2, 1.6, 0.] x12 = 1.4 x43 = 0.3 model.add_paero1(pid, caero_body_ids=None, comment='') caero = model.add_caero1( eid, pid, igroup, p1, x12, p4, x43, cp=0, nspan=5, lspan=0, nchord=2, lchord=0, comment='') caero.validate() x, y = caero.xy x_expected = np.array([0., 0.5, 1.]) y_expected = np.array([0., 0.2, 0.4, 0.6, 0.8, 1.]) assert np.allclose(x, x_expected) assert np.allclose(y, y_expected) #print(caero.get_stats()) caero.cross_reference(model) all_control_surface_name, caero_control_surfaces, out = build_caero_paneling(model) box_id_to_caero_element_map_expected = { 2000: np.array([0, 3, 4, 1]), 2001: np.array([1, 4, 5, 2]), 2002: np.array([3, 6, 7, 4]), 2003: np.array([4, 7, 8, 5]), 2004: np.array([ 6, 9, 10, 7]), 2005: np.array([ 7, 10, 11, 8]), 2006: np.array([ 9, 12, 13, 10]), 2007:
np.array([10, 13, 14, 11])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- """ # CODE NAME HERE # CODE DESCRIPTION HERE Created on 2019-05-13 at 11:28 @author: cook """ import numpy as np import warnings import os from scipy.ndimage import filters from apero import core from apero.core import constants from apero import lang from apero.core import math as mp from apero.core.core import drs_log from apero.core.core import drs_file from apero.core.core import drs_database from apero.io import drs_fits from apero.io import drs_data # ============================================================================= # Define variables # ============================================================================= __NAME__ = 'science.calib.badpix.py' __INSTRUMENT__ = 'None' # Get constants Constants = constants.load(__INSTRUMENT__) # Get version and author __version__ = Constants['DRS_VERSION'] __author__ = Constants['AUTHORS'] __date__ = Constants['DRS_DATE'] __release__ = Constants['DRS_RELEASE'] # get param dict ParamDict = constants.ParamDict DrsFitsFile = drs_file.DrsFitsFile # Get Logging function WLOG = drs_log.wlog # Get the text types TextEntry = lang.drs_text.TextEntry TextDict = lang.drs_text.TextDict # alias pcheck pcheck = core.pcheck # ============================================================================= # Define functions # ============================================================================= def normalise_median_flat(params, image, method='new', **kwargs): """ Applies a median filter and normalises. Median filter is applied with width "wmed" or p["BADPIX_FLAT_MED_WID"] if wmed is None) and then normalising by the 90th percentile :param params: parameter dictionary, ParamDict containing constants Must contain at least: BADPIX_FLAT_MED_WID: float, the median image in the x dimension over a boxcar of this width BADPIX_NORM_PERCENTILE: float, the percentile to normalise to when normalising and median filtering image log_opt: string, log option, normally the program name :param image: numpy array (2D), the iamge to median filter and normalise :param method: string, "new" or "old" if "new" uses np.nanpercentile else sorts the flattened image and takes the "percentile" (i.e. 90th) pixel value to normalise :param kwargs: keyword arguments :keyword wmed: float or None, if not None defines the median filter width if None uses p["BADPIX_MED_WID", see scipy.ndimage.filters.median_filter "size" for more details :keyword percentile: float or None, if not None degines the percentile to normalise the image at, if None used from p["BADPIX_NORM_PERCENTILE"] :return norm_med_image: numpy array (2D), the median filtered and normalised image :return norm_image: numpy array (2D), the normalised image """ func_name = __NAME__ + '.normalise_median_flat()' # log that we are normalising the flat WLOG(params, '', TextEntry('40-012-00001')) # get used percentile percentile = pcheck(params, 'BADPIX_NORM_PERCENTILE', 'percentile', kwargs, func_name) # wmed: We construct a "simili" flat by taking the running median of the # flag in the x dimension over a boxcar width of wmed (suggested # value of ~7 pix). This assumes that the flux level varies only by # a small amount over wmed pixels and that the badpixels are # isolated enough that the median along that box will be representative # of the flux they should have if they were not bad wmed = pcheck(params, 'BADPIX_FLAT_MED_WID', 'wmed', kwargs, func_name) # create storage for median-filtered flat image image_med = np.zeros_like(image) # loop around x axis for i_it in range(image.shape[1]): # x-spatial filtering and insert filtering into image_med array image_med[i_it, :] = filters.median_filter(image[i_it, :], wmed) if method == 'new': # get the 90th percentile of median image norm = np.nanpercentile(image_med[np.isfinite(image_med)], percentile) else: v = image_med.reshape(np.product(image.shape)) v = np.sort(v) norm = v[int(np.product(image.shape) * percentile/100.0)] # apply to flat_med and flat_ref return image_med/norm, image/norm def locate_bad_pixels(params, fimage, fmed, dimage, **kwargs): """ Locate the bad pixels in the flat image and the dark image :param params: parameter dictionary, ParamDict containing constants Must contain at least: log_opt: string, log option, normally the program name BADPIX_FLAT_MED_WID: float, the median image in the x dimension over a boxcar of this width BADPIX_FLAT_CUT_RATIO: float, the maximum differential pixel cut ratio BADPIX_ILLUM_CUT: float, the illumination cut parameter BADPIX_MAX_HOTPIX: float, the maximum flux in ADU/s to be considered too hot to be used :param fimage: numpy array (2D), the flat normalised image :param fmed: numpy array (2D), the flat median normalised image :param dimage: numpy array (2D), the dark image :param wmed: float or None, if not None defines the median filter width if None uses p["BADPIX_MED_WID", see scipy.ndimage.filters.median_filter "size" for more details :return bad_pix_mask: numpy array (2D), the bad pixel mask image :return badpix_stats: list of floats, the statistics array: Fraction of hot pixels from dark [%] Fraction of bad pixels from flat [%] Fraction of NaN pixels in dark [%] Fraction of NaN pixels in flat [%] Fraction of bad pixels with all criteria [%] """ func_name = __NAME__ + '.locate_bad_pixels()' # log that we are looking for bad pixels WLOG(params, '', TextEntry('40-012-00005')) # ------------------------------------------------------------------------- # wmed: We construct a "simili" flat by taking the running median of the # flag in the x dimension over a boxcar width of wmed (suggested # value of ~7 pix). This assumes that the flux level varies only by # a small amount over wmed pixels and that the badpixels are # isolated enough that the median along that box will be representative # of the flux they should have if they were not bad wmed = pcheck(params, 'BADPIX_FLAT_MED_WID', 'wmed', kwargs, func_name) # maxi differential pixel response relative to the expected value cut_ratio = pcheck(params, 'BADPIX_FLAT_CUT_RATIO', 'cut_ratio', kwargs, func_name) # illumination cut parameter. If we only cut the pixels that # fractionnally deviate by more than a certain amount, we are going # to have lots of bad pixels in unillumnated regions of the array. # We therefore need to set a threshold below which a pixels is # considered unilluminated. First of all, the flat field image is # normalized by its 90th percentile. This sets the brighter orders # to about 1. We then set an illumination threshold below which # only the dark current will be a relevant parameter to decide that # a pixel is "bad" illum_cut = pcheck(params, 'BADPIX_ILLUM_CUT', 'illum_cut', kwargs, func_name) # hotpix. Max flux in ADU/s to be considered too hot to be used max_hotpix = pcheck(params, 'BADPIX_MAX_HOTPIX', 'max_hotpix', kwargs, func_name) # ------------------------------------------------------------------------- # create storage for ratio of flat_ref to flat_med fratio = np.zeros_like(fimage) # create storage for bad dark pixels badpix_dark = np.zeros_like(dimage, dtype=bool) # ------------------------------------------------------------------------- # complain if the flat image and dark image do not have the same dimensions if dimage.shape != fimage.shape: eargs = [fimage.shape, dimage.shape, func_name] WLOG(params, 'error', TextEntry('09-012-00002', args=eargs)) # ------------------------------------------------------------------------- # as there may be a small level of scattered light and thermal # background in the dark we subtract the running median to look # only for isolate hot pixels for i_it in range(fimage.shape[1]): dimage[i_it, :] -= filters.median_filter(dimage[i_it, :], wmed) # work out how much do flat pixels deviate compared to expected value zmask = fmed != 0 fratio[zmask] = fimage[zmask] / fmed[zmask] # catch the warnings with warnings.catch_warnings(record=True) as _: # if illumination is low, then consider pixel valid for this criterion fratio[fmed < illum_cut] = 1 # catch the warnings with warnings.catch_warnings(record=True) as _: # where do pixels deviate too much badpix_flat = (np.abs(fratio - 1)) > cut_ratio # ------------------------------------------------------------------------- # get finite flat pixels valid_flat = np.isfinite(fimage) # ------------------------------------------------------------------------- # get finite dark pixels valid_dark = np.isfinite(dimage) # ------------------------------------------------------------------------- # select pixels that are hot badpix_dark[valid_dark] = dimage[valid_dark] > max_hotpix # ------------------------------------------------------------------------- # construct the bad pixel mask badpix_map = badpix_flat | badpix_dark | ~valid_flat | ~valid_dark # ------------------------------------------------------------------------- # log results badpix_stats = [(np.sum(badpix_dark) / np.array(badpix_dark).size) * 100, (np.sum(badpix_flat) / np.array(badpix_flat).size) * 100, (np.sum(~valid_dark) / np.array(valid_dark).size) * 100, (np.sum(~valid_flat) / np.array(valid_flat).size) * 100, (np.sum(badpix_map) / np.array(badpix_map).size) * 100] WLOG(params, '', TextEntry('40-012-00006', args=badpix_stats)) # ------------------------------------------------------------------------- # return bad pixel map return badpix_map, badpix_stats def locate_bad_pixels_full(params, image, **kwargs): """ Locate the bad pixels identified from the full engineering flat image (location defined from p['BADPIX_FULL_FLAT']) :param p: parameter dictionary, ParamDict containing constants Must contain at least: IC_IMAGE_TYPE: string, the detector type (this step is only for H4RG) LOG_OPT: string, log option, normally the program name BADPIX_FULL_FLAT: string, the full engineering flat filename BADPIX_FULL_THRESHOLD: float, the threshold on the engineering above which the data is good :param image: numpy array (2D), the image to correct (for size only) :return newimage: numpy array (2D), the mask of the bad pixels :return stats: float, the fraction of un-illuminated pixels (percentage) """ func_name = __NAME__ + '.locate_bad_pixels_full()' # log that we are looking for bad pixels WLOG(params, '', TextEntry('40-012-00002')) # get parameters from params/kwargs threshold = pcheck(params, 'BADPIX_FULL_THRESHOLD', 'threshold', kwargs, func_name) rotnum = pcheck(params, 'RAW_TO_PP_ROTATION', 'rotnum', kwargs, func_name) # get full flat mdata = drs_data.load_full_flat_badpix(params, **kwargs) # check if the shape of the image and the full flat match if image.shape != mdata.shape: eargs = [mdata.shape, image.shape, func_name] WLOG(params, 'error', TextEntry('09-012-00001', args=eargs)) # apply threshold mask = np.abs(mp.rot8(mdata, rotnum) - 1) > threshold # ------------------------------------------------------------------------- # log results badpix_stats = (np.sum(mask) / np.array(mask).size) * 100 WLOG(params, '', TextEntry('40-012-00004', args=[badpix_stats])) # return mask return mask, badpix_stats def correction(params, image=None, header=None, return_map=False, **kwargs): """ Corrects "image" for "BADPIX" using calibDB file (header must contain value of p['ACQTIME_KEY'] as a keyword) - sets all bad pixels to zeros :param p: parameter dictionary, ParamDict containing constants Must contain at least: calibDB: dictionary, the calibration database dictionary (if not in "p" we construct it and need "max_time_unix" max_time_unix: float, the unix time to use as the time of reference (used only if calibDB is not defined) log_opt: string, log option, normally the program name DRS_CALIB_DB: string, the directory that the calibration files should be saved to/read from :param image: numpy array (2D), the image :param header: dictionary, the header dictionary created by spirouFITS.ReadImage :param return_map: bool, if True returns bad pixel map else returns corrected image :returns: numpy array (2D), the corrected image where all bad pixels are set to zeros or the bad pixel map (if return_map = True) """ func_name = __NAME__ + '.correct_for_baxpix()' # check for filename in kwargs filename = kwargs.get('filename', None) # deal with no header if header is None: WLOG(params, 'error', TextEntry('00-012-00002', args=[func_name])) # deal with no image (when return map is False) if (not return_map) and (image is None): WLOG(params, 'error', TextEntry('00-012-00003', args=[func_name])) # get loco file instance badinst = core.get_file_definition('BADPIX', params['INSTRUMENT'], kind='red') # get calibration key badkey = badinst.get_dbkey(func=func_name) # ------------------------------------------------------------------------- # get filename if filename is not None: badpixfile = filename else: # get calibDB cdb = drs_database.get_full_database(params, 'calibration') # get filename col filecol = cdb.file_col # get the badpix entries badpixentries = drs_database.get_key_from_db(params, badkey, cdb, header, n_ent=1) # get badpix filename badpixfilename = badpixentries[filecol][0] badpixfile = os.path.join(params['DRS_CALIB_DB'], badpixfilename) # ------------------------------------------------------------------------- # get bad pixel file badpiximage = drs_fits.readfits(params, badpixfile) # create mask from badpixmask mask = np.array(badpiximage, dtype=bool) # ------------------------------------------------------------------------- # if return map just return the bad pixel map if return_map: return badpixfile, mask # else put NaNs into the image else: # log that we are setting background pixels to NaN WLOG(params, '', TextEntry('40-012-00008', args=[badpixfile])) # correct image (set bad pixels to zero) corrected_image =
np.array(image)
numpy.array
