prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Copyright 2021, Blue Brain Project, EPFL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The fine merging of the annotation atlases.""" import numpy as np from .JSONread import RegionData def explore_voxel(origin, data, count=-1): """Explore a given voxel. Ask Dimitri for more details. Parameters ---------- origin : sequence A triplet with the (x, y, z) coordinates of the origin voxel. data : np.ndarray A 3D array with the volume data. count : int Maximal number of iterations. Returns ------- value : int The value of some voxel in the data volume. """ origin_value = data[origin[0], origin[1], origin[2]] explored = np.zeros(data.shape, dtype=bool) explored[origin[0], origin[1], origin[2]] = True to_explore = [origin] maxx = len(explored) maxy = len(explored[0]) maxz = len(explored[0][0]) while len(to_explore) > 0 and count != 0: current_voxel = to_explore[0] current_value = data[current_voxel[0], current_voxel[1], current_voxel[2]] if current_value != origin_value and current_value != 0: return current_value to_explore = to_explore[1:] for (x, y, z) in [ (-1, 0, 0), (0, -1, 0), (1, 0, 0), (0, 1, 0), (0, 0, -1), (0, 0, 1), ]: new_vox = [current_voxel[0] + x, current_voxel[1] + y, current_voxel[2] + z] if ( 0 <= new_vox[0] < maxx and 0 <= new_vox[1] < maxy and 0 <= new_vox[2] < maxz and not explored[new_vox[0], new_vox[1], new_vox[2]] ): explored[new_vox[0], new_vox[1], new_vox[2]] = True to_explore.append(new_vox) count -= 1 # print("Error", origin) return origin_value def fine_merge(annotation, annotation2, brain_regions): """Perform the coarse atlas merging. Parameters ---------- annotation : np.ndarray The first atlas to merge, usually CCFv2 annotation2 : np.ndarray The second atlas to merge, usually CCFv3 brain_regions : dict The brain regions dictionary. Can be obtained from the "msg" key of the `brain_regions.json` (`1.json`) file. Returns ------- ccfv2_corrected : np.ndarray The merged CCFv2 atlas. ccfv3_corrected : np.ndarray The merged CCFv3 atlas. """ region_data = RegionData(brain_regions) uniques = region_data.find_unique_regions(annotation, top_region_name="root") children, _ = region_data.find_children(uniques) uniques2 = region_data.find_unique_regions(annotation2, top_region_name="root") children2, _ = region_data.find_children(uniques2) ccfv2_corrected = np.copy(annotation) ccfv3_corrected = np.copy(annotation2) ids = np.unique(ccfv2_corrected) ids2 = np.unique(ccfv3_corrected) ids_to_correct = ids[np.in1d(ids, ids2, invert=True)] for id_reg in ids_to_correct: allname = region_data.id_to_region_dictionary_ALLNAME[id_reg] if ( region_data.is_leaf[allname] and id_reg not in ids2 and region_data.region_dictionary_to_id[ region_data.region_dictionary_to_id_parent[ region_data.id_to_region_dictionary[id_reg] ] ] in ids2 ): ccfv2_corrected[ ccfv2_corrected == id_reg ] = region_data.region_dictionary_to_id[ region_data.region_dictionary_to_id_parent[ region_data.id_to_region_dictionary[id_reg] ] ] elif region_data.is_leaf[allname] and ( "Medial amygdalar nucleus" in allname or "Subiculum" in allname or "Bed nuclei of the stria terminalis" in allname ): ccfv2_corrected[ ccfv2_corrected == id_reg ] = region_data.region_dictionary_to_id[ region_data.region_dictionary_to_id_parent[ region_data.region_dictionary_to_id_parent[ region_data.id_to_region_dictionary[id_reg] ] ] ] elif "Paraventricular hypothalamic nucleus" in allname: ccfv2_corrected[ccfv2_corrected == id_reg] = 38 # Hippocampus Field CA2 is strongly different -> merge it with CA1 ccfv2_corrected[ccfv2_corrected == 423] = 382 ccfv3_corrected[ccfv3_corrected == 423] = 382 # Entorhinal area, lateral part ccfv2_corrected[np.where(ccfv2_corrected == 60)] = 28 # L6b -> L6a ccfv2_corrected[np.where(ccfv2_corrected == 999)] = 20 # L2/3 -> L2 # double check? ccfv2_corrected[np.where(ccfv2_corrected == 715)] = 20 # L2a -> L2 ccfv2_corrected[np.where(ccfv2_corrected == 764)] = 20 # L2b -> L2 ccfv2_corrected[np.where(ccfv2_corrected == 92)] = 139 # L4 -> L5 ccfv2_corrected[np.where(ccfv2_corrected == 312)] = 139 # L4/5 -> L5 # Entorhinal area, medial part, dorsal zone ccfv2_corrected[np.where(ccfv2_corrected == 468)] = 543 # L2a -> L2 ccfv2_corrected[np.where(ccfv2_corrected == 508)] = 543 # L2b -> L2 ccfv2_corrected[np.where(ccfv2_corrected == 712)] = 727 # L4 -> L5 # double check? ccfv2_corrected[np.where(ccfv2_corrected == 195)] = 304 # L2 -> L2/3 ccfv2_corrected[np.where(ccfv2_corrected == 524)] = 582 # L2 -> L2/3 ccfv2_corrected[np.where(ccfv2_corrected == 606)] = 430 # L2 -> L2/3 ccfv2_corrected[np.where(ccfv2_corrected == 747)] = 556 # L2 -> L2/3 # subreg of Cochlear nuclei -> Cochlear nuclei ccfv2_corrected[np.where(ccfv2_corrected == 96)] = 607 ccfv2_corrected[np.where(ccfv2_corrected == 101)] = 607 ccfv2_corrected[np.where(ccfv2_corrected == 112)] = 607 ccfv2_corrected[np.where(ccfv2_corrected == 560)] = 607 ccfv3_corrected[np.where(ccfv3_corrected == 96)] = 607 ccfv3_corrected[np.where(ccfv3_corrected == 101)] = 607 # subreg of Nucleus ambiguus -> Nucleus ambiguus ccfv2_corrected[np.where(ccfv2_corrected == 143)] = 135 ccfv2_corrected[np.where(ccfv2_corrected == 939)] = 135 ccfv3_corrected[np.where(ccfv3_corrected == 143)] = 135 ccfv3_corrected[np.where(ccfv3_corrected == 939)] = 135 # subreg of Accessory olfactory bulb -> Accessory olfactory bulb ccfv2_corrected[np.where(ccfv2_corrected == 188)] = 151 ccfv2_corrected[np.where(ccfv2_corrected == 196)] = 151 ccfv2_corrected[np.where(ccfv2_corrected == 204)] = 151 ccfv3_corrected[np.where(ccfv3_corrected == 188)] = 151 ccfv3_corrected[np.where(ccfv3_corrected == 196)] = 151 ccfv3_corrected[np.where(ccfv3_corrected == 204)] = 151 # subreg of Medial mammillary nucleus -> Medial mammillary nucleus ccfv2_corrected[np.where(ccfv2_corrected == 798)] = 491 ccfv3_corrected[np.where(ccfv3_corrected == 798)] = 491 ccfv3_corrected[np.where(ccfv3_corrected == 606826647)] = 491 ccfv3_corrected[np.where(ccfv3_corrected == 606826651)] = 491 ccfv3_corrected[np.where(ccfv3_corrected == 606826655)] = 491 ccfv3_corrected[np.where(ccfv3_corrected == 606826659)] = 491 # Subreg to Dorsal part of the lateral geniculate complex ccfv3_corrected[np.where(ccfv3_corrected == 496345664)] = 170 ccfv3_corrected[np.where(ccfv3_corrected == 496345668)] = 170 ccfv3_corrected[np.where(ccfv3_corrected == 496345672)] = 170 # Subreg to Lateral reticular nucleus ccfv2_corrected[np.where(ccfv2_corrected == 955)] = 235 ccfv2_corrected[np.where(ccfv2_corrected == 963)] = 235 ccfv3_corrected[np.where(ccfv3_corrected == 955)] = 235 ccfv3_corrected[np.where(ccfv3_corrected == 963)] = 235 # subreg of Posterior parietal association areas combined layer by layer ccfv3_corrected[np.where(ccfv3_corrected == 312782550)] = 532 ccfv3_corrected[np.where(ccfv3_corrected == 312782604)] = 532 ccfv3_corrected[np.where(ccfv3_corrected == 312782554)] = 241 ccfv3_corrected[np.where(ccfv3_corrected == 312782608)] = 241 ccfv3_corrected[np.where(ccfv3_corrected == 312782558)] = 635 ccfv3_corrected[np.where(ccfv3_corrected == 312782612)] = 635 ccfv3_corrected[np.where(ccfv3_corrected == 312782562)] = 683 ccfv3_corrected[np.where(ccfv3_corrected == 312782616)] = 683 ccfv3_corrected[np.where(ccfv3_corrected == 312782566)] = 308 ccfv3_corrected[np.where(ccfv3_corrected == 312782620)] = 308 ccfv3_corrected[np.where(ccfv3_corrected == 312782570)] = 340 ccfv3_corrected[np.where(ccfv3_corrected == 312782624)] = 340 # subreg to Parabrachial nucleus ccfv2_corrected[np.where(ccfv2_corrected == 123)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 860)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 868)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 875)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 883)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 891)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 899)] = 867 ccfv2_corrected[np.where(ccfv2_corrected == 915)] = 867 ccfv3_corrected[np.where(ccfv3_corrected == 123)] = 867 for id_reg in np.unique(np.concatenate((ids, ids2)))[1:]: allname = region_data.id_to_region_dictionary_ALLNAME[id_reg] if "Visual areas" in allname: if "ayer 1" in allname: ccfv3_corrected[np.where(ccfv3_corrected == id_reg)] = 801 ccfv2_corrected[np.where(ccfv2_corrected == id_reg)] = 801 elif "ayer 2/3" in allname: ccfv3_corrected[
np.where(ccfv3_corrected == id_reg)
numpy.where
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220':
np.array([-0.24630541996506924, -0.24630541996506994])
numpy.array
import numpy as np import pandas as pd import boto3 from io import BytesIO import librosa from botocore.exceptions import ClientError def call_s3(s3_client, bucket_name, fname, folder='audio_train/'): """Call S3 instance to retrieve data from .wav file(or other format). Assumes file is in folder name path""" try: path = folder + fname except TypeError: return None try: response = s3_client.get_object(Bucket=bucket_name, Key=path) except ClientError as ex: if ex.response['Error']['Code'] == 'NoSuchKey': return dict() data = BytesIO(response['Body'].read()) return data def audio_vectorize(fname, data): """ Analyze audio data in order to extract features for model development. Parameters: fname: (str) data: (_io.BytesIO) Returns: Feature dictionary """ try: y, sr = librosa.load(data, mono=True, duration=10, offset = .5) except RuntimeError: return pd.Series() chroma_stft = np.mean(librosa.feature.chroma_stft(y, sr)) spec_cent = np.mean(librosa.feature.spectral_centroid(y=y, sr=sr)) spec_bw = np.mean(librosa.feature.spectral_bandwidth(y=y, sr=sr)) rolloff = np.mean(librosa.feature.spectral_rolloff(y=y, sr=sr)) zcr = np.mean(librosa.feature.zero_crossing_rate(y)) mfccs = librosa.feature.mfcc(y=y, sr=sr) mfccs =
np.mean(mfccs, axis=1)
numpy.mean
############################################################################################ ### Functions to analyze and plot weight and activity distributions from simulation data ### ############################################################################################ ### Copyright 2019-2021 <NAME> ### licensed under Apache-2.0 (http://www.apache.org/licenses/LICENSE-2.0) from utilityFunctions import * import sys import warnings import os.path import numpy as np from pathlib import Path from subprocess import call # findOverallMinMax # Determines the minimum and maximum values across all data files that are located somewhere in a given directory # and that have the same readout time # nppath: path to the directory to read the data from # Nl_exc: the number of excitatory neurons in one line of a quadratic grid # time_for_readout: the time that at which the weights shall be read out (as a string) # h_0: the initial weight, and normalization factor for z # return: two-dimensional array containing the minimum and maximum values for the four different data types def findOverallMinMax(nppath, Nl_exc, time_for_readout, h_0): sysmin, sysmax = sys.float_info.min, sys.float_info.max (h_min, z_min, w_min, v_min) = (sysmax, sysmax, sysmax, sysmax) # initially, assign the maximum possible value (h_max, z_max, w_max, v_max) = (sysmin, sysmin, sysmin, sysmin) # initially, assign the minimum possible value # recurseFind # Function to recursively move through directories and look for data to find their minima/maxima # path: the directory to iterate through def recurseFindMinMax(path): nonlocal h_min, z_min, w_min, v_min nonlocal h_max, z_max, w_max, v_max rawpaths = Path(path) for x in rawpaths.iterdir(): if x.is_dir(): recurseFindMinMax(x) # if the found file is a directory, recurse into it tmppath = str(x) if ("_net_" + time_for_readout + ".txt") in tmppath: # file containing network simulation data found # read data from file try: connections, h, z, v = readWeightMatrixData(tmppath, Nl_exc) h = h[connections] # reduce h (leave out non-existent synapses) z = h_0*z[connections] # reduce and normalize z w = h + z # compute total synaptic weight except ValueError: raise except OSError: raise # checkAndAdjust # Compares two numbers and returns the larger/lower one, depending on the operator # a: a floating point number # b: a floating point number # op [optional]: the operator to be used # return: the larger/lower one of the two numbers def checkAndAdjust(a, b, op=">"): if b > a: return b if op == ">" else a else: return a if op == ">" else b # adjust maxima h_max = checkAndAdjust(h_max, np.max(h), ">") z_max = checkAndAdjust(z_max, np.max(z), ">") w_max = checkAndAdjust(w_max, np.max(w), ">") v_max = checkAndAdjust(v_max, np.max(v), ">") # adjust minima h_min = checkAndAdjust(h_min, np.min(h), "<") z_min = checkAndAdjust(z_min, np.min(z), "<") w_min = checkAndAdjust(w_min, np.min(w), "<") v_min = checkAndAdjust(v_min, np.min(v), "<") # iterate across files in the directory recurseFindMinMax(nppath) return np.array([[h_min, h_max], [z_min, z_max], [w_min, w_max], [v_min, v_max]]) # plotDistributions # Creates data and plot files of the weight and activity distribution at a given time # nppath: path to the directory to read the data from # timestamp: a string containing date and time (to access correct paths) OR equal to "any" # add: additional descriptor # Nl_exc: the number of excitatory neurons in one line of a quadratic grid # time_for_readout: the time that at which the weights shall be read out (as a string) # core: array of indices of the cell assembly (core) neurons # h_0 [optional]: the initial weight, and normalization factor for z # norm_all [optional]: specifies whether to normalize across all subpopulations (True) or across each subpop. individually (False) # - the first is recommendable if samples of different subpopulations are compared against each other, # the latter is recommendable if different samples of the same subpopulation are compared # bins [optional]: list of four arrays, each containing the bins for one of the four quantities def plotDistributions(nppath, timestamp, add, Nl_exc, time_for_readout, core, h_0=0.420075, norm_all=False, bins=None): orgdir = os.getcwd() # store the current working directory # "any" case: not looking for a specific timestamp, but for any data with a certain time_for_readout in the given directory if timestamp == "any": if bins is None: warnings.warn("Warning: timestamp=\"any\": bins should be provided by the calling function to compare across trials.") rawpaths = Path(nppath) for x in rawpaths.iterdir(): tmppath = os.path.split(str(x))[1] # remove head from path if ("_net_" + time_for_readout + ".txt") in tmppath: timestamp = tmppath.split("_net_")[0] plotDistributions(nppath, timestamp, add, Nl_exc, time_for_readout, core, h_0, norm_all, bins) # call this function again, now with specific timestamp return # read data from file [timestamp]_net_[time_for_readout].txt os.chdir(nppath) # change to data directory try: connections, h, z, v = readWeightMatrixData(timestamp + "_net_" + time_for_readout + ".txt", Nl_exc) z = h_0*z # normalize z w = h + z # compute total synaptic weight except ValueError: raise except OSError: raise # determine subpopulations N_tot = Nl_exc**2 # total number of neurons N_CA = len(core) # number of neurons in the cell assembly N_control = N_tot - N_CA # number of neurons in the control subpopulation all = np.arange(N_tot) noncore = all[np.logical_not(np.in1d(all, core))] # array of indices of the neurons not in the cell assembly (core) block_CA_within = np.ones((N_CA, N_CA), dtype=bool) # array of ones for the synapses within the cell assembly block_CA_outgoing = np.ones((N_CA, N_control), dtype=bool) # array of ones for the synapses outgoing from the cell assembly block_CA_incoming = np.ones((N_control, N_CA), dtype=bool) # array of ones for the synapses incoming to the cell assembly block_control = np.ones((N_control, N_control), dtype=bool) # array of ones for the synapses within the control subpopulation mask_CA_within = np.append(np.append(block_CA_within, np.logical_not(block_CA_outgoing), axis=1), \ np.logical_not(np.append(block_CA_incoming, block_control, axis=1)), axis=0) # binary mask defining the synapses within the cell assembly mask_CA_outgoing = np.append(np.append(np.logical_not(block_CA_within), block_CA_outgoing, axis=1), \ np.logical_not(np.append(block_CA_incoming, block_control, axis=1)), axis=0) # binary mask defining the synapses outgoing from the cell assembly mask_CA_incoming = np.append(np.logical_not(np.append(block_CA_within, block_CA_outgoing, axis=1)), \ np.append(block_CA_incoming, np.logical_not(block_control), axis=1), axis=0) # binary mask defining the synapses incoming to the cell assembly mask_control = np.append(np.logical_not(np.append(block_CA_within, block_CA_outgoing, axis=1)), \ np.append(np.logical_not(block_CA_incoming), block_control, axis=1), axis=0) # binary mask defining the synapses within the control subpopulation # early-phase weights '''h_CA_within = h[mask_CA_within] h_CA_outgoing = h[mask_CA_outgoing] h_CA_incoming = h[mask_CA_incoming] h_control = h[mask_control]''' h_CA_within = h[np.logical_and(connections, mask_CA_within)] h_CA_outgoing = h[np.logical_and(connections, mask_CA_outgoing)] h_CA_incoming = h[np.logical_and(connections, mask_CA_incoming)] h_control = h[np.logical_and(connections, mask_control)] # late-phase weights '''z_CA_within = z[mask_CA_within] z_CA_outgoing = z[mask_CA_outgoing] z_CA_incoming = z[mask_CA_incoming] z_control = z[mask_control]''' z_CA_within = z[np.logical_and(connections, mask_CA_within)] z_CA_outgoing = z[np.logical_and(connections, mask_CA_outgoing)] z_CA_incoming = z[np.logical_and(connections, mask_CA_incoming)] z_control = z[np.logical_and(connections, mask_control)] # total synaptic weights w_CA_within = h_CA_within + z_CA_within w_CA_outgoing = h_CA_outgoing + z_CA_outgoing w_CA_incoming = h_CA_incoming + z_CA_incoming w_control = h_control + z_control # firing rates v_CA = v.flatten()[np.in1d(all, core)] v_control = v.flatten()[np.logical_not(np.in1d(all, core))] # discretization of the distribution if bins is None: binh = np.linspace(np.min(h), np.max(h), 101, endpoint=True) # create range of bins for marginalProbDist(h...) binz = np.linspace(np.min(z), np.max(z), 101, endpoint=True) # create range of bins for marginalProbDist(z...) binw = np.linspace(np.min(w), np.max(w), 101, endpoint=True) # create range of bins for marginalProbDist(w...) binv = np.linspace(np.min(v), np.max(v), 101, endpoint=True) # create range of bins for marginalProbDist(v...) else: [binh, binz, binw, binv] = bins # use pre-defined bins hstep = binh[1]-binh[0] zstep = binz[1]-binz[0] wstep = binw[1]-binw[0] vstep = binv[1]-binv[0] valh = np.delete(binh, -1) + hstep/2 # use mean values instead of lower bounds of the bins as values valz = np.delete(binz, -1) + zstep/2 # use mean values instead of lower bounds of the bins as values valw = np.delete(binw, -1) + wstep/2 # use mean values instead of lower bounds of the bins as values valv = np.delete(binv, -1) + vstep/2 # use mean values instead of lower bounds of the bins as values # normalization of the distribution if norm_all: norm_value_w = np.sum(connections) # normalization factor for weights (number of all connections) norm_value_v = N_CA + N_control # normalization factor for activities (number of all neurons) else: norm_value_w = None # use default (normalization across each subpopulation individually) norm_value_v = None # use default (normalization across CA and control individually) buf, ph_CA_within = marginalProbDist(h_CA_within, binning = True, bin_edges = binh, norm = norm_value_w) buf, ph_CA_outgoing = marginalProbDist(h_CA_outgoing, binning = True, bin_edges = binh, norm = norm_value_w) buf, ph_CA_incoming = marginalProbDist(h_CA_incoming, binning = True, bin_edges = binh, norm = norm_value_w) buf, ph_control = marginalProbDist(h_control, binning = True, bin_edges = binh, norm = norm_value_w) buf, pz_CA_within = marginalProbDist(z_CA_within, binning = True, bin_edges = binz, norm = norm_value_w) buf, pz_CA_outgoing = marginalProbDist(z_CA_outgoing, binning = True, bin_edges = binz, norm = norm_value_w) buf, pz_CA_incoming = marginalProbDist(z_CA_incoming, binning = True, bin_edges = binz, norm = norm_value_w) buf, pz_control = marginalProbDist(z_control, binning = True, bin_edges = binz, norm = norm_value_w) buf, pw_CA_within = marginalProbDist(w_CA_within, binning = True, bin_edges = binw, norm = norm_value_w) buf, pw_CA_outgoing = marginalProbDist(w_CA_outgoing, binning = True, bin_edges = binw, norm = norm_value_w) buf, pw_CA_incoming = marginalProbDist(w_CA_incoming, binning = True, bin_edges = binw, norm = norm_value_w) buf, pw_control = marginalProbDist(w_control, binning = True, bin_edges = binw, norm = norm_value_w) buf, pv_CA = marginalProbDist(v_CA, binning = True, bin_edges = binv, norm = norm_value_v) buf, pv_control = marginalProbDist(v_control, binning = True, bin_edges = binv, norm = norm_value_v) # write early-phase weight distribution to file f = open(timestamp + "_eweight_dist_" + time_for_readout + add + ".txt", "w") for i in range(len(valh)): f.write(str(valh[i]) + "\t\t" + str(ph_CA_within[i]) + "\t\t" + str(ph_CA_outgoing[i]) + "\t\t" + \ str(ph_CA_incoming[i]) + "\t\t" + str(ph_control[i]) + "\n") f.close() # write late-phase weight distribution to file f = open(timestamp + "_lweight_dist_" + time_for_readout + add + ".txt", "w") for i in range(len(valz)): f.write(str(valz[i]) + "\t\t" + str(pz_CA_within[i]) + "\t\t" + str(pz_CA_outgoing[i]) + "\t\t" + \ str(pz_CA_incoming[i]) + "\t\t" + str(pz_control[i]) + "\n") f.close() # write distribution of total synaptic weights to file f = open(timestamp + "_totweight_dist_" + time_for_readout + add + ".txt", "w") for i in range(len(valw)): f.write(str(valw[i]) + "\t\t" + str(pw_CA_within[i]) + "\t\t" + str(pw_CA_outgoing[i]) + "\t\t" + \ str(pw_CA_incoming[i]) + "\t\t" + str(pw_control[i]) + "\n") f.close() # write activity distribution to file f = open(timestamp + "_act_dist_" + time_for_readout + add + ".txt", "w") for i in range(len(valv)): f.write(str(valv[i]) + "\t\t" + str(pv_CA[i]) + "\t\t" + str(pv_control[i]) + "\n") f.close() # write gnuplot script f = open(timestamp + "_plot_dist.gpl", "w") f.write("### DO NOT EDIT THIS FILE! IT WILL BE OVERWRITTEN. ###\n\n" + \ "#set terminal png size 1024,640 enhanced\nset terminal pdf enhanced\n\n" + \ "#set style fill transparent solid 0.8 noborder # for 'boxes' style\n" + \ "#set style fill transparent pattern 4 bo # for 'boxes' style\n" + \ "set log y\nset format y \"%.0e\"\nset yrange [3e-06:1]\nset key outside\n\n" + \ "h_0 = " + str(h_0) + "\n" +\ "epsilon = " + str(epsilon) + "\n\n") # plotting of early-phase weight distribution f.write("set output \"" + timestamp + "_eweight_dist_" + time_for_readout + add + ".pdf\"\n") f.write("set xrange [" + str(binh[0]-10*hstep) + "/h_0:" + str(binh[-1]+10*hstep) + "/h_0]\n") f.write("set xlabel \"Early-phase weight / h_0\"\nset ylabel \"Relative frequency\"\n") f.write("plot \"" + timestamp + "_eweight_dist_" + time_for_readout + add + ".txt\" using ($1/h_0):($2 > 0 ? $2 : epsilon) t \"CA\" with histeps, \\\n" + \ " \"\" using ($1/h_0):($3 > 0 ? $3 : epsilon) t \"outgoing\" with histeps, \\\n" + \ " \"\" using ($1/h_0):($4 > 0 ? $4 : epsilon) t \"incoming\" with histeps, \\\n" + \ " \"\" using ($1/h_0):($5 > 0 ? $5 : epsilon) t \"control\" with histeps\n") # plotting of late-phase weight distribution f.write("\nset output \"" + timestamp + "_lweight_dist_" + time_for_readout + add + ".pdf\"\n") f.write("set xrange [" + str(binz[0]-10*zstep) + "/h_0:" + str(binz[-1]+10*zstep) + "/h_0]\n") f.write("set xlabel \"Late-phase weight / h_0\"\nset ylabel \"Relative frequency\"\nset format y \"%.0e\"\n") f.write("plot \"" + timestamp + "_lweight_dist_" + time_for_readout + add + ".txt\" using ($1/h_0):($2 > 0 ? $2 : epsilon) t \"CA\" with histeps, \\\n" + \ " \"\" using ($1/h_0):($3 > 0 ? $3 : epsilon) t \"outgoing\" with histeps, \\\n" + \ " \"\" using ($1/h_0):($4 > 0 ? $4 : epsilon) t \"incoming\" with histeps, \\\n" + \ " \"\" using ($1/h_0):($5 > 0 ? $5 : epsilon) t \"control\" with histeps\n") # plotting of total weight distribution f.write("\nset output \"" + timestamp + "_totweight_dist_" + time_for_readout + add + ".pdf\"\n") f.write("set xrange [" + str(binw[0]-10*wstep) + "/h_0*100:" + str(binw[-1]+10*wstep) + "/h_0*100]\n") f.write("set xlabel \"Total synaptic weight (%)\"\nset ylabel \"Relative frequency\"\nset format y \"%.0e\"\n") f.write("plot \"" + timestamp + "_totweight_dist_" + time_for_readout + add + ".txt\" using ($1/h_0*100):($2 > 0 ? $2 : epsilon) t \"CA\" with histeps, \\\n" + \ " \"\" using ($1/h_0*100):($3 > 0 ? $3 : epsilon) t \"outgoing\" with histeps, \\\n" + \ " \"\" using ($1/h_0*100):($4 > 0 ? $4 : epsilon) t \"incoming\" with histeps, \\\n" + \ " \"\" using ($1/h_0*100):($5 > 0 ? $5 : epsilon) t \"control\" with histeps\n") # plotting of activity distribution f.write("\nset output \"" + timestamp + "_act_dist_" + time_for_readout + add + ".pdf\"\n") f.write("set xrange [" + str(binv[0]-10*vstep) + ":" + str(binv[-1]+10*vstep) + "]\n") f.write("set xlabel \"Neuronal firing rate (Hz)\"\nset ylabel \"Relative frequency\"\nset format y \"%.0e\"\n") f.write("plot \"" + timestamp + "_act_dist_" + time_for_readout + add + ".txt\" using 1:($2 > 0 ? $2 : epsilon) t \"CA\" with histeps, \\\n" + \ " \"\" using 1:($3 > 0 ? $3 : epsilon) t \"control\" with histeps\n\n") f.close() call(["gnuplot", timestamp + "_plot_dist.gpl"]) os.chdir(orgdir) # change back to original directory # plotWeightDistributions3CAs # Creates data and plot files of the weight distribution of a network with 2 or 3, possibly overlapping, assemblies at a given time # nppath: path to the network_plots directory to read the data from # timestamp: a string containing date and time (to access correct paths) # add: additional descriptor # Nl_exc: the number of excitatory neurons in one line of a quadratic grid # time_for_readout: the time that at which the weights shall be read out # coreA: array of indices of the first cell assembly (core) neurons # coreB [optional]: array of indices of the second cell assembly (core) neurons # coreC [optional]: array of indices of the third cell assembly (core) neurons # h_0 [optional]: the initial weight, and normalization factor for z # bins [optional]: list of three arrays, each containing the bins for one of the four quantities def plotWeightDistributions3CAs(nppath, timestamp, add, Nl_exc, time_for_readout, coreA, coreB = None, coreC = None, h_0 = 0.420075, bins = None): orgdir = os.getcwd() # store the current working directory # "any" case: not looking for a specific timestamp, but for any data with a certain time_for_readout in the given directory if timestamp == "any": rawpaths = Path(nppath) for x in rawpaths.iterdir(): tmppath = os.path.split(str(x))[1] # remove head from path if ("_net_" + time_for_readout + ".txt") in tmppath: timestamp = tmppath.split("_net_")[0] plotWeightDistributions3CAs(nppath, timestamp, add, Nl_exc, time_for_readout, coreA, coreB, coreC, h_0, bins) # call this function again, now with specific timestamp; bins should be provided by calling function return # read data from file [timestamp]_net_[time_for_readout].txt os.chdir(nppath) # change to data directory try: connections, h, z, v = readWeightMatrixData(timestamp + "_net_" + time_for_readout + ".txt", Nl_exc) z = h_0*z # normalize z w = h + z # compute total synaptic weight except ValueError: raise except OSError: raise # determine synapses within the cell assemblies N_tot = Nl_exc**2 # total number of neurons mask_coreA = np.zeros((N_tot, N_tot), dtype=bool) for syn_pre in coreA: for syn_post in coreA: if connections[syn_pre,syn_post]: # NEW, TEST mask_coreA[syn_pre,syn_post] = True mask_coreB = np.zeros((N_tot, N_tot), dtype=bool) if coreB is not None: for syn_pre in coreB: for syn_post in coreB: if connections[syn_pre,syn_post]: # NEW, TEST mask_coreB[syn_pre,syn_post] = True mask_coreC = np.zeros((N_tot, N_tot), dtype=bool) if coreC is not None: for syn_pre in coreC: for syn_post in coreC: if connections[syn_pre,syn_post]: # NEW, TEST mask_coreC[syn_pre,syn_post] = True # find control synapses (all synapses that are not within a cell assembly) mask_control = np.logical_and(connections, np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC)))) # synapses outgoing from A // TODO #block_outgoing_A = np.ones((len(coreA), N_tot-len(coreA)), dtype=bool) # array of ones for the synapses outgoing from assembly A #mask_A_to_B = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) #mask_A_to_C = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) #mask_A_to_ctrl = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) # synapses outgoing from B // TODO #mask_B_to_A = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) #mask_B_to_C = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) #mask_B_to_ctrl = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) # synapses outgoing from C // TODO #mask_C_to_A = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) #mask_C_to_B = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) #mask_C_to_ctrl = np.logical_not(np.logical_or(mask_coreA, np.logical_or(mask_coreB, mask_coreC))) # synapses incoming... // TODO # find exclusive intersections mask_I_AB = np.logical_and( np.logical_and(mask_coreA, mask_coreB), np.logical_not(mask_coreC) ) mask_I_AC = np.logical_and( np.logical_and(mask_coreA, mask_coreC), np.logical_not(mask_coreB) ) mask_I_BC = np.logical_and( np.logical_and(mask_coreB, mask_coreC), np.logical_not(mask_coreA) ) mask_I_ABC = np.logical_and( mask_coreA, np.logical_and(mask_coreB, mask_coreC) ) # remove intersections from exclusive cores mask_coreA = np.logical_and(mask_coreA, \ np.logical_and(np.logical_not(mask_I_AB), \ np.logical_and(np.logical_not(mask_I_AC), np.logical_not(mask_I_ABC)))) mask_coreB = np.logical_and(mask_coreB, \ np.logical_and(np.logical_not(mask_I_AB), \ np.logical_and(np.logical_not(mask_I_BC), np.logical_not(mask_I_ABC)))) mask_coreC = np.logical_and(mask_coreC, \ np.logical_and(np.logical_not(mask_I_AC), \ np.logical_and(np.logical_not(mask_I_BC), np.logical_not(mask_I_ABC)))) # tests (each should yield true) #print("Test:", not np.any(np.logical_and(mask_coreA, mask_coreB))) #print("Test:", not np.any(np.logical_and(mask_coreA, mask_coreC))) #print("Test:", not np.any(np.logical_and(mask_coreB, mask_coreC))) #print("Test:", not np.any(np.logical_and(mask_I_AB, mask_I_BC))) #print("Test:", not np.any(np.logical_and(mask_I_AB, mask_I_AC))) #print("Test:", not np.any(np.logical_and(mask_I_AB, mask_I_ABC))) #print("Test:", not np.any(np.logical_and(mask_I_AC, mask_I_BC))) #print("Test:", not np.any(np.logical_and(mask_I_AC, mask_I_ABC))) #print("Test:", not np.any(np.logical_and(mask_I_BC, mask_I_ABC))) #print("Test:", not np.any(np.logical_and(mask_control, mask_coreA))) #print("Test:", not np.any(np.logical_and(mask_control, mask_coreB))) #print("Test:", not np.any(np.logical_and(mask_control, mask_coreC))) #print("Test:", not np.any(np.logical_and(mask_control, mask_I_AB))) #print("Test:", not np.any(np.logical_and(mask_control, mask_I_AC))) #print("Test:", not np.any(np.logical_and(mask_control, mask_I_BC))) #print("Test:", not np.any(np.logical_and(mask_control, mask_I_ABC))) #print("Test:", not np.any(np.logical_and(mask_coreA, mask_I_AB))) #print("Test:", not np.any(np.logical_and(mask_coreA, mask_I_AC))) #print("Test:", not np.any(np.logical_and(mask_coreA, mask_I_BC))) #print("Test:", not np.any(np.logical_and(mask_coreA, mask_I_ABC))) #print("Test:", not np.any(np.logical_and(mask_coreB, mask_I_AB))) #print("Test:", not np.any(np.logical_and(mask_coreB, mask_I_AC))) #print("Test:", not np.any(np.logical_and(mask_coreB, mask_I_BC))) #print("Test:", not np.any(np.logical_and(mask_coreB, mask_I_ABC))) #print("Test:", not np.any(np.logical_and(mask_coreC, mask_I_AB))) #print("Test:", not np.any(np.logical_and(mask_coreC, mask_I_AC))) #print("Test:", not np.any(np.logical_and(mask_coreC, mask_I_BC))) #print("Test:", not np.any(np.logical_and(mask_coreC, mask_I_ABC))) # early-phase weights h_coreA = h[mask_coreA] h_coreB = h[mask_coreB] h_coreC = h[mask_coreC] h_I_AB = h[mask_I_AB] h_I_AC = h[mask_I_AC] h_I_BC = h[mask_I_BC] h_I_ABC = h[mask_I_ABC] h_control = h[mask_control] # late-phase weights z_coreA = z[mask_coreA] z_coreB = z[mask_coreB] z_coreC = z[mask_coreC] z_I_AB = z[mask_I_AB] z_I_AC = z[mask_I_AC] z_I_BC = z[mask_I_BC] z_I_ABC = z[mask_I_ABC] z_control = z[mask_control] # total synaptic weights w_coreA = h_coreA + z_coreA w_coreB = h_coreB + z_coreB w_coreC = h_coreC + z_coreC w_I_AB = h_I_AB + z_I_AB w_I_AC = h_I_AC + z_I_AC w_I_BC = h_I_BC + z_I_BC w_I_ABC = h_I_ABC + z_I_ABC w_control = h_control + z_control # mean and standard deviation of the subpopulations (to compare to values from adjacencyFunctionsAttractors.py) #mean_z_coreA = np.mean(z_coreA) #mean_z_coreB = np.mean(z_coreB) #mean_z_coreC = np.mean(z_coreC) #mean_z_I_AB = np.mean(z_I_AB) #mean_z_I_AC = np.mean(z_I_AC) #mean_z_I_BC = np.mean(z_I_BC) #mean_z_I_ABC = np.mean(z_I_ABC) #mean_z_control = np.mean(z_control) #sd_z_coreA = np.std(z_coreA) #sd_z_coreB = np.std(z_coreB) #sd_z_coreC = np.std(z_coreC) #sd_z_I_AB = np.std(z_I_AB) #sd_z_I_AC = np.std(z_I_AC) #sd_z_I_BC = np.std(z_I_BC) #sd_z_I_ABC = np.std(z_I_ABC) #sd_z_control = np.std(z_control) # discretization of the distribution if bins is None: binh = np.linspace(np.min(h[connections]), np.max(h), 101, endpoint=True) # create range of bins for marginalProbDist(h...) binz = np.linspace(
np.min(z[connections])
numpy.min
from __future__ import print_function, division # # File: # nio01.py # # Synopsis: # Creates a NetCDF with scalar and array versions of all permissible types and then reads it # printing typecodes and other info # # Category: # Processing. # # Author: # <NAME> (modelled after an example of <NAME>). # import numpy import Nio import time import os import pwd # # Function to retrieve the user's name. # def getUserName(): pwd_entry = pwd.getpwuid(os.getuid()) raw_name = pwd_entry[4] name = raw_name.split(",")[0].strip() if name == '': name = pwd_entry[0] return name # # Creating a NetCDF file named "test-types.nc". If there is already # a file with that name, delete it first. # if (os.path.exists("test-types.nc")): os.system("/bin/rm -f test-types.nc") # # Specify a global history attribute and open a NetCDF file # for writing. # hatt = "Created " + time.ctime(time.time()) + " by " + getUserName() file = Nio.open_file("test-types.nc", "w", None, hatt) # # Create some global attributes. # file.title = "Nio test NetCDF file" file.series = [ 1, 2, 3, 4, 5,6 ] file.version = 45 # # Create some dimensions. # file.create_dimension("array", 3) #file.create_dimension("strlen", 6) file.create_dimension("strlen", 10) file.create_dimension("dim1", 2) file.create_dimension("dim2", 1) file.create_dimension("dim3",4) # # Create some variables. # print("creating and assigning scalar double") v1 = file.create_variable("v1", 'd', ()) v1.assign_value(42.0) print("creating and assigning scalar float") v2 = file.create_variable("v2", 'f', ()) v2.assign_value(52.0) print("creating and assigning scalar integer") v3 = file.create_variable("v3", 'i', ()) v3.assign_value(42) print("creating and assigning scalar long") v4 = file.create_variable("v4", 'l', ()) v4.assign_value(42) print("creating and assigning scalar short") v5 = file.create_variable("v5", 'h', ()) v5.assign_value(42) print("creating and assigning scalar byte") v6 = file.create_variable("v6", 'b', ()) v6.assign_value(42) print("creating and assigning scalar char") v7 = file.create_variable("v7", 'S1', ()) v7.assign_value('x') print("creating and assigning array double") v11 = file.create_variable("v11", 'd', ('array',)) v11.assign_value([42.0,43.0,44.0]) print("creating and assigning array float") v22 = file.create_variable("v22", 'f', ('array',)) v22.assign_value([52.0,53.0,54.0]) print("creating and assigning array integer") v33 = file.create_variable("v33", 'i', ('array',)) v33.assign_value([42,43,44]) print("creating and assigning array long") v44 = file.create_variable("v44", 'l', ('array',)) a = numpy.array([42,43,44],'l') v44.assign_value(a) print("creating and assigning array short") v55 = file.create_variable("v55", 'h', ('array',)) v55.assign_value([42,43,44]) print("creating and assigning array byte") v66 = file.create_variable("v66", 'b', ('array',)) v66.assign_value([42,43,44]) print("creating and assigning array char") v77 = file.create_variable("v77", 'S1', ('array','strlen')) v77.assign_value(['bcdef','uvwxyz','ijklmnopqr']) #v77.assign_value(['ab','uv','ij']) #v77.assign_value(['a','u','i']) #v77[1] = v77[1,::-1] print(v77[:]) v_single = file.create_variable("v_single",'f',("dim1","dim2","dim3")) print(v_single) # type mismatch (double created then assigned to float variable) a = numpy.array([1.0,2,3,4,5,6,7,8]) a.shape = (2,1,4) print(a) try: v_single.assign_value(a) print(v_single[:]) except: print("type mismatch in assignment") # now do it right a =
numpy.array([1.0,2,3,4,5,6,7,8],'f')
numpy.array
""" Utilities for running inference @author: <NAME> """ import os from os import path as op import multiprocessing from functools import partial import subprocess import warnings from itertools import zip_longest, repeat import logging import ogr import numpy as np from tqdm import tqdm import skimage.io as sio from skimage.transform import downscale_local_mean from skimage.measure import regionprops, find_contours from rasterio.windows import Window def iter_grouper(iterable, n, fillvalue=None): "Itertool recipe to collect data into fixed-length chunks or blocks" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return zip_longest(*args, fillvalue=fillvalue) def calculate_region_grad(image, masked_pix): """Calculate the vertical and horizontal gradient using numpy's gradient. Parameters ---------- image: array-like Image pixels. masked_pix: array-like Integer mask for pixels to include when returning mean gradient. For example, pass the binary crater mask to calculate only the gradient for pixels within the crater. Returns ------- mean_h: float Mean horizontal gradient of included pixels. Positive is to the right. mean_v: float Mean vertical gradient of included pixels. Positive is downward. """ # TODO: could improve function to take a list of good_inds and avoid # recomputing gradient repeatedly if masked_pix.dtype != np.bool: raise ValueError('`masked_inds` must be of type bool') if masked_pix.shape[:2] != image.shape[:2]: raise ValueError('Height and width of `masked_inds` must match `image`') mean_h = np.ma.masked_array(np.gradient(image, axis=0), mask=masked_pix).mean() mean_v = np.ma.masked_array(
np.gradient(image, axis=1)
numpy.gradient
""" csalt_models.py Usage: - import modules Outputs: - various """ import os, sys import numpy as np from astropy.io import fits from vis_sample import vis_sample from scipy.ndimage import convolve1d from scipy.interpolate import interp1d from vis_sample.classes import * from simple_disk import simple_disk import const as const import matplotlib.pyplot as plt def cube_parser(pars, FOV=8, Npix=128, dist=150, r_min=0, r_max=500, r0=10, RA=240, DEC=-40, restfreq=230.538e9, Vsys=0, vel=None, datafile=None, outfile=None): ### Generate a model disk disk = simple_disk(pars[0], pars[1], x0=0, y0=0, dist=dist, mstar=pars[2], r_min=r_min, r_max=r_max, r0=r0, r_l=pars[3], z0=pars[4], zpsi=pars[5], zphi=np.inf, Tb0=pars[6], Tbq=pars[7], Tbeps=np.inf, Tbmax=1000, Tbmax_b=pars[8], tau0=1000, tauq=0, taueta=np.inf, taumax=5000, dV0=pars[9], dVq=0.5*pars[7], dVmax=1000, FOV=FOV, Npix=Npix) ### Set velocities for cube (either use the channels in an already-existing ### cube from a .FITS file, or use the provided values) if datafile is not None: hd = fits.open(datafile)[0].header f0, ix, nf, df = hd['CRVAL4'], hd['CRPIX4'], hd['NAXIS4'], hd['CDELT4'] freqs = f0 + (np.arange(nf) - ix + 1) * df vel = const.c_ * (1 - freqs / restfreq) else: freqs = restfreq * (1 - vel / const.c_) # adjust for systemic velocity vlsr = vel - Vsys ### Generate the spectral line cube cube = disk.get_cube(vlsr) # convert from brightness temperatures to Jy / pixel pixel_area = (disk.cell_sky * np.pi / (180 * 3600))**2 for i in range(len(freqs)): cube[i,:,:] *= 1e26 * pixel_area * 2 * freqs[i]**2 * \ const.k_ / const.c_**2 ### Prepare the output: either into the specified .FITS file or into a ### vis_sample "SKY OBJECT". if outfile is not None: hdu = fits.PrimaryHDU(cube[:,::-1,:]) header = hdu.header # basic header inputs header['EPOCH'] = 2000. header['EQUINOX'] = 2000. header['LATPOLE'] = -1.436915713634E+01 header['LONPOLE'] = 180. # spatial coordinates header['CTYPE1'] = 'RA---SIN' header['CUNIT1'] = 'DEG' header['CDELT1'] = -disk.cell_sky / 3600. header['CRPIX1'] = 0.5 * disk.Npix + 0.5 header['CRVAL1'] = RA header['CTYPE2'] = 'DEC--SIN' header['CUNIT2'] = 'DEG' header['CDELT2'] = disk.cell_sky / 3600. header['CRPIX2'] = 0.5 * disk.Npix + 0.5 header['CRVAL2'] = DEC # frequency coordinates header['CTYPE3'] = 'FREQ' header['CUNIT3'] = 'Hz' header['CRPIX3'] = 1. header['CDELT3'] = freqs[1]-freqs[0] header['CRVAL3'] = freqs[0] header['SPECSYS'] = 'LSRK' header['VELREF'] = 257 # intensity units header['BSCALE'] = 1. header['BZERO'] = 0. header['BUNIT'] = 'JY/PIXEL' header['BTYPE'] = 'Intensity' # output FITS hdu.writeto(outfile, overwrite=True) return cube[:,::-1,:] # otherwise, return a vis_sample SkyObject else: # adjust cube formatting mod_data = np.rollaxis(cube[:,::-1,:], 0, 3) # spatial coordinates npix_ra = disk.Npix mid_pix_ra = 0.5 * disk.Npix + 0.5 delt_ra = -disk.cell_sky / 3600 if (delt_ra < 0): mod_data = np.fliplr(mod_data) mod_ra = (np.arange(npix_ra) - (mid_pix_ra-0.5))*np.abs(delt_ra)*3600 npix_dec = disk.Npix mid_pix_dec = 0.5 * disk.Npix + 0.5 delt_dec = disk.cell_sky / 3600 if (delt_dec < 0): mod_data = np.flipud(mod_data) mod_dec = (np.arange(npix_dec)-(mid_pix_dec-0.5))*
np.abs(delt_dec)
numpy.abs
import itertools import numpy as np from ..normalizations import linear_normalization from ..distance_metrics import euclidean from .mcda_method import MCDA_method class CODAS(MCDA_method): def __init__(self, normalization_method = linear_normalization, distance_metric = euclidean, tau = 0.02): """ Create the CODAS method object and select normalization method `normalization_method`, default normalization method for CODAS is `linear_normalization`, distance metric `distance_metric` selected from `distance_metrics`, which is `euclidean` by default and tau parameter `tau`, which is set on 0.02 by default. Parameters ----------- normalization_method : function method for decision matrix normalization chosen from `normalizations` distance_metric : functions method for calculating the distance between two vectors tau : float the threshold parameter between 0.01 to 0.05. If the difference between Euclidean `euclidean` or other selected distances of two alternatives is less than tau, these two alternatives are also compared by the Taxicab distance """ self.normalization_method = normalization_method self.distance_metric = distance_metric self.tau = tau def __call__(self, matrix, weights, types): """ Score alternatives provided in decision matrix `matrix` with m alternatives and n criteria using criteria `weights` and criteria `types`. Parameters ----------- matrix : ndarray Decision matrix with m alternatives in rows and n criteria in columns. weights: ndarray Vector with criteria weights. Sum of weights must be equal to 1. types: ndarray Vector with criteria types. Profit criteria are represented by 1 and cost by -1. Returns -------- ndrarray Vector with preference values of each alternative. The best alternative has the highest preference value. Examples ---------- >>> codas = CODAS(normalization_method = linear_normalization, distance_metric = euclidean, tau = 0.02) >>> pref = codas(matrix, weights, types) >>> rank = rank_preferences(pref, reverse = True) """ CODAS._verify_input_data(matrix, weights, types) return CODAS._codas(self, matrix, weights, types, self.normalization_method, self.distance_metric) # psi 0.01 - 0.05 recommended range of tau (threshold parameter) value def _psi(self, x): return 1 if np.abs(x) >= self.tau else 0 @staticmethod def _codas(self, matrix, weights, types, normalization_method, distance_metric): # Normalize matrix using linear normalization norm_matrix = normalization_method(matrix, types) # Multiply all rows of normalized matrix by weights weighted_matrix = norm_matrix * weights m, n = weighted_matrix.shape # Calculate NIS vector (anti-ideal solution) nis = np.min(weighted_matrix, axis=0) # Calculate chosen distance (for example Euclidean) and Taxicab distance from anti-ideal solution E = np.array([distance_metric(x, nis) for x in weighted_matrix]) # Calculate Taxicab (Manhattan) distance T = np.sum(
np.abs(weighted_matrix - nis)
numpy.abs
from sklearn.datasets import fetch_20newsgroups import pandas as pd from sklearn import preprocessing from sklearn.feature_extraction.text import CountVectorizer import numpy as np from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif from sklearn.model_selection import train_test_split from datetime import datetime import time import os from scipy.sparse import csr_matrix import matplotlib.pyplot as plt class newsgroup_data: # Prepare the data # select the top 20000 features from the vector of tokens NGRAM_RANGE = (1, 2) TOP_K = 20000 TOKEN_MODE = 'word' MIN_DOC_FREQ = 2 @staticmethod def getData(): def ngram_vectorize(texts, labels): kwargs = { 'ngram_range' : newsgroup_data.NGRAM_RANGE, 'dtype' : 'int32', 'strip_accents' : 'unicode', 'decode_error' : 'replace', 'analyzer' : newsgroup_data.TOKEN_MODE, 'min_df' : newsgroup_data.MIN_DOC_FREQ, } tfidf_vectorizer = TfidfVectorizer(**kwargs) transformed_texts = tfidf_vectorizer.fit_transform(texts) # Select best k features, with feature importance measured by f_classif selector = SelectKBest(f_classif, k=min(newsgroup_data.TOP_K, transformed_texts.shape[1])) selector.fit(transformed_texts, labels) transformed_texts = selector.transform(transformed_texts).astype('float32') return transformed_texts # Get the training and testing datasets training_set = fetch_20newsgroups(subset='train', remove=('headers', 'footers', 'quotes')) testing_set = fetch_20newsgroups(subset='test', remove=('headers','footers','quotes')) training_data = training_set.data training_target = list(training_set.target) testing_data = testing_set.data testing_target = list(testing_set.target) # Temporarily combine the two datasets (albeit in a way that we can separate them after) training_length = len(training_data) training_data.extend(testing_data) training_target.extend(testing_target) all_data = training_data all_target = training_target # Vectorize the full dataset vectorized_all_data = ngram_vectorize(all_data,all_target) print("\nVectorized all data shape: ", vectorized_all_data.shape ) # Reseparate the datasets training_data = vectorized_all_data[:training_length] training_target = all_target[:training_length] testing_data = vectorized_all_data[training_length:] testing_target = all_target[training_length:] print("\nVectorized training data shape: ",training_data.shape) print("\nVectorized training data shape: ",testing_data.shape) #Formalize the datasets X_train = training_data.toarray() y_train =
np.array(training_target)
numpy.array
import numpy as np import librosa from scipy import interpolate import pywt from matplotlib.image import imsave from scipy.signal import butter, lfilter, freqz from matplotlib import pyplot as plt from imageProcessingUtil import ImageProcessing import SimpleITK as sitk class AudioProcessing(object): def __init__(self): pass @staticmethod def read(absFilePath,sr=None): """ Reading audio :param absFilePath: Absolute File Path :param sr: Sampling rate of audio to be read (If None, original sampling rate is considered) :return: audio samples, """ data,fs = librosa.load(absFilePath,sr=sr) return data,fs @staticmethod def writeAsWav(data,sr,filename): """ Write .wav files :param data: audio data :param sr: sampling rate :param filename: filename to be saved :return: None """ if filename is None or sr is None or data is None : return "Please provid arguements as writeAsWav(data,sr,filename)" if "wav" not in filename: return "Only wav files!" filename_split = filename.rsplit(".",1) filename = filename_split[0] filetype = filename_split[1].lower() data = AudioProcessing.rescaleAmplitude(data) librosa.output.write_wav("{}.{}".format(filename,filetype),data,sr) @staticmethod def generateSineWave(amp,f,phi,fs): """ Generating a simple sine wave :param amp: Amplitude :param f: Frequency :param phi: Phase :param fs: Frequency sampling rate :return: Sine wave signal """ # considering 5 time periodics t = np.arange(0,10.0/f,1.0/fs) x = amp*np.cos(2*np.pi*f*t + phi) return(t,x) @staticmethod def convert_to_mono(x): """ Convert multi channel sounds to mono channel :param x: audio data :return: mono channel (audio data) """ if x.ndim > 1: return librosa.to_mono(x) return x @staticmethod def DFT(data,N,fs,start_time = 0.0): """ calculating N point DFT :param data: audio data :param N: N point DFT :param fs: sampling frequency :return: """ data = AudioProcessing.convert_to_mono(data) size = data.size new_data = np.zeros(N) if size < N: diff = N - size new_data[:size] = data else: new_data = data[start_time*fs:start_time*fs+N] hanning = np.hanning(N) new_data = new_data*hanning print("Calculating DFT for {} ms window with start time {} sec".format(N*1000/float(fs),start_time)) nv = np.arange(N) kv = np.arange(N) nv = np.arange(-N/2.0,N/2.0) kv = np.arange(-N/2.0,N/2.0) X = np.array([]) # Calculating the DFT of the cropped signal for k in kv: s =
np.exp(1j*2*np.pi*k/N*nv)
numpy.exp
import numpy as np from typing import List, Tuple from numba import njit, prange from gym_rubiks_cube.envs.functions import RotationMatrix3D, getQuadrant import gym_rubiks_cube.envs.objects3D as o3 @njit def rasterizeBottomFlatTriangle(v1, v2, v3, width, height): """assumes v1.y < v2.y = v3.y""" object_map = np.ones((width, height), dtype=np.float32) * np.inf v1[:2], v2[:2], v3[:2] = np.floor(v1[:2]), np.floor(v2[:2]),
np.floor(v3[:2])
numpy.floor
# -*- coding: utf-8 -*- """ Created 2020.09.28. Script for doing group level analysis of anatomical precision rates. @author: rouhinen """ import numpy as np import os import glob import matplotlib.pyplot as plt from fidelityOpMinimal import (make_series_paired, make_series, collapse_operator, source_fid_to_weights) """Load source identities, forward and inverse operators. """ subjectsPath = 'C:\\temp\\fWeighting\\fwSubjects_p\\' sourceIdPattern = '\\sourceIdentities_parc2018yeo7_200.npy' # For collapsing forward and inverse operators. sourceFidPattern = '\\sourceFidelities_MEEG_parc2018yeo7_200.npy' forwardPattern = '\\*forward*MEEG.npy' # Should be at source space inversePattern = '\\inverseOperatorMEEG.npy' # Should be at source space. n_iterations = 100 n_samples = 5000 n_cut_samples = 40 widths = np.arange(5, 6) # Source fidelity to weights settings exponent = 2 normalize = True flips = False def get_precision_rates(cp_PLV, truth_matrix): # Set thresholds from the data. Get about 200 thresholds. maxVal = np.max(cp_PLV) thresholds = np.sort(np.ravel(cp_PLV)) distance = int(len(thresholds) // 200) + (len(thresholds) % 200 > 0) # To int, round up. thresholds = thresholds[0:-1:distance] thresholds = np.append(thresholds, maxVal) precisions = np.zeros([cp_PLV.shape[0], len(thresholds)], dtype=float) for i, threshold in enumerate(thresholds): estTrueMat = cp_PLV > threshold tPos = np.sum(estTrueMat * truth_matrix, axis=1) fPos = np.sum(estTrueMat * np.logical_not(truth_matrix), axis=1) precisions[:, i] = tPos/(tPos + fPos) return precisions, thresholds def find_nearest_index(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def get_n_parcels(identities): idSet = set(identities) # Get unique IDs idSet = [item for item in idSet if item >= 0] # Remove negative values (should have only -1 if any) n_parcels = len(idSet) return n_parcels # def get_nearest_tp_semi_bin(binArray, tpRate, fpRate): # nearestTP = np.zeros(len(binArray)) # for i, fpval in enumerate(binArray): # index = find_nearest_index(fpRate, fpval) # nearestTP[i] = tpRate[index] # return nearestTP def delete_diagonal(symm_matrix): symm_matrix = symm_matrix[~np.eye(symm_matrix.shape[0],dtype=bool)].reshape( symm_matrix.shape[0],-1) return symm_matrix def fidelity_estimation_collapsed(fwd, inv, n_samples = 5000, parcel_series=
np.asarray([])
numpy.asarray
import numpy as np import torch from torch.utils.data import Dataset import os import time import collections import random from DSB2017.layers import iou, nms from scipy.ndimage import zoom import warnings from scipy.ndimage.interpolation import rotate import pandas class DataBowl3Classifier(Dataset): def __init__(self, split, config, phase='train'): assert (phase == 'train' or phase == 'val' or phase == 'test') self.random_sample = config['random_sample'] self.T = config['T'] self.topk = config['topk'] self.crop_size = config['crop_size'] self.stride = config['stride'] self.augtype = config['augtype'] self.filling_value = config['filling_value'] # self.labels = np.array(pandas.read_csv(config['labelfile'])) datadir = config['datadir'] bboxpath = config['bboxpath'] self.phase = phase self.candidate_box = [] self.pbb_label = [] idcs = split self.filenames = [] for idx in idcs: file_name = os.path.splitext(idx)[0] + '_clean.npy' self.filenames.append(os.path.join(datadir, file_name)) if self.phase != 'test': self.yset = 1 - np.array([f.split('-')[1][2] for f in idcs]).astype('int') for idx in idcs: file_name = os.path.splitext(idx)[0] pbb = np.load(os.path.join(bboxpath, file_name + '_pbb.npy')) pbb = pbb[pbb[:, 0] > config['conf_th']] pbb = nms(pbb, config['nms_th']) lbb = np.load(os.path.join(bboxpath, file_name + '_lbb.npy')) pbb_label = [] for p in pbb: isnod = False for l in lbb: score = iou(p[1:5], l) if score > config['detect_th']: isnod = True break pbb_label.append(isnod) # if idx.startswith() self.candidate_box.append(pbb) self.pbb_label.append(np.array(pbb_label)) self.crop = simpleCrop(config, phase) def __getitem__(self, idx, split=None): t = time.time() np.random.seed(int(str(t % 1)[2:7])) # seed according to time pbb = self.candidate_box[idx] pbb_label = self.pbb_label[idx] conf_list = pbb[:, 0] T = self.T topk = self.topk img = np.load(self.filenames[idx]) if self.random_sample and self.phase == 'train': chosenid = sample(conf_list, topk, T=T) # chosenid = conf_list.argsort()[::-1][:topk] else: chosenid = conf_list.argsort()[::-1][:topk] croplist = np.zeros([topk, 1, self.crop_size[0], self.crop_size[1], self.crop_size[2]]).astype('float32') coordlist = np.zeros([topk, 3, self.crop_size[0] // self.stride, self.crop_size[1] // self.stride, self.crop_size[2] // self.stride]).astype('float32') padmask = np.concatenate([np.ones(len(chosenid)), np.zeros(self.topk - len(chosenid))]) isnodlist = np.zeros([topk]) for i, id in enumerate(chosenid): target = pbb[id, 1:] isnod = pbb_label[id] crop, coord = self.crop(img, target) if self.phase == 'train': crop, coord = augment(crop, coord, ifflip=self.augtype['flip'], ifrotate=self.augtype['rotate'], ifswap=self.augtype['swap'], filling_value=self.filling_value) crop = crop.astype(np.float32) croplist[i] = crop coordlist[i] = coord isnodlist[i] = isnod if self.phase != 'test': y = np.array([self.yset[idx]]) return torch.from_numpy(croplist).float(), torch.from_numpy(coordlist).float(), torch.from_numpy( isnodlist).int(), torch.from_numpy(y) else: return torch.from_numpy(croplist).float(), torch.from_numpy(coordlist).float() def __len__(self): if self.phase != 'test': return len(self.candidate_box) else: return len(self.candidate_box) class simpleCrop(): def __init__(self, config, phase): self.crop_size = config['crop_size'] self.scaleLim = config['scaleLim'] self.radiusLim = config['radiusLim'] self.jitter_range = config['jitter_range'] self.isScale = config['augtype']['scale'] and phase == 'train' self.stride = config['stride'] self.filling_value = config['filling_value'] self.phase = phase def __call__(self, imgs, target): if self.isScale: radiusLim = self.radiusLim scaleLim = self.scaleLim scaleRange = [np.min([np.max([(radiusLim[0] / target[3]), scaleLim[0]]), 1]) , np.max([np.min([(radiusLim[1] / target[3]), scaleLim[1]]), 1])] scale = np.random.rand() * (scaleRange[1] - scaleRange[0]) + scaleRange[0] crop_size = (
np.array(self.crop_size)
numpy.array
#from ...pybids import BIDSLayout import os import numpy as np import pandas as pd import nibabel as nb from nibabel.processing import smooth_image from scipy.stats import gmean from nipype import logging from nipype.utils.filemanip import fname_presuffix,split_filename,copyfiles from nipype.interfaces.base import ( traits, TraitedSpec, BaseInterfaceInputSpec, SimpleInterface, File, InputMultiPath, OutputMultiPath, isdefined,Undefined) from nipype.interfaces.fsl.base import (FSLCommand, FSLCommandInputSpec, Info) from nipype.interfaces import fsl from nipype.interfaces.ants import ApplyTransforms LOGGER = logging.getLogger('nipype.interface') class _refinemaskInputSpec(BaseInterfaceInputSpec): in_t1mask=File(exists=True,mandatory=True,desc='t1 mask') in_boldmask=File(exists=True,mandatory=True,desct='bold mask') transforms=File(exists=True,mandatory=True,desc='transfom') out_mask=File(exists=False,mandatory=False,desc='output mask') out_tmp=File(exists=False,mandatory=False,desc='tmp mask') class _refinemaskOutputSpec(TraitedSpec): out_mask=File(exists=False,desc='output mask') out_tmp=File(exists=False,desc='tmp mask') class refinemask(SimpleInterface): input_spec = _refinemaskInputSpec output_spec =_refinemaskOutputSpec def _run_interface(self, runtime): self._results['out_tmp'] = fname_presuffix(self.inputs.in_boldmask, suffix='_tempmask', newpath=runtime.cwd) self._results['out_mask'] = fname_presuffix(self.inputs.in_boldmask, suffix='_refinemask', newpath=runtime.cwd) b1=ApplyTransforms() b1.inputs.dimension=3 b1.inputs.float=True b1.inputs.input_image=self.inputs.in_t1mask b1.inputs.interpolation='NearestNeighbor' b1.inputs.reference_image=self.inputs.in_boldmask b1.inputs.transforms=self.inputs.transforms b1.inputs.input_image_type=3 b1.inputs.output_image=self._results['out_tmp'] b1.run() from nipype.interfaces.fsl import MultiImageMaths mat1 = MultiImageMaths() mat1.inputs.in_file =self._results['out_tmp'] mat1.inputs.op_string = " -mul %s -bin" mat1.inputs.operand_files=self.inputs.in_boldmask mat1.inputs.out_file = self._results['out_mask'] mat1.run() self.inputs.out_mask=os.path.abspath(self._results['out_mask']) return runtime class _extractCBFInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc='preprocessed file') in_ASLcontext = File(exists=True, mandatory=True, desc='ASL conext text tsv file with label and control') out_file=File(exists=False,mandatory=False,desc='cbf timeries data') out_avg=File(exists=False,mandatory=False,desc='average control') class _extractCBFOutputSpec(TraitedSpec): out_file = File(exists=False, desc='cbf timeries data') out_avg = File(exists=False, desc='average control') class extractCBF(SimpleInterface): """ extract CBF timeseries by substracting label from control or viceversa """ input_spec = _extractCBFInputSpec output_spec =_extractCBFOutputSpec def _run_interface(self, runtime): aslcontext=pd.read_csv(self.inputs.in_ASLcontext,header=None) idasl=aslcontext[0].tolist() controllist= [ i for i in range(len(idasl)) if idasl[i] == 'Control' ] labellist=[ i for i in range(len(idasl)) if idasl[i] == 'Label' ] # read the nifti image allasl=nb.load(self.inputs.in_file) dataasl=allasl.get_fdata() if len(dataasl.shape) == 5: raise RuntimeError('Input image (%s) is 5D.') control_img=dataasl[:,:,:,controllist] label_img=dataasl[:,:,:,labellist] cbf_data=np.subtract(control_img,label_img) avg_control=np.mean(control_img,axis=3) self._results['out_file'] = fname_presuffix(self.inputs.in_file, suffix='_cbftimeseries', newpath=runtime.cwd) self._results['out_avg'] = fname_presuffix(self.inputs.in_file, suffix='_avg_control', newpath=runtime.cwd) nb.Nifti1Image( cbf_data, allasl.affine, allasl.header).to_filename( self._results['out_file']) nb.Nifti1Image( avg_control, allasl.affine, allasl.header).to_filename( self._results['out_avg']) self.inputs.out_file=os.path.abspath(self._results['out_file']) self.inputs.out_avg=os.path.abspath(self._results['out_avg']) return runtime class _computeCBFInputSpec(BaseInterfaceInputSpec): #in_file = File(exists=True, mandatory=True, #desc='asl raw') in_cbf = File(exists=True,mandatory=True,desc= 'cbf nifti') in_metadata = traits.Dict(exists=True, mandatory=True, desc='metadata for CBF ') in_m0file = File(exists=True, mandatory=False, desc='M0 nifti file') in_mask = File(exists=True, mandatory=False, desc='mask') out_cbf=File(exists=False,mandatory=False,desc='cbf timeries data') out_mean=File(exists=False,mandatory=False,desc='average control') out_att=File(exists=False,mandatory=False,desc='Arterial Transit Time') class _computeCBFOutputSpec(TraitedSpec): out_cbf=File(exists=False,desc='cbf timeries data') out_mean=File(exists=False,desc='average control') out_att=File(exists=False,desc='Arterial Transit Time') class computeCBF(SimpleInterface): """ compute cbf pASL or pCASL """ input_spec = _computeCBFInputSpec output_spec =_computeCBFOutputSpec def _run_interface(self, runtime): labeltype=self.inputs.in_metadata['LabelingType'] tau=self.inputs.in_metadata['LabelingDuration'] plds=np.array(self.inputs.in_metadata['InitialPostLabelDelay']) m0scale=self.inputs.in_metadata['M0'] magstrength=self.inputs.in_metadata['MagneticFieldStrength'] mask=nb.load(self.inputs.in_mask).get_fdata() t1blood=(110*int(magstrength[:-1])+1316)/1000 inverstiontime=np.add(tau,plds) if self.inputs.in_metadata['LabelingEfficiency']: labeleff=self.inputs.in_metadata['LabelingEfficiency'] elif 'CASL' in labeltype: labeleff=0.72 elif 'PASL' in labeltype: labeleff=0.8 else: print( 'no labelelling effiecieny') part_coeff=0.9 # brain partition coefficient if 'CASL' in labeltype: pf1=(6000*part_coeff)/(2*labeleff*t1blood*(1-np.exp(-(tau/t1blood)))) perfusion_factor=pf1*np.exp(plds/t1blood) elif 'PASL' in labeltype: pf1=(6000*part_coeff)/(2*labeleff) perfusion_factor=(pf1*np.exp(inverstiontime/t1blood))/inverstiontime perfusion_factor=np.array([perfusion_factor]) # get control now avg_control=[] mzero=nb.load(self.inputs.in_m0file).get_fdata() if len(mzero.shape) > 3: avg_control=np.multiply(mask,np.mean(mzero,axis=3)) else: avg_control=np.multiply(mzero,mask) if not m0scale: m0scale=1 cbf_data=nb.load(self.inputs.in_cbf).get_fdata() cbf1=np.zeros(cbf_data.shape) for i in range(cbf_data.shape[3]): cbf1[:,:,:,i]=mask*(np.divide(cbf_data[:,:,:,i],(m0scale*avg_control))) #m1=m0scale*m0_data #cbf1=np.divide(cbf_data,m1) # for compute cbf for each PLD and TI att=None if len(perfusion_factor) > 1: cbf_data_ts=np.zeros(np.concatenate(cbf.shape,len(perfusion_factor))) dm1factor=(2*labeleff*1.5*(1-np.exp(tau/1.5)))*avg_control deltaM=np.zeros(np.concatenate(avg_control.shape,len(perfusion_factor))) for i in range(len(perfusion_factor)): cbf_data_ts[:,:,:,:,i]=cbf1*perfusion_factor[i] deltaM[:,:,:,i]=dm1factor*(np.exp(-plds[i]/t1blood)) cbf=np.mean(cbf_data_ts,axis=4) # compute arterial transisttime deltaM2=np.zeros(np.concatenate(avg_control.shape,len(perfusion_factor))) for i in range(len(perfusion_factor)): deltaM2[:,:,:,i]=deltaM[:,:,:,i]*plds[i] att=mask*(np.sum(deltaM2,axis=4)/np.sum(deltaM,axis=4)) else: cbf=cbf1*perfusion_factor ## cbf is timeseries meancbf=mask*(np.mean(cbf,axis=3)) self._results['out_cbf'] = fname_presuffix(self.inputs.in_cbf, suffix='_cbf', newpath=runtime.cwd) self._results['out_mean'] = fname_presuffix(self.inputs.in_cbf, suffix='_meancbf', newpath=runtime.cwd) samplecbf=nb.load(self.inputs.in_cbf) nb.Nifti1Image( cbf, samplecbf.affine, samplecbf.header).to_filename( self._results['out_cbf']) nb.Nifti1Image( meancbf, samplecbf.affine, samplecbf.header).to_filename( self._results['out_mean']) if att is not None: self._results['out_att'] = fname_presuffix(self.inputs.in_cbf, suffix='_att', newpath=runtime.cwd) nb.Nifti1Image( att, samplecbf.affine, samplecbf.header).to_filename( self._results['out_att']) self.inputs.out_att=os.path.abspath(self._results['out_att']) self.inputs.out_cbf=os.path.abspath(self._results['out_cbf']) self.inputs.out_mean=os.path.abspath(self._results['out_mean']) return runtime #score and scrub class _scorescrubCBFInputSpec(BaseInterfaceInputSpec): in_file = File(exists=True, mandatory=True, desc='computed CBF from computeCBF') in_greyM = File(exists=True, mandatory=True,desc='grey matter') in_whiteM = File(exists=True, mandatory=True,desc='white matter') in_mask = File(exists=True, mandatory=True,desc='mask') in_csf = File(exists=True, mandatory=True,desc='csf') in_thresh=traits.Float(default_value=0.7,exists=True,mandatory=False,desc='threshold of propbaility matter') in_wfun=traits.Str(exists=True,mandatory=False,default_value='huber', option=['bisquare','andrews','cauchy','fair','logistics','ols','talwar','welsch'], desc='wavelet fun ') out_score=File(exists=False,desc='score timeseries data') out_avgscore=File(exists=False,desc='average score') out_scrub=File(exists=False,desc='average scrub') out_scoreindex=File(exists=False,desc='index of volume remove or leave by score') class _scorescrubCBFOutputSpec(TraitedSpec): out_score=File(exists=True,mandatory=True,desc='score timeseries data') out_avgscore=File(exists=True,mandatory=True,desc='average score') out_scrub=File(exists=True,mandatory=True,desc='average scrub') out_scoreindex=File(exists=True,mandatory=True,desc='index of volume remove or leave by score') class scorescrubCBF(SimpleInterface): """ compute score and scrub """ input_spec = _scorescrubCBFInputSpec output_spec =_scorescrubCBFOutputSpec def _run_interface(self, runtime): cbf_ts=nb.load(self.inputs.in_file).get_fdata() mask=nb.load(self.inputs.in_mask).get_fdata() greym=nb.load(self.inputs.in_greyM).get_fdata() whitem=nb.load(self.inputs.in_whiteM).get_fdata() csf=nb.load(self.inputs.in_csf).get_fdata() cbf_scorets,index_score=_getcbfscore(cbfts=cbf_ts,wm=whitem,gm=greym,csf=csf, thresh=self.inputs.in_thresh) cbfscrub=_scrubcbf(cbf_ts=cbf_scorets,gm=greym,wm=whitem,csf=csf,mask=mask, wfun=self.inputs.in_wfun,thresh=self.inputs.in_thresh) self._results['out_score'] = fname_presuffix(self.inputs.in_file, suffix='_cbfscorets', newpath=runtime.cwd) self._results['out_avgscore'] = fname_presuffix(self.inputs.in_file, suffix='_meancbfscore', newpath=runtime.cwd) self._results['out_scrub'] = fname_presuffix(self.inputs.in_file, suffix='_cbfscrub', newpath=runtime.cwd) self._results['out_scoreindex'] =fname_presuffix(self.inputs.in_file,suffix='_scoreindex.txt', newpath=runtime.cwd,use_ext=False) samplecbf=nb.load(self.inputs.in_mask) nb.Nifti1Image( cbf_scorets, samplecbf.affine, samplecbf.header).to_filename( self._results['out_score']) nb.Nifti1Image( np.mean(cbf_scorets,axis=3), samplecbf.affine, samplecbf.header).to_filename( self._results['out_avgscore']) nb.Nifti1Image( cbfscrub, samplecbf.affine, samplecbf.header).to_filename( self._results['out_scrub']) np.savetxt(self._results['out_scoreindex'],index_score, delimiter=',') self.inputs.out_score=os.path.abspath(self._results['out_score']) self.inputs.out_avgscore=os.path.abspath(self._results['out_avgscore']) self.inputs.out_scrub=os.path.abspath(self._results['out_scrub']) self.inputs.out_scoreindex=os.path.abspath(self._results['out_scoreindex']) return runtime def _weightfun(x,wfun='huber'): """" get weight fun and tuner """ if wfun == 'andrews': tuner=1.339 weight=(np.abs(x)<np.pi)*np.sin(x) elif wfun== 'bisquare': tuner=4.685 weight=(np.abs(x)<1)*np.power((1-np.power(x,2)),2) elif wfun == 'cauchy': tuner=2.385 weight=1/(1+np.power(x,2)) elif wfun == 'logistic': tuner=1.205 weight == np.tanh(x)/x elif wfun == 'ols': tuner=1 weight=np.repeat(1,len(x)) elif wfun== 'talwar': tuner=2.795 weight=1*(np.abs(x)<1) elif wfun == 'welsch': tuner=2.985 weight=np.exp(-(np.power(x,2))) else: tuner=1.345 weight=1/np.abs(x) return weight,tuner def _tune(wfun='huber'): """" get weight fun and tuner """ if wfun == 'andrews': tuner=1.339 elif wfun== 'bisquare': tuner=4.685 elif wfun == 'cauchy': tuner=2.385 elif wfun == 'logistic': tuner=1.205 elif wfun == 'ols': tuner=1 elif wfun== 'talwar': tuner=2.795 elif wfun == 'welsch': tuner=2.985 else: tuner=1.345 return tuner def _getchisquare(n): a=[0.000000, 15.484663, 8.886835, 7.224733, 5.901333, 5.126189, 4.683238, 4.272937, 4.079918, 3.731612, 3.515615, 3.459711, 3.280471, 3.078046, 3.037280, 2.990761, 2.837119, 2.795526, 2.785189, 2.649955, 2.637642, 2.532700, 2.505253, 2.469810, 2.496135, 2.342210, 2.384975, 2.275019, 2.244482, 2.249109, 2.271968, 2.210340, 2.179537, 2.133762, 2.174928, 2.150072, 2.142526, 2.071512, 2.091061, 2.039329, 2.053183, 2.066396, 1.998564, 1.993568, 1.991905, 1.981837, 1.950225, 1.938580, 1.937753, 1.882911, 1.892665, 1.960767, 1.915530, 1.847124, 1.947374, 1.872383, 1.852023, 1.861169, 1.843109, 1.823870, 1.809643, 1.815038, 1.848064, 1.791687, 1.768343, 1.778231, 1.779046, 1.759597, 1.774383, 1.774876, 1.751232, 1.755293, 1.757028, 1.751388, 1.739384, 1.716395, 1.730631, 1.718389, 1.693839, 1.696862, 1.691245, 1.682541, 1.702515, 1.700991, 1.674607, 1.669986, 1.688864, 1.653713, 1.641309, 1.648462, 1.630380, 1.634156, 1.660821, 1.625298, 1.643779, 1.631554, 1.643987, 1.624604, 1.606314, 1.609462] b=[0, 2.177715, 1.446966, 1.272340, 1.190646, 1.151953, 1.122953, 1.103451, 1.089395, 1.079783, 1.071751, 1.063096, 1.058524, 1.054137, 1.049783, 1.046265, 1.043192, 1.039536, 1.038500, 1.037296, 1.033765, 1.032317, 1.031334, 1.029551, 1.028829, 1.027734, 1.024896, 1.024860, 1.025207, 1.024154, 1.022032, 1.021962, 1.021514, 1.020388, 1.019238, 1.020381, 1.019068, 1.018729, 1.018395, 1.017134, 1.016539, 1.015676, 1.015641, 1.015398, 1.015481, 1.015566, 1.014620, 1.014342, 1.013901, 1.013867, 1.013838, 1.013602, 1.013322, 1.012083, 1.013168, 1.012667, 1.011087, 1.011959, 1.011670, 1.011494, 1.010463, 1.010269, 1.010393, 1.010004, 1.010775, 1.009399, 1.011000, 1.010364, 1.009831, 1.009563, 1.010085, 1.009149, 1.008444, 1.009455, 1.009705, 1.008597, 1.008644, 1.008051, 1.008085, 1.008550, 1.008265, 1.009141, 1.008235, 1.008002, 1.008007, 1.007660, 1.007993, 1.007184, 1.008093, 1.007816, 1.007770, 1.007932, 1.007819, 1.007063, 1.006712, 1.006752, 1.006703, 1.006650, 1.006743, 1.007087] return a[n-1],b[n-1] def _getcbfscore(cbfts,wm,gm,csf,thresh=0.7): gm[gm<thresh]=0; gm[gm>0]=1 wm[wm<thresh]=0; wm[wm>0]=1 csf[csf<thresh]=0;csf[csf>0]=1 # get the total number of voxle within csf,gm and wm nogm =np.sum(gm==1)-1; nowm=np.sum(wm==1)-1; nocf=np.sum(csf==0)-1 mask=gm+wm+csf #msk=sum(mask>0) # mean of times series cbf within greymatter mgmts=np.squeeze(np.mean(cbfts[gm==1,:],axis=0)) # robiust mean and meadian medmngm = np.median(mgmts); sdmngm=np.mean(np.abs(mgmts - np.mean(mgmts)))/0.675 indx=1*(np.abs(mgmts-medmngm)>(2.5*sdmngm)) R=np.mean(cbfts[:,:,:,indx==0],axis=3) V=nogm*np.var(R[gm==1]) + nowm*np.var(R[wm==1]) + nocf*np.var(R[csf==1]) V1=V+1 while V < V1: V1=V;CC =(-2*np.repeat(1,cbfts.shape[3]))*1 for s in range(cbfts.shape[3]): if indx[s] != 0 : break else: tmp1 = cbfts[:,:,:,s] CC[s]=np.corrcoef(R[mask>0],tmp1[mask>0])[0][1] inx=np.argmax(CC); indx[inx]=2 R=np.mean(cbfts[:,:,:,indx==0],axis=3) V=nogm*np.var(R[gm==1]) + nowm*np.var(R[wm==1]) + nocf*np.var(R[csf==1]) cbfts_recon=cbfts[:,:,:,indx==0] return cbfts_recon,indx def _roubustfit(Y,mu,Globalprior,modrobprior,lmd=0,localprior=0,wfun='huber',tune=1.345,flagstd=1,flagmodrobust=1,flagprior=1,thresh=0.7): dimcbf=Y.shape priow=np.ones([dimcbf[0],dimcbf[1]]);sw=1 X=priow b=(np.sum(X*Y,axis=0)+mu*Globalprior+lmd*localprior)/(np.sum(X*X,axis=0)+mu+lmd) b0=np.repeat(0,len(b)) h1=X/np.power(np.tile(np.sqrt(np.sum(X*X,axis=0)),(dimcbf[0],1)),2) h0=0.9999*np.ones([dimcbf[0],dimcbf[1]]) h=np.minimum(h0,h1) adjfactor=1/(np.sqrt(1-h/priow)) tiny_s=(1e-6)*(np.std(h,axis=0));tiny_s[tiny_s==0]=1 D=np.sqrt(np.finfo(float).eps) iter =0; interlim=10 while iter<interlim: print('iteration ', iter,"\n") iter=iter + 1 check1=np.subtract(np.abs(b-b0),(D*np.maximum(np.abs(b),np.abs(b0)))) check1[check1>0]=0 if any(check1): print(' \n converged after ', iter,"iterations\n") break r = Y - X*(np.tile(b,(dimcbf[0],1))) radj = r * adjfactor/sw if flagstd == 1 : s=np.sqrt(np.mean(np.power(radj,2),axis=0)) else: rs=np.sort(np.abs(radj),axis=0); s=np.median(rs,axis=0)/0.6745 r1=radj*(1-flagmodrobust*np.exp(-np.tile(modrobprior,(dimcbf[0],1))))/np.tile(np.maximum(s,tiny_s)*tune,(dimcbf[0],1)) w,_=_weightfun(r1,wfun) b0=b; z=np.sqrt(w); x = X*z; yz = Y*z b=(np.sum(x*yz,axis=0)+mu*Globalprior+lmd*localprior)/(np.sum(x*x,axis=0)+mu+lmd) return b def _scrubcbf(cbf_ts,gm,wm,csf,mask,wfun='huber',thresh=0.7): gm=mask*gm;wm=mask*wm; csf=csf*mask gmidx=gm[mask==1]; gmidx[gmidx<thresh]=0; gmidx[gmidx>0] = 1 wmidx=wm[mask==1]; wmidx[wmidx<thresh]=0; wmidx[wmidx>0] = 1 csfidx = csf[mask==1]; csfidx[csfidx<thresh] = 0; csfidx[csfidx>0] =1 #midx = mask[mask==1] meancbf=np.mean(cbf_ts,axis=3) y=np.transpose(cbf_ts[mask==1,:,]) VV=np.var(y,axis=0) thresh1,thresh3=_getchisquare(y.shape[0]) mu1=VV/(np.median(VV[gmidx==1])*thresh3) mu =((mu1>thresh1)&(mu1<10*thresh1))*(mu1-thresh1) +(mu1 >=10*thresh1)*(1/(2*thresh1*10)*np.power(mu1,2))+(thresh1*10/2 - thresh1) M=meancbf*mask; M[mask==1]=mu; modrobprior = mu/10 gmidx2 = 1*([gm.flatten()>thresh] and [M.flatten()==0] and [wm.flatten() > csf.flatten()])[0] wmidx2 =1*([wm.flatten()>thresh] and [M.flatten()==0] and [gm.flatten() > csf.flatten()])[0] if np.sum(gmidx2)==0 or np.sum(wmidx2)==0: gmidx2 =1*(gm.flatten()>thresh); wmidx2 = 1*(wm.flatten()>thresh) idxx =gmidx2 + wmidx2; idxx[idxx>0]=1 X = np.zeros([len(idxx),2]) X[:,0] = gm.flatten()[gm.flatten()>=(0)]*idxx X[:,1] = wm.flatten()[wm.flatten()>=(0)]*idxx A=(meancbf.flatten()[idxx >= 0])*idxx c=np.linalg.lstsq(X,A)[0] Globalpriorfull=c[0]*gm.flatten() +c[1]*wm.flatten() Globalprior =Globalpriorfull[mask.flatten()==1] localprior=0;lmd=0 tune=_tune(wfun=wfun) bb=_roubustfit(Y=y,mu=mu,Globalprior=Globalprior,modrobprior=modrobprior,lmd=lmd, localprior=localprior,wfun=wfun,tune=tune,flagstd=1,flagmodrobust=1,flagprior=1,thresh=0.7) newcbf=meancbf*mask newcbf[mask==1]=bb return newcbf # basil and pvcorr class _BASILCBFInputSpec(FSLCommandInputSpec): # We use position args here as list indices - so a negative number # will put something on the end in_file = File( exists=True, desc="input file cbf after substracting tag-control or control-tag", argstr=" -i %s", position=0, mandatory=True, ) mask= File(exists=True,argstr=" -m %s ",desc="mask in the same space as in_infile",mandatory=True,) mzero=File(exists=True,argstr=" -c %s ",desc='m0 scan',mandatory=True,) m0scale=traits.Float(desc='calibration of asl',argstr=" --cgain %.2f ",mandatory=True,) m0tr=traits.Float(desc='Mzero TR',argstr=" --tr %.2f ",mandatory=True,) tis=traits.Float(desc='invertion recovery time =plds+bolus',argstr=" --tis %.2f ",mandatory=True,) pcasl=traits.Bool(desc='label type:defualt is PASL',argstr=" --casl ",mandatory=False,default_value=False) bolus=traits.Float(desc='bolus or tau: label duraytion',argstr=" --bolus %.2f ",mandatory=True,) pvc=traits.Bool(desc='calibration of asl',mandatory=False,argstr=" --pvcorr ",default_value=True) pvgm=File(exists=True,mandatory=False,desc='grey matter probablity matter ',argstr=" --pvgm %s ",) pvwm=File(exists=True,mandatory=False,desc='white matter probablity matter ',argstr=" --pvwm %s ",) out_basename=File(desc="base name of output files", argstr=" -o %s ",mandatory=True) out_cbfb=File(exists=False,desc='cbf with spatial correction') out_cbfpv=File(exists=False,desc='cbf with spatial correction') out_attb=File(exists=False,desc='aretrial transist time') #environ=traits.Str('FSLOUTPUTTYPE': 'NIFTI_GZ'} class _BASILCBFOutputSpec(TraitedSpec): out_cbfb=File(exists=False,desc='cbf with spatial correction') out_cbfpv=File(exists=False,desc='cbf with spatial correction') out_attb=File(exists=False,desc='aretrial transist time') class BASILCBF(FSLCommand): _cmd = " oxford_asl " input_spec = _BASILCBFInputSpec output_spec = _BASILCBFOutputSpec def _run_interface(self, runtime): import shutil #if os.path.isdir(self.inputs.out_basename+'/native_space'): #shutil.rmtree(self.inputs.out_basename+'/native_space') #shutil.rmtree(self.inputs.out_basename+'/calib') runtime = super(BASILCBF, self)._run_interface(runtime) return runtime def _gen_outfilename(self,suffix): if isdefined(self.inputs.in_file): out_file = self._gen_fname(self.inputs.in_file, suffix=suffix) return os.path.abspath(out_file) def _list_outputs(self): outputs = self.output_spec().get() #outputs["out_cbfb"]=self.inputs.out_basename+'/basilcbf.nii.gz' outputs["out_cbfb"]=fname_presuffix(self.inputs.in_file,suffix='_cbfbasil') from shutil import copyfile copyfile(self.inputs.out_basename+'/native_space/perfusion_calib.nii.gz',outputs["out_cbfb"]) if len(np.array([self.inputs.tis])) > 1: #outputs["out_att"]=self.inputs.out_basename+'/arrivaltime.nii.gz' outputs["out_att"]=fname_presuffix(self.inputs.in_file,suffix='_arrivaltime') copyfile(self.inputs.out_basename+'/native_space/arrival.nii.gz',outputs["out_att"]) self.inputs.out_att=os.path.abspath(outputs["out_att"]) #outputs["out_cbfpv"]=self.inputs.out_basename+'/basilcbfpv.nii.gz' outputs["out_cbfpv"]=fname_presuffix(self.inputs.in_file,suffix='_cbfbasilpv') copyfile(self.inputs.out_basename+'/native_space/pvcorr/perfusion_calib.nii.gz',outputs["out_cbfpv"]) self.inputs.out_cbfb=os.path.abspath(outputs["out_cbfb"]) self.inputs.out_cbfpv=os.path.abspath(outputs["out_cbfpv"]) return outputs class _qccbfInputSpec(BaseInterfaceInputSpec): in_file=File(exists=True,mandatory=True,desc='original asl_file') in_meancbf=File(exists=True,mandatory=True,desc='cbf img') in_avgscore=File(exists=True,mandatory=True,desc='cbf img') in_scrub=File(exists=True,mandatory=True,desc='cbf img') in_basil=File(exists=True,mandatory=True,desc='cbf img') in_pvc=File(exists=True,mandatory=True,desc='cbf img') in_greyM = File(exists=True, mandatory=True,desc='grey matter') in_whiteM = File(exists=True, mandatory=True,desc='white matter') in_csf = File(exists=True, mandatory=True,desc='csf') in_confmat=File(exists=True,mandatory=True,desc=' cofnound matrix') in_boldmask=File(exists=True,mandatory=True,desc='bold mask in native space') in_t1mask=File(exists=True,mandatory=True,desc='t1wmask in native space ') in_boldmaskstd=File(exists=True,mandatory=False,desc='bold mask in native space') in_templatemask=File(exists=True,mandatory=False,desc='template mask or image') qc_file=File(exists=False,mandatory=False,desc='qc file ') class _qccbfOutputSpec(TraitedSpec): qc_file=File(exists=False,desc='qc file ') class qccbf(SimpleInterface): input_spec = _qccbfInputSpec output_spec = _qccbfOutputSpec def _run_interface(self, runtime): time1=pd.read_csv(self.inputs.in_confmat,sep='\t') time1.fillna(0,inplace=True) fd=np.mean(time1['framewise_displacement']) rms=time1[['rot_x','rot_y','rot_z']];rms1=rms.pow(2) rms=np.mean(np.sqrt(rms1.sum(axis=1)/3)) regDC=dc(self.inputs.in_boldmask,self.inputs.in_t1mask) regJC=jc(self.inputs.in_boldmask,self.inputs.in_t1mask) regCC=crosscorr(self.inputs.in_boldmask,self.inputs.in_t1mask) regCov=coverage(self.inputs.in_boldmask,self.inputs.in_t1mask) if self.inputs.in_boldmaskstd and self.inputs.in_templatemask: normDC=dc(self.inputs.in_boldmaskstd,self.inputs.in_templatemask) normJC=jc(self.inputs.in_boldmaskstd,self.inputs.in_templatemask) normCC=crosscorr(self.inputs.in_boldmaskstd,self.inputs.in_templatemask) normCov=coverage(self.inputs.in_boldmaskstd,self.inputs.in_templatemask) meancbf_qei=cbf_qei(gm=self.inputs.in_greyM,wm=self.inputs.in_whiteM, csf=self.inputs.in_csf,img=self.inputs.in_meancbf,thresh=0.7) scorecbf_qei=cbf_qei(gm=self.inputs.in_greyM,wm=self.inputs.in_whiteM, csf=self.inputs.in_csf,img=self.inputs.in_avgscore,thresh=0.7) basilcbf_qei=cbf_qei(gm=self.inputs.in_greyM,wm=self.inputs.in_whiteM, csf=self.inputs.in_csf,img=self.inputs.in_basil,thresh=0.7) pvcbf_qei=cbf_qei(gm=self.inputs.in_greyM,wm=self.inputs.in_whiteM, csf=self.inputs.in_csf,img=self.inputs.in_pvc,thresh=0.7) scrub_qei=cbf_qei(gm=self.inputs.in_greyM,wm=self.inputs.in_whiteM, csf=self.inputs.in_csf,img=self.inputs.in_scrub,thresh=0.7) if self.inputs.in_boldmaskstd and self.inputs.in_templatemask: dict1 = {'fd':[fd],'rel_rms':[rms],'coregDC':[regDC],'coregJC':[regJC],'coregCC':[regCC],'coregCOV':[regCov], 'normDC':[normDC],'normJC':[normJC],'normCC':[normCC],'normCOV':[normCov], 'cbfQei':[meancbf_qei],'scoreQei':[scorecbf_qei],'scrubQei':[scrub_qei], 'basilQei':[basilcbf_qei],'pvcQei':[pvcbf_qei] } else: dict1 = {'fd':[fd],'rel_rms':[rms],'regDC':[regDC],'regJC':[regJC],'coregCC':[regCC],'coregCOV':[regCov], 'cbfQei':[meancbf_qei],'scoreQei':[scorecbf_qei],'scrubQei':[scrub_qei], 'basilQei':[basilcbf_qei],'pvcQei':[pvcbf_qei] } _,file1=os.path.split(self.inputs.in_file) bb=file1.split('_') dict2={} for i in range(len(bb)-1): dict2.update({bb[i].split('-')[0]:bb[i].split('-')[1]}) dict2.update(dict1) df = pd.DataFrame(dict2) self._results['qc_file'] =fname_presuffix(self.inputs.in_meancbf,suffix='qc_cbf.csv', newpath=runtime.cwd,use_ext=False) df.to_csv (self._results['qc_file'], index = False, header=True) self.inputs.qc_file=os.path.abspath(self._results['qc_file']) return runtime def dc(input1, input2): r""" Dice coefficient Computes the Dice coefficient (also known as Sorensen index) between the binary objects in two images. The metric is defined as .. math:: DC=\frac{2|A\cap B|}{|A|+|B|} , where :math:`A` is the first and :math:`B` the second set of samples (here: binary objects). Parameters ---------- input1 : array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. input2 : array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. Returns ------- dc : float The Dice coefficient between the object(s) in ```input1``` and the object(s) in ```input2```. It ranges from 0 (no overlap) to 1 (perfect overlap). Notes ----- This is a real metric. """ input1=nb.load(input1).get_fdata() input2=nb.load(input2).get_fdata() input1 =np.atleast_1d(input1.astype(np.bool)) input2 = np.atleast_1d(input2.astype(np.bool)) intersection = np.count_nonzero(input1 & input2) size_i1 = np.count_nonzero(input1) size_i2 = np.count_nonzero(input2) try: dc = 2. * intersection / float(size_i1 + size_i2) except ZeroDivisionError: dc = 0.0 return dc def jc(input1, input2): r""" Jaccard coefficient Computes the Jaccard coefficient between the binary objects in two images. Parameters ---------- input1: array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. input2: array_like Input data containing objects. Can be any type but will be converted into binary: background where 0, object everywhere else. Returns ------- jc: float The Jaccard coefficient between the object(s) in `input1` and the object(s) in `input2`. It ranges from 0 (no overlap) to 1 (perfect overlap). Notes ----- This is a real metric. """ input1=nb.load(input1).get_fdata() input2=nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)) input2 = np.atleast_1d(input2.astype(np.bool)) intersection = np.count_nonzero(input1 & input2) union = np.count_nonzero(input1 | input2) jc = float(intersection) / float(union) return jc def crosscorr(input1,input2): """ cross correlation computer compute cross correction bewteen input mask """ input1=nb.load(input1).get_fdata() input2=nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)).flatten() input2 = np.atleast_1d(input2.astype(np.bool)).flatten() cc=np.corrcoef(input1,input2)[0][1] return cc def coverage(input1,input2): """ estimate the coverage between two mask """ input1=nb.load(input1).get_fdata() input2=nb.load(input2).get_fdata() input1 = np.atleast_1d(input1.astype(np.bool)) input2 = np.atleast_1d(input2.astype(np.bool)) intsec=np.count_nonzero(input1 & input2) if np.sum(input1)> np.sum(input2): smallv=np.sum(input2) else: smallv=np.sum(input1) cov=float(intsec)/float(smallv) return cov def cbf_qei(gm,wm,csf,img,thresh=0.7): def fun1(x,xdata): d1=np.exp(-(x[0])*np.power(xdata,x[1])) return(d1) def fun2(x,xdata): d1=1-np.exp(-(x[0])*np.power(xdata,x[1])) return(d1) x1 = [0.054,0.9272]; x2 = [2.8478,0.5196]; x4 = [3.0126, 2.4419] scbf=smooth_image(nb.load(img),fwhm=5).get_fdata()# smooth the image if len(scbf.shape) > 3: scbf=scbf[:,:,:,0] #load prob maps gmm=nb.load(gm).get_fdata(); wmm=nb.load(wm).get_fdata(); ccf=nb.load(csf).get_fdata() if len(gmm.shape) > 3: gmm=gmm[:,:,:,0] wmm=gmm[:,:,:,0] ccf=ccf[:,:,:,0] pbcf=2.5*gmm+wmm # gmm is 2.5 times wm msk=np.array((scbf!= 0)&(scbf != np.nan )&(pbcf != np.nan )).astype(int) gm1=np.array(gmm>thresh) wm1=np.array(wmm>thresh) cc1=np.array(ccf>thresh) r1=np.array([0,np.corrcoef(scbf[msk==1],pbcf[msk==1])[1,0]]).max() V=((np.sum(gm1)-1)*np.var(scbf[gm1>0])+(np.sum(wm1)-1)*np.var(scbf[wm1>0])+(np.sum(cc1)-1) \ *np.var(scbf[cc1>0]))/(
np.sum(gm1>0)
numpy.sum
from junctiontree import computation as comp import numpy as np from .util import assert_potentials_equal def get_arrays_and_vars(tree, node_list, potentials): """Get all arrays and their variables as a flat list Output: [array1, vars1, ..., arrayN, varsN] """ return list([potentials[tree[0]],node_list[tree[0]]]) + sum( [ get_arrays_and_vars(child_tree, node_list, potentials) for child_tree in tree[1:] ], [] ) def brute_force_sum_product(tree, node_list, potentials): """Compute brute force sum-product with einsum """ # Function to compute the sum-product with brute force einsum arrays_vars = get_arrays_and_vars(tree, node_list, potentials) f = lambda output_vars: np.einsum(*(arrays_vars + [output_vars])) def __run(tree, node_list, p, f, res=[]): res.append(f(node_list[tree[0]])) for child_tree in tree[1:]: __run(child_tree, node_list, p, f, res) return res return __run(tree, node_list, potentials, f) def assert_sum_product(tree, node_order, potentials, variables): """ Test shafer-shenoy vs brute force sum-product """ # node_order represents the order nodes are traversed # in get_arrays_and_vars function assert_potentials_equal( brute_force_sum_product( tree, [variables[idx] for idx in node_order], [potentials[idx] for idx in node_order] ), comp.compute_beliefs(tree, potentials, variables) ) def test_one_scalar_node(): assert_sum_product( [ 0, ], [0], [ np.random.randn(), ], [[]] # no variables for scalar ) def test_one_matrix_node(): assert_sum_product( [ 0, ], [0], [ np.random.randn(2, 3), ], [ [3,5] ] ) def test_one_child_node_with_all_variables_shared(): assert_sum_product( [ 0, ( 2, [ 1, ] ) ], [0,2,1], [ np.random.randn(2, 3), np.random.randn(3, 2), np.ones((3, 2)), ], [ [3,5], [5,3], [5,3] ] ) def test_one_child_node_with_one_common_variable(): assert_sum_product( [ 0, ( 2, [ 1, ] ) ], [0,2,1], [ np.random.randn(2, 3), np.random.randn(3, 4), np.ones((3,)), ], [ [3,5], [5,9], [5] ] ) def test_one_child_node_with_no_common_variable(): assert_sum_product( [ 0, ( 2, [ 1, ] ) ], [0,2,1], [ np.random.randn(2), np.random.randn(3), np.ones(()), ], [ [3], [9], [] ] ) def test_one_grand_child_node_with_no_variable_shared_with_grand_parent(): assert_sum_product( [ 0, ( 3, [ 1, ( 4, [ 2, ] ) ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(4, 5), np.ones((3,)), np.ones((4,)), ], [ [3, 5], [5, 9], [9, 1], [5], [9] ] ) def test_one_grand_child_node_with_variable_shared_with_grand_parent(): assert_sum_product( [ 0, ( 3, [ 1, ( 4, [ 2, ] ) ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(6, 3), np.ones((3,)), np.ones((3,)), ], [ [3, 5], [5, 9], [1, 5], [5], [5] ] ) def test_two_children_with_no_variable_shared(): assert_sum_product( [ 0, ( 3, [ 1, ] ), ( 4, [ 2, ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(2, 5), np.ones((3,)), np.ones((2,)), ], [ [3, 5], [5, 9], [3, 1], [5], [3] ] ) def test_two_child_with_shared_variable(): assert_sum_product( [ 0, ( 3, [ 1, ] ), ( 4, [ 2, ] ) ], [0,2,4,1,3], [ np.random.randn(2, 3), np.random.randn(3, 4), np.random.randn(3), np.ones((3,)),
np.ones((3,))
numpy.ones
#Copyright (c) 2020 Ocado. All Rights Reserved. import sys, os import numpy as np sys.path.append(os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir))) from amrrt.metrics import GeodesicMetric def test_distance_geodesic(maze_environment_info, maze_distance_matrix): space = maze_environment_info["space"] shortest_paths = [74.61747343047412, 84.61575781480384, 64.40995862204083, 98.07522464033143, 127.19815498031583, 95.70905438785839] waypoints = [[63.0, 51.0], [7.2, 6.6], [28.0, 81.0], [35.0, 37.0], [93.0, 91.0], [89.2, 7.0], [16.2, 37.2]] geodesic_metric = GeodesicMetric(maze_environment_info["space"], distance_matrix=maze_distance_matrix) for i in range(6): a = space.create_state(np.array(waypoints[i])) b = space.create_state(np.array(waypoints[i+1])) assert geodesic_metric.distance(a, b) == geodesic_metric.distance(b, a) >=
np.linalg.norm(a.pos - b.pos)
numpy.linalg.norm
######################################################################## # # License: BSD # Created: September 1, 2010 # Author: <NAME> - <EMAIL> # ######################################################################## import sys import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal from unittest import TestCase import blaze.carray as ca from common import MayBeDiskTest class createTest(MayBeDiskTest, TestCase): def test00a(self): """Testing ctable creation from a tuple of carrays""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) #print "t->", `t` ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00b(self): """Testing ctable creation from a tuple of lists""" t = ca.ctable(([1,2,3],[4,5,6]), ('f0', 'f1'), rootdir=self.rootdir) #print "t->", `t` ra = np.rec.fromarrays([[1,2,3],[4,5,6]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00c(self): """Testing ctable creation from a tuple of carrays (single column)""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) self.assertRaises(ValueError, ca.ctable, a, 'f0', rootdir=self.rootdir) def test01(self): """Testing ctable creation from a tuple of numpy arrays""" N = 1e1 a = np.arange(N, dtype='i4') b = np.arange(N, dtype='f8')+1 t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) #print "t->", `t` ra = np.rec.fromarrays([a,b]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test02(self): """Testing ctable creation from an structured array""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test03a(self): """Testing ctable creation from large iterator""" N = 10*1000 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8', count=N, rootdir=self.rootdir) #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test03b(self): """Testing ctable creation from large iterator (with a hint)""" N = 10*1000 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8', count=N) t = ca.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8', count=N, rootdir=self.rootdir) #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") class createDiskTest(createTest, TestCase): disk = True class persistentTest(MayBeDiskTest, TestCase): disk = True def test00a(self): """Testing ctable opening in "r" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Open t t = ca.open(rootdir=self.rootdir, mode='r') #print "t->", `t` ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses self.assertRaises(RuntimeError, t.__setitem__, 1, (0, 0.0)) self.assertRaises(RuntimeError, t.append, (0, 0.0)) def test00b(self): """Testing ctable opening in "w" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Open t t = ca.open(rootdir=self.rootdir, mode='w') #print "t->", `t` N = 0 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses t.append((0, 0.0)) t.append((0, 0.0)) t[1] = (1, 2.0) ra = np.rec.fromarrays([(0,1),(0.0, 2.0)], 'i4,f8').view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00c(self): """Testing ctable opening in "a" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Open t t = ca.open(rootdir=self.rootdir, mode='a') #print "t->", `t` # Check values ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses t.append((10, 11.0)) t.append((10, 11.0)) t[-1] = (11, 12.0) # Check values N = 12 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01a(self): """Testing ctable creation in "r" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) self.assertRaises(RuntimeError, ca.ctable, (a, b), ('f0', 'f1'), rootdir=self.rootdir, mode='r') def test01b(self): """Testing ctable creation in "w" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Overwrite the last ctable t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir, mode='w') #print "t->", `t` ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") # Now check some accesses t.append((10, 11.0)) t.append((10, 11.0)) t[11] = (11, 12.0) # Check values N = 12 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) ra = np.rec.fromarrays([a[:],b[:]]).view(np.ndarray) #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01c(self): """Testing ctable creation in "a" mode""" N = 1e1 a = ca.carray(np.arange(N, dtype='i4')) b = ca.carray(np.arange(N, dtype='f8')+1) t = ca.ctable((a, b), ('f0', 'f1'), rootdir=self.rootdir) # Overwrite the last ctable self.assertRaises(RuntimeError, ca.ctable, (a, b), ('f0', 'f1'), rootdir=self.rootdir, mode='a') class add_del_colTest(MayBeDiskTest, TestCase): def test00a(self): """Testing adding a new column (list flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c.tolist(), 'f2') ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test00(self): """Testing adding a new column (carray flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(ca.carray(c), 'f2') ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01a(self): """Testing adding a new column (numpy flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, 'f2') ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test01b(self): """Testing cparams when adding a new column (numpy flavor)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, cparams=ca.cparams(1), rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, 'f2') self.assert_(t['f2'].cparams.clevel == 1, "Incorrect clevel") def test02(self): """Testing adding a new column (default naming)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(ca.carray(c)) ra = np.fromiter(((i, i*2., i*3) for i in xrange(N)), dtype='i4,f8,i8') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test03(self): """Testing inserting a new column (at the beginning)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, name='c0', pos=0) ra = np.fromiter(((i*3, i, i*2.) for i in xrange(N)), dtype='i8,i4,f8') ra.dtype.names = ('c0', 'f0', 'f1') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test04(self): """Testing inserting a new column (in the middle)""" N = 10 ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') t = ca.ctable(ra, rootdir=self.rootdir) c = np.arange(N, dtype='i8')*3 t.addcol(c, name='c0', pos=1) ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') ra.dtype.names = ('f0', 'c0', 'f1') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test05(self): """Testing removing an existing column (at the beginning)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol(pos=0) # The next gives a segfault. See: # http://projects.scipy.org/numpy/ticket/1598 #ra = np.fromiter(((i*3, i*2) for i in xrange(N)), dtype='i8,f8') #ra.dtype.names = ('f1', 'f2') dt = np.dtype([('f1', 'i8'), ('f2', 'f8')]) ra = np.fromiter(((i*3, i*2) for i in xrange(N)), dtype=dt) #print "t->", `t` #print "ra", ra #assert_array_equal(t[:], ra, "ctable values are not correct") def test06(self): """Testing removing an existing column (at the end)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol(pos=2) ra = np.fromiter(((i, i*3) for i in xrange(N)), dtype='i4,i8') ra.dtype.names = ('f0', 'f1') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test07(self): """Testing removing an existing column (in the middle)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol(pos=1) ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') ra.dtype.names = ('f0', 'f2') #print "t->", `t` #print "ra[:]", ra[:] assert_array_equal(t[:], ra, "ctable values are not correct") def test08(self): """Testing removing an existing column (by name)""" N = 10 ra = np.fromiter(((i, i*3, i*2.) for i in xrange(N)), dtype='i4,i8,f8') t = ca.ctable(ra, rootdir=self.rootdir) t.delcol('f1') ra = np.fromiter(((i, i*2.) for i in xrange(N)), dtype='i4,f8') ra.dtype.names = ('f0', 'f2') #print "t->", `t` #print "ra[:]", ra[:]
assert_array_equal(t[:], ra, "ctable values are not correct")
numpy.testing.assert_array_equal
import pytest import sys import os import numpy as np from anytree import RenderTree from pvtrace.geometry.box import Box class TestBox: def test_init(self): assert type(Box(size=(1,1,1))) == Box def test_is_on_surface(self): b = Box(size=(1,1,1)) assert b.is_on_surface((0.5, 0.0, 0.0)) == True assert b.is_on_surface((0.0, 0.5, 0.0)) == True assert b.is_on_surface((0.0, 0.0, 0.5)) == True assert b.is_on_surface((-0.5, 0.0, 0.0)) == True assert b.is_on_surface((0.0, -0.5, 0.0)) == True assert b.is_on_surface((0.0, 0.0, -0.5)) == True assert b.is_on_surface((0.0, 0.0, 0.0)) == False assert b.is_on_surface((0.501, 0.0, 0.0)) == False def test_is_on_surface_bad(self): b = Box(size=(1.0, 1.0, 0.02)) bad_pos = (0.06608370507653762, 0.5, -0.007798573829629238) bad_dir = (0.2108918904984852, 0.8577010754312269, 0.4689066812555477) ray_pos = np.array(bad_pos) - 0.0001 *
np.array(bad_dir)
numpy.array
import math from mpl_toolkits.mplot3d import Axes3D, axes3d import warnings import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter import numpy as np import itertools from src import constants from src.my_utils.constant_class import * from src.my_utils.my_math.line import distance_btw_two_point class PotentialType: Repulsive_potential = "Repulsive_potential" Attractive_potential = "Attractive_potential" Camera_potential_steps = "camera_potential_steps" Camera_potential_quadratic = "camera_potential_quadratic" class PotentialShape: Circular = "circular" Angle = "angle" Linear_X_direction = "Linear X unbound" Linear_X_direction_bound = "Linear X bound" Linear_Y_direction = "Linear Y unbound" Linear_Y_direction_bound = "Linear Y bound" class HeatMaps: """ Maps are composed of multiple points [(x,y,data_saved-controller-xi,rho_0,PotentialType),...] x and y are the coordinate of the point where we set the potential function data_saved-controller-xi is a factor between 0 and 1, to give more or less importance to the point rho_0 is the radius in which the potential is determined PotentialType is the function we want to use If the potential are set correctly and are not to close from each other than the map gives always a value between 0 and 1. """ """All cam field""" def HEAT_MAP_INSIDE_OF_FIELD(): return [(0,0,0,1,1,1,1000,PotentialType.Camera_potential_steps)] """For one target""" def HEAT_MAP_ONE_TARGET_CENTER(field_depth): return [(constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth,0, 0,1,1,1,1,PotentialType.Camera_potential_quadratic)] """For two targets""" def HEAT_MAP_TWO_TARGET_CENTER(field_depth,beta): x = constants.DISTANCE_TO_KEEP_FROM_TARGET*field_depth * math.cos(beta / 4) y = 1.5*constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.sin(beta / 4) return [(x, y,0,1,2,1,2,PotentialType.Camera_potential_quadratic), (x,-y,0,1,2,1,2,PotentialType.Camera_potential_quadratic)] def HEAT_MAP_TWO_TARGET_FAR(field_depth,beta,side=1): return [(0.8*field_depth*math.cos(beta/ 4),side*0.3*field_depth * math.sin(beta / 4), side*0, 2, 1, 1, 1.5,PotentialType.Camera_potential_quadratic), (0.3*field_depth*math.cos(beta/ 4),side*-0.1*field_depth * math.sin(beta/ 4),side*55, 1, 15, 1, 0.75,PotentialType.Camera_potential_quadratic)] """For three targets""" def HEAT_MAP_THREE_TARGET(field_depth,beta): x = constants.DISTANCE_TO_KEEP_FROM_TARGET*field_depth * math.cos(beta / 4) y = 1.5*constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.sin(beta / 4) return [(x, y,0,1,1,1,0.5,PotentialType.Camera_potential_steps), (x,-y,0,1,1,1,0.5,PotentialType.Camera_potential_steps), (x+2, 0, 0, 1, 1, 1, 0.5, PotentialType.Camera_potential_steps)] def HEAT_MAP_TWO_TARGET_OVERLAP(field_depth, beta): x = constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.cos(beta / 4) y = 1.5 * constants.DISTANCE_TO_KEEP_FROM_TARGET * field_depth * math.sin(beta / 4) return [(x, y, 0, 1, 2, 1, 2.5, PotentialType.Camera_potential_quadratic), (x, -y, 0, 1, 2, 1, 2.5, PotentialType.Camera_potential_quadratic)] def rotate_vector_field_angle(angle, X, Y): norm = np.float_power(np.square(X) + np.square(Y), 0.5) old_angle = np.arctan2(Y, X) X = norm * np.cos(angle + old_angle) Y = norm * np.sin(angle + old_angle) return X, Y def rotate_map_from_angle_alpha(angle, x, y, x_mean, y_mean): x_offset = x - x_mean y_offset = y - y_mean x_rotate = math.cos(angle) * x_offset + math.sin(angle) * y_offset y_rotate = -math.sin(angle) * x_offset + math.cos(angle) * y_offset return x_rotate, y_rotate def unrotate_map_from_angle_alpha(angle, x, y, x_mean, y_mean): x_rotate = math.cos(angle) * x + math.sin(angle) * y y_rotate = -math.sin(angle) * x + math.cos(angle) * y x = x_rotate + x_mean y = y_rotate + y_mean return x, y def define_potential_shape(shape, X=None, mean_x=None, var_x=None, Y=None, mean_y=None, var_y=None, X_min=None, X_max=None, Y_min=None, Y_max=None, angle_min=None, angle_max=None): if shape == PotentialShape.Circular and X is not None and Y is not None: distances = np.power(np.square(X - mean_x) / var_x + np.square(Y - mean_y) / var_y, 0.5) angle = np.arctan2(Y - mean_y, X - mean_x) elif shape == PotentialShape.Angle and X is not None and Y is not None and angle_min is not None and angle_max is not None: distances = np.power(np.square(X - mean_x) / var_x + np.square(Y - mean_y) / var_y, 0.5) angle = np.arctan2(Y - mean_y, X - mean_x) distances = np.where(angle < angle_max, distances, -1) distances = np.where(angle > angle_min, distances, -1) elif shape == PotentialShape.Linear_X_direction and Y is not None: distances = np.square((Y - mean_y) / var_y) angle = np.arctan2(Y - mean_y, 0) elif shape == PotentialShape.Linear_Y_direction and X is not None: distances = np.square((X - mean_x) / var_x) angle = np.arctan2(0, X - mean_x) else: print("define_potential_shape : choice not found or values not set correctly") if not X is None: distances = np.zeros(
np.shape(X)
numpy.shape
# -*- coding: utf-8 -*- """ Created on Tue Feb 26 19:50:38 2019 @author: admin """ import numpy as np import pandas as pd ### pandas数据处理 ### # 数据准备、数据转换、数据聚合 ## 数据准备 ## # 加载、组装:合并,拼接,组合、变形(轴向旋转)、删除 # 合并 # # merge()函数 frame1 = pd.DataFrame({'id':['ball','pencil','pen','mug','ashtray'], 'price':[12.33,11.44,33.21,13.23,33.62]}) frame2 = pd.DataFrame({'id':['pencil','pencil','ball','pen'], 'color':['white','red','red','black']}) frame1 frame2 # 合并frame1与frame2 pd.merge(frame1, frame2) # 指定基于哪一列合并,增加on选项 frame1 = pd.DataFrame({'id':['ball','pencil','pen','mug','ashtray'], 'color': ['white','red','red','black','green'], 'brand':['OMG','ABC','ABC','POD','POD']}) frame2 = pd.DataFrame({'id':['pencil','pencil','ball','pen'], 'brand':['OMG','POD','ABC','POD']}) frame1 frame2 # frame1与frame2有两个相同列名的列,对其执行合并操作得到空DataFrame对象 pd.merge(frame1, frame2) # 指定其合并操作标准 pd.merge(frame1, frame2, on='id') pd.merge(frame1, frame2, on='brand') # 使用left_on和right_on指定frame1和frame2的基准列,即以frame1中id与frame2中是sid执行合并操作 frame2.columns = ['brand','sid'] pd.merge(frame1, frame2, left_on='id', right_on='brand') # merge()函数默认执行内连接操作,how选项可以指定连接方式 frame2.columns = ['id','brand'] pd.merge(frame1, frame2, on='id') pd.merge(frame1, frame2, on='id', how='outer') pd.merge(frame1, frame2, on='id', how='left') pd.merge(frame1, frame2, on='id', how='right') # 合并多个键 pd.merge(frame1, frame2, on=['id','brand'], how='left') # 根据索引合并 # 将left_index与right_index选项设置为Ture,可将索引而非键作为合并的基准 pd.merge(frame1,frame2,left_index=True,right_index=True) # DataFrame对象的join()函数更适合根据索引进行合并,可以用于合并多个索引相同或索引相同但列却不一致的DataFrame对象 frame2.columns = ['brand2','id2'] frame1.join(frame2) ## 拼接 ## # numpy中concatenate()函数 array1 = np.arange(9).reshape((3,3)) array2 = array1 + 6 np.concatenate([array1, array2]) np.concatenate([array1, array2], axis=1) # pandas中concat()函数实现按轴拼接的功能 ser1 = pd.Series(np.random.rand(4), index=[1,2,3,4]) ser2 = pd.Series(np.random.rand(4), index=[5,6,7,8]) # 默认按照axis=0拼接数据 pd.concat([ser1, ser2]) # 结果中无重复数据,实际上执行的是外连接操作 ser3 = pd.concat([ser1,ser2], axis=1) pd.concat([ser1,ser3], axis=1, join='inner') # 在用于拼接的轴上创建等级索引,keys选项 pd.concat([ser1,ser2], keys=[1,2]) # axis=1时,指定的键变为DataFrame对象的列名 pd.concat([ser1,ser2], axis=1, keys=[1,2]) frame1 = pd.DataFrame(np.random.rand(9).reshape(3,3), index=[1,2,3], columns=['A','B','C']) frame2 = pd.DataFrame(np.random.rand(9).reshape(3,3), index=[4,5,6], columns=['A','B','C']) pd.concat([frame1, frame2]) pd.concat([frame1,frame2], axis=1) # 组合 # # combine函数可用来组合series对象并对其数据 ser1 = pd.Series(np.random.rand(5), index=[1,2,3,4,5]) ser2 = pd.Series(np.random.rand(4), index=[2,4,5,6]) ser1 ser2 # 相同索引处使用的是ser1的值 ser1.combine_first(ser2) # 相同索引处使用的是ser2的值 ser2.combine_first(ser1) # 进行部分合并,索引值1,2,3,4使用的都是ser1的值 ser1[:4].combine_first(ser2[:4]) # 轴向旋转 # # 轴向旋转有两个基础操作:入栈-旋转数据结构,将列转换为行、出栈-行转为列 # 按等级索引旋转 frame1 = pd.DataFrame(np.arange(9).reshape(3,3), index=['white','red','black'], columns=['ball','pen','pencil']) # 列转为行,得到一个series对象 ser1 = frame1.stack() ser1.unstack() # 出栈操作可应用于不同的层级,为unstack函数传入表示层级的编号或名称 ser1.unstack(0) ser1.unstack(1) # 长格式转换为宽格式 pivot()函数,可以使用键的一列或多列作为参数 # 长格式:各列都有数据项,每一列后面的数据常常会根前面的有所重复,并且常常为列表形式,有一行行数据组成 longframe = pd.DataFrame({'color':['white','white','white','red','red','red','black','black','black'], 'item':['ball','pen','mug','ball','pen','mug','ball','pen','mug'], 'value':np.random.rand(9)}) longframe longframe.pivot('color','item') longframe.pivot('item','color') # 删除 # frame1 = pd.DataFrame(
np.arange(9)
numpy.arange
############################################################################ # Project: Electrical Pre-Conditioning of Convective Clouds, # Title: Plotting Radiosonde Data # Author: <NAME>, # Email: <EMAIL>. # Version: 1.9 # Date: 10/01/2019 # Status: Stable # Change: Major overhaul of datastreams ############################################################################ from __future__ import absolute_import, division, print_function import matplotlib.pyplot as plt import numpy as np import scipy as sp import pandas as pd import os, sys, time, warnings, glob, argparse from datetime import datetime, timedelta sys.path.insert(0, '/home/users/th863480/PhD/Global_Functions') #User Processing Modules import Gilly_Utilities as gu #Data Set-up Modules from Data_Importer import EPCC_Importer from Data_Quality import Radiosonde_Checks_v2 as Radiosonde_Checks from Data_Output import SPRadiosonde #Import Global Variables import PhD_Config as PhD_Global #Import Tephigram Plotter from Extras.Tephigram import Tephigram as SPTephigram #Import WC3 Extras (for GPS2UTC) from Extras.WC3_Extras import GPS2UTC, CloudDrift, Radiosonde_Launch class Radiosonde(EPCC_Importer, Radiosonde_Checks, SPRadiosonde, SPTephigram): """This class will process all the data aquired from a radiosonde output the data in various forms, including, height plot, tepihgram and indicies. Parameters ---------- EPCC_Importer : class Used to import other datasets other than the actual radiosonde Radiosonde_Checks : class Used to quality control the radiosonde data SPRadiosonde : class Used to plot the radiosonde data ` SPTephigram : class Used to plot the tepihgram of the data """ def __init__(self, Sensor_Package=None, Height_Range=None, Calibrate='Counts', verbose=False): """Set-up radiosonde data""" ############################################################################ """Prerequisites""" #Time Controls t_begin = time.time() #Storage Locations self.Storage_Path = PhD_Global.Storage_Path_WC3 self.Processed_Data_Path = 'Processed_Data/Radiosonde/' self.Raw_Data_Path = 'Raw_Data/' self.Radiosonde_Plots_Path = 'Plots/Radiosonde/' self.Tephigram_Plots_Path = 'Plots/Tephigram/' #Bound classes self.importer = EPCC_Importer() self.sensor_package = Sensor_Package self.height_range = Height_Range self.calibrate = Calibrate self.verbose = verbose #Real name for all Pandora Channels for each radiosonde launch self.RawChannelList = {0 : ['Lin', 'Log', 'Cyan/PLL', 'IR', 'Parity'], 1 : ['Lin', 'Log', 'Cyan/PLL', 'IR', 'Parity'], 2 : ['Lin', 'Log', 'Cyan/PLL', 'IR', 'Parity'], 3 : ['Lin', 'Log', 'Cyan/PLL', 'IR', 'Parity'], 4 : ['Lin', 'Log', 'Cyan/PLL', 'IR', 'Parity'], 5 : ['Lin', 'Log', 'Cyan/PLL', 'IR', 'Parity'], 6 : ['Lin', 'Log/Turbulence', 'Cyan', 'IR/Parity'], #Not Launched Yet 7 : ['Lin', 'Log/Turbulence', 'Cyan', 'IR/Parity'], #Not Launched Yet 8 : ['Lin', 'Log/Turbulence', 'Cyan', 'IR/Parity'], #Not Launched Yet 9 : ['Lin', 'Log', 'Cyan', 'IR', 'Turbulence'], 10 : ['Lin', 'Log', 'Cyan', 'IR', 'Turbulence']} #Number of bits (2^n) self.NumofBits = {0 : 12, 1 : 12, 2 : 12, 3 : 12, 4 : 12, 5 : 12, 6 : 16, #Not Launched Yet 7 : 16, #Not Launched Yet 8 : 16, #Not Launched Yet 9 : 12, 10 : 12} ############################################################################ #Import Radiosonde Data self.Radiosonde_Data, self.Launch_Datetime = self._RadiosondeImporter(self.sensor_package) #Identify clouds within data self.Clouds_ID, self.LayerType = self._CloudIdentifier(self.height_range) #Calculate the space charge density using the log charge sensor #self.Calibration_Log = self._ChargeCalibrator(self.calibrate, self.sensor_package, self.Clouds_ID, self.LayerType) if np.any(np.in1d(self.calibrate, ['Volts', 'Units'])) else None def _RadiosondeImporter(self, Sensor_Package=None): """Check and Import Data""" #Error check that either Radiosonde_File or Sensor_Package has been specified if Sensor_Package is None: sys.exit("[Error] You must specify either the Sensor_Package number") #Attempt to find the radiosonde file either directly or from glob self.Radiosonde_File = glob.glob(self.Storage_Path + self.Processed_Data_Path + 'Radiosonde_Flight_No.' + str(Sensor_Package).rjust(2,'0') + '_*/Radiosonde_Flight_PhD_James_No.' + str(Sensor_Package) + '*a.txt') #If no radiosonde file was found we end program if len(self.Radiosonde_File) == 0: sys.exit("[Error] Radiosonde package No.