#support_study.py #Results of nnet-survival and baseline models (Cox prop. hazards model, cox-nnet) on #SUPPORT study data (publicly available courtesy of Vanderbilt Dep't of Biostatistics) #Prospective study survival data on 9105 hospitalized patients #Data: http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/support2csv.zip #Description: http://biostat.mc.vanderbilt.edu/wiki/Main/SupportDesc #The data have been cleaned and missing values have been imputed. #Author: <NAME>, Stanford University, <EMAIL> #Tested with Python version 3.6, Keras version 2 (using TensorFlow backend) running_time_test = 0 if running_time_test: #disable GPU, set Keras to use only 1 CPU core import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import tensorflow as tf import keras.backend as K config = tf.ConfigProto(intra_op_parallelism_threads=1,\ inter_op_parallelism_threads=1, allow_soft_placement=True,\ device_count = {'CPU' : 1, 'GPU' : 0}) session = tf.Session(config=config) K.set_session(session) else: import keras.backend as K from __future__ import print_function import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib from keras.preprocessing import sequence from keras.models import Sequential, Model from keras.layers import Input, Dense, Dropout, Activation, LSTM, GRU, Embedding, Concatenate, Conv1D, GlobalMaxPooling1D, MaxPooling1D, GlobalAveragePooling1D, BatchNormalization, TimeDistributed from keras import optimizers, layers, regularizers from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.models import load_model import math from lifelines import KaplanMeierFitter from lifelines import CoxPHFitter from lifelines.utils import concordance_index from sklearn.preprocessing import StandardScaler from scipy import stats import time import nnet_survival import other_code.cox_nnet as cox_nnet #for cox-nnet baseline model CB_color_cycle = ['#377eb8', '#ff7f00', '#4daf4a', '#f781bf', '#a65628', '#984ea3', '#999999', '#e41a1c', '#dede00'] def cox_basehaz(lp, time, dead): #Find baseline hazard for Cox model using Breslow method #Adapted from https://stats.stackexchange.com/questions/46532/cox-baseline-hazard #Inputs are Numpy arrays. #lp=Cox model linear predictor values #time=vector of failure/censoring times #dead=boolean, did patient fail/die # #Returns: #1: unique failure times #2: baseline hazard function at these times time=pd.Series(time) dead=pd.Series(dead) prediction = np.expand_dims(np.exp(lp),1) failed_times = time.loc[dead==1] y = failed_times.value_counts().sort_index().index.values #ordered distinct event times d = failed_times.value_counts().sort_index().values #number of events h0 = np.zeros(len(y)) for l in range(len(y)): h0[l] = d[l] / np.sum(prediction[time >= y[l]]) H0 = np.cumsum(h0) #surv_baseline = np.exp(-H0) return (y, H0) def cox_pred_surv(lp, H0): #Predicted survival curves from Cox model #Inputs are Numpy arrays. #lp=Cox model linear predictor values #H0=basline hazard function # #Returns: predicted survival rate at each follow-up time prediction = np.expand_dims(np.exp(lp),1) return np.exp(-np.matmul(prediction, np.expand_dims(H0,0))) def calib_plot(fu_time, n_bins, pred_surv, time, dead, color, label, error_bars=0,alpha=1., markersize=1., markertype='o'): cuts = np.concatenate((np.array([-1e6]),np.percentile(pred_surv, np.arange(100/n_bins,100,100/n_bins)),np.array([1e6]))) bin = pd.cut(pred_surv,cuts,labels=False) kmf = KaplanMeierFitter() est = [] ci_upper = [] ci_lower = [] mean_pred_surv = [] for which_bin in range(max(bin)+1): kmf.fit(time[bin==which_bin], event_observed=dead[bin==which_bin]) est.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.survival_function_.KM_estimate)) ci_upper.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.confidence_interval_.loc[:,'KM_estimate_upper_0.95'])) ci_lower.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.confidence_interval_.loc[:,'KM_estimate_lower_0.95'])) mean_pred_surv.append(np.mean(pred_surv[bin==which_bin])) est = np.array(est) ci_upper = np.array(ci_upper) ci_lower = np.array(ci_lower) if error_bars: plt.errorbar(mean_pred_surv, est, yerr = np.transpose(np.column_stack((est-ci_lower,ci_upper-est))), fmt='o',c=color,label=label) else: plt.plot(mean_pred_surv, est, markertype, c=color,label=label, alpha=alpha, markersize=markersize) return (mean_pred_surv, est) data_support = pd.read_csv('data/support_parsed.csv') train_prop = 0.7 #proportion of patients to place in training set np.random.seed(0) train_indices = np.random.choice(len(data_support),int(train_prop*len(data_support)),replace=False) test_indices = np.setdiff1d(np.arange(len(data_support)), train_indices) data_train = data_support.iloc[train_indices] data_test = data_support.iloc[test_indices] x_train = data_train.drop(["time", "dead"], axis=1).as_matrix() x_test = data_test.drop(["time", "dead"], axis=1).as_matrix() scaler = StandardScaler().fit(x_train) x_train = scaler.transform(x_train) #Standardize each predictor variable x_test = scaler.transform(x_test) ######################################## #Standard Cox proportional hazards model from lifelines import CoxPHFitter cph = CoxPHFitter() cph.fit(data_train, duration_col='time', event_col='dead') #cph.print_summary() #Cox model discrimination train set prediction = cph.predict_partial_hazard(data_train) print(concordance_index(data_train.time,-prediction,data_train.dead)) #0.735 #Cox model discrimination test set prediction = cph.predict_partial_hazard(data_test) print(concordance_index(data_test.time,-prediction,data_test.dead)) #0.735 ################################ #Nnet-survival / Our model (flexible version to #allow non-proportional hazards) halflife=365.*1.4 breaks=-np.log(1-np.arange(0.0,0.96,0.05))*halflife/np.log(2) #breaks=-np.log(1-np.arange(0.0,1,0.099))*halflife/np.log(2) n_intervals=len(breaks)-1 timegap = breaks[1:] - breaks[:-1] y_train = nnet_survival.make_surv_array(data_train.time.values,data_train.dead.values,breaks) y_test = nnet_survival.make_surv_array(data_test.time.values,data_test.dead.values,breaks) hidden_layers_sizes = 7 #Using single hidden layer, with this many neurons ############################################################## #Our model cross-validation to pick L2 regularization strength from sklearn.model_selection import KFold n_folds = 10 kf=KFold(n_splits=n_folds, shuffle=True, random_state=0) early_stopping = EarlyStopping(monitor='loss', patience=20) #l2_array = np.concatenate(([0.],np.power(10.,np.arange(-6,-2)))) l2_array = np.power(10.,np.arange(-4,1)) grid_search_train = np.zeros((len(l2_array),n_folds)) grid_search_test = np.zeros((len(l2_array),n_folds)) for i in range(len(l2_array)): print(str(i+1) + '/' + str(len(l2_array))) j=0 cv_folds = kf.split(x_train) for traincv, testcv in cv_folds: x_train_cv = x_train[traincv] y_train_cv = y_train[traincv] x_test_cv = x_train[testcv] y_test_cv = y_train[testcv] model = Sequential() #model.add(Dense(n_intervals,input_dim=x_train.shape[1],bias_initializer='zeros',kernel_regularizer=regularizers.l2(l2_array[i]))) model.add(Dense(hidden_layers_sizes, input_dim=x_train.shape[1],bias_initializer='zeros', activation='relu', kernel_regularizer=regularizers.l2(l2_array[i]))) model.add(Dense(n_intervals)) model.add(Activation('sigmoid')) model.compile(loss=nnet_survival.surv_likelihood(n_intervals), optimizer=optimizers.RMSprop()) #lr=0.0001)) history=model.fit(x_train_cv, y_train_cv, batch_size=256, epochs=100000, callbacks=[early_stopping],verbose=0) grid_search_train[i,j] = model.evaluate(x_train_cv,y_train_cv,verbose=0) grid_search_test[i,j] = model.evaluate(x_test_cv,y_test_cv,verbose=0) j=j+1 print(np.average(grid_search_train,axis=1)) print(np.average(grid_search_test,axis=1)) l2_final = l2_array[np.argmax(-np.average(grid_search_test,axis=1))] ############################ #Our model: train final model l2_final=0.1 from numpy.random import seed seed(1) from tensorflow import set_random_seed set_random_seed(2) model = Sequential() model.add(Dense(hidden_layers_sizes, input_dim=x_train.shape[1],bias_initializer='zeros', kernel_regularizer=regularizers.l2(l2_final))) model.add(Activation('relu')) model.add(Dense(n_intervals)) model.add(Activation('sigmoid')) model.compile(loss=nnet_survival.surv_likelihood(n_intervals), optimizer=optimizers.RMSprop()) early_stopping = EarlyStopping(monitor='loss', patience=20) history=model.fit(x_train, y_train, batch_size=256, epochs=100000, callbacks=[early_stopping],verbose=0) #Discrimination performance y_pred=model.predict_proba(x_train,verbose=0) oneyr_surv=np.cumprod(y_pred[:,0:np.nonzero(breaks>365)[0][0]], axis=1)[:,-1] print(concordance_index(data_train.time,oneyr_surv,data_train.dead)) #0.723 y_pred=model.predict_proba(x_test,verbose=0) oneyr_surv=np.cumprod(y_pred[:,0:np.nonzero(breaks>365)[0][0]], axis=1)[:,-1] print(concordance_index(data_test.time,oneyr_surv,data_test.dead)) #0.723 ######### #cox-nnet #https://github.com/traversc/cox-nnet/ #cross validation on training set to pick L2 regularization strength model_params = dict(node_map = None, input_split = None) search_params = dict(method = "nesterov", learning_rate=0.01, momentum=0.9, max_iter=10000, stop_threshold=0.995, patience=1000, patience_incr=2, rand_seed = 123, eval_step=23, lr_decay = 0.9, lr_growth = 1.0) cv_params = dict(L2_range = np.arange(-6,2.1)) likelihoods, L2_reg_params, mean_cvpl = cox_nnet.L2CVProfile(x_train,data_train.time.as_matrix(),data_train.dead.as_matrix(), model_params, search_params, cv_params, verbose=False) L2_reg = L2_reg_params[np.argmax(mean_cvpl)] #Best L2_reg is -5 #train final model L2_reg = -5. model_params = dict(node_map = None, input_split = None, L2_reg=np.exp(L2_reg)) cox_nnet_model, cox_nnet_cost_iter = cox_nnet.trainCoxMlp(x_train, data_train.time.as_matrix(),data_train.dead.as_matrix(), model_params, search_params, verbose=False) cox_nnet_theta_train = cox_nnet_model.predictNewData(x_train) cox_nnet_theta_test = cox_nnet_model.predictNewData(x_test) #discrimination on train, test sets print(concordance_index(data_train.time,-cox_nnet_theta_train,data_train.dead)) print(concordance_index(data_test.time,-cox_nnet_theta_test,data_test.dead)) ####################################### #Calibration plot comparing all methods n_bins = 10 my_alpha = 0.7 my_markersize = 5. fu_time_array = np.array([0.5, 1, 3])*365. fu_time_label_array = ['6 months', '1 year', '3 years'] #mse_array = np.zeros((4,len(fu_time_array))) for fu_time_i in range(len(fu_time_array)): fu_time = fu_time_array[fu_time_i] plt.subplot(3, 1, 1+fu_time_i) #plt.figure() plt.plot([0,1], [0,1], ls="--", c=".7") pred_surv = nnet_pred_surv(model.predict_proba(x_test,verbose=0), breaks, fu_time) (pred, actual)=calib_plot(fu_time, n_bins, pred_surv,data_test.time.as_matrix(), data_test.dead.as_matrix(), CB_color_cycle[1],'Nnet-survival', alpha=my_alpha, markersize=my_markersize, markertype='o') #mse_array[0, fu_time_i] = ((pred-actual)**2).mean() times, H0 = cox_basehaz(cox_nnet_theta_train, data_train.time.values, data_train.dead.values) y_pred = cox_pred_surv(cox_nnet_theta_test, H0) pred_surv = [] for i in range(y_pred.shape[0]): pred_surv.append(np.interp(fu_time,times,y_pred[i,:])) pred_surv = np.array(pred_surv) (pred, actual)=calib_plot(fu_time, n_bins, pred_surv, data_test.time.as_matrix(), data_test.dead.as_matrix(), CB_color_cycle[0],'Cox-nnet', alpha=my_alpha, markersize=my_markersize, markertype='^') #mse_array[1, fu_time_i] = ((pred-actual)**2).mean() deepsurv_lp_train = np.genfromtxt('results/deepsurv_train_prediction.txt') deepsurv_lp_test =
np.genfromtxt('results/deepsurv_test_prediction.txt')
numpy.genfromtxt
import os import sys import glob import multiprocessing as mp import numpy as np import matplotlib.pyplot as plt from ctypes import c_float import math import util import util_feature_IO import util_batch import util_geometry import util_meta import util_amira import constants import calc_features_mp def getEmptyStats(): return { "overlapping": 0, "connected": 0 } def processBatch(batchIndex, results, dscFolder, nids): stats = getEmptyStats() for i in range(0, len(nids)): if(i % 50 == 0): print("batch", batchIndex, dscFolder, i, "of", len(nids)) nid = nids[i] filename = os.path.join(dscFolder, "{}_DSC.csv".format(nid)) if(os.path.exists(filename)): dsc =
np.loadtxt(filename, skiprows=1, delimiter=",", usecols=1)
numpy.loadtxt
# -*- coding: iso-8859-1 -*- """ This code plots the scattering limit test of our code. """ ######################## ###Import useful libraries ######################## import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import pdb import pickle deg2rad=np.pi/180. def cm2inch(cm): #function to convert cm to inches; useful for complying with Astrobiology size guidelines return cm/2.54 ######################## ###A=0 ######################## ###z=0 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0_z=0.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians N_wavelengths=np.size(wav_centers) ###NOTE: We assume wavelength structure is the same for all of these (!!!) direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(np.shape(F_net)) F_net_deviation_max=np.zeros(N_wavelengths) F_net_deviation_stddevs=np.zeros(N_wavelengths) F_net_deviation_median=np.zeros(N_wavelengths) for ind in range(0, N_wavelengths): median_val=np.median(F_net[:,ind]) F_net_deviation_median[ind]=median_val F_net_deviation[:,ind]=F_net[:,ind]-median_val F_net_deviation_max[ind]=np.max(np.abs(F_net_deviation[:,ind])) F_net_deviation_stddevs[ind]=np.std(F_net[:,ind]) F_net_deviation_max_normalized_0_0=F_net_deviation_max/(direct_flux_toa) F_net_deviation_stddevs_normalized_0_0=F_net_deviation_stddevs/(direct_flux_toa) ###z=60 fnetdict=pickle.load(open('./TwoStreamOutput/rugheimer_earth_epoch0_w0=1-1e-12_a=0_z=60.p','rb')) F_net=fnetdict['F_net'] #net flux in each layer, 0th layer is TOA, erg/s/cm2/nm wav_leftedges=fnetdict['wav_leftedges'] #nm wav_rightedges=fnetdict['wav_rightedges'] #nm wav_centers=fnetdict['wav_centers'] #nm z_lower=fnetdict['z_lower'] #cm, 0th layer is TOA z_upper=fnetdict['z_upper'] #cm z_center=fnetdict['z_center'] #cm flux_toa=fnetdict['flux_toa'] #TOA "flux" (really intensity) in erg/s/cm2/nm (cgs) solarzenithangle=fnetdict['solarzenithangle'] #radians direct_flux_toa=np.cos(solarzenithangle)*flux_toa #true TOA flux F_net_deviation=np.zeros(
np.shape(F_net)
numpy.shape
import os import numpy as np from PIL import Image from itertools import product from collections import defaultdict import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import colors import pandas as pd import torch import cv2 from mpl_toolkits.axes_grid1 import make_axes_locatable from sklearn.cluster import DBSCAN import matplotlib.patches as patches from sklearn.neighbors import NearestNeighbors class head(): def __init__(self, left_eye=None,right_eye=None, distance=400): self.l = left_eye self.r = right_eye self.distance = distance def toVect(self, landmark): out = np.array([[landmark[0][self.l]], [landmark[1][self.r]] ]) return out def clusterHead(left_eyes, right_eyes, fullHeads=False): #We use NN to cluster head objects: eyes and nose, assuming there is at least one pair of eyes if not left_eyes or not right_eyes : heads = {} if fullHeads: for headsita in list(range(len(left_eyes))): newHead = head(left_eye = headsita) heads[headsita] = newHead for headsita in list(range(len(right_eyes))): newHead = head(right_eye = headsita) heads[headsita] = newHead elif len(left_eyes)>1: neigh = NearestNeighbors(n_neighbors=2) neigh.fit(left_eyes) distances, from_right_to_left =neigh.kneighbors(right_eyes) index_taken = {} #[inr, distances[inr][0]] queue = list(range(len(right_eyes))) heads = {} j = -1 # we examine the terms and correct previous choices while queue: index_right_eye = queue[0] queue = queue[1:] # we grab the closest left eye to the inr index_left_eye = from_right_to_left[index_right_eye][0] if (index_left_eye)==[] and fullHeads: # if the point is asolated newHead = head( right_eye=index_right_eye) heads[j] = newHead j = j-1 elif index_left_eye not in index_taken: #new index newHead = head(left_eye = index_left_eye, right_eye=index_right_eye, distance = distances[index_right_eye][0]) heads[index_left_eye] = newHead index_taken[index_left_eye] = [index_right_eye, distances[index_right_eye][0]] else: # we need to compare distances newdist = distances[index_right_eye][0] olddist = index_taken[index_left_eye][1] if olddist<newdist: # wrong left eye index_left_eye = from_right_to_left[index_right_eye][1] newdist = distances[index_right_eye][1] olddist = index_taken.get(index_left_eye, [[],None])[1] if index_left_eye not in index_taken: newHead = head(left_eye = index_left_eye, right_eye=index_right_eye, distance = distances[index_right_eye][1]) heads[index_left_eye] = newHead index_taken[index_left_eye] = [index_right_eye, distances[index_right_eye][1]] elif olddist < newdist and fullHeads: # olddist<newdist newHead = head( right_eye=index_right_eye) heads[j] = newHead j = j-1 else: queue = queue+[index_taken[index_left_eye][0]] newHead = head(left_eye = index_left_eye, right_eye=index_right_eye, distance = newdist) heads[index_left_eye] = newHead index_taken[index_left_eye] = [index_right_eye, distances[index_right_eye][1]] else: # correct left eye already taken queue = queue+[index_taken[index_left_eye][0]] newHead = head(left_eye = index_left_eye, right_eye=index_right_eye, distance = newdist) heads[index_left_eye] = newHead index_taken[index_left_eye] = [index_right_eye, newdist] if fullHeads: missingheads = set(list(range(len(right_eyes)))).difference(index_taken) else: missingheads = [] for headsita in missingheads: newHead = head(left_eye = headsita) heads[headsita] = newHead else: neigh = NearestNeighbors(n_neighbors=1) neigh.fit(right_eyes) distances, from_right_to_left = neigh.kneighbors(left_eyes) newHead = head(left_eye = 0, right_eye = from_right_to_left[0][0]) heads = {0:newHead} return heads def show_sample(sample, ax=None, color_labels=False, is_tensor=False, **kwargs): """Shows a sample with landmarks""" if not ax: ax = plt.gca() color_list = cm.Set1.colors[: len(sample["landmarks"])] label_color = color_list if color_labels else "r" if is_tensor: ax.imshow(sample["image"].permute(1, 2, 0)) else: ax.imshow(sample["image"]) ax.scatter( sample["landmarks"][:, 0], sample["landmarks"][:, 1], s=20, marker=".", c=label_color, ) ax.axis("off") # ax.set_title(f'Sample #{sample["index"]}') return ax def show_sample_with_mask(sample, color_labels=False, is_tensor=False, **kwargs): """Shows a sample with landmarks and mask""" fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) color_list = cm.Set1.colors[: len(sample["landmarks"])] label_color = color_list if color_labels else "r" if is_tensor: ax1.imshow(sample["image"].permute(1, 2, 0)) else: ax1.imshow(sample["image"]) ax1.scatter( sample["landmarks"][:, 0], sample["landmarks"][:, 1], s=20, marker=".", c=label_color, ) ax1.axis("off") ax2.imshow(sample["mask"], cmap="gray") ax2.axis("off") # ax.set_title(f'Sample #{sample["index"]}') return fig, (ax1, ax2) def show_multiple_samples(samples, **kwargs): """Shows multiple samples with landmarks""" n = len(samples) n_cols = 4 if n > 4 else n n_rows = int(np.ceil(n / 4)) fig, axs = plt.subplots(n_rows, n_cols, figsize=(n_cols * 5, n_rows * 5)) for i, ax in enumerate(axs.flatten()): if i < n: ax = show_sample(samples[i], ax=ax, **kwargs) else: ax.axis("off") return fig, axs def show_random_sample(dataset, n_samples=4, seed=None, **kwargs): """Shows a random sample of images with landmarks.""" if seed: rng = np.random.RandomState(seed) else: rng = np.random.RandomState() index_list = rng.randint(0, len(dataset), size=n_samples) fig, axs = show_multiple_samples([dataset[i] for i in index_list], **kwargs) return fig, axs def multi_neighborhood_mask(image, landmarks): """ Creates a mask in a 3 by 3 neighborhood of each landmark with a unique label """ w, h = image.size mask = np.zeros((w, h)) for mask_index, (x, y) in enumerate(landmarks): for i, j in product([-1, 0, 1], [-1, 0, 1]): mask[int(x + i), int(y + j)] = mask_index + 1 return mask.T def gen_all_masks(samples, root_dir, mask_dir, path_sub): """Generate all the masks Args: samples: The dataset object. Note it must be the cropped version root_dir: Location of root data dir mask_dir: A dir to story the masks. Note it must have same name as image dir with path_sub[0] replace path_sub: A list of tuples which is used for replacement of image path. """ if not os.path.exists(root_dir + mask_dir): os.mkdir(root_dir + mask_dir) for i in range(len(samples)): h, w = samples.landmark_frame.iloc[i, 1:3] mask = multi_neighborhood_mask(w, h, samples[i]["landmarks"]) mask_path = samples.img_paths[i].replace(*path_sub[0]).replace(*path_sub[1]) folder, file = os.path.split(mask_path) if not os.path.exists(folder): os.mkdir(folder) np.save(mask_path, mask) def samples_to_dataframe(samples, landmark_names): """Creates a dataframe with the landmarks data and image size. Note: this function loops over and opens every image and thus it takes a while to run. The dataframe only need to be created once. In the future much faster operation can be performed on the dataframe rather than looping over each sample. This will improve development Also this code depends on the ordering of height and width returned by skimage defined in the dataset creation step. I only bring this up because PIL and skimage are opposite. (width, height) for PIL and (height, width) for skimage. """ df = pd.DataFrame( index=range(len(samples)), columns=["image_name", "height", "width", *landmark_names], ) for i in range(len(samples)): record = {} record["image_name"] = os.path.split(samples.img_paths[i])[-1] record["height"] = samples[i]["image"].shape[0] record["width"] = samples[i]["image"].shape[1] for key, value in zip(landmark_names, samples[i]["landmarks"].ravel()): record[key] = value df.iloc[i] = record return df def crop_landmarks(df): """ Input: landmark dataframe Output: cropped landmark dataframe """ cropped_df = df.copy(deep=True) for i, row in df.iterrows(): w, h = row["width"], row["height"] landmarks =
np.array(row[3:])
numpy.array
from .preprocessing import ( preprocess_timed_token_sequences, ) from collections.abc import Iterable from .base_cooccurrence_vectorizer import BaseCooccurrenceVectorizer from .preprocessing import preprocess_timed_token_sequences from .coo_utils import ( coo_append, coo_sum_duplicates, CooArray, merge_all_sum_duplicates, em_update_matrix, ) import numpy as np import numba from ._window_kernels import ( _TIMED_KERNEL_FUNCTIONS, window_at_index, ) @numba.njit(nogil=True) def numba_build_skip_grams( token_sequences, window_size_array, window_reversals, kernel_functions, kernel_args, mix_weights, normalize_windows, n_unique_tokens, array_lengths, ): """Generate a matrix of (weighted) counts of co-occurrences of tokens within windows in a set of sequences of tokens. Each sequence in the collection of sequences provides an effective boundary over which skip-grams may not pass (such as sentence boundaries in an NLP context). This is done for a collection of different window and kernel types simultaneously. Parameters ---------- token_sequences: Iterable of Iterables The collection of (token, time_stamp) sequences to generate skip-gram data for. n_unique_tokens: int The number of unique tokens in the token_dictionary. window_size_array: numpy.ndarray(float, size = (n_windows, n_unique_tokens)) A collection of window sizes per vocabulary index per window function window_reversals: numpy.array(bool, size = (n_windows,)) Array indicating whether the window is after or not. kernel_functions: kernel_functions: tuple The n-tuple of kernel functions kernel_args: tuple of tuples Arguments to pass through to the kernel functions per function mix_weights: numpy.array(bool, size = (n_windows,)) The scalars values used to combine the values of the kernel functions normalize_windows: bool Indicates whether or nor to L_1 normalize the kernel values per window occurrence array_lengths: numpy.array(int, size = (n_windows,)) The lengths of the arrays per window used to the store the coo matrix triples. Returns ------- cooccurrence_matrix: CooArray Weight counts of values (kernel weighted counts) that token_head[i] cooccurred with token_tail[i] """ n_windows = window_size_array.shape[0] array_mul = n_windows * n_unique_tokens + 1 coo_data = [ CooArray( np.zeros(array_lengths[i], dtype=np.int32), np.zeros(array_lengths[i], dtype=np.int32), np.zeros(array_lengths[i], dtype=np.float32), np.zeros(array_lengths[i], dtype=np.int64), np.zeros(1, dtype=np.int64), np.zeros(2 * np.int64(np.ceil(np.log2(array_lengths[i]))), dtype=np.int64), np.zeros(1, dtype=np.int64), ) for i in range(n_windows) ] for d_i, seq in enumerate(token_sequences): for w_i, target_pair in enumerate(seq): windows = [] kernels = [] target_word = np.int32(target_pair[0]) target_time = target_pair[1] for i in range(n_windows): win = window_at_index( seq, window_size_array[i, target_word], w_i, reverse=window_reversals[i], ) this_window = np.array([w[0] for w in win], dtype=np.int32) time_deltas = np.array( [np.abs(w[1] - target_time) for w in win], dtype=np.float32 ) this_kernel = mix_weights[i] * kernel_functions[i]( this_window, time_deltas, *kernel_args[i] ) windows.append(this_window) kernels.append(this_kernel) total = 0 if normalize_windows: sums = np.array([np.sum(ker) for ker in kernels]) total = np.sum(sums) if total <= 0: total = 1 for i, window in enumerate(windows): this_ker = kernels[i] for j, context in enumerate(window): val =
np.float32(this_ker[j] / total)
numpy.float32
#!/usr/bin/env python3 import matplotlib matplotlib.use('pdf') import scrublet as scr import scipy.io import scipy.sparse import numpy import numpy.ma from PIL import Image, ImageDraw, ImageFont import os import sys import re import warnings import traceback import argparse # # Notes: # o apply umi_cutoff in filter_counts_matrix() that is consistent with the # umi_cutoff value used in reduce_dimensions.R in order to produce consistent # numbers of cells (columns). # o I have the impression that scrublet is vulnerable to internal # resulting from things like division by zero and sqrt of x < 0. # o it appears that python issues a runtime warning for some of # these errors rather than stopping so I am raising an exceptioni # in these cases # def handle_warning(message, category, filename, lineno, file=None, line=None): print( 'Scrublet: stop on warning \'%s\' in %s at line %s' % ( message, filename, lineno ), file=sys.stderr ) raise ValueError(message) return( 0 ) def read_col_file(col_file): col = [] with open(col_file, 'r') as fp: for line in fp: col.append(line.rstrip()) return(col) def filter_counts_matrix(mat_in, outlier_filter, umi_cutoff, col_names_file): print('run_scrublet.py: filter_counts_matrix: begin') # start with COO format matrix if(not scipy.sparse.isspmatrix_coo(mat_in)): mat_in = mat_in.tocoo() # read column names col_in = read_col_file(col_names_file) # binarize matrix using directly the (non-zero) m.data attribute # (from snapATAC) cutoff = numpy.percentile(a=mat_in.data, q=100 - outlier_filter, axis=None) mat_in.data[mat_in.data > cutoff] = 0 mat_in.data[mat_in.data > 1] = 1 # find cells with no more than umi_cutoff counts colsum = mat_in.sum(0)[0, :] keep_col = colsum > umi_cutoff # subset matrix and column names mat_out = mat_in.tocsc()[:, keep_col.tolist()[0]] col_out = [i for (i, v) in zip(col_in, keep_col.tolist()[0]) if v] print('run_scrublet.py: filter_counts_matrix: end') return(mat_out, col_out) def run_scrublet(sample_name, counts_matrix): print('run_scrublet.py: run_scrublet: begin') warnings.showwarning = handle_warning if(numpy.size(counts_matrix, 0) == 0 or numpy.size(counts_matrix, 1) == 0): filename = args.sample_name + "-scrublet_hist.png" image = Image.new(mode = "RGB", size = (800,600), color = "white") draw = ImageDraw.Draw(image) draw.text((50,50), "Scrublet failed. This is generally because there aren't enough cells with sufficient reads.\n", fill = "black") return(-1) if(not scipy.sparse.isspmatrix_csc(counts_matrix)): counts_matrix = counts_matrix.T.tocsc() else: counts_matrix = counts_matrix.T # count_matrix # rows: cells # cols: genes scrub = scr.Scrublet(counts_matrix) try: doublet_scores, predicted_doublets = scrub.scrub_doublets() scrub.plot_histogram()[0].savefig(args.sample_name + "-scrublet_hist.png") all_scores = numpy.vstack((doublet_scores, predicted_doublets)) all_scores =
numpy.transpose(all_scores)
numpy.transpose
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for tensorflow.ops.tf.scatter_nd.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import numpy as np from tensorflow.python.client import session from tensorflow.python.eager import context from tensorflow.python.eager import def_function from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import resource_variable_ops from tensorflow.python.ops import state_ops from tensorflow.python.ops import variables from tensorflow.python.platform import test GRADIENT_TESTS_DTYPES = (dtypes.float16, dtypes.float32, dtypes.float64) def _AsType(v, vtype): return v.astype(vtype) if isinstance(v, np.ndarray) else vtype(v) def _FlatInnerDims(tensor, ndims=2): shape = list(tensor.shape) return tensor.reshape([ functools.reduce(lambda x, y: x * y, shape[:-ndims + 1], 1) ] + shape[-ndims + 1:]) def _FlatOuterDims(tensor, ndims=2): shape = list(tensor.shape) return tensor.reshape(shape[:ndims - 1] + [ functools.reduce(lambda x, y: x * y, shape[ndims - 1:], 1) ]) def _NumpyScatterNd(ref, indices, updates, op): ixdim = indices.shape[-1] num_updates = indices.size // ixdim total_nd = len(ref.shape) slice_size = 1 for i in range(ixdim, total_nd): slice_size *= ref.shape[i] flat_indices = _FlatInnerDims(indices) flat_updates = updates.reshape((num_updates, slice_size)) output_flat = _FlatOuterDims(ref, ixdim + 1) for ix_updates, ix_output in enumerate(flat_indices): ix_output = tuple(ix_output) output_flat[ix_output] = op(output_flat[ix_output], flat_updates[ix_updates]) return output_flat.reshape(ref.shape) def _NumpyUpdate(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: u) def _NumpyAdd(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p + u) def _NumpySub(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p - u) def _NumpyMul(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p * u) def _NumpyDiv(ref, indices, updates): return _NumpyScatterNd(ref, indices, updates, lambda p, u: p / u) class StatefulScatterNdTest(test.TestCase): def _VariableRankTest(self, np_scatter, tf_scatter, vtype, itype, repeat_indices=False): np.random.seed(8) ref_shapes = [(3, 6), (3, 6), (3, 6, 9), (3, 6, 9), (3, 6, 9), (3, 6, 9)] indices_shapes = [(2,), (2, 2), (2,), (2, 2), (2, 3), (2, 3, 3)] with self.cached_session(use_gpu=True): for ref_shape, indices_shape in zip(ref_shapes, indices_shapes): num_updates = indices_shape[0] ixdim = indices_shape[-1] indexable_area_shape = () for i in range(ixdim): indexable_area_shape += (ref_shape[i],) all_indices = [ list(coord) for coord, _ in np.ndenumerate( np.empty(indexable_area_shape, vtype)) ] np.random.shuffle(all_indices) indices = np.array(all_indices[:num_updates]) if num_updates > 1 and repeat_indices: indices = indices[:num_updates // 2] for _ in range(num_updates - num_updates // 2): indices = np.append( indices, [indices[np.random.randint(num_updates // 2)]], axis=0) np.random.shuffle(indices) indices = _AsType(indices[:num_updates], itype) updates_shape = (num_updates,) for i in range(ixdim, len(ref_shape)): updates_shape += (ref_shape[i],) updates = _AsType(np.random.randn(*(updates_shape)), vtype) ref = _AsType(np.random.randn(*(ref_shape)), vtype) # Scatter via numpy new = ref.copy() np_scatter(new, indices, updates) # Scatter via tensorflow ref_var = variables.VariableV1(ref) ref_var.initializer.run() tf_scatter(ref_var, indices, updates).eval() tol = 1e-03 if repeat_indices and vtype == np.float16 else 1e-06 # Compare self.assertAllClose(new, self.evaluate(ref_var), atol=tol, rtol=tol) def _VariableRankTests(self, np_scatter, tf_scatter): for vtype in (np.int32, np.float16, np.float32, np.float64, np.complex64, np.complex128): for itype in (np.int32, np.int64): self._VariableRankTest(np_scatter, tf_scatter, vtype, itype) def testSimple(self): indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32) ref = variables.Variable([0, 0, 0, 0, 0, 0, 0, 0], dtype=dtypes.float32) expected = np.array([0, 11, 0, 10, 9, 0, 0, 12]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) result = self.evaluate(scatter) self.assertAllClose(result, expected) @test_util.run_deprecated_v1 def testSimpleResource(self): indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant([9, 10, 11, 12], dtype=dtypes.float32) ref = resource_variable_ops.ResourceVariable( [0, 0, 0, 0, 0, 0, 0, 0], dtype=dtypes.float32) expected = np.array([0, 11, 0, 10, 9, 0, 0, 12]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) self.evaluate(scatter) self.assertAllClose(ref.eval(), expected) def testSimple2(self): indices = constant_op.constant([[1, 0], [1, 1]], dtype=dtypes.int32) updates = constant_op.constant([11., 12.], dtype=dtypes.float32) ref = variables.Variable( [[0., 0.], [0., 0.], [0., 0.]], dtype=dtypes.float32) expected = np.array([[0., 0.], [11., 12.], [0., 0.]]