%s does not exist. Has the radiosonde been launched yet or has the data been misplaced?" % (Sensor_Package)) #If the radiosonde file was found via glob we need to convert to str from list if isinstance(self.Radiosonde_File, list): self.Radiosonde_File = self.Radiosonde_File[0] #Once the radiosonde file is found we can attempt to find the GPS file in the raw file section self.GPS_File = glob.glob(self.Storage_Path + self.Raw_Data_Path + 'Radiosonde_Flight_No.' + str(Sensor_Package).rjust(2,'0') + '_*/GPSDCC_RESULT*.tsv') #Import all the data Radiosonde_Data = pd.read_csv(self.Radiosonde_File, sep=r"\s*", header=None, engine='python', names=('time', 'height', 'P', 'Tdry', 'RH', self.RawChannelList[Sensor_Package][0], self.RawChannelList[Sensor_Package][1], self.RawChannelList[Sensor_Package][2], self.RawChannelList[Sensor_Package][3], self.RawChannelList[Sensor_Package][4], 'long', 'lat', 'range', 'bearing', 'Tdew', 'u', 'v', 'MR'), dtype={'time': np.float64, 'height': np.float64, 'P': np.float64, 'Tdry': np.float64, 'RH': np.float64, self.RawChannelList[Sensor_Package][0]: np.float64, self.RawChannelList[Sensor_Package][1]: np.float64, self.RawChannelList[Sensor_Package][2]: np.float64, self.RawChannelList[Sensor_Package][3]: np.float64, self.RawChannelList[Sensor_Package][4]: np.float64, 'long': np.float64, 'lat': np.float64, 'range': np.float64, 'bearing': np.float64, 'Tdew': np.float64, 'u': np.float64, 'v': np.float64, 'MR': np.float64}, na_values=-32768, comment='#', index_col=False).to_records(index=False) GPS_Data = pd.read_csv(self.GPS_File[0], sep="\t", skiprows=51, header=None, usecols=(1,2,4), names=('GPS_Week', 'GPS_Second', 'SondeX'), dtype={'GPS_Week': np.int32, 'GPS_Second': np.float64, 'SondeX': np.float64}, na_values=-32768, comment='#', index_col=False).to_records(index=False) if len(self.GPS_File) != 0 else None #Fix np.recarray issue Radiosonde_Data = gu.fix_recarray(Radiosonde_Data) GPS_Data = gu.fix_recarray(GPS_Data) #Estimate the launch time from the data if self.GPS_File is not None: GPS_Data = GPS_Data[~np.isnan(GPS_Data['SondeX'])] Launch_Datetime = GPS2UTC(GPS_Data['GPS_Week'][0], GPS_Data['GPS_Second'][0]) #Calibrate Height, Temperature and Convert PANDORA channels from counts to volts if required. Radiosonde_Cal_Counts = Radiosonde_Checks(Radiosonde_Data.copy(), None, self.sensor_package, self.height_range, check=1111, verbose=self.verbose) Radiosonde_Cal_Volts = Radiosonde_Checks(Radiosonde_Data.copy(), 'Volts', self.sensor_package, self.height_range, check=1111, verbose=self.verbose) Radiosonde_Cal_Units = Radiosonde_Checks(Radiosonde_Data.copy(), 'Units', self.sensor_package, self.height_range, check=1111, verbose=self.verbose) #Calibrate RH Radiosonde_Cal_Counts.RH() Radiosonde_Cal_Volts.RH() Radiosonde_Cal_Units.RH() #Calibrate Cloud Sensor Radiosonde_Cal_Counts.Cloud(method='offset') Radiosonde_Cal_Volts.Cloud(method='offset') Radiosonde_Cal_Units.Cloud(method='offset') #Calibrate Charge Radiosonde_Cal_Volts.Charge() Radiosonde_Cal_Units.Charge(lab_calibration=True) #Calibrate Vibrating Wire Radiosonde_Cal_Volts.PLL() Radiosonde_Cal_Units.PLL() #Nest Radiosonde_Cal into Radiosonde_Data Radiosonde_Data = {'Raw' : Radiosonde_Data, 'Counts' : Radiosonde_Cal_Counts.finalise(), 'Volts' : Radiosonde_Cal_Volts.finalise(), 'Units' : Radiosonde_Cal_Units.finalise()} return Radiosonde_Data, Launch_Datetime def _CloudIdentifier(self, Height_Range=None): """This function will identify the cloud layers within a radiosonde ascent by using the cloud sensor and relative humidity measurements Reference --------- <NAME>., <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME> (2010). Analysis of cloud layer structure in Shouxian, China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res., 115, D00K30, doi: 10.1029/2010JD014030. WMO, 2017. Clouds. In: Internal Cloud Atlas Manual on the Observation of Clouds and Other Meteors. Hong Kong: WMO, Section 2.2.1.2. """ if self.verbose is True: gu.cprint("[INFO] You are running Radiosonde_CloudIdentifier from the STABLE release", type='bold') ############################################################################ """[METHOD 1]: Relative Humidity (Zhang et al. 2010)""" #Define data into new variables Z = self.Radiosonde_Data['Counts']['height'].copy() RH = self.Radiosonde_Data['Counts']['RHice'].copy() #Create Height-Resolving RH Thresholds (see Table 1 in Zhang et al. (2010)) #N.B. use np.interp(val, RH_Thresholds['altitude'], RH_Thresholds['*RH']) where val is the height range you want the RH Threshold RH_Thresholds = {'minRH' : [0.92, 0.90, 0.88, 0.75, 0.75], 'maxRH' : [0.95, 0.93, 0.90, 0.80, 0.80], 'interRH' : [0.84, 0.82, 0.78, 0.70, 0.70], 'altitude' : [0, 2, 6, 12, 20]} #Define the cloud height levels as defined by WMO (2017). Z_Levels = {'low' : [0,2], 'middle' : [2,7], 'high' : [5,13]} #Define the types of layers that can be detected. Cloud_Types = {0 : 'Clear Air', 1 : 'Moist (Not Cloud)', 2 : 'Cloud'} #Define the min, max and interRH for all measure altitudes minRH = np.interp(Z, RH_Thresholds['altitude'], RH_Thresholds['minRH'], left=np.nan, right=np.nan)*100 maxRH = np.interp(Z, RH_Thresholds['altitude'], RH_Thresholds['maxRH'], left=np.nan, right=np.nan)*100 interRH = np.interp(Z, RH_Thresholds['altitude'], RH_Thresholds['interRH'], left=np.nan, right=np.nan)*100 #[Step 1]: The base of the lowest moist layer is determined as the level when RH exceeds the min-RH corresponding to this level minRH_mask = (RH > minRH) #[Step 2 and 3]: Above the base of the moist layer, contiguous levels with RH over the corresponding min-RH are treated as the same layer Z[~minRH_mask] = np.nan Clouds_ID = gu.contiguous(Z, 1) #[Step 4]: Moist layers with bases lower than 120m and thickness's less than 400m are discarded for Cloud in np.unique(Clouds_ID)[1:]: if Z[Clouds_ID == Cloud][0] < 0.12: if Z[Clouds_ID == Cloud][-1] - Z[Clouds_ID == Cloud][0] < 0.4: Clouds_ID[Clouds_ID == Cloud] = 0 #[Step 5]: The moist layer is classified as a cloud layer is the maximum RH within this layer is greater than the corresponding max-RH at the base of this moist layer LayerType = np.zeros(Z.size, dtype=int) #0: Clear Air, 1: Moist Layer, 2: Cloud Layer for Cloud in np.unique(Clouds_ID)[1:]: if np.any(RH[Clouds_ID == Cloud] > maxRH[Clouds_ID == Cloud][0]): LayerType[Clouds_ID == Cloud] = 2 else: LayerType[Clouds_ID == Cloud] = 1 #[Step 6]: The base of the cloud layers is set to 280m AGL, and cloud layers are discarded if their tops are lower than 280m for Cloud in np.unique(Clouds_ID)[1:]: if Z[Clouds_ID == Cloud][-1] < 0.280: Clouds_ID[Clouds_ID == Cloud] = 0 LayerType[Clouds_ID == Cloud] = 0 #[Step 7]: Two contiguous layers are considered as one-layer cloud if the distance between these two layers is less than 300m or the minimum RH within this distance is more than the maximum inter-RG value within this distance for Cloud_Below, Cloud_Above in zip(np.unique(Clouds_ID)[1:-1], np.unique(Clouds_ID)[2:]): #Define the index between clouds of interest Air_Between = np.arange(gu.bool2int(Clouds_ID == Cloud_Below)[-1], gu.bool2int(Clouds_ID == Cloud_Above)[0]) if ((Z[Clouds_ID == Cloud_Above][0] - Z[Clouds_ID == Cloud_Below][-1]) < 0.3) or (np.nanmin(RH[Air_Between]) > np.nanmax(interRH[Air_Between])): Joined_Cloud_Mask = np.arange(gu.bool2int(Clouds_ID == Cloud_Below)[0], gu.bool2int(Clouds_ID == Cloud_Above)[-1]) #Update the cloud ID array as the Cloud_Below and Cloud_Above are not distinct clouds Clouds_ID[Joined_Cloud_Mask] = Cloud_Below #Update the LayerType to reflect the new cloud merging if np.any(LayerType[Clouds_ID == Cloud_Below] == 2) or np.any(LayerType[Clouds_ID == Cloud_Above] == 2): LayerType[Joined_Cloud_Mask] = 2 else: LayerType[Joined_Cloud_Mask] = 1 #[Step 8] Clouds are discarded if their thickness's are less than 30.5m for low clouds and 61m for middle/high clouds for Cloud in np.unique(Clouds_ID)[1:]: if Z[Clouds_ID == Cloud][0] < Z_Levels['low'][1]: if Z[Clouds_ID == Cloud][-1] - Z[Clouds_ID == Cloud][0] < 0.0305: Clouds_ID[Clouds_ID == Cloud] = 0 LayerType[Clouds_ID == Cloud] = 0 else: if Z[Clouds_ID == Cloud][-1] - Z[Clouds_ID == Cloud][0] < 0.0610: Clouds_ID[Clouds_ID == Cloud] = 0 LayerType[Clouds_ID == Cloud] = 0 #Re-update numbering of each cloud identified Clouds_ID = gu.contiguous(Clouds_ID, invalid=0) #Output verbose to screen if self.verbose is True: print("Detected Clouds and Moist Layers\n--------------------------------") for Cloud in np.unique(Clouds_ID)[1:]: print("Cloud %s. Cloud Base = %.2fkm, Cloud Top = %.2fkm, Layer Type: %s" % (Cloud, Z[Clouds_ID == Cloud][0], Z[Clouds_ID == Cloud][-1], Cloud_Types[LayerType[Clouds_ID == Cloud][0]])) return Clouds_ID, LayerType def _ChargeCalibrator(self, Calibrate=None, Sensor_Package=None, Clouds_ID=None, LayerType=None): if self.verbose is True: gu.cprint("[INFO] You are running Radiosonde_ChargeCalibrator from the DEV release", type='bold') ############################################################################ """Prerequisites""" #Time Controls t_begin = time.time() #Plotting requirements import matplotlib.pyplot as plt plt.style.use('classic') #necessary if Matplotlib version is >= 2.0.0 #Calibration boundaries Height_Boundaries = {0 : [], 1 : [], 2 : [], 3 : [], 4 : [10.0,12.0], 5 : [10.5,12.0], 6 : [], 7 : [], 8 : [], 9 : [6,12.0], 10 : [12,18.0]} ############################################################################ """[Step 1] Calibrate bespoke sensors""" Radiosonde_Data = self.Radiosonde_Data['Units'].copy() Linear = gu.moving_average(Radiosonde_Data['Lin_Current'], 11) Log = gu.moving_average(Radiosonde_Data['Log_Current'], 11) PosMask = Linear >= 0 NegMask = Linear < 0 LinearPos = np.log10(Linear[PosMask]) LogPos = Log[PosMask] LinearNeg = -np.log10(-Linear[NegMask]) LogNeg = Log[NegMask] #Calculate Linear Regressions slope_all, intercept_all, r_value_all, p_value_all, std_err_all = sp.stats.linregress(Log, Linear) slope_pos, intercept_pos, r_value_pos, p_value_pos, std_err_pos = sp.stats.linregress(LogPos, LinearPos) try: slope_neg, intercept_neg, r_value_neg, p_value_neg, std_err_neg = sp.stats.linregress(LogNeg, LinearNeg) except: slope_neg, intercept_neg, r_value_neg, p_value_neg, std_err_neg = (0,0,0,0,0) if self.verbose is True: print(slope_all, intercept_all, r_value_all, p_value_all, std_err_all) if self.verbose is True: print(slope_pos, intercept_pos, r_value_pos, p_value_pos, std_err_pos) if self.verbose is True: print(slope_neg, intercept_neg, r_value_neg, p_value_neg, std_err_neg) ############################################################################ """[Step 2] Plot the calibration values for positive and negative linear currents""" plt.clf() plt.close() f, ax = plt.subplots(1,3) ax[0].plot(Log, Linear , 'p', ms=1, marker='o', markeredgecolor='None', markerfacecolor='black', alpha=1, label="Clouds") ax[1].plot(LogPos, LinearPos , 'p', ms=1, marker='o', markeredgecolor='None', markerfacecolor='black', alpha=1, label="Clouds") ax[2].plot(LogNeg, LinearNeg , 'p', ms=1, marker='o', markeredgecolor='None', markerfacecolor='black', alpha=1, label="Clouds") ax[0].plot(Log, slope_all*Log+intercept_all, lw=0.5, c='red') ax[1].plot(LogPos, slope_pos*LogPos+intercept_pos, lw=0.5, c='red') ax[2].plot(LogNeg, slope_neg*LogNeg+intercept_neg, lw=0.5, c='red') ax[0].set_ylabel("Linear Sensor Current (A)", fontsize=8) ax[1].set_ylabel("Linear Sensor Current (log10(pA))", fontsize=8) ax[2].set_ylabel("Linear Sensor Current (-log10(-pA))", fontsize=8) for subplot in ax: subplot.minorticks_on() for subplot in ax: subplot.set_xlabel("Log Sensor Current (Counts)", fontsize=8) for subplot in ax: subplot.grid(which='major',axis='both',c='grey') for subplot in ax: subplot.tick_params(axis='both', which='major', labelsize=8) for subplot in ax: subplot.tick_params(axis='both', which='minor', labelsize=8) f.suptitle("Linear and Log Charge Sensors for Radiosonde Flight No.5", y=0.90) ax[0].get_xaxis().get_major_formatter().labelOnlyBase = False for subplot in ax: x0, x1 = subplot.get_xlim() y0, y1 = subplot.get_ylim() subplot.set_aspect(np.abs((x1-x0)/(y1-y0))) ax[0].annotate("All Data", xy=(0, 1), xycoords='axes fraction', xytext=(20, -20), textcoords='offset pixels', horizontalalignment='left', verticalalignment='top', fontsize=8) ax[1].annotate("Positive Linear Current", xy=(0, 1), xycoords='axes fraction', xytext=(20, -20), textcoords='offset pixels', horizontalalignment='left', verticalalignment='top', fontsize=8) ax[2].annotate("Negative Linear Current", xy=(0, 1), xycoords='axes fraction', xytext=(20, -20), textcoords='offset pixels', horizontalalignment='left', verticalalignment='top', fontsize=8) ax[0].annotate("$R^{2}$ = %.4f\n$Counts$ = %.0f" % (r_value_all**2, Log.size), xy=(1, 1), xycoords='axes fraction', fontsize=8, xytext=(-3, -3), textcoords='offset points', ha='right', va='top') ax[1].annotate("$R^{2}$ = %.4f\n$Counts$ = %.0f" % (r_value_pos**2, LogPos.size), xy=(1, 1), xycoords='axes fraction', fontsize=8, xytext=(-3, -3), textcoords='offset points', ha='right', va='top') ax[2].annotate("$R^{2}$ = %.4f\n$Counts$ = %.0f" % (r_value_neg**2, LogNeg.size), xy=(1, 1), xycoords='axes fraction', fontsize=8, xytext=(-3, -3), textcoords='offset points', ha='right', va='top') f.set_size_inches(11.7, 4.3) ############################################################################ """[Step 3] Save plot to file""" #Specify the directory the plots are stored in path = os.path.dirname(self.Radiosonde_File).replace(self.Storage_Path + self.Processed_Data_Path,"") #Find any other plots stored in this directory previous_plots = glob.glob(self.Storage_Path + self.Radiosonde_Plots_Path + path + "/*") #Find the biggest 'v' number in plots plot_version = [] for plots in previous_plots: try: plot_version.append(int(os.path.basename(plots)[34:37])) except ValueError: plot_version.append(int(os.path.basename(plots)[34:36])) plot_version = str(np.max(plot_version)+1) if len(plot_version) != 0 else '1' #Create full directory and file name Save_Location = self.Storage_Path + self.Radiosonde_Plots_Path + path + '/' + path + '_v' + plot_version.rjust(2,'0') + '_ChargeCalibrator.png' #Ensure the directory exists on file system and save to that location gu.ensure_dir(os.path.dirname(Save_Location)) plt.savefig(Save_Location, bbox_inches='tight', pad_inches=0.1, dpi=300) #Return regression of positive current, regression of negative current and the boundary for counts return (slope_all, intercept_all), (slope_pos, intercept_pos), (slope_neg, intercept_neg), (PosMask, NegMask) def Superplotter(self): """This function will plot the data from a single radiosonde flight Parameters ---------- Clouds_ID : LayerType : Calibration_Log : 2x2 tuple or array, optional Used to calculate the space charge density using the log sensor. Due to the temperature drift of the log sensor, but the wide range of measurements, the log sensor needs to be calibrate with the linear sensor first. Use the output from Radiosonde_ChargeCalibrator to populate this parameter. """ if self.verbose is True: gu.cprint("[INFO] You are running Superplotter from the DEV release", type='bold') ############################################################################ """Prerequisites""" t_begin = time.time() ############################################################################ """[Step 1] Plot radiosonde data""" Title = 'Radiosonde Flight No.' + str(self.sensor_package) + ' (' + self.Launch_Datetime.strftime("%d/%m/%Y %H%MUTC") + ')' if self.GPS_File is not None else 'Radiosonde Flight (N/A)' if self.sensor_package < 8: Superplotter = SPRadiosonde(8, Title, self.height_range, self.Radiosonde_Data[self.calibrate], calibrate=self.calibrate) if self.calibrate == "Units" else SPRadiosonde(7, Title, self.height_range, self.Radiosonde_Data[self.calibrate], calibrate=self.calibrate) else: Superplotter = SPRadiosonde(7, Title, self.height_range, self.Radiosonde_Data[self.calibrate], calibrate=self.calibrate) if self.calibrate in ['Counts', 'Volts']: Superplotter.Charge(type='counts') else: Superplotter.Charge(type='space_charge') if self.sensor_package < 8: Superplotter.Cloud(mask_cyan=(self.Radiosonde_Data[self.calibrate]['Parity'] == 1111)) Superplotter.PLL(type='freq', mask_pll=(self.Radiosonde_Data[self.calibrate]['Parity'] == 1112), point=False) if self.sensor_package < 3 else Superplotter.PLL(type='freq', mask_pll=(self.Radiosonde_Data[self.calibrate]['Parity'] == 1112), point=True) if self.calibrate in ['Units']: Superplotter.PLL(type='slwc', mask_pll=(self.Radiosonde_Data[self.calibrate]['Parity'] == 1112), point=False) if self.sensor_package < 3 else Superplotter.PLL(type='slwc', mask_pll=(self.Radiosonde_Data[self.calibrate]['Parity'] == 1112), point=True) else: Superplotter.Cloud() Superplotter.Turbulence() #Plot the processed PLL data if (self.calibrate == "units") & (self.sensor_package < 8): Superplotter.ch(14, 'SLWC $(g$ $m^{-3})$', 'Supercooled Liquid\nWater Concentration', check=1112, point=True) #Plot the cloud boundaries if specified if self.Clouds_ID is not None: Superplotter.Cloud_Boundaries(self.Clouds_ID, self.LayerType, CloudOnly=True) ############################################################################ """[Step 2] Save plot and return""" #Specify the directory the plots are stored in path = os.path.dirname(self.Radiosonde_File).replace(self.Storage_Path + self.Processed_Data_Path,"") #Find any other plots stored in this directory previous_plots = glob.glob(self.Storage_Path + self.Radiosonde_Plots_Path + path + "/*") #Find the biggest 'v' number in plots plot_version = [] for plots in previous_plots: try: plot_version.append(int(os.path.basename(plots)[34:37])) except ValueError: plot_version.append(int(os.path.basename(plots)[34:36])) plot_version = str(np.max(plot_version)+1) if len(plot_version) != 0 else '1' #Create full directory and file name Save_Location = self.Storage_Path + self.Radiosonde_Plots_Path + path + '/' + path + '_v' + plot_version.rjust(2,'0') + '_' + str(self.height_range[0]).rjust(2,'0') + 'km_to_' + str(self.height_range[1]).rjust(2,'0') + 'km.png' #Ensure the directory exists on file system and save to that location gu.ensure_dir(os.path.dirname(Save_Location)) Superplotter.savefig(Save_Location) if self.verbose is True: print("[INFO] Superplotter completed successfully (In %.2fs)" % (time.time()-t_begin)) def Tephigram(self, plot_tephigram=False, plot_camborne=False): """The Radiosonde_Tephigram function will plot a tephigram from the dry bulb temperature, T_dry and the Dew point Temperature, T_dew for pressure values, P at each corresponding height. Certain tephigram outputs are available from this function including: 1) Lower Condensation Level (LCL) in m 2) Level of Free Convection (LFC) in m 3) Environmental Level (EL) in m 4) Convective Available Potential Energy (CAPE) in J/kg 5) Convective INhibition (CIN) in J/kg Parameters ---------- plot_tephigram : bool, optional, default is False Specify True to plot a tephigram of the sounding data. Otherwise just calculate the sounding indices plot_camborne : bool, optional, default is False Specify True to add the sounding from Camborne at the closest time to the launch time. Only used if plot_tephigram is True. Outputs ------- References ---------- <NAME>., 2010. Water in the Atmosphere. In: Thermal Physics of the Atmosphere. Oxford: Wiley & Sons, pp. 93-109 <NAME>. 2018. Tephigram. Original Matlab code found in Matlab_Code directory <NAME>. 2018. Tephigram. Original Python code found in the same directory. """ if self.verbose is True: gu.cprint("[INFO] You are running Radiosonde_Tephigram from the STABLE release", type='bold') ############################################################################ """Prerequisites""" #Time Controls t_begin = time.time() #Set-up data importer EPCC_Data = EPCC_Importer() ############################################################################ """[Step 1] Calibrate bespoke sensors""" #Return Data (make local to function only. i.e. DON'T use self.Radiosonde_Data) Radiosonde_Data = self.Radiosonde_Data['Counts'].copy() Z = Radiosonde_Data['height'][1:] Tdry = Radiosonde_Data['Tdry'][1:] Tdew = Radiosonde_Data['Tdew'][1:] Pres = Radiosonde_Data['P'][1:] RH = Radiosonde_Data['RH'][1:]/100; RH -= np.max(RH) - 0.01 Wind_Mag = (Radiosonde_Data['u'][1:]**2 + Radiosonde_Data['v'][1:]**2)**0.5 Wind_Dir = np.arctan2(Radiosonde_Data['u'][1:], Radiosonde_Data['v'][1:]) * 180 / np.pi ############################################################################ """[Step 2] Create Tephigram""" if plot_tephigram is True: print("[INFO] Plotting Tephigram...") #Unpack variables Z_Plot = Radiosonde_Data['height'] Tdry_Plot = Radiosonde_Data['Tdry'] Tdew_Plot = Radiosonde_Data['Tdew'] Pres_Plot = Radiosonde_Data['P'] #Subset the tephigram to specified location locator = gu.argneararray(Z_Plot,
np.array(self.height_range)
numpy.array
""" .. module:: reporters :platform: Unix, Windows :synopsis: a module for defining OpenMM reporter classes. .. moduleauthor:: <NAME> <<EMAIL>> .. _pandas.DataFrame: https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html .. _StateDataReporter: http://docs.openmm.org/latest/api-python/generated/simtk.openmm.app.statedatareporter.StateDataReporter.html .. _CustomIntegrator: http://docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomIntegrator.html .. _CustomCVForce: docs.openmm.org/latest/api-python/generated/simtk.openmm.openmm.CustomCVForce.html """ import sys import numpy as np import pandas as pd from simtk import openmm from simtk import unit from simtk.openmm import app from .computers import PressureComputer from .computers import _MoleculeTotalizer from .utils import InputError class _MultiStream: def __init__(self, outputs): self._outputs = list() for output in outputs: self._outputs.append(open(output, 'w') if isinstance(output, str) else output) def __del__(self): for output in self._outputs: if output != sys.stdout and output != sys.stderr: output.close() def write(self, message): for output in self._outputs: output.write(message) def flush(self): for output in self._outputs: output.flush() class _AtomsMM_Reporter(): """ Base class for reporters. """ def __init__(self, file, reportInterval, **kwargs): self._reportInterval = reportInterval self._requiresInitialization = True self._needsPositions = False self._needsVelocities = False self._needsForces = False self._needEnergy = False extraFile = kwargs.pop('extraFile', None) if extraFile is None: self._out = open(file, 'w') if isinstance(file, str) else file else: self._out = _MultiStream([file, extraFile]) self._separator = kwargs.pop('separator', ',') def _initialize(self, simulation, state): pass def _generateReport(self, simulation, state): pass def describeNextReport(self, simulation): """ Get information about the next report this object will generate. Parameters ---------- simulation : Simulation The Simulation to generate a report for Returns ------- tuple A five element tuple. The first element is the number of steps until the next report. The remaining elements specify whether that report will require positions, velocities, forces, and energies respectively. """ steps = self._reportInterval - simulation.currentStep % self._reportInterval return (steps, self._needsPositions, self._needsVelocities, self._needsForces, self._needEnergy) def report(self, simulation, state): """ Generate a report. Parameters ---------- simulation : Simulation The Simulation to generate a report for state : State The current state of the simulation """ if self._requiresInitialization: self._initialize(simulation, state) self._requiresInitialization = False self._generateReport(simulation, state) class ExtendedStateDataReporter(app.StateDataReporter): """ An extension of OpenMM's StateDataReporter_ class, which outputs information about a simulation, such as energy and temperature, to a file. All original functionalities of StateDataReporter_ are preserved and the following ones are included: 1. Report the Coulomb contribution of the potential energy (keyword: `coulombEnergy`): This contribution includes both real- and reciprocal-space terms. 2. Report the atomic virial of a fully-flexible system (keyword: `atomicVirial`): Considering full scaling of atomic coordinates in a box volume change (i.e. without any distance constraints), the internal virial of the system is given by .. math:: W = -\\sum_{i,j} r_{ij} E^\\prime(r_{ij}), where :math:`E^\\prime(r)` is the derivative of the pairwise interaction potential as a function of the distance between to atoms. Such interaction includes van der Waals, Coulomb, and bond-stretching contributions. Bond-bending and dihedral angles are not considered because they are invariant to full volume-scaling of atomic coordinates. 3. Report the nonbonded contribution of the atomic virial (keyword: `nonbondedVirial`): The nonbonded virial is given by .. math:: W_\\mathrm{nb} = -\\sum_{i,j} r_{ij} E_\\mathrm{nb}^\\prime(r_{ij}), where :math:`E_\\mathrm{nb}^\\prime(r)` is the derivative of the nonbonded pairwise potential, which comprises van der Waals and Coulomb interactions only. 4. Report the atomic pressure of a fully-flexible system (keyword: `atomicPressure`): .. math:: P = \\frac{2 K + W}{3 V}, where :math:`K` is the kinetic energy sum for all atoms in the system. If keyword `bathTemperature` is employed (see below), the instantaneous kinetic energy is substituted by its equipartition-theorem average :math:`\\left\\langle K \\right\\rangle = 3 N_\\mathrm{atoms} k_B T/2`, where :math:`T` is the heat-bath temperature. 5. Report the molecular virial of a system (keyword: `molecularVirial`): To compute the molecular virial, only the center-of-mass coordinates of the molecules are considered to scale in a box volume change, while the internal molecular structure is kept unaltered. The molecular virial is computed from the nonbonded part of the atomic virial by using the formulation of Ref. :cite:`Hunenberger_2002`: .. math:: W_\\mathrm{mol} = W - \\sum_{i} (\\mathbf{r}_i - \\mathbf{r}_i^\\mathrm{cm}) \\cdot \\mathbf{F}_i, where :math:`\\mathbf{r}_i` is the coordinate of atom i, :math:`\\mathbf{F}_i` is the resultant pairwise force acting on it (excluding bond-bending and dihedral angles), and :math:`\\mathbf{r}_i^\\mathrm{cm}` is the center-of-mass coordinate of its containing molecule. 6. Report the molecular pressure of a system (keyword: `molecularPressure`): .. math:: P = \\frac{2 K_\\mathrm{mol} + W_\\mathrm{mol}}{3 V}, where :math:`K_\\mathrm{mol}` is the center-of-mass kinetic energy summed for all molecules in the system. If keyword `bathTemperature` is employed (see below), the instantaneous kinetic energy is substituted by its equipartition-theorem average :math:`\\left\\langle K_\\mathrm{mol} \\right\\rangle = 3 N_\\mathrm{mols} k_B T/2`, where :math:`T` is the heat-bath temperature. 7. Report the center-of-mass kinetic energy (keyword: `molecularKineticEnergy`): .. math:: K_\\mathrm{mol} = \\frac{1}{2} \\sum_{i=1}^{N_\\mathrm{mol}} M_i v_{\\mathrm{cm}, i}^2, where :math:`N_\\mathrm{mol}` is the number of molecules in the system, :math:`M_i` is the total mass of molecule `i`, and :math:`v_{\\mathrm{cm}, i}` is the center-of-mass velocity of molecule `i`. 8. Report potential energies at multiple global parameter states (keyword: `globalParameterStates`): Computes and reports the potential energy of the system at a number of provided global parameter states. 9. Report global parameter values (keyword: `globalParameters`): Reports the values of specified global parameters. 10. Report derivatives of energy with respect to global parameters (keyword: `energyDerivatives`): Computes and reports derivatives of the potential energy of the system at the current state with respect to specified global parameters. 11. Report values of collective variables (keyword: `collectiveVariables`) Report the values of a set of collective variables. 12. Allow specification of an extra file for reporting (keyword: `extraFile`). This can be used for replicating a report simultaneously to `sys.stdout` and to a file using a unique reporter. Keyword Args ------------ coulombEnergy : bool, optional, default=False Whether to write the Coulomb contribution of the potential energy to the file. atomicVirial : bool, optional, default=False Whether to write the total atomic virial to the file. nonbondedVirial : bool, optional, default=False Whether to write the nonbonded contribution to the atomic virial to the file. atomicPressure : bool, optional, default=False Whether to write the internal atomic pressure to the file. molecularVirial : bool, optional, default=False Whether to write the molecular virial to the file. molecularPressure : bool, optional, default=False Whether to write the internal molecular pressure to the file. molecularKineticEnergy : bool, optional, default=False Whether to write the molecular center-of-mass kinetic energy to the file. globalParameterStates : pandas.DataFrame_, optional, default=None A DataFrame containing context global parameters (column names) and sets of values thereof. If it is provided, then the potential energy will be reported for every state these parameters define. globalParameters : list(str), optional, default=None A list of global parameter names. If it is provided, then the values of these parameters will be reported. energyDerivatives : list(str), optional, default=None A list of global parameter names. If it is provided, then the derivatives of the total potential energy with respect to these parameters will be reported. It is necessary that the calculation of these derivatives has been activated beforehand (see, for instance, CustomIntegrator_). collectiveVariables : list(openmm.CustomCVForce), optional, default=None A list of CustomCVForce_ objects. If it is provided, then the values of all collective variables associated with these objects will be reported. pressureComputer : :class:`~atomsmm.computers.PressureComputer`, optional, default=None A computer designed to determine pressures and virials. This is mandatory if any keyword related to virial or pressure is set as `True`. extraFile : str or file, optional, default=None Extra file to write to, specified as a file name or a file object. """ def __init__(self, file, reportInterval, **kwargs): self._coulombEnergy = kwargs.pop('coulombEnergy', False) self._atomicVirial = kwargs.pop('atomicVirial', False) self._nonbondedVirial = kwargs.pop('nonbondedVirial', False) self._atomicPressure = kwargs.pop('atomicPressure', False) self._molecularVirial = kwargs.pop('molecularVirial', False) self._molecularPressure = kwargs.pop('molecularPressure', False) self._molecularKineticEnergy = kwargs.pop('molecularKineticEnergy', False) self._globalParameterStates = kwargs.pop('globalParameterStates', None) self._globalParameters = kwargs.pop('globalParameters', None) self._energyDerivatives = kwargs.pop('energyDerivatives', None) self._collectiveVariables = kwargs.pop('collectiveVariables', None) self._pressureComputer = kwargs.pop('pressureComputer', None) extra = kwargs.pop('extraFile', None) if extra is None: super().__init__(file, reportInterval, **kwargs) else: super().__init__(_MultiStream([file, extra]), reportInterval, **kwargs) self._computing = any([self._coulombEnergy, self._atomicVirial, self._nonbondedVirial, self._atomicPressure, self._molecularVirial, self._molecularPressure, self._molecularKineticEnergy]) if self._computing: if self._pressureComputer is not None and not isinstance(self._pressureComputer, PressureComputer): raise InputError('keyword "pressureComputer" requires a PressureComputer instance') self._needsPositions = True self._needsForces = any([self._needsForces, self._molecularVirial, self._molecularPressure]) self._needsVelocities = any([self._needsVelocities, self._molecularPressure, self._atomicPressure, self._molecularKineticEnergy]) self._backSteps = -sum([self._speed, self._elapsedTime, self._remainingTime]) def _add_item(self, lst, item): if self._backSteps == 0: lst.append(item) else: lst.insert(self._backSteps, item) def _constructHeaders(self): headers = super()._constructHeaders() if self._coulombEnergy: self._add_item(headers, 'Coulomb Energy (kJ/mole)') if self._atomicVirial: self._add_item(headers, 'Atomic Virial (kJ/mole)') if self._nonbondedVirial: self._add_item(headers, 'Nonbonded Virial (kJ/mole)') if self._atomicPressure: self._add_item(headers, 'Atomic Pressure (atm)') if self._molecularVirial: self._add_item(headers, 'Molecular Virial (kJ/mole)') if self._molecularPressure: self._add_item(headers, 'Molecular Pressure (atm)') if self._molecularKineticEnergy: self._add_item(headers, 'Molecular Kinetic Energy (kJ/mole)') if self._globalParameterStates is not None: for index in self._globalParameterStates.index: self._add_item(headers, 'Energy[{}] (kJ/mole)'.format(index)) if self._globalParameters is not None: for name in self._globalParameters: self._add_item(headers, name) if self._energyDerivatives is not None: for name in self._energyDerivatives: self._add_item(headers, 'diff(E,{})'.format(name)) if self._collectiveVariables is not None: for force in self._collectiveVariables: for index in range(force.getNumCollectiveVariables()): name = force.getCollectiveVariableName(index) self._add_item(headers, name) return headers def _constructReportValues(self, simulation, state): values = super()._constructReportValues(simulation, state) if self._computing: computer = self._pressureComputer computer.import_configuration(state) atomicVirial = computer.get_atomic_virial().value_in_unit(unit.kilojoules_per_mole) if self._coulombEnergy: coulombVirial = computer.get_coulomb_virial() self._add_item(values, coulombVirial.value_in_unit(unit.kilojoules_per_mole)) if self._atomicVirial: self._add_item(values, atomicVirial) if self._nonbondedVirial: nonbondedVirial = computer.get_dispersion_virial() + computer.get_coulomb_virial() self._add_item(values, nonbondedVirial.value_in_unit(unit.kilojoules_per_mole)) if self._atomicPressure: atomicPressure = computer.get_atomic_pressure() self._add_item(values, atomicPressure.value_in_unit(unit.atmospheres)) if self._molecularVirial or self._molecularPressure: forces = state.getForces(asNumpy=True) if self._molecularVirial: molecularVirial = computer.get_molecular_virial(forces) self._add_item(values, molecularVirial.value_in_unit(unit.kilojoules_per_mole)) if self._molecularPressure: molecularPressure = computer.get_molecular_pressure(forces) self._add_item(values, molecularPressure.value_in_unit(unit.atmospheres)) if self._molecularKineticEnergy: molKinEng = computer.get_molecular_kinetic_energy() self._add_item(values, molKinEng.value_in_unit(unit.kilojoules_per_mole)) if self._globalParameterStates is not None: original = dict() for name in self._globalParameterStates.columns: original[name] = simulation.context.getParameter(name) latest = original.copy() for index, row in self._globalParameterStates.iterrows(): for name, value in row.items(): if value != latest[name]: simulation.context.setParameter(name, value) latest[name] = value energy = simulation.context.getState(getEnergy=True).getPotentialEnergy() self._add_item(values, energy.value_in_unit(unit.kilojoules_per_mole)) for name, value in original.items(): if value != latest[name]: simulation.context.setParameter(name, value) if self._globalParameters is not None: for name in self._globalParameters: self._add_item(values, simulation.context.getParameter(name)) if self._energyDerivatives is not None: mystate = simulation.context.getState(getParameterDerivatives=True) derivative = mystate.getEnergyParameterDerivatives() for name in self._energyDerivatives: self._add_item(values, derivative[name]) if self._collectiveVariables is not None: for force in self._collectiveVariables: for cv in force.getCollectiveVariableValues(simulation.context): self._add_item(values, cv) return values class XYZReporter(_AtomsMM_Reporter): """ Outputs to an XYZ-format file a series of frames containing the coordinates, velocities, momenta, or forces on all atoms in a Simulation. .. note:: Coordinates are expressed in nanometers, velocities in nanometer/picosecond, momenta in dalton*nanometer/picosecond, and forces in dalton*nanometer/picosecond^2. To use this reporter, create an XYZReporter object and append it to the Simulation's list of reporters. Keyword Args ------------ output : str, default='positions' Which kind of info to report. Valid options are 'positions', 'velocities', 'momenta' and 'forces'. groups : set(int), default=None Which force groups to consider in the force calculations. If this is `None`, then all force groups will be evaluated. """ def __init__(self, file, reportInterval, **kwargs): self._output = kwargs.get('output', 'positions') self._groups = kwargs.get('groups', None) if self._output == 'positions': self._unit = unit.angstroms elif self._output == 'velocities': self._unit = unit.angstroms/unit.picoseconds elif self._output == 'momenta': self._unit = unit.dalton*unit.angstroms/unit.picoseconds elif self._output == 'forces': self._unit = unit.dalton*unit.angstroms/unit.picoseconds**2 else: raise InputError('Unrecognizable keyword value') super().__init__(file, reportInterval, **kwargs) self._needsPositions = self._output == 'positions' self._needsVelocities = self._output in ['velocities', 'momenta'] self._needsForces = self._output == 'forces' def _initialize(self, simulation, state): self._symbols = [atom.element.symbol for atom in simulation.topology.atoms()] sys = simulation.system self._N = sys.getNumParticles() if self._output == 'momenta': mass = [sys.getParticleMass(i).value_in_unit(unit.dalton) for i in range(self._N)] self._mass = np.vstack([mass, mass, mass]).transpose()*unit.dalton def _get_values(self, simulation, state): if self._output == 'positions': values = state.getPositions(asNumpy=True) elif self._output == 'velocities': values = state.getVelocities(asNumpy=True) elif self._output == 'momenta': values = self._mass*state.getVelocities(asNumpy=True) elif self._groups is None: values = state.getForces(asNumpy=True) else: new_state = simulation.context.getState(getForces=True, groups=self._groups) values = new_state.getForces(asNumpy=True) return values.value_in_unit(self._unit) def _write(self, step, N, names, values): print(N, file=self._out) pd.DataFrame(index=names, data=values).to_csv( self._out, sep='\t', header=[f'{self._output} in {self._unit} at time step {step}', '', ''], ) def _generateReport(self, simulation, state): values = self._get_values(simulation, state) self._write(simulation.currentStep, self._N, self._symbols, values) class CenterOfMassReporter(XYZReporter): """ Outputs to an XYZ-format file a series of frames containing the center-of-mass coordinates, center-of-mass velocities, total momenta, or resultant forces on all molecules in a Simulation. .. note:: Coordinates are expressed in nanometers, velocities in nanometer/picosecond, momenta in dalton*nanometer/picosecond, and forces in dalton*nanometer/picosecond^2. To use this reporter, create an CenterOfMassReporter object and append it to the Simulation's list of reporters. Keyword Args ------------ output : str, default='positions' Which kind of info to report. Valid options are 'positions', 'velocities', 'momenta' and 'forces'. groups : set(int), default=None Which force groups to consider in the force calculations. If this is `None`, then all force groups will be evaluated. """ def _initialize(self, simulation, state): super()._initialize(simulation, state) self._mols = _MoleculeTotalizer(simulation.context, simulation.topology) def _generateReport(self, simulation, state): values = self._get_values(simulation, state) if self._output in ['positions', 'velocities']: cm_values = self._mols.massFrac.dot(values) else: cm_values = self._mols.selection.dot(values) self._write(simulation.currentStep, self._mols.nmols, self._mols.residues, cm_values) class CustomIntegratorReporter(_AtomsMM_Reporter): """ Outputs global and per-DoF variables of a CustomIntegrator instance. Keyword Args ------------ describeOnly : bool, optional, default=True Whether to output only descriptive statistics that summarize the activated per-Dof variables. """ def __init__(self, file, reportInterval, **kwargs): super().__init__(file, reportInterval, **kwargs) self._describeOnly = kwargs.pop('describeOnly', True) self._variables = [] for key, value in kwargs.items(): if value is True: self._variables.append(key) if not self._variables: raise InputError("No global or perDof variables have been passed") def _initialize(self, simulation, state): integrator = self._integrator = simulation.integrator if not isinstance(integrator, openmm.CustomIntegrator): raise Exception("simulation.integrator is not a CustomIntegrator") self._globals = {} for index in range(integrator.getNumGlobalVariables()): variable = integrator.getGlobalVariableName(index) if variable in self._variables: self._globals[variable] = index self._perDof = {} for index in range(integrator.getNumPerDofVariables()): variable = integrator.getPerDofVariableName(index) if variable in self._variables: self._perDof[variable] = index if set(self._variables) != set(self._globals) | set(self._perDof): raise InputError("Unknown variables have been passed") def _generateReport(self, simulation, state): for variable, index in self._globals.items(): value = self._integrator.getGlobalVariable(index) print('{}\n{}'.format(variable, value), file=self._out) for variable, index in self._perDof.items(): values = self._integrator.getPerDofVariable(index) titles = ['{}.{}'.format(variable, dir) for dir in ['x', 'y', 'z']] df = pd.DataFrame(data=np.array(values), columns=titles) if self._describeOnly: print(df.describe(), file=self._out) else: df.to_csv(self._out, sep='\t') class ExpandedEnsembleReporter(_AtomsMM_Reporter): """ Performs an Expanded Ensemble simulation and reports the energies of multiple states. Parameters ---------- states : pandas.DataFrame_ A DataFrame containing context global parameters (column names) and sets of values thereof. The potential energy will be reported for every state these parameters define. If one of the variables is named as `weight`, then its set of values will be assigned to every state as an importance sampling weight. Otherwise, all states will have identical weights. States which are supposed to only have their energies reported, with no actual visits, can have their weights set up to `-inf`. temperature : unit.Quantity The system temperature. Keyword Args ------------ reportsPerExchange : int, optional, default=1 The number of reports between attempts to exchange the global parameter state, that is, the exchange interval measured in units of report intervals. """ def __init__(self, file, reportInterval, states, temperature, **kwargs): self._parameter_states = states.copy() self._nstates = len(states.index) self._reports_per_exchange = kwargs.pop('reportsPerExchange', 1) super().__init__(file, reportInterval, **kwargs) if 'weight' in states: self._weights = self._parameter_states.pop('weight').values finite = np.where(np.isfinite(self._weights))[0] self._first_state = finite[0] self._last_state = finite[-1] else: self._weights = np.zeros(self._nstates) self._first_state = 0 self._last_state = self._nstates - 1 kT = (unit.MOLAR_GAS_CONSTANT_R*temperature).value_in_unit(unit.kilojoules_per_mole) self._beta = 1.0/kT self._nreports = 0 self._overall_visits =
np.zeros(self._nstates, dtype=int)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt from io import StringIO import matplotlib.pylab as pylab import pandas as pd from operator import itemgetter from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures#calling the polynomial feature that will calculate the powers of our features from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix import seaborn as sns from sklearn.metrics import accuracy_score def make_summary_tables( res ): """ takes a summary from statsmodel fitting results and turn it into 2 dataFrame. - result_general_df : contains general info and fit quality metrics - result_fit_df : coefficient values and confidence intervals """ # transform second table to csv and read this as a dataFrame result_fit_df = pd.read_csv(StringIO( res.tables[1].as_csv() ), sep=",",index_col=0) result_fit_df.columns = [i.strip() for i in result_fit_df.columns] result_fit_df.index = [i.strip() for i in result_fit_df.index] # first table is trickier because the data is spread on to columns, and there is title line L = res.tables[0].as_html().split('\n') L.pop(1) # get rid of the title tmp = pd.read_html('\n'.join(L) , header=None)[0] # read as a dataframe, but with 4 columns names = list(tmp[0]) + list(tmp[2])[:-2] # columns 0 and 2 are metric names values = list(tmp[1]) + list(tmp[3])[:-2] # columns 1 and 3 are the corresponding values # NB : I exclude the last 2 elements which are empty result_general_df = pd.DataFrame( {'Name': names , 'Value' : values}, index = names , columns=['Value'] ) return result_general_df , result_fit_df def poly_fit(X,y): poly = PolynomialFeatures(degree=3)#here we settle for a third degree polynomial object X_poly=poly.fit_transform(X)#do the actual fit and transformation of data print(X_poly[0,1]) lr=LinearRegression() lr.fit(X_poly,y) y_predict=lr.predict(X_poly) R2=r2_score(y,y_predict) MSE=mean_squared_error(y,y_predict) fig, ax = plt.subplots(1, 1,figsize=(5,5)) ax.plot(X[:,0],y,'ko',label='Data') ax.plot(X[:,0],y_predict,'r-.',label='Predicted') ax.legend(loc='best',fontsize=10) ax.set_title('R2={0:.2f}, MSE={1:.2f}'.format(R2,MSE),fontsize=13) ax.set_xlabel("Number of pedestrians per ha per min",fontsize=13) ax.set_ylabel("Breeding density(individuals per ha)",fontsize=13) #plt.show() print('fit param',lr.coef_[1:],lr.intercept_) def poly_fit_train_test(X,y,seed,deg, ax = None): """ Takes: - X : covariable matrix - y : dependent variable matrix - seed : random seed to determine train and test set - deg : degree of the polynomial to fit - ax = None : matplotlib ax to plot the fit (will not be plotted if None) Returns: ( float , float ) : R-squared on the train and the test set """ poly = PolynomialFeatures(degree=deg)#here we settle for a third degree polynomial object X_poly=poly.fit_transform(X)#do the actual fit and transformation of data # we split X and y into a test set and train set # the train set will be used to fit # the test set will be used to evaluate the fit X_train, X_test, y_train, y_test = train_test_split(X_poly, y, random_state=seed,test_size=0.5) #print(X_poly) lr=LinearRegression() lr.fit(X_train,y_train) # R2 with train set y_train_predict=lr.predict(X_train) R2_train=r2_score(y_train,y_train_predict) MSE_train=mean_squared_error(y_train,y_train_predict) # R2 with test set y_test_predict=lr.predict(X_test) R2=r2_score(y_test,y_test_predict) MSE=mean_squared_error(y_test,y_test_predict) if not ax is None : # horrible code to sort the points y_predict = lr.predict(X_poly) xx , yy = zip( * sorted([[u,v] for u,v in zip(X_poly[:,1],y_predict)],key=itemgetter(0)) ) ax.plot( X_train[:,1], y_train , marker = 'o' , linestyle='None' , color = 'teal' , label = 'train' ) ax.plot( X_test[:,1], y_test , marker = 'o' , linestyle='None' , color = 'orange' , label = 'test' ) ax.plot(xx , yy ,'r--' , label='predicted') ax.set_title('train : R2={0:.2f}, MSE={1:.2f}\n test : R2={2:.2f}, MSE={3:.2f}'.format(R2_train,MSE_train, R2,MSE), fontsize=13) ax.legend() return R2_train, R2 def make_meshgrid(x, y, h=.02): """Create a mesh of points to plot in Parameters ---------- x: data to base x-axis meshgrid on y: data to base y-axis meshgrid on h: stepsize for meshgrid, optional Returns ------- xx, yy : ndarray """ x_min, x_max = x.min() - 1, x.max() + 1 y_min, y_max = y.min() - 1, y.max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) return xx, yy def plot_contours(ax, clf, xx, yy, **params): """Plot the decision boundaries for a classifier. Parameters ---------- ax: matplotlib axes object clf: a classifier xx: meshgrid ndarray yy: meshgrid ndarray params: dictionary of params to pass to contourf, optional """ Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) out = ax.contourf(xx, yy, Z, **params) return out def countour_lr_kypho(X,y,df,p='l2',c=10**8):#(number of nearest neighbors, feature matrix, label, voting rule) models = LogisticRegression(penalty = p,C=c,class_weight='balanced') models = models.fit(X, y) # title for the plots titles = 'GLM Bernouilli' # Set-up 2x2 grid for plotting. fig, ax = plt.subplots(1, 1,figsize=(5,5)) #plt.subplots_adjust(wspace=0.4, hspace=0.4) X0, X1 = X[:, 0], X[:, 1] xx, yy = make_meshgrid(X0, X1) y_pred_c=models.predict(X) plot_contours(ax, models, xx, yy, cmap=plt.cm.coolwarm, alpha=0.3) ax.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=40, edgecolors='k') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(titles+' accuracy= '+str(accuracy_score(y, y_pred_c))) ax.set_xlabel("age") ax.set_ylabel("number") plt.show() print([[w,list(df.columns)[i]]for i,w in enumerate(models.coef_[0])]+['intercept',models.intercept_]) def countour_lr_kypho_train_test(df,y,seed,p='l2',c=10**8,plot=True):#(number of nearest neighbors, feature matrix, label, voting rule) X_train, X_test, y_train, y_test = train_test_split(df, y, random_state=seed) scaler1 = StandardScaler() scaler1.fit(df) X_1=scaler1.transform(df) scaler = StandardScaler() scaler.fit(X_train) X_train=scaler.transform(X_train) X_test=scaler.transform(X_test) models = LogisticRegression(penalty = p,C=c,class_weight='balanced',solver='liblinear') models = models.fit(X_train, y_train) super_xx,super_yy=make_meshgrid(X_1[:, 0], X_1[:, 1]) # title for the plots titles = 'GLM Bernouilli' y_pred_train_c=models.predict(X_train) y_pred_test_c=models.predict(X_test) if plot==True: # Set-up 2x2 grid for plotting. fig, ax = plt.subplots(1, 2,figsize=(14,7)) #plt.subplots_adjust(wspace=0.4, hspace=0.4) X0, X1 = X_train[:, 0], X_train[:, 1] xx, yy = make_meshgrid(X0, X1) titles = 'GLM Bernouilli known' y_pred_train_c=models.predict(X_train) plot_contours(ax[0], models, super_xx, super_yy, cmap=plt.cm.coolwarm, alpha=0.3) ax[0].scatter(X0, X1, c=y_train, cmap=plt.cm.coolwarm, s=40, edgecolors='k') ax[0].set_xlim(super_xx.min(), super_xx.max()) ax[0].set_ylim(super_yy.min(), super_yy.max()) ax[0].set_xticks(()) ax[0].set_yticks(()) ax[0].set_title(titles+' accuracy= '+str(accuracy_score(y_train, y_pred_train_c))) ax[0].set_xlabel("age") ax[0].set_ylabel("number") #y_pred_train_c=models.predict(X_train) #annot_kws = {"ha": 'center',"va": 'center'} #confusion_mc_c = confusion_matrix(y_train, y_pred_train_c) #df_cm_c = pd.DataFrame(confusion_mc_c, #index = ['Absent','Present'], columns = ['Absent','Present']) #sns.heatmap(df_cm_c, annot=True,ax=ax[1,0],annot_kws=annot_kws) #ax[1,0].set_ylabel("True label") #ax[1,0].set_xlabel("Predicted label") titles = 'GLM Bernouilli new' X0, X1 = X_test[:, 0], X_test[:, 1] xx, yy = make_meshgrid(X0, X1) y_pred_test_c=models.predict(X_test) plot_contours(ax[1], models, super_xx, super_yy, cmap=plt.cm.coolwarm, alpha=0.3) ax[1].scatter(X0, X1, c=y_test, cmap=plt.cm.coolwarm, s=40, edgecolors='k') ax[1].set_xlim(super_xx.min(), super_xx.max()) ax[1].set_ylim(super_yy.min(), super_yy.max()) ax[1].set_xticks(()) ax[1].set_yticks(()) ax[1].set_title(titles+' accuracy= '+str(accuracy_score(y_test, y_pred_test_c))) ax[1].set_xlabel("age") ax[1].set_ylabel("number") #confusion_mc_c2 = confusion_matrix(y_test, y_pred_test_c) #df_cm_c2 = pd.DataFrame(confusion_mc_c2, #index = ['Absent','Present'], columns = ['Absent','Present']) #sns.heatmap(df_cm_c2,ax=ax[1,1],annot=True,annot_kws=annot_kws) #ax[1,1].set_ylabel("True label") #ax[1,1].set_xlabel("Predicted label") plt.tight_layout() plt.show() print([[w,list(df.columns)[i]]for i,w in enumerate(models.coef_[0])]+['intercept',models.intercept_]) return accuracy_score(y_train, y_pred_train_c),accuracy_score(y_test, y_pred_test_c) from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import label_binarize from scipy import interp from itertools import cycle from sklearn.preprocessing import StandardScaler def countour_lr2(p,X,y,c,mult): models = LogisticRegression(penalty = p,C=c, multi_class=mult)# Create the logistic regresison object(with 3 main hyperparameters!!) # penalty is either l1 or l2, C is how much weight we put on the regularization, multi_calss is how we proceed when multiclasses scaler=StandardScaler() scaler.fit(X) X=scaler.transform(X) models = models.fit(X, y) dico_color={0:'blue',1:'white',2:'red'} titles = 'Logistic regression penalty='+str(p)+' C='+str(c)+'\n1./C=$\\alpha$='+str(1./c) fig1, ax1 = plt.subplots(1,1,figsize=(10,5)) #plt.subplots_adjust(wspace=0.4, hspace=0.4) #plt.subplot(1,2,1) X0, X1 = X[:, 0], X[:, 1] xx, yy = make_meshgrid(X0, X1) plot_contours(ax1, models, xx, yy,cmap=plt.cm.coolwarm, alpha=0.8) ax1.scatter(X0, X1, c=y, cmap=plt.cm.coolwarm, s=20, edgecolors='k') interc=models.intercept_ wei=models.coef_ for i in range(len(interc)): ax1.plot([xx.min(),xx.max()],[-(interc[i]+wei[i][0]*xx.min())/wei[i][1],-(interc[i]+wei[i][0]*xx.max())/wei[i][1]], color=dico_color[i],ls='--') ax1.set_xlim(xx.min(), xx.max()) ax1.set_ylim(yy.min(), yy.max()) ax1.set_xticks(()) ax1.set_yticks(()) ax1.set_title(titles) #plt.savefig('C:\\Users\\sebas\\Desktop\\cours_scikit-learn\\Iris_example_knn_1_'+str(i)+'.pdf') #plt.subplots_adjust(wspace=0.4, hspace=0.4) #plt.subplot(1,2,1) #X0, X1 = X_test[:, 0],X_test[:, 1] #xx, yy = make_meshgrid(X0, X1) X0, X1 = X[:, 0], X[:, 1] xx = np.linspace(np.min(X0)-0.1, np.max(X0)+0.1, 100) yy = np.linspace(np.min(X1)-0.1, np.max(X1)+0.1, 100).T xx, yy = np.meshgrid(xx, yy) Xfull = np.c_[xx.ravel(), yy.ravel()] y_pred = models.predict(X) accuracy = accuracy_score(y, y_pred) #print("Accuracy (train) for %s: %0.1f%% " % (name, accuracy * 100)) # View probabilities: probas = models.predict_proba(Xfull) n_classes = np.unique(y).size fig,ax=plt.subplots(1,n_classes,figsize=(10,10*n_classes)) for k in range(n_classes): #ax.subplot(1, n_classes, k + 1) #plt.title("Class %d" % k) #print(k,min(probas[:, k])) if k == 0: ax[k].set_ylabel('LogiReg') imshow_handle = ax[k].imshow(probas[:, k].reshape((100, 100)),extent=(np.min(X0)-0.1, np.max(X0)+0.1, np.min(X1)-0.1, np.max(X1)+0.1), origin='lower',cmap='plasma') ax[k].set_xticks(()) ax[k].set_xlim([np.min(X0)-0.1, np.max(X0)+0.1]) ax[k].set_ylim([np.min(X1)-0.1, np.max(X1)+0.1]) ax[k].set_yticks(()) ax[k].set_title('Class '+str(k)) for i in range(len(interc)): ax[k].plot([np.min(X0)-0.1,np.max(X0)+0.1],[-(interc[i]+wei[i][0]*(np.min(X0)-0.1))/wei[i][1],-(interc[i]+wei[i][0]*(np.max(X0)+0.1))/wei[i][1]], color=dico_color[i],ls='--') idx = (y_pred == k) if idx.any(): ax[k].scatter(X[idx, 0], X[idx, 1], marker='o', c=[dico_color[h] for h in y[idx]], edgecolor='k') else: ax[k].set_visible(False) ax0 = plt.axes([0.15, 0.35, 0.7, 0.01]) plt.title("Probability") plt.colorbar(imshow_handle, cax=ax0, orientation='horizontal') plt.show() def countour_lr(p,X,y,c,mult): models = LogisticRegression(penalty = p,C=c, multi_class=mult)# Create the logistic regresison object(with 3 main hyperparameters!!) # penalty is either l1 or l2, C is how much weight we put on the regularization, multi_calss is how we proceed when multiclasses X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0,stratify=y) scaler=StandardScaler() scaler.fit(X_train) X_train=scaler.transform(X_train) X_test=scaler.transform(X_test) models = models.fit(X_train, y_train) dico_color={0:'blue',1:'white',2:'red'} titles = 'Logistic regression penalty='+str(p)+' C='+str(c)+'\n1./C=$\\alpha$='+str(1./c) fig1, ax1 = plt.subplots(1,2,figsize=(10,5)) #plt.subplots_adjust(wspace=0.4, hspace=0.4) #plt.subplot(1,2,1) X0, X1 = X_train[:, 0], X_train[:, 1] xx, yy = make_meshgrid(X0, X1) plot_contours(ax1[0], models, xx, yy,cmap=plt.cm.coolwarm, alpha=0.8) ax1[0].scatter(X0, X1, c=y_train, cmap=plt.cm.coolwarm, s=20, edgecolors='k') interc=models.intercept_ wei=models.coef_ for i in range(len(interc)): ax1[0].plot([xx.min(),xx.max()],[-(interc[i]+wei[i][0]*xx.min())/wei[i][1],-(interc[i]+wei[i][0]*xx.max())/wei[i][1]], color=dico_color[i],ls='--') ax1[0].set_xlim(xx.min(), xx.max()) ax1[0].set_ylim(yy.min(), yy.max()) ax1[0].set_xticks(()) ax1[0].set_yticks(()) ax1[0].set_title(titles) #plt.savefig('C:\\Users\\sebas\\Desktop\\cours_scikit-learn\\Iris_example_knn_1_'+str(i)+'.pdf') #plt.subplots_adjust(wspace=0.4, hspace=0.4) #plt.subplot(1,2,1) #X0, X1 = X_test[:, 0],X_test[:, 1] #xx, yy = make_meshgrid(X0, X1) plot_contours(ax1[1], models, xx, yy,cmap=plt.cm.coolwarm, alpha=0.8) ax1[1].scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=plt.cm.coolwarm, s=20, edgecolors='k') interc=models.intercept_ wei=models.coef_ for i in range(len(interc)): #print([-(interc[i]+wei[i][0]*xx.min())/wei[i][1],-(interc[i]+wei[i][0]*xx.max())/wei[i][1]]) ax1[1].plot([xx.min(),xx.max()],[-(interc[i]+wei[i][0]*xx.min())/wei[i][1],-(interc[i]+wei[i][0]*xx.max())/wei[i][1]], color=dico_color[i],ls='--') ax1[1].set_xlim(xx.min(), xx.max()) ax1[1].set_ylim(yy.min(), yy.max()) ax1[1].set_xticks(()) ax1[1].set_yticks(()) ax1[1].set_title(titles) plt.show() X=scaler.transform(X) X0, X1 = X[:, 0], X[:, 1] xx = np.linspace(np.min(X0)-0.1,
np.max(X0)
numpy.max
import unittest.mock as mock import numpy as np import pytest from smqtk_detection import DetectImageObjects from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency from xaitk_saliency.exceptions import ShapeMismatchError def test_generate_checks_success() -> None: """ Tests successful passage though the wrapper method. """ m_impl = mock.Mock(spec=GenerateObjectDetectorBlackboxSaliency) # mock implementation result, number of maps should match number of input detections m_impl._generate.return_value = np.empty((5, 256, 256)) m_detector = mock.Mock(spec=DetectImageObjects) # test reference detections inputs with matching lengths test_bboxes = np.ones((5, 4), dtype=float) test_scores = np.ones((5, 3), dtype=float) test_objectness = np.ones((5,), dtype=float) # 2-channel image as just HxW should work test_image = np.ones((256, 256), dtype=np.uint8) GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, test_bboxes, test_scores, m_detector, ) m_impl._generate.assert_called_with( test_image, test_bboxes, test_scores, m_detector, None # no objectness passed ) # multi-channel image shoudl work with whatever channel dim size test_image = np.ones((256, 256, 7), dtype=np.uint8) GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, test_bboxes, test_scores, m_detector, ) m_impl._generate.assert_called_with( test_image, test_bboxes, test_scores, m_detector, None # no objectness passed ) # With objectness GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, test_bboxes, test_scores, m_detector, test_objectness ) m_impl._generate.assert_called_with( test_image, test_bboxes, test_scores, m_detector, test_objectness ) def test_generate_checks_image_shape() -> None: """ Test that the input image shape conforms to our assumption. """ m_impl = mock.Mock(spec=GenerateObjectDetectorBlackboxSaliency) m_detector = mock.Mock(spec=DetectImageObjects) m_bboxes = mock.Mock(spec=np.ndarray) m_scores = mock.Mock(spec=np.ndarray) # a single vector is not considered an image test_image = np.ones((256,), dtype=np.uint8) with pytest.raises( ValueError, match=r"^Input image matrix has an unexpected number of dimensions: 1$" ): GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, m_bboxes, m_scores, m_detector, ) # image with more than 3 dimenstions test_image = np.ones((256, 256, 3, 2), dtype=np.uint8) with pytest.raises( ValueError, match=r"^Input image matrix has an unexpected number of dimensions: 4$" ): GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, m_bboxes, m_scores, m_detector, ) def test_generate_checks_detection_inputs_length() -> None: """ Test that the reference detection inputs must all have the same length. """ m_impl = mock.Mock(spec=GenerateObjectDetectorBlackboxSaliency) m_detector = mock.Mock(spec=DetectImageObjects) test_image = np.ones((64, 64)) # Mismatched number of bboxes and scores, without objectness test_bboxes = np.ones((4, 4), dtype=float) test_scores = np.ones((5, 3), dtype=float) with pytest.raises( ValueError, match=r"^Number of input bounding boxes and scores do not match: " r"\(bboxes\) 4 != 5 \(scores\)$" ): GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, test_bboxes, test_scores, m_detector ) # Mismatched number of bboxes and scores, with objectness test_bboxes = np.ones((5, 4), dtype=float) test_scores = np.ones((4, 3), dtype=float) test_objectness = np.ones((5,), dtype=float) with pytest.raises( ValueError, match=r"^Number of input bounding boxes, scores, and objectness " r"scores do not match: \(bboxes\) 5 != 4 \(scores\) and/or " r"\(bboxes\) 5 != 5 \(objectness\)$" ): GenerateObjectDetectorBlackboxSaliency.generate( m_impl, test_image, test_bboxes, test_scores, m_detector, test_objectness ) # Different number of objectness scores test_bboxes =
np.ones((5, 4), dtype=float)
numpy.ones