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) result = self.evaluate(scatter) self.assertAllClose(result, expected) def testSimple3(self): indices = constant_op.constant([[1]], dtype=dtypes.int32) updates = constant_op.constant([[11., 12.]], dtype=dtypes.float32) ref = variables.Variable( [[0., 0.], [0., 0.], [0., 0.]], dtype=dtypes.float32) expected = np.array([[0., 0.], [11., 12.], [0., 0.]]) scatter = state_ops.scatter_nd_update(ref, indices, updates) init = variables.global_variables_initializer() with self.session(use_gpu=True) as sess: self.evaluate(init) result = self.evaluate(scatter) self.assertAllClose(result, expected) @test_util.run_deprecated_v1 def testVariableRankUpdate(self): self._VariableRankTests(_NumpyUpdate, state_ops.scatter_nd_update) @test_util.run_deprecated_v1 def testVariableRankAdd(self): self._VariableRankTests(_NumpyAdd, state_ops.scatter_nd_add) @test_util.run_deprecated_v1 def testVariableRankSub(self): self._VariableRankTests(_NumpySub, state_ops.scatter_nd_sub) # TODO(ebrevdo): Re-enable when we need ScatterNdMul. # def testVariableRankMul(self): # self._VariableRankTests(_NumpyMul, state_ops.scatter_nd_mul) # TODO(ebrevdo): Re-enable when we need ScatterNdDiv. # def testVariableRankDiv(self): # self._VariableRankTests(_NumpyDiv, state_ops.scatter_nd_div) def _ScatterRepeatIndicesTest(self, np_scatter, tf_scatter): for vtype in (np.int32, np.float16, np.float32, np.float64): for itype in (np.int32, np.int64): self._VariableRankTest( np_scatter, tf_scatter, vtype, itype, repeat_indices=True) @test_util.run_v1_only("b/120545219") def testScatterRepeatIndices(self): """This tests scatter_add using indices that repeat.""" self._ScatterRepeatIndicesTest(_NumpyAdd, state_ops.scatter_nd_add) self._ScatterRepeatIndicesTest(_NumpySub, state_ops.scatter_nd_sub) # TODO(ebrevdo): Re-enable when we need ScatterNdMul and ScatterNdDiv. # self._ScatterRepeatIndicesTest(_NumpyMul, state_ops.scatter_nd_mul) # self._ScatterRepeatIndicesTest(_NumpyDiv, state_ops.scatter_nd_div) # TODO(simister): Re-enable once binary size increase due to # extra templating is back under control and this op is re-enabled # def testBooleanScatterUpdate(self): # with self.session(use_gpu=False) as session: # var = tf.Variable([True, False]) # update0 = tf.compat.v1.scatter_nd_update(var, [[1]], [True]) # update1 = tf.compat.v1.scatter_nd_update( # var, tf.constant( # [[0]], dtype=tf.int64), [False]) # var.initializer.run() # session.run([update0, update1]) # self.assertAllEqual([False, True], self.evaluate(var)) @test_util.run_v1_only("b/120545219") def testScatterOutOfRangeCpu(self): # TODO(simister): Re-enable once binary size increase due to # scatter_nd ops is under control. # tf.scatter_nd_mul, tf.scatter_nd_div, for op in (state_ops.scatter_nd_add, state_ops.scatter_nd_sub, state_ops.scatter_nd_update): params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32) updates = np.array([-3, -4, -5]).astype(np.float32) with self.cached_session(use_gpu=False): ref = variables.VariableV1(params) ref.initializer.run() # Indices all in range, no problem. indices = np.array([[2], [0], [5]]) op(ref, indices, updates).eval() # Test some out of range errors. indices = np.array([[-1], [0], [5]]) with self.assertRaisesOpError( r"indices\[0\] = \[-1\] does not index into shape \[6\]"): op(ref, indices, updates).eval() indices = np.array([[2], [0], [6]]) with self.assertRaisesOpError( r"indices\[2\] = \[6\] does not index into shape \[6\]"): op(ref, indices, updates).eval() def testRank3ValidShape(self): indices = array_ops.zeros([2, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = np.array([2, 2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) self.assertAllEqual( state_ops.scatter_nd_update(ref, indices, updates).get_shape().as_list(), shape) @test_util.run_v1_only("b/120545219") @test_util.disable_xla("b/123337890") # Error messages differ def testResVarInvalidOutputShape(self): res = variables.Variable( initial_value=lambda: array_ops.zeros(shape=[], dtype=dtypes.float32), dtype=dtypes.float32) with self.cached_session(): res.initializer.run() with self.assertRaisesOpError("Output must be at least 1-D"): state_ops.scatter_nd_update(res, [[0]], [0.22]).eval() @test_util.run_deprecated_v1 def testExtraIndicesDimensions(self): indices = array_ops.zeros([1, 1, 2], dtypes.int32) updates = array_ops.zeros([1, 1], dtypes.int32) shape = np.array([2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) scatter_update = state_ops.scatter_nd_update(ref, indices, updates) self.assertAllEqual(scatter_update.get_shape().as_list(), shape) expected_result = np.zeros([2, 2], dtype=np.int32) with self.cached_session(): ref.initializer.run() self.assertAllEqual(expected_result, self.evaluate(scatter_update)) @test_util.run_deprecated_v1 def testRank3InvalidShape1(self): indices = array_ops.zeros([3, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = np.array([2, 2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) with self.assertRaisesWithPredicateMatch( ValueError, r"The outer \d+ dimensions of indices\.shape="): state_ops.scatter_nd_update(ref, indices, updates) @test_util.run_deprecated_v1 def testRank3InvalidShape2(self): indices = array_ops.zeros([2, 2, 1], dtypes.int32) updates = array_ops.zeros([2, 2], dtypes.int32) shape = np.array([2, 2, 2]) ref = variables.Variable(array_ops.zeros(shape, dtypes.int32)) with self.assertRaisesWithPredicateMatch( ValueError, r"The inner \d+ dimensions of input\.shape="): state_ops.scatter_nd_update(ref, indices, updates) @test_util.run_deprecated_v1 def testConcurrentUpdates(self): num_updates = 10000 update_values = np.random.rand(num_updates) ref = variables.Variable(np.zeros([2, 2]), dtype=dtypes.float64) indices = constant_op.constant([[0, 1]] * num_updates, dtype=dtypes.int32) updates = constant_op.constant(update_values, dtype=dtypes.float64) expected_result = np.zeros([2, 2], dtype=np.float64) expected_result[0, 1] = np.sum(update_values) scatter = state_ops.scatter_nd_add(ref, indices, updates) init = variables.global_variables_initializer() with session.Session() as sess: self.evaluate(init) result = self.evaluate(scatter) assert np.allclose(result, expected_result) # TODO(fpmc): Re-enable this test when gpu_pip test actually runs on a GPU. def _disabledTestScatterOutOfRangeGpu(self): if not test.IsBuiltWithCuda(): return # TODO(simister): Re-enable once binary size increase due to # scatter_nd ops is under control. # tf.scatter_nd_mul, tf.scatter_nd_div, for op in (state_ops.scatter_nd_add, state_ops.scatter_nd_sub, state_ops.scatter_nd_update): params = np.array([1, 2, 3, 4, 5, 6]).astype(np.float32) updates = np.array([-3, -4, -5]).astype(np.float32) # With GPU, the code ignores indices that are out of range. # We don't test the implementation; just test there's no failures. with self.cached_session(force_gpu=True): ref = variables.Variable(params) ref.initializer.run() # Indices all in range, no problem. indices = np.array([2, 0, 5]) op(ref, indices, updates).eval() # Indices out of range should not fail. indices = np.array([-1, 0, 5]) op(ref, indices, updates).eval() indices = np.array([2, 0, 6]) op(ref, indices, updates).eval() class ScatterNdTest(test.TestCase): non_aliasing_add_test = False def scatter_nd(self, indices, updates, shape, input_=None): del input_ # input_ is not used in scatter_nd return array_ops.scatter_nd(indices, updates, shape) @test_util.run_in_graph_and_eager_modes def testBool(self): indices = constant_op.constant( [[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant( [False, True, False, True], dtype=dtypes.bool) expected = np.array( [False, False, False, True, False, False, False, True]) scatter = self.scatter_nd(indices, updates, shape=(8,)) result = self.evaluate(scatter) self.assertAllEqual(expected, result) # Same indice is updated twice by same value. indices = constant_op.constant( [[4], [3], [3], [7]], dtype=dtypes.int32) updates = constant_op.constant( [False, True, True, True], dtype=dtypes.bool) expected = np.array([ False, False, False, True, False, False, False, True]) scatter = self.scatter_nd(indices, updates, shape=(8,)) result = self.evaluate(scatter) self.assertAllEqual(expected, result) @test_util.run_in_graph_and_eager_modes def testInvalidShape(self): # TODO(apassos) figure out how to unify these errors with self.assertRaises(errors.InvalidArgumentError if context.executing_eagerly() else ValueError): array_ops.scatter_nd(indices=[0], # this should be indices=[[0]] updates=[0.0], shape=[1]) def testString(self): indices = constant_op.constant([[4], [3], [1], [7]], dtype=dtypes.int32) updates = constant_op.constant(["four", "three", "one", "seven"], dtype=dtypes.string) expected = np.array([b"", b"one", b"", b"three", b"four", b"", b"", b"seven"]) scatter = self.scatter_nd(indices, updates, shape=(8,)) with self.cached_session() as sess: result = self.evaluate(scatter) self.assertAllEqual(expected, result) # Same indice is updated twice by same value. indices = constant_op.constant([[4], [3], [3], [7]], dtype=dtypes.int32) updates = constant_op.constant(["a", "b", "b", "c"], dtype=dtypes.string) expected = np.array([b"", b"", b"", b"bb", b"a", b"", b"", b"c"]) scatter = self.scatter_nd(indices, updates, shape=(8,)) with self.cached_session() as sess: result = self.evaluate(scatter) self.assertAllEqual(expected, result) # Same indice is updated twice by different value. indices = constant_op.constant([[4], [3], [3], [7]], dtype=dtypes.int32) updates = constant_op.constant(["a", "b", "c", "d"], dtype=dtypes.string) expected = [np.array([b"", b"", b"", b"bc", b"a", b"", b"", b"d"]), np.array([b"", b"", b"", b"cb", b"a", b"", b"", b"d"])] scatter = self.scatter_nd(indices, updates, shape=(8,)) with self.cached_session() as sess: result = self.evaluate(scatter) self.assertTrue(np.array_equal(result, expected[0]) or np.array_equal(result, expected[1])) def testRank3ValidShape(self): indices = array_ops.zeros([2, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = np.array([2, 2, 2]) self.assertAllEqual( self.scatter_nd(indices, updates, shape).get_shape().as_list(), shape) @test_util.run_deprecated_v1 def testExtraIndicesDimensions(self): indices = array_ops.zeros([1, 1, 2], dtypes.int32) updates = array_ops.zeros([1, 1], dtypes.int32) shape = np.array([2, 2]) scatter = self.scatter_nd(indices, updates, shape) self.assertAllEqual(scatter.get_shape().as_list(), shape) expected_result = np.zeros([2, 2], dtype=np.int32) with self.cached_session(): self.assertAllEqual(expected_result, self.evaluate(scatter)) @test_util.run_deprecated_v1 def testUndefinedIndicesShape(self): indices = array_ops.placeholder(dtypes.int32, shape=None) updates = array_ops.placeholder(dtypes.int32, shape=[2, 2, 2]) shape = constant_op.constant([2, 2, 2], dtypes.int32) self.scatter_nd(indices, updates, shape) @test_util.run_deprecated_v1 def testUndefinedUpdatesShape(self): indices = array_ops.placeholder(dtypes.int32, shape=[2, 2, 2]) updates = array_ops.placeholder(dtypes.int32, shape=None) shape = constant_op.constant([2, 2, 2], dtypes.int32) self.scatter_nd(indices, updates, shape) @test_util.run_deprecated_v1 def testUndefinedOutputShape(self): indices = array_ops.placeholder(dtypes.int32, shape=[2, 2, 2]) updates = array_ops.placeholder(dtypes.int32, shape=[2, 2, 2]) shape = array_ops.placeholder(dtypes.int32, shape=[None]) self.scatter_nd(indices, updates, shape) @test_util.run_deprecated_v1 def testEmptyOutputShape1(self): indices = array_ops.zeros([2, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = constant_op.constant([0, 3, 2], dtypes.int32) with self.assertRaisesWithPredicateMatch( ValueError, "Indices and updates specified for empty output shape"): self.scatter_nd(indices, updates, shape) @test_util.run_v1_only("b/120545219") def testEmptyOutputShape2(self): indices = array_ops.placeholder(dtypes.int32, shape=None) updates = array_ops.placeholder(dtypes.int32, shape=None) shape = constant_op.constant([0, 3, 2], dtypes.int32) with self.cached_session(): with self.assertRaisesOpError( "Indices and updates specified for empty output"): self.scatter_nd(indices, updates, shape).eval(feed_dict={ indices: np.zeros([2, 2, 2], dtype=np.int32), updates: np.zeros([2, 2, 2], dtype=np.int32) }) @test_util.run_deprecated_v1 def testEmptyOutputShape3(self): indices = array_ops.zeros([0], dtypes.int32) updates = array_ops.zeros([0], dtypes.int32) shape = constant_op.constant([0], dtypes.int32) scatter = self.scatter_nd(indices, updates, shape) with self.cached_session(): self.assertEqual(scatter.eval().size, 0) @test_util.run_deprecated_v1 def testRank3InvalidShape1(self): indices = array_ops.zeros([3, 2, 2], dtypes.int32) updates = array_ops.zeros([2, 2, 2], dtypes.int32) shape = np.array([2, 2, 2]) with self.assertRaisesWithPredicateMatch( ValueError, r"The outer \d+ dimensions of indices\.shape="): self.scatter_nd(indices, updates, shape) @test_util.run_deprecated_v1 def testRank3InvalidShape2(self): indices = array_ops.zeros([2, 2, 1], dtypes.int32) updates = array_ops.zeros([2, 2], dtypes.int32) shape = np.array([2, 2, 2]) with self.assertRaisesWithPredicateMatch( ValueError, r"The inner \d+ dimensions of (input|output)\.shape="): self.scatter_nd(indices, updates, shape) @test_util.run_deprecated_v1 def testGradientsRank2ElementUpdate(self): for dtype in GRADIENT_TESTS_DTYPES: indices = constant_op.constant([[0, 0], [1, 1]], dtype=dtypes.int32) updates = constant_op.constant([1, 4], dtype=dtype) shape = constant_op.constant([2, 2], dtype=dtypes.int32) input_ = array_ops.zeros(shape, dtype=dtype) outputs = self.scatter_nd(indices, updates, shape, input_) grad_vals = constant_op.constant([[1, 2], [3, 4]], dtype=dtype) updates_grad, input_grad = gradients_impl.gradients( [outputs], [updates, input_], [grad_vals]) expected_updates_grad = np.array([1, 4], dtype=dtype.as_numpy_dtype()) expected_input_grad = np.array([[1, 2], [3, 4]], dtype=dtype.as_numpy_dtype()) with self.cached_session(): self.assertAllEqual(expected_updates_grad, self.evaluate(updates_grad)) if self.non_aliasing_add_test: self.assertAllEqual(expected_input_grad, self.evaluate(input_grad)) @test_util.run_deprecated_v1 def testGradientsRank2SliceUpdate(self): for dtype in GRADIENT_TESTS_DTYPES: indices = constant_op.constant([[1], [0]], dtype=dtypes.int32) updates = constant_op.constant([[3, 4], [1, 2]], dtype=dtype) shape = constant_op.constant([2, 2], dtype=dtypes.int32) input_ = array_ops.zeros(shape, dtype=dtype) outputs = self.scatter_nd(indices, updates, shape, input_) grad_vals = constant_op.constant([[3, 4], [1, 2]], dtype=dtype) updates_grad, input_grad = gradients_impl.gradients( [outputs], [updates, input_], [grad_vals]) expected_updates_grad = np.array([[1, 2], [3, 4]], dtype=dtype.as_numpy_dtype()) expected_input_grad = np.array([[3, 4], [1, 2]], dtype=dtype.as_numpy_dtype()) with self.cached_session(): self.assertAllEqual(expected_updates_grad, self.evaluate(updates_grad)) if self.non_aliasing_add_test: self.assertAllEqual(expected_input_grad, self.evaluate(input_grad)) @test_util.run_deprecated_v1 def testGradientsRank3SliceUpdate(self): for dtype in GRADIENT_TESTS_DTYPES: indices = constant_op.constant([[[0, 1], [1, 0]], [[0, 0], [1, 1]]], dtype=dtypes.int32) updates = constant_op.constant([[[5, 7], [2, 4]], [[1, 3], [6, 8]]], dtype=dtype) shape = constant_op.constant([2, 2, 2], dtype=dtypes.int32) input_ = array_ops.zeros(shape, dtype=dtype) outputs = self.scatter_nd(indices, updates, shape, input_) grad_vals = constant_op.constant([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=dtype) updates_grad, input_grad = gradients_impl.gradients( [outputs], [updates, input_], [grad_vals]) expected_updates_grad = np.array([[[3, 4], [5, 6]], [[1, 2], [7, 8]]], dtype=dtype.as_numpy_dtype()) expected_input_grad = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=dtype.as_numpy_dtype()) with self.cached_session(): self.assertAllEqual(expected_updates_grad, self.evaluate(updates_grad)) if self.non_aliasing_add_test: self.assertAllEqual(expected_input_grad, self.evaluate(input_grad)) @test_util.run_deprecated_v1 def testGradientsRank7SliceUpdate(self): for dtype in GRADIENT_TESTS_DTYPES: indices = constant_op.constant( [[[[[[[0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 0]]]], [[[[0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 1]]]]]]], dtype=dtypes.int32) updates = constant_op.constant( [[[[[[[5, 6], [2, 4]]]], [[[[1, 3], [6, 8]]]]]]], dtype=dtype) shape = constant_op.constant([1, 1, 2, 1, 1, 2, 2], dtype=dtypes.int32) input_ = array_ops.zeros(shape, dtype=dtype) outputs = self.scatter_nd(indices, updates, shape, input_) grad_vals = constant_op.constant( [[[[[[[1, 2], [3, 4]]]], [[[[5, 6], [7, 8]]]]]]], dtype=dtype) updates_grad, input_grad = gradients_impl.gradients( [outputs], [updates, input_], [grad_vals]) expected_updates_grad = np.array( [[[[[[[3, 4], [5, 6]]]], [[[[1, 2], [7, 8]]]]]]], dtype=dtype.as_numpy_dtype()) expected_input_grad = np.array( [[[[[[[1, 2], [3, 4]]]], [[[[5, 6], [7, 8]]]]]]], dtype=dtype.as_numpy_dtype()) with self.cached_session(): self.assertAllEqual(expected_updates_grad, self.evaluate(updates_grad)) if self.non_aliasing_add_test: self.assertAllEqual(expected_input_grad, self.evaluate(input_grad)) @test_util.run_deprecated_v1 def testScatterNdRepatedIndicesAdd(self): indices = array_ops.zeros([100000, 1], dtypes.int32) values =
np.random.randn(100000)
numpy.random.randn