#!/usr/bin/env python # coding: utf-8 # # Recommendations with IBM # # In this notebook, you will be putting your recommendation skills to use on real data from the IBM Watson Studio platform. # # # You may either submit your notebook through the workspace here, or you may work from your local machine and submit through the next page. Either way assure that your code passes the project [RUBRIC](https://review.udacity.com/#!/rubrics/2322/view). **Please save regularly.** # # By following the table of contents, you will build out a number of different methods for making recommendations that can be used for different situations. # # # ## Table of Contents # # I. [Exploratory Data Analysis](#Exploratory-Data-Analysis)<br> # II. [Rank Based Recommendations](#Rank)<br> # III. [User-User Based Collaborative Filtering](#User-User)<br> # IV. [Content Based Recommendations (EXTRA - NOT REQUIRED)](#Content-Recs)<br> # V. [Matrix Factorization](#Matrix-Fact)<br> # VI. [Extras & Concluding](#conclusions) # # At the end of the notebook, you will find directions for how to submit your work. Let's get started by importing the necessary libraries and reading in the data. # In[56]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import project_tests as t import pickle get_ipython().run_line_magic('matplotlib', 'inline') df = pd.read_csv('data/user-item-interactions.csv') df_content = pd.read_csv('data/articles_community.csv') del df['Unnamed: 0'] del df_content['Unnamed: 0'] # Show df to get an idea of the data df.head() # In[57]: df.shape # In[58]: df.describe() # In[59]: df.info() # In[60]: # Show df_content to get an idea of the data df_content.head() # In[61]: df_content.shape # In[62]: df.isnull().sum() # In[63]: df_content.describe() # In[64]: df_content.info() # In[65]: df_content.isnull().sum() # ### <a class="anchor" id="Exploratory-Data-Analysis">Part I : Exploratory Data Analysis</a> # # Use the dictionary and cells below to provide some insight into the descriptive statistics of the data. # # `1.` What is the distribution of how many articles a user interacts with in the dataset? Provide a visual and descriptive statistics to assist with giving a look at the number of times each user interacts with an article. # In[66]: user_interaction = df.groupby('email').count()['article_id'].sort_values(ascending=False) user_interaction # In[67]: # Visualization of User-articleS interaction user_interaction.hist() plt.title('Distribution of Article Interactions') # In[68]: # descriptive stats user_interaction.describe() # In[69]: user_interaction.median() # In[70]: # Fill in the median and maximum number of user_article interactios below median_val = 3 # 50% of individuals interact with ____ number of articles or fewer. max_views_by_user = 364 # The maximum number of user-article interactions by any 1 user is 364. # `2.` Explore and remove duplicate articles from the **df_content** dataframe. # In[71]: # Find and explore duplicate articles df_content.nunique() # In[72]: df_content.duplicated("article_id").sum() # In[73]: # Remove any rows that have the same article_id - only keep the first df_content.drop_duplicates(subset='article_id', keep='first', inplace=True) # In[74]: df_content.duplicated("article_id").sum() # In[75]: df_content.shape # `3.` Use the cells below to find: # # **a.** The number of unique articles that have an interaction with a user. # **b.** The number of unique articles in the dataset (whether they have any interactions or not).<br> # **c.** The number of unique users in the dataset. (excluding null values) <br> # **d.** The number of user-article interactions in the dataset. # In[76]: df.article_id.nunique() # In[77]: df_content.info() # In[78]: df.email.nunique() # In[79]: df.shape # In[80]: unique_articles = 714 # The number of unique articles that have at least one interaction total_articles = 1051 # The number of unique articles on the IBM platform unique_users = 5148 # The number of unique users user_article_interactions = 45993 # The number of user-article interactions # `4.` Use the cells below to find the most viewed **article_id**, as well as how often it was viewed. After talking to the company leaders, the `email_mapper` function was deemed a reasonable way to map users to ids. There were a small number of null values, and it was found that all of these null values likely belonged to a single user (which is how they are stored using the function below). # In[81]: df.groupby(["article_id"])["email"].count().sort_values(ascending=False).head() # In[82]: most_viewed_article_id = "1429.0" # The most viewed article in the dataset as a string with one value following the decimal max_views = 937 # The most viewed article in the dataset was viewed how many times? # In[83]: df.head() # In[84]: ## No need to change the code here - this will be helpful for later parts of the notebook # Run this cell to map the user email to a user_id column and remove the email column def email_mapper(): coded_dict = dict() cter = 1 email_encoded = [] for val in df['email']: if val not in coded_dict: coded_dict[val] = cter cter+=1 email_encoded.append(coded_dict[val]) return email_encoded email_encoded = email_mapper() del df['email'] df['user_id'] = email_encoded # show header df.head() # In[85]: ## If you stored all your results in the variable names above, ## you shouldn't need to change anything in this cell sol_1_dict = { '`50% of individuals have _____ or fewer interactions.`': median_val, '`The total number of user-article interactions in the dataset is ______.`': user_article_interactions, '`The maximum number of user-article interactions by any 1 user is ______.`': max_views_by_user, '`The most viewed article in the dataset was viewed _____ times.`': max_views, '`The article_id of the most viewed article is ______.`': most_viewed_article_id, '`The number of unique articles that have at least 1 rating ______.`': unique_articles, '`The number of unique users in the dataset is ______`': unique_users, '`The number of unique articles on the IBM platform`': total_articles } # Test your dictionary against the solution t.sol_1_test(sol_1_dict) # ### <a class="anchor" id="Rank">Part II: Rank-Based Recommendations</a> # # Unlike in the earlier lessons, we don't actually have ratings for whether a user liked an article or not. We only know that a user has interacted with an article. In these cases, the popularity of an article can really only be based on how often an article was interacted with. # # `1.` Fill in the function below to return the **n** top articles ordered with most interactions as the top. Test your function using the tests below. # In[86]: def get_top_articles(n, df=df): ''' INPUT: n - (int) the number of top articles to return df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: top_articles - (list) A list of the top 'n' article titles ''' # Your code here top_articles = list(df.groupby(['title'])['article_id'].count().sort_values(ascending=False).head(n).index) return top_articles # Return the top article titles from df (not df_content) def get_top_article_ids(n, df=df): ''' INPUT: n - (int) the number of top articles to return df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: top_articles - (list) A list of the top 'n' article titles ''' # Your code here top_articles = list(df['article_id'].value_counts().head(n).index) return top_articles # Return the top article ids # In[87]: print(get_top_articles(10)) print(get_top_article_ids(10)) # In[88]: # Test your function by returning the top 5, 10, and 20 articles top_5 = get_top_articles(5) top_10 = get_top_articles(10) top_20 = get_top_articles(20) # Test each of your three lists from above t.sol_2_test(get_top_articles) # ### <a class="anchor" id="User-User">Part III: User-User Based Collaborative Filtering</a> # # # `1.` Use the function below to reformat the **df** dataframe to be shaped with users as the rows and articles as the columns. # # * Each **user** should only appear in each **row** once. # # # * Each **article** should only show up in one **column**. # # # * **If a user has interacted with an article, then place a 1 where the user-row meets for that article-column**. It does not matter how many times a user has interacted with the article, all entries where a user has interacted with an article should be a 1. # # # * **If a user has not interacted with an item, then place a zero where the user-row meets for that article-column**. # # Use the tests to make sure the basic structure of your matrix matches what is expected by the solution. # In[89]: # create the user-article matrix with 1's and 0's def create_user_item_matrix(df): ''' INPUT: df - pandas dataframe with article_id, title, user_id columns OUTPUT: user_item - user item matrix Description: Return a matrix with user ids as rows and article ids on the columns with 1 values where a user interacted with an article and a 0 otherwise ''' # Fill in the function here user_item=df.groupby(by=['user_id', 'article_id']).agg(lambda x: 1).unstack().fillna(0) return user_item # return the user_item matrix user_item = create_user_item_matrix(df) # In[90]: ## Tests: You should just need to run this cell. Don't change the code. assert user_item.shape[0] == 5149, "Oops! The number of users in the user-article matrix doesn't look right." assert user_item.shape[1] == 714, "Oops! The number of articles in the user-article matrix doesn't look right." assert user_item.sum(axis=1)[1] == 36, "Oops! The number of articles seen by user 1 doesn't look right." print("You have passed our quick tests! Please proceed!") # In[91]: user_item.head() # `2.` Complete the function below which should take a user_id and provide an ordered list of the most similar users to that user (from most similar to least similar). The returned result should not contain the provided user_id, as we know that each user is similar to him/herself. Because the results for each user here are binary, it (perhaps) makes sense to compute similarity as the dot product of two users. # # Use the tests to test your function. # In[97]: def find_similar_users(user_id, user_item=user_item): ''' INPUT: user_id - (int) a user_id user_item - (pandas dataframe) matrix of users by articles: 1's when a user has interacted with an article, 0 otherwise OUTPUT: similar_users - (list) an ordered list where the closest users (largest dot product users) are listed first Description: Computes the similarity of every pair of users based on the dot product Returns an ordered ''' # compute similarity of each user to the provided user similarity = {} for uid in user_item.index: similarity[uid] = np.dot(user_item.loc[user_id, :], user_item.loc[uid, :]) # sort by similarity similarity_sort = sorted(similarity.items(), key=lambda kv: kv[1], reverse=True) # create list of just the ids most_similar_users = [key for (key, value) in similarity_sort] # remove the own user's id most_similar_users.remove(user_id) return most_similar_users # return a list of the users in order from most to least simila # In[98]: # Do a spot check of your function print("The 10 most similar users to user 1 are: {}".format(find_similar_users(1)[:10])) print("The 5 most similar users to user 3933 are: {}".format(find_similar_users(3933)[:5])) print("The 3 most similar users to user 46 are: {}".format(find_similar_users(46)[:3])) # `3.` Now that you have a function that provides the most similar users to each user, you will want to use these users to find articles you can recommend. Complete the functions below to return the articles you would recommend to each user. # In[99]: def get_article_names(article_ids, df=df): ''' INPUT: article_ids - (list) a list of article ids df - (pandas dataframe) df as defined at the top of the notebook OUTPUT: article_names - (list) a list of article names associated with the list of article ids (this is identified by the title column) ''' # Your code here #article_names = df[df['article_id'].isin(article_ids)]['title'].unique().tolist() article_names = df[df['article_id'].isin(article_ids)]['title'].drop_duplicates().values.tolist() return article_names # Return the article names associated with list of article ids def get_user_articles(user_id, user_item=user_item): ''' INPUT: user_id - (int) a user id user_item - (pandas dataframe) matrix of users by articles: 1's when a user has interacted with an article, 0 otherwise OUTPUT: article_ids - (list) a list of the article ids seen by the user article_names - (list) a list of article names associated with the list of article ids (this is identified by the doc_full_name column in df_content) Description: Provides a list of the article_ids and article titles that have been seen by a user ''' # Your code here article_ids = [str(id) for id in list(user_item.loc[user_id][user_item.loc[user_id]==1].title.index)] article_names = get_article_names(article_ids) return article_ids, article_names # return the ids and names def user_user_recs(user_id, m=10): ''' INPUT: user_id - (int) a user id m - (int) the number of recommendations you want for the user OUTPUT: recs - (list) a list of recommendations for the user Description: Loops through the users based on closeness to the input user_id For each user - finds articles the user hasn't seen before and provides them as recs Does this until m recommendations are found Notes: Users who are the same closeness are chosen arbitrarily as the 'next' user For the user where the number of recommended articles starts below m and ends exceeding m, the last items are chosen arbitrarily ''' # Your code here recs = [] most_similar_users = find_similar_users(user_id) viewed_article_ids_self, viewed_article_names_self = get_user_articles(user_id) for user in most_similar_users: article_ids, article_names = get_user_articles(user) for article_id in article_ids: if article_id not in viewed_article_ids_self: if article_id not in recs and len(recs) < m: recs.append(article_id) if len(recs) >= m: break if len(recs) >= m: break return recs # return your recommendations for this user_id # In[100]: # Check Results get_article_names(user_user_recs(1, 10)) # Return 10 recommendations for user 1 # In[101]: # Test your functions here - No need to change this code - just run this cell assert set(get_article_names(['1024.0', '1176.0', '1305.0', '1314.0', '1422.0', '1427.0'])) == set(['using deep learning to reconstruct high-resolution audio', 'build a python app on the streaming analytics service', 'gosales transactions for naive bayes model', 'healthcare python streaming application demo', 'use r dataframes & ibm watson natural language understanding', 'use xgboost, scikit-learn & ibm watson machine learning apis']), "Oops! Your the get_article_names function doesn't work quite how we expect." assert set(get_article_names(['1320.0', '232.0', '844.0'])) == set(['housing (2015): united states demographic measures','self-service data preparation with ibm data refinery','use the cloudant-spark connector in python notebook']), "Oops! Your the get_article_names function doesn't work quite how we expect." assert set(get_user_articles(20)[0]) == set(['1320.0', '232.0', '844.0']) assert set(get_user_articles(20)[1]) == set(['housing (2015): united states demographic measures', 'self-service data preparation with ibm data refinery','use the cloudant-spark connector in python notebook']) assert set(get_user_articles(2)[0]) == set(['1024.0', '1176.0', '1305.0', '1314.0', '1422.0', '1427.0']) assert set(get_user_articles(2)[1]) == set(['using deep learning to reconstruct high-resolution audio', 'build a python app on the streaming analytics service', 'gosales transactions for naive bayes model', 'healthcare python streaming application demo', 'use r dataframes & ibm watson natural language understanding', 'use xgboost, scikit-learn & ibm watson machine learning apis']) print("If this is all you see, you passed all of our tests! Nice job!") # `4.` Now we are going to improve the consistency of the **user_user_recs** function from above. # # * Instead of arbitrarily choosing when we obtain users who are all the same closeness to a given user - choose the users that have the most total article interactions before choosing those with fewer article interactions. # # # * Instead of arbitrarily choosing articles from the user where the number of recommended articles starts below m and ends exceeding m, choose articles with the articles with the most total interactions before choosing those with fewer total interactions. This ranking should be what would be obtained from the **top_articles** function you wrote earlier. # In[102]: def get_top_sorted_users(user_id, df=df, user_item=user_item): ''' INPUT: user_id - (int) df - (pandas dataframe) df as defined at the top of the notebook user_item - (pandas dataframe) matrix of users by articles: 1's when a user has interacted with an article, 0 otherwise OUTPUT: neighbors_df - (pandas dataframe) a dataframe with: neighbor_id - is a neighbor user_id similarity - measure of the similarity of each user to the provided user_id num_interactions - the number of articles viewed by the user - if a u Other Details - sort the neighbors_df by the similarity and then by number of interactions where highest of each is higher in the dataframe ''' # Your code here neighbors_df = pd.DataFrame(columns=['neighbor_id', 'similarity', 'num_interactions']) for user in user_item.index: if user == user_id: continue neighbors_df.loc[user] = [user, np.dot(user_item.loc[user_id, :], user_item.loc[user, :]), df[df['user_id']==user]['article_id'].count()] neighbors_df.sort_values(by=['similarity', 'num_interactions'], ascending=False, inplace=True) return neighbors_df # Return the dataframe specified in the doc_string def user_user_recs_part2(user_id, m=10): ''' INPUT: user_id - (int) a user id m - (int) the number of recommendations you want for the user OUTPUT: recs - (list) a list of recommendations for the user by article id rec_names - (list) a list of recommendations for the user by article title Description: Loops through the users based on closeness to the input user_id For each user - finds articles the user hasn't seen before and provides them as recs Does this until m recommendations are found Notes: * Choose the users that have the most total article interactions before choosing those with fewer article interactions. * Choose articles with the articles with the most total interactions before choosing those with fewer total interactions. ''' # Your code here recs = [] neighbors_df = get_top_sorted_users(user_id) the_user_articles, the_article_names = get_user_articles(user_id) for user in neighbors_df['neighbor_id']: article_ids, article_names = get_user_articles(user) for id in article_ids: if id not in the_user_articles: recs.append(id) if len(recs) >= m: break if len(recs) >= m: break if len(recs) < m: for id in [str(id) for id in get_top_article_ids(100)]: if id not in the_user_articles: recs.append(id) if len(recs) >= m: break rec_names = get_article_names(recs) return recs, rec_names # In[103]: # Quick spot check - don't change this code - just use it to test your functions rec_ids, rec_names = user_user_recs_part2(20, 10) print("The top 10 recommendations for user 20 are the following article ids:") print(rec_ids) print() print("The top 10 recommendations for user 20 are the following article names:") print(rec_names) # `5.` Use your functions from above to correctly fill in the solutions to the dictionary below. Then test your dictionary against the solution. Provide the code you need to answer each following the comments below. # In[105]: get_top_sorted_users(1).iloc[0] # In[107]: get_top_sorted_users(1).neighbor_id.values[0] # In[106]: get_top_sorted_users(131).iloc[9] # In[110]: ### Tests with a dictionary of results user1_most_sim = 3933 # Find the user that is most similar to user 1 user131_10th_sim = 242 # Find the 10th most similar user to user 131 # In[111]: ## Dictionary Test Here sol_5_dict = { 'The user that is most similar to user 1.': user1_most_sim, 'The user that is the 10th most similar to user 131': user131_10th_sim, } t.sol_5_test(sol_5_dict) # `6.` If we were given a new user, which of the above functions would you be able to use to make recommendations? Explain. Can you think of a better way we might make recommendations? Use the cell below to explain a better method for new users. # **Provide your response here.** # `7.` Using your existing functions, provide the top 10 recommended articles you would provide for the a new user below. You can test your function against our thoughts to make sure we are all on the same page with how we might make a recommendation. # In[114]: new_user = '0.0' # What would your recommendations be for this new user '0.0'? As a new user, they have no observed articles. # Provide a list of the top 10 article ids you would give to new_user_recs = get_top_article_ids(10) # Your recommendations here new_user_recs = [str(ids) for ids in get_top_article_ids(10)] # In[115]: assert set(new_user_recs) == set(['1314.0','1429.0','1293.0','1427.0','1162.0','1364.0','1304.0','1170.0','1431.0','1330.0']), "Oops! It makes sense that in this case we would want to recommend the most popular articles, because we don't know anything about these users." print("That's right! Nice job!") # ### <a class="anchor" id="Content-Recs">Part IV: Content Based Recommendations (EXTRA - NOT REQUIRED)</a> # # Another method we might use to make recommendations is to perform a ranking of the highest ranked articles associated with some term. You might consider content to be the **doc_body**, **doc_description**, or **doc_full_name**. There isn't one way to create a content based recommendation, especially considering that each of these columns hold content related information. # # `1.` Use the function body below to create a content based recommender. Since there isn't one right answer for this recommendation tactic, no test functions are provided. Feel free to change the function inputs if you decide you want to try a method that requires more input values. The input values are currently set with one idea in mind that you may use to make content based recommendations. One additional idea is that you might want to choose the most popular recommendations that meet your 'content criteria', but again, there is a lot of flexibility in how you might make these recommendations. # # ### This part is NOT REQUIRED to pass this project. However, you may choose to take this on as an extra way to show off your skills. # In[ ]: def make_content_recs(): ''' INPUT: OUTPUT: ''' # `2.` Now that you have put together your content-based recommendation system, use the cell below to write a summary explaining how your content based recommender works. Do you see any possible improvements that could be made to your function? Is there anything novel about your content based recommender? # # ### This part is NOT REQUIRED to pass this project. However, you may choose to take this on as an extra way to show off your skills. # **Write an explanation of your content based recommendation system here.** # `3.` Use your content-recommendation system to make recommendations for the below scenarios based on the comments. Again no tests are provided here, because there isn't one right answer that could be used to find these content based recommendations. # # ### This part is NOT REQUIRED to pass this project. However, you may choose to take this on as an extra way to show off your skills. # In[ ]: # make recommendations for a brand new user # make a recommendations for a user who only has interacted with article id '1427.0' # ### <a class="anchor" id="Matrix-Fact">Part V: Matrix Factorization</a> # # In this part of the notebook, you will build use matrix factorization to make article recommendations to the users on the IBM Watson Studio platform. # # `1.` You should have already created a **user_item** matrix above in **question 1** of **Part III** above. This first question here will just require that you run the cells to get things set up for the rest of **Part V** of the notebook. # In[116]: # Load the matrix here user_item_matrix = pd.read_pickle('user_item_matrix.p') # In[117]: # quick look at the matrix user_item_matrix.head() # `2.` In this situation, you can use Singular Value Decomposition from [numpy](https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.linalg.svd.html) on the user-item matrix. Use the cell to perform SVD, and explain why this is different than in the lesson. # In[118]: # Perform SVD on the User-Item Matrix Here u, s, vt = np.linalg.svd(user_item_matrix) # use the built in to get the three matrices # **Provide your response here.** # `3.` Now for the tricky part, how do we choose the number of latent features to use? Running the below cell, you can see that as the number of latent features increases, we obtain a lower error rate on making predictions for the 1 and 0 values in the user-item matrix. Run the cell below to get an idea of how the accuracy improves as we increase the number of latent features. # In[119]: num_latent_feats = np.arange(10,700+10,20) sum_errs = [] for k in num_latent_feats: # restructure with k latent features s_new, u_new, vt_new = np.diag(s[:k]), u[:, :k], vt[:k, :] # take dot product user_item_est = np.around(np.dot(np.dot(u_new, s_new), vt_new)) # compute error for each prediction to actual value diffs = np.subtract(user_item_matrix, user_item_est) # total errors and keep track of them err = np.sum(np.sum(np.abs(diffs))) sum_errs.append(err) plt.plot(num_latent_feats, 1 - np.array(sum_errs)/df.shape[0]); plt.xlabel('Number of Latent Features'); plt.ylabel('Accuracy'); plt.title('Accuracy vs. Number of Latent Features'); # `4.` From the above, we can't really be sure how many features to use, because simply having a better way to predict the 1's and 0's of the matrix doesn't exactly give us an indication of if we are able to make good recommendations. Instead, we might split our dataset into a training and test set of data, as shown in the cell below. # # Use the code from question 3 to understand the impact on accuracy of the training and test sets of data with different numbers of latent features. Using the split below: # # * How many users can we make predictions for in the test set? # * How many users are we not able to make predictions for because of the cold start problem? # * How many articles can we make predictions for in the test set? # * How many articles are we not able to make predictions for because of the cold start problem? # In[120]: df_train = df.head(40000) df_test = df.tail(5993) def create_test_and_train_user_item(df_train, df_test): ''' INPUT: df_train - training dataframe df_test - test dataframe OUTPUT: user_item_train - a user-item matrix of the training dataframe (unique users for each row and unique articles for each column) user_item_test - a user-item matrix of the testing dataframe (unique users for each row and unique articles for each column) test_idx - all of the test user ids test_arts - all of the test article ids ''' # Your code here user_item_train=create_user_item_matrix(df_train) user_item_test=create_user_item_matrix(df_test) test_idx=user_item_test.index test_arts=user_item_test.columns return user_item_train, user_item_test, test_idx, test_arts user_item_train, user_item_test, test_idx, test_arts = create_test_and_train_user_item(df_train, df_test) # In[122]: user_item_train.head(5) # In[124]: print(u.shape, s.shape, vt.shape) # In[123]: # Number of users in both sets len(user_item_test.index.intersection(user_item_train.index)) # In[137]: # movies in the test set are we not able to make predictions len(df_test.user_id.unique()) - len(np.intersect1d(df_train.user_id.unique(),df_test.user_id.unique())) # In[138]: # movies we can make predictions for in the test set len(np.intersect1d(df_train.article_id.unique(),df_test.article_id.unique())) # In[139]: # users in the test set are we not able to make predictions len(df_test.article_id.unique()) - len(np.intersect1d(df_train.article_id.unique(),df_test.article_id.unique())) # In[136]: # Replace the values in the dictionary below a = 662 b = 574 c = 20 d = 0 sol_4_dict = { 'How many users can we make predictions for in the test set?':c, # letter here, 'How many users in the test set are we not able to make predictions for because of the cold start problem?': a , # letter here, 'How many movies can we make predictions for in the test set?': b, # letter here, 'How many movies in the test set are we not able to make predictions for because of the cold start problem?': d # letter here } t.sol_4_test(sol_4_dict) # `5.` Now use the **user_item_train** dataset from above to find U, S, and V transpose using SVD. Then find the subset of rows in the **user_item_test** dataset that you can predict using this matrix decomposition with different numbers of latent features to see how many features makes sense to keep based on the accuracy on the test data. This will require combining what was done in questions `2` - `4`. # # Use the cells below to explore how well SVD works towards making predictions for recommendations on the test data. # In[140]: # fit SVD on the user_item_train matrix u_train, s_train, vt_train = np.linalg.svd(user_item_train) # fit svd similar to above then use the cells below # In[141]: u_train.shape, s_train.shape, vt_train.shape # In[ ]: # Use these cells to see how well you can use the training # decomposition to predict on test data # In[149]: num_latent_feats = np.arange(10,700+10,20) sum_errs_train = [] sum_errs_test = [] user_item_test = user_item_test.loc[user_item_test.index.isin(user_item_train.index), user_item_test.columns.isin(user_item_train.columns)] u_test = u_train[user_item_train.index.isin(user_item_test.index), :] vt_test = vt_train[:, user_item_train.columns.isin(test_arts)] for k in num_latent_feats: # restructure with k latent features s_new_train, u_new_train, vt_new_train =
np.diag(s_train[:k])
numpy.diag
import numpy as np import sys sys.path.append('..') from scipy.stats import norm, poisson, uniform class ToyPoissonLoader: def __init__(self, mean_instrumental=110, std_instrumental=15, low_int=0, high_int=20, true_param=10.0, out_dir='toy_poisson/', background_val=100, marginal=False, size_marginal=1000, empirical_marginal=True): self.mean_instrumental = mean_instrumental self.std_instrumental = std_instrumental self.low_int = low_int self.high_int = high_int self.background_val = background_val self.g_distribution = norm(loc=self.mean_instrumental, scale=self.std_instrumental) self.regen_flag = False self.out_directory = out_dir self.d = 1 self.d_obs = 1 self.num_grid = 51 self.grid = np.linspace(start=self.low_int + 0.001, stop=self.high_int, num=self.num_grid) self.num_pred_grid = 41 self.pred_grid = np.linspace(start=self.low_int, stop=self.high_int, num=self.num_pred_grid) self.true_param = true_param self.empirical_marginal = empirical_marginal if marginal: self.compute_marginal_reference(size_marginal) def compute_marginal_reference(self, size_marginal): theta_vec_marg = self.sample_param_values(sample_size=size_marginal) marginal_sample = np.random.poisson(lam=self.background_val + theta_vec_marg, size=size_marginal) mean_mle = np.average(marginal_sample) std_mle = np.std(marginal_sample) self.mean_instrumental = mean_mle self.std_instrumental = std_mle self.g_distribution = norm(loc=mean_mle, scale=std_mle) def sample_empirical_marginal(self, sample_size): theta_vec_marg = self.sample_param_values(sample_size=sample_size) return np.apply_along_axis(arr=theta_vec_marg.reshape(-1, self.d), axis=1, func1d=lambda row: self.sample_sim( sample_size=1, true_param=row)).reshape(-1, self.d_obs) def sample_sim(self, sample_size, true_param): return np.random.poisson(lam=self.background_val + true_param, size=sample_size) def sample_param_values(self, sample_size): return np.random.uniform(low=self.low_int, high=self.high_int, size=sample_size) def generate_sample(self, sample_size, p=0.5, **kwargs): theta_vec = self.sample_param_values(sample_size=sample_size) bern_vec = np.random.binomial(n=1, p=p, size=sample_size) concat_mat = np.hstack((theta_vec.reshape(-1, self.d), bern_vec.reshape(-1, 1))) if self.empirical_marginal: sample = np.apply_along_axis(arr=concat_mat, axis=1, func1d=lambda row: self.sample_sim( sample_size=1, true_param=row[:self.d]) if row[self.d] else self.sample_empirical_marginal(sample_size=1)) else: sample = np.apply_along_axis(arr=concat_mat, axis=1, func1d=lambda row: self.sample_sim( sample_size=1, true_param=row[0]) if row[1] else np.int(self.g_distribution.rvs(size=1))) return np.hstack((concat_mat, sample.reshape(-1, self.d_obs))) def sample_msnh_algo5(self, b_prime, sample_size): theta_mat = self.sample_param_values(sample_size=b_prime).reshape(-1, 1) assert theta_mat.shape == (b_prime, 1) sample_mat = np.apply_along_axis(arr=theta_mat, axis=1, func1d=lambda row: self.sample_sim(sample_size=sample_size, true_param=row)) return theta_mat, sample_mat def compute_exact_or(self, t0, t1, x_obs): f0_val = poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + t0) f1_val = poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + t1) return f0_val / f1_val def compute_exact_prob(self, theta_vec, x_vec, p=0.5): f_val = poisson.pmf(k=x_vec.reshape(-1, ), mu=self.background_val + theta_vec.reshape(-1, )) g_val = self.g_distribution.pdf(x=x_vec.reshape(-1, )) return (f_val * p) / (f_val * p + g_val * (1 - p)) def compute_exact_odds(self, theta_vec, x_vec, p=0.5): f_val = poisson.pmf(k=x_vec.reshape(-1, ), mu=self.background_val + theta_vec.reshape(-1, )) g_val = self.g_distribution.pdf(x=x_vec.reshape(-1, )) return (f_val * p) / (g_val * (1 - p)) def compute_exact_likelihood(self, x_obs, true_param): return poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + true_param) def compute_exact_lr_simplevsimple(self, x_obs, t0, t1): ''' Compute the exact likelihood ratios for normal case. ''' ll_t0 = poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + t0) ll_t1 = poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + t1) return np.sum(np.log(ll_t0) - np.log(ll_t1)) @staticmethod def compute_mle(x_obs): return np.average(x_obs.reshape(-1, )) def compute_exact_lr_simplevcomp(self, x_obs, t0, mle): ''' Compute the exact likelihood ratios for normal case. ''' ll_t0 = poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + t0) ll_mle = poisson.pmf(k=x_obs.reshape(-1, ), mu=self.background_val + mle) return np.sum(np.log(ll_t0) -
np.log(ll_mle)
numpy.log
from operator import itemgetter from src.rrt.heuristics import cost_to_go from src.rrt.heuristics import segment_cost, path_cost from src.rrt.rrt import RRT import numpy as np class InformedRRTStar(RRT): def __init__(self, X, Q, x_init, x_goal, max_samples, r, prc=0.01, rewire_count=None): """ Informed RRT* Search :param X: Search Space :param Q: list of lengths of edges added to tree :param x_init: tuple, initial location :param x_goal: tuple, goal location :param max_samples: max number of samples to take :param r: resolution of points to sample along edge when checking for collisions :param prc: probability of checking whether there is a solution :param rewire_count: number of nearby vertices to rewire """ super().__init__(X, Q, x_init, x_goal, max_samples, r, prc) self.rewire_count = rewire_count if rewire_count is not None else 0 self.c_best = float('inf') # length of best solution thus far self.RotationMatrix = self.RotationToWorldFrame( self.x_init, self.x_goal, np.linalg.norm(np.array(x_goal) - np.array(x_init)) ) def get_nearby_vertices(self, tree, x_init, x_new): """ Get nearby vertices to new vertex and their associated path costs from the root of tree as if new vertex is connected to each one separately. :param tree: tree in which to search :param x_init: starting vertex used to calculate path cost :param x_new: vertex around which to find nearby vertices :return: list of nearby vertices and their costs, sorted in ascending order by cost """ X_near = self.nearby(tree, x_new, self.current_rewire_count(tree)) L_near = [ (path_cost(self.trees[tree].E, x_init, x_near) + segment_cost(x_near, x_new), x_near) for x_near in X_near] # noinspection PyTypeChecker L_near.sort(key=itemgetter(0)) return L_near def RotationToWorldFrame(self, x_start, x_goal, L): dim = 2 # Transverse axis of the ellipsoid in the world frame E1 = (np.array(x_goal) - np.array(x_start)) / L # first basis vector of the world frame [1,0,0,...] W1 = [1]+[0]*(dim - 1) # outer product of E1 and W1 M = np.outer(E1, W1) # SVD decomposition od outer product U, S, V = np.linalg.svd(M) # Calculate the middle diagonal matrix middleM = np.eye(dim) middleM[-1, -1] = np.linalg.det(U)*np.linalg.det(V) # calculate the rotation matrix C = U@[email protected] return C def rewire(self, tree, x_new, L_near): """ Rewire tree to shorten edges if possible Only rewires vertices according to rewire count :param tree: int, tree to rewire :param x_new: tuple, newly added vertex :param L_near: list of nearby vertices used to rewire :return: """ for c_near, x_near in L_near: curr_cost = path_cost(self.trees[tree].E, self.x_init, x_near) tent_cost = path_cost( self.trees[tree].E, self.x_init, x_new ) + segment_cost(x_new, x_near) if tent_cost < curr_cost and self.X.collision_free( x_near, x_new, self.r): self.trees[tree].E[x_near] = x_new def connect_shortest_valid(self, tree, x_new, L_near): """ Connect to nearest vertex that has an unobstructed path :param tree: int, tree being added to :param x_new: tuple, vertex being added :param L_near: list of nearby vertices """ # check nearby vertices for total cost and connect shortest valid edge for c_near, x_near in L_near: if c_near + cost_to_go(x_near, self.x_goal) < self.c_best\ and self.connect_to_point(tree, x_near, x_new): break def current_rewire_count(self, tree): """ Return rewire count :param tree: tree being rewired :return: rewire count """ # if no rewire count specified, set rewire count to be all vertices if self.rewire_count is None: return self.trees[tree].V_count # max valid rewire count return min(self.trees[tree].V_count, self.rewire_count) def InGoalRegion(self, x_new, q): dist = np.linalg.norm(np.array(self.x_goal) - np.array(x_new)) if (dist < q).all(): return True return False def findCost(self, X_soln): if len(X_soln) == 0: return float("inf") minimum_cost = float("inf") minimum_path = [] for solution in X_soln: path_cost = 0.0 for i in range(len(solution)-1): node1 =
np.array(solution[i])
numpy.array
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright 2013-2019 pyMOR developers and contributors. All rights reserved. # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) """This module contains algorithms for the empirical interpolation of |Operators|. The main work for generating the necessary interpolation data is handled by the :func:`ei_greedy` method. The objects returned by this method can be used to instantiate an |EmpiricalInterpolatedOperator|. As a convenience, the :func:`interpolate_operators` method allows to perform the empirical interpolation of the |Operators| of a given model with a single function call. """ import numpy as np from scipy.linalg import solve from pymor.core.logger import getLogger from pymor.algorithms.pod import pod as pod_alg from pymor.operators.ei import EmpiricalInterpolatedOperator from pymor.parallel.dummy import dummy_pool from pymor.parallel.interfaces import RemoteObjectInterface from pymor.parallel.manager import RemoteObjectManager from pymor.vectorarrays.interfaces import VectorArrayInterface def ei_greedy(U, error_norm=None, atol=None, rtol=None, max_interpolation_dofs=None, copy=True, pool=dummy_pool): """Generate data for empirical interpolation using EI-Greedy algorithm. Given a |VectorArray| `U`, this method generates a collateral basis and interpolation DOFs for empirical interpolation of the vectors contained in `U`. The returned objects can be used to instantiate an |EmpiricalInterpolatedOperator| (with `triangular=True`). The interpolation data is generated by a greedy search algorithm, where in each loop iteration the worst approximated vector in `U` is added to the collateral basis. Parameters ---------- U A |VectorArray| of vectors to interpolate. error_norm Norm w.r.t. which to calculate the interpolation error. If `None`, the Euclidean norm is used. atol Stop the greedy search if the largest approximation error is below this threshold. rtol Stop the greedy search if the largest relative approximation error is below this threshold. max_interpolation_dofs Stop the greedy search if the number of interpolation DOF (= dimension of the collateral basis) reaches this value. copy If `False`, `U` will be modified during executing of the algorithm. pool If not `None`, the |WorkerPool| to use for parallelization. Returns ------- interpolation_dofs |NumPy array| of the DOFs at which the vectors are evaluated. collateral_basis |VectorArray| containing the generated collateral basis. data Dict containing the following fields: :errors: Sequence of maximum approximation errors during greedy search. :triangularity_errors: Sequence of maximum absolute values of interoplation matrix coefficients in the upper triangle (should be near zero). """ if pool: # dispatch to parallel implemenation assert isinstance(U, (VectorArrayInterface, RemoteObjectInterface)) with RemoteObjectManager() as rom: if isinstance(U, VectorArrayInterface): U = rom.manage(pool.scatter_array(U)) return _parallel_ei_greedy(U, error_norm=error_norm, atol=atol, rtol=rtol, max_interpolation_dofs=max_interpolation_dofs, copy=copy, pool=pool) assert isinstance(U, VectorArrayInterface) logger = getLogger('pymor.algorithms.ei.ei_greedy') logger.info('Generating Interpolation Data ...') interpolation_dofs = np.zeros((0,), dtype=np.int32) collateral_basis = U.empty() max_errs = [] triangularity_errs = [] if copy: U = U.copy() ERR = U errs = ERR.l2_norm() if error_norm is None else error_norm(ERR) max_err_ind = np.argmax(errs) initial_max_err = max_err = errs[max_err_ind] # main loop while True: if max_interpolation_dofs is not None and len(interpolation_dofs) >= max_interpolation_dofs: logger.info('Maximum number of interpolation DOFs reached. Stopping extension loop.') logger.info(f'Final maximum interpolation error with' f'{len(interpolation_dofs)} interpolation DOFs: {max_err}') break logger.info(f'Maximum interpolation error with ' f'{len(interpolation_dofs)} interpolation DOFs: {max_err}') if atol is not None and max_err <= atol: logger.info('Absolute error tolerance reached! Stopping extension loop.') break if rtol is not None and max_err / initial_max_err <= rtol: logger.info('Relative error tolerance reached! Stopping extension loop.') break # compute new interpolation dof and collateral basis vector new_vec = U[max_err_ind].copy() new_dof = new_vec.amax()[0][0] if new_dof in interpolation_dofs: logger.info(f'DOF {new_dof} selected twice for interplation! Stopping extension loop.') break new_dof_value = new_vec.dofs([new_dof])[0, 0] if new_dof_value == 0.: logger.info(f'DOF {new_dof} selected for interpolation has zero maximum error! Stopping extension loop.') break new_vec *= 1 / new_dof_value interpolation_dofs = np.hstack((interpolation_dofs, new_dof)) collateral_basis.append(new_vec) max_errs.append(max_err) # update U and ERR new_dof_values = U.dofs([new_dof]) U.axpy(-new_dof_values[:, 0], new_vec) errs = ERR.l2_norm() if error_norm is None else error_norm(ERR) max_err_ind = np.argmax(errs) max_err = errs[max_err_ind] interpolation_matrix = collateral_basis.dofs(interpolation_dofs).T triangularity_errors = np.abs(interpolation_matrix - np.tril(interpolation_matrix)) for d in range(1, len(interpolation_matrix) + 1): triangularity_errs.append(np.max(triangularity_errors[:d, :d])) if len(triangularity_errs) > 0: logger.info(f'Interpolation matrix is not lower triangular with maximum error of {triangularity_errs[-1]}') data = {'errors': max_errs, 'triangularity_errors': triangularity_errs} return interpolation_dofs, collateral_basis, data def deim(U, modes=None, pod=True, atol=None, rtol=None, product=None, pod_options={}): """Generate data for empirical interpolation using DEIM algorithm. Given a |VectorArray| `U`, this method generates a collateral basis and interpolation DOFs for empirical interpolation of the vectors contained in `U`. The returned objects can be used to instantiate an |EmpiricalInterpolatedOperator| (with `triangular=False`). The collateral basis is determined by the first :func:`~pymor.algorithms.pod.pod` modes of `U`. Parameters ---------- U A |VectorArray| of vectors to interpolate. modes Dimension of the collateral basis i.e. number of POD modes of the vectors in `U`. pod If `True`, perform a POD of `U` to obtain the collateral basis. If `False`, `U` is used as collateral basis. atol Absolute POD tolerance. rtol Relative POD tolerance. product Inner product |Operator| used for the POD. pod_options Dictionary of additional options to pass to the :func:`~pymor.algorithms.pod.pod` algorithm. Returns ------- interpolation_dofs |NumPy array| of the DOFs at which the vectors are interpolated. collateral_basis |VectorArray| containing the generated collateral basis. data Dict containing the following fields: :svals: POD singular values. """ assert isinstance(U, VectorArrayInterface) logger = getLogger('pymor.algorithms.ei.deim') logger.info('Generating Interpolation Data ...') data = {} if pod: collateral_basis, svals = pod_alg(U, modes=modes, atol=atol, rtol=rtol, product=product, **pod_options) data['svals'] = svals else: collateral_basis = U interpolation_dofs = np.zeros((0,), dtype=np.int32) interpolation_matrix = np.zeros((0, 0)) for i in range(len(collateral_basis)): logger.info(f'Choosing interpolation point for basis vector {i}.') if len(interpolation_dofs) > 0: coefficients = solve(interpolation_matrix, collateral_basis[i].dofs(interpolation_dofs).T).T U_interpolated = collateral_basis[:len(interpolation_dofs)].lincomb(coefficients) ERR = collateral_basis[i] - U_interpolated else: ERR = collateral_basis[i] # compute new interpolation dof and collateral basis vector new_dof = ERR.amax()[0][0] if new_dof in interpolation_dofs: logger.info(f'DOF {new_dof} selected twice for interplation! Stopping extension loop.') break interpolation_dofs = np.hstack((interpolation_dofs, new_dof)) interpolation_matrix = collateral_basis[:len(interpolation_dofs)].dofs(interpolation_dofs).T if len(interpolation_dofs) < len(collateral_basis): del collateral_basis[len(interpolation_dofs):len(collateral_basis)] logger.info('Finished.') return interpolation_dofs, collateral_basis, data def interpolate_operators(fom, operator_names, parameter_sample, error_norm=None, product=None, atol=None, rtol=None, max_interpolation_dofs=None, pod_options={}, alg='ei_greedy', pool=dummy_pool): """Empirical operator interpolation using the EI-Greedy/DEIM algorithm. This is a convenience method to facilitate the use of :func:`ei_greedy` or :func:`deim`. Given a |Model|, names of |Operators|, and a sample of |Parameters|, first the operators are evaluated on the solution snapshots of the model for the provided parameters. These evaluations are then used as input for :func:`ei_greedy`/:func:`deim`. Finally the resulting interpolation data is used to create |EmpiricalInterpolatedOperators| and a new model with the interpolated operators is returned. Note that this implementation creates *one* common collateral basis for all specified operators, which might not be what you want. Parameters ---------- fom The |Model| whose |Operators| will be interpolated. operator_names List of keys in the `operators` dict of the model. The corresponding |Operators| will be interpolated. parameter_sample A list of |Parameters| for which solution snapshots are calculated. error_norm See :func:`ei_greedy`. Has no effect if `alg == 'deim'`. product Inner product for POD computation in :func:`deim`. Has no effect if `alg == 'ei_greedy'`. atol See :func:`ei_greedy`. rtol See :func:`ei_greedy`. max_interpolation_dofs See :func:`ei_greedy`. pod_options Further options for :func:`~pymor.algorithms.pod.pod` algorithm. Has no effect if `alg == 'ei_greedy'`. alg Either `ei_greedy` or `deim`. pool If not `None`, the |WorkerPool| to use for parallelization. Returns ------- eim |Model| with |Operators| given by `operator_names` replaced by |EmpiricalInterpolatedOperators|. data Dict containing the following fields: :dofs: |NumPy array| of the DOFs at which the |Operators| have to be evaluated. :basis: |VectorArray| containing the generated collateral basis. In addition, `data` contains the fields of the `data` `dict` returned by :func:`ei_greedy`/:func:`deim`. """ assert alg in ('ei_greedy', 'deim') logger = getLogger('pymor.algorithms.ei.interpolate_operators') with RemoteObjectManager() as rom: operators = [getattr(fom, operator_name) for operator_name in operator_names] with logger.block('Computing operator evaluations on solution snapshots ...'): if pool: logger.info(f'Using pool of {len(pool)} workers for parallel evaluation') evaluations = rom.manage(pool.push(fom.solution_space.empty())) pool.map(_interpolate_operators_build_evaluations, parameter_sample, fom=fom, operators=operators, evaluations=evaluations) else: evaluations = operators[0].range.empty() for mu in parameter_sample: U = fom.solve(mu) for op in operators: evaluations.append(op.apply(U, mu=mu)) if alg == 'ei_greedy': with logger.block('Performing EI-Greedy:'): dofs, basis, data = ei_greedy(evaluations, error_norm, atol=atol, rtol=rtol, max_interpolation_dofs=max_interpolation_dofs, copy=False, pool=pool) elif alg == 'deim': if alg == 'deim' and pool is not dummy_pool: logger.warn('DEIM algorithm not parallel. Collecting operator evaluations.') evaluations = pool.apply(_identity, x=evaluations) evs = evaluations[0] for e in evaluations[1:]: evs.append(e, remove_from_other=True) evaluations = evs with logger.block('Executing DEIM algorithm:'): dofs, basis, data = deim(evaluations, modes=max_interpolation_dofs, atol=atol, rtol=rtol, pod_options=pod_options, product=product) else: assert False ei_operators = {name: EmpiricalInterpolatedOperator(operator, dofs, basis, triangular=(alg == 'ei_greedy')) for name, operator in zip(operator_names, operators)} eim = fom.with_(name=f'{fom.name}_ei', **ei_operators) data.update({'dofs': dofs, 'basis': basis}) return eim, data def _interpolate_operators_build_evaluations(mu, fom=None, operators=None, evaluations=None): U = fom.solve(mu) for op in operators: evaluations.append(op.apply(U, mu=mu)) def _parallel_ei_greedy(U, pool, error_norm=None, atol=None, rtol=None, max_interpolation_dofs=None, copy=True): assert isinstance(U, RemoteObjectInterface) logger = getLogger('pymor.algorithms.ei.ei_greedy') logger.info('Generating Interpolation Data ...') logger.info(f'Using pool of {len(pool)} workers for parallel greedy search') interpolation_dofs = np.zeros((0,), dtype=np.int32) collateral_basis = pool.apply_only(_parallel_ei_greedy_get_empty, 0, U=U) max_errs = [] triangularity_errs = [] with pool.push({}) as distributed_data: errs = pool.apply(_parallel_ei_greedy_initialize, U=U, error_norm=error_norm, copy=copy, data=distributed_data) max_err_ind = np.argmax(errs) initial_max_err = max_err = errs[max_err_ind] # main loop while True: if max_interpolation_dofs is not None and len(interpolation_dofs) >= max_interpolation_dofs: logger.info('Maximum number of interpolation DOFs reached. Stopping extension loop.') logger.info(f'Final maximum interpolation error with ' f'{len(interpolation_dofs)} interpolation DOFs: {max_err}') break logger.info(f'Maximum interpolation error with {len(interpolation_dofs)} interpolation DOFs: {max_err}') if atol is not None and max_err <= atol: logger.info('Absolute error tolerance reached! Stopping extension loop.') break if rtol is not None and max_err / initial_max_err <= rtol: logger.info('Relative error tolerance reached! Stopping extension loop.') break # compute new interpolation dof and collateral basis vector new_vec = pool.apply_only(_parallel_ei_greedy_get_vector, max_err_ind, data=distributed_data) new_dof = new_vec.amax()[0][0] if new_dof in interpolation_dofs: logger.info(f'DOF {new_dof} selected twice for interpolation! Stopping extension loop.') break new_dof_value = new_vec.dofs([new_dof])[0, 0] if new_dof_value == 0.: logger.info(f'DOF {new_dof} selected for interpolation has zero maximum error! ' f'Stopping extension loop.') break new_vec *= 1 / new_dof_value interpolation_dofs = np.hstack((interpolation_dofs, new_dof)) collateral_basis.append(new_vec) max_errs.append(max_err) errs = pool.apply(_parallel_ei_greedy_update, new_vec=new_vec, new_dof=new_dof, data=distributed_data) max_err_ind =
np.argmax(errs)
numpy.argmax
import os import pickle import unittest import cv2 import numpy as np import numpy.testing as npt import torch from PIL import Image from ...common_util.global_vars import PROJ_DIR from ...common_util.image import image_path_to_numpy from ...devil import compute_optical_flow, get_spaced_index_list, hausdorff_distance, compute_object_instances from ...devil.config import get_default_config, namespace_to_dict from ...devil.scoring import NormalizedImageNormScorer, AffineTransformComputer, AffineScoreScorer, \ LowCameraMotionSegmentsComputer TEST_DATA_ROOT = os.path.join(PROJ_DIR, 'test-data') class DevilTests(unittest.TestCase): @classmethod def setUpClass(cls): super().setUpClass() frames = [] masks = [] for i in range(6): img = np.array(Image.open(os.path.join(TEST_DATA_ROOT, 'bear', '0000' + str(i) + '.jpg'))).astype(np.uint8) mask = cv2.imread(os.path.join(TEST_DATA_ROOT, 'mask', '0000' + str(i) + '.png'), 0) mask = np.where(mask > 0, True, False) frames.append(img) masks.append(mask) cls.frames = frames cls.masks = masks cls.default_config_dict = namespace_to_dict(get_default_config()) cls.normalized_image_norm_scorer = NormalizedImageNormScorer( **cls.default_config_dict['NormalizedImageNormScorer']) cls.affine_transform_computer = AffineTransformComputer(**cls.default_config_dict['AffineTransformComputer']) cls.affine_score_scorer = AffineScoreScorer(**cls.default_config_dict['AffineScoreScorer']) cls.low_camera_motion_segments_computer = LowCameraMotionSegmentsComputer( **cls.default_config_dict['LowCameraMotionSegmentsComputer']) def assert_similar_affine_alignment(self, target_path, input_path): """Check that compute_affine_transform finds a good affine alignment between the images located at the two given image paths. :param target_path: File path to the target image that the aligned input image should resemble :param input_path: File path to the input image that should resemble the target image when aligned """ image_target = cv2.imread(target_path) image_input = cv2.imread(input_path) # Make masks mask_target = np.where(cv2.cvtColor(image_target, cv2.COLOR_BGR2GRAY) > 0, True, False) mask_input = np.where(cv2.cvtColor(image_input, cv2.COLOR_BGR2GRAY) > 0, True, False) # Compute the affine matrix A = self.affine_transform_computer.compute_affine_transform(image_target, image_input, mask_target, mask_input) # Warp the image warped = cv2.warpAffine(image_target, A, (image_target.shape[1], image_target.shape[0])) # Compare with the target image e_move = np.mean((image_input - warped) ** 2) self.assertTrue(e_move < 1) def assert_torch_equal(self, a, b): self.assertTrue(torch.equal(a, b)) def test_compute_affine_transform_identity(self): """Check that compute_affine_transform finds a good affine alignment between an image and itself.""" self.assert_similar_affine_alignment(os.path.join(TEST_DATA_ROOT, 'affine/original.png'), os.path.join(TEST_DATA_ROOT, 'affine/original.png')) def test_compute_affine_transform_move(self): """Check that compute_affine_transform finds a good affine alignment between an image and version that has been translated to the right.""" self.assert_similar_affine_alignment(os.path.join(TEST_DATA_ROOT, 'affine/original.png'), os.path.join(TEST_DATA_ROOT, 'affine/move.png')) def test_compute_affine_transform_rot(self): """Check that compute_affine_transform finds a good affine alignment between an image and version that has been rotated.""" self.assert_similar_affine_alignment(os.path.join(TEST_DATA_ROOT, 'affine/original.png'), os.path.join(TEST_DATA_ROOT, 'affine/rot.png')) def test_compute_affine_transform_rot_move(self): """Check that compute_affine_transform finds a good affine alignment between an image and version that has been rotated AND translated to the right.""" self.assert_similar_affine_alignment(os.path.join(TEST_DATA_ROOT, 'affine/original.png'), os.path.join(TEST_DATA_ROOT, 'affine/rot_move.png')) def test_compute_affine_transform_no_keypoints(self): """Check that compute_affine_transform returns None when there are no keypoints in one of the images.""" img = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/original.png')) # Create a black background where no keypoints can be captured bad_img = np.zeros_like(img) A = self.affine_transform_computer.compute_affine_transform(img, bad_img) self.assertEqual(A, None) def test_compute_affine_transform_too_few_keypoints(self): """Check that compute_affine_transform returns None when there are not enough sufficiently matched keypoints between the two images.""" img1 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/original.png')) # Input a picture where few keypoints can be extracted img2 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/bad.png')) mask1 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/original_mask.png'), 0) mask2 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/bad_mask.png'), 0) object_mask1 = np.where(mask1 == 0, False, True) object_mask2 = np.where(mask2 == 0, False, True) object_mask2[329, 641] = False A = self.affine_transform_computer.compute_affine_transform(img1, img2, object_mask1, object_mask2) self.assertIsNone(A) def test_compute_normalized_image_norm(self): img_a = np.zeros((5, 5, 3)) img_b = 5 * np.ones((5, 5, 3)) self.assertEqual(self.normalized_image_norm_scorer.score_normalized_image_norm(img_a, img_b), np.linalg.norm([5, 5, 5], ord=1)) def test_compute_normalized_image_norm_masked(self): img_a = np.zeros((6, 6, 3)) img_b = np.empty((6, 6, 3)) # Fill image with 1-4 in top-left, top-right, bottom-left, and bottom-right quadrants img_b[:3, :3] = 1 img_b[:3, 3:] = 2 img_b[3:, :3] = 3 img_b[3:, 3:] = 4 # Create masks whose unmasked areas intersect over 1 TL pixel, 2 TR pixels, 1 BL pixel, and 2 BR pixels mask_a = np.zeros((6, 6), dtype=np.bool) mask_a[2:4, 2:] = True mask_b = np.zeros((6, 6), dtype=np.bool) mask_b[1:5, 1:5] = True result = self.normalized_image_norm_scorer.score_normalized_image_norm( img_a, img_b, mask_a=mask_a, mask_b=mask_b) # Take average norm over expected unmasked values expected = (1 * np.linalg.norm([1, 1, 1], ord=1) + 2 * np.linalg.norm([2, 2, 2], ord=1) + 1 * np.linalg.norm([3, 3, 3], ord=1) + 2 * np.linalg.norm([4, 4, 4], ord=1)) / 6 self.assertEqual(result, expected) def test_compute_affine_score_identity(self): img1 = self.frames[0].copy() # Check case with no mask input score = self.affine_score_scorer.score_affine_score(img1, img1) self.assertEqual(score, 0.0) def test_compute_affine_score_no_keypoints(self): img1 = self.frames[0].copy() black = np.zeros_like(img1) # Check case with no mask input score = self.affine_score_scorer.score_affine_score(img1, black) self.assertEqual(score, np.inf) def test_compute_affine_score_too_few_keypoints(self): img1 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/original.png')) img2 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/bad.png')) mask1 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/original_mask.png'), 0) mask2 = cv2.imread(os.path.join(TEST_DATA_ROOT, 'affine/bad_mask.png'), 0) # Focus on object object_mask1 = np.where(mask1 == 0, False, True) object_mask2 = np.where(mask2 == 0, False, True) object_mask2[329, 641] = False score = self.affine_score_scorer.score_affine_score(img1, img2, object_mask1, object_mask2) self.assertEqual(score, np.inf) def test_compute_affine_score(self): img1, img2 = self.frames[0].copy(), self.frames[1].copy() mask1, mask2 = self.masks[0].copy(), self.masks[1].copy() # Check case with no mask input score = self.affine_score_scorer.score_affine_score(img1, img2) self.assertIsInstance(score, float) # Check case with both mask inputs score = self.affine_score_scorer.score_affine_score(img1, img2, mask1, mask2) self.assertIsInstance(score, float) # Check case with one mask input score = self.affine_score_scorer.score_affine_score(img1, img2, mask_input=mask1) self.assertIsInstance(score, float) score = self.affine_score_scorer.score_affine_score(img1, img2, mask_target=mask2) self.assertIsInstance(score, float) def test_compute_optical_flow(self): self.assertTrue(torch.cuda.is_available(), 'This test requires a GPU to run') # check the flow generated by demo.py (written by RAFT's author) and the flow from __init__.py for i in range(5): img1 = self.frames[i].copy() img2 = self.frames[i+1].copy() # Compute flow from our wrapper function, and load flow from reference implementation flo_ours = compute_optical_flow(img1, img2) with open(os.path.join(TEST_DATA_ROOT, 'flow', 'flow0' + str(i) + '.npy'), 'rb') as f: flo_ref = np.load(f) # Convert reference optical flow grid to sampling grid H, W, _ = flo_ours.shape uu, vv = np.meshgrid(np.arange(W), np.arange(H)) sample_loc_u_ref = uu + flo_ref[:, :, 0] sample_loc_v_ref = vv + flo_ref[:, :, 1] # Determine valid sampling locations for horiz and vert components separately, then combine valid_u_ref = np.greater(sample_loc_u_ref, 0) * np.less(sample_loc_u_ref, W-1) valid_v_ref = np.greater(sample_loc_v_ref, 0) *
np.less(sample_loc_v_ref, H-1)
numpy.less
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 30 17:18:58 2018 @author: chrelli """ # Demo getting the KRLS-t to work! #%% import time, os, sys, shutil # for math and plotting import pandas as pd import numpy as np import scipy as sp import matplotlib.pyplot as plt #import math # small utilities #import csv #from colour import Color from itertools import compress # for list selection with logical from tqdm import tqdm # for image manipulation #import cv2 # for recording and connecting to the intel realsense librar #import pyrealsense as pyrs #import multiprocessing from multiprocessing import Process # for cloud handling #from pyntcloud import PyntCloud # import handy Functions #from utils.common_utils import * #from utils.recording_utils import * #from utils.cloud_utils import * from utils.fitting_utils import * #from merge_and_filter_clouds import filter_and_downsample_cloud # h5py for acessing data #import h5py # ALLSO JIT STUFF from numba import jit, njit tracking_holder = np.load("utils/raw_tracking_no_bounds_full.npy") # call the fitted values for X (is N body dimension x M time steps) #%% Try to generate an estimate! Just xy for now! xx = tracking_holder[-3,:] yy = tracking_holder[-2,:] zz = tracking_holder[-1,:] #response variable is the next value! plt.figure() plt.plot(xx,yy) plt.show() plt.figure() plt.plot(xx) #%% Now, try generating the time embedded data! #%% Generate training data by time embedding! N_train = 2000 embedding = 5 def time_embedding(X,embedding): # X is a column vector! N = X.shape[0] X_embedded = np.zeros((N,embedding)) for i in range(embedding): X_embedded[i:,i] = X[:(N-i)] return X_embedded X = time_embedding(xx[:N_train],embedding) Y = xx[1:(N_train+1)] # add extra time dimension to the start for Xt Xt = np.column_stack((np.arange(X.shape[0]),X)) #%% from matlab we have #sigma_est,reg_est,lambda_est = 0.1631, 1.1680e-08,1.0000 #sigma_est,reg_est,lambda_est = 0.3775, 2.4780e-08,.9999 #sigma_est,reg_est,lambda_est = 14, 2.4780e-04,.999 #sigma_est = 0.2215 #reg_est = 4.449468e-09 #lambda_est = 1.0000 sigma_est = 0.1902 reg_est = 0.7567e-07 lambda_est = 0.9999 # Now make the kernel function! from utils.gaussian import Gaussian from utils.krlst import krlst # make the kernel function with the appropriate sigma! kern = Gaussian(sigma = sigma_est) # make the regressor! reg = krlst(kern) reg.Lambda = lambda_est #reg.Lambda = 0.99 reg.sn2 = reg_est # % % Loop over the data and predict! y_max = [] loops = np.linspace(100,len(Y)-100,num = 20) for loop_from in loops: y_pred = [0] # loop_from = 200 # at 400, we stop adding 'real' data, and just recursively add predicted data! for i,y in tqdm(enumerate(Y)): if i < loop_from: # train with real data! reg.train(X[i,:],y) X_train = X[i,:] if i>0: y_guess = float(reg.evaluate(X[i,:])[0]) y_pred.append(y_guess) # get this ready for the prediction! # initialize X_train for the next! X_train = X[i+1,:] else: # estimate the guess y_guess = float(reg.evaluate(X_train)[0]) # add to list y_pred.append(y_guess) # and update X_train # now, just do it recursively! #train here? # reg.train(X_train,y_guess) if i == loop_from + 20: continue X_train = np.hstack((y_guess,X_train[:-1])) y_max.append(y_pred) #% % plt.close('all') plt.figure() plt.plot(Y) for y_pred in y_max: plt.plot(y_pred) for loop_from in loops: plt.axvline(x=loop_from-1) #plt.xlim([loop_from-100,loop_from+100]) plt.show() #%% Super naiive linear regression from sklearn import linear_model regr = linear_model.LinearRegression() y_pred = [0] y_pred2 = [0,0] y_pred3 = [0,0,0] loop_from = 2000 # at 400, we stop adding 'real' data, and just recursively add predicted data! for i,y in enumerate(Y): regr = linear_model.LinearRegression() regr.fit(np.arange(embedding).reshape(-1,1),X[i,:],0.9**np.arange(embedding)) y_pred.append(regr.predict(np.array([-1]).reshape(-1,1))) y_pred2.append(regr.predict(np.array([-2]).reshape(-1,1))) y_pred3.append(regr.predict(np.array([-3]).reshape(-1,1))) #% % plt.close('all') plt.figure() plt.plot(Y) plt.plot(y_pred) plt.plot(y_pred2) plt.plot(y_pred3) plt.axvline(x=loop_from) plt.show() #%% Try just with KRLS from utils.krlst import KRLS #%% def compute_RBF(mat1, mat2, sigma = 0.016): trnorms1 = np.mat([(v * v.T)[0, 0] for v in mat1]).T trnorms2 = np.mat([(v * v.T)[0, 0] for v in mat2]).T k1 = trnorms1 * np.mat(np.ones((mat2.shape[0], 1), dtype=np.float64)).T k2 = np.mat(np.ones((mat1.shape[0], 1), dtype=np.float64)) * trnorms2.T k = k1 + k2 k -= 2 *
np.mat(mat1 * mat2.T)
numpy.mat
'''Fairly basic set of tools for real-time data augmentation on image data. Can easily be extended to include new transformations, new process methods, etc... ''' #Code from https://github.com/oeway/keras/blob/extendImageDataGenerator/keras/preprocessing/image.py #wfrom __future__ import absolute_import from __future__ import print_function import numpy as np import re from scipy import linalg import scipy.ndimage as ndi from six.moves import range import os import sys import threading import copy import inspect import types import keras.backend as K from keras.utils.generic_utils import Progbar def random_rotation(x, rg, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): theta = np.pi / 180 * np.random.uniform(-rg, rg) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(rotation_matrix, h, w) x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_shift(x, wrg, hrg, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): h, w = x.shape[row_index], x.shape[col_index] tx = np.random.uniform(-hrg, hrg) * h ty = np.random.uniform(-wrg, wrg) * w translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) transform_matrix = translation_matrix # no need to do offset x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_shear(x, intensity, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): shear = np.random.uniform(-intensity, intensity) shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(shear_matrix, h, w) x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_zoom(x, zoom_range, row_index=1, col_index=2, channel_index=0, fill_mode='nearest', cval=0.): if len(zoom_range) != 2: raise Exception('zoom_range should be a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) h, w = x.shape[row_index], x.shape[col_index] transform_matrix = transform_matrix_offset_center(zoom_matrix, h, w) x = apply_transform(x, transform_matrix, channel_index, fill_mode, cval) return x def random_barrel_transform(x, intensity): # TODO pass def random_channel_shift(x, intensity, channel_index=0): x = np.rollaxis(x, channel_index, 0) min_x, max_x = np.min(x), np.max(x) channel_images = [np.clip(x_channel + np.random.uniform(-intensity, intensity), min_x, max_x) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index+1) return x def transform_matrix_offset_center(matrix, x, y): o_x = float(x) / 2 + 0.5 o_y = float(y) / 2 + 0.5 offset_matrix = np.array([[1, 0, o_x], [0, 1, o_y], [0, 0, 1]]) reset_matrix = np.array([[1, 0, -o_x], [0, 1, -o_y], [0, 0, 1]]) transform_matrix = np.dot(np.dot(offset_matrix, matrix), reset_matrix) return transform_matrix def apply_transform(x, transform_matrix, channel_index=0, fill_mode='nearest', cval=0.): x = np.rollaxis(x, channel_index, 0) final_affine_matrix = transform_matrix[:2, :2] final_offset = transform_matrix[:2, 2] channel_images = [ndi.interpolation.affine_transform(x_channel, final_affine_matrix, final_offset, order=0, mode=fill_mode, cval=cval) for x_channel in x] x = np.stack(channel_images, axis=0) x = np.rollaxis(x, 0, channel_index+1) return x def flip_axis(x, axis): x = np.asarray(x).swapaxes(axis, 0) x = x[::-1, ...] x = x.swapaxes(0, axis) return x def array_to_img(x, dim_ordering=K.image_dim_ordering(), mode=None, scale=True): from PIL import Image x = x.copy() if dim_ordering == 'th': x = x.transpose(1, 2, 0) if scale: x += max(-np.min(x), 0) x /= np.max(x) x *= 255 if x.shape[2] == 3 and mode == 'RGB': return Image.fromarray(x.astype('uint8'), mode) elif x.shape[2] == 1 and mode == 'L': return Image.fromarray(x[:, :, 0].astype('uint8'), mode) elif mode: return Image.fromarray(x, mode) else: raise Exception('Unsupported array shape: ', x.shape) def img_to_array(img, dim_ordering=K.image_dim_ordering()): if dim_ordering not in ['th', 'tf']: raise Exception('Unknown dim_ordering: ', dim_ordering) # image has dim_ordering (height, width, channel) x = np.asarray(img, dtype='float32') if len(x.shape) == 3: if dim_ordering == 'th': x = x.transpose(2, 0, 1) elif len(x.shape) == 2: if dim_ordering == 'th': x = x.reshape((1, x.shape[0], x.shape[1])) else: x = x.reshape((x.shape[0], x.shape[1], 1)) else: raise Exception('Unsupported image shape: ', x.shape) return x def load_img(path, target_mode=None, target_size=None): from PIL import Image img = Image.open(path) if target_mode: img = img.convert(target_mode) if target_size: img = img.resize((target_size[1], target_size[0])) return img def list_pictures(directory, ext='jpg|jpeg|bmp|png'): return [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and re.match('([\w]+\.(?:' + ext + '))', f)] def pil_image_reader(filepath, target_mode=None, target_size=None, dim_ordering=K.image_dim_ordering(), **kwargs): img = load_img(filepath, target_mode=target_mode, target_size=target_size) return img_to_array(img, dim_ordering=dim_ordering) def standardize(x, dim_ordering='th', rescale=False, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, mean=None, std=None, samplewise_std_normalization=False, zca_whitening=False, principal_components=None, featurewise_standardize_axis=None, samplewise_standardize_axis=None, fitting=False, verbose=0, config={}, **kwargs): ''' # Arguments featurewise_center: set input mean to 0 over the dataset. samplewise_center: set each sample mean to 0. featurewise_std_normalization: divide inputs by std of the dataset. samplewise_std_normalization: divide each input by its std. featurewise_standardize_axis: axis along which to perform feature-wise center and std normalization. samplewise_standardize_axis: axis along which to to perform sample-wise center and std normalization. zca_whitening: apply ZCA whitening. ''' if fitting: if config.has_key('_X'): # add data to _X array config['_X'][config['_iX']] = x config['_iX'] +=1 if verbose and config.has_key('_fit_progressbar'): config['_fit_progressbar'].update(config['_iX'], force=(config['_iX']==fitting)) # the array (_X) is ready to fit if config['_iX'] >= fitting: X = config['_X'].astype('float32') del config['_X'] del config['_iX'] if featurewise_center or featurewise_std_normalization: featurewise_standardize_axis = featurewise_standardize_axis or 0 if type(featurewise_standardize_axis) is int: featurewise_standardize_axis = (featurewise_standardize_axis, ) assert 0 in featurewise_standardize_axis, 'feature-wise standardize axis should include 0' if featurewise_center: mean = np.mean(X, axis=featurewise_standardize_axis, keepdims=True) config['mean'] = np.squeeze(mean, axis=0) X -= mean if featurewise_std_normalization: std = np.std(X, axis=featurewise_standardize_axis, keepdims=True) config['std'] = np.squeeze(std, axis=0) X /= (std + 1e-7) if zca_whitening: flatX = np.reshape(X, (X.shape[0], X.shape[1] * X.shape[2] * X.shape[3])) sigma = np.dot(flatX.T, flatX) / flatX.shape[1] U, S, V = linalg.svd(sigma) config['principal_components'] = np.dot(np.dot(U, np.diag(1. / np.sqrt(S + 10e-7))), U.T) if verbose: del config['_fit_progressbar'] else: # start a new fitting, fitting = total sample number config['_X'] = np.zeros((fitting,)+x.shape) config['_iX'] = 0 config['_X'][config['_iX']] = x config['_iX'] +=1 if verbose: config['_fit_progressbar'] = Progbar(target=fitting, verbose=verbose) return x if rescale: x *= rescale # x is a single image, so it doesn't have image number at index 0 if dim_ordering == 'th': channel_index = 0 if dim_ordering == 'tf': channel_index = 2 samplewise_standardize_axis = samplewise_standardize_axis or channel_index if type(samplewise_standardize_axis) is int: samplewise_standardize_axis = (samplewise_standardize_axis, ) if samplewise_center: x -= np.mean(x, axis=samplewise_standardize_axis, keepdims=True) if samplewise_std_normalization: x /= (np.std(x, axis=samplewise_standardize_axis, keepdims=True) + 1e-7) if verbose: if (featurewise_center and mean is None) or (featurewise_std_normalization and std is None) or (zca_whitening and principal_components is None): print('WARNING: feature-wise standardization and zca whitening will be disabled, please run "fit" first.') if featurewise_center: if mean is not None: x -= mean if featurewise_std_normalization: if std is not None: x /= (std + 1e-7) if zca_whitening: if principal_components is not None: flatx = np.reshape(x, (x.size)) whitex = np.dot(flatx, principal_components) x = np.reshape(whitex, (x.shape[0], x.shape[1], x.shape[2])) return x def center_crop(x, center_crop_size, **kwargs): centerw, centerh = x.shape[1]//2, x.shape[2]//2 halfw, halfh = center_crop_size[0]//2, center_crop_size[1]//2 return x[:, centerw-halfw:centerw+halfw,centerh-halfh:centerh+halfh] def random_crop(x, random_crop_size, sync_seed=None, **kwargs): np.random.seed(sync_seed) w, h = x.shape[1], x.shape[2] rangew = (w - random_crop_size[0]) // 2 rangeh = (h - random_crop_size[1]) // 2 offsetw = 0 if rangew == 0 else np.random.randint(rangew) offseth = 0 if rangeh == 0 else np.random.randint(rangeh) return x[:, offsetw:offsetw+random_crop_size[0], offseth:offseth+random_crop_size[1]] def random_transform(x, dim_ordering='th', rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, sync_seed=None, **kwargs): ''' # Arguments rotation_range: degrees (0 to 180). width_shift_range: fraction of total width. height_shift_range: fraction of total height. shear_range: shear intensity (shear angle in radians). zoom_range: amount of zoom. if scalar z, zoom will be randomly picked in the range [1-z, 1+z]. A sequence of two can be passed instead to select this range. channel_shift_range: shift range for each channels. fill_mode: points outside the boundaries are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'nearest'. cval: value used for points outside the boundaries when fill_mode is 'constant'. Default is 0. horizontal_flip: whether to randomly flip images horizontally. vertical_flip: whether to randomly flip images vertically. rescale: rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation). ''' np.random.seed(sync_seed) x = x.astype('float32') # x is a single image, so it doesn't have image number at index 0 if dim_ordering == 'th': img_channel_index = 0 img_row_index = 1 img_col_index = 2 if dim_ordering == 'tf': img_channel_index = 2 img_row_index = 0 img_col_index = 1 # use composition of homographies to generate final transform that needs to be applied if rotation_range: theta = np.pi / 180 * np.random.uniform(-rotation_range, rotation_range) else: theta = 0 rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) if height_shift_range: tx = np.random.uniform(-height_shift_range, height_shift_range) * x.shape[img_row_index] else: tx = 0 if width_shift_range: ty = np.random.uniform(-width_shift_range, width_shift_range) * x.shape[img_col_index] else: ty = 0 translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if shear_range: shear = np.random.uniform(-shear_range, shear_range) else: shear = 0 shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) if np.isscalar(zoom_range): zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: zoom_range = [zoom_range[0], zoom_range[1]] else: raise Exception('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = np.random.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) transform_matrix = np.dot(np.dot(np.dot(rotation_matrix, translation_matrix), shear_matrix), zoom_matrix) h, w = x.shape[img_row_index], x.shape[img_col_index] transform_matrix = transform_matrix_offset_center(transform_matrix, h, w) x = apply_transform(x, transform_matrix, img_channel_index, fill_mode=fill_mode, cval=cval) if channel_shift_range != 0: x = random_channel_shift(x, channel_shift_range, img_channel_index) if horizontal_flip: if np.random.random() < 0.5: x = flip_axis(x, img_col_index) if vertical_flip: if np.random.random() < 0.5: x = flip_axis(x, img_row_index) # TODO: # barrel/fisheye np.random.seed() return x class ImageDataGenerator(object): '''Generate minibatches with real-time data augmentation. # Arguments featurewise_center: set input mean to 0 over the dataset. samplewise_center: set each sample mean to 0. featurewise_std_normalization: divide inputs by std of the dataset. samplewise_std_normalization: divide each input by its std. featurewise_standardize_axis: axis along which to perform feature-wise center and std normalization. samplewise_standardize_axis: axis along which to to perform sample-wise center and std normalization. zca_whitening: apply ZCA whitening. rotation_range: degrees (0 to 180). width_shift_range: fraction of total width. height_shift_range: fraction of total height. shear_range: shear intensity (shear angle in radians). zoom_range: amount of zoom. if scalar z, zoom will be randomly picked in the range [1-z, 1+z]. A sequence of two can be passed instead to select this range. channel_shift_range: shift range for each channels. fill_mode: points outside the boundaries are filled according to the given mode ('constant', 'nearest', 'reflect' or 'wrap'). Default is 'nearest'. cval: value used for points outside the boundaries when fill_mode is 'constant'. Default is 0. horizontal_flip: whether to randomly flip images horizontally. vertical_flip: whether to randomly flip images vertically. rescale: rescaling factor. If None or 0, no rescaling is applied, otherwise we multiply the data by the value provided (before applying any other transformation). dim_ordering: 'th' or 'tf'. In 'th' mode, the channels dimension (the depth) is at index 1, in 'tf' mode it is at index 3. It defaults to the `image_dim_ordering` value found in your Keras config file at `~/.keras/keras.json`. If you never set it, then it will be "th". seed: random seed for reproducible pipeline processing. If not None, it will also be used by `flow` or `flow_from_directory` to generate the shuffle index in case of no seed is set. ''' def __init__(self, featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, featurewise_standardize_axis=None, samplewise_standardize_axis=None, zca_whitening=False, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=False, vertical_flip=False, rescale=None, dim_ordering=K.image_dim_ordering(), seed=None, verbose=1): self.config = copy.deepcopy(locals()) self.config['config'] = self.config self.config['mean'] = None self.config['std'] = None self.config['principal_components'] = None self.config['rescale'] = rescale if dim_ordering not in {'tf', 'th'}: raise Exception('dim_ordering should be "tf" (channel after row and ' 'column) or "th" (channel before row and column). ' 'Received arg: ', dim_ordering) self.__sync_seed = self.config['seed'] or np.random.randint(0, np.iinfo(np.int32).max) self.default_pipeline = [] self.default_pipeline.append(random_transform) self.default_pipeline.append(standardize) self.set_pipeline(self.default_pipeline) self.__fitting = False self.fit_lock = threading.Lock() @property def sync_seed(self): return self.__sync_seed @property def fitting(self): return self.__fitting @property def pipeline(self): return self.__pipeline def sync(self, image_data_generator): self.__sync_seed = image_data_generator.sync_seed return (self, image_data_generator) def set_pipeline(self, p): if p is None: self.__pipeline = self.default_pipeline elif type(p) is list: self.__pipeline = p else: raise Exception('invalid pipeline.') def flow(self, X, y=None, batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): return NumpyArrayIterator( X, y, self, batch_size=batch_size, shuffle=shuffle, seed=seed, dim_ordering=self.config['dim_ordering'], save_to_dir=save_to_dir, save_prefix=save_prefix, save_mode=save_mode, save_format=save_format) def flow_from_directory(self, directory, color_mode=None, target_size=None, image_reader='pil', reader_config=None, read_formats=None, classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): if reader_config is None: reader_config={'target_mode':'RGB', 'target_size':(256,256)} if read_formats is None: read_formats={'png','jpg','jpeg','bmp'} return DirectoryIterator( directory, self, color_mode=color_mode, target_size=target_size, image_reader=image_reader, reader_config=reader_config, read_formats=read_formats, classes=classes, class_mode=class_mode, dim_ordering=self.config['dim_ordering'], batch_size=batch_size, shuffle=shuffle, seed=seed, save_to_dir=save_to_dir, save_prefix=save_prefix, save_mode=save_mode, save_format=save_format) def process(self, x): # get next sync_seed np.random.seed(self.__sync_seed) self.__sync_seed = np.random.randint(0, np.iinfo(np.int32).max) self.config['fitting'] = self.__fitting self.config['sync_seed'] = self.__sync_seed for p in self.__pipeline: x = p(x, **self.config) return x def fit_generator(self, generator, nb_iter): '''Fit a generator # Arguments generator: Iterator, generate data for fitting. nb_iter: Int, number of iteration to fit. ''' with self.fit_lock: try: self.__fitting = nb_iter*generator.batch_size for i in range(nb_iter): next(generator) finally: self.__fitting = False def fit(self, X, rounds=1): '''Fit the pipeline on a numpy array # Arguments X: Numpy array, the data to fit on. rounds: how many rounds of fit to do over the data ''' X = np.copy(X) with self.fit_lock: try: self.__fitting = rounds*X.shape[0] for r in range(rounds): for i in range(X.shape[0]): self.process(X[i]) finally: self.__fitting = False class Iterator(object): def __init__(self, N, batch_size, shuffle, seed): self.N = N self.batch_size = batch_size self.shuffle = shuffle self.seed = seed self.batch_index = 0 self.total_batches_seen = 0 self.lock = threading.Lock() self.index_generator = self._flow_index(N, batch_size, shuffle, seed) def reset(self): self.batch_index = 0 def _flow_index(self, N, batch_size=32, shuffle=False, seed=None): # ensure self.batch_index is 0 self.reset() while 1: if self.batch_index == 0: self.index_array = np.arange(N) if shuffle: if seed is not None: np.random.seed(seed + self.total_batches_seen) self.index_array = np.random.permutation(N) if seed is not None: np.random.seed() current_index = (self.batch_index * batch_size) % N if N >= current_index + batch_size: current_batch_size = batch_size self.batch_index += 1 else: current_batch_size = N - current_index self.batch_index = 0 self.total_batches_seen += 1 yield (self.index_array[current_index: current_index + current_batch_size], current_index, current_batch_size) def __add__(self, it): assert self.N == it.N assert self.batch_size == it.batch_size assert self.shuffle == it.shuffle seed = self.seed or np.random.randint(0, np.iinfo(np.int32).max) it.total_batches_seen = self.total_batches_seen self.index_generator = self._flow_index(self.N, self.batch_size, self.shuffle, seed) it.index_generator = it._flow_index(it.N, it.batch_size, it.shuffle, seed) if (sys.version_info > (3, 0)): iter_zip = zip else: from itertools import izip iter_zip = izip return iter_zip(self, it) def __iter__(self): # needed if we want to do something like: # for x, y in data_gen.flow(...): return self def __next__(self, *args, **kwargs): return self.next(*args, **kwargs) class NumpyArrayIterator(Iterator): def __init__(self, X, y, image_data_generator, batch_size=32, shuffle=False, seed=None, dim_ordering=K.image_dim_ordering(), save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): if y is not None and len(X) != len(y): raise Exception('X (images tensor) and y (labels) ' 'should have the same length. ' 'Found: X.shape = %s, y.shape = %s' % (np.asarray(X).shape, np.asarray(y).shape)) self.X = X self.y = y self.image_data_generator = image_data_generator self.dim_ordering = dim_ordering self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_mode = save_mode self.save_format = save_format seed = seed or image_data_generator.config['seed'] super(NumpyArrayIterator, self).__init__(X.shape[0], batch_size, shuffle, seed) def __add__(self, it): if isinstance(it, NumpyArrayIterator): assert self.X.shape[0] == it.X.shape[0] if isinstance(it, DirectoryIterator): assert self.X.shape[0] == it.nb_sample it.image_data_generator.sync(self.image_data_generator) return super(NumpyArrayIterator, self).__add__(it) def next(self): # for python 2.x. # Keeps under lock only the mechanism which advances # the indexing of each batch # see http://anandology.com/blog/using-iterators-and-generators/ with self.lock: index_array, current_index, current_batch_size = next(self.index_generator) # The transformation of images is not under thread lock so it can be done in parallel batch_x = None for i, j in enumerate(index_array): x = self.X[j] x = self.image_data_generator.process(x) if i == 0: batch_x = np.zeros((current_batch_size,) + x.shape) batch_x[i] = x if self.save_to_dir: for i in range(current_batch_size): img = array_to_img(batch_x[i], self.dim_ordering, mode=self.save_mode, scale=True) fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix, index=current_index + i, hash=np.random.randint(1e4), format=self.save_format) img.save(os.path.join(self.save_to_dir, fname)) if self.y is None: return batch_x batch_y = self.y[index_array] return batch_x, batch_y class DirectoryIterator(Iterator): def __init__(self, directory, image_data_generator, color_mode=None, target_size=None, image_reader="pil", read_formats=None, reader_config=None, dim_ordering=K.image_dim_ordering, classes=None, class_mode='categorical', batch_size=32, shuffle=True, seed=None, save_to_dir=None, save_prefix='', save_mode=None, save_format='jpeg'): self.directory = directory self.image_data_generator = image_data_generator self.image_reader = image_reader if self.image_reader == 'pil': self.image_reader = pil_image_reader if read_formats is None: read_formats = {'png','jpg','jpeg','bmp'} if reader_config is None: reader_config = {'target_mode': 'RGB', 'target_size':None} self.reader_config = reader_config # TODO: move color_mode and target_size to reader_config if color_mode == 'rgb': self.reader_config['target_mode'] = 'RGB' elif color_mode == 'grayscale': self.reader_config['target_mode'] = 'L' if target_size: self.reader_config['target_size'] = target_size self.dim_ordering = dim_ordering self.reader_config['dim_ordering'] = dim_ordering if class_mode not in {'categorical', 'binary', 'sparse', None}: raise ValueError('Invalid class_mode:', class_mode, '; expected one of "categorical", ' '"binary", "sparse", or None.') self.class_mode = class_mode self.save_to_dir = save_to_dir self.save_prefix = save_prefix self.save_mode = save_mode self.save_format = save_format seed = seed or image_data_generator.config['seed'] # first, count the number of samples and classes self.nb_sample = 0 if not classes: classes = [] for subdir in sorted(os.listdir(directory)): if os.path.isdir(os.path.join(directory, subdir)): classes.append(subdir) # if no class is found, add '' for scanning the root folder if class_mode is None and len(classes) == 0: classes.append('') self.nb_class = len(classes) self.class_indices = dict(zip(classes, range(len(classes)))) for subdir in classes: subpath = os.path.join(directory, subdir) for fname in os.listdir(subpath): is_valid = False for extension in read_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.nb_sample += 1 print('Found %d images belonging to %d classes.' % (self.nb_sample, self.nb_class)) # second, build an index of the images in the different class subfolders self.filenames = [] self.classes = np.zeros((self.nb_sample,), dtype='int32') i = 0 for subdir in classes: subpath = os.path.join(directory, subdir) for fname in os.listdir(subpath): is_valid = False for extension in read_formats: if fname.lower().endswith('.' + extension): is_valid = True break if is_valid: self.classes[i] = self.class_indices[subdir] self.filenames.append(os.path.join(subdir, fname)) i += 1 assert len(self.filenames)>0, 'No valid file is found in the target directory.' self.reader_config['class_mode'] = self.class_mode self.reader_config['classes'] = self.classes self.reader_config['filenames'] = self.filenames self.reader_config['directory'] = self.directory self.reader_config['nb_sample'] = self.nb_sample self.reader_config['seed'] = seed self.reader_config['sync_seed'] = self.image_data_generator.sync_seed super(DirectoryIterator, self).__init__(self.nb_sample, batch_size, shuffle, seed) if inspect.isgeneratorfunction(self.image_reader): self._reader_generator_mode = True self._reader_generator = [] # set index batch_size to 1 self.index_generator = self._flow_index(self.N, 1 , self.shuffle, seed) else: self._reader_generator_mode = False def __add__(self, it): if isinstance(it, DirectoryIterator): assert self.nb_sample == it.nb_sample assert len(self.filenames) == len(it.filenames) assert np.alltrue(self.classes == it.classes) assert self.image_reader == it.image_reader if inspect.isgeneratorfunction(self.image_reader): self._reader_generator = [] it._reader_generator = [] if isinstance(it, NumpyArrayIterator): assert self.nb_sample == self.X.shape[0] it.image_data_generator.sync(self.image_data_generator) return super(DirectoryIterator, self).__add__(it) def next(self): self.reader_config['sync_seed'] = self.image_data_generator.sync_seed if self._reader_generator_mode: sampleCount = 0 batch_x = None _new_generator_flag = False while sampleCount<self.batch_size: for x in self._reader_generator: _new_generator_flag = False if x.ndim == 2: x = np.expand_dims(x, axis=0) x = self.image_data_generator.process(x) self.reader_config['sync_seed'] = self.image_data_generator.sync_seed if sampleCount == 0: batch_x =
np.zeros((self.batch_size,) + x.shape)
numpy.zeros
import numpy as np class TransportationChecker(object): """ TransportationChecker 负责求检验数,并判断是否达到最优 """ def __init__(self, supply: list, demand: list, costs: list): super().__init__() self.supply = [i[1] for i in supply] self.demand = [i[1] for i in demand] self.costs = np.array(costs) self.transportation =
np.array([])
numpy.array
import gym import numpy as np from .utils import ImgProcessor from .base import BaseEnv COMMON_VERSION = "Deterministic-v4" class _Atari(BaseEnv): """Atari environment. Args: name (str): name of environment in Atari games. render (bool): parameter that determine whether to render. gray_img (bool): parameter that determine whether to use gray image. img_width (int): width of image input. img_height (int): height of image input. stack_frame (int): the number of stacked frame in one single state. life_key (str): key of life query function in emulator. no_op (bool): parameter that determine whether or not to operate during the first 30(no_op_max) steps. reward_clip (bool): parameter that determine whether to use reward clipping. reward_scale (float): reward normalization denominator. dead_penatly (bool): parameter that determine whether to use penalty when the agent dies. """ def __init__( self, name, render=False, gray_img=True, img_width=84, img_height=84, stack_frame=4, life_key="lives", no_op=False, reward_clip=False, reward_scale=None, dead_penalty=False, **kwargs, ): self.render = render self.gray_img = gray_img self.img_width = img_width self.img_height = img_height self.img_processor = ImgProcessor(gray_img, img_width, img_height) self.stack_frame = stack_frame self.num_channel = 1 if self.gray_img else 3 self.stacked_state = np.zeros( [self.num_channel * stack_frame, img_height, img_width] ) self.env = gym.make(name) self.state_size = [stack_frame, img_height, img_width] self.action_size = self.env.action_space.n self.action_type = "discrete" self.score = 0 self.life = 0 self.life_key = life_key self.no_op = no_op self.no_op_max = 30 self.reward_clip = reward_clip self.reward_scale = reward_scale self.dead_penalty = dead_penalty print(f"{name} Start!") print(f"state size: {self.state_size}") print(f"action size: {self.action_size}") def reset(self): self.env.reset() state, reward, _, info = self.env.step(1) self.score = reward self.life = info[self.life_key] if self.no_op: for _ in range(np.random.randint(0, self.no_op_max)): state, reward, _, info = self.env.step(0) self.score += reward if self.life != info[self.life_key]: if self.life > info[self.life_key]: state, reward, _, _ = self.env.step(1) self.score += reward self.life = info[self.life_key] state = self.img_processor.convert_img(state) self.stacked_state = np.tile(state, (self.stack_frame, 1, 1)) state = np.expand_dims(self.stacked_state, 0) return state def step(self, action): if self.render: self.env.render() next_state, reward, done, info = self.env.step(np.asscalar(action)) self.score += reward dead = False if self.life != info[self.life_key] and not done: if self.life > info[self.life_key]: state, _reward, _, _ = self.env.step(1) self.score += _reward dead = True self.life = info[self.life_key] next_state = self.img_processor.convert_img(next_state) self.stacked_state = np.concatenate( (self.stacked_state[self.num_channel :], next_state), axis=0 ) if self.reward_clip: reward = ( reward / self.reward_scale if self.reward_scale else np.tanh(reward) ) if dead and self.dead_penalty: reward = -1 next_state, reward, done = map( lambda x:
np.expand_dims(x, 0)
numpy.expand_dims
import configparser from datetime import datetime from math import cos from skimage import filters from skimage import measure from math import radians from scipy.interpolate import splprep, splev import numpy as np import pandas as pd import scipy.ndimage as img """ Tools to manipulate and analyze data """ def canopy_cover(data, radius): """Computes leaf area index: ratio of leaf to ground for a certain area. Performs a convolve with an arbitrary radius to calculate how many nonzero values are present within a :param data: 2D or 3D numpy array of height data :param radius: radius of the region (in number of 0.1 m squares) :return: leaf area index computed for each point """ c = np.zeros_like(data, int) kernel = np.ones((radius * 2 + 1, radius * 2 + 1)) for x in range(data.shape[2]): d = data[:, :, x] d[d > 0] = 1 conv = img.filters.convolve(d, kernel) c[:, :, x] = conv return c def create_path_splines(points, data_shape, converter): """Create managable path splines from the thousands of datapoints""" # Unpack rows and columns from data shape rows, cols, _ = data_shape # Convert the gps information and store it into a new DataFrame path_pts = [] for p in points.itertuples(): # This gives us the data coordinates from the gps location data_y = int(converter.lat_to_y(p[1])) data_x = int(converter.lng_to_x(p[2])) path_pts.append([data_x, data_y]) np.transpose(path_pts) # Remove any duplicate points from the path, # keeping the original array order path_vals, ind = np.unique(path_pts, axis=0, return_index=True) ind = sorted(ind) path_pts = [path_pts[i] for i in ind] # Create a spline from the remaining path points # noinspection PyTupleAssignmentBalance tck, u = splprep(np.transpose(path_pts), u=None, s=0.0) return tck def create_stress_map(height, canopy, rad, threshold): """Create map showing frequently stressed areas of plot. Sums the stress masks for each individual date to determine which areas are frequently coming up stressed. :return - The 2D map of stressed locations """ # Deprecated create_suggestion_mask_v1 code ########################################################################### # # Suggestion mask data (Normalized Height + Normalized Canopy) # normh = np.divide(height, np.amax(height, axis=(0, 1))) * 50 # normc = np.divide(canopy, np.amax(canopy, axis=(0, 1))) * 50 # # # Process data to create stress mask for each snapshot # comb_data = np.add(normh, normc) # stress_dates = create_suggestion_mask_v1(comb_data, rad, threshold) ########################################################################### # Create the suggestion mask for each snapshot stress_dates = create_suggestion_mask_v2(height, canopy, rad, threshold) # Create stress map based on all data up to current date stress_map = np.zeros_like(stress_dates) for i in range(stress_dates.shape[2]): stress_map[:, :, i] = np.sum(stress_dates[:, :, 0:(i+1)], axis=2) stress_map[:, :, i] = np.divide(stress_map[:, :, i], (i+1)) return stress_map def create_suggestion_mask_v1(d, rad, threshold): """Keep this here for a little while, then delete it. Suggestion mask v1 Uses statistical methods to determine outliers below the general population of the data, and uses image processing techniques to discount the edges of the plot from skewing the results. :param d: The input data to create the mask :param rad: The radius to average and desample the data :param threshold: The percentile above which points will be filtered :return: The mask from which suggested points are chosen """ # Create a new copy of the data to work on data = np.copy(d) # filter out data less than zero data[data < 0] = 0 # Calculates each point as sum of nearby values within radius r c = np.zeros_like(data, float) kernel = np.ones((rad * 2 + 1, rad * 2 + 1)) for x in range(data.shape[2]): conv = img.filters.convolve(data[:, :, x], kernel) c[:, :, x] = conv # Downsample array into pixels with same size as convolve c = c[::rad * 2 + 1, ::rad * 2 + 1, :] fullmask = np.zeros_like(d) for i in range(c.shape[2]): # Extract the ith layer of data mask = c[:, :, i] # Use image processing morphology to smooth out data mask = img.grey_closing(mask, structure=np.ones((3, 3))) # Use Sobel edge detection to decrease weight of edges gx = img.sobel(mask, axis=0) gy = img.sobel(mask, axis=1) grad = np.hypot(gx, gy) grad = (np.divide(grad, np.amax(grad))) * 100 mask = (np.divide(mask, np.amax(mask))) * 100 mask -= grad # Calculate the threshold percentile, ignoring zeros mask[mask <= 0] = np.nan percent = np.nanpercentile(mask, threshold) mask = np.nan_to_num(mask) # Filter out data and create mask mask[mask > percent] = 0 mask[mask > 0] = 1 # Perform binary opening to remove small regions mask = img.binary_opening(mask) # Rescale mask to fit data size scale = np.divide(fullmask[:, :, 0].shape, mask.shape) fullmask[:, :, i] = img.zoom(mask, scale, order=0) return fullmask def create_suggestion_mask_v2(height, canopy, rad=4, threshold=(20, 40)): # Copy the data height_data = np.copy(height) # Silence isolated points (low canopy) height_data[canopy < 5] = 0 # Downscale dataset to 0.5m squares, taking the max within each height_data = downscale_max(height_data, rad) # Place points into stress levels stress_data = np.zeros_like(height_data) for x in range(stress_data.shape[2]): stress_layer = stress_data[:, :, x] height_layer = height_data[:, :, x] high_med_stress = np.percentile(height_layer[np.nonzero(height_layer)], threshold[0]) med_low_stress = np.percentile(height_layer[np.nonzero(height_layer)], threshold[1]) stress_layer[height_layer >= med_low_stress] = 0.01 # Low height_layer[stress_layer > 0] = 0 # silence low points stress_layer[height_layer >= high_med_stress] = 0.5 # Medium height_layer[stress_layer > 0] = 0 # silence med points stress_layer[0 < height_layer] = 0.99 # High stress_data[:, :, x] = stress_layer stress_data = rescale_like(stress_data, height) return stress_data def define_regions(data, rad): """Identify regions of high stress areas and """ region_map = np.copy(data) region_map = region_map[::rad * 2 + 1, ::rad * 2 + 1] val = filters.threshold_otsu(region_map) mask = region_map > val mask = img.binary_opening(mask, iterations=2) scale = np.divide(data.shape, mask.shape) mask = img.zoom(mask, scale, order=0) labels = measure.label(mask, background=0) regions = img.find_objects(labels) small_regions = [] for i in range(len(regions)): if np.nonzero(labels == i + 1)[0].size <= 500: labels[regions[i]] = 0 small_regions.append(i) for i in small_regions[::-1]: del regions[i] return StressMapWrapper(labels, regions) def downscale_avg(data, radius): # Calculates each point as sum of nearby values within radius r diam = 2 * radius + 1 kernel = np.ones((diam, diam)) fullmap = np.zeros_like(data, float) for x in range(data.shape[2]): conv = img.filters.convolve(data[:, :, x], kernel) fullmap[:, :, x] = conv # Downsample array into pixels with same size as convolve fullmap = fullmap[::diam, ::diam, :] return fullmap def downscale_max(data, radius): # Turn radius into diameter centered at original point diam = 2 * radius + 1 fullmap = np.zeros_like(data[::diam, ::diam, :], float) for x in range(data.shape[2]): layer = np.zeros_like(data[::diam, ::diam, 0]) for r in range((int(data.shape[0] / diam)) - 1): for c in range((int(data.shape[1] / diam)) - 1): selection = data[(r*diam):(r*diam + diam), (c*diam):(c*diam + diam), x] max_val =
np.amax(selection)
numpy.amax
# -*- coding: utf-8 -*- # pylint: disable=invalid-name,too-many-instance-attributes, too-many-arguments """ Copyright 2019 <NAME> Copyright 2015 <NAME>. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. """ from copy import deepcopy from math import log, exp, sqrt import sys import numpy as np from numpy import dot, outer, eye, zeros, ones, diag import scipy.linalg as linalg from filterpy.stats import logpdf from filterpy.common import pretty_str, reshape_z ''' UDU decomposition: P = U * diag(D) * U^T ''' def udu(p): if 2 != len(p.shape): return None if p.shape[0] != p.shape[1]: return None n = p.shape[0] u = zeros((n, n)) d = zeros((n)) d[n-1] = p[n-1,n-1] u[:,n-1] = p[:,n-1] / d[n-1] for j in range(n-2, -1, -1): dd = d[j+1:] c = dd * u[j,j+1:] #dd is meant to be diag(d[j+1:]) d[j] = p[j,j] - np.dot(u[j,j+1:].T, c) if d[j] == 0: return None for i in range(j, -1, -1): c = dd * u[j,j+1:] u[i,j] = (p[i,j] - np.dot(u[i,j+1:].T, c))/d[j] return u, d ''' MWGS update: U * diag(D) * U^T = w * diag(d) * w^T Params: w - is n*k float full rank d - is k*None float where k>n return: u - is n*n float upper triangular D - id n*None float ''' def mwgs(w,d): if 1 != len(d.shape): return None if 2 != len(w.shape): return None if w.shape[1] != d.shape[0]: return None if w.shape[0] >= d.shape[0]: return None n = w.shape[0] u = np.eye(n) D = np.zeros((n)) for i in range(n-1, -1, -1): c = w[i,:] * d D[i] = np.dot(w[i,:], c) if D[i] <= 0: # How about partial reset heu_ristics here? return None dd = c/D[i] for j in range(0, i): u[j,i] = np.dot(dd, w[j,:]) w[j,:] -= u[j,i] * w[i,:] return u, D class UDExtendedKalmanFilter(object): """ Implements an UD modification of extended Kalman filter (EKF). You are responsible for setting the various state variables to reasonable values; the defaults will not give you a functional filter. You will have to set the following attributes after constructing this object for the filter to perform properly. Please note that there are various checks in place to ensure that you have made everything the 'correct' size. However, it is possible to provide incorrectly sized arrays such that the linear algebra can not perform an operation. It can also fail silently - you can end up with matrices of a size that allows the linear algebra to work, but are the wrong shape for the problem you are trying to solve. Parameters ---------- dim_x : int Number of state variables for the Kalman filter. For example, if you are tracking the position and velocity of an object in two dimensions, dim_x would be 4. This is used to set the default size of P, Q, and u dim_z : int Number of of measurement inputs. For example, if the sensor provides you with position in (x,y), dim_z would be 2. Attributes ---------- x : numpy.array(dim_x, 1) State estimate vector P : numpy.array(dim_x, dim_x) Covariance matrix x_prior : numpy.array(dim_x, 1) Prior (predicted) state estimate. The *_prior and *_post attributes are for convienence; they store the prior and posterior of the current epoch. Read Only. P_prior : numpy.array(dim_x, dim_x) Prior (predicted) state covariance matrix. Read Only. x_post : numpy.array(dim_x, 1) Posterior (updated) state estimate. Read Only. P_post : numpy.array(dim_x, dim_x) Posterior (updated) state covariance matrix. Read Only. R : numpy.array(dim_z, dim_z) Measurement noise matrix Q : numpy.array(dim_x, dim_x) Process noise matrix F : numpy.array() State Transition matrix H : numpy.array(dim_x, dim_x) Measurement function y : numpy.array Residual of the update step. Read only. K : numpy.array(dim_x, dim_z) Kalman gain of the update step. Read only. S : numpy.array Systen uncertaintly projected to measurement space. Read only. z : ndarray Last measurement used in update(). Read only. log_likelihood : float log-likelihood of the last measurement. Read only. likelihood : float likelihood of last measurment. Read only. Computed from the log-likelihood. The log-likelihood can be very small, meaning a large negative value such as -28000. Taking the exp() of that results in 0.0, which can break typical algorithms which multiply by this value, so by default we always return a number >= sys.float_info.min. mahalanobis : float mahalanobis distance of the innovation. E.g. 3 means measurement was 3 standard deviations away from the predicted value. Read only. """ def __init__(self, dim_x, dim_z, dim_u=0): self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state # uncertainty covariance self.U = eye(dim_x) self.D = ones((dim_x)) self.B = 0 # control transition matrix self.F = np.eye(dim_x) # state transition matrix # state uncertainty self.Dm = eye(dim_z) #Decorrelation matrix self.Ur = eye(dim_z) #Decorrelation matrix self.Dr = ones((dim_z)) # process uncertainty self.Uq = eye(dim_x) self.Dq = ones((dim_x)) z = np.array([None]*self.dim_z) self.z = reshape_z(z, self.dim_z, self.x.ndim) # residual is computed during the innovation step. We # save them so that in case you want to inspect it for various # purposes self.y = zeros((dim_z, 1)) # residual self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.U_prior = self.U.copy() self.D_prior = self.D.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.U_post = self.U.copy() self.D_post = self.D.copy() @property def Q(self): """ Process uncertainty""" return dot(self.Uq, dot(diag(self.Dq), self.Uq.T)) @Q.setter def Q(self, value): """ Process uncertainty""" self.Uq, self.Dq = udu(value) @property def P(self): """ covariance matrix""" return dot(self.U, dot(diag(self.D), self.U.T)) @property def P_prior(self): """ covariance matrix of the prior""" return dot(self.U_prior, dot(diag(self.D_prior), self.U_prior.T)) @property def P_post(self): """ covariance matrix of the posterior""" return dot(self.U_post, dot(diag(self.D_post), self.U_post.T)) @P.setter def P(self, value): """ covariance matrix""" self.U,self.D = udu(value); @property def R(self): """ measurement uncertainty""" return dot(self.Ur, dot(diag(self.Dr), self.Ur.T)) @R.setter def R(self, value): """ measurement uncertainty""" self.Ur, self.Dr = udu(value) self.Dm = linalg.inv(self.Ur) def predict_x(self, u=0): """ Predicts the next state of X. If you need to compute the next state yourself, override this function. You would need to do this, for example, if the usual Taylor expansion to generate F is not providing accurate results for you. """ self.x = dot(self.F, self.x) + dot(self.B, u) def predict(self, u=0): """ Predict next state (prior) using the Kalman filter state propagation equations. Parameters ---------- u : np.array Optional control vector. If non-zero, it is multiplied by B to create the control input into the system. """ self.predict_x(u) W = np.concatenate((dot(self.F, self.U), self.Uq), axis=1) D =
np.concatenate((self.D, self.Dq))
numpy.concatenate
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np from numpy.fft import ifft """ Example of a closure-function. See also partial from ... def force(A, f, ndof, fdof): # Closure function. See also functools.partial # fext = self.force(dt, tf=T) def wrapped_func(dt, t0=0, tf=1): ns = round((tf-t0)/dt) fs = 1/dt u,_ = sineForce(A, f=f, fs=fs, ns=ns, phi_f=0) fext = toMDOF(u, ndof, fdof) return fext return wrapped_func """ def sinesweep(amp, fs, f1, f2, vsweep, nrep=1, inctype='lin', t0=0): """Do a linear or logarithmic sinus sweep excitation. For a reverse sweep, swap f1 and f2 and set a negative sweep rate. Parameters ---------- amp : float Amplitude in N fs : float Sampling frequency f1 : float Starting frequency in Hz f2 : float Ending frequency in Hz vsweep : float Sweep rate in Hz/min nrep : int Number of times the signal is repeated inctype : str (optional) Type of increment. Linear or logarithmic: lin/log t0 : float (optional) Staring time, default t0=0 Notes ----- See scipy.signal.chirp, which does the same https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.chirp.html """ dt = 1/fs if inctype == 'log': tend = np.log2(f2 / f1) * (60/vsweep) + t0 else: tend = (f2 - f1) / vsweep * 60 + t0 # Because we want to enforce the given fs, arange is used instead of # linspace. This means that we might not include tend in t (which would be # the case with linspace), but for that we get the desired fs. ns = np.floor((tend-t0)*fs) t = np.arange(0,ns+1)/fs # t = np.linspace(t0, tend, ns +1) # Instantaneous frequency if inctype == 'log': finst = f1 * 2**(vsweep*((t - t0)/60)) else: finst = f1 + vsweep/60*(t-t0) if inctype == 'log': psi = (2*np.pi * f1*60/(np.log(2)*vsweep)) * (2**(vsweep*((t-t0)/60)) - 1) else: psi = 2*np.pi * f1*(t-t0) + 2*np.pi*vsweep/60*(t-t0)**2 / 2 u = amp * np.sin(psi) if nrep > 1: # repeat signal: 1 2 3 -> 1 2 3 1 2 3 1 2 3 u = np.tile(u, nrep) # prevent the first number from reoccurring: 1 2 3 -> 1 2 3 2 3 2 3 idx = np.arange(1,nrep) * (ns+1) u = np.delete(u, idx) t = np.arange(0, ns*nrep+1) / fs return u, t, finst def multisine(f1=0, f2=None, N=1024, fs=None, R=1, P=1, lines='full',rms=1, ngroup=4): """Random periodic excitation Generates R realizations of a zero-mean random phase multisine with specified rms(amplitude). Random phase multisine signal is a periodic random signal with a user-controlled amplitude spectrum and a random phase spectrum drawn from a uniform distribution. If an integer number of periods is measured, the amplitude spectrum is perfectly realized, unlike classical Gaussian noise. Another advantage is that the periodic nature can help help separate signal from noise. The amplitude spectrum is flat between f1 and f2. Parameters ---------- f1 : float, optional Starting frequency in Hz. Default 0 Hz f2 : float, optional Ending frequency in Hz. Default 0.9* `nyquist frequency` N : int, optional Number of points per period. default = 1024 fs : float, optional Sample frequency. Default fs=N P : int, optional Number of periods. default = 1 R : int, optional Number of realizations. default = 1 lines : array_like or str: {'full', 'odd', 'oddrandom'}, optional For characterization of NLs, only selected lines are excited. rms : float, optional rms(amplitude) of the generated signals. default = 1. Note that since the signal is zero-mean, the std and rms is equal. ngroup : int, optional In case of ftype = oddrandom, 1 out of ngroup odd lines is discarded. Returns ------- u: RxNP record of the generated signals lines: excited frequency lines -> 1 = dc, 2 = fs/N freq: frequency vector Examples -------- Generate two realizations of a full multisine with 1000 samples and excitation up to one third of the Nyquist frequency. The two realizations have the same amplitude spectrum, but different phase realizations (uniformly distributed between [-π,π)) >>> N = 1000 # One thousand samples >>> kind = 'full' # Full multisine >>> f2 = round(N//6) # Excitation up to one sixth of the sample frequency >>> R = 2 # Two phase realizations >>> u, lines, freq = multisine(f2=f2,N=N,lines=kind,R=R) Generate a random odd multisine where the excited odd lines are split in groups of three consecutive lines and where one line is randomly chosen in each group to be a detection line (i.e. without excitation) >>> kind = 'oddrandom' >>> u1,lines, freq = multisine(f2=f2,N=N,lines=kind,R=1,ngroup=3) Generate another phase realization of this multisine with the same excited lines and detection lines >>> u2,*_ = multisine(N=N,lines=lines,R=1) Notes ----- J.Schoukens, <NAME>, and <NAME>: Linear System Identification in a Nonlinear Setting: Nonparametric Analysis of the Nonlinear Distortions and Their Impact on the Best Linear Approximation. https://arxiv.org/pdf/1804.09587.pdf """ if fs is None: fs = N if f2 is None: f2 = np.floor(0.9*N/2) if not fs >= 2*f2: raise AssertionError(f"fs should be {fs} >= {2*f2}") if not N >= 2*f2: raise AssertionError('N should be higher than Nyquist freq, ' 'N >= 2*f2. N={}, f2={}'.format(N,f2)) VALID_LINES = {'full', 'odd', 'oddrandom'} if isinstance(lines, str) and lines.lower() in VALID_LINES: lines = lines.lower() # frequency resolution f0 = fs/N # lines selection - select which frequencies to excite lines_min = np.ceil(f1/f0).astype('int') lines_max = np.floor(f2/f0).astype('int') _lines = np.arange(lines_min, lines_max, dtype=int) elif isinstance(lines, (np.ndarray, list)): # user specified lines _lines = np.array(lines) else: raise ValueError(f"Invalid lines-type. Should be one of {VALID_LINES}" f" or array of frequency lines. Is {lines}") # remove dc if _lines[0] == 0: _lines = _lines[1:] if isinstance(lines, str): if lines == 'full': pass # do nothing elif lines == 'odd': # remove even lines if np.remainder(_lines[0],2): # lines[0] is even _lines = _lines[::2] else: _lines = _lines[1::2] elif lines == 'oddrandom': if np.remainder(_lines[0],2): _lines = _lines[::2] else: _lines = _lines[1::2] # remove 1 out of ngroup lines nlines = len(_lines) nremove = np.floor(nlines/ngroup).astype('int') idx = np.random.randint(ngroup, size=nremove) idx = idx + ngroup*np.arange(nremove) _lines = np.delete(_lines, idx) nlines = len(_lines) # multisine generation - frequency domain implementation U = np.zeros((R,N),dtype=complex) # excite the selected frequencies U[:,_lines] = np.exp(2j*np.pi*np.random.rand(R,nlines)) u = 2*np.real(ifft(U,axis=1)) # go to time domain u = rms*u / np.std(u[0]) # rescale to obtain desired rms/std # Because the ifft is for [0,2*pi[, there is no need to remove any point # when the generated signal is repeated. u =
np.tile(u,(1,P))
numpy.tile
#! /usr/bin/env python3 import math import numpy as np import open3d as o3d import sensor_msgs.point_cloud2 as pc2 class Utils(object): @staticmethod def convert_pointcloud2_msg_to_array(cloud_msg): points_list = [] for data in pc2.read_points(cloud_msg, skip_nans=True): points_list.append([data[0], data[1], data[2], data[3]]) return np.array(points_list) @staticmethod def convert_pose_stamped_msg_to_array(pose_msg): position = np.array([pose_msg.pose.position.x, pose_msg.pose.position.y, pose_msg.pose.position.z]) orientation = np.array([pose_msg.pose.orientation.w, pose_msg.pose.orientation.x, pose_msg.pose.orientation.y, pose_msg.pose.orientation.z]) return position, orientation @staticmethod def convert_pos_quat_to_transformation(pos, quat): R = o3d.geometry.get_rotation_matrix_from_quaternion(quat) T = np.empty((4, 4)) T[0:3, 0:3] = R T[0:3, 3] = pos T[3, :] = [0, 0, 0, 1] return T @staticmethod def convert_pointcloud2_msg_to_array(cloud_msg): points_list = [] for data in pc2.read_points(cloud_msg, skip_nans=True): points_list.append([data[0], data[1], data[2], data[3]]) return np.array(points_list) @staticmethod def transform_pointcloud(cloud, T): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(cloud[:, 0:3]) pcd.transform(T) dst = np.asarray(pcd.points) return np.column_stack((dst, cloud[:, 3])) @staticmethod def downsample_pointcloud(cloud, voxel_size=0.15): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(cloud[:, 0:3]) pcd = pcd.voxel_down_sample(voxel_size=voxel_size) dst = np.asarray(pcd.points) # TODO(lbern): fix for intensity return dst @staticmethod def fix_nn_output(n_neighbors, idx, nn_dists, nn_indices): self_idx = np.where(nn_indices == idx)[0][0] nn_dists = np.delete(nn_dists, [self_idx]) nn_indices =
np.delete(nn_indices, [self_idx])
numpy.delete