# %% from multiprocessing import Pool import time import numpy as np from scipy.stats import mvn import os import pickle import copy import matplotlib.pyplot as plt from scipy import interpolate from scipy.stats import norm # %% exec(open('../../env_vars.py').read()) dir_picklejar = os.environ['dir_picklejar'] filename = os.path.join(os.path.realpath(dir_picklejar), 'data_day_limits') infile = open(filename,'rb') data_day_limits = pickle.load(infile) infile.close() filename = os.path.join(os.path.realpath(dir_picklejar), 'init_latent_data_small') infile = open(filename,'rb') init_dict_latent_data = pickle.load(infile) # Initialization of the latent smoking times infile.close() filename = os.path.join(os.path.realpath(dir_picklejar), 'observed_dict_eod_survey') infile = open(filename,'rb') init_dict_observed_eod_survey = pickle.load(infile) infile.close() filename = os.path.join(os.path.realpath(dir_picklejar), 'observed_dict_all_ema') infile = open(filename,'rb') init_dict_observed_ema = pickle.load(infile) infile.close() # %% def grow_tree(depth): if depth==1: current_data = list([0,1]) return current_data elif depth > 1: curr_level = 1 current_data = list([0,1]) curr_level = 2 while curr_level <= depth: # Sweep through all leaves at the current level list_curr_level = list(np.repeat(np.nan, repeats=2**curr_level)) for i in range(0, len(current_data)): left_leaf = np.append(np.array(current_data[i]), 0) right_leaf = np.append(np.array(current_data[i]), 1) list_curr_level[2*i] = list(left_leaf) list_curr_level[2*i + 1] = list(right_leaf) # Go one level below current_data = list_curr_level curr_level += 1 return current_data else: return 0 # %% class Latent: ''' A collection of objects and methods related to latent process subcomponent ''' def __init__(self, participant = None, day = None, latent_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def calc_loglik(self): ''' Calculate loglikelihood for latent process subcomponent ''' smoking_times = self.latent_data['hours_since_start_day'] day_length = self.latent_data['day_length'] lambda_prequit = self.params['lambda_prequit'] lambda_postquit = self.params['lambda_postquit'] # Calculate the total number of latent smoking times in the current iteration m = len(smoking_times) # lambda_prequit: number of events per hour during prequit period # lambda_postquit: number of events per hour during postquit period # day_length: total number of hours between wakeup time to sleep time on a given participant day if self.day <4: lik = np.exp(-lambda_prequit*day_length) * ((lambda_prequit*day_length) ** m) / np.math.factorial(m) loglik = np.log(lik) else: lik = np.exp(-lambda_postquit*day_length) * ((lambda_postquit*day_length) ** m) / np.math.factorial(m) loglik = np.log(lik) return loglik # %% class EODSurvey: ''' A collection of objects and methods related to end-of-day survey subcomponent ''' def __init__(self, participant = None, day = None, latent_data = None, observed_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.observed_data = copy.deepcopy(observed_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def calc_loglik(self): ''' Calculate loglikelihood corresponding to end-of-day EMA subcomponent ''' # Inputs to be checked ---------------------------------------------------------------------------- any_eod_ema = len(self.observed_data['assessment_begin']) if any_eod_ema > 0: # Begin after checks on inputs have been passed --------------------------------------------------- # Go through each box one by one collect_box_probs = np.array([]) arr_ticked = self.observed_data['ticked_box_raw'] # which boxes were ticked? m = len(self.latent_data['hours_since_start_day']) # are there any latent smoking events? all_boxes = np.array([8,9,10,11,12,13,14,15,16,17,18,19,20]) if (m == 0) and (len(arr_ticked) == 0): collect_box_probs = np.repeat(1, len(all_boxes)) elif (m == 0) and (len(arr_ticked) > 0): collect_box_probs = np.repeat(0, len(all_boxes)) else: start_day = 0 end_day = 24 # Rescale time to be within 24 hour clock all_true_smoke_times = self.latent_data['hours_since_start_day'] + self.observed_data['start_time_hour_of_day'] for k in range(0, len(all_boxes)): curr_box = all_boxes[k] # lower limit of Box k; setting curr_lk and curr_box to be separate variables in case change of scale is needed for curr_lk curr_lk = all_boxes[k] # lower limit of Box k curr_uk = curr_lk + 1 # upper limit of Box k; add one hour to lower limit recall_epsilon = self.params['recall_epsilon'] # in hours num_points_to_sample = self.params['budget'] if len(all_true_smoke_times) <= num_points_to_sample: true_smoke_times = all_true_smoke_times else: true_smoke_times = all_true_smoke_times[(all_true_smoke_times > curr_lk - recall_epsilon) * (all_true_smoke_times < curr_uk + recall_epsilon)] if len(true_smoke_times) > num_points_to_sample: true_smoke_times = np.random.choice(a = true_smoke_times, size = num_points_to_sample, replace = False) # At this point, the length of true_smoke_times will always be at most num_points_to_sample if len(true_smoke_times) > 0: # Specify covariance matrix based on an exchangeable correlation matrix rho = self.params['rho'] use_cormat = np.eye(len(true_smoke_times)) + rho*(np.ones((len(true_smoke_times),1)) * np.ones((1,len(true_smoke_times))) - np.eye(len(true_smoke_times))) use_sd = self.params['sd'] use_covmat = (use_sd**2) * use_cormat # Calculate total possible probability total_possible_prob, error_code_total_possible_prob = mvn.mvnun(lower = np.repeat(start_day, len(true_smoke_times)), upper = np.repeat(end_day, len(true_smoke_times)), means = true_smoke_times, covar = use_covmat) # Begin calculating edge probabilities collect_edge_probabilities = np.array([]) limits_of_integration = grow_tree(depth=len(true_smoke_times)) for j in range(0, len(limits_of_integration)): curr_limits = np.array(limits_of_integration[j]) curr_lower_limits = np.where(curr_limits==0, start_day, curr_uk) curr_upper_limits = np.where(curr_limits==0, curr_lk, end_day) edge_probabilities, error_code_edge_probabilities = mvn.mvnun(lower = curr_lower_limits, upper = curr_upper_limits, means = true_smoke_times, covar = use_covmat) collect_edge_probabilities = np.append(collect_edge_probabilities, edge_probabilities) total_edge_probabilities = np.sum(collect_edge_probabilities) prob_none_recalled_within_current_box = total_edge_probabilities/total_possible_prob # prob_none_recalled_within_current_box may be slightly above 1, e.g., 1.000000XXXXX if (prob_none_recalled_within_current_box-1) > 0: prob_none_recalled_within_current_box = 1 prob_at_least_one_recalled_within_box = 1-prob_none_recalled_within_current_box else: prob_none_recalled_within_current_box = 1 prob_at_least_one_recalled_within_box = 1-prob_none_recalled_within_current_box # Exit the first IF-ELSE statement if curr_box in arr_ticked: collect_box_probs = np.append(collect_box_probs, prob_at_least_one_recalled_within_box) else: collect_box_probs = np.append(collect_box_probs, prob_none_recalled_within_current_box) # Exit if-else statement prob_observed_box_checking_pattern = np.prod(collect_box_probs) loglik = np.log(prob_observed_box_checking_pattern) self.observed_data['prob_bk'] = collect_box_probs self.observed_data['product_prob_bk'] = prob_observed_box_checking_pattern self.observed_data['log_product_prob_bk'] = loglik else: # If participant did not complete EOD survey, then this measurement type should NOT contribute to the loglikelihood loglik = 0 return loglik # %% class SelfReport: def __init__(self, participant = None, day = None, latent_data = None, observed_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.observed_data = copy.deepcopy(observed_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def match(self): ''' Matches each EMA with one latent smoking time occurring before the Self Report EMA After a latent smoking time is matched, it is removed ''' # Inputs to be checked -------------------------------------------- all_latent_times = self.latent_data['hours_since_start_day'] tot_ema = len(self.observed_data['assessment_type']) if tot_ema > 0: self.observed_data['matched_latent_time'] = np.repeat(np.nan, tot_ema) remaining_latent_times = copy.deepcopy(all_latent_times) remaining_latent_times = np.sort(remaining_latent_times) for i in range(0, tot_ema): current_lb = self.observed_data['assessment_begin_shifted'][i] current_ub = self.observed_data['assessment_begin'][i] #current_assessment_type = self.observed_data['assessment_type'][i] which_within = (remaining_latent_times >= 0) & (remaining_latent_times < current_ub) if np.sum(which_within)>0: which_idx = np.where(which_within) matched_idx = np.max(which_idx) matched_latent_time = remaining_latent_times[matched_idx] self.observed_data['matched_latent_time'][i] = matched_latent_time remaining_latent_times = np.delete(remaining_latent_times, matched_idx) remaining_latent_times = np.sort(remaining_latent_times) else: # This case can occur when between time 0 and time t there is no # latent smoking time, but a self-report occurred between time 0 and time t # This case may happen after a dumb death move self.observed_data['matched_latent_time'][i] = np.nan else: self.observed_data['matched_latent_time'] = np.array([]) def calc_loglik(self): ''' Call the method calc_loglik after the method match has been called Calculate loglikelihood corresponding to self report EMA subcomponent ''' # Inputs to be checked -------------------------------------------- all_latent_times = np.sort(self.latent_data['hours_since_start_day']) tot_latent_events = len(all_latent_times) if len(self.observed_data['assessment_type']) == 0: tot_sr = 0 else: # Total number of Self-Report tot_sr = np.sum(self.observed_data['assessment_type']=='selfreport') # Specify parameter values ---------------------------------------- lambda_delay = self.params['lambda_delay'] use_scale = self.params['sd'] prob_reporting_when_any = self.params['prob_reporting_when_any'] prob_reporting_when_none = self.params['prob_reporting_when_none'] if tot_latent_events == 0 and tot_sr > 0 : # Note: in this case, any Self-Report EMA cannot be matched to a latent smoking time # This case could happen if, for example, previous move might have been a 'death' # but participant initiated at least one self-report. # Assume that participant can lie/misremember when they Self-Report total_lik = prob_reporting_when_none**tot_sr total_loglik = np.log(total_lik) elif tot_latent_events > 0 and tot_sr == 0: # Note: in this case, latent smoking times exist but they were not reported in a Self Report EMA # This case could happen if, for example, previous move might have been a 'birth' # but there was no self-report observed. # Assume that participant does not lie when they Self-Report # However, participant may neglect to Self-Report a smoking incident # for example, due to burden total_lik = (1 - prob_reporting_when_any)**tot_latent_events total_loglik = np.log(total_lik) elif tot_latent_events > 0 and tot_sr > 0: total_loglik = 0 # Subcomponent due to delay --------------------------------------- self.observed_data['delay'] = self.observed_data['assessment_begin'] - self.observed_data['matched_latent_time'] total_loglik += tot_sr * np.log(lambda_delay) - lambda_delay * np.nansum(self.observed_data['delay']) # Subcomponent due to recall -------------------------------------- tot_ema = len(self.observed_data['assessment_order']) self.observed_data['prob_bk'] = np.repeat(np.nan, tot_ema) self.observed_data['log_prob_bk'] = np.repeat(np.nan, tot_ema) tot_sr_with_matched = 0 for i in range(0, tot_ema): if self.observed_data['assessment_type'][i]=='selfreport': current_lb = self.observed_data['assessment_begin_shifted'][i] current_ub = self.observed_data['assessment_begin'][i] curr_matched_time = self.observed_data['matched_latent_time'][i] # Check: Is current Self-Report EMA matched to any latent smoking time? if np.isnan(curr_matched_time): # Current Self-Report EMA is NOT matched to any latent smoking time self.observed_data['prob_bk'][i] = prob_reporting_when_none self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) else: # Current Self-Report EMA is matched to a latent smoking time tot_sr_with_matched += 1 # update counter # Calculate numerator of bk windowtag = self.observed_data['windowtag'][i] # Note: each value of windowtag corresponds to a response option in hours # use_this_window_max will be based on time when prevous EMA was delivered use_this_window_min = {1: 0/60, 2: 5/60, 3: 15/60, 4: 30/60} use_this_window_max = {1: 5/60, 2: 15/60, 3: 30/60, 4: np.nan} # upper limit of integration current_uk = self.observed_data['assessment_begin'][i] - use_this_window_min[windowtag] if windowtag == 4: if self.observed_data['assessment_begin_shifted'][i] > current_uk: current_lk = self.observed_data['assessment_begin_shifted'][i] - 24 # subtract 24 hours else: current_lk = self.observed_data['assessment_begin_shifted'][i] else: current_lk = self.observed_data['assessment_begin'][i] - use_this_window_max[windowtag] # Calculate denominator of bk if current_lk <= current_lb: total_prob_constrained_lb = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) else: total_prob_constrained_lb = norm.cdf(x = current_lb, loc = curr_matched_time, scale = use_scale) total_prob_constrained_ub = norm.cdf(x = current_ub, loc = curr_matched_time, scale = use_scale) tot_prob_constrained = total_prob_constrained_ub - total_prob_constrained_lb prob_constrained_lk = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) prob_constrained_uk = norm.cdf(x = current_uk, loc = curr_matched_time, scale = use_scale) if (prob_constrained_uk - prob_constrained_lk) == tot_prob_constrained: self.observed_data['prob_bk'][i] = (current_uk - current_lk)/(current_ub - current_lb) self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) else: self.observed_data['prob_bk'][i] = (prob_constrained_uk - prob_constrained_lk)/tot_prob_constrained self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) # We have already exited the for loop total_loglik += np.nansum(self.observed_data['log_prob_bk']) # Subcomponent due to propensity to self-report total_loglik += tot_sr_with_matched * np.log(prob_reporting_when_any) + (tot_latent_events - tot_sr_with_matched) * np.log(1-prob_reporting_when_any) else: #tot_latent_events == 0 and tot_sr == 0: total_lik = 1 total_loglik = np.log(total_lik) return total_loglik # %% class RandomEMA: def __init__(self, participant = None, day = None, latent_data = None, observed_data = None, params = None, index = None): self.participant = participant self.day = day self.latent_data = copy.deepcopy(latent_data) self.observed_data = copy.deepcopy(observed_data) self.params = copy.deepcopy(params) self.index = index def update_params(self, new_params): ''' Update parameters ''' self.params = copy.deepcopy(new_params) def match(self): ''' Matches each EMA with one latent smoking time occurring before the Random EMA After a latent smoking time is matched, it is removed ''' # Inputs to be checked -------------------------------------------- all_latent_times = self.latent_data['hours_since_start_day'] tot_ema = len(self.observed_data['assessment_type']) if tot_ema > 0: self.observed_data['matched_latent_time'] = np.repeat(np.nan, tot_ema) remaining_latent_times = copy.deepcopy(all_latent_times) remaining_latent_times = np.sort(remaining_latent_times) for i in range(0, tot_ema): current_lb = self.observed_data['assessment_begin_shifted'][i] current_ub = self.observed_data['assessment_begin'][i] #current_assessment_type = self.observed_data['assessment_type'][i] which_within = (remaining_latent_times >= 0) & (remaining_latent_times < current_ub) if np.sum(which_within)>0: which_idx = np.where(which_within) matched_idx = np.max(which_idx) matched_latent_time = remaining_latent_times[matched_idx] self.observed_data['matched_latent_time'][i] = matched_latent_time remaining_latent_times = np.delete(remaining_latent_times, matched_idx) remaining_latent_times = np.sort(remaining_latent_times) else: # This case can occur when between time 0 and time t there is no # latent smoking time, but a self-report occurred between time 0 and time t # This case may happen after a dumb death move self.observed_data['matched_latent_time'][i] = np.nan else: self.observed_data['matched_latent_time'] = np.array([]) def calc_loglik(self): ''' Call the method calc_loglik after the method match has been called Calculate loglikelihood corresponding to Random EMA subcomponent ''' use_scale = self.params['sd'] prob_reporting_when_any = self.params['prob_reporting_when_any'] prob_reporting_when_none = self.params['prob_reporting_when_none'] all_latent_times = np.sort(self.latent_data['hours_since_start_day']) tot_latent_events = len(all_latent_times) tot_ema = len(self.observed_data['assessment_type']) if tot_ema == 0: tot_random_ema = 0 else: tot_random_ema = np.sum(self.observed_data['assessment_type']=='random_ema') self.observed_data['prob_bk'] = np.repeat(np.nan, tot_ema) self.observed_data['log_prob_bk'] = np.repeat(np.nan, tot_ema) if tot_random_ema > 0: total_loglik = 0 # Note: each value of windowtag corresponds to a response