""" File: continuous.py Author: <NAME> Email: <EMAIL> Github: https://github.com/ComeBertrand Description: Classical continuous functions for performance evaluation of metaheuristics. All theses functions were taken from the following website : https://www.sfu.ca/~ssurjano/optimization.html """ import numpy as np from ...models import Problem from ...common.representation import RealEncoding, Boundaries from ...common.fitness import Objective from ...operators.neighborhood import NeighborhoodOperator, move_distance_continuous, ContinuousLogMoveRange class ContinuousProblem(Problem): """Problems that are defined by a continuous function. # TODO: Do it in a more abstract way and move it in abstract Args: n_dim (int): Number of dimensions. min_vals (np.array): Minimum values for each dimension. max_vals (np.array): Maximum values for each dimension. move_range (MoveRange): Range of the move step. known_min (float): Minimum of the continuous function. None means that the minimum is not known. """ def __init__(self, n_dim, min_vals, max_vals, move_range, known_min): nb_neighbors = n_dim * 100 # TODO: shall be an argument of the object neighborhood = NeighborhoodOperator(move_distance_continuous, move_range, nb_neighbors) boundaries = Boundaries(min_vals, max_vals, np.float) encoding = RealEncoding(boundaries) objective = Objective(self._eval_func) super().__init__(objective, encoding, neighborhood=neighborhood, known_min=known_min) def _eval_func(self, solution): """Actual evaluation of a solution by the continuous function. Args: solution (Solution): Solution to be evaluated. Returns: float: function value of the solution. """ raise NotImplementedError("Abstract Class") # --------------------------------------------------------------------------- # # Functions with many local minima # # --------------------------------------------------------------------------- # class Ackleys(ContinuousProblem): """Ackley's function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-32.768] * n_dim, np.float) max_vals = np.array([32.768] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) part1 = -0.2 * np.sqrt(1/n * np.sum(solution * solution)) part2 = 1/n * np.sum(np.cos(2 * np.pi * solution)) return 20 - 20 * np.exp(part1) + np.e - np.exp(part2) class Bukin6(ContinuousProblem): """Bukin funtion N.6.""" def __init__(self): n_dim = 2 min_vals = np.array([-15.0, -3.0], np.float) max_vals = np.array([-5.0, 3.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.abs(solution[1] - 0.01 * solution[0] * solution[0]) part2 = np.abs(solution[0] + 10) return 100 * np.sqrt(part1) + 0.01 * part2 class CrossInTray(ContinuousProblem): """Cross-in-tray function.""" def __init__(self): n_dim = 2 min_vals = np.array([-10.0, -10.0], np.float) max_vals = np.array([10.0, 10.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -2.06261 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.abs(100 - np.sqrt(np.sum(solution * solution)) / np.pi) part2 = np.sin(solution[0]) * np.sin(solution[1]) final = np.abs(part2 * np.exp(part1)) + 1.0 return -0.0001 * np.power(final, 0.1) class DropWave(ContinuousProblem): """Drop-Wave function.""" def __init__(self): n_dim = 2 min_vals = np.array([-5.12, -5.12], np.float) max_vals = np.array([5.12, 5.12], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -1.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): sum_sol_sq = np.sum(solution * solution) part1 = 1.0 + np.cos(12 * np.sqrt(sum_sol_sq)) part2 = 0.5 * sum_sol_sq + 2.0 return -1.0 * (part1 / part2) class Eggholder(ContinuousProblem): """Eggholder function.""" def __init__(self): n_dim = 2 min_vals = np.array([-512, -512], np.float) max_vals = np.array([512, 512], np.float) move_range = ContinuousLogMoveRange(0.01, 10.0) known_min = -959.6407 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.sin(np.sqrt(np.abs(solution[1] + (solution[0]/2.) + 47))) part2 = np.sin(np.sqrt(np.abs(solution[0] - (solution[1] + 47)))) return -1.0 * (solution[1] + 47) * part1 - 1.0 * part2 class GramacyLee(ContinuousProblem): """Gramacy & Lee function.""" def __init__(self): n_dim = 1 min_vals = np.array([0.5], np.float) max_vals = np.array([2.5], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = None super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.sin(10 * np.pi * solution[0]) / (2 * solution[0]) part2 = np.power(solution[0] - 1.0, 4) return part1 + part2 class Griewank(ContinuousProblem): """Griewank function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-600] * n_dim, np.float) max_vals = np.array([600] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 10.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.sum((solution * solution) / 4000.0) sqrt = np.array([np.sqrt(i) for i in range(len(solution))], np.float) part2 = np.prod(np.cos(solution / sqrt)) return part1 - 1.0 * part2 + 1.0 class HolderTable(ContinuousProblem): """Holder Table function.""" def __init__(self): n_dim = 2 min_vals = np.array([-10.0, -10.0], np.float) max_vals = np.array([10.0, 10.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -19.2085 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): sum_sqrt_sq = np.sqrt(np.sum(solution * solution)) part1 = np.exp(np.abs(1.0 - (sum_sqrt_sq / np.pi))) part2 = np.sin(solution[0]) * np.cos(solution[1]) return -1.0 * np.abs(part2 * part1) class Langermann(ContinuousProblem): """Langermann function.""" def __init__(self): n_dim = 2 min_vals = np.array([0.0] * n_dim, np.float) max_vals = np.array([10.0] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): A = np.array([[3, 5], [5, 2], [2, 1], [1, 4], [7, 9]], np.float) c = np.array([1, 2, 5, 2, 3], np.float) part_sum = np.sum((solution - A) * (solution - A), axis=1) part1 = np.cos(np.pi * part_sum) part2 = np.exp((-1.0 / np.pi) * part_sum) return np.sum(c * part1 * part2) class Levy(ContinuousProblem): """Levy function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-10] * n_dim, np.float) max_vals = np.array([10] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): w = 1.0 + (solution - 1.0) / 4.0 part_w = w[:-1] part1 = np.power(np.sin(np.pi * w[0]), 2) part2 = np.sum((part_w - 1) * (part_w - 1) * (1 + 10 * np.power(np.sin(np.pi * part_w + 1), 2))) part3 = ((w[-1] - 1) * (w[-1] - 1) * (1 + np.power(np.sin(2 * np.pi * w[-1]), 2))) return part1 + part2 + part3 class Levy13(ContinuousProblem): """Levy function N.13.""" def __init__(self): n_dim = 2 min_vals = np.array([-10.0] * n_dim, np.float) max_vals = np.array([10.0] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): arg1, arg2 = solution part1 = np.power(np.sin(3 * np.pi * arg1), 2) part2 = (arg1 - 1) * (arg1 - 1) * (1 + np.power(np.sin(3 * np.pi * arg2), 2)) part3 = (arg2 - 1) * (arg2 - 1) * (1 + np.power(np.sin(2 * np.pi * arg2), 2)) return part1 + part2 + part3 class Rastrigin(ContinuousProblem): """Rastrigin function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-5.12] * n_dim, np.float) max_vals = np.array([5.12] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): A = 10 n = len(solution) part1 = A * np.cos(2 * np.pi * solution) part2 = solution * solution return A*n + np.sum(part2 - part1) class Schaffer2(ContinuousProblem): """Schaffer function N.2.""" def __init__(self): n_dim = 2 min_vals = np.array([-100.0] * n_dim, np.float) max_vals = np.array([100.0] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 10.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): x1 = solution[0] x2 = solution[1] part1 = np.power(np.sin((x1 * x1) - (x2 * x2)), 2) part2 = np.power(1.0 + 0.001 * ((x1 * x1) + (x2 * x2)), 2) return 0.5 + (part1 - 0.5) / part2 class Schaffer4(ContinuousProblem): """Schaffer function N.4.""" def __init__(self): n_dim = 2 min_vals = np.array([-100.0] * n_dim, np.float) max_vals = np.array([100.0] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 10.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): x1 = solution[0] x2 = solution[1] part1 = np.cos(np.sin(np.abs((x1 * x1) - (x2 * x2)))) part2 = np.power(1.0 + 0.001 * ((x1 * x1) + (x2 * x2)), 2) return 0.5 + (part1 - 0.5) / part2 class Schwefel(ContinuousProblem): """Schwefel function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-500] * n_dim, np.float) max_vals = np.array([500] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 20.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): A_constant = 418.9829 n = len(solution) sq_sol = np.sqrt(np.abs(solution)) return A_constant * n - 1.0 * np.sum(solution * np.sin(sq_sol)) class Shubert(ContinuousProblem): """Shubert function.""" def __init__(self): n_dim = 2 min_vals = np.array([-5.12] * n_dim, np.float) max_vals = np.array([5.12] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -186.7309 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): A = np.array(range(1, 6), np.float) x1 = solution[0] x2 = solution[1] part1 = A + np.cos((A + 1.) * x1 + A) part2 = A + np.cos((A + 1.) * x2 + A) return np.sum(part1) * np.sum(part2) # --------------------------------------------------------------------------- # # Functions Bowl-Shaped # # --------------------------------------------------------------------------- # class Bohachevsky(ContinuousProblem): """Bohachevsky functions. Args: num_func (int): 1, 2 or 3. Define which Bohachevsky function is used. Default is 1. """ def __init__(self, num_func=1): if num_func not in [1, 2, 3]: raise ValueError("The Bohachevsky can only be of " "numbers 1, 2 or 3.") self.num_func = num_func n_dim = 2 min_vals = np.array([-100] * n_dim, np.float) max_vals = np.array([100] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 10.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): if self.num_func == 1: return self._eval_func_1(solution) elif self.num_func == 2: return self._eval_func_2(solution) elif self.num_func == 3: return self._eval_func_3(solution) def _eval_func_1(self, solution): x1 = solution[0] x2 = solution[1] part1 = (x1 * x1) + 2 * (x2 * x2) part2 = 0.3 * np.cos(3 * np.pi * x1) part3 = 0.4 * np.cos(4 * np.pi * x2) return part1 - part2 - part3 + 0.7 def _eval_func_2(self, solution): x1 = solution[0] x2 = solution[1] part1 = (x1 * x1) + 2 * (x2 * x2) part2 = 0.3 * np.cos(3 * np.pi * x1) part3 = np.cos(4 * np.pi * x2) return part1 - (part2 * part3) + 0.3 def _eval_func_3(self, solution): x1 = solution[0] x2 = solution[1] part1 = (x1 * x1) + 2 * (x2 * x2) part2 = 3 * np.pi * x1 part3 = 4 * np.pi * x2 return part1 - 0.3 * np.cos(part2 + part3) + 0.3 class Perm0(ContinuousProblem): """Perm 0,d,B function. Args: n_dim (int): Number of dimensions. beta (float): Argument of the function. """ def __init__(self, n_dim, beta): self.beta = beta min_vals = np.array([-1 * n_dim] * n_dim, np.float) max_vals = np.array([n_dim] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, n_dim/10.) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) j = np.array(range(1, n+1), np.float) s_mat = np.zeros((n, n), np.float) j_mat = np.zeros((n, n), np.float) for i in range(n): s_mat[i] += np.power(solution, i+1) j_mat[i] += 1 / np.power(j, i+1) part1 = np.sum(j + self.beta) * np.sum(s_mat - 1.0 * j_mat, axis=1) return np.sum(np.power(part1, 2)) class RotatedHyperEllipsoid(ContinuousProblem): """Rotated Hyper-Ellipsoid function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-65.536] * n_dim, np.float) max_vals = np.array([65.536] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 10.) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) s_mat = np.zeros((n, n), np.float) solsq = solution * solution prod = solsq.copy() for i in range(n): l = np.array(prod[:i+1].copy()) l.resize((n,)) s_mat[i] += l return np.sum(s_mat) class Sphere(ContinuousProblem): """Sphere function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-5.12] * n_dim, np.float) max_vals = np.array([5.12] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): return np.sum(solution * solution) class SumDiffPower(ContinuousProblem): """Sum of Different Powers function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-1] * n_dim, np.float) max_vals = np.array([1] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.001, 0.1) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) powers = np.array(range(2, n+2), np.float) return np.sum(np.power(np.abs(solution), powers)) class SumSquare(ContinuousProblem): """Sum Squares function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-10] * n_dim, np.float) max_vals = np.array([10] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) i = np.array(range(1, n+1), np.float) return np.sum(i * solution * solution) class Trid(ContinuousProblem): """Trid function. Global minimum are knowm for dimensions 6 and 10. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): dimsq = n_dim * n_dim min_vals = np.array([dimsq] * n_dim, np.float) max_vals = np.array([dimsq] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, dimsq/10.) if n_dim == 6: known_min = -50. elif n_dim == 10: known_min = -200. else: known_min = None super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.sum(np.power(solution - 1, 2)) part2 = np.sum(solution[1:] * solution[:-1]) return part1 - part2 # --------------------------------------------------------------------------- # # Functions Plate-Shaped # # --------------------------------------------------------------------------- # class Booth(ContinuousProblem): """Booth function.""" def __init__(self): n_dim = 2 min_vals = np.array([-10] * n_dim, np.float) max_vals = np.array([10] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): x1 = solution[0] x2 = solution[1] part1 = np.power(x1 + 2 * x2 - 7.0, 2) part2 =
np.power(2 * x1 + x2 - 5.0, 2)
numpy.power
#!/usr/bin/env python import rospy from geometry_msgs.msg import Vector3 from sensor_msgs.msg import Imu import matplotlib.pyplot as plt import numpy as np angle = Vector3 Initialized = False init_angle = Vector3 # "p" is eular angle array def rotM(angle): px = angle.x - init_angle.x py = angle.y - init_angle.y pz = angle.z - init_angle.z Rx = np.array([[1, 0, 0], [0, np.cos(px), np.sin(px)], [0, -np.sin(px), np.cos(px)]]) Ry = np.array([[np.cos(py), 0, -np.sin(py)], [0, 1, 0], [np.sin(py), 0,
np.cos(py)
numpy.cos
from abc import ABC, abstractmethod from typing import List import numpy as np from scipy.stats import t, spearmanr from scipy.special import erfinv from chemprop.uncertainty.uncertainty_calibrator import UncertaintyCalibrator from chemprop.train import evaluate_predictions class UncertaintyEvaluator(ABC): """ A class for evaluating the effectiveness of uncertainty estimates with metrics. """ def __init__( self, evaluation_method: str, calibration_method: str, uncertainty_method: str, dataset_type: str, loss_function: str, calibrator: UncertaintyCalibrator, ): self.evaluation_method = evaluation_method self.calibration_method = calibration_method self.uncertainty_method = uncertainty_method self.dataset_type = dataset_type self.loss_function = loss_function self.calibrator = calibrator self.raise_argument_errors() def raise_argument_errors(self): """ Raise errors for incompatibilities between dataset type and uncertainty method, or similar. """ if self.dataset_type == "spectra": raise NotImplementedError( "No uncertainty evaluators implemented for spectra dataset type." ) if self.uncertainty_method in ['ensemble', 'dropout'] and self.dataset_type in ['classification', 'multiclass']: raise NotImplementedError( 'Though ensemble and dropout uncertainty methods are available for classification \ multiclass dataset types, their outputs are not confidences and are not \ compatible with any implemented evaluation methods for classification.' ) @abstractmethod def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ) -> List[float]: """ Evaluate the performance of uncertainty predictions against the model target values. :param targets: The target values for prediction. :param preds: The prediction values of a model on the test set. :param uncertainties: The estimated uncertainty values, either calibrated or uncalibrated, of a model on the test set. :return: A list of metric values for each model task. """ class MetricEvaluator(UncertaintyEvaluator): """ A class for evaluating confidence estimates of classification and multiclass datasets using builtin evaluation metrics. """ def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ): return evaluate_predictions( preds=uncertainties, targets=targets, num_tasks=np.array(targets).shape[1], metrics=[self.evaluation_method], dataset_type=self.dataset_type, )[self.evaluation_method] class NLLRegressionEvaluator(UncertaintyEvaluator): """ A class for evaluating regression uncertainty values using the mean negative-log-likelihood of the actual targets given the probability distributions estimated by the model. """ def raise_argument_errors(self): super().raise_argument_errors() if self.dataset_type != "regression": raise ValueError( "NLL Regression Evaluator is only for regression dataset types." ) def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ): if self.calibrator is None: # uncalibrated regression uncertainties are variances uncertainties = np.array(uncertainties) preds = np.array(preds) targets = np.array(targets) nll = np.log(2 * np.pi * uncertainties) / 2 \ + (preds - targets) ** 2 / (2 * uncertainties) return np.mean(nll, axis=0).tolist() else: nll = self.calibrator.nll( preds=preds, unc=uncertainties, targets=targets ) # shape(data, task) return np.mean(nll, axis=0).tolist() class NLLClassEvaluator(UncertaintyEvaluator): """ A class for evaluating classification uncertainty values using the mean negative-log-likelihood of the actual targets given the probabilities assigned to them by the model. """ def raise_argument_errors(self): super().raise_argument_errors() if self.dataset_type != "classification": raise ValueError( "NLL Classification Evaluator is only for classification dataset types." ) def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ): targets = np.array(targets) uncertainties = np.array(uncertainties) likelihood = uncertainties * targets + (1 - uncertainties) * (1 - targets) nll = -1 * np.log(likelihood) return np.mean(nll, axis=0).tolist() class NLLMultiEvaluator(UncertaintyEvaluator): """ A class for evaluating multiclass uncertainty values using the mean negative-log-likelihood of the actual targets given the probabilities assigned to them by the model. """ def raise_argument_errors(self): super().raise_argument_errors() if self.dataset_type != "multiclass": raise ValueError( "NLL Multiclass Evaluator is only for multiclass dataset types." ) def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ): targets = np.array(targets, dtype=int) # shape(data, tasks) uncertainties = np.array(uncertainties) preds = np.array(preds) nll = np.zeros_like(targets) for i in range(targets.shape[1]): task_preds = uncertainties[:, i] task_targets = targets[:, i] # shape(data) bin_targets = np.zeros_like(preds[:, 0, :]) # shape(data, classes) bin_targets[np.arange(targets.shape[0]), task_targets] = 1 task_likelihood = np.sum(bin_targets * task_preds, axis=1) task_nll = -1 * np.log(task_likelihood) nll[:, i] = task_nll return np.mean(nll, axis=0).tolist() class CalibrationAreaEvaluator(UncertaintyEvaluator): """ A class for evaluating regression uncertainty values based on how they deviate from perfect calibration on an observed-probability versus expected-probability plot. """ def raise_argument_errors(self): super().raise_argument_errors() if self.dataset_type != "regression": raise NotImplementedError( f"Miscalibration area is only implemented for regression dataset types." ) def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ): targets = np.array(targets) # shape(data, tasks) uncertainties = np.array(uncertainties) preds = np.array(preds) abs_error = np.abs(preds - targets) # shape(data, tasks) fractions = np.zeros([preds.shape[1], 101]) # shape(tasks, 101) fractions[:, 100] = 1 if self.calibrator is not None: # using 101 bin edges, hardcoded original_metric = self.calibrator.regression_calibrator_metric original_scaling = self.calibrator.scaling original_interval = self.calibrator.interval_percentile for i in range(1, 100): self.calibrator.regression_calibrator_metric = "interval" self.calibrator.interval_percentile = i self.calibrator.calibrate() bin_scaling = self.calibrator.scaling bin_unc = ( uncertainties / np.expand_dims(original_scaling, axis=0) * np.expand_dims(bin_scaling, axis=0) ) # shape(data, tasks) bin_fraction = np.mean(bin_unc >= abs_error, axis=0) fractions[:, i] = bin_fraction self.calibrator.regression_calibrator_metric = original_metric self.calibrator.scaling = original_scaling self.calibrator.interval_percentile = original_interval else: # uncertainties are uncalibrated variances std = np.sqrt(uncertainties) for i in range(1, 100): bin_scaling = erfinv(i / 100) * np.sqrt(2) bin_unc = std * bin_scaling bin_fraction = np.mean(bin_unc >= abs_error, axis=0) fractions[:, i] = bin_fraction # trapezoid rule auce = np.sum( 0.01 * np.abs(fractions - np.expand_dims(np.arange(101) / 100, axis=0)), axis=1, ) return auce.tolist() class ExpectedNormalizedErrorEvaluator(UncertaintyEvaluator): """ A class that evaluates uncertainty performance by binning together clusters of predictions and comparing the average predicted variance of the clusters against the RMSE of the cluster. Method discussed in https://doi.org/10.1021/acs.jcim.9b00975. """ def raise_argument_errors(self): super().raise_argument_errors() if self.dataset_type != "regression": raise ValueError( f"Expected normalized error is only appropriate for regression dataset types." ) def evaluate( self, targets: List[List[float]], preds: List[List[float]], uncertainties: List[List[float]], ): targets = np.array(targets) # shape(data, tasks) uncertainties = np.array(uncertainties) preds = np.array(preds) abs_error = np.abs(preds - targets) # shape(data, tasks) sort_record = np.rec.fromarrays([uncertainties, abs_error], names="i, j") sort_record.sort(axis=0) uncertainties = sort_record["i"] abs_error = sort_record["j"] # get stdev scaling if self.calibrator is not None: original_metric = self.calibrator.regression_calibrator_metric original_scaling = self.calibrator.scaling # 100 bins split_unc = np.array_split( uncertainties, 100, axis=0 ) # shape(list100, data, tasks) split_error = np.array_split(abs_error, 100, axis=0) mean_vars = np.zeros([preds.shape[1], 100]) # shape(tasks, 100) rmses = np.zeros_like(mean_vars) for i in range(100): if self.calibrator is None: # starts as a variance mean_vars[:, i] = np.mean(split_unc[i], axis=0) rmses[:, i] = np.sqrt(np.mean(np.square(split_error[i]), axis=0)) elif self.calibration_method == "tscaling": # convert back to sample stdev bin_unc = split_unc[i] / np.expand_dims(original_scaling, axis=0) bin_var = t.var(df=self.calibrator.num_models - 1, scale=bin_unc) mean_vars[:, i] = np.mean(bin_var, axis=0) rmses[:, i] = np.sqrt(np.mean(
np.square(split_error[i])
numpy.square
import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt mpl.rcParams["figure.dpi"] = 125 mpl.rcParams["text.usetex"] = True mpl.rc("font", **{"family": "sans-serif"}) params = {"text.latex.preamble": r"\usepackage{amsmath}"} plt.rcParams.update(params) sns.set_theme() # Q5 # Inverse Transform Sampling pdf = np.vectorize(lambda x: (2 * x + 3) / 40) inv_cdf =
np.vectorize(lambda u: (40 * u + 9 / 4) ** 0.5 - 3 / 2)
numpy.vectorize
import os import cv2 import glob import pickle import numpy as np # Size of the chessboard used for calibration CHESSBOARD_SIZE = (6, 9) # Calculate curvature for each horizontal and vertical curves from the chessboard # Return: curvature integral def chessboard_measure(corners): cornersMat = np.reshape(corners, (-1, CHESSBOARD_SIZE[0], 2)) curvature_integral = 0 # Vertical curves for k in range(CHESSBOARD_SIZE[1]): dx_dt = np.gradient(cornersMat[k, :, 0]) dy_dt = np.gradient(cornersMat[k, :, 1]) d2x_dt2 = np.gradient(dx_dt) d2y_dt2 = np.gradient(dy_dt) curvature = np.abs(d2x_dt2 * dy_dt - dx_dt * d2y_dt2) / (dx_dt * dx_dt + dy_dt * dy_dt) ** 1.5 curvature_integral += np.sum(curvature) # Horizontal curves for k in range(CHESSBOARD_SIZE[0]): dx_dt = np.gradient(cornersMat[:, k, 0]) dy_dt = np.gradient(cornersMat[:, k, 1]) d2x_dt2 = np.gradient(dx_dt) d2y_dt2 = np.gradient(dy_dt) curvature = np.abs(d2x_dt2 * dy_dt - dx_dt * d2y_dt2) / (dx_dt * dx_dt + dy_dt * dy_dt) ** 1.5 curvature_integral += np.sum(curvature) return curvature_integral # Chessboard detection on the image loaded from the given file # If saveDetection==True an image with the result of the detection is saved to the disk # Return: success status (True or False), corners detected in image coordinates, size of the image def detect_chessboard(img_path, save_detection): img = cv2.imread(img_path) ret, corners, img_shape = detect_chessboard_img(img, save_detection) if ret == True: if save_detection: chess_path = img_path.replace('.png', '_chess.jpg') cv2.imwrite(chess_path, img) return ret, corners, img_shape # Chessboard detection on input opencv image # If showChessboard==True(default) we draw corners and lines on input image # Return: success status (True or False), corners detected in image coordinates, size of the image def detect_chessboard_img(img, showChessboard=True): chessboard_flags = cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_FAST_CHECK + cv2.CALIB_CB_NORMALIZE_IMAGE subpix_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.01) img_shape = img.shape[:2] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, CHESSBOARD_SIZE, chessboard_flags) if ret == True: # Refining corners position with sub-pixels based algorithm cv2.cornerSubPix(gray, corners, (3, 3), (-1, -1), subpix_criteria) if showChessboard == True: cv2.drawChessboardCorners(img, CHESSBOARD_SIZE, corners, ret) else: print('Chessboard not detected in image ') return ret, corners, img_shape # Show deformation measure on source image and undistorted image # The less the better (no deformation means perfect straight lines which means 0 curvature) def deformation_measure(src_image, undistorted_img): ret, corners1, _ = detect_chessboard_img(src_image) if ret == False: return ret, corners2, _ = detect_chessboard_img(undistorted_img) if ret == False: return m1 = chessboard_measure(corners1) m2 = chessboard_measure(corners2) r = (1-m2/m1)*100 print('Deformation measure on source image: ' + str(m1)) print('Deformation measure on undistorted image: ' + str(m2)) print('Correction rate in percent: ' + str(r)) def evaluate(img_path, calibration_path): src_image = cv2.imread(img_path) k, d, dims = load_calibration(calibration_path) undistorted_img = undistort(src_image, k, d, dims) deformation_measure(src_image, undistorted_img) # Launch calibration process from all png images in the given folder # Return: calibration parameters K, D and image dimensions def calibrate(img_folder, save_detection=False): # Calibration paramenters # NB: when CALIB_CHECK_COND is set, the algorithm checks if the detected corners of each images are valid. # If not, an exception is thrown which indicates the zero-based index of the invalid image. # Such image should be replaced or removed from the calibration dataset to ensure a good calibration. # calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_CHECK_COND + cv2.fisheye.CALIB_FIX_SKEW calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC + cv2.fisheye.CALIB_FIX_SKEW term_criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6) # Logical coordinates of chessboard corners obj_p = np.zeros((1, CHESSBOARD_SIZE[0]*CHESSBOARD_SIZE[1], 3), np.float32) obj_p[0, :, :2] = np.mgrid[0:CHESSBOARD_SIZE[0], 0:CHESSBOARD_SIZE[1]].T.reshape(-1, 2) img_ref_shape = None obj_points = [] # 3d point in real world space img_points = [] # 2d points in image plane. # Iterate through all images in the folder images = glob.glob(img_folder + '/*.jpg') all_cnt, valid_cnt, not_valid_cnt = 0,0,0 not_valid_img_names = [] for filename in images: # Chessboard detection ret, corners, img_shape = detect_chessboard(filename, save_detection) all_cnt += 1 if img_ref_shape == None: img_ref_shape = img_shape else: assert img_ref_shape == img_shape, "All images must share the same size." # If found, add object points, image points (after refining them) if ret == True: valid_cnt += 1 obj_points.append(obj_p) img_points.append(corners) print('Image ' + filename + ' is valid for calibration') else: not_valid_cnt += 1 not_valid_img_names.append(filename) # print('Image ' + filename + ' is not valid for calibration') print(f'共检测到图片{all_cnt}张,有效{valid_cnt}张,无效{not_valid_cnt}张') print('下面为无效的标定图片:') for tmp in not_valid_img_names: print(tmp) k = np.zeros((3, 3)) d = np.zeros((4, 1)) dims = img_shape[::-1] valid_img_count = len(obj_points) if valid_img_count > 0: rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(valid_img_count)] tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(valid_img_count)] print('Beginning calibration process...') rms, _, _, _, _ = cv2.fisheye.calibrate( obj_points, img_points, img_shape, k, d, rvecs, tvecs, calibration_flags, term_criteria ) print("Calibration done!") print("Found " + str(valid_img_count) + " valid images for calibration") return k, d, dims # Save calibration to file -> use of pickle serialization def save_calibration(path, dims, k, d ): with open(path, 'wb') as f: pickle.dump(dims, f) pickle.dump(k, f) pickle.dump(d, f) # Load calibration from file -> use of pickle serialization def load_calibration(path): k = np.zeros((3, 3)) d = np.zeros((4, 1)) dims = np.zeros(2) with open(path, 'rb') as f: k = pickle.load(f) d = pickle.load(f) dims = pickle.load(f) return k, d, dims # Undistort FishEye image with given calibration parameters def undistort(src_image, k, d, dims): dim1 = src_image.shape[:2][::-1] # dim1 is the dimension of input image to un-distort assert dim1[0] / dim1[1] == dims[0] / dims[1], "Image to undistort needs to have same aspect ratio as the ones used in calibration" map1, map2 = cv2.fisheye.initUndistortRectifyMap(k, d,
np.eye(3)
numpy.eye
import boto3 import json import io import tflite_runtime.interpreter as tflite import numpy as np from PIL import Image interpreter = None def handlerMapper(event,context): if (np.random.rand(1)>0.5): event['model_type'] = 'NewModel' else: event['model_type'] = 'OldModel' event['image'] = 'images/flower.jpg' return event def loadImage(s3_bucket, s3_key): s3 = boto3.client('s3') result = s3.get_object(Bucket=s3_bucket, Key=s3_key) result_image = Image.open(io.BytesIO(result["Body"].read())) input_data = np.expand_dims(np.array(result_image.resize((299,299)),dtype=np.float32)/255, axis=0) return input_data def runInference(interpreter, input_data): input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() interpreter.set_tensor(input_details[0]['index'], input_data) interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) return output_data def handlerInferenceNew(event, context): label_list = ['Cyclamen','Lotus','Passionflower'] global interpreter if interpreter is None: interpreter = tflite.Interpreter(model_path="models/converted_model_quantized.tflite") interpreter.allocate_tensors() if ('image' in event): input_data = loadImage('course-pdl-inference', event['image']) else: input_details = interpreter.get_input_details() input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) output_data = runInference(interpreter, input_data) return {'feature_vector':output_data.tolist(), 'prediction':label_list[np.argmax(output_data)], 'model_type':'NewModel'} def handlerInferenceOld(event, context): label_list = ['Cyclamen','Lotus','Passionflower'] global interpreter if interpreter is None: interpreter = tflite.Interpreter(model_path="models/converted_model.tflite") interpreter.allocate_tensors() if ('image' in event): input_data = loadImage('course-pdl-inference', event['image']) else: input_details = interpreter.get_input_details() input_shape = input_details[0]['shape'] input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) output_data = runInference(interpreter, input_data) return {'feature_vector':output_data.tolist(), 'prediction':label_list[
np.argmax(output_data)
numpy.argmax
from pathlib import Path from numpy import ( sin, cos, exp, pi, tan, log, sinh, cosh, tanh, sinc, sqrt, cbrt, angle, real, imag, abs, arcsin, arccos, arctan, arcsinh, arccosh, arctanh) from numpy import pi, e import numpy as np import matplotlib import matplotlib.pyplot as plt from matplotlib import animation import scipy.linalg import scipy as sp import scipy.sparse import scipy.sparse.linalg from numba import njit from schrodinger import util import sys from time import time """ Original french comments from https://github.com/Azercoco/Python-2D-Simulation-of-Schrodinger-Equation Le programme simule le comportement d'un paquet d'onde gaussien suivant l'équation de Schrödinger. L'algorithme utilisé est la méthode Alternating direction implicit method. La simulation permet de configurer un potentiel constant avec le temps ainsi que la présence d'obstacles (qui sont gérés comme des barrières de potentiel très élévées). La fonction d'onde complexe est affichée en convertissant les nombres complexes en format de couleur HSV. x , y : Les positions de départ du paquet d'onde Kx, Ky : Ses nombres d'onde Ax, Ay : Ses facteurs d'étalements selon x et y V : L'expression du potentiel O : L'expression de la présence d'obstacles Le potentiel et la présence d'obstacle doivent être exprimés comme des expressions Python valides dépendant de x et y (valant respectivement un float et un boolean) car le progamme utilise la fonction Python eval() pour les évaluer. """ """ Translated by Google Translate https://github.com/Azercoco/Python-2D-Simulation-of-Schrodinger-Equation The program simulates the behavior of a Gaussian wave packet following the Schrödinger's equation. The algorithm used is the method Alternating direction implicit method. The simulation makes it possible to configure a constant potential over time as well as the presence of obstacles (which are managed as barriers very high potential). Complex wave function is displayed by converting numbers complex in HSV color format. x, y: The starting positions of the wave packet Kx, Ky: The numbers of the wave Ax, Ay: Its spreading factors along x and y V: The expression of potential O: The expression of the presence of obstacles The potential and the presence of obstacles must be expressed as valid Python expressions depending on x and y (respectively a float and a boolean) because the program uses the Python function eval () to evaluate them. """ class Field: def __init__(self): self.potential_expr = None self.obstacle_expr = None def setPotential(self, expr): self.potential_expr = expr self.test_pot_expr() def setObstacle(self, expr): self.obstacle_expr = expr self.test_obs_expr() def test_pot_expr(self): # required for eval() x = 0 y = 0 try: a = eval(self.potential_expr) except: print(self.potential_expr) print('Potential calculation error: set to 0 by default') self.potential_expr = '0' def test_obs_expr(self): # required for eval() x = 0 y = 0 try: a = eval(self.obstacle_expr) except: print('Error setting obstacle: Set to False by default') self.obstacle_expr = 'False' def isObstacle(self, x, y): a = False try: a = eval(self.obstacle_expr) except: print(f'Invalid obstacle: {self.obstacle_expr}') return a def getPotential(self, x, y): a = 0 + 0j try: a = eval(self.potential_expr) except: print(f'Invalid potential: {self.potential_expr}') return a def solve(wf, V_x, V_y, HX, HY, N, step, delta_t): vector_wrt_x = util.x_concatenate(wf, N) vector_derive_y_wrt_x = util.x_concatenate(util.dy_square(wf, N, step), N) U_wrt_x = vector_wrt_x + (1j*delta_t/2 )*(vector_derive_y_wrt_x - V_x*vector_wrt_x) U_wrt_x_plus = scipy.sparse.linalg.spsolve(HX, U_wrt_x) wf = util.x_deconcatenate(U_wrt_x_plus, N) vector_wrt_y = util.y_concatenate(wf, N) vector_derive_x_wrt_y = util.y_concatenate(util.dx_square(wf, N, step), N) U_wrt_y = vector_wrt_y + (1j*delta_t/2 )*(vector_derive_x_wrt_y - V_y *vector_wrt_y) U_wrt_y_plus = scipy.sparse.linalg.spsolve(HY, U_wrt_y) wf = util.y_deconcatenate(U_wrt_y_plus, N) return wf class Simulate: SIZE = 10 # simulation self.size # wavefunction collision FPS = 60 DURATION = 5 # duration in seconds DELTA_T = 0.005 # 0.125 #time elapsed per second of video # wavefunction collapse FPS = 60 DURATION = 5 # duration in seconds DELTA_T = 0.01 # 0.125 #time elapsed per second of video # wavefunction collapse 2 & 3 FPS = 60 DURATION = 5 # duration in seconds DELTA_T = 0.03 # 0.125 #time elapsed per second of video # wavefunction collapse 4 FPS = 60 DURATION = 5 # duration in seconds DELTA_T = 0.005 # 0.125 #time elapsed per second of video # entanglement1 FPS = 60 DURATION = 5 # duration in seconds DELTA_T = 0.02 # 0.125 #time elapsed per second of video # wavefunction movement FPS = 60 DURATION = 5 # duration in seconds DELTA_T = 0.005 # 0.125 #time elapsed per second of video def __init__(self, N, collapse=False): self.N = N # dimension in number of points of the simulation self.FRAMES = self.DURATION * self.FPS self.field = Field() #Potential as a function of x and y self.field.setPotential("0") # Ex: x**2+y**2" #Obstacle: boolean expression in fct of x and y # (set to False if you do not want an obstacle) obstacles = ("(x > 0.5 and x < 1 and not " "((y > 0.25 and y < 0.75) or " "(y < -0.25 and y > -0.75)))") obstacles = "False" self.collapse = collapse self.field.setObstacle(obstacles) self.size = self.SIZE #self.dataset = np.zeros((self.FRAMES,self.N,self.N), dtype='c16') print(16*self.N*self.N*1e-9, 'GB of memory') #if self.dataset.nbytes > 100e9: # raise(Exception("TOO MUCH DATA FOR MEMORY")) self.simulation_initialize() """ ------ INITIAL CONDITIONS FOR WAVEFUNCTION COLLISION x0 = [0, 0], y0 = [0,1], #number of waves k_x = [0, 0],#5000 k_y = [0, 90000],#2500, #spreading a_x = [.2, .2], #.2, #.1,#.33,#0.05#.33 a_y = [.2, .2], #.2, #.1,#.33,#0.05#.33 """ """ ------ INITIAL CONDITIONS FOR WAVEFUNCTION COLLISION 1 x0 = [0,0], y0 = [0,1.5], #number of waves k_x = [10, 0],#5000 k_y = [0, 90000],#2500, #spreading a_x = [.15, .15], #.2, #.1,#.33,#0.05#.33 a_y = [.15, .15], #.2, #.1,#.33,#0.05#.33 """ """ ------ INITIAL CONDITIONS FOR MOVEMENT SHOTS x0 = [0], y0 = [0], #number of waves k_x = [5000], k_y = [2500],#2500, #spreading a_x = [.2], #.2, #.1,#.33,#0.05#.33 a_y = [.2], #.2, #.1,#.33,#0.05#.33 """ """ ------ INITIAL CONDITIONS FOR WAVEFUNCTION COLLAPSE x0 = [0],#0], y0 = [0], #number of waves k_x = [50], k_y = [25],#2500, #spreading a_x = [.25], #.2, #.1,#.33,#0.05#.33 a_y = [.25], #.2, #.1,#.33,#0.05#.33 """ """ ------ INITIAL CONDITIONS FOR WAVEFUNCTION COLLAPSE 3 x0 = [0],#0], y0 = [0], #number of waves k_x = [50], k_y = [25],#2500, #spreading a_x = [.28], #.2, #.1,#.33,#0.05#.33 a_y = [.28], #.2, #.1,#.33,#0.05#.33 """ """ ------ INITIAL CONDITIONS FOR ENTANGLEMENT x0 = [0, 0], y0 = [1,-1], #number of waves k_x = [0, 0],#5000 k_y = [-3000, 3000],#2500, #spreading a_x = [.15, .15], #.2, #.1,#.33,#0.05#.33 a_y = [.15, .15], #.2, #.1,#.33,#0.05#.33 """ def simulation_initialize(self, #characteristics of the wave packet gaussian 2D #centre x0 = [0], y0 = [0], #number of waves k_x = [5000], k_y = [2500],#2500, #spreading a_x = [.2], #.2, #.1,#.33,#0.05#.33 a_y = [.2], #.2, #.1,#.33,#0.05#.33 # keep below the same wall_potential = 1e10, ): """ initialize the wave packet """ N = self.N step = self.SIZE/self.N delta_t = self.DELTA_T/self.FPS self.counter = 0 # create points at all xy coordinates in meshgrid self.x_axis = np.linspace(-self.size/2, self.size/2, N) self.y_axis = np.linspace(-self.size/2, self.size/2, N) X, Y = np.meshgrid(self.x_axis, self.y_axis) n = 0 phase = np.exp( 1j*(X*k_x[n] + Y*k_y[n])) px = np.exp( - ((x0[n] - X)**2)/(4*a_x[n]**2)) py = np.exp( - ((y0[n] - Y)**2)/(4*a_y[n]**2)) wave_function = phase*px*py norm = np.sqrt(util.integrate(
np.abs(wave_function)
numpy.abs
import netCDF4 as nc import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap import numpy as np obj=nc.Dataset('I:\\Python_related\\850hPa_uv_global_1mon_4daily.nc') u=obj.variables['u'][0,35:76,70:141] v=obj.variables['v'][0,35:76,70:141] lat=obj.variables['latitude'][:];lon=obj.variables['longitude'][:] m=Basemap(projection='cyl',llcrnrlat=15,urcrnrlat=55,llcrnrlon=70,urcrnrlon=140,resolution='l') lons,lats=m.makegrid(71,41) lats=lats[::-1] x,y=m(lons,lats) m.drawparallels(np.arange(15.,56.,10.),labels=[1,0,0,0],fontsize=15) m.drawmeridians(
np.arange(75.,141.,15.)
numpy.arange
"""This module/class contains functionality for computing (and plotting) radial velocities and creating reference spectra for extracted fluxes. This should ideally remain independent of the extraction method, such that it does not matter which spectrograph took the data, nor what "Spectrograph" object was used for extraction. Most of the code below has been moved from the script "test_rhea2_extract.py". Work still needs to be done post-refactor to ensure function input and outputs are sensible, their docstrings are informative and they follow the principles of Object Oriented Programming - such as the Single Responsibility Principle (Along with a general clean up of the code and comments, such as having the code meet the python line length guidelines --> the main benefit of which is having multiple editors open side by side on smaller screens) TODO 1) Move extract method to either extract module or rhea 2) Try to separate calculation/processing of data from saving/loading/displaying 3) Tidy up inputs to functions (e.g. cull unnecessary input parameters) 4) Make create_ref_spect() output variances (Median Absolute Deviations) 5) Possibly have dark calibration (for both flats and science frames) in its own method. This would clean up the existing extract method, removing the need to check whether darks and flats had been passed in (or varying permutations of each - e.g. in the case where some of the data has already been dark corrected, such as the solar data) """ from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt import scipy.optimize as op import scipy.interpolate as interp from astropy.time import Time from astropy.coordinates import SkyCoord from astropy import constants as const import PyAstronomy.pyasl as pyasl import opticstools as ot import pdb try: import pyfits except: import astropy.io.fits as pyfits class RadialVelocity(): """A RadialVelocity object for calculating and plotting RVS and generating reference spectra. Unclear if the object needs to be initialised with any parameters at this stage. Perhaps a file path? """ def __init__(self): """(Presently empty) constructor. """ pass def rv_shift_resid(self, params, wave, spect, spect_sdev, spline_ref, return_spect=False): """Find the residuals to a fit of a (subsampled)reference spectrum to an observed spectrum. The function for parameters p[0] through p[3] is: .. math:: y(x) = Ref[ wave(x) * (1 - p[0]/c) ] * exp(p[1] * x^2 + p[2] * x + p[3]) Here "Ref" is a function f(wave) Parameters ---------- params: array-like wave: float array Wavelengths for the observed spectrum. spect: float array The observed spectra spect_sdev: float array standard deviation of the input spectra. spline_ref: InterpolatedUnivariateSpline instance For interpolating the reference spectrum return_spect: boolean Whether to return the fitted spectrum or the residuals. wave_ref: float array The wavelengths of the reference spectrum ref: float array The reference spectrum Returns ------- resid: float array The fit residuals """ ny = len(spect) xx = (np.arange(ny)-ny//2)/ny norm = np.exp(params[1]*xx**2 + params[2]*xx + params[3]) # Lets get this sign correct. A redshift (positive velocity) means that # a given wavelength for the reference corresponds to a longer # wavelength for the target, which in turn means that the target # wavelength has to be interpolated onto shorter wavelengths for the # reference. fitted_spect = spline_ref(wave*(1.0 - params[0]/const.c.si.value))*norm if return_spect: return fitted_spect else: return (fitted_spect - spect)/spect_sdev def rv_shift_chi2(self, params, wave, spect, spect_sdev, spline_ref): """Find the chi-squared for an RV fit. Just a wrapper for rv_shift_resid, so the docstring is cut and paste! The function for parameters p[0] through p[3] is: .. math:: y(x) = Ref[ wave(x) * (1 - p[0]/c) ] * exp(p[1] * x^2 + p[2] * x + p[3]) Here "Ref" is a function f(wave) Parameters ---------- params: ... wave: float array Wavelengths for the observed spectrum. spect: float array The observed spectrum spect_sdev: ... spline_ref: ... return_spect: boolean Whether to return the fitted spectrum or the wave_ref: float array The wavelengths of the reference spectrum ref: float array The reference spectrum Returns ------- chi2: The fit chi-squared """ return np.sum(self.rv_shift_resid(params, wave, spect, spect_sdev, spline_ref)**2) def rv_shift_jac(self, params, wave, spect, spect_sdev, spline_ref): r"""Explicit Jacobian function for rv_shift_resid. This is not a completely analytic solution, but without it there seems to be numerical instability. The key equations are: .. math:: f(x) = R( \lambda(x) (1 - p_0/c) ) \times \exp(p_1 x^2 + p_2 + p_3) g(x) = (f(x) - d(x))/\sigma(x) \frac{dg}{dp_0}(x) \approx [f(x + 1 m/s) -f(x) ]/\sigma(x) \frac{dg}{dp_1}(x) = x^2 f(x) / \sigma(x) \frac{dg}{dp_2}(x) = x f(x) / \sigma(x) \frac{dg}{dp_3}(x) = f(x) / \sigma(x) Parameters ---------- params: float array wave: float array Wavelengths for the observed spectrum. spect: float array The observed spectrum spect_sdev: ... spline_ref: ... Returns ------- jac: The Jacobian. """ ny = len(spect) xx = (np.arange(ny)-ny//2)/ny norm = np.exp(params[1]*xx**2 + params[2]*xx + params[3]) fitted_spect = spline_ref(wave*(1.0 - params[0]/const.c.si.value))*norm jac = np.empty( (ny,4) ) #The Jacobian is the derivative of fitted_spect/sdev with respect to #p[0] through p[3] jac[:,3] = fitted_spect/spect_sdev jac[:,2] = fitted_spect*xx/spect_sdev jac[:,1] = fitted_spect*xx**2/spect_sdev jac[:,0] = (spline_ref(wave*(1.0 - (params[0] + 1.0)/const.c.si.value))* norm - fitted_spect)/spect_sdev return jac def create_ref_spect(self, wave, fluxes, vars, bcors, rebin_fact=2, gauss_sdev=1.0, med_cut=0.6,gauss_hw=7,threshold=100): """Create a reference spectrum from a series of target spectra. The process is: 1) Re-grid the spectra into a rebin_fact times smaller wavelength grid. 2) The spectra are barycentrically corrected by linear interpolation. Note that when used on a small data set, typically the spectra will be shifted by many km/s. For an RV-stable star, the fitting process then needs to find the opposite of this barycentric velocity. 3) Remove bad (i.e. low flux) files. 4) Median combine the spectra. 5) Convolve the result by a Gaussian to remove high spatial frequency noise. This can be important when the reference spectrum is created from only a small number of input spectra, and high-frequency noise can be effectively fitted to itself. Parameters ---------- wave: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel) fluxes: 3D np.array(float) Fluxes of form (Observation, Order, Flux/pixel) vars: 3D np.array(float) Variance of form (Observation, Order, Variance/pixel) bcors: 1D np.array(float) Barycentric correction for each observation. rebin_fact: int Factor by which to rebin. gauss_sdev: ... med_cut: ... gauss_hw: ... Returns ------- wave_ref: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel*2+2), where the wavelength scale has been interpolated. ref_spect: 2D np.array(float) Reference spectrum of form (Order, Flux/pixel*2+2), where the flux scale has been interpolated. """ nm = fluxes.shape[1] ny = fluxes.shape[2] nf = fluxes.shape[0] C = const.c.si.value #Create arrays for our outputs. wave_ref = np.empty( (nm,rebin_fact*ny + 2) ) ref_spect = np.empty( (nm,rebin_fact*ny + 2) ) #First, rebin everything, using opticstools.utils.regrid_fft new_shape = (fluxes.shape[1],rebin_fact*fluxes.shape[2]) fluxes_rebin = np.empty( (fluxes.shape[0],fluxes.shape[1], rebin_fact*fluxes.shape[2]) ) for i in range(nf): fluxes_rebin[i] = ot.utils.regrid_fft(fluxes[i],new_shape) #Create the final wavelength grid. for j in range(nm): wave_ref[j,1:-1] = np.interp(np.arange(rebin_fact*ny)/rebin_fact, np.arange(ny),wave[j,:]) #Fill in the end wavelengths, including +/-100 km/s from the ends. wave_ref[j,-2] = wave_ref[j,-3] + (wave_ref[j,-3]-wave_ref[j,-4]) wave_ref[j,0] = wave_ref[j,1] * (C + 1e5)/C wave_ref[j,-1] = wave_ref[j,-2] * (C - 1e5)/C #Barycentric correct. For a positive barycentric velocity, the observer is #moving towards the star, which means that star is blue-shifted and the #correct rest-frame spectrum is at longer wavelengths. The interpolation #below shifts the spectrum to the red, as required. for i in range(nf): for j in range(nm): # Awkwardly, we've extended the wavelength scale by 2 elements, # but haven't yet extended the fluxes... ww = wave_ref[j,1:-1] fluxes_rebin[i,j] = np.interp(ww*(1-bcors[i]/C), ww[::-1], fluxes_rebin[i,j,::-1]) #!!! New Code. This was already checked and makes no sense. #Combine the spectra. flux_meds = np.median(fluxes_rebin,axis=2) flux_files = np.median(flux_meds,axis=1) if med_cut > 0: good_files = np.where(flux_files > med_cut*np.median(flux_files))[0] else: good_files = np.arange(len(flux_files),dtype=np.int) flux_orders = np.median(flux_meds[good_files],axis=0) flux_norm = fluxes_rebin.copy() for g in good_files: for j in range(nm): flux_norm[g,j,:] /= flux_meds[g,j] #pdb.set_trace() #Create a median over files flux_ref = np.median(flux_norm[good_files],axis=0) #Multiply this by the median for each order for j in range(nm): flux_ref[j] *= flux_orders[j] #Threshold the data whenever the flux is less than "threshold" if (threshold > 0): bad = flux_ref<2*threshold flux_ref[bad] *= np.maximum(flux_ref[bad]-threshold,0)/threshold # Create a Gaussian smoothing function for the reference spectrum. This # is needed to prevent a bias to zero radial velocity, especially in the # case of few data points. gg = np.exp(-(np.arange(2*gauss_hw+1)-gauss_hw)**2/2.0/gauss_sdev**2) gg /= np.sum(gg) one_order = np.empty(flux_ref.shape[1] + 2*gauss_hw) for j in range(nm): one_order[gauss_hw:-gauss_hw] = flux_ref[j,:] one_order[:gauss_hw] = one_order[gauss_hw] one_order[-gauss_hw:] = one_order[-gauss_hw-1] ref_spect[j,:] = np.convolve(one_order, gg, mode='same')[gauss_hw-1:1-gauss_hw] return wave_ref, ref_spect def extract_spectra(self, files, extractor, star_dark=None, flat_files=None, flat_dark=None, location=('151.2094','-33.865',100.0), coord=None, do_bcor=True, ra_dec_hr=False): """Extract the spectrum from a file, given a dark file, a flat file and a dark for the flat. The process is: 1) Dark correcting the data and the flat fields. 2) Computing (but not applying) Barycentric corrections. 3) Extracting the data and the flat fields using the extract module, to form :math:`f_m(x)`, the flux for orders m and dispersion direction pixels x. 4) Normalising the flat fields, so that the median of each order is 1.0. 5) Dividing by the extracted flat field. Uncertainties from the flat field are added in quadrature. TODO: Not the neatest implementation, but should account for the fact that there are no flats or darks for the ThAr frames. Might be worth tidying up and making the implementation a little more elegant. Parameters ---------- files: list of strings One string for each file. CAn be on separate nights - a full pathname should be given. star_dark: flat_files: list of strings. One string for each star file. CAn be on separate nights - a full pathname should be given. flat_dark: location: (lattitude:string, longitude:string, elevation:string) The location on Earth where the data were taken. coord: astropy.coordinates.sky_coordinate.SkyCoord The coordinates of the observation site do_bcor: boolean Flag for whether to do barycentric correction Returns ------- fluxes: 3D np.array(float) Fluxes of form (Observation, Order, Flux/pixel) vars: 3D np.array(float) Variance of form (Observation, Order, Variance/pixel) bcors: 1D np.array(float) Barycentric correction for each observation. wave: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel) mjds: 1D np.array(float) Modified Julian Date (MJD) of each observation. """ # Initialise list of return values # Each index represents a single observation fluxes = [] vars = [] dates = [] bcors = [] #!!! This is dodgy, as files and flat_files should go together in a dict for ix,file in enumerate(files): # Dark correct the science and flat frames # Only if flat/darks have been supplied --> ThAr might not have them # If not supplied, just use science/reference data try: # Dark correct science frames if len(star_dark) > 0: data = pyfits.getdata(file) - star_dark else: data = pyfits.getdata(file) # Dark correct flats if len(flat_files) > 0 and len(flat_dark) > 0: flat = pyfits.getdata(flat_files[ix]) - flat_dark elif len(flat_files) > 0: flat = pyfits.getdata(flat_files[ix]) except: print('Unable to calibrate file ' + file + '. Check that format of data arrays are consistent.') print(pyfits.getdata(file).shape) print(star_dark.shape) continue header = pyfits.getheader(file) date = Time(header['JD'], format='jd', location=location) dates.append(date) # Determine the barycentric correction if do_bcor: if not coord: # Depending on whether the RA and DEC is saved in hours or # degrees, load and create a SkyCoord object if ra_dec_hr: ra_deg = float(header['RA'])*15 else: ra_deg = float(header['RA']) dec_deg = float(header['DEC']) coord = SkyCoord(ra=ra_deg, dec=dec_deg, unit='deg') if not location: location=(float(header['LONG']), float(header['LAT']), float(header['HEIGHT'])) #(obs_long, obs_lat, obs_alt, ra2000, dec2000, jd, debug=False) #pdb.set_trace() bcors.append(1e3*pyasl.helcorr(float(location[0]), float(location[1]),location[2],coord.ra.deg, coord.dec.deg,date.jd)[0] ) else: bcors.append(0.0) # Extract the fluxes and variance for the science and flat frames print("Extracting spectra from file #", str(ix)) flux, var = extractor.one_d_extract(data=data, rnoise=20.0) # Continue only when flats have been supplied # Perform flat field correction and adjust variances if len(flat_files) > 0: flat_flux, fvar = extractor.one_d_extract(data=flat, rnoise=20.0) for j in range(flat_flux.shape[0]): medf = np.median(flat_flux[j]) flat_flux[j] /= medf fvar[j] /= medf**2 #Calculate the variance after dividing by the flat var = var/flat_flux**2 + fvar * flux**2/flat_flux**4 #Now normalise the flux. flux /= flat_flux # Regardless of whether the data has been flat field corrected, # append to the arrays and continue fluxes.append(flux[:,:,0]) vars.append(var[:,:,0]) fluxes = np.array(fluxes) vars = np.array(vars) bcors = np.array(bcors) mjds = np.array([d.mjd for d in dates]) return fluxes, vars, bcors, mjds def calculate_rv_shift(self, wave_ref, ref_spect, fluxes, vars, bcors, wave,return_fitted_spects=False,bad_threshold=10): """Calculates the Radial Velocity of each spectrum The radial velocity shift of the reference spectrum required to match the flux in each order in each input spectrum is calculated The input fluxes to this method are flat-fielded data, which are then fitted with a barycentrically corrected reference spectrum :math:`R(\lambda)`, according to the following equation: .. math:: f(x) = R( \lambda(x) (1 - p_0/c) ) \\times \exp(p_1 x^2 + p_2 + p_3) The first term in this equation is simply the velocity corrected spectrum, based on a the arc-lamp derived reference wavelength scale :math:`\lambda(x)` for pixels coordinates x. The second term in the equation is a continuum normalisation - a shifted Gaussian was chosen as a function that is non-zero everywhere. The scipy.optimize.leastsq function is used to find the best fitting set fof parameters :math:`p_0` through to :math`p_3`. The reference spectrum function :math:`R(\lambda)` is created using a wavelength grid which is over-sampled with respect to the data by a factor of 2. Individual fitted wavelengths are then found by cubic spline interpolation on this :math:`R_j(\lambda_j)` discrete grid. Parameters ---------- wave_ref: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel*2+2), where the wavelength scale has been interpolated. ref_spect: 2D np.array(float) Reference spectrum of form (Order, Flux/pixel*2+2), where the flux scale has been interpolated. fluxes: 3D np.array(float) Fluxes of form (Observation, Order, Flux/pixel) vars: 3D np.array(float) Variance of form (Observation, Order, Variance/pixel) bcors: 1D np.array(float) Barycentric correction for each observation. wave: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel) Returns ------- rvs: 2D np.array(float) Radial velocities of format (Observation, Order) rv_sigs: 2D np.array(float) Radial velocity sigmas of format (Observation, Order) """ nm = fluxes.shape[1] ny = fluxes.shape[2] nf = fluxes.shape[0] rvs = np.zeros( (nf,nm) ) rv_sigs = np.zeros( (nf,nm) ) initp = np.zeros(4) initp[3]=0.5 initp[0]=0.0 spect_sdev = np.sqrt(vars) fitted_spects = np.empty(fluxes.shape) for i in range(nf): # Start with initial guess of no intrinsic RV for the target. initp[0] = -bcors[i] #!!! New Change nbad=0 for j in range(nm): # This is the *only* non-linear interpolation function that # doesn't take forever spl_ref = interp.InterpolatedUnivariateSpline(wave_ref[j,::-1], ref_spect[j,::-1]) args = (wave[j,:], fluxes[i,j,:], spect_sdev[i,j,:], spl_ref) # Remove edge effects in a slightly dodgy way. # 20 pixels is about 30km/s. args[2][:20] = np.inf args[2][-20:] = np.inf the_fit = op.leastsq(self.rv_shift_resid, initp, args=args,diag=[1e3,1,1,1],Dfun=self.rv_shift_jac, full_output=True) #the_fit = op.leastsq(self.rv_shift_resid, initp, args=args,diag=[1e3,1e-6,1e-3,1], full_output=True,epsfcn=1e-9) #The following line also doesn't work "out of the box". #the_fit = op.minimize(self.rv_shift_chi2,initp,args=args) #pdb.set_trace() #Remove bad points... resid = self.rv_shift_resid( the_fit[0], *args) wbad = np.where( np.abs(resid) > bad_threshold)[0] nbad += len(wbad) #15 bad pixels in a single order is *crazy* if len(wbad)>20: fitted_spect = self.rv_shift_resid(the_fit[0], *args, return_spect=True) plt.clf() plt.plot(args[0], args[1]) plt.plot(args[0][wbad], args[1][wbad],'o') plt.plot(args[0], fitted_spect) plt.xlabel("Wavelength") plt.ylabel("Flux") #print("Lots of 'bad' pixels. Type c to continue if not a problem") #pdb.set_trace() args[2][wbad] = np.inf the_fit = op.leastsq(self.rv_shift_resid, initp,args=args, diag=[1e3,1,1,1], Dfun=self.rv_shift_jac, full_output=True) #the_fit = op.leastsq(self.rv_shift_resid, initp,args=args, diag=[1e3,1e-6,1e-3,1], full_output=True, epsfcn=1e-9) #Some outputs for testing fitted_spects[i,j] = self.rv_shift_resid(the_fit[0], *args, return_spect=True) if ( np.abs(the_fit[0][0] - bcors[i]) < 1e-4 ): #pdb.set_trace() #This shouldn't happen, and indicates a problem with the fit. pass #Save the fit and the uncertainty. rvs[i,j] = the_fit[0][0] try: rv_sigs[i,j] =
np.sqrt(the_fit[1][0,0])
numpy.sqrt
# ----------------------------------------------------- # -*- coding: utf-8 -*- # @Time : 8/9/2018 4:34 PM # @Author : sunyonghai # @Software: ZJ_AI # ----------------------------------------------------- import xml.etree.ElementTree as ET import os import prettytable as pt import numpy as np def add_label_dict(xmlPath,label_dict): ''' 函数用于得到xml文件的object信息 :param xmlPath: :return: ''' if os.path.exists(xmlPath)!=1: print(xmlPath) et = ET.parse(xmlPath) element = et.getroot() element_objs = element.findall('object') for element_obj in element_objs: node = element_obj.find('name') label=node.text if label in label_dict.keys(): label_dict[label]+=1 else: label_dict[label] = 1 return label_dict def get_xml_label_num(xmlPath): ''' 函数用于得到xml文件的object信息 :param xmlPath: :return: ''' if os.path.exists(xmlPath)!=1: print(xmlPath) et = ET.parse(xmlPath) element = et.getroot() element_objs = element.findall('object') count=len(element_objs) labelList=[] for element_obj in element_objs: node = element_obj.find('name') label=node.text labelList.append(label) return count,labelList def get_tabs(test_infos): tb = pt.PrettyTable() tb.field_names = ["model_name","test_data",'label','presion','recall',"detect_num", "actual_num", "tp_num", "fp_num",'fn_num','ap'] for test_info in test_infos: info=test_info.split(",") tb.add_row(info) return tb def save_tb_in_images(path,tb): from PIL import Image, ImageDraw, ImageFont tab_info = str(tb) space = 5 im = Image.new('RGB', (30, 30), (0, 0, 0, 0)) draw = ImageDraw.Draw(im, "RGB") img_size = draw.multiline_textsize(tab_info) im_new = im.resize((img_size[0] + space * 2, img_size[1] + space * 2)) del draw del im draw = ImageDraw.Draw(im_new, 'RGB') draw.multiline_text((space, space), tab_info, fill=(255, 255, 255)) im_new.save(path+".png", "PNG") del draw def save_tb_in_txt(path,tb): # tb.field_names = ["模型名称", "测试数据", '精确率', '召回率', "模型识别总数", "实际总数", "正确识别数量", "误识别总数", # '漏识别总数'] f = open(path+'.txt', "a+") f.write(str(tb)) f.write('\n') f.close() def save_tb_in_xml(path,tb): f = open(path+'.xml', "a+") s = tb.get_html_string() f.write(str(s)) f.close() def get_xml_field_name(path): et = ET.parse(path) element = et.getroot() element_objs = element.findall('tr') field_name=[] for ele in element_objs: td=ele.findall('th') for t in td: field_name.append(t.text) return field_name def get_xml_row_info(path): et = ET.parse(path) element = et.getroot() element_objs = element.findall('tr') row_info=[] for ele in element_objs: td=ele.findall('td') for t in td: row_info.append(t.text) return row_info def merge_tb_from_xml(path_list): count =0 tb = pt.PrettyTable() for path in path_list: if count==0: field_name=get_xml_field_name(path) tb.field_names=field_name row_info=get_xml_row_info(path) tb.add_row(row_info) else: row_info = get_xml_row_info(path) tb.add_row(row_info) count+=1 print(tb) def summary_tb(tb,test_infos): presion,recall,d_num,t_num,tp_num,fp_num,fn_num,count=0,0,0,0,0,0,0,0 model_name,test_data='','total' for test_info in test_infos: if test_info.find('total')==-1: continue infos = test_info.split(",") if count == 0: model_name = infos[0] count+=1 d_num+=int(infos[5]) t_num+=int(infos[6]) tp_num+=int(infos[7]) fp_num+=int(infos[8]) fn_num+=int(infos[9]) presion=tp_num/(tp_num+fp_num) recall=tp_num/(tp_num+fn_num) tb.add_row([model_name,test_data,'total',presion,recall,d_num,t_num,tp_num,fp_num,fn_num,'//']) return tb def cal_model_acc(xmlPath1,xmlPath2,cal_label=False): xmlFileList1 = [] xmlFileList2 = [] for xmlFile in os.listdir(xmlPath1): xmlFileList1.append(os.path.join(xmlPath1, xmlFile)) xmlFileList2.append(os.path.join(xmlPath2, xmlFile)) print(len(xmlFileList1), len(xmlFileList2)) tp_sum,fp_sum,fn_sum,d_sum,t_sum = 0,0,0,0,0 for i in range(len(xmlFileList1)): tp,fp,fn = 0,0,0 xmlFile1 = xmlFileList1[i] xmlFile2 = xmlFileList2[i] d_labelNum, d_labelList = get_xml_label_num(xmlFile1) t_labelNum, t_labelList = get_xml_label_num(xmlFile2) for d_label in d_labelList: if d_label in t_labelList: labenIndex = t_labelList.index(d_label) t_labelList.remove(t_labelList[labenIndex]) tp += 1 else: fp += 1 fn = t_labelNum - tp tp_sum += tp fp_sum += fp fn_sum += fn d_sum += d_labelNum t_sum += t_labelNum prec = tp_sum / (fp_sum + tp_sum) recall = tp_sum / (tp_sum + fn_sum) print(prec, recall) print(tp_sum, fp_sum, fn_sum, d_sum, t_sum) return "{},{},{},{},{},{},{}".format(prec, recall,d_sum, t_sum, tp_sum, fp_sum, fn_sum) def init_ind(class_name): tp_sum = np.zeros(class_name, dtype=int) fp_sum = np.zeros(class_name, dtype=int) fn_sum = np.zeros(class_name, dtype=int) d_sum = np.zeros(class_name, dtype=int) t_sum = np.zeros(class_name, dtype=int) prec = np.zeros(class_name, dtype=float) rec = np.zeros(class_name, dtype=float) return tp_sum, fp_sum, fn_sum, d_sum, t_sum,prec,rec def get_xml_label_bnd(xmlPath): if os.path.exists(xmlPath)!=1: print(xmlPath) et = ET.parse(xmlPath) element = et.getroot() element_objs = element.findall('object') labelList=[] boxes=np.zeros((1,4),dtype=int) for i,element_obj in enumerate(element_objs): node = element_obj.find('name') label=node.text labelList.append(label) bbox = element_obj.find('bndbox') if i==0: boxes[0,:]=np.array([int(bbox.find('xmin').text),int(bbox.find('ymin').text),int(bbox.find('xmax').text),int(bbox.find('ymax').text)]) else: box = np.array([int(bbox.find('xmin').text), int(bbox.find('ymin').text), int(bbox.find('xmax').text), int(bbox.find('ymax').text)]) boxes=np.row_stack((boxes,box)) return labelList,boxes def cal_iou(gt_boxes,box): ixmin = np.maximum(gt_boxes[:, 0], box[0]) iymin = np.maximum(gt_boxes[:, 1], box[1]) ixmax = np.minimum(gt_boxes[:, 2], box[2]) iymax = np.minimum(gt_boxes[:, 3], box[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih # union uni = ((box[2] - box[0] + 1.) * (box[3] - box[1] + 1.) + (gt_boxes[:, 2] - gt_boxes[:, 0] + 1.) * (gt_boxes[:, 3] - gt_boxes[:, 1] + 1.) - inters) overlaps = inters / uni ovmax = np.max(overlaps) # 重叠度IOU最大的 jmax = np.argmax(overlaps) return ovmax,jmax def voc_ap(rec, prec, use_07_metric=False): if use_07_metric: ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p =
np.max(prec[rec >= t])
numpy.max
""" Class definition of XOR, the algorithm to perform inference in networks assuming a mixed effect of the community and hierarchical latent structures. """ from __future__ import print_function import sys import time import warnings import numpy as np import pandas as pd import scipy.sparse import sktensor as skt import SpringRank as SR import MultiTensor as MT from termcolor import colored from tools import delta_scores from scipy.stats import poisson, entropy from compute_metrics import save_metrics EPS = 1e-8 # noinspection PyAttributeOutsideInit class EitherOr(MT.MultiTensor): def __init__(self, N=100, L=1, K=2, initialization=0, rseed=42, inf=1e10, err_max=1e-8, err=0.01, N_real=1, tolerance=0.001, decision=5, max_iter=500, out_inference=False, out_folder='../data/output/', in_folder=None, label='', assortative=False, verbose=0, fix_mu=False, fix_scores=False, fix_communities=False, fix_means=False, fix_delta=False, beta0=None, c0=1., mu0=0.5, delta0=0.001, solver='bicgstab', gamma=0., constrained=False, l0=0., l1=1., classification=True, randomize_mu=True, lambda_u=5., lambda_v=5., lambda_w=10., cv=False, gt=False, input_s='../data/input/s.dat', input_u='../data/input/u.dat', input_v='../data/input/v.dat', input_w='../data/input/w.dat', input_Q='../data/input/sigma.dat'): # ---- Attributes shared with MultiTensor ---- super().__init__(N = N, L = L, K = K, initialization = initialization, rseed = rseed, inf = inf, err = err, err_max = err_max, N_real = N_real, tolerance = tolerance, decision = decision, max_iter = max_iter, out_inference = out_inference, label = label, out_folder = out_folder, in_folder = in_folder, assortative = assortative, verbose = verbose, input_u = input_u, input_v = input_v, input_w = input_w, constrained = constrained, lambda_u = lambda_u, lambda_v = lambda_v, lambda_w = lambda_w, cv = cv, gt = gt) # ---- XOR-specific attributes ---- self.input_s = input_s # path of the input file s (when initialization=1) self.input_Q = input_Q # path of the input file s (when initialization=1) self.fix_scores = fix_scores # flag for fixing ranking latent variable s to ground truth values self.fix_communities = fix_communities # flag for fixing community latent variables to ground truth values self.fix_means = fix_means # flag for fixing the prior and posterior mean of sigma to ground truth value self.fix_mu = fix_mu # flag for fixing the prior mean of sigma to ground truth value self.fix_delta = fix_delta # flag for fixing the outgroup interaction mean delta_0 to ground truth value self.beta = beta0 # initial value for the inverse temperature self.gamma = gamma # regularization penalty - spring constant for the fictitious i <-> origin connections self.l0 = l0 # resting length for the fictitious i <-> origin connections self.l1 = l1 # resting length for the i <-> j connections self.classification = classification # flag for computing classification metrics self.randomize_mu = randomize_mu # flag for randomly generating mu if solver not in {'spsolve', 'bicgstab'}: # solver used for the SR linear system warnings.warn(f'Unknown parameter {solver} for argument solver. Setting solver = "bicgstab"') solver = 'bicgstab' self.solver = solver if self.beta is not None: if self.beta < 0: raise ValueError('The inverse temperature beta has to be positive!') else: self.beta = 5 if (mu0 < 0) or (mu0 > 1): raise ValueError('The sigma parameter has to be in [0,1]!') # values of the parameters used during the update self.delta_0 = delta0 # outgroup parameter self.mu = mu0 # sigma parameter self.Q = np.ones((self.L, self.N)) * mu0 # sigma parameter - posterior self.c = c0 # sparsity coefficient self.s = np.zeros(self.N, dtype = float) # ranking scores # values of the parameters in the previous iteration self.delta_0_old = delta0 # outgroup parameter self.mu_old = mu0 # sigma parameter self.Q_old = np.ones((self.L, self.N)) * mu0 # sigma parameter - posterior self.c_old = c0 # sparsity coefficient self.s_old = np.zeros(self.N, dtype = float) # ranking scores # final values after convergence --> the ones that maximize the log-likelihood self.delta_0_f = delta0 # outgroup parameter self.mu_f = mu0 # sigma parameter self.Q_f = np.ones((self.L, self.N)) * mu0 # sigma parameter - posterior self.c_f = 1. # sparsity coefficient self.s_f = np.zeros(self.N, dtype = float) # ranking scores self.ratio_f = None # final ratio def fit(self, data, nodes, mask=None): """ Model directed networks by using a probabilistic generative model that assume community and ranking parameters. The inference is performed via EM algorithm. Parameters ---------- data : ndarray/sptensor Graph adjacency tensor. nodes : list List of nodes IDs. mask : ndarray Mask for cv. Returns ------- Iterable of dictionaries containing: s_f : ndarray Ranking scores vector. u_f : ndarray Out-going membership matrix. v_f : ndarray In-coming membership matrix. w_f : ndarray Affinity tensor. c_f : float Sparsity coefficient. beta_f : float Inverse temperature parameter. gamma_f : float Ranking regularization parameter. mu_f : float Prior sigma parameter. Q_f : ndarray Posterior sigma parameters. delta0_f : float Out-group interaction parameter. maxL : float Maximum log-likelihood. K : int Number of communities. nodes_s : ndarray Permuted node list according to inferred scores. nodes_c : ndarray Node list. seed : int Realization seed. convergence : bool Realization convergence flag. maxit : int Realization number of iteration. constrained : bool Realization flag for u,v,w regularization. """ self.model = '_XOR' # initialization of the SR model self.SR = SR.SpringRank(N = self.N, L = self.L, solver = self.solver, gamma = self.gamma, l0 = self.l0, l1 = self.l1, inf = self.inf, verbose = self.verbose, get_beta = False, out_inference = False, out_folder = self.out_folder, label = self.label) # pre-processing of the data to handle the sparsity data = MT.preprocess(data, self.verbose) # save positions of the nonzero entries - tuple of np.ndarrays if isinstance(data, skt.dtensor): subs_nz = data.nonzero() elif isinstance(data, skt.sptensor): subs_nz = data.subs for r in range(self.N_real): # initialization of the random state prng = np.random.RandomState(self.rseed) # initialization of the maximum log-likelihood maxL = -self.inf # Initialize all variables self._initialize(prng = prng) self._update_old_variables() self._update_cache(data, subs_nz, mask = mask) # Convergence local variables coincide, it = 0, 0 convergence = False loglik = self.inf if self.verbose == 2: print(f'\n\nUpdating realization {r} ...', end = '\n\n') time_start = time.time() loglik_values = [] # --- single step iteration update --- while not convergence and it < self.max_iter: # main EM update: updates latent variables and calculates max difference new vs old _ = self._update_em(data, subs_nz, mask = mask) it, loglik, coincide, convergence = self._check_for_convergence(data, it, loglik, coincide, convergence, subs_nz, mask = mask) loglik_values.append(loglik) if self.verbose == 2: print(f'Nreal = {r} - Loglikelihood = {loglik} - iterations = {it} - ' f'time = {np.round(time.time() - time_start, 2)} seconds') if self.verbose: print(colored('End of the realization.', 'green'), f'Nreal = {r} - Loglikelihood = {loglik} - iterations = {it} - ' f'time = {np.round(time.time() - time_start, 2)} seconds') if maxL < loglik: maxL = loglik conv = convergence self.final_it = it self._update_optimal_parameters() self.rseed += prng.randint(100000000) self.maxL = maxL if self.final_it == self.max_iter and not conv: # convergence not reached print(colored( 'Solution failed to converge in {0} EM steps for realization n.{1}!'.format(self.max_iter, r), 'blue')) # end cycle over realizations yield { 's': self.s_f, 'c': self.c_f, 'beta': self.beta, 'gamma': self.gamma, 'u': self.u_f, 'v': self.v_f, 'w': self.w_f, 'Q': self.Q_f, 'ratio': self.mu_f, 'delta0': self.delta_0_f, 'K': self.K, 'nodes_s': np.argsort(self.s_f)[::-1], 'nodes_c': nodes, 'seed': self.rseed, 'logL': self.maxL, 'convergence': conv, 'maxit': self.final_it, 'constrained': self.constrained } def _initialize(self, prng=None): """ Random initialization of the latent parameters. Parameters ---------- prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ if prng is None: prng = np.random.RandomState(self.rseed) self._randomize_c(prng = prng) self._randomize_delta_0(prng = prng) if self.initialization == 0: if self.verbose > 0: print('Variables s, u, v, w, Q are initialized randomly.') self._randomize_s(prng = prng) self._randomize_w(prng = prng) self._randomize_u_v(prng = prng) self._randomize_means(prng = prng) elif self.initialization > 0: if self.verbose > 0: print('Selected initialization of s, u, v, w: from file.') try: if not self.fix_scores: raise ValueError('Flag fix_scores set to False!') self._initialize_s(self.input_s) if self.verbose == 2: print('s initialized from ', self.input_s) except: self._randomize_s(prng = prng) if self.verbose == 2: print('Error: s initialized randomly.') try: if not self.fix_communities: raise ValueError('Flag fix_communities set to False!') self._initialize_w(self.input_w) if self.verbose == 2: print('w initialized from ', self.input_w) except: self._randomize_w(prng = prng) if self.verbose == 2: print('Error: w initialized randomly.') try: if not self.fix_communities: raise ValueError('Flag fix_communities set to False!') self._initialize_u_v(self.input_u, self.input_v) if self.verbose == 2: print('u and v initialized from ', self.input_u, self.input_v) except: self._randomize_u_v(prng = prng) if self.verbose == 2: print('Error: u, v initialized randomly.') if self.initialization == 2: if self.verbose == 2: print('Selected initialization of Q: from file.') self._initialize_means(self.input_Q) if self.verbose == 2: print('Q initialized from ', self.input_Q) else: if self.verbose == 2: print('Error: Q initialized randomly.') self._randomize_means(prng = prng) def _randomize_c(self, prng=None, a=0.01, b=1e4): """ Generate a random number in (a, b). Parameters ---------- prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ if prng is None: prng = np.random.RandomState(self.rseed) self.c = (b - a) * prng.random_sample(1)[0] + a def _randomize_means(self, prng=None, a=0.1, b=0.9): """ Generate a random number in (a, b). Parameters ---------- prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ if not self.fix_means: if prng is None: prng = np.random.RandomState(self.rseed) if self.randomize_mu: self.mu = (b - a) * prng.random_sample(1)[0] + a self.Q += self.mu - self.Q.mean() self.Q[self.Q > 1] = 0.99 self.Q[self.Q < 0] = 2 * EPS else: self.Q = (b - a) * prng.random_sample(self.Q.shape) + a if not self.fix_mu: self.mu = np.mean(self.Q) def _randomize_delta_0(self, prng=None, a=1e-3, b=0.5): """ Generate a random number in (a, b). Parameters ---------- prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ if not self.fix_delta: if prng is None: prng = np.random.RandomState(self.rseed) self.delta_0 = (b - a) * prng.random_sample(1)[0] + a def _randomize_s(self, prng=None): """ Assign a random number in [-inf, +inf] to each entry of the affinity tensor s. Parameters ---------- prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ if prng is None: prng = np.random.RandomState(self.rseed) self.s = (1 - 2 * prng.binomial(1, .5, self.s.shape)) * prng.random_sample(self.s.shape) def _initialize_means(self, infile_name, prng=None): """ Initialize a posteriori sigma parameters Q from file. Parameters ---------- infile_name : str Path of the input file. prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ with open(infile_name, 'rb') as f: dfQ = pd.read_csv(f, sep = '\s+', header = None, squeeze = True) self.Q = dfQ.values.T[np.newaxis, :] if prng is None: prng = np.random.RandomState(self.rseed) # Add noise to the initialization self.Q[self.Q == 1] -= self.err * 0.001 * prng.random_sample(self.Q[self.Q == 1].shape) self.Q[self.Q == 0] += self.err * 0.001 * prng.random_sample(self.Q[self.Q == 0].shape) self.mu = np.mean(self.Q) def _initialize_s(self, infile_name, prng=None): """ Initialize ranking vector s from file. Parameters ---------- infile_name : str Path of the input file. prng : RandomState Container for the Mersenne Twister pseudo-random number generator. """ with open(infile_name, 'rb') as f: dfS = pd.read_csv(f, sep = '\s+', header = None) self.s = dfS.values self.s = self.s.flatten() # Add noise to the initialization max_entry = np.max(self.s) if prng is None: prng = np.random.RandomState(self.rseed) self.s += max_entry * self.err * 0.001 * prng.random_sample(self.s.shape) def _update_old_variables(self): """ Update values of the parameters in the previous iteration. """ self.s_old = np.copy(self.s) self.c_old = np.copy(self.c) self.Q_old = np.copy(self.Q) self.mu_old = np.copy(self.mu) self.delta_0_old = np.copy(self.delta_0) self.u_old[self.u > 0] = np.copy(self.u[self.u > 0]) self.v_old[self.v > 0] = np.copy(self.v[self.v > 0]) self.w_old[self.w > 0] = np.copy(self.w[self.w > 0]) def _update_cache(self, data, subs_nz, com=True, rank=True, probs=True, mask=None): """ Update the cache used in the em_update. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. subs_nz : tuple Indices of elements of data that are non-zero. com : bool Flag for updating community related cache. rank : bool Flag for updating ranking related cache. probs : bool Flag for updating edge probabilities related cache. mask : ndarray Mask for cv. """ if probs: # matrix containing Qi * Qj = Yij self.QQt = np.einsum('ai,aj->aij', self.Q, self.Q) low_values_indices = self.QQt < EPS # values are too low self.QQt[low_values_indices] = EPS # matrix containing Q_i for every j + Q_j for every i self.Qs = np.vstack([self.Q] * self.N) + np.hstack([self.Q.T] * self.N) low_values_indices = self.Qs < EPS # values are too low self.Qs[low_values_indices] = EPS self.Qs = self.Qs[np.newaxis, :, :] # matrix containing QQt - (Q_i for every j + Q_j for every i) + 1 = X - Y self.XmY = self.QQt - self.Qs + 1 if np.logical_or(self.QQt < 0, self.QQt > 1).any(): print(self.QQt[np.logical_or(self.QQt < 0, self.QQt > 1)]) if mask is not None: # compute masked values of X - Y for community updates self.XmY_masked = np.zeros_like(self.QQt) self.XmY_masked[mask] = self.XmY[mask] if rank: # compute s_i - s_j self.Ds = self._Ds() # compute full SR exponential term self.eH = self._eH() if com: # compute MT means for nonzero values self.M_nz = self._M_nz(subs_nz) # compute auxiliary variables self.data_hat_Mnz = self._data_hat_Mnz(data, subs_nz) def _Ds(self): """ Compute the ranking differences. Uses an external function in order to speed up computations with Numba. Returns ------- delta_s : ndarray Ranking differences matrix NxN, zero for null data entries. """ delta_s = delta_scores(self.N, self.s) return delta_s def _eH(self): """ Compute the SR mean exponential term for all entries. Returns ------- eH : ndarray SR mean exponential term matrix NxN. """ return np.exp(-0.5 * self.beta * np.power(self.Ds - self.l1, 2)) def _data_hat_Mnz(self, data, subs_nz): """ Compute auxiliary variable data_hat_Mnz = data * (1 - Q) / M. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. subs_nz : tuple Indices of elements of data that are non-zero. Returns ------- data_hat_Mnz : sptensor/dtensor Auxiliary tensor of the same shape and type of data. """ Z = np.copy(self.M_nz) Z[Z == 0] = 1 if isinstance(data, skt.sptensor): data_hat_Mnz = data.vals * self.XmY[subs_nz] / Z if isinstance(data, skt.dtensor): data_hat_Mnz = data[subs_nz].astype('float') * self.XmY[subs_nz] / Z data_hat_Mnz[data_hat_Mnz == np.inf] = self.inf return data_hat_Mnz def _data_tilde(self, data, subs_nz): """ Compute auxiliary variable data_tilde = data * Q. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. subs_nz : tuple Indices of elements of data that are non-zero. Returns ------- data_tilde : scipy/ndarray Auxiliary matrix, 2-dimensional. """ if self.L > 1: raise NotImplementedError('SpringRank for tensors not implemented! Use 2-dimensional input.') data_tilde = np.zeros((self.N, self.N), dtype = float)[np.newaxis, :, :] if isinstance(data, skt.sptensor): data_tilde[subs_nz] = data.vals * self.QQt[subs_nz] elif isinstance(data, skt.dtensor): data_tilde[subs_nz] = data[subs_nz] * self.QQt[subs_nz] try: # convert auxiliary tensor to scipy matrix if possible data_tilde = scipy.sparse.csr_matrix(data_tilde[0, :, :]) except: warnings.warn('The input parameter A could not be converted to scipy.sparse.csr_matrix. ' 'Using a dense representation (numpy).') data_tilde = data_tilde[0, :, :] return data_tilde def _update_em(self, data, subs_nz, mask=None): """ Update parameters via EM procedure. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. subs_nz : tuple Indices of elements of data that are non-zero. mask : ndarray Mask for cv. Returns ------- d_s : float Maximum distance between the old and the new scores vector s. d_u : float Maximum distance between the old and the new membership matrix u. d_v : float Maximum distance between the old and the new membership matrix v. d_w : float Maximum distance between the old and the new affinity tensor w. d_c : float Distance between the old and the new SR sparsity coefficient c. d_mu : float Distance between the old and the new prior mean of sigma. d_Q : float Distance between the old and the new posterior mean of sigma. """ if not self.fix_scores: d_s = self._update_s(self._data_tilde(data, subs_nz)) self._update_cache(data, subs_nz, com = False, probs = False) else: d_s = 0 d_c = self._update_c(self._data_tilde(data, subs_nz), mask = mask) self._update_cache(data, subs_nz, com = False, probs = False) if not self.fix_communities: d_u = self._update_U(subs_nz, self.data_hat_Mnz, mask = mask) self._update_cache(data, subs_nz, rank = False, probs = False) d_v = self._update_V(subs_nz, self.data_hat_Mnz, mask = mask) self._update_cache(data, subs_nz, rank = False, probs = False) if self.initialization != 1: if not self.assortative: d_w = self._update_W(subs_nz, self.data_hat_Mnz, mask = mask) else: d_w = self._update_W_assortative(subs_nz, self.data_hat_Mnz, mask = mask) else: d_w = 0 self._update_cache(data, subs_nz, rank = False, probs = False) else: d_u, d_v, d_w = 0, 0, 0 if not self.fix_delta: d_lam = self._update_delta_0(data, subs_nz, mask = mask) else: d_lam = 0 d_Q = self._update_Q(data) if not self.fix_means: d_mu = self._update_mu() else: d_Q = 0 d_mu = 0 self._update_cache(data, subs_nz, probs = 1 - self.fix_means, rank = False, mask = mask) return d_s, d_u, d_v, d_w, d_c, d_lam, d_mu, d_Q def _update_U(self, subs_nz, data, mask=None): """ Update out-going membership matrix. Parameters ---------- subs_nz : tuple Indices of elements of data that are non-zero. data : sptensor/dtensor Graph adjacency tensor. mask : ndarray Mask for cv. Returns ------- dist_u : float Maximum distance between the old and the new membership matrix u. """ self.u *= self._update_membership(data, subs_nz, self.u, self.v, self.w, 1) if mask is not None: Du = np.einsum('aij,jq->iq', self.XmY_masked, self.v) else: Du = np.einsum('aij,jq->iq', self.XmY, self.v) if not self.assortative: w_k = np.einsum('akq->kq', self.w) Z_uk = np.einsum('iq,kq->ik', Du, w_k) else: w_k = np.einsum('ak->k', self.w) Z_uk = np.einsum('ik,k->ik', Du, w_k) if not self.constrained: non_zeros = Z_uk > EPS self.u[Z_uk < EPS] = 0. self.u[non_zeros] /= Z_uk[non_zeros] else: self.u /= Z_uk + self.delta_u low_values_indices = self.u < self.err_max # values are too low self.u[low_values_indices] = 0. # and set to 0. assert (self.u <= self.inf).all() dist_u = np.amax(abs(self.u - self.u_old)) self.u_old = np.copy(self.u) return dist_u def _update_V(self, subs_nz, data, mask=None): """ Update in-coming membership matrix. Same as _update_U but with: data <-> data_T w <-> w_T u <-> v Parameters ---------- subs_nz : tuple Indices of elements of data that are non-zero. data : sptensor/dtensor Graph adjacency tensor. mask : ndarray Mask for cv. Returns ------- dist_v : float Maximum distance between the old and the new membership matrix v. """ self.v *= self._update_membership(data, subs_nz, self.u, self.v, self.w, 2) if mask is not None: Dv = np.einsum('aij,ik->jk', self.XmY_masked, self.u) else: Dv = np.einsum('aij,ik->jk', self.XmY, self.u) if not self.assortative: w_k = np.einsum('akq->kq', self.w) Z_vk = np.einsum('jk,kq->jq', Dv, w_k) else: w_k = np.einsum('ak->k', self.w) Z_vk = np.einsum('jk,k->jk', Dv, w_k) if not self.constrained: non_zeros = Z_vk > EPS self.v[Z_vk < EPS] = 0. self.v[non_zeros] /= Z_vk[non_zeros] else: self.v /= Z_vk + self.delta_v low_values_indices = self.v < self.err_max # values are too low self.v[low_values_indices] = 0. # and set to 0. assert (self.v <= self.inf).all() dist_v = np.amax(abs(self.v - self.v_old)) self.v_old = np.copy(self.v) return dist_v def _update_W(self, subs_nz, data, mask=None): """ Update affinity tensor. Parameters ---------- subs_nz : tuple Indices of elements of data that are non-zero. data : sptensor/dtensor Graph adjacency tensor. mask : ndarray Mask for cv. Returns ------- dist_w : float Maximum distance between the old and the new affinity tensor w. """ sub_w_nz = self.w.nonzero() uttkrp_DKQ = np.zeros_like(self.w) UV = np.einsum('Ik,Iq->Ikq', self.u[subs_nz[1], :], self.v[subs_nz[2], :]) uttkrp_I = data[:, np.newaxis, np.newaxis] * UV for _, k, q in zip(*sub_w_nz): uttkrp_DKQ[:, k, q] += np.bincount(subs_nz[0], weights = uttkrp_I[:, k, q], minlength = self.L) self.w *= uttkrp_DKQ if mask is not None: Z = np.einsum('aij,ik,jq->akq', self.XmY_masked, self.u, self.v) else: Z = np.einsum('aij,ik,jq->akq', self.XmY, self.u, self.v) if not self.constrained: non_zeros = Z > 0 self.w[non_zeros] /= Z[non_zeros] else: self.w /= Z + self.delta_w low_values_indices = self.w < self.err_max # values are too low self.w[low_values_indices] = 0. # and set to 0. assert (self.w <= self.inf).all() dist_w = np.amax(abs(self.w - self.w_old)) self.w_old = np.copy(self.w) return dist_w def _update_W_assortative(self, subs_nz, data, mask=None): """ Update affinity tensor (assuming assortativity). Parameters ---------- subs_nz : tuple Indices of elements of data that are non-zero. data : sptensor/dtensor Graph adjacency tensor. mask : ndarray Mask for cv. Returns ------- dist_w : float Maximum distance between the old and the new affinity tensor w. """ uttkrp_DKQ = np.zeros_like(self.w) UV = np.einsum('Ik,Ik->Ik', self.u[subs_nz[1], :], self.v[subs_nz[2], :]) uttkrp_I = data[:, np.newaxis] * UV for k in range(self.K): uttkrp_DKQ[:, k] += np.bincount(subs_nz[0], weights = uttkrp_I[:, k], minlength = self.L) self.w *= uttkrp_DKQ if mask is not None: Z = np.einsum('aij,ik,jk->ak', self.XmY_masked, self.u, self.v) else: Z = np.einsum('aij,ik,jk->ak', self.XmY, self.u, self.v) if not self.constrained: non_zeros = Z > 0 self.w[non_zeros] /= Z[non_zeros] else: self.w /= Z + self.delta_w low_values_indices = self.w < self.err_max # values are too low self.w[low_values_indices] = 0. # and set to 0. assert (self.w <= self.inf).all() dist_w = np.amax(abs(self.w - self.w_old)) self.w_old = np.copy(self.w) return dist_w def _update_s(self, data): """ Main routine to calculate SpringRank by a solving linear system. If gamma != 0, performs L2 regularization. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. Returns ------- dist_s : float Maximum distance between the old and the new ranking vector s. """ # compute ranks update self.s, _, _ = self.SR.fit(data) # compute update improvement dist_s = np.amax(abs(self.s - self.s_old)) # update variables if isinstance(data, scipy.sparse.csr_matrix): self.s_old = self.s.copy() elif isinstance(data, np.ndarray): self.s_old = np.copy(self.s) return dist_s def _update_c(self, data, mask=None): """ Compute the sparsity coefficient. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. mask : ndarray Mask for cv. Returns ------- dist_c : float Sparsity coefficient. """ if mask is None: denominator = (self.eH * self.QQt[0]).sum() else: denominator = (self.eH * self.QQt[0])[mask[0]].sum() if denominator == 0: self.c = self.inf else: self.c = data.sum() / denominator # compute update improvement dist_c = abs(self.c - self.c_old) # update variable self.c_old = np.copy(self.c) return dist_c def _update_mu(self): """ Compute the prior mean for sigma. Returns ------- dist_mu : float """ self.mu = np.mean(self.Q) # compute update improvement dist_mu = abs(self.mu - self.mu_old) if self.mu < self.err_max: self.mu = self.err_max if 1 - self.mu < self.err_max: self.mu = 1 - self.err_max # update variable self.mu_old = np.copy(self.mu) return dist_mu def _update_delta_0(self, data, subs_nz, mask=None): den = 2 * self.QQt - self.Qs # X - 1 expectation den[-den < self.err_max] = -self.err_max if isinstance(data, skt.sptensor): self.delta_0 = (data.vals * den[subs_nz]).sum() elif isinstance(data, skt.dtensor): self.delta_0 = (data[subs_nz] * den[subs_nz]).sum() if mask is None: self.delta_0 /= den.sum() else: self.delta_0 /= den[mask].sum() assert (self.delta_0 <= self.inf) and (self.delta_0 > 0) # compute update improvement dist_lam = np.abs(self.delta_0 - self.delta_0_old) # update variable self.delta_0_old = np.copy(self.delta_0) return dist_lam def _update_Q(self, data): """ Compute the posterior mean for sigma. Parameters ---------- data : sptensor/dtensor Graph adjacency tensor. Returns ------- dist_Q : float """ self.S = (self.c * self.eH)[np.newaxis, :, :] if self.w.ndim == 2: M = np.einsum('ik,jk->ijk', self.u, self.v) M = np.einsum('ijk,ak->aij', M, self.w) else: M = np.einsum('ik,jq->ijkq', self.u, self.v) M = np.einsum('ijkq,akq->aij', M, self.w) self.M = M if not self.fix_means: veclam =
np.ones((self.L, self.N, self.N))
numpy.ones
from __future__ import print_function import numpy as np import os from navrep.tools.rings import generate_rings from navrep.models.tcn import reset_graph, sample_hps_params, MDNTCN, get_pi_idx from navrep.models.vae2d import ConvVAE # parameters TEMPERATURE = 0.5 _Z = 32 sequence_z_path = os.path.expanduser( "~/navrep/datasets/M/ian/000_mus_logvars_robotstates_actions_rewards_dones.npz" ) rnn_model_path = os.path.expanduser("~/navrep/models/M/tcn.json") vae_model_path = os.path.expanduser("~/navrep/models/V/vae.json") reset_graph() tcn = MDNTCN(sample_hps_params, gpu_mode=False) vae = ConvVAE(batch_size=1, is_training=False) vae.load_json(vae_model_path) tcn.load_json(rnn_model_path) rings_def = generate_rings(64, 64) # load sequence image encoding arrays = np.load(sequence_z_path) sequence_action = arrays["actions"] sequence_mu = arrays["mus"] sequence_logvar = arrays["logvars"] sequence_restart = arrays["dones"] sequence_z = sequence_mu + np.exp(sequence_logvar / 2.0) * np.random.randn( *(sequence_mu.shape) ) feed = { tcn.input_z: np.reshape(sequence_z[:999], (1, 999, _Z)), tcn.input_action: np.reshape(sequence_action[:999], (1, 999, 3)), tcn.input_restart: np.reshape(sequence_restart[:999], (1, 999)), } [logmix, mean, logstd, logrestart] = tcn.sess.run( [tcn.out_logmix, tcn.out_mean, tcn.out_logstd, tcn.out_restart_logits], feed ) logmix = logmix.reshape((999, _Z, sample_hps_params.num_mixture)) mean = mean.reshape((999, _Z, sample_hps_params.num_mixture)) logstd = logstd.reshape((999, _Z, sample_hps_params.num_mixture)) logrestart = logrestart.reshape((999, 1)) OUTWIDTH = _Z # adjust temperatures logmix2 = np.copy(logmix) / TEMPERATURE logmix2 -= logmix2.max() logmix2 =
np.exp(logmix2)
numpy.exp
"""GNSS utility functions, mostly based on satellite ephemerides. Author: <NAME> """ try: import autograd.numpy as np except(ImportError): print("""Package 'autograd' not found. 'autograd.numpy' is necessary for coarse-time navigation via maximum-likelihood estimation. Falling back to 'numpy'.""") import numpy as np import pymap3d as pm try: import mkl_fft as fft_lib except(ImportError): print("""Package 'mkl_fft' not found. Consider installing 'mkl_fft' with 'conda install -c intel mkl_fft' for faster FFT and IFFT. Falling back to 'numpy.fft'.""") import numpy.fft as fft_lib def get_sat_pos_vel_acc(t, eph): """Calculate positions, velocities, and accelerations of satellites. Accepts arrays for t / eph, i.e., can calculate multiple points in time / multiple satellites at once. Does not interpolate GLONASS. Implemented according to <NAME>., et al. “Computing GPS Satellite Velocity and Acceleration from the Broadcast Navigation Message.” Annual of Navigation, vol. 66, no. 4, 2019, pp. 769–779. https://www.gps.gov/technical/icwg/meetings/2019/09/GPS-SV-velocity-and-acceleration.pdf Inputs: t - GPS time(s) [s] (ignored for SBAS) eph - Ephemeris as array(s) Outputs: positions - Satellite position(s) in ECEF XYZ as array(s) [m] velocities - Satellite velocity/ies in ECEF XYZ as array(s) [m/s] accelerations - Sat. acceleration(s) in ECEF XYZ as array(s) [m/s^2] Author: <NAME> """ if not np.isnan(eph[2]).any(): # No SBAS / GLONASS t = np.mod(t, 7 * 24 * 60 * 60) cic = eph[13] # "cic"] crs = eph[10] # "crs"] Omega0 = eph[15] # "Omega0"] Deltan = eph[4] # "Deltan"] cis = eph[14] # "cis"] M0 = eph[2] # "M0"] i0 = eph[11] # "i0"] cuc = eph[7] # "cuc"] crc = eph[9] # "crc"] e = eph[5] # "e"] Omega = eph[6] # "Omega"] cus = eph[8] # "cus"] OmegaDot = eph[16] # "OmegaDot"] sqrtA = eph[3] # "sqrtA"] IDOT = eph[12] # "IDOT"] toe = eph[20] # "toe"] # Broadcast Navigation User Equations # WGS 84 value of the earth’s gravitational constant for GPS user [m^3/s^2] mu = 3.986005e14 # WGS 84 value of the earth’s rotation rate [rad/s] OmegaeDot = 7.2921151467e-5 # Semi-major axis A = sqrtA ** 2 # Computed mean motion [rad/s] n0 = np.sqrt(mu / A ** 3) # Time from ephemeris reference epoch tk = np.array(t - toe) # t is GPS system time at time of transmission, i.e., GPS time corrected # for transit time (range/speed of light). Furthermore, tk shall be the # actual total time difference between the time t and the epoch time toe, # and must account for beginning or end of week crossovers. That is, if tk # is greater than 302,400 seconds, subtract 604,800 seconds from tk. If tk # is less than -302,400 seconds, add 604,800 seconds to tk. with np.nditer(tk, op_flags=["readwrite"]) as it: for tk_i in it: if tk_i > 302400: tk_i[...] = tk_i - 604800 elif tk_i < -302400: tk_i[...] = tk_i + 604800 # Corrected mean motion n = n0 + Deltan # Mean anomaly Mk = M0 + n * tk # Kepler’s equation (Mk = Ek - e*np.sin(Ek)) solved for eccentric anomaly # (Ek) by iteration: # Initial value [rad] Ek = Mk # Refined value, three iterations, (j = 0,1,2) for j in range(3): Ek = Ek + (Mk - Ek + e * np.sin(Ek)) / (1 - e * np.cos(Ek)) # True anomaly (unambiguous quadrant) nuk = 2 * np.arctan(np.sqrt((1 + e) / (1 - e)) * np.tan(Ek / 2)) # Argument of Latitude Phik = nuk + Omega # Argument of Latitude Correction deltauk = cus * np.sin(2 * Phik) + cuc * np.cos(2 * Phik) # Radius Correction deltark = crs * np.sin(2 * Phik) + crc * np.cos(2 * Phik) # Inclination Correction deltaik = cis * np.sin(2 * Phik) + cic * np.cos(2 * Phik) # Corrected Argument of Latitude uk = Phik + deltauk # Corrected Radius rk = A * (1 - e * np.cos(Ek)) + deltark # Corrected Inclination ik = i0 + deltaik + IDOT * tk # Positions in Orbital Plane xkDash = rk * np.cos(uk) ykDash = rk * np.sin(uk) # Corrected longitude of ascending node Omegak = Omega0 + (OmegaDot - OmegaeDot) * tk - OmegaeDot * toe # Earth-fixed coordinates xk = xkDash * np.cos(Omegak) - ykDash * np.cos(ik) *
np.sin(Omegak)
numpy.sin
from os import environ, remove from tempfile import NamedTemporaryFile, mktemp from unittest import TestCase, main from numpy import ( arange, array, e, greater_equal, less_equal, log, nan, sqrt, zeros, ) from cogent3 import ( DNA, PROTEIN, RNA, load_aligned_seqs, make_aligned_seqs, make_tree, ) from cogent3.core.alignment import ArrayAlignment from cogent3.core.alphabet import CharAlphabet from cogent3.evolve.coevolution import ( DEFAULT_NULL_VALUE, AAGapless, aln_position_pairs_cmp_threshold, aln_position_pairs_ge_threshold, aln_position_pairs_le_threshold, ancestral_state_alignment, ancestral_state_pair, ancestral_state_position, ancestral_states_input_validation, build_coevolution_matrix_filepath, calc_pair_scale, coevolution_matrix_to_csv, coevolve_alignment, coevolve_alignments, coevolve_alignments_validation, coevolve_pair, coevolve_position, count_ge_threshold, count_le_threshold, csv_to_coevolution_matrix, filter_exclude_positions, filter_non_parsimony_informative, filter_threshold_based_multiple_interdependency, freqs_from_aln, freqs_to_array, get_allowed_perturbations, get_ancestral_seqs, get_dg, get_dgg, get_positional_frequencies, get_positional_probabilities, get_subalignments, identify_aln_positions_above_threshold, ignore_excludes, is_parsimony_informative, join_positions, ltm_to_symmetric, make_weights, merge_alignments, mi, mi_alignment, mi_pair, mi_position, n_random_seqs, nmi, nmi_alignment, nmi_pair, nmi_position, normalized_mi, parse_coevolution_matrix_filepath, pickle_coevolution_result, probs_from_dict, protein_dict, resampled_mi_alignment, sca_alignment, sca_input_validation, sca_pair, sca_position, unpickle_coevolution_result, validate_alignment, validate_alphabet, validate_ancestral_seqs, validate_position, validate_tree, ) from cogent3.maths.stats.number import CategoryCounter __author__ = "<NAME>" __copyright__ = "Copyright 2007-2022, The Cogent Project" __credits__ = ["<NAME>"] __license__ = "BSD-3" __version__ = "2022.4.20a1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Beta" from numpy.testing import assert_allclose, assert_equal class CoevolutionTests(TestCase): """Tests of coevolution.py""" def setUp(self): """Set up variables for us in tests""" self.run_slow_tests = int(environ.get("TEST_SLOW_APPC", 0)) # Data used in SCA tests self.dna_aln = ArrayAlignment( data=list(zip(list(range(4)), ["ACGT", "AGCT", "ACCC", "TAGG"])), moltype=DNA, ) self.rna_aln = ArrayAlignment( data=list(zip(list(range(4)), ["ACGU", "AGCU", "ACCC", "UAGG"])), moltype=RNA, ) self.protein_aln = ArrayAlignment( data=list(zip(list(range(4)), ["ACGP", "AGCT", "ACCC", "TAGG"])), moltype=PROTEIN, ) self.dna_aln_gapped = ArrayAlignment( data=list(zip(list(range(4)), ["A-CGT", "AGC-T", "-ACCC", "TAGG-"])), moltype=DNA, ) self.freq = ArrayAlignment( data=list( zip( list(range(20)), [ "TCT", "CCT", "CCC", "CCC", "CCG", "CC-", "AC-", "AC-", "AA-", "AA-", "GA-", "GA-", "GA-", "GA-", "GA-", "G--", "G--", "G--", "G--", "G--", ], ) ), moltype=PROTEIN, ) self.two_pos = ArrayAlignment( data=list( zip( list(map(str, list(range(20)))), [ "TC", "CC", "CC", "CC", "CC", "CC", "AC", "AC", "AA", "AA", "GA", "GA", "GA", "GA", "GA", "GT", "GT", "GT", "GT", "GT", ], ) ), moltype=PROTEIN, ) self.tree20 = make_tree(treestring=tree20_string) self.gpcr_aln = gpcr_aln self.myos_aln = myos_aln # a made-up dict of base frequencies to use as the natural freqs # for SCA calcs on DNA seqs self.dna_base_freqs = dict(list(zip("ACGT", [0.25] * 4))) self.rna_base_freqs = dict(list(zip("ACGU", [0.25] * 4))) self.protein_aln4 = ArrayAlignment( [("A1", "AACF"), ("A12", "AADF"), ("A123", "ADCF"), ("A111", "AAD-")], moltype=PROTEIN, ) self.rna_aln4 = ArrayAlignment( [("A1", "AAUU"), ("A12", "ACGU"), ("A123", "UUAA"), ("A111", "AAA-")], moltype=RNA, ) self.dna_aln4 = ArrayAlignment( [("A1", "AATT"), ("A12", "ACGT"), ("A123", "TTAA"), ("A111", "AAA?")], moltype=DNA, ) self.tree4 = make_tree( treestring="((A1:0.5,A111:0.5):0.5,(A12:0.5,A123:0.5):0.5);" ) def test_alignment_analyses_moltype_protein(self): """alignment methods work with moltype = PROTEIN""" r = mi_alignment(self.protein_aln4) self.assertEqual(r.shape, (4, 4)) r = nmi_alignment(self.protein_aln4) self.assertEqual(r.shape, (4, 4)) r = sca_alignment(self.protein_aln4, cutoff=0.75) self.assertEqual(r.shape, (4, 4)) r = ancestral_state_alignment(self.protein_aln4, self.tree4) self.assertEqual(r.shape, (4, 4)) def test_alignment_analyses_moltype_rna(self): """alignment methods work with moltype = RNA""" r = mi_alignment(self.rna_aln4) self.assertEqual(r.shape, (4, 4)) r = nmi_alignment(self.rna_aln4) self.assertEqual(r.shape, (4, 4)) r = sca_alignment( self.rna_aln4, cutoff=0.75, alphabet="ACGU", background_freqs=self.rna_base_freqs, ) self.assertEqual(r.shape, (4, 4)) r = ancestral_state_alignment(self.rna_aln4, self.tree4) self.assertEqual(r.shape, (4, 4)) def test_alignment_analyses_moltype_dna(self): """alignment methods work with moltype = DNA""" r = mi_alignment(self.dna_aln4) self.assertEqual(r.shape, (4, 4)) r = nmi_alignment(self.dna_aln4) self.assertEqual(r.shape, (4, 4)) r = sca_alignment( self.dna_aln4, cutoff=0.75, alphabet="ACGT", background_freqs=self.dna_base_freqs, ) self.assertEqual(r.shape, (4, 4)) r = ancestral_state_alignment(self.dna_aln4, self.tree4) self.assertEqual(r.shape, (4, 4)) def test_join_positions(self): """join_positions functions as expected""" self.assertEqual( join_positions(list("ABCD"), list("WXYZ")), ["AW", "BX", "CY", "DZ"] ) self.assertEqual(join_positions(list("AAA"), list("BBB")), ["AB", "AB", "AB"]) self.assertEqual(join_positions([], []), []) def test_mi(self): """mi calculations function as expected with valid data""" assert_allclose(mi(1.0, 1.0, 1.0), 1.0) assert_allclose(mi(1.0, 1.0, 2.0), 0.0) assert_allclose(mi(1.0, 1.0, 1.5), 0.5) def test_normalized_mi(self): """normalized mi calculations function as expected with valid data""" assert_allclose(normalized_mi(1.0, 1.0, 1.0), 1.0) assert_allclose(normalized_mi(1.0, 1.0, 2.0), 0.0) assert_allclose(normalized_mi(1.0, 1.0, 1.5), 0.3333, 3) def test_mi_pair(self): """mi_pair calculates mi from a pair of columns""" aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), 0.0) aln = ArrayAlignment(data={"1": "AB", "2": "BA"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), 1.0) # order of positions doesn't matter (when it shouldn't) aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), mi_pair(aln, pos1=1, pos2=0)) aln = ArrayAlignment(data={"1": "AB", "2": "BA"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), mi_pair(aln, pos1=1, pos2=0)) def test_wrapper_functions_handle_invalid_parameters(self): """coevolve_*: functions error on missing parameters""" # missing cutoff aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) self.assertRaises(ValueError, coevolve_pair, sca_pair, aln, 0, 1) self.assertRaises(ValueError, coevolve_position, sca_position, aln, 0) self.assertRaises(ValueError, coevolve_alignment, sca_alignment, aln) self.assertRaises(ValueError, coevolve_alignments, sca_alignment, aln, aln) def test_coevolve_pair(self): """coevolve_pair: returns same as pair methods called directly""" aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # mi_pair == coevolve_pair(mi_pair,...) assert_allclose( coevolve_pair(mi_pair, aln, pos1=0, pos2=1), mi_pair(aln, pos1=0, pos2=1) ) assert_allclose( coevolve_pair(nmi_pair, aln, pos1=0, pos2=1), nmi_pair(aln, pos1=0, pos2=1) ) assert_allclose( coevolve_pair(ancestral_state_pair, aln, pos1=0, pos2=1, tree=t), ancestral_state_pair(aln, pos1=0, pos2=1, tree=t), ) assert_allclose( coevolve_pair(sca_pair, aln, pos1=0, pos2=1, cutoff=cutoff), sca_pair(aln, pos1=0, pos2=1, cutoff=cutoff), ) def test_coevolve_position(self): """coevolve_position: returns same as position methods called directly""" aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # mi_position == coevolve_position(mi_position,...) assert_allclose( coevolve_position(mi_position, aln, position=0), mi_position(aln, position=0), ) assert_allclose( coevolve_position(nmi_position, aln, position=0), nmi_position(aln, position=0), ) assert_allclose( coevolve_position(ancestral_state_position, aln, position=0, tree=t), ancestral_state_position(aln, position=0, tree=t), ) assert_allclose( coevolve_position(sca_position, aln, position=0, cutoff=cutoff), sca_position(aln, position=0, cutoff=cutoff), ) def test_coevolve_alignment(self): """coevolve_alignment: returns same as alignment methods""" aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # mi_alignment == coevolve_alignment(mi_alignment,...) assert_allclose(coevolve_alignment(mi_alignment, aln), mi_alignment(aln)) assert_allclose(coevolve_alignment(mip_alignment, aln), mip_alignment(aln)) assert_allclose(coevolve_alignment(mia_alignment, aln), mia_alignment(aln)) assert_allclose(coevolve_alignment(nmi_alignment, aln), nmi_alignment(aln)) assert_allclose( coevolve_alignment(ancestral_state_alignment, aln, tree=t), ancestral_state_alignment(aln, tree=t), ) assert_allclose( coevolve_alignment(sca_alignment, aln, cutoff=cutoff), sca_alignment(aln, cutoff=cutoff), ) def test_coevolve_alignments_validation_idenifiers(self): """coevolve_alignments_validation: seq/tree validation functions""" method = sca_alignment aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") # OK w/ no tree coevolve_alignments_validation(method, aln1, aln2, 2, None) # OK w/ tree coevolve_alignments_validation(method, aln1, aln2, 2, None, tree=t) # If there is a plus present in identifiers, we only care about the # text before the colon aln1 = ArrayAlignment(data={"1+a": "AC", "2+b": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1 + c": "EFW", "2 + d": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1+e:0.5,2 + f:0.5);") # OK w/ no tree coevolve_alignments_validation(method, aln1, aln2, 2, None) # OK w/ tree coevolve_alignments_validation(method, aln1, aln2, 2, None, tree=t) # mismatch b/w alignments seq names aln1 = ArrayAlignment(data={"3": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) # mismatch b/w alignments and tree seq names aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(3:0.5,2:0.5);") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) # mismatch b/w alignments in number of seqs aln1 = ArrayAlignment(data={"1": "AC", "2": "AD", "3": "AA"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None ) self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) # mismatch b/w alignments & tree in number of seqs aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,(2:0.5,3:0.25));") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) def test_coevolve_alignments_validation_min_num_seqs(self): """coevolve_alignments_validation: ValueError on fewer than min_num_seqs""" method = mi_alignment # too few sequences -> ValueError aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) coevolve_alignments_validation(method, aln1, aln2, 1, None) coevolve_alignments_validation(method, aln1, aln2, 2, None) self.assertRaises( ValueError, coevolve_alignments_validation, method, aln1, aln2, 3, None ) def test_coevolve_alignments_validation_max_num_seqs(self): """coevolve_alignments_validation: min_num_seqs <= max_num_seqs""" method = mi_alignment # min_num_seqs > max_num_seqs-> ValueError aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) coevolve_alignments_validation(method, aln1, aln2, 1, None) coevolve_alignments_validation(method, aln1, aln2, 1, 3) coevolve_alignments_validation(method, aln1, aln2, 2, 3) self.assertRaises( ValueError, coevolve_alignments_validation, method, aln1, aln2, 3, 2 ) def test_coevolve_alignments_validation_moltypes(self): """coevolve_alignments_validation: valid for acceptable moltypes""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AU"}, moltype=RNA) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) # different moltype coevolve_alignments_validation(mi_alignment, aln1, aln2, 2, None) coevolve_alignments_validation(nmi_alignment, aln1, aln2, 2, None) coevolve_alignments_validation(resampled_mi_alignment, aln1, aln2, 2, None) self.assertRaises( AssertionError, coevolve_alignments_validation, sca_alignment, aln1, aln2, 2, None, ) self.assertRaises( AssertionError, coevolve_alignments_validation, ancestral_state_alignment, aln1, aln2, 2, None, ) def test_coevolve_alignments(self): """coevolve_alignments: returns correct len(aln1) x len(aln2) matrix""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) combined_aln = ArrayAlignment( data={"1": "ACEFW", "2": "ADEGY"}, moltype=PROTEIN ) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # MI m = mi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(mi_alignment, aln1, aln2), expected) # MI (return_full=True) assert_allclose( coevolve_alignments(mi_alignment, aln1, aln2, return_full=True), m ) # NMI m = nmi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(nmi_alignment, aln1, aln2), expected) # AS m = ancestral_state_alignment(combined_aln, tree=t) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose( coevolve_alignments(ancestral_state_alignment, aln1, aln2, tree=t), expected ) # SCA m = sca_alignment(combined_aln, cutoff=cutoff) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose( coevolve_alignments(sca_alignment, aln1, aln2, cutoff=cutoff), expected ) def test_coevolve_alignments_watches_min_num_seqs(self): """coevolve_alignments: error on too few sequences""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) coevolve_alignments(mi_alignment, aln1, aln2) coevolve_alignments(mi_alignment, aln1, aln2, min_num_seqs=0) coevolve_alignments(mi_alignment, aln1, aln2, min_num_seqs=1) coevolve_alignments(mi_alignment, aln1, aln2, min_num_seqs=2) self.assertRaises( ValueError, coevolve_alignments, mi_alignment, aln1, aln2, min_num_seqs=3 ) self.assertRaises( ValueError, coevolve_alignments, mi_alignment, aln1, aln2, min_num_seqs=50 ) def test_coevolve_alignments_watches_max_num_seqs(self): """coevolve_alignments: filtering or error on too many sequences""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AD", "3": "YP"}, moltype=PROTEIN) aln2 = ArrayAlignment( data={"1": "ACP", "2": "EAD", "3": "PYP"}, moltype=PROTEIN ) # keep all seqs tmp_filepath = NamedTemporaryFile( prefix="tmp_test_coevolution", suffix=".fasta" ).name coevolve_alignments( mi_alignment, aln1, aln2, max_num_seqs=3, merged_aln_filepath=tmp_filepath ) self.assertEqual(load_aligned_seqs(tmp_filepath).num_seqs, 3) # keep 2 seqs coevolve_alignments( mi_alignment, aln1, aln2, max_num_seqs=2, merged_aln_filepath=tmp_filepath ) seqs = load_aligned_seqs(tmp_filepath) self.assertEqual(seqs.num_seqs, 2) # error if no sequence filter self.assertRaises( ValueError, coevolve_alignments, mi_alignment, aln1, aln2, max_num_seqs=2, merged_aln_filepath=tmp_filepath, sequence_filter=None, ) # clean up the temporary file remove(tmp_filepath) def test_coevolve_alignments_different_MolType(self): """coevolve_alignments: different MolTypes supported""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AU"}, moltype=RNA) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) combined_aln = ArrayAlignment(data={"1": "ACEFW", "2": "AUEGY"}) t = make_tree(treestring="(1:0.5,2:0.5);") # MI m = mi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(mi_alignment, aln1, aln2), expected) # MI (return_full=True) assert_allclose( coevolve_alignments(mi_alignment, aln1, aln2, return_full=True), m ) # NMI m = nmi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(nmi_alignment, aln1, aln2), expected) def test_mi_pair_cols_default_exclude_handling(self): """mi_pair returns null_value on excluded by default""" aln = ArrayAlignment(data={"1": "AB", "2": "-B"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) aln = ArrayAlignment(data={"1": "-B", "2": "-B"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) aln = ArrayAlignment(data={"1": "AA", "2": "-B"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) aln = ArrayAlignment(data={"1": "AA", "2": "PB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, excludes="P"), DEFAULT_NULL_VALUE) def test_mi_pair_cols_non_default_exclude_handling(self): """mi_pair uses non-default exclude_handler when provided""" aln = ArrayAlignment(data={"1": "A-", "2": "A-"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) assert_allclose( mi_pair(aln, pos1=0, pos2=1, exclude_handler=ignore_excludes), 0.0 ) def test_mi_pair_cols_and_entropies(self): """mi_pair calculates mi from a pair of columns and precalc entropies""" aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, h1=0.0, h2=0.0), 0.0) aln = ArrayAlignment(data={"1": "AB", "2": "BA"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, h1=1.0, h2=1.0), 1.0) # incorrect positional entropies provided to ensure that the # precalculated values are used, and that entorpies are not # caluclated on-the-fly. aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, h1=1.0, h2=1.0), 2.0) def test_mi_pair_alt_calculator(self): """mi_pair uses alternate mi_calculator when provided""" aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), 0.0) assert_allclose( mi_pair(aln, pos1=0, pos2=1, mi_calculator=normalized_mi), DEFAULT_NULL_VALUE, ) def test_mi_position_valid_input(self): """mi_position functions with varied valid input""" aln = ArrayAlignment(data={"1": "ACG", "2": "GAC"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([1.0, 1.0, 1.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([0.0, 0.0, 0.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 2), array([0.0, 0.0, 0.0])) def test_mi_position_from_alignment_nmi(self): """mi_position functions w/ alternate mi_calculator""" aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([0.0, 0.0, 0.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose( mi_position(aln, 0, mi_calculator=normalized_mi), array([DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE]), ) def test_mi_position_from_alignment_default_exclude_handling(self): """mi_position handles excludes by setting to null_value""" aln = ArrayAlignment(data={"1": "ACG", "2": "G-C"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([1.0, DEFAULT_NULL_VALUE, 1.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "GPC"}, moltype=PROTEIN) assert_allclose( mi_position(aln, 0, excludes="P"), array([1.0, DEFAULT_NULL_VALUE, 1.0]) ) def test_mi_position_from_alignment_non_default_exclude_handling(self): """mi_position handles excludes w/ non-default method""" aln = ArrayAlignment(data={"1": "ACG", "2": "G-C"}, moltype=PROTEIN) assert_allclose( mi_position(aln, 0, exclude_handler=ignore_excludes), array([1.0, 1.0, 1.0]) ) def test_mi_alignment_excludes(self): """mi_alignment handles excludes properly""" expected = array( [ [0.0, DEFAULT_NULL_VALUE, 0.0], [DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE], [0.0, DEFAULT_NULL_VALUE, 0.0], ] ) # gap in second column aln = ArrayAlignment(data={"1": "ACG", "2": "A-G"}, moltype=PROTEIN) assert_allclose(mi_alignment(aln), expected) # excludes = 'P' aln = ArrayAlignment(data={"1": "ACG", "2": "APG"}, moltype=PROTEIN) assert_allclose(mi_alignment(aln, excludes="P"), expected) # gap in first column expected = array( [ [DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE], [DEFAULT_NULL_VALUE, 0.0, 0.0], [DEFAULT_NULL_VALUE, 0.0, 0.0], ] ) aln = ArrayAlignment(data={"1": "-CG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_alignment(aln), expected) def test_mi_alignment_high(self): """mi_alignment detected perfectly correlated columns""" expected = [[1.0, 1.0], [1.0, 1.0]] aln = ArrayAlignment(data={"1": "AG", "2": "GA"}, moltype=PROTEIN) assert_allclose(mi_alignment(aln), expected) def test_mi_alignment_low(self): """mi_alignment detected in perfectly uncorrelated columns""" expected = [[0.0, 0.0], [0.0, 1.0]] aln = ArrayAlignment(data={"1": "AG", "2": "AC"}, moltype=PROTEIN) assert_allclose(mi_alignment(aln), expected) def test_resampled_mi_alignment(self): """resampled_mi_alignment returns without error""" aln = ArrayAlignment( data={"1": "ACDEF", "2": "ACFEF", "3": "ACGEF"}, moltype=PROTEIN ) resampled_mi_alignment(aln) aln = ArrayAlignment( data={"1": "ACDEF", "2": "ACF-F", "3": "ACGEF"}, moltype=PROTEIN ) resampled_mi_alignment(aln) def test_coevolve_alignment(self): """coevolve_alignment functions as expected with varied input""" aln1 = ArrayAlignment( data={"1": "ACDEF", "2": "ACFEF", "3": "ACGEF"}, moltype=PROTEIN ) # no kwargs passed assert_allclose(coevolve_alignment(mi_alignment, aln1), mi_alignment(aln1)) # different method passed assert_allclose(coevolve_alignment(nmi_alignment, aln1), nmi_alignment(aln1)) # kwargs passed assert_allclose( coevolve_alignment(mi_alignment, aln1, mi_calculator=nmi), nmi_alignment(aln1), ) def test_build_coevolution_matrix_filepath(self): """build_coevolution_matrix_filepath functions w/ varied input""" self.assertEqual(build_coevolution_matrix_filepath("./blah.fasta"), "./blah") self.assertEqual(build_coevolution_matrix_filepath("blah.fasta"), "./blah") self.assertEqual(build_coevolution_matrix_filepath("blah"), "./blah") self.assertEqual(build_coevolution_matrix_filepath("./blah"), "./blah") self.assertEqual( build_coevolution_matrix_filepath( "./blah.fasta", output_dir="./duh/", method="xx", alphabet="yyy" ), "./duh/blah.yyy.xx", ) self.assertEqual( build_coevolution_matrix_filepath( "./blah.fasta", output_dir="./duh/", method="xx", alphabet="yyy", parameter=0.25, ), "./duh/blah.yyy.xx", ) self.assertEqual( build_coevolution_matrix_filepath( "./blah.fasta", output_dir="./duh/", method="xx" ), "./duh/blah.xx", ) self.assertEqual( build_coevolution_matrix_filepath( "./blah.fasta", output_dir="./duh/", method="sca", parameter=0.25 ), "./duh/blah.sca_25", ) self.assertEqual( build_coevolution_matrix_filepath( "./blah.fasta", output_dir="./duh/", method="sca", parameter=0.25, alphabet="xx", ), "./duh/blah.xx.sca_25", ) # no trailing / to output_dir self.assertEqual( build_coevolution_matrix_filepath( "./blah.fasta", output_dir="./duh", method="sca", parameter=0.25, alphabet="xx", ), "./duh/blah.xx.sca_25", ) self.assertRaises( ValueError, build_coevolution_matrix_filepath, "./blah.fasta", "./duh/", "sca", ) self.assertRaises( ValueError, build_coevolution_matrix_filepath, "./blah.fasta", "./duh/", "sca", "xx", ) def test_pickle_coevolution_result_error(self): """pickle matrix: IOError handled correctly""" m = array([[1, 2], [3, 4]]) self.assertRaises(IOError, pickle_coevolution_result, m, "") def test_unpickle_coevolution_result_error(self): """unpickle matrix: IOError handled correctly""" self.assertRaises(IOError, unpickle_coevolution_result, "invalid/file/path.pkl") def test_pickle_and_unpickle(self): """unpickle(pickle(matrix)) == matrix""" for expected in [4.5, array([1.2, 4.3, 5.5]), array([[1.4, 2.2], [3.0, 0.4]])]: filepath = mktemp() pickle_coevolution_result(expected, filepath) actual = unpickle_coevolution_result(filepath) assert_allclose(actual, expected) remove(filepath) def test_csv_coevolution_result_error(self): """matrix -> csv: IOError handled correctly""" m = array([[1, 2], [3, 4]]) self.assertRaises(IOError, coevolution_matrix_to_csv, m, "") def test_uncsv_coevolution_result_error(self): """csv -> matrix: IOError handled correctly""" self.assertRaises(IOError, csv_to_coevolution_matrix, "invalid/file/path.pkl") def test_csv_and_uncsv(self): """converting to/from csv matrix results in correct coevolution matrix""" expected = array([[1.4, 2.2], [DEFAULT_NULL_VALUE, 0.4]]) filepath = mktemp() coevolution_matrix_to_csv(expected, filepath) actual = csv_to_coevolution_matrix(filepath) assert_allclose(actual, expected) remove(filepath) def test_parse_coevolution_matrix_filepath(self): """Parsing matrix filepaths works as expected.""" expected = ("myosin_995", "a1_4", "nmi") self.assertEqual( parse_coevolution_matrix_filepath("pkls/myosin_995.a1_4.nmi.pkl"), expected ) self.assertEqual( parse_coevolution_matrix_filepath("pkls/myosin_995.a1_4.nmi.csv"), expected ) expected = ("p53", "orig", "mi") self.assertEqual(parse_coevolution_matrix_filepath("p53.orig.mi.pkl"), expected) self.assertEqual(parse_coevolution_matrix_filepath("p53.orig.mi.csv"), expected) def test_parse_coevolution_matrix_filepath_error(self): """Parsing matrix file paths handles invalid filepaths""" self.assertRaises( ValueError, parse_coevolution_matrix_filepath, "pkls/myosin_995.nmi.pkl" ) self.assertRaises( ValueError, parse_coevolution_matrix_filepath, "pkls/myosin_995.pkl" ) self.assertRaises( ValueError, parse_coevolution_matrix_filepath, "pkls/myosin_995" ) self.assertRaises(ValueError, parse_coevolution_matrix_filepath, "") def test_identify_aln_positions_above_threshold(self): """Extracting scores above threshold works as expected""" m = array( [ [ DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, ], [0.3, 1.0, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE], [0.25, 0.75, 1.0, DEFAULT_NULL_VALUE], [0.9, 0.751, 0.8, 1.0], ] ) self.assertEqual(identify_aln_positions_above_threshold(m, 0.75, 0), []) self.assertEqual(identify_aln_positions_above_threshold(m, 0.75, 1), [1]) self.assertEqual(identify_aln_positions_above_threshold(m, 0.75, 2), [1, 2]) self.assertEqual( identify_aln_positions_above_threshold(m, 0.75, 3), [0, 1, 2, 3] ) m = ltm_to_symmetric(m) self.assertEqual(identify_aln_positions_above_threshold(m, 0.75, 0), [3]) self.assertEqual(identify_aln_positions_above_threshold(m, 0.75, 1), [1, 2, 3]) self.assertEqual(identify_aln_positions_above_threshold(m, 0.75, 2), [1, 2, 3]) self.assertEqual( identify_aln_positions_above_threshold(m, 0.75, 3), [0, 1, 2, 3] ) self.assertEqual(identify_aln_positions_above_threshold(m, 1.1, 0), []) self.assertEqual(identify_aln_positions_above_threshold(m, -5.0, 0), [1, 2, 3]) self.assertEqual( identify_aln_positions_above_threshold(m, -5.0, 1), [0, 1, 2, 3] ) def test_count_ge_threshold(self): """count_ge_threshold works as expected""" m = array([[DEFAULT_NULL_VALUE] * 3] * 3) self.assertEqual(count_ge_threshold(m, 1.0), (0, 0)) self.assertEqual( count_ge_threshold(m, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE), (0, 0) ) self.assertEqual(count_ge_threshold(m, 1.0, 42), (0, 9)) m =