option in hours # use_this_window_max will be based on time when prevous EMA was delivered use_this_window_min = {1: 0/60, 2: 20/60, 3: 40/60, 4: 60/60, 5: 80/60, 6: 100/60} use_this_window_max = {1: 20/60, 2: 40/60, 3: 60/60, 4: 80/60, 5: 100/60, 6: np.nan} for i in range(0, tot_ema): if (self.observed_data['assessment_type'][i]=='random_ema') and (self.observed_data['smoke'][i]=='Yes'): curr_matched_time = self.observed_data['matched_latent_time'][i] if np.isnan(curr_matched_time): self.observed_data['prob_bk'][i] = prob_reporting_when_none # i.e., prob of reporting when no latent smoking time can be matched self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) total_loglik += self.observed_data['log_prob_bk'][i] else: current_lb = self.observed_data['assessment_begin_shifted'][i] current_ub = self.observed_data['assessment_begin'][i] windowtag = self.observed_data['windowtag'][i] # upper limit of integration current_uk = self.observed_data['assessment_begin'][i] - use_this_window_min[windowtag] # lower limit of integration if windowtag == 6: if self.observed_data['assessment_begin_shifted'][i] > current_uk: current_lk = self.observed_data['assessment_begin_shifted'][i] - 24 # subtract 24 hours else: current_lk = self.observed_data['assessment_begin_shifted'][i] else: current_lk = self.observed_data['assessment_begin'][i] - use_this_window_max[windowtag] if (current_lk <= current_lb and current_uk <= current_lb): # i.e., the upper bound and lower bound of the recalled smoking time both come before current_lb # adding a point to this region should be a very unlikely occurrence total_prob_constrained_lb = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) # note that x = current_lk total_prob_constrained_ub = norm.cdf(x = current_ub, loc = curr_matched_time, scale = use_scale) tot_prob_constrained = total_prob_constrained_ub - total_prob_constrained_lb prob_constrained_lk = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) prob_constrained_uk = norm.cdf(x = current_uk, loc = curr_matched_time, scale = use_scale) if (prob_constrained_uk - prob_constrained_lk) == tot_prob_constrained: self.observed_data['prob_bk'][i] = (current_uk - current_lk)/(current_ub - current_lb) self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) total_loglik += self.observed_data['log_prob_bk'][i] total_loglik += np.log(prob_reporting_when_any) else: self.observed_data['prob_bk'][i] = (prob_constrained_uk - prob_constrained_lk)/tot_prob_constrained self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) total_loglik += self.observed_data['log_prob_bk'][i] total_loglik += np.log(prob_reporting_when_any) elif (current_lk <= current_lb and current_uk > current_lb): # i.e., the lower bound of the recalled smoking time come before current_lb # but the upper bound comes after current_lb total_prob_constrained_lb = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) # note that x = current_lk total_prob_constrained_ub = norm.cdf(x = current_ub, loc = curr_matched_time, scale = use_scale) tot_prob_constrained = total_prob_constrained_ub - total_prob_constrained_lb prob_constrained_lk = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) prob_constrained_uk = norm.cdf(x = current_uk, loc = curr_matched_time, scale = use_scale) if (prob_constrained_uk - prob_constrained_lk) == tot_prob_constrained: self.observed_data['prob_bk'][i] = (current_uk - current_lk)/(current_ub - current_lb) self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) total_loglik += self.observed_data['log_prob_bk'][i] total_loglik += np.log(prob_reporting_when_any) else: self.observed_data['prob_bk'][i] = (prob_constrained_uk - prob_constrained_lk)/tot_prob_constrained self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) total_loglik += self.observed_data['log_prob_bk'][i] total_loglik += np.log(prob_reporting_when_any) elif (current_lk >= current_lb and current_uk >= current_lb): total_prob_constrained_lb = norm.cdf(x = current_lb, loc = curr_matched_time, scale = use_scale) total_prob_constrained_ub = norm.cdf(x = current_ub, loc = curr_matched_time, scale = use_scale) tot_prob_constrained = total_prob_constrained_ub - total_prob_constrained_lb prob_constrained_lk = norm.cdf(x = current_lk, loc = curr_matched_time, scale = use_scale) prob_constrained_uk = norm.cdf(x = current_uk, loc = curr_matched_time, scale = use_scale) if (prob_constrained_uk - prob_constrained_lk) == tot_prob_constrained: self.observed_data['prob_bk'][i] = (current_uk - current_lk)/(current_ub - current_lb) self.observed_data['log_prob_bk'][i] = np.log(self.observed_data['prob_bk'][i]) total_loglik += self.observed_data['log_prob_bk'][i] total_loglik += np.log(prob_reporting_when_any) else: self.observed_data['prob_bk'][i] = (prob_constrained_uk - prob_constrained_lk)/tot_prob_constrained self.observed_data['log_prob_bk'][i] =
np.log(self.observed_data['prob_bk'][i])
numpy.log
import numpy as np from timeit import default_timer as timer import time import math import transformations as tf import cv2 import threading # limit for averaging ALLOW_LIMIT = 12 class Markers(): def __init__(self, MARKER_SIDE, getCoords_event): # intiialise arrays self.ids = [] self.tvec_origin = [] self.rvec_origin = [] self.dRot = [] self.angle_origin = np.zeros((1,3)) self.height_origin = 0 # for filtering values self.allow_use = [] self.tvec_max = [] self.tvec_min = [] # the first markers orientation self.orientation = np.zeros((2,3)) # for logging self.OpenedFile=False # for data collection self.getCoords_event = getCoords_event # Append marker to the list of stered markers def appendMarker(self, seen_id_list, tvec, rvec, angles, tof): for n_id in seen_id_list: n_index = seen_id_list.index(n_id) if n_id == 1 and len(self.ids) == 0: # add the first marker as origin self.ids.append(n_id) self.tvec_origin.append(np.array([[0,0,0]])) self.rvec_origin.append(rvec[n_index]) self.dRot.append(np.array([[1,0,0],[0,1,0],[0,0,1]])) self.allow_use.append(ALLOW_LIMIT) self.tvec_max.append(0) self.tvec_min.append(10000) self.angle_origin = angles self.height_origin = abs(tof) rvec_Euler = tf.rotationVectorToEulerAngles(rvec[n_index])*180/math.pi # determine orientation orig_type = "?" if abs(rvec_Euler[0][0]) <= 150: # horizontal self.orientation = np.array([[1, 1, 1],[0, 1, 2]]) orig_type = "Horizontal" elif abs(rvec_Euler[0][0]) > 150: # vertical self.orientation = np.array([[1, -1, 1],[0, 2, 1]]) orig_type = "Vertical" #print(self.orientation) print(orig_type + " origin set") elif n_id not in self.ids and len(self.ids) > 0 and len(seen_id_list) >= 2: # append new marker to lists with dummy values self.ids.append(n_id) self.tvec_origin.append(np.array([[0, 0, 0]])) self.rvec_origin.append(np.array([[0, 0, 0]])) self.dRot.append(np.array([[0,0,0],[0,0,0],[0,0,0]])) self.allow_use.append(0) self.tvec_max.append(0) self.tvec_min.append(10000) for m_id in seen_id_list: if m_id in self.ids and m_id != n_id and self.allow_use[self.ids.index(m_id)]==ALLOW_LIMIT: # n is to be added, m is already in list m_index = seen_id_list.index(m_id) m_index_list = self.ids.index(m_id) n_index_list = self.ids.index(n_id) # calculate needed matrix transformations t, R, r, a, ma, mi = tf.getTransformations(n_id, tvec[m_index], tvec[n_index], rvec[m_index], rvec[n_index], self.tvec_origin[m_index_list], self.tvec_origin[n_index_list], self.rvec_origin[m_index_list], self.rvec_origin[n_index_list], self.dRot[m_index_list], self.dRot[n_index_list], self.allow_use[n_index_list], ALLOW_LIMIT, self.tvec_max[n_index_list], self.tvec_min[n_index_list]) self.tvec_origin[n_index_list] = t self.dRot[n_index_list] = R self.rvec_origin[n_index_list] = r self.allow_use[n_index_list] = a self.tvec_max[n_index_list] = ma self.tvec_min[n_index_list] = mi break elif n_id in self.ids and self.allow_use[self.ids.index(n_id)]<ALLOW_LIMIT: # marker can be used only after ALLOW_LIMIT has been reached for m_id in seen_id_list: if m_id in self.ids and m_id != n_id and self.allow_use[self.ids.index(m_id)]==ALLOW_LIMIT: # n is to be added, m is already in list m_index = seen_id_list.index(m_id) m_index_list = self.ids.index(m_id) n_index_list = self.ids.index(n_id) # calculate needed matrix transformations t, R, r, a, ma, mi = tf.getTransformations(n_id, tvec[m_index], tvec[n_index], rvec[m_index], rvec[n_index], self.tvec_origin[m_index_list], self.tvec_origin[n_index_list], self.rvec_origin[m_index_list], self.rvec_origin[n_index_list], self.dRot[m_index_list], self.dRot[n_index_list], self.allow_use[n_index_list], ALLOW_LIMIT, self.tvec_max[n_index_list], self.tvec_min[n_index_list]) self.tvec_origin[n_index_list] = t self.dRot[n_index_list] = R self.rvec_origin[n_index_list] = r self.allow_use[n_index_list] = a self.tvec_max[n_index_list] = ma self.tvec_min[n_index_list] = mi break # Calculate camera pose from seen markers def getCoords(self, seen_id_list, tvecs, rvecs, angles): length = len(seen_id_list) len_diff = 0 dtv =
np.zeros((1,3))
numpy.zeros
""" jsaavedr, 2020 This is a simple version of train.py. To use train.py, you will require to set the following parameters : * -config : A configuration file where a set of parameters for data construction and training is defined. * -name: The section name in the configuration file. * -mode: [train, test] for training, testing, or showing variables of the current model. By default this is set to 'train' * -save: Set true for saving the model """ import pathlib import sys sys.path.append('/home/jsaavedr/Research/git/tensorflow-2/convnet2') sys.path.append(str(pathlib.Path().absolute())) import tensorflow as tf from models import vae import datasets.data as data import utils.configuration as conf import utils_vae.losses as losses import utils_vae.parsers as parsers import utils.imgproc as imgproc import numpy as np import argparse import os import matplotlib.pyplot as plt if __name__ == '__main__' : parser = argparse.ArgumentParser(description = "Train a simple mnist model") parser.add_argument("-config", type = str, help = "<str> configuration file", required = True) parser.add_argument("-name", type=str, help=" name of section in the configuration file", required = True) parser.add_argument("-mode", type=str, choices=['train', 'test', 'predict'], help=" train or test", required = False, default = 'train') parser.add_argument("-save", type=lambda x: (str(x).lower() == 'true'), help=" True to save the model", required = False, default = False) pargs = parser.parse_args() configuration_file = pargs.config configuration = conf.ConfigurationFile(configuration_file, pargs.name) if pargs.mode == 'train' : tfr_train_file = os.path.join(configuration.get_data_dir(), "train.tfrecords") if pargs.mode == 'train' or pargs.mode == 'test': tfr_test_file = os.path.join(configuration.get_data_dir(), "test.tfrecords") if configuration.use_multithreads() : if pargs.mode == 'train' : tfr_train_file=[os.path.join(configuration.get_data_dir(), "train_{}.tfrecords".format(idx)) for idx in range(configuration.get_num_threads())] if pargs.mode == 'train' or pargs.mode == 'test': tfr_test_file=[os.path.join(configuration.get_data_dir(), "test_{}.tfrecords".format(idx)) for idx in range(configuration.get_num_threads())] sys.stdout.flush() mean_file = os.path.join(configuration.get_data_dir(), "mean.dat") shape_file = os.path.join(configuration.get_data_dir(),"shape.dat") # input_shape = np.fromfile(shape_file, dtype=np.int32) print(input_shape) mean_image =
np.fromfile(mean_file, dtype=np.float32)
numpy.fromfile
""" Represent a triangulated surface using a 3D boolean grid""" import logging import numpy as np from rpl.tools.ray_tracing.bsp_tree_poly import BSP_Element from rpl.tools.geometry import geom_utils import data_io class BSP_Grid(object): def __init__(self, node_array, tris, allocate_step=100000): """ Store the triangles with an enumeration so that even when they are subdivided their identity is not lost. """ tri_nums = np.arange(len(tris), dtype=np.int32).reshape((len(tris), 1)) minus_ones = -np.ones((len(tris), 6), dtype=np.int32) self.tris = np.hstack((tris, minus_ones, tri_nums)) self.allocate_step = allocate_step self.node_array = node_array # Reference to the full list of nodes self._resize() self.next_free = len(node_array) self.split_cache = np.zeros(len(self.tris), dtype=np.int32) def _resize(self): """ Increase node array size by the allocate_step amount. """ self.array_size = len(self.node_array) + self.allocate_step self.node_array = np.concatenate((self.node_array, np.zeros((self.allocate_step, 3)))) def add_node(self, node): """ Adds a new node to the end of the node array (expanding if required). Returns the index of the newly added node. """ if self.next_free == self.array_size: self._resize() self.node_array[self.next_free] = node self.next_free += 1 return self.next_free - 1 def prepare_add(self, num_add_nodes): """ Make sure that ``num_add_nodes`` can be added later without needing a resize. Useful if adding nodes from within cython where resizing is tricky. """ if self.next_free + num_add_nodes >= self.array_size: self._resize() return self.next_free def make_grid(veh_surfs, settings): """ Make coordinates of voxelated grid based on overall list of vehicle surfaces """ ## Find overall bounding box x_min, x_max = 1e30, -1e30 y_min, y_max = 1e30, -1e30 z_min, z_max = 1e30, -1e30 for key, veh_surf in veh_surfs.items(): x_min, x_max = min(x_min, np.min(veh_surf["x"])), max(x_max, np.max(veh_surf["x"])) y_min, y_max = min(y_min, np.min(veh_surf["y"])), max(y_max, np.max(veh_surf["y"])) z_min, z_max = min(z_min, np.min(veh_surf["z"])), max(z_max, np.max(veh_surf["z"])) x_min, x_max = x_min - settings["voxel_size"], x_max + settings["voxel_size"] y_min, y_max = y_min - settings["voxel_size"], y_max + settings["voxel_size"] z_min, z_max = z_min - settings["voxel_size"], z_max + settings["voxel_size"] ########################################### # Create the uniformly spaced grid points x_grid = np.arange(x_min, x_max + settings["voxel_size"], settings["voxel_size"]) y_grid = np.arange(y_min, y_max + settings["voxel_size"], settings["voxel_size"]) z_grid = np.arange(z_min, z_max + settings["voxel_size"], settings["voxel_size"]) return x_grid, y_grid, z_grid def convert_geom(veh_surf, tr_mat): """ Rotate nodes using provided transformation matrix; convert xyz node dict to nodes array """ veh_surf["nodes"] = np.vstack((veh_surf["x"], veh_surf["y"], veh_surf["z"])).T veh_surf['nodes'] = np.dot(veh_surf['nodes'], tr_mat[:3, :3]) veh_surf["x"] = veh_surf['nodes'][:, 0] veh_surf["y"] = veh_surf['nodes'][:, 1] veh_surf["z"] = veh_surf['nodes'][:, 2] return veh_surf def find_occupied_voxels(surf, surf_mask, voxel_data): """ Voxels with any triangle from ``surf`` are considered occupied and or'ed with ``group_mask``. If the supplied ``occupied_voxels`` is None a voxel array is created and returned. """ nodes = surf["nodes"] tris = surf["tris"] x_pts, y_pts, z_pts = [voxel_data[k] for k in ("x_grid", "y_grid", "z_grid")] vox_size = voxel_data["vox_size"] ## Find the local extents of this part min_x, max_x = np.min(surf["x"]) - vox_size, np.max(surf["x"]) + vox_size min_y, max_y = np.min(surf["y"]) - vox_size, np.max(surf["y"]) + vox_size min_z, max_z = np.min(surf["z"]) - vox_size,
np.max(surf["z"])
numpy.max
import numpy as np from scipy.optimize import minimize import warnings import properties from ....utils.code_utils import deprecate_class from ....utils import mkvc, sdiag, Zero from ...base import BaseEMSimulation from ....data import Data from .survey import Survey from .fields_2d import Fields2D, Fields2DCellCentered, Fields2DNodal from .fields import FieldsDC, Fields3DCellCentered, Fields3DNodal from .utils import _mini_pole_pole from scipy.special import k0e, k1e, k0 from discretize.utils import make_boundary_bool class BaseDCSimulation2D(BaseEMSimulation): """ Base 2.5D DC problem """ survey = properties.Instance("a DC survey object", Survey, required=True) storeJ = properties.Bool("store the sensitivity matrix?", default=False) nky = properties.Integer( "Number of kys to use in wavenumber space", required=False, default=11 ) fieldsPair = Fields2D # SimPEG.EM.Static.Fields_2D fieldsPair_fwd = FieldsDC # there's actually nT+1 fields, so we don't need to store the last one _Jmatrix = None fix_Jmatrix = False _mini_survey = None def __init__(self, *args, **kwargs): miniaturize = kwargs.pop("miniaturize", False) do_trap = kwargs.pop("do_trap", False) super().__init__(*args, **kwargs) if not do_trap: # try to find an optimal set of quadrature points and weights def get_phi(r): e = np.ones_like(r) def phi(k): # use log10 transform to enforce positivity k = 10 ** k A = r[:, None] * k0(r[:, None] * k) v_i = A @ np.linalg.solve(A.T @ A, A.T @ e) dv = (e - v_i) / len(r) return np.linalg.norm(dv) def g(k): A = r[:, None] * k0(r[:, None] * k) return np.linalg.solve(A.T @ A, A.T @ e) return phi, g # find the minimum cell spacing, and the maximum side of the mesh min_r = min(*[np.min(h) for h in self.mesh.h]) max_r = max(*[np.sum(h) for h in self.mesh.h]) # generate test points log spaced between these two end members rs = np.logspace(np.log10(min_r / 4), np.log10(max_r * 4), 100) min_rinv = -np.log10(rs).max() max_rinv = -np.log10(rs).min() # a decent initial guess of the k_i's for the optimization = 1/rs k_i = np.linspace(min_rinv, max_rinv, self.nky) # these functions depend on r, so grab them func, g_func = get_phi(rs) # just use scipy's minimize for ease out = minimize(func, k_i) if self.verbose: print(f"optimized ks converged? : {out['success']}") print(f"Estimated transform Error: {out['fun']}") # transform the solution back to normal points points = 10 ** out["x"] # transform has a 2/pi and we want 1/pi, so divide by 2 weights = g_func(points) / 2 if not out["success"]: warnings.warn( "Falling back to trapezoidal for integration. " "You may need to change nky." ) do_trap = True if do_trap: if self.verbose: print("doing trap") y = 0.0 points = np.logspace(-4, 1, self.nky) dky = np.diff(points) / 2 weights = np.r_[dky, 0] + np.r_[0, dky] weights *= np.cos(points * y) # *(1.0/np.pi) # assume constant value at 0 frequency? weights[0] += points[0] / 2 * (1.0 + np.cos(points[0] * y)) weights /= np.pi self._quad_weights = weights self._quad_points = points self.Ainv = [None for i in range(self.nky)] self.nT = self.nky - 1 # Only for using TimeFields # Do stuff to simplify the forward and JTvec operation if number of dipole # sources is greater than the number of unique pole sources if miniaturize: self._dipoles, self._invs, self._mini_survey = _mini_pole_pole(self.survey) def fields(self, m): if self.verbose: print(">> Compute fields") if m is not None: self.model = m if self.Ainv[0] is not None: for i in range(self.nky): self.Ainv[i].clean() f = self.fieldsPair(self) kys = self._quad_points f._quad_weights = self._quad_weights for iky, ky in enumerate(kys): A = self.getA(ky) if self.Ainv[iky] is not None: self.Ainv[iky].clean() self.Ainv[iky] = self.solver(A, **self.solver_opts) RHS = self.getRHS(ky) u = self.Ainv[iky] * RHS f[:, self._solutionType, iky] = u return f def fields_to_space(self, f, y=0.0): f_fwd = self.fieldsPair_fwd(self) phi = f[:, self._solutionType, :].dot(self._quad_weights) f_fwd[:, self._solutionType] = phi return f_fwd def dpred(self, m=None, f=None): """ Project fields to receiver locations :param Fields u: fields object :rtype: numpy.ndarray :return: data """ if f is None: if m is None: m = self.model f = self.fields(m) weights = self._quad_weights if self._mini_survey is not None: survey = self._mini_survey else: survey = self.survey temp = np.empty(survey.nD) count = 0 for src in survey.source_list: for rx in src.receiver_list: d = rx.eval(src, self.mesh, f).dot(weights) temp[count : count + len(d)] = d count += len(d) return self._mini_survey_data(temp) def getJ(self, m, f=None): """ Generate Full sensitivity matrix """ if self._Jmatrix is not None: return self._Jmatrix else: if self.verbose: print("Calculating J and storing") self.model = m if f is None: f = self.fields(m) self._Jmatrix = (self._Jtvec(m, v=None, f=f)).T return self._Jmatrix def Jvec(self, m, v, f=None): """ Compute sensitivity matrix (J) and vector (v) product. """ if self.storeJ: J = self.getJ(m, f=f) Jv = mkvc(np.dot(J, v)) return Jv self.model = m if f is None: f = self.fields(m) if self._mini_survey is not None: survey = self._mini_survey else: survey = self.survey kys = self._quad_points weights = self._quad_weights Jv = np.zeros(survey.nD) # Assume y=0. # This needs some thoughts to implement in general when src is dipole # TODO: this loop is pretty slow .. (Parellize) for iky, ky in enumerate(kys): u_ky = f[:, self._solutionType, iky] count = 0 for i_src, src in enumerate(survey.source_list): u_src = u_ky[:, i_src] dA_dm_v = self.getADeriv(ky, u_src, v, adjoint=False) # dRHS_dm_v = self.getRHSDeriv(ky, src, v) = 0 du_dm_v = self.Ainv[iky] * (-dA_dm_v) # + dRHS_dm_v) for rx in src.receiver_list: df_dmFun = getattr(f, "_{0!s}Deriv".format(rx.projField), None) df_dm_v = df_dmFun(iky, src, du_dm_v, v, adjoint=False) Jv1_temp = rx.evalDeriv(src, self.mesh, f, df_dm_v) # Trapezoidal intergration Jv[count : count + len(Jv1_temp)] += weights[iky] * Jv1_temp count += len(Jv1_temp) return self._mini_survey_data(Jv) def Jtvec(self, m, v, f=None): """ Compute adjoint sensitivity matrix (J^T) and vector (v) product. """ if self.storeJ: J = self.getJ(m, f=f) Jtv = mkvc(np.dot(J.T, v)) return Jtv self.model = m if f is None: f = self.fields(m) return self._Jtvec(m, v=v, f=f) def _Jtvec(self, m, v=None, f=None): """ Compute adjoint sensitivity matrix (J^T) and vector (v) product. Full J matrix can be computed by inputing v=None """ kys = self._quad_points weights = self._quad_weights if self._mini_survey is not None: survey = self._mini_survey else: survey = self.survey if v is not None: # Ensure v is a data object. if isinstance(v, Data): v = v.dobs v = self._mini_survey_dataT(v) Jtv = np.zeros(m.size, dtype=float) for iky, ky in enumerate(kys): u_ky = f[:, self._solutionType, iky] count = 0 for i_src, src in enumerate(survey.source_list): u_src = u_ky[:, i_src] df_duT_sum = 0 df_dmT_sum = 0 for rx in src.receiver_list: my_v = v[count : count + rx.nD] count += rx.nD # wrt f, need possibility wrt m PTv = rx.evalDeriv(src, self.mesh, f, my_v, adjoint=True) df_duTFun = getattr(f, "_{0!s}Deriv".format(rx.projField), None) df_duT, df_dmT = df_duTFun(iky, src, None, PTv, adjoint=True) df_duT_sum += df_duT df_dmT_sum += df_dmT ATinvdf_duT = self.Ainv[iky] * df_duT_sum dA_dmT = self.getADeriv(ky, u_src, ATinvdf_duT, adjoint=True) # dRHS_dmT = self.getRHSDeriv(ky, src, ATinvdf_duT, # adjoint=True) du_dmT = -dA_dmT # + dRHS_dmT=0 Jtv += weights[iky] * (df_dmT + du_dmT).astype(float) return mkvc(Jtv) else: # This is for forming full sensitivity matrix Jt = np.zeros((self.model.size, survey.nD), order="F") for iky, ky in enumerate(kys): u_ky = f[:, self._solutionType, iky] istrt = 0 for i_src, src in enumerate(survey.source_list): u_src = u_ky[:, i_src] for rx in src.receiver_list: # wrt f, need possibility wrt m PT = rx.evalDeriv(src, self.mesh, f).toarray().T ATinvdf_duT = self.Ainv[iky] * PT dA_dmT = self.getADeriv(ky, u_src, ATinvdf_duT, adjoint=True) Jtv = -weights[iky] * dA_dmT # RHS=0 iend = istrt + rx.nD if rx.nD == 1: Jt[:, istrt] += Jtv else: Jt[:, istrt:iend] += Jtv istrt += rx.nD return (self._mini_survey_data(Jt.T)).T def getSourceTerm(self, ky): """ takes concept of source and turns it into a matrix """ """ Evaluates the sources, and puts them in matrix form :rtype: (numpy.ndarray, numpy.ndarray) :return: q (nC or nN, nSrc) """ if self._mini_survey is not None: Srcs = self._mini_survey.source_list else: Srcs = self.survey.source_list if self._formulation == "EB": n = self.mesh.nN # return NotImplementedError elif self._formulation == "HJ": n = self.mesh.nC q = np.zeros((n, len(Srcs)), order="F") for i, src in enumerate(Srcs): q[:, i] = src.eval(self) return q @property def deleteTheseOnModelUpdate(self): toDelete = super(BaseDCSimulation2D, self).deleteTheseOnModelUpdate if self.sigmaMap is not None: toDelete += ["_MnSigma", "_MnSigmaDerivMat", "_MccRhoi", "_MccRhoiDerivMat"] if self.fix_Jmatrix: return toDelete if self._Jmatrix is not None: toDelete += ["_Jmatrix"] return toDelete def _mini_survey_data(self, d_mini): if self._mini_survey is not None: out = d_mini[self._invs[0]] # AM out[self._dipoles[0]] -= d_mini[self._invs[1]] # AN out[self._dipoles[1]] -= d_mini[self._invs[2]] # BM out[self._dipoles[0] & self._dipoles[1]] += d_mini[self._invs[3]] # BN else: out = d_mini return out def _mini_survey_dataT(self, v): if self._mini_survey is not None: out = np.zeros(self._mini_survey.nD) # Need to use ufunc.at because there could be repeated indices # That need to be properly handled. np.add.at(out, self._invs[0], v) # AM np.subtract.at(out, self._invs[1], v[self._dipoles[0]]) # AN np.subtract.at(out, self._invs[2], v[self._dipoles[1]]) # BM np.add.at(out, self._invs[3], v[self._dipoles[0] & self._dipoles[1]]) # BN return out else: out = v return out #################################################### # Mass Matrices #################################################### @property def MnSigma(self): """ Node inner product matrix for \\(\\sigma\\). Used in the E-B formulation """ # TODO: only works isotropic sigma if getattr(self, "_MnSigma", None) is None: sigma = self.sigma vol = self.mesh.vol self._MnSigma = sdiag(self.mesh.aveN2CC.T * (vol * sigma)) return self._MnSigma @property def MnSigmaDerivMat(self): """ Derivative of MnSigma with respect to the model """ if getattr(self, "_MnSigmaDerivMat", None) is None: vol = self.mesh.vol self._MnSigmaDerivMat = self.mesh.aveN2CC.T * sdiag(vol) * self.sigmaDeriv return self._MnSigmaDerivMat def MnSigmaDeriv(self, u, v, adjoint=False): """ Derivative of MnSigma with respect to the model times a vector (u) """ if v.ndim > 1: u = u[:, None] if self.storeInnerProduct: if adjoint: return self.MnSigmaDerivMat.T * (u * v) else: return u * (self.MnSigmaDerivMat * v) else: vol = self.mesh.vol if v.ndim > 1: vol = vol[:, None] if adjoint: return self.sigmaDeriv.T * (vol * (self.mesh.aveN2CC * (u * v))) else: dsig_dm_v = self.sigmaDeriv * v return u * (self.mesh.aveN2CC.T * (vol * dsig_dm_v)) @property def MccRhoi(self): """ Cell inner product matrix for \\(\\rho^{-1}\\). Used in the H-J formulation """ # TODO: only works isotropic rho if getattr(self, "_MccRhoi", None) is None: self._MccRhoi = sdiag(self.mesh.vol / self.rho) return self._MccRhoi @property def MccRhoiDerivMat(self): """ Derivative of MccRho with respect to the model """ if getattr(self, "_MccRhoiDerivMat", None) is None: rho = self.rho vol = self.mesh.vol self._MccRhoiDerivMat = sdiag(vol * (-1.0 / rho ** 2)) * self.rhoDeriv return self._MccRhoiDerivMat def MccRhoiDeriv(self, u, v, adjoint=False): """ Derivative of :code:`MccRhoi` with respect to the model. """ if self.rhoMap is None: return Zero() if len(self.rho.shape) > 1: if self.rho.shape[1] > self.mesh.dim: raise NotImplementedError( "Full anisotropy is not implemented for MccRhoiDeriv." ) if self.storeInnerProduct: if adjoint: return self.MccRhoiDerivMat.T * (sdiag(u) * v) else: return sdiag(u) * (self.MccRhoiDerivMat * v) else: vol = self.mesh.vol rho = self.rho if adjoint: return self.rhoDeriv.T * (sdiag(u * vol * (-1.0 / rho ** 2)) * v) else: return (sdiag(u * vol * (-1.0 / rho ** 2))) * (self.rhoDeriv * v) class Simulation2DCellCentered(BaseDCSimulation2D): """ 2.5D cell centered DC problem """ _solutionType = "phiSolution" _formulation = "HJ" # CC potentials means J is on faces fieldsPair = Fields2DCellCentered fieldsPair_fwd = Fields3DCellCentered bc_type = properties.StringChoice( "Type of boundary condition to use for simulation. Note that Robin and Mixed " "are equivalent.", choices=["Dirichlet", "Neumann", "Robin", "Mixed"], default="Robin", ) def __init__(self, mesh, **kwargs): BaseDCSimulation2D.__init__(self, mesh, **kwargs) V = sdiag(self.mesh.cell_volumes) self.Div = V @ self.mesh.face_divergence self.Grad = self.Div.T def getA(self, ky): """ Make the A matrix for the cell centered DC resistivity problem A = D MfRhoI G """ # To handle Mixed boundary condition self.setBC(ky=ky) D = self.Div G = self.Grad if self.bc_type != "Dirichlet": G = G - self._MBC[ky] MfRhoI = self.MfRhoI # Get resistivity rho A = D * MfRhoI * G + ky ** 2 * self.MccRhoi if self.bc_type == "Neumann": A[0, 0] = A[0, 0] + 1.0 return A def getADeriv(self, ky, u, v, adjoint=False): D = self.Div G = self.Grad if self.bc_type != "Dirichlet": G = G - self._MBC[ky] if adjoint: return self.MfRhoIDeriv( G * u.flatten(), D.T * v, adjoint=adjoint ) + ky ** 2 * self.MccRhoiDeriv(u.flatten(), v, adjoint=adjoint) else: return D * self.MfRhoIDeriv( G * u.flatten(), v, adjoint=adjoint ) + ky ** 2 * self.MccRhoiDeriv(u.flatten(), v, adjoint=adjoint) def getRHS(self, ky): """ RHS for the DC problem q """ RHS = self.getSourceTerm(ky) return RHS def getRHSDeriv(self, ky, src, v, adjoint=False): """ Derivative of the right hand side with respect to the model """ # TODO: add qDeriv for RHS depending on m # qDeriv = src.evalDeriv(self, ky, adjoint=adjoint) # return qDeriv return Zero() def setBC(self, ky=None): if self.bc_type == "Dirichlet": return if getattr(self, "_MBC", None) is None: self._MBC = {} if ky in self._MBC: # I have already created the BC matrix for this wavenumber return if self.bc_type == "Neumann": alpha, beta, gamma = 0, 1, 0 else: mesh = self.mesh boundary_faces = mesh.boundary_faces boundary_normals = mesh.boundary_face_outward_normals n_bf = len(boundary_faces) # Top gets 0 Neumann alpha = np.zeros(n_bf) beta = np.ones(n_bf) gamma = 0 # assume a source point at the middle of the top of the mesh middle = np.median(mesh.nodes, axis=0) top_v = np.max(mesh.nodes[:, -1]) source_point = np.r_[middle[:-1], top_v] r_vec = boundary_faces - source_point r = np.linalg.norm(r_vec, axis=-1) r_hat = r_vec / r[:, None] r_dot_n = np.einsum("ij,ij->i", r_hat, boundary_normals) # determine faces that are on the sides and bottom of the mesh... if mesh._meshType.lower() == "tree": not_top = boundary_faces[:, -1] != top_v else: # mesh faces are ordered, faces_x, faces_y, faces_z so... is_b = make_boundary_bool(mesh.shape_faces_y) is_t =
np.zeros(mesh.shape_faces_y, dtype=bool, order="F")
numpy.zeros
# Copyright 2020 <NAME> # Redistribution and use in source and binary forms, with or # without modification, are permitted provided that the following # conditions are met: # 1. Redistributions of source code must retain the above # copyright notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND # CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF # USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED # AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF # THE POSSIBILITY OF SUCH DAMAGE. import numpy as np import matplotlib.pyplot as plt import matplotlib # The SEIHRD class simulates the SEIHRD model # It can either run the simulation as a differential equation # or the simulation as a stochastic process. # For the differential equation it allows computing gradients class SEIHRD: def __init__(self, N=7.6E6, delta_t=0.1, num_sim=1, beta=0.87, alpha=0.192, b=0.87, gamma_0=0.189, lambda_0=0.0264, delta_0=0.002, delta_1=0.031, gamma_1=0.1, Sigma_0=[7.6E6 - 10, 0, 10, 0, 0, 0], k=100, c=3500, d=1000000, mu=0.01, o_1=0, w_0=0): # Paramters: self.N = N # Total population size self.delta_t = delta_t # Time step self.num_sim = num_sim # Number of simulations # (for running as a stochastic process) self.beta = beta # Infection rate (this is the control parameter) self.alpha = alpha # Exposed to infected rate self.gamma_0 = gamma_0 # Enfected to recovered rate self.lambda_0 = lambda_0 # Enfected to hospitalized rate self.gamma_1 = gamma_1 # Hospitalized to recovered rate self.delta_0 = delta_0 # Infected to dead rate self.delta_1 = delta_1 # Hospitalized to dead rate self.k = k # Coefficient for the control cost function self.d = d # Coefficient for the death cost self.c = c # Coefficient for hospitalization cost self.mu = mu # Numerical coefficient for terminal state constraint self.b = b # Base infection rate self.w_0 = w_0 # Vaccination discovery rate self.o_1 = o_1 # Vaccination dispense rate # Initialize the empirical measure for stochastic processes self.m = np.asarray(Sigma_0).reshape((6, 1)) \ * np.ones((1, self.num_sim)) # Initialize the mean field approximation for the differential equation self.mf = np.asarray(Sigma_0) # Initialize the costate # (for computing gradients of the differential equation) self.P = np.zeros(6) # Initialize the cost self.J = np.zeros(num_sim) # Initialize the vaccine variable self.u = np.zeros(num_sim) # update_mf runs a single forward Euler update # for the differential equation def update_mf(self): self.J = self.J + self.delta_t * self.cost() self.mf = self.mf + self.delta_t * self.f() # update_sim runs a single step to simulate # as a stochastic process def update_sim(self): # We simulate each transition by a Poisson random variable a = np.zeros((9, self.num_sim)) a[0] = np.random.poisson( self.delta_t * self.beta * self.m[0] * self.m[2] / self.N, self.num_sim) # I to E a[1] = np.random.poisson( self.delta_t * self.alpha * self.m[1], self.num_sim) # E to I a[2] = np.random.poisson( self.delta_t * self.lambda_0 * self.m[2], self.num_sim) # I to H a[3] = np.random.poisson( self.delta_t * self.gamma_0 * (self.m[2]), self.num_sim) # I to R a[4] = np.random.poisson( self.delta_t * self.delta_0 * (self.m[2]), self.num_sim) # I to D a[5] = np.random.poisson( self.delta_t * self.gamma_1 * self.m[3], self.num_sim) # H to R a[6] = np.random.poisson( self.delta_t * self.delta_1 * (self.m[3]), self.num_sim) # H to D a[7] = np.random.poisson( self.delta_t * self.w_0 * (1 - self.u), self.num_sim) a[8] = np.random.poisson( self.delta_t * self. N * self.o_1 * self.u, self.num_sim) # We make sure we never transition more than population avialable a[0] = np.minimum(a[0], self.m[0]) a[1] = np.minimum(a[1], self.m[1]) a[2] = np.minimum(a[2], self.m[2]) a[3] = np.minimum(a[3], self.m[2] - a[2]) a[4] = np.minimum(a[4], self.m[2] - a[2] - a[3]) a[5] = np.minimum(a[5], self.m[3]) a[6] = np.minimum(a[6], self.m[3] - a[5]) a[7] = np.minimum(a[7], 1) a[8] = np.minimum(a[8], self.m[0] - a[0]) rhs = np.zeros((6, self.num_sim)) rhs[0] = -a[0] - a[8] rhs[1] = a[0] - a[1] rhs[2] = a[1] - a[2] - a[3] - a[4] rhs[3] = a[2] - a[5] - a[6] rhs[4] = a[3] + a[5] rhs[5] = a[4] + a[6] self.J = self.J + self.delta_t * self.cost_sim() self.m = self.m + rhs self.u = self.u + a[7] # update_P computes one backward step of the discretized costate equation def update_P(self): self.P = self.P + self.delta_t * self.grad_H_state() # f is the rhs of the differential equation def f(self): f = np.zeros(6) f[0] = -self.beta * self.mf[0] * self.mf[2] / self.N f[1] = self.beta * self.mf[0] * self.mf[2] / self.N \ - self.alpha * self.mf[1] f[2] = self.alpha * self.mf[1] - \ (self.gamma_0 + self.lambda_0 + self.delta_0) * self.mf[2] f[3] = self.lambda_0 * self.mf[2] - \ (self.gamma_1 + self.delta_1) * self.mf[3] f[4] = self.gamma_0 * self.mf[2] + self.gamma_1 * self.mf[3] f[5] = self.delta_0 * self.mf[2] + self.delta_1 * self.mf[3] return f # compute the gradient with respect to the control variable def grad_f_control(self): grad_f = np.zeros(6) grad_f[0] = - self.mf[0] \ * self.mf[2] / self.N grad_f[1] = self.mf[0] \ * self.mf[2] / self.N return grad_f # compute the Jacobian gradient with respect to the state variables def grad_f_state(self): grad_f = np.zeros((6, 6)) grad_f[0, 0] = -self.beta * self.mf[2] / self.N grad_f[0, 2] = -self.beta * self.mf[0] / self.N grad_f[1, 0] = self.beta * self.mf[2] / self.N grad_f[1, 1] = - self.alpha grad_f[1, 2] = self.beta * self.mf[0] / self.N grad_f[2, 1] = self.alpha grad_f[2, 2] = - (self.gamma_0 + self.lambda_0 + self.delta_0) grad_f[3, 2] = self.lambda_0 grad_f[3, 3] = - (self.gamma_1 + self.delta_1) grad_f[4, 2] = self.gamma_0 grad_f[4, 3] = self.gamma_1 grad_f[5, 2] = self.delta_0 grad_f[5, 3] = self.delta_1 return grad_f # compute the cost for the differential equation def cost(self): cost = - self.k * self.N * \ (np.log(self.beta / self.b) - ( self.beta - self.b) / self.b) \ + self.c * \ (self.mf[3] + 0.5 * self.mf[3] * self.mf[3] / self.N) return cost # compute the cost for the stochastic process def cost_sim(self): cost = - self.k * self.N * \ (
np.log(self.beta / self.b)
numpy.log
#!/usr/bin/env python from __future__ import division __author__ = "<NAME>" __version__ = "2.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "August 2, 2013" import unittest import numpy as np from pyhull.halfspace import Halfspace, HalfspaceIntersection class HalfspaceTest(unittest.TestCase): def test_halfspace(self): h1 = Halfspace.from_hyperplane([[0,1,0], [1,0,0]], [1,1,-100], [2,2,2], True) self.assertTrue(all(h1.normal == [0,0,-1])) self.assertEqual(h1.offset, -100) h2 = Halfspace.from_hyperplane([[0,1,0], [1,0,0]], [1,1,-100], [2,2,2], False) self.assertEqual(h2.offset, 100) def test_intersection(self): h1 = Halfspace.from_hyperplane([[1,0,0], [0,1,0]], [1,1,1], [0.9, 0.9, 0.9], True) h2 = Halfspace.from_hyperplane([[0,1,0], [0,0,1]], [1,1,1], [0.9, 0.9, 0.9], True) h3 = Halfspace.from_hyperplane([[0,0,1], [1,0,0]], [1,1,1], [0.9, 0.9, 0.9], True) h4 = Halfspace.from_hyperplane([[-1,0,1], [0,-1,1]], [1,1,0], [0.9, 0.9, 0.9], True) hi = HalfspaceIntersection([h1, h2, h3, h4], [0.9, 0.9, 0.9]) self.assertTrue(np.allclose(np.sum(hi.vertices, axis = 0), [3,3,3])) h5 = Halfspace.from_hyperplane([[1,0,0], [0,1,0]], [1,2,2], [0.9, 0.9, 0.9], True) hi = HalfspaceIntersection([h5, h2, h3, h4], [0.9, 0.9, 0.9]) self.assertTrue(np.allclose(np.sum(hi.vertices, axis = 0), [2,2,6])) for h, vs in zip(hi.halfspaces, hi.facets_by_halfspace): for v in vs: self.assertAlmostEqual(np.dot(h.normal, hi.vertices[v]) + h.offset, 0) for v, hss in zip(hi.vertices, hi.facets_by_vertex): for i in hss: hs = hi.halfspaces[i] self.assertAlmostEqual(np.dot(hs.normal, v) + hs.offset, 0) def test_intersection2d(self): h1 = Halfspace([1,0], -1) h2 = Halfspace([0,1], 1) h3 = Halfspace([-2,-1], 0) h_redundant = Halfspace([1,0], -2) hi = HalfspaceIntersection([h1, h2, h_redundant, h3], [0.9,-1.1]) for h, vs in zip(hi.halfspaces, hi.facets_by_halfspace): for v in vs: self.assertAlmostEqual(np.dot(h.normal, hi.vertices[v]) + h.offset, 0) for v, hss in zip(hi.vertices, hi.facets_by_vertex): for i in hss: hs = hi.halfspaces[i] self.assertAlmostEqual(np.dot(hs.normal, v) + hs.offset, 0) #redundant halfspace should have no vertices self.assertEqual(len(hi.facets_by_halfspace[2]), 0) self.assertTrue(np.any(np.all(hi.vertices == np.array([1,-2]), axis=1))) self.assertTrue(np.any(np.all(hi.vertices ==
np.array([1,-1])
numpy.array
import StandardBody import numpy as np #File for defining approximate body part filters on the template body #Each one of these filters takes as input a collection of points in millimeters #and filters them down to only those points which lie within the specified body #part boundary def pixelSpaceBodyMask(maskFunc, points): #First, convert the list of points into our #stupid imaginary standard-body pixel-derived coords x_t = StandardBody.xmin y_t = StandardBody.ymin p_t = np.array([x_t, y_t, 0.0]) x_c = StandardBody.xspread / (296.0) y_c = StandardBody.yspread / (430.0) p_c = np.array([x_c, y_c, 1.0]) standardPoints = (np.copy(points) - p_t) / p_c filteredInds = maskFunc(standardPoints) return filteredInds def maskLeftInnerArm(reshaped): relevant = reshaped[:, 0] > 240 relevant_two = reshaped[:, 0] < 220 relevant_three = reshaped[:, 1] > 132 relevant = np.logical_or(relevant, relevant_two) relevant = np.logical_or(relevant, relevant_three) return relevant def maskRightInnerArm(reshaped): relevant = reshaped[:, 0] > 70 relevant_two = reshaped[:, 0] < 50 relevant_three = reshaped[:, 1] > 132 relevant = np.logical_or(relevant, relevant_two) relevant = np.logical_or(relevant, relevant_three) return relevant def maskLeftOuterArm(reshaped): relevant = reshaped[:, 1] > 75 relevant_two = reshaped[:, 1] < 62 relevant_three = reshaped[:, 0] < 245 relevant = np.logical_or(relevant, relevant_two) relevant = np.logical_or(relevant, relevant_three) return relevant def maskRightOuterArm(reshaped): relevant = reshaped[:, 1] > 75 relevant_two = reshaped[:, 1] < 62 relevant_three = reshaped[:, 0] > 40 relevant = np.logical_or(relevant, relevant_two) relevant = np.logical_or(relevant, relevant_three) return relevant def maskLeftUpperLeg(reshaped): relevant = reshaped[:, 0] > 142 relevant_two = reshaped[:, 1] < 290 relevant_three = reshaped[:, 1] > 310 relevant = np.logical_or(relevant, relevant_two) relevant =
np.logical_or(relevant, relevant_three)
numpy.logical_or
from keras.layers import Dense from keras.layers import Reshape, Conv2D, MaxPooling2D, UpSampling2D, Flatten from keras.models import Sequential from keras.datasets import mnist import numpy as np from dehydrated_vae import build_vae #preprocess mnist dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) #create encoder and decoder #NOTE: the encoder does not contain the latent mean/stddev layers latent_size = 2 acti = "tanh" encoder = Sequential([ Dense(256, input_shape=[28 * 28], activation=acti), Dense(128, activation=acti) ]) decoder = Sequential([ Dense(256, input_shape=[latent_size]), Dense(128, activation=acti), Dense(28 * 28, activation="sigmoid") ]) #create the VAE #the encoder will be wrapped in a new model containing the latent mean layer vae, encoder, decoder, loss = \ build_vae(encoder, decoder, latent_size, kl_scale=1/np.prod(x_train.shape[1:])) vae.compile(optimizer="adam", loss=loss) vae.summary() vae.fit(x_train, x_train, epochs=10) ##### import matplotlib.pyplot as plt n = 20 digit_size = 28 figure =
np.zeros((digit_size * n, digit_size * n))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Copyright (c) 2019 by Inria Authored by <NAME> (<EMAIL>) License agreement in LICENSE.txt """ import numpy as np import torch import torch.nn as nn #%% The following implements the MCEM algorithm for audio-only VAE class MCEM_algo: def __init__(self, X=None, W=None, H=None, Z=None, v=None, decoder=None, niter_MCEM=100, niter_MH=40, burnin=30, var_MH=0.01): self.X = X # Mixture STFT, shape (F,N) self.W = W # NMF dictionary matrix, shape (F, K) self.H = H # NMF activation matrix, shape (K, N) self.V = self.W @ self.H # Noise variance, shape (F, N) self.Z = Z # Last draw of the latent variables, shape (D, N) self.decoder = decoder # VAE decoder, keras model self.niter_MCEM = niter_MCEM # Maximum number of MCEM iterations self.niter_MH = niter_MH # Number of iterations for the MH algorithm # of the E-step self.burnin = burnin # Burn-in period for the MH algorithm of the # E-step self.var_MH = var_MH # Variance of the proposal distribution of the MH # algorithm self.a = np.ones((1,self.X.shape[1])) # gain parameters, shape (1,N) # output of the decoder with self.Z as input, shape (F, N) #removed transpose from line below if torch.cuda.is_available(): self.Z_mapped_decoder = self.torch2num_cuda(self.decoder(self.num2torch_cuda(self.Z.T))).T else: self.Z_mapped_decoder = self.torch2num(self.decoder(self.num2torch(self.Z.T))).T self.speech_var = (self.Z_mapped_decoder*self.a) # apply gain def num2torch(self, x): y = torch.from_numpy(x.astype(np.float32)) return y def torch2num(self, x): y = x.detach().numpy() return y def num2torch_cuda(self, x): y = torch.from_numpy(x.astype(np.float32)) return y.cuda() def torch2num_cuda(self, x): y = x.cpu().detach().numpy() return y def metropolis_hastings(self, niter_MH=None, burnin=None): if niter_MH==None: niter_MH = self.niter_MH if burnin==None: burnin = self.burnin F, N = self.X.shape # 258, 124 - power spec dim D = self.Z.shape[0] # 32 - latent dim Z_sampled = np.zeros((D, N, niter_MH - burnin)) # (32, 124, 10) cpt = 0 for n in np.arange(niter_MH): # self.Z - (32, 124) # self.Z_prime - (32, 124) #breakpoint() Z_prime = self.Z + np.sqrt(self.var_MH)*np.random.randn(D,N) if torch.cuda.is_available(): Z_prime_mapped_decoder = self.torch2num_cuda(self.decoder(self.num2torch_cuda(Z_prime.T))).T #(513, 124) #513 - input_dim else: Z_prime_mapped_decoder = self.torch2num(self.decoder(self.num2torch(Z_prime.T))).T #(513, 124) #513 - input_dim # shape (F, N) speech_var_prime = (Z_prime_mapped_decoder*self.a) # apply gain #(513, 124) # self.V and self.speech_var should be of same shape #import pdb; pdb.set_trace() acc_prob = ( np.sum( np.log(self.V + self.speech_var) - np.log(self.V + speech_var_prime) + ( 1/(self.V + self.speech_var) - 1/(self.V + speech_var_prime) ) * np.abs(self.X)**2, axis=0) + .5*np.sum( self.Z**2 - Z_prime**2 , axis=0) ) #import pdb; pdb.set_trace() is_acc = np.log(np.random.rand(1,N)) < acc_prob is_acc = is_acc.reshape((is_acc.shape[1],)) self.Z[:,is_acc] = Z_prime[:,is_acc] if torch.cuda.is_available(): self.Z_mapped_decoder = self.torch2num_cuda(self.decoder(self.num2torch_cuda(self.Z.T))).T else: self.Z_mapped_decoder = self.torch2num(self.decoder(self.num2torch(self.Z.T))).T self.speech_var = self.Z_mapped_decoder*self.a if n > burnin - 1: Z_sampled[:,:,cpt] = self.Z cpt += 1 return Z_sampled def run(self, hop, wlen, win, tol=1e-4): F, N = self.X.shape X_abs_2 = np.abs(self.X)**2 cost_after_M_step = np.zeros((self.niter_MCEM, 1)) for n in np.arange(self.niter_MCEM): # MC-Step # print('Metropolis-Hastings') Z_sampled = self.metropolis_hastings(self.niter_MH, self.burnin) Z_sampled_mapped_decoder =
np.zeros((F, N, self.niter_MH-self.burnin))
numpy.zeros
import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from sklearn.exceptions import NotFittedError from graspy.cluster.gclust import GaussianCluster from graspy.embed.ase import AdjacencySpectralEmbed from graspy.simulations.simulations import sbm def test_inputs(): # Generate random data X = np.random.normal(0, 1, size=(100, 3)) # empty constructor with pytest.raises(TypeError): gclust = GaussianCluster() # min_components < 1 with pytest.raises(ValueError): gclust = GaussianCluster(min_components=0) # min_components integer with pytest.raises(TypeError): gclust = GaussianCluster(min_components="1") # max_components < min_components with pytest.raises(ValueError): gclust = GaussianCluster(min_components=1, max_components=0) # max_components integer with pytest.raises(TypeError): gclust = GaussianCluster(min_components=1, max_components="1") # covariance type is not an array, string or list with pytest.raises(TypeError): gclust = GaussianCluster(min_components=1, covariance_type=1) # covariance type is not in ['spherical', 'diag', 'tied', 'full'] with pytest.raises(ValueError): gclust = GaussianCluster(min_components=1, covariance_type="graspy") # min_cluster > n_samples when max_cluster is None with pytest.raises(ValueError): gclust = GaussianCluster(1000) gclust.fit(X) with pytest.raises(ValueError): gclust = GaussianCluster(1000) gclust.fit_predict(X) # max_cluster > n_samples when max_cluster is not None with pytest.raises(ValueError): gclust = GaussianCluster(10, 1001) gclust.fit(X) with pytest.raises(ValueError): gclust = GaussianCluster(10, 1001) gclust.fit_predict(X) # min_cluster > n_samples when max_cluster is None with pytest.raises(ValueError): gclust = GaussianCluster(1000) gclust.fit(X) with pytest.raises(ValueError): gclust = GaussianCluster(10, 1001) gclust.fit_predict(X) # min_cluster > n_samples when max_cluster is not None with pytest.raises(ValueError): gclust = GaussianCluster(1000, 1001) gclust.fit(X) with pytest.raises(ValueError): gclust = GaussianCluster(1000, 1001) gclust.fit_predict(X) def test_predict_without_fit(): # Generate random data X = np.random.normal(0, 1, size=(100, 3)) with pytest.raises(NotFittedError): gclust = GaussianCluster(min_components=2) gclust.predict(X) def test_no_y(): np.random.seed(2) n = 100 d = 3 X1 = np.random.normal(2, 0.5, size=(n, d)) X2 = np.random.normal(-2, 0.5, size=(n, d)) X = np.vstack((X1, X2)) gclust = GaussianCluster(min_components=5) gclust.fit(X) bics = gclust.bic_ assert_equal(bics.iloc[:, 0].values.argmin(), 1) def test_outputs(): """ Easily separable two gaussian problem. """ np.random.seed(2) n = 100 d = 3 num_sims = 10 for _ in range(num_sims): X1 = np.random.normal(2, 0.5, size=(n, d)) X2 = np.random.normal(-2, 0.5, size=(n, d)) X = np.vstack((X1, X2)) y = np.repeat([0, 1], n) gclust = GaussianCluster(min_components=5) gclust.fit(X, y) bics = gclust.bic_ aris = gclust.ari_ bic_argmin = bics.iloc[:, 0].values.argmin() # Assert that the two cluster model is the best assert_equal(bic_argmin, 1) # The plus one is to adjust the index by min_components assert_allclose(aris.iloc[:, 0][bic_argmin + 1], 1) def test_bic(): """ Expect 3 clusters from a 3 block model """ np.random.seed(3) num_sims = 10 # Generate adjacency and labels n = 50 n_communites = [n, n, n] p = np.array([[0.8, 0.3, 0.2], [0.3, 0.8, 0.3], [0.2, 0.3, 0.8]]) y = np.repeat([1, 2, 3], repeats=n) for _ in range(num_sims): A = sbm(n=n_communites, p=p) # Embed to get latent positions ase = AdjacencySpectralEmbed(n_components=5) X_hat = ase.fit_transform(A) # Compute clusters gclust = GaussianCluster(min_components=10) gclust.fit(X_hat, y) bics = gclust.bic_ aris = gclust.ari_ bic_argmin = bics.iloc[:, 0].values.argmin() assert_equal(2, bic_argmin) # The plus one is to adjust the index by min_components assert_allclose(1, aris.iloc[:, 0][bic_argmin + 1]) def test_covariances(): """ Easily separable two gaussian problem. """
np.random.seed(2)
numpy.random.seed