array([[0, 1, 2], [3, 4, 5], [6, 7, 8]])
numpy.array
#!/usr/bin/env python # encoding: utf-8 import numpy as np import pandas as pd import seaborn as sns from IPython import embed as shell import matplotlib matplotlib.use("TkAgg") from matplotlib import pyplot as plt def get_DDM_traces(v=1, z=0.5, dc=0, dc_slope=0, sv=0.1, noise_sd=1, stim=0, nr_trials=1000, tmax=5.0, dt=0.01): """ DDM v: mean drift rate z: starting point dc: drift criterion """ if stim == 0: v = np.random.normal(-v,sv,nr_trials) elif stim == 1: v = np.random.normal(v,sv,nr_trials) x = np.zeros((nr_trials, int(tmax/dt))) x[:,:] = np.NaN x[:,0] = z for i in range((int(tmax/dt))-1): x[:,i+1] = x[:,i] + ((v + dc + (dc_slope*dt*i) ) * dt) + (np.random.normal(0,noise_sd,nr_trials)*np.sqrt(dt)) return x def get_OU_traces(v, ll, dc, z, noise_sd=1, pre_generated=False, stim=0, nr_trials=1000, tmax=5.0, dt=0.01): """ OU-model v: mean drift rate ll: Ornstein-Uhlenbeck process parameter (effective leak / self-excitation) z: starting point dc: drift criterion """ if stim == 0: v = v[::-1] x1 = np.zeros((nr_trials, int(tmax/dt))) x2 = np.zeros((nr_trials, int(tmax/dt))) x1[:,:] = np.NaN x2[:,:] = np.NaN x1[:,0] = z[0] x2[:,0] = z[1] for i in range((int(tmax/dt))-1): if pre_generated: x1[:,i+1] = x1[:,i] + v[0][:,i] + dc[0] - (ll[0]*x1[:,i]) x2[:,i+1] = x2[:,i] + v[1][:,i] + dc[1] - (ll[1]*x2[:,i]) else: x1[:,i+1] = x1[:,i] + ((v[0] + dc[0] - (ll[0]*x1[:,i])) * dt) + (np.random.normal(0,noise_sd/np.sqrt(2),nr_trials)*np.sqrt(dt)) x2[:,i+1] = x2[:,i] + ((v[1] + dc[1] - (ll[1]*x2[:,i])) * dt) + (np.random.normal(0,noise_sd/np.sqrt(2),nr_trials)*np.sqrt(dt)) return x1-x2 def get_LCA_traces(v, k, w, dc, z, noise_sd=1, pre_generated=False, stim=0, nr_trials=1000, tmax=5.0, dt=0.01): """ LCA """ if stim == 0: v = v[::-1] x1 = np.zeros((nr_trials, int(tmax/dt))) x2 = np.zeros((nr_trials, int(tmax/dt))) x1[:,:] = np.NaN x2[:,:] = np.NaN x1[:,0] = z[0] x2[:,0] = z[1] for i in range((int(tmax/dt))-1): if pre_generated: x1[:,i+1] = np.clip(x1[:,i] + v[0][:,i] + dc[0] - (k[0]*x1[:,i]) - (w[1]*x2[:,i]), a_min=0, a_max=1e6) x2[:,i+1] = np.clip(x2[:,i] + v[1][:,i] + dc[1] - (k[1]*x2[:,i]) - (w[0]*x1[:,i]), a_min=0, a_max=1e6) else: x1[:,i+1] = np.clip(x1[:,i] + ((v[0] + dc[0] - (k[0]*x1[:,i]) - (w[1]*x2[:,i])) * dt) + (np.random.normal(0,noise_sd,nr_trials)*np.sqrt(dt)), a_min=0, a_max=1e6) x2[:,i+1] = np.clip(x2[:,i] + ((v[1] + dc[1] - (k[1]*x2[:,i]) - (w[0]*x1[:,i])) * dt) + (np.random.normal(0,noise_sd,nr_trials)*np.sqrt(dt)), a_min=0, a_max=1e6) return x1, x2 def _bounds(a, lower_is_0=True, tmax=5, dt=0.01): t = np.arange(0, tmax, dt) b1 = np.ones(len(t)) * a if lower_is_0: b0 = np.zeros(len(t)) else: b0 = -b1 return b1, b0 def _bounds_collapse_linear(a, c1, c0, lower_is_0=True, tmax=5, dt=0.01): t = np.arange(0, tmax, dt) b1 = (a)-(c1*t) if lower_is_0: b0 = 0+(c0*t) else: b0 = -b1 return b1, b0 def _bounds_collapse_hyperbolic(a, c, lower_is_0=True, tmax=5, dt=0.01): t =
np.arange(0, tmax, dt)
numpy.arange
import sounddevice as sd import soundfile as sf import numpy as np import matplotlib.pyplot as plt def quantize_a_law(data, bits): start = -1 end = 1 bit_n = 2**bits-1 data = (data-start)/(end-start) data = np.round(data*bit_n)/bit_n data = (data*2)-1 return data def encode_a_law(data): x_data = [] for i in data: if
np.abs(i)
numpy.abs
# Copyright 2018-2021 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains the available built-in noisy quantum channels supported by PennyLane, as well as their conventions. """ import warnings import numpy as np from pennylane.operation import AnyWires, Channel class AmplitudeDamping(Channel): r"""AmplitudeDamping(gamma, wires) Single-qubit amplitude damping error channel. Interaction with the environment can lead to changes in the state populations of a qubit. This is the phenomenon behind scattering, dissipation, attenuation, and spontaneous emission. It can be modelled by the amplitude damping channel, with the following Kraus matrices: .. math:: K_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix} .. math:: K_1 = \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix} where :math:`\gamma \in [0, 1]` is the amplitude damping probability. **Details:** * Number of wires: 1 * Number of parameters: 1 Args: gamma (float): amplitude damping probability wires (Sequence[int] or int): the wire the channel acts on """ num_wires = 1 grad_method = "F" @property def num_params(self): return 1 @classmethod def _kraus_matrices(cls, *params): gamma = params[0] if not 0.0 <= gamma <= 1.0: raise ValueError("gamma must be between [0,1].") K0 = np.diag([1, np.sqrt(1 - gamma)]) K1 = np.sqrt(gamma) * np.array([[0, 1], [0, 0]]) return [K0, K1] class GeneralizedAmplitudeDamping(Channel): r"""GeneralizedAmplitudeDamping(gamma, p, wires) Single-qubit generalized amplitude damping error channel. This channel models the exchange of energy between a qubit and its environment at finite temperatures, with the following Kraus matrices: .. math:: K_0 = \sqrt{p} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix} .. math:: K_1 = \sqrt{p}\begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix} .. math:: K_2 = \sqrt{1-p}\begin{bmatrix} \sqrt{1-\gamma} & 0 \\ 0 & 1 \end{bmatrix} .. math:: K_3 = \sqrt{1-p}\begin{bmatrix} 0 & 0 \\ \sqrt{\gamma} & 0 \end{bmatrix} where :math:`\gamma \in [0, 1]` is the probability of damping and :math:`p \in [0, 1]` is the probability of the system being excited by the environment. **Details:** * Number of wires: 1 * Number of parameters: 2 Args: gamma (float): amplitude damping probability p (float): excitation probability wires (Sequence[int] or int): the wire the channel acts on """ num_wires = 1 grad_method = "F" @property def num_params(self): return 2 @classmethod def _kraus_matrices(cls, *params): gamma, p = params if not 0.0 <= gamma <= 1.0: raise ValueError("gamma must be between [0,1].") if not 0.0 <= p <= 1.0: raise ValueError("p must be between [0,1].") K0 = np.sqrt(p) * np.diag([1, np.sqrt(1 - gamma)]) K1 = np.sqrt(p) * np.sqrt(gamma) * np.array([[0, 1], [0, 0]]) K2 = np.sqrt(1 - p) * np.diag([np.sqrt(1 - gamma), 1]) K3 = np.sqrt(1 - p) * np.sqrt(gamma) * np.array([[0, 0], [1, 0]]) return [K0, K1, K2, K3] class PhaseDamping(Channel): r"""PhaseDamping(gamma, wires) Single-qubit phase damping error channel. Interaction with the environment can lead to loss of quantum information changes without any changes in qubit excitations. This can be modelled by the phase damping channel, with the following Kraus matrices: .. math:: K_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix} .. math:: K_1 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{\gamma} \end{bmatrix} where :math:`\gamma \in [0, 1]` is the phase damping probability. **Details:** * Number of wires: 1 * Number of parameters: 1 Args: gamma (float): phase damping probability wires (Sequence[int] or int): the wire the channel acts on """ num_wires = 1 grad_method = "F" @property def num_params(self): return 1 @classmethod def _kraus_matrices(cls, *params): gamma = params[0] if not 0.0 <= gamma <= 1.0: raise ValueError("gamma must be between [0,1].") K0 = np.diag([1, np.sqrt(1 - gamma)]) K1 = np.diag([0, np.sqrt(gamma)]) return [K0, K1] class DepolarizingChannel(Channel): r"""DepolarizingChannel(p, wires) Single-qubit symmetrically depolarizing error channel. This channel is modelled by the following Kraus matrices: .. math:: K_0 = \sqrt{1-p} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} .. math:: K_1 = \sqrt{p/3}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} .. math:: K_2 = \sqrt{p/3}\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} .. math:: K_3 = \sqrt{p/3}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} where :math:`p \in [0, 1]` is the depolarization probability and is equally divided in the application of all Pauli operations. **Details:** * Number of wires: 1 * Number of parameters: 1 Args: p (float): Each Pauli gate is applied with probability :math:`\frac{p}{3}` wires (Sequence[int] or int): the wire the channel acts on """ num_wires = 1 grad_method = "A" grad_recipe = ([[1, 0, 1], [-1, 0, 0]],) @property def num_params(self): return 1 @classmethod def _kraus_matrices(cls, *params): p = params[0] if not 0.0 <= p <= 1.0: raise ValueError("p must be between [0,1]") K0 = np.sqrt(1 - p) * np.eye(2) K1 = np.sqrt(p / 3) * np.array([[0, 1], [1, 0]]) K2 = np.sqrt(p / 3) * np.array([[0, -1j], [1j, 0]]) K3 = np.sqrt(p / 3) * np.array([[1, 0], [0, -1]]) return [K0, K1, K2, K3] class BitFlip(Channel): r"""BitFlip(p, wires) Single-qubit bit flip (Pauli :math:`X`) error channel. This channel is modelled by the following Kraus matrices: .. math:: K_0 = \sqrt{1-p} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} .. math:: K_1 = \sqrt{p}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} where :math:`p \in [0, 1]` is the probability of a bit flip (Pauli :math:`X` error). **Details:** * Number of wires: 1 * Number of parameters: 1 Args: p (float): The probability that a bit flip error occurs. wires (Sequence[int] or int): the wire the channel acts on """ num_wires = 1 grad_method = "A" grad_recipe = ([[1, 0, 1], [-1, 0, 0]],) @property def num_params(self): return 1 @classmethod def _kraus_matrices(cls, *params): p = params[0] if not 0.0 <= p <= 1.0: raise ValueError("p must be between [0,1]") K0 = np.sqrt(1 - p) * np.eye(2) K1 = np.sqrt(p) * np.array([[0, 1], [1, 0]]) return [K0, K1] class ResetError(Channel): r"""ResetError(p_0, p_1, wires) Single-qubit Reset error channel. This channel is modelled by the following Kraus matrices: .. math:: K_0 = \sqrt{1-p_0-p_1} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} .. math:: K_1 = \sqrt{p_0}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} .. math:: K_2 = \sqrt{p_0}\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} .. math:: K_3 = \sqrt{p_1}\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} .. math:: K_4 = \sqrt{p_1}\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} where :math:`p_0 \in [0, 1]` is the probability of a reset to 0, and :math:`p_1 \in [0, 1]` is the probability of a reset to 1 error. **Details:** * Number of wires: 1 * Number of parameters: 2 Args: p_0 (float): The probability that a reset to 0 error occurs. p_1 (float): The probability that a reset to 1 error occurs. wires (Sequence[int] or int): the wire the channel acts on """ num_wires = 1 grad_method = "F" @property def num_params(self): return 2 @classmethod def _kraus_matrices(cls, *params): p_0, p_1 = params[0], params[1] if not 0.0 <= p_0 <= 1.0: raise ValueError("p_0 must be between [0,1]") if not 0.0 <= p_1 <= 1.0: raise ValueError("p_1 must be between [0,1]") if not 0.0 <= p_0 + p_1 <= 1.0: raise ValueError("p_0 + p_1 must be between [0,1]") K0 = np.sqrt(1 - p_0 - p_1) * np.eye(2) K1 = np.sqrt(p_0) * np.array([[1, 0], [0, 0]]) K2 = np.sqrt(p_0) * np.array([[0, 1], [0, 0]]) K3 = np.sqrt(p_1) * np.array([[0, 0], [1, 0]]) K4 = np.sqrt(p_1) *
np.array([[0, 0], [0, 1]])
numpy.array
################################################################################### ## Main sampler ## Depending on the number of MCMC states defined in the first run. if __name__ == "__main__": import nonstat_model_noXs.model_sim as utils import nonstat_model_noXs.generic_samplers as sampler import nonstat_model_noXs.priors as priors import os import numpy as np import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from pickle import load from pickle import dump from scipy.linalg import lapack # Check whether the 'mpi4py' is installed test_mpi = os.system("python -c 'from mpi4py import *' &> /dev/null") if test_mpi != 0: import sys sys.exit("mpi4py import is failing, aborting...") # get rank and size from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() size = comm.Get_size() thinning = 10; echo_interval = 20; n_updates = 50001 # Filename for storing the intermediate results input_file='./nonstat_progress_'+str(rank)+'.pkl' # Load data input if rank==0: with open(input_file, 'rb') as f: Y = load(f) cen = load(f) cen_above = load(f) initial_values = load(f) sigma_m = load(f) prop_sigma = load(f) iter_current = load(f) phi_trace = load(f) tau_sqd_trace = load(f) theta_c_trace = load(f) beta_loc0_trace = load(f) beta_loc1_trace = load(f) beta_scale_trace = load(f) beta_shape_trace = load(f) Z_1t_trace = load(f) R_1t_trace = load(f) Y_onetime = load(f) X_onetime = load(f) X_s_onetime = load(f) R_onetime = load(f) Z_onetime = load(f) f.close() else: with open(input_file, 'rb') as f: Y = load(f) cen = load(f) cen_above = load(f) initial_values = load(f) sigma_m = load(f) iter_current = load(f) Z_1t_trace = load(f) R_1t_trace = load(f) Y_onetime = load(f) X_onetime = load(f) X_s_onetime = load(f) R_onetime = load(f) Z_onetime = load(f) f.close() # Bookkeeping n_s = Y.shape[0] n_t = Y.shape[1] if n_t != size: import sys sys.exit("Make sure the number of cpus (N) = number of time replicates (n_t), i.e.\n srun -N python nonstat_sampler.py") wh_to_plot_Xs = n_s*np.array([0.25,0.5,0.75]) wh_to_plot_Xs = wh_to_plot_Xs.astype(int) # Filename for storing the intermediate results filename='./nonstat_progress_'+str(rank)+'.pkl' # Generate multiple independent random streams random_generator = np.random.RandomState() # Constants to control adaptation of the Metropolis sampler c_0 = 10 c_1 = 0.8 offset = 3 # the iteration offset r_opt_1d = .41 r_opt_2d = .35 eps = 1e-6 # a small number # Hyper parameters for the prior of the mixing distribution parameters and hyper_params_phi = np.array([0.5,0.7]) hyper_params_tau_sqd = np.array([0.1,0.1]) hyper_params_theta_c = np.array([0, 20]) hyper_params_theta_gev = 25 # hyper_params_range = np.array([0.5,1.5]) # in case where roughness is not updated # Load latest values initial_values = comm.bcast(initial_values,root=0) # Latest values are mostly in initial_values phi = initial_values['phi'] gamma = initial_values['gamma'] tau_sqd = initial_values['tau_sqd'] prob_below = initial_values['prob_below'] prob_above = initial_values['prob_above'] Dist = initial_values['Dist'] theta_c = initial_values['theta_c'] Design_mat = initial_values['Design_mat'] beta_loc0 = initial_values['beta_loc0'] beta_loc1 = initial_values['beta_loc1'] Time = initial_values['Time'] beta_scale = initial_values['beta_scale'] beta_shape = initial_values['beta_shape'] n_covariates = len(beta_loc0) if rank == 0: X = np.empty((n_s,n_t)) X_s = np.empty((n_s,n_t)) Z = np.empty((n_s,n_t)) R = np.empty((n_t,)) # Eigendecomposition of the correlation matrix tmp_vec = np.ones(n_s) Cor = utils.corr_fn(Dist, theta_c) # eig_Cor = np.linalg.eigh(Cor) #For symmetric matrices # V = eig_Cor[1] # d = eig_Cor[0] cholesky_inv = lapack.dposv(Cor,tmp_vec) # For current values of phi and gamma, obtain grids of survival probs and densities grid = utils.density_interp_grid(phi, gamma, grid_size=800) xp = grid[0]; den_p = grid[1]; surv_p = grid[2] thresh_X = utils.qRW_me_interp(prob_below, xp, surv_p, tau_sqd, phi, gamma) thresh_X_above = utils.qRW_me_interp(prob_above, xp, surv_p, tau_sqd, phi, gamma) # Marginal GEV parameters: per location x time loc0 = Design_mat @beta_loc0 loc1 = Design_mat @beta_loc1 Loc = np.tile(loc0, n_t) + np.tile(loc1, n_t)*np.repeat(Time,n_s) Loc = Loc.reshape((n_s,n_t),order='F') scale = Design_mat @beta_scale Scale = np.tile(scale, n_t) Scale = Scale.reshape((n_s,n_t),order='F') Design_mat1 = np.c_[np.repeat(1,n_s), np.log(Design_mat[:,1])] shape = Design_mat1 @beta_shape Shape = np.tile(shape, n_t) Shape = Shape.reshape((n_s,n_t),order='F') # Initial trace objects Z_1t_accept = np.zeros(n_s) R_accept = 0 if rank == 0: print("Number of time replicates = %d"%size) theta_c_trace_within_thinning = np.empty((2,thinning)); theta_c_trace_within_thinning[:] = np.nan beta_loc0_trace_within_thinning = np.empty((n_covariates,thinning)); beta_loc0_trace_within_thinning[:] = np.nan beta_loc1_trace_within_thinning = np.empty((n_covariates,thinning)); beta_loc1_trace_within_thinning[:] = np.nan beta_scale_trace_within_thinning = np.empty((n_covariates,thinning)); beta_scale_trace_within_thinning[:] = np.nan beta_shape_trace_within_thinning = np.empty((n_covariates,thinning)); beta_shape_trace_within_thinning[:] = np.nan phi_accept = 0 tau_sqd_accept = 0 theta_c_accept = 0 beta_loc0_accept = 0 beta_loc1_accept = 0 beta_scale_accept = 0 beta_shape_accept = 0 # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- # --------------------------- Start Metropolis Updates ------------------------------ # ----------------------------------------------------------------------------------- # ----------------------------------------------------------------------------------- for iter in np.arange(iter_current+1,n_updates): # Update X # print(str(rank)+" "+str(iter)+" Gathered? "+str(np.where(~cen))) X_onetime = utils.X_update(Y_onetime, cen[:,rank], cen_above[:,rank], xp, surv_p, tau_sqd, phi, gamma, Loc[:,rank], Scale[:,rank], Shape[:,rank]) # Update Z tmp = utils.Z_update_onetime(Y_onetime, X_onetime, R_onetime, Z_onetime, cen[:,rank], cen_above[:,rank], prob_below, prob_above, tau_sqd, phi, gamma, Loc[:,rank], Scale[:,rank], Shape[:,rank], xp, surv_p, den_p, thresh_X, thresh_X_above, Cor, cholesky_inv, sigma_m['Z_onetime'], random_generator) Z_1t_accept = Z_1t_accept + tmp # Update R Metr_R = sampler.static_metr(Y_onetime, R_onetime, utils.Rt_update_mixture_me_likelihood, priors.R_prior, gamma, 2, random_generator, np.nan, sigma_m['R_1t'], False, X_onetime, Z_onetime, cen[:,rank], cen_above[:,rank], prob_below, prob_above, Loc[:,rank], Scale[:,rank], Shape[:,rank], tau_sqd, phi, gamma, xp, surv_p, den_p, thresh_X, thresh_X_above) R_accept = R_accept + Metr_R['acc_prob'] R_onetime = Metr_R['trace'][0,1] X_s_onetime = (R_onetime**phi)*utils.norm_to_Pareto(Z_onetime) # *** Gather items *** X_s_recv = comm.gather(X_s_onetime,root=0) X_recv = comm.gather(X_onetime, root=0) Z_recv = comm.gather(Z_onetime, root=0) R_recv = comm.gather(R_onetime, root=0) if rank==0: X_s[:] = np.vstack(X_s_recv).T X[:] = np.vstack(X_recv).T # Check whether X is negative if np.any(X[~cen & ~cen_above]<0): sys.exit("X value abnormalty "+str(phi)+" "+str(tau_sqd)) Z[:] = np.vstack(Z_recv).T R[:] = R_recv index_within = (iter-1)%thinning # print('beta_shape_accept=',beta_shape_accept, ', iter=', iter) # Update phi Metr_phi = sampler.static_metr(Y, phi, utils.phi_update_mixture_me_likelihood, priors.interval_unif, hyper_params_phi, 2, random_generator, np.nan, sigma_m['phi'], False, R, Z, cen, cen_above, prob_below, prob_above, Loc, Scale, Shape, tau_sqd, gamma) phi_accept = phi_accept + Metr_phi['acc_prob'] phi = Metr_phi['trace'][0,1] # Update gamma (TBD) # grid = utils.density_interp_grid(phi, gamma, grid_size=800) xp = grid[0]; den_p = grid[1]; surv_p = grid[2] X_s = (R**phi)*utils.norm_to_Pareto(Z) # Update tau_sqd Metr_tau_sqd = sampler.static_metr(Y, tau_sqd, utils.tau_update_mixture_me_likelihood, priors.invGamma_prior, hyper_params_tau_sqd, 2, random_generator, np.nan, sigma_m['tau_sqd'], False, X_s, cen, cen_above, prob_below, prob_above, Loc, Scale, Shape, phi, gamma, xp, surv_p, den_p) tau_sqd_accept = tau_sqd_accept + Metr_tau_sqd['acc_prob'] tau_sqd = Metr_tau_sqd['trace'][0,1] thresh_X = utils.qRW_me_interp(prob_below, xp, surv_p, tau_sqd, phi, gamma) thresh_X_above = utils.qRW_me_interp(prob_above, xp, surv_p, tau_sqd, phi, gamma) # Update theta_c Metr_theta_c = sampler.static_metr(Z, theta_c, utils.theta_c_update_mixture_me_likelihood, priors.interval_unif_multi, hyper_params_theta_c, 2, random_generator, prop_sigma['theta_c'], sigma_m['theta_c'], False, Dist) theta_c_accept = theta_c_accept + Metr_theta_c['acc_prob'] theta_c = Metr_theta_c['trace'][:,1] theta_c_trace_within_thinning[:,index_within] = theta_c if Metr_theta_c['acc_prob']>0: Cor = utils.corr_fn(Dist, theta_c) # eig_Cor = np.linalg.eigh(Cor) #For symmetric matrices # V = eig_Cor[1] # d = eig_Cor[0] cholesky_inv = lapack.dposv(Cor,tmp_vec) # Update beta_loc0 Metr_beta_loc0 = sampler.static_metr(Design_mat, beta_loc0, utils.loc0_gev_update_mixture_me_likelihood, priors.unif_prior, hyper_params_theta_gev, 2, random_generator, prop_sigma['beta_loc0'], sigma_m['beta_loc0'], False, Y, X_s, cen, cen_above, prob_below, prob_above, tau_sqd, phi, gamma, loc1, Scale, Shape, Time, xp, surv_p, den_p, thresh_X, thresh_X_above) beta_loc0_accept = beta_loc0_accept + Metr_beta_loc0['acc_prob'] beta_loc0 = Metr_beta_loc0['trace'][:,1] beta_loc0_trace_within_thinning[:,index_within] = beta_loc0 loc0 = Design_mat @beta_loc0 # Update beta_loc1 Metr_beta_loc1 = sampler.static_metr(Design_mat, beta_loc1, utils.loc1_gev_update_mixture_me_likelihood, priors.unif_prior, hyper_params_theta_gev, 2, random_generator, prop_sigma['beta_loc1'], sigma_m['beta_loc1'], False, Y, X_s, cen, cen_above, prob_below, prob_above, tau_sqd, phi, gamma, loc0, Scale, Shape, Time, xp, surv_p, den_p, thresh_X, thresh_X_above) beta_loc1_accept = beta_loc1_accept + Metr_beta_loc1['acc_prob'] beta_loc1 = Metr_beta_loc1['trace'][:,1] beta_loc1_trace_within_thinning[:,index_within] = beta_loc1 loc1 = Design_mat @beta_loc1 Loc = np.tile(loc0, n_t) + np.tile(loc1, n_t)*np.repeat(Time,n_s) Loc = Loc.reshape((n_s,n_t),order='F') # Update beta_scale Metr_beta_scale = sampler.static_metr(Design_mat, beta_scale, utils.scale_gev_update_mixture_me_likelihood, priors.unif_prior, hyper_params_theta_gev, 2, random_generator, prop_sigma['beta_scale'], sigma_m['beta_scale'], False, Y, X_s, cen, cen_above, prob_below, prob_above, tau_sqd, phi, gamma, Loc, Shape, Time, xp, surv_p, den_p, thresh_X, thresh_X_above) beta_scale_accept = beta_scale_accept + Metr_beta_scale['acc_prob'] beta_scale = Metr_beta_scale['trace'][:,1] beta_scale_trace_within_thinning[:,index_within] = beta_scale scale = Design_mat @beta_scale Scale = np.tile(scale, n_t) Scale = Scale.reshape((n_s,n_t),order='F') # # Update beta_shape # Metr_beta_shape = sampler.static_metr(Design_mat, beta_shape, utils.shape_gev_update_mixture_me_likelihood, # priors.unif_prior, hyper_params_theta_gev, 2, # random_generator, # prop_sigma['beta_shape'], sigma_m['beta_shape'], False, # Y, X_s, cen, cen_above, prob_below, prob_above, # tau_sqd, phi, gamma, Loc, Scale, Time, xp, surv_p, den_p, # thresh_X, thresh_X_above) # beta_shape_accept = beta_shape_accept + Metr_beta_shape['acc_prob'] # beta_shape = Metr_beta_shape['trace'][:,1] # beta_shape_trace_within_thinning[:,index_within] = beta_shape # shape = Design_mat1 @beta_shape # Shape = np.tile(shape, n_t) # Shape = Shape.reshape((n_s,n_t),order='F') # cen[:] = utils.which_censored(Y, Loc, Scale, Shape, prob_below) # cen_above[:] = ~utils.which_censored(Y, Loc, Scale, Shape, prob_above) # *** Broadcast items *** phi = comm.bcast(phi,root=0) xp = comm.bcast(xp,root=0) den_p = comm.bcast(den_p,root=0) surv_p = comm.bcast(surv_p,root=0) tau_sqd = comm.bcast(tau_sqd,root=0) thresh_X = comm.bcast(thresh_X,root=0) thresh_X_above = comm.bcast(thresh_X_above,root=0) theta_c = comm.bcast(theta_c,root=0) # V = comm.bcast(V,root=0) # d = comm.bcast(d,root=0) Cor = comm.bcast(Cor,root=0) cholesky_inv = comm.bcast(cholesky_inv,root=0) Loc = comm.bcast(Loc,root=0) Scale = comm.bcast(Scale,root=0) Shape = comm.bcast(Shape,root=0) # cen = comm.bcast(cen,root=0) # cen_above = comm.bcast(cen_above,root=0) # ---------------------------------------------------------------------------------------- # --------------------------- Summarize every 'thinning' steps --------------------------- # ---------------------------------------------------------------------------------------- if (iter % thinning) == 0: index = np.int(iter/thinning) # Fill in trace objects Z_1t_trace[:,index] = Z_onetime R_1t_trace[index] = R_onetime if rank == 0: phi_trace[index] = phi tau_sqd_trace[index] = tau_sqd theta_c_trace[:,index] = theta_c beta_loc0_trace[:,index] = beta_loc0 beta_loc1_trace[:,index] = beta_loc1 beta_scale_trace[:,index] = beta_scale beta_shape_trace[:,index] = beta_shape # Adapt via Shaby and Wells (2010) gamma2 = 1 / (index + offset)**(c_1) gamma1 = c_0*gamma2 sigma_m['Z_onetime'] = np.exp(np.log(sigma_m['Z_onetime']) + gamma1*(Z_1t_accept/thinning - r_opt_1d)) Z_1t_accept[:] = 0 sigma_m['R_1t'] = np.exp(
np.log(sigma_m['R_1t'])
numpy.log
#!/usr/bin/env python import numpy as np import numpy.matlib import pickle import matplotlib.pyplot as plt from gym_collision_avoidance.envs.policies.CADRL.scripts.neural_networks.test_data import generate_symmetric_sinusoids from gym_collision_avoidance.envs.policies.CADRL.scripts.neural_networks.nn_training_param import NN_training_param from gym_collision_avoidance.envs.policies.CADRL.scripts.neural_networks.multiagent_network_param import Multiagent_network_param import os import time import copy # fully connected nerual network with weight sharing for # capturing symmetry in multiagent systems class Neural_network_regr_multi: def __init__(self, nn_training_param, plotting_func=None, X_vis=None): self.set_training_param(nn_training_param) self.plotting_func = plotting_func self.X_vis = X_vis # layer_info = [[num_types, nodes_per_type], [num_types, nodes_per_type]] def initialize_network_param(self, layers_info, layers_type, multiagent_net_param=None): self.id_num = -1 #print self.layers_dim if multiagent_net_param is not None: self.multiagent_net_param = multiagent_net_param else: self.multiagent_net_param = Multiagent_network_param(layers_info, layers_type) # populate other fields from layers_info self.num_layers = len(layers_info) self.num_hidden_layers = self.num_layers - 2 self.layers_dim = [] for i in range(len(layers_info)): self.layers_dim.append(int(np.sum(layers_info[i][:,0]*layers_info[i][:,1]))) print(self.layers_dim) self.input_dim = self.layers_dim[0] self.output_dim = self.layers_dim[-1] self.initialize_nn_weights() self.avg_vec = np.zeros((self.input_dim,)) self.std_vec = np.ones((self.input_dim,)) self.output_dim_weights = np.ones((self.output_dim,)) self.output_avg_vec = np.zeros((self.output_dim,)) self.output_std_vec = np.zeros((self.output_dim,)) # self.print_nn() def save_neural_network(self, filename): # save weights nn_list = [] nn_list.append(self.W) nn_list.append(self.b) # save avg_vec and std_vec nn_list.append(self.avg_vec) nn_list.append(self.std_vec) nn_list.append(self.output_avg_vec) nn_list.append(self.output_std_vec) nn_list.append(self.multiagent_net_param.layers_info) nn_list.append(self.multiagent_net_param.layers_type) nn_list.append(self.multiagent_net_param.symmetric_indices) nn_list.append(self.multiagent_net_param.symmetric_indices_b) nn_list.append(self.id_num) pickle.dump(nn_list, open(filename, "wb")) return def load_neural_network(self, filename): with open(filename, 'rb') as fo: try: nn_list = pickle.load(fo) except UnicodeDecodeError: #python 3.x fo.seek(0) nn_list = pickle.load(fo, encoding='latin1') self.W = nn_list[0] self.b = nn_list[1] self.avg_vec = nn_list[2] self.std_vec = nn_list[3] self.output_avg_vec = nn_list[4] self.output_std_vec = nn_list[5] # multiagent_net_param layers_info = nn_list[6] layers_type = nn_list[7] symmetric_indices = nn_list[8] symmetric_indices_b = nn_list[9] self.multiagent_net_param = Multiagent_network_param(layers_info, layers_type, \ symmetric_indices=symmetric_indices, symmetric_indices_b=symmetric_indices_b) self.id_num = nn_list[10] # retrieve network params self.num_hidden_layers = len(self.W) - 1 self.input_dim = self.W[0].shape[0] self.output_dim = self.W[-1].shape[1] #print 'input_dim, output_dim', input_dim, output_dim #print 'hidden_layers_size' , hidden_layers_size self.layers_dim = [] for i in range(len(layers_info)): self.layers_dim.append(int(np.sum(layers_info[i][:,0]*layers_info[i][:,1]))) #print self.layers_dim self.num_layers = self.num_hidden_layers + 2 # self.print_nn() self.output_dim_weights = np.ones((self.output_dim,)) self.load_symBlocks() return def set_plotting_func(self, func, X_vis): self.plotting_func = func self.X_vis = X_vis def set_training_stepsize(self, sgd_stepsize_mode='fixed_decay', sgd_step_c=0.1, sgd_step_epsilon=0.1): self.nn_training_param.sgd_stepsize_mode = sgd_stepsize_mode self.nn_training_param.sgd_step_c = sgd_step_c self.nn_training_param.sdg_step_epsilon = sgd_step_epsilon if sgd_stepsize_mode == 'momentum' or sgd_stepsize_mode == 'sum_of_grad' \ or sgd_stepsize_mode == 'rmsprop': self.initialize_sum_of_grad() def print_nn(self): print('---------------------------------------------------------') print('~~ neural_network_regr structure ~~') print('id', self.id_num) print('num_hidden_layers: %d' % self.num_hidden_layers) print('layers_dim', self.layers_dim) print('~~ neural_network_regr training param ~~') print('sgd_step_size: %f' % self.nn_training_param.sgd_step_size) print('reg_lambda: %f' % self.nn_training_param.reg_lambda) print('nb_iter: %d' % self.nn_training_param.nb_iter) print('sgd_batch_size: %d' % self.nn_training_param.sgd_batch_size) print('w_scale: %f' % self.nn_training_param.w_scale) print('avg_vec', self.avg_vec) print('std_vec', self.std_vec) print('out_avg_vec', self.output_avg_vec) print('output_std_vec', self.output_std_vec) print('---------------------------------------------------------') def load_symBlocks(self): self.sym_W = list() self.sym_dW = list() self.sym_b = list() self.sym_db = list() # ith layer, jth symmetry block for i in range(self.num_hidden_layers+1): sym_W_layer = list() sym_dW_layer = list() sym_b_layer = list() sym_db_layer = list() # W, dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): a = self.multiagent_net_param.symmetric_indices[i][j][0, 0] b = self.multiagent_net_param.symmetric_indices[i][j][0, 1] c = self.multiagent_net_param.symmetric_indices[i][j][0, 2] d = self.multiagent_net_param.symmetric_indices[i][j][0, 3] sym_W_layer.append(self.W[i][a:b,c:d].copy()) sym_dW_layer.append(np.zeros((b-a, d-c))) # b, db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): a = self.multiagent_net_param.symmetric_indices_b[i][k][0, 0] b = self.multiagent_net_param.symmetric_indices_b[i][k][0, 1] sym_b_layer.append(self.b[i][0,a:b].copy()) sym_db_layer.append(np.zeros((b-a, ))) self.sym_W.append(sym_W_layer) self.sym_dW.append(sym_dW_layer) self.sym_b.append(sym_b_layer) self.sym_db.append(sym_db_layer) def initialize_nn_weights(self): # compute symmetric indices blocks self.sym_W = list() self.sym_dW = list() self.sym_b = list() self.sym_db = list() # ith layer, jth symmetry block for i in range(self.num_hidden_layers+1): sym_W_layer = list() sym_dW_layer = list() sym_b_layer = list() sym_db_layer = list() # W, dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): num_rows = self.multiagent_net_param.symmetric_indices[i][j][0,1] - \ self.multiagent_net_param.symmetric_indices[i][j][0,0] num_cols = self.multiagent_net_param.symmetric_indices[i][j][0,3] - \ self.multiagent_net_param.symmetric_indices[i][j][0,2] sym_W_layer.append(self.nn_training_param.w_scale * \ (np.random.rand(num_rows, num_cols)-0.5)) sym_dW_layer.append(np.zeros((num_rows, num_cols))) # b, db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): num_cols = self.multiagent_net_param.symmetric_indices_b[i][k][0,1] - \ self.multiagent_net_param.symmetric_indices_b[i][k][0,0] sym_b_layer.append(np.zeros((1, num_cols))) sym_db_layer.append(np.zeros((1, num_cols))) self.sym_W.append(sym_W_layer) self.sym_dW.append(sym_dW_layer) self.sym_b.append(sym_b_layer) self.sym_db.append(sym_db_layer) # neural network parameters self.W = list() self.dW = list() self.b = list() self.db = list() for i in range(self.num_hidden_layers+1): if self.multiagent_net_param.layers_type[i] == 'conn': layer_input_dim = self.layers_dim[i] layer_output_dim = self.layers_dim[i+1] fan_in_weight = np.sqrt(2.0/layer_input_dim) # print fan_in_weight self.W.append(np.zeros((layer_input_dim, layer_output_dim))) self.dW.append(np.zeros((layer_input_dim, layer_output_dim))) self.b.append(np.zeros((1, layer_output_dim))) self.db.append(np.zeros((1, layer_output_dim))) elif self.multiagent_net_param.layers_type[i] == 'max': self.W.append([]) self.dW.append([]) self.b.append([]) self.db.append([]) self.symIndices_2_mat() def symIndices_2_mat(self): for i in range(self.num_hidden_layers+1): # W for j in range(len(self.multiagent_net_param.symmetric_indices[i])): for jj in range(self.multiagent_net_param.symmetric_indices[i][j].shape[0]): a = self.multiagent_net_param.symmetric_indices[i][j][jj,0] b = self.multiagent_net_param.symmetric_indices[i][j][jj,1] c = self.multiagent_net_param.symmetric_indices[i][j][jj,2] d = self.multiagent_net_param.symmetric_indices[i][j][jj,3] # print '~~~', i, j # print a,b,c,d # # print self.sym_W[i][j].shape # print self.W[i].shape # print i, self.W[i].shape, a,b,c,d # print self.W[i][a:b,c:d].shape, self.sym_W[i][j].shape self.W[i][a:b,c:d] = self.sym_W[i][j] # b for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): for kk in range(self.multiagent_net_param.symmetric_indices_b[i][k].shape[0]): a = self.multiagent_net_param.symmetric_indices_b[i][k][kk,0] b = self.multiagent_net_param.symmetric_indices_b[i][k][kk,1] # print 'i,k,a,b', i, k, a, b # print 'self.b[i].shape', self.b[i].shape # print 'self.sym_b[i][k].shape', self.sym_b[i][k].shape # print self.b[i][a:b].shape self.b[i][0,a:b] = self.sym_b[i][k] def dW_2_symIndices(self): for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sym_dW[i][j][:] = 0 for jj in range(self.multiagent_net_param.symmetric_indices[i][j].shape[0]): a = self.multiagent_net_param.symmetric_indices[i][j][jj,0] b = self.multiagent_net_param.symmetric_indices[i][j][jj,1] c = self.multiagent_net_param.symmetric_indices[i][j][jj,2] d = self.multiagent_net_param.symmetric_indices[i][j][jj,3] self.sym_dW[i][j] += self.dW[i][a:b,c:d] # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sym_db[i][k][:] = 0 for kk in range(self.multiagent_net_param.symmetric_indices_b[i][k].shape[0]): a = self.multiagent_net_param.symmetric_indices_b[i][k][kk,0] b = self.multiagent_net_param.symmetric_indices_b[i][k][kk,1] self.sym_db[i][k] += self.db[i][a:b] def update_symIndices(self, param, step_size, iteration): # method 1: fixed_decay if param.sgd_stepsize_mode == 'fixed_decay': # update step size (e.g. decrease every ... iterations) if (iteration % 200) == 0: step_size = step_size / 1.5 # print 'fixed decay, step size', step_size # gradient udpate for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sym_W[i][j] -= step_size * self.sym_dW[i][j] # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sym_b[i][k] -= step_size * self.sym_db[i][k] # method 2: sqrt_decay elif param.sgd_stepsize_mode == 'sqrt_decay': c = param.sgd_step_c epsilon = param.sgd_step_epsilon step_size = c / (np.sqrt(iteration) + epsilon) # gradient udpate for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sym_W[i][j] -= step_size * self.sym_dW[i][j] # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sym_b[i][k] -= step_size * self.sym_db[i][k] # method 3: sum of gradients elif param.sgd_stepsize_mode == 'sum_of_grad': c = param.sgd_step_c epsilon = param.sgd_step_epsilon for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sum_sym_dW[i][j] += np.square(self.sym_dW[i][j]) self.sym_W[i][j] -= c / (np.sqrt(self.sum_sym_dW[i][j]) + epsilon) \ * self.sym_dW[i][j] # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sum_sym_db[i][k] += np.square(self.sym_db[i][k]) self.sym_b[i][k] -= c / (np.sqrt(self.sum_sym_db[i][k]) + epsilon) \ * self.sym_db[i][k] # just for debugging step_size = np.amax(c / (np.sqrt(self.sum_sym_dW[0][0]) + epsilon)) # method 4: momentum elif param.sgd_stepsize_mode == 'momentum': if step_size > 0.01: alpha = 0.5 else: alpha = 0.99 if (iteration % 200) == 0: step_size = step_size / 1.5 for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sum_sym_dW[i][j] = alpha * self.sum_sym_dW[i][j] \ - step_size * self.sym_dW[i][j] self.sym_W[i][j] += self.sum_sym_dW[i][j] # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sum_sym_db[i][k] = alpha * self.sum_sym_db[i][k] \ - step_size * self.sym_db[i][k] self.sym_b[i][k] += self.sum_sym_db[i][k] # method 5: rmsprop elif param.sgd_stepsize_mode == 'rmsprop': alpha = 0.9 for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sum_sym_dW[i][j] = alpha * self.sum_sym_dW[i][j] + \ (1-alpha) * np.square(self.sym_dW[i][j]) self.sym_W[i][j] -= 0.01 * step_size * self.sym_dW[i][j] / \ (np.sqrt(self.sum_sym_dW[i][j])+0.001) # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sum_sym_db[i][k] = alpha * self.sum_sym_db[i][k] + \ (1-alpha) * np.square(self.sym_db[i][k]) self.sym_b[i][k] -= 0.01 * step_size * self.sym_db[i][k] / \ (np.sqrt(self.sum_sym_db[i][k])+0.001) else: assert('unknown nerual network training type') return step_size def initialize_sum_of_grad(self): # for sum of grad self.sum_sym_dW = copy.deepcopy(self.sym_dW) self.sum_sym_db = copy.deepcopy(self.sym_db) for i in range(self.num_hidden_layers+1): # update sym_dW for j in range(len(self.multiagent_net_param.symmetric_indices[i])): self.sum_sym_dW[i][j][:] = 0 # update sym_db for k in range(len(self.multiagent_net_param.symmetric_indices_b[i])): self.sum_sym_db[i][k][:] = 0 def initialize_derivatives(self): self.dW = list() self.db = list() for i in range(self.num_hidden_layers+1): if self.multiagent_net_param.layers_type[i] == 'conn': layer_input_dim = self.layers_dim[i] layer_output_dim = self.layers_dim[i+1] self.dW.append(np.zeros((layer_input_dim, layer_output_dim))) self.db.append(np.zeros((1, layer_output_dim))) elif self.multiagent_net_param.layers_type[i] == 'max': self.dW.append([]) self.db.append([]) def set_training_param(self, nn_training_param): self.nn_training_param = nn_training_param # compute shifts to the x-y variables def compute_offset(self, X, Y, input_output_ranges): if input_output_ranges is None: self.avg_vec = np.mean(X, axis = 0) self.std_vec = np.std(X, axis = 0) self.output_avg_vec = np.mean(Y, axis = 0) self.output_std_vec = np.std(Y, axis = 0) else: self.avg_vec = input_output_ranges[0] self.std_vec = input_output_ranges[1] self.output_avg_vec = input_output_ranges[2] self.output_std_vec = input_output_ranges[3] # debug # print 'computing offset' # print 'avg_vec', self.avg_vec # print 'std_vec', self.std_vec # print 'out_avg_vec', self.output_avg_vec # print 'output_std_vec', self.output_std_vec # if input_output_ranges is not None: # avg_vec = input_output_ranges[0] # std_vec = input_output_ranges[1] # output_avg_vec = input_output_ranges[2] # output_std_vec = input_output_ranges[3] # print 'avg_vec', self.avg_vec - avg_vec # print 'std_vec', self.std_vec - std_vec # print 'out_avg_vec', self.output_avg_vec - output_avg_vec # print 'output_std_vec', self.output_std_vec - output_std_vec # raw_input() # scale X (xRaw_2_x) def xRaw_2_x(self, X_raw): if len(X_raw.shape) > 1: nb_examples = X_raw.shape[0] else: nb_examples = 1 X = (X_raw - np.matlib.repmat(self.avg_vec, nb_examples, 1)) \ / np.matlib.repmat(self.std_vec, nb_examples, 1) return X # scale Y (yRaw_2_y) def yRaw_2_y(self, Y_raw): if len(Y_raw.shape) > 1: nb_examples = Y_raw.shape[0] else: nb_examples = 1 Y = (Y_raw - np.matlib.repmat(self.output_avg_vec, nb_examples, 1)) \ / np.matlib.repmat(self.output_std_vec, nb_examples, 1) return Y # scale Y (y_2_yraw) def y_2_yRaw(self, Y): if len(Y.shape) > 1: nb_examples = Y.shape[0] else: nb_examples = 1 Y_raw = Y * np.matlib.repmat(self.output_std_vec, nb_examples, 1) \ + np.matlib.repmat(self.output_avg_vec, nb_examples, 1) return Y_raw # back propagation def backprop(self, X, Y, step_size, iteration): if_nn_nav = False # if X.shape[1] >= 7 + 8 and (X.shape[1] - 7 ) % 8 == 0: # if_nn_nav = True # num_other_agents = (X.shape[1] - 7 ) / 8 # agent_off_indices = [] # for i in range(1, num_other_agents+1): # inds = np.where(X[:,7+(8*i)-1] < 1e-5)[0] # agent_off_indices.append(inds) # assert(np.all(X[inds, 7+8*(i-1):7+(8*i)]==0)) # print inds # raw_input() # training param param = self.nn_training_param # for forward/backward propogation nb_layers = self.num_hidden_layers + 1 forward_prop_o = [] backward_prop_xi = [] for i in range(nb_layers): forward_prop_o.append(np.empty([1,1])) backward_prop_xi.append(np.empty([1,1])) batch_size = X.shape[0] out = X.copy() y_out = Y.copy() # one step back prop for layer in range(nb_layers-1): # RelU # print 'layer', layer # print 'self.W[layer].shape', self.W[layer].shape # print 'out', out.shape if self.multiagent_net_param.layers_type[layer] == 'conn': tmp = np.dot(out, self.W[layer]) \ + np.matlib.repmat(self.b[layer], batch_size, 1) forward_prop_o[layer] = tmp * (tmp>0) elif self.multiagent_net_param.layers_type[layer] == 'max': num_pts = out.shape[0] next_layer_size = np.sum(self.multiagent_net_param.layers_info[layer][:,1]) forward_prop_o[layer] = np.zeros((num_pts, next_layer_size)) cur_s_ind = 0 next_s_ind = 0 for ii in range(self.multiagent_net_param.layers_info[layer].shape[0]): num_agents = self.multiagent_net_param.layers_info[layer][ii,0] stride = self.multiagent_net_param.layers_info[layer][ii,1] cur_e_ind = cur_s_ind + num_agents * stride next_e_ind = next_s_ind + stride # print '---' # print out[:,cur_s_ind:cur_e_ind].shape # # print block_form.shape # print 'num_pts,', num_pts, 'stride', stride # print forward_prop_o[layer][:,next_s_ind:next_e_ind].shape block_form = np.reshape(out[:,cur_s_ind:cur_e_ind], (num_pts,-1,stride)) forward_prop_o[layer][:,next_s_ind:next_e_ind] = \ np.max(block_form, axis=1) cur_s_ind = cur_e_ind next_s_ind = next_e_ind # print 'layer', layer # print 'out', out # print 'forward_prop_o[layer]', forward_prop_o[layer] # raw_input() # for more than one agent # if if_nn_nav == True and self.multiagent_net_param.layers_info[layer+1].shape[0] == 2: # stride = self.multiagent_net_param.layers_info[layer+1][1,1] # start_ind = self.multiagent_net_param.layers_info[layer+1][0,1] # for tt in range(num_other_agents): # forward_prop_o[layer][agent_off_indices[tt],start_ind:start_ind+stride] = 0 # start_ind += stride # raw_input() # dropout # p = 0.80 # dropout_mask = (np.random.rand(*forward_prop_o[layer].shape) < p) / p # forward_prop_o[layer] *= dropout_mask out = forward_prop_o[layer].copy() # last layer, softmax # print 'y_out.shape', y_out.shape # print 'self.output_dim_weights', self.output_dim_weights scores = y_out - \ (np.dot(forward_prop_o[-2], self.W[nb_layers-1]) + \ np.matlib.repmat(self.b[nb_layers-1], batch_size, 1)) scores = - np.matlib.repmat(self.output_dim_weights, batch_size, 1) * scores # print scores.shape # print expscores.shape # print expscores.sum(axis=1).shape # print np.matlib.repmat(expscores.sum(axis=1), k,1).transpose().shape #### backward pass starting from the output, i.e. the class probabilities ds = np.clip(scores, -1, 1) # partial derivative of loss wrt scores ds = ds / batch_size backward_prop_xi[nb_layers-1] = ds.copy() for j in range(nb_layers-1, 0, -1): if self.multiagent_net_param.layers_type[j] == 'conn': # print 'j', j # print 'backward_prop_xi[j].shape', backward_prop_xi[j].shape # print 'forward_prop_o[j-1].transpose().shape', forward_prop_o[j-1].transpose().shape # print '(param.reg_lambda * self.W[j]).shape', (param.reg_lambda * self.W[j]).shape self.dW[j] = np.dot(forward_prop_o[j-1].transpose(), backward_prop_xi[j]) \ + param.reg_lambda * self.W[j] #/ (self.W[j].shape[0] * self.W[j].shape[1]) # self.dW[j] = np.dot(forward_prop_o[j-1].transpose(), backward_prop_xi[j]) \ # + param.reg_lambda * 0.1 * (self.W[j]>0) / (self.W[j].shape[0] * self.W[j].shape[1]) # self.dW[j] = np.dot(forward_prop_o[j-1].transpose(), backward_prop_xi[j]) \ # + param.reg_lambda * 0.1 * np.sign(self.W[j]) self.db[j] = backward_prop_xi[j].sum(axis=0) # compute xi for previous layer and threshold at 0 if O is <0 (ReLU gradient update) backward_prop_xi[j-1] = numpy.dot(backward_prop_xi[j], self.W[j].transpose()) backward_prop_xi[j-1] = backward_prop_xi[j-1] * (forward_prop_o[j-1]>0) elif self.multiagent_net_param.layers_type[j] == 'max': # compute xi for previous layer for max operator num_pts = backward_prop_xi[j].shape[0] prev_layer_size = np.sum(self.multiagent_net_param.layers_info[j][:,0] \ * self.multiagent_net_param.layers_info[j][:,1]) backward_prop_xi[j-1] = np.zeros((num_pts, np.sum(prev_layer_size))) cur_s_ind = 0 prev_s_ind = 0 for jj in range(self.multiagent_net_param.layers_info[j].shape[0]): num_agents = self.multiagent_net_param.layers_info[j][jj,0] stride = self.multiagent_net_param.layers_info[j][jj,1] cur_e_ind = cur_s_ind + stride for jjj in range(num_agents): prev_e_ind = prev_s_ind + stride # print backward_prop_xi[j-1][:,prev_s_ind:prev_e_ind].shape # print 'what', cur_s_ind, cur_e_ind, backward_prop_xi[j][:,cur_s_ind:cur_e_ind].shape # print forward_prop_o[j-1][:,prev_s_ind:prev_e_ind].shape # print 'how', cur_s_ind, cur_e_ind, forward_prop_o[j][:,cur_s_ind:cur_e_ind].shape backward_prop_xi[j-1][:,prev_s_ind:prev_e_ind] = \ backward_prop_xi[j][:,cur_s_ind:cur_e_ind] * \ (forward_prop_o[j-1][:,prev_s_ind:prev_e_ind] >= \ (forward_prop_o[j][:,cur_s_ind:cur_e_ind])) prev_s_ind = prev_e_ind cur_s_ind = cur_e_ind # print 'forward_prop_o[j-1]', forward_prop_o[j-1] # print 'forward_prop_o[j]', forward_prop_o[j] # print 'backward_prop_xi[j-1]', backward_prop_xi[j-1] # print 'backward_prop_xi[j]', backward_prop_xi[j] # raw_input() self.dW[0] = np.dot(X.transpose(), backward_prop_xi[0]) \ + param.reg_lambda * self.W[0] #/ (self.W[0].shape[0] * self.W[0].shape[1]) # self.dW[0] = np.dot(X.transpose(), backward_prop_xi[0]) \ # + param.reg_lambda * 0.1 * (self.W[0]>0) / (self.W[0].shape[0] * self.W[0].shape[1]) self.db[0] = backward_prop_xi[0].sum(axis=0) # update symmetirc_db self.dW_2_symIndices() #### subgradient updates step_size = self.update_symIndices(param, step_size, iteration) self.symIndices_2_mat() return step_size # training from scratch def train_nn(self, dataset, ERM=0, dataset_test=None, ifPrint=True, input_output_ranges=None): # unique training id self.id_num = np.random.randint(1000) ''' process data ''' X = dataset[0] Y = dataset[1] nb_examples = X.shape[0] # normalize dataset self.compute_offset(X, Y, input_output_ranges) X = self.xRaw_2_x(X) Y = self.yRaw_2_y(Y) # error checking try: assert(np.any(np.isnan(X)) == False) assert(np.any(np.isnan(Y)) == False) except: print('X', X) print('Y', Y) assert(0) param = self.nn_training_param ''' if using sum_of_gradient step_size ''' if param.sgd_stepsize_mode == 'sum_of_grad': self.initialize_sum_of_grad() if param.sgd_stepsize_mode == 'momentum': self.initialize_sum_of_grad() if param.sgd_stepsize_mode == 'rmsprop': self.initialize_sum_of_grad() ''' training ''' # start training step_size = param.sgd_step_size t_start = time.time() if ERM == 1: num_samples = nb_examples else: num_samples = param.sgd_batch_size # main loop for i in range(param.nb_iter): if ERM == 1 or param.sgd_batch_size > nb_examples: #if full gradient batch_examples = np.arange(nb_examples) batch_size = nb_examples else: # else SGD with minibatch size batch_size = param.sgd_batch_size batch_examples = np.random.permutation(np.arange(nb_examples))[:batch_size] #### forward pass starting from input step_size = self.backprop(X[batch_examples,:], Y[batch_examples], step_size, i) #### print to screen for debugging if (i % np.ceil(param.nb_iter/100.0)) == 0 and ifPrint: z_train, z_sq_loss = self.evaluate_network_loss(X, Y) print('Iter %d, time elapsed: %f, Training disrete error: %f, square loss: %f, step_size_mode: %s, step size=%f' % \ (i, time.time()-t_start, z_train, z_sq_loss, param.sgd_stepsize_mode, step_size)) if self.plotting_func is not None and self.X_vis is not None: title_string = 'iter %d' % i figure_name = 'training' Y_vis = self.make_prediction_raw(self.X_vis) self.plotting_func(self.X_vis, Y_vis, title_string, figure_name=figure_name) if dataset_test is not None: X_test = dataset_test[0] Y_test = dataset_test[1] nb_test_ex = X_test.shape[0] X_test = self.xRaw_2_x(X_test) Y_test = self.yRaw_2_y(Y_test) z_test, z_sq_test = self.evaluate_network_loss(X_test, Y_test) print('Test discrete error: %f, test square loss: %f ' % (z_test, z_sq_test)) print(' ') print('checking symmetry condition') self.debug_symmemtric(X) # evaluating network loss def evaluate_network_loss(self, X, Y): Y_hat = self.make_prediction(X) sqloss = self.compute_sqloss(Y_hat, Y) scores = Y - Y_hat batch_size = Y.shape[0] scores = np.matlib.repmat(self.output_dim_weights, batch_size, 1) * np.square(scores) Y_hat = np.sum(scores, axis = 1) threshold = 0.25 discrete_loss = (Y.squeeze() > 0.25).sum() / float(Y.shape[0]) return discrete_loss, sqloss def make_prediction(self, X): if len(X.shape) > 1: nb_examples = X.shape[0] else: nb_examples = 1 X = X[np.newaxis,:] if_nn_nav = False # if X.shape[1] >= 7 + 8 and (X.shape[1] - 7 ) % 8 == 0: # if_nn_nav = True # num_other_agents = (X.shape[1] - 7 ) / 8 # agent_off_indices = [] # for i in range(1, num_other_agents+1): # inds = np.where(X[:,7+(8*i)-1] < 1e-5)[0] # agent_off_indices.append(inds) # try: # assert(np.all(X[inds, 7+8*(i-1):7+(8*i)]==0)) # except AssertionError: # print inds # print X[inds, 7+8*(i-1):7+(8*i)] # assert(0) nb_layers = self.num_hidden_layers + 1 out = X for layer in range(nb_layers-1): if self.multiagent_net_param.layers_type[layer] == 'conn': tmp = np.dot(out, self.W[layer]) \ + np.matlib.repmat(self.b[layer], nb_examples, 1) out = tmp * (tmp>0) elif self.multiagent_net_param.layers_type[layer] == 'max': num_pts = out.shape[0] next_layer_size = np.sum(self.multiagent_net_param.layers_info[layer][:,1]) out_next = np.zeros((num_pts, np.sum(next_layer_size))) if num_pts == 0: out = out_next continue cur_s_ind = 0 next_s_ind = 0 for ii in range(self.multiagent_net_param.layers_info[layer].shape[0]): num_agents = self.multiagent_net_param.layers_info[layer][ii,0] stride = self.multiagent_net_param.layers_info[layer][ii,1] cur_e_ind = cur_s_ind + num_agents * stride next_e_ind = next_s_ind + stride # print '---' # print out[:,cur_s_ind:cur_e_ind].shape # # print block_form.shape # print 'num_pts,', num_pts # print out_next[:,next_s_ind:next_e_ind].shape block_form = np.reshape(out[:,cur_s_ind:cur_e_ind], (num_pts,-1,stride)) # print out[:,cur_s_ind:cur_e_ind].shape # print block_form.shape # print 'num_pts,', num_pts # print forward_prop_o[layer][:,next_s_ind:next_e_ind].shape out_next[:,next_s_ind:next_e_ind] = \ np.max(block_form, axis=1) cur_s_ind = cur_e_ind next_s_ind = next_e_ind # print 'layer', layer # print 'out', out # print 'out_next', out_next out = out_next # raw_input() # if if_nn_nav == True and self.multiagent_net_param.layers_info[layer+1].shape[0] == 2: # stride = self.multiagent_net_param.layers_info[layer+1][1,1] # start_ind = self.multiagent_net_param.layers_info[layer+1][0,1] # for tt in range(num_other_agents): # out[agent_off_indices[tt],start_ind:start_ind+stride] = 0 # start_ind += stride y_hat = np.dot(out, self.W[nb_layers-1]) + \ np.matlib.repmat(self.b[nb_layers-1], nb_examples, 1) return y_hat def compute_sqloss(self, Y_hat, Y): # print Y_hat # print 'Y', Y # assert(0) batch_size = Y.shape[0] scores = Y - Y_hat scores = np.matlib.repmat(self.output_dim_weights, batch_size, 1) * scores sq_loss = 0.5 * np.sum(np.square(scores)) / batch_size return sq_loss # requires scaling the input dimension def make_prediction_raw(self, X_raw): X = self.xRaw_2_x(X_raw) Y_scale = self.make_prediction(X) Y_hat = self.y_2_yRaw(Y_scale) return Y_hat # debug, test whether network is symmentry def debug_symmemtric(self, X_raw): Y_nominal = self.make_prediction_raw(X_raw) # preturb input layer_info = self.multiagent_net_param.layers_info[0] num_perturbations = 10 for perturb in range(num_perturbations): # generate perturbation start_ind = 0 X_raw_cp = X_raw.copy() for i in range(layer_info.shape[0]): num_type = layer_info[i,0] stride = layer_info[i,1] if num_type > 1: other_ind = min(1, np.random.randint(num_type-1)+1) # print 'layer_info', layer_info # print 'i, num_type, stride', i, num_type, stride # print 'start_ind', start_ind # print 'other_ind', other_ind X_raw_cp[:,start_ind:start_ind+stride] = \ X_raw[:,start_ind+other_ind*stride:start_ind+(other_ind+1)*stride] X_raw_cp[:,start_ind+other_ind*stride:start_ind+(other_ind+1)*stride] = \ X_raw[:,start_ind:start_ind+stride] # debug # X_diff = X_raw_cp - X_raw # print 'X_diff[1,:]', X_diff[1,:] Y_hat = self.make_prediction_raw(X_raw_cp) try: assert(np.linalg.norm(Y_hat - Y_nominal)<1e-6) except AssertionError: print('symmetric condition not met') print('X_raw, Y_nominal', X_raw, Y_nominal) print('X_raw_cp, Y_raw', X_raw_cp, Y_hat) assert(0) # update start_ind start_ind += num_type * stride print('passed %d random cases' % num_perturbations) if __name__ == '__main__': print('hello world from neural_network.py') file_dir = os.path.dirname(os.path.realpath(__file__)) plt.rcParams.update({'font.size': 18}) ''' test on the spiral dataset ''' dataset_name = "/sinusoid_sum_1out"; sinusoid_dataset = pickle.load(open(file_dir+"/test_data" + dataset_name + "_dataset_train.p","rb")) sinusoid_sum_X = sinusoid_dataset[0] sinusoid_sum_Y = sinusoid_dataset[1] sinusoid_sum_X_vis = pickle.load(open(file_dir+"/test_data" + dataset_name + "_dataset_vis.p", "rb")) print('sinusoid_sum_X.shape', sinusoid_sum_X.shape) print('sinusoid_sum_Y.shape', sinusoid_sum_Y.shape) ''' initializing neural network ''' sgd_step_size = 10.0/20.0 reg_lambda = 1.0/1000.0 nb_iter = 1000 sgd_batch_size = 50 #0 w_scale = 0.1 sgd_stepsize_mode = 'training data' sgd_step_c = 0.1 sgd_step_epsilon = 0.1 nn_training_param = NN_training_param(sgd_step_size, reg_lambda, nb_iter, sgd_batch_size, w_scale) # note: layers_info must be compatible with hidden_layers_size layers_info = [] layers_type = [] layers_info.append(np.array([[2, 1]])); layers_type.append('conn') layers_info.append(np.array([[2, 50]])); layers_type.append('conn') # layers_info.append(np.array([[2, 50]])); layers_type.append('conn') layers_info.append(np.array([[2, 50]])); layers_type.append('max') layers_info.append(
np.array([[1, 50]])
numpy.array
import logging import numpy as np logger = logging.getLogger(__name__) def fill_struct(obj=None, att_vals=None): """ Fill object with attributes in a dictionary. If a struct is not given a new object will be created and filled. If the given struct has a field in att_vals, the original field will stay, unless specified otherwise in overwrite. att_vals is a dictionary with string keys, and for each key: if hasattr(s, key) and key in overwrite: pass else: setattr(s, key, att_vals[key]) :param obj: :param att_vals: :param overwrite :return: """ # TODO should consider making copy option - i.e that the input won't change if obj is None: obj = {} if att_vals is None: return obj for key in att_vals.keys(): if key not in obj.keys(): obj[key] = att_vals[key] return obj def conj_grad(a_fun, b, cg_opt=None, init=None): """ Conjugate Gradient method to solve the linear system. This is corresponding to the implemented version in the ASPIRE Matlab package. :param a_fun: A function handle specifying the linear operation x -> Ax. When multiple right-hand sides are supplied, this function takes as input an array of shape (n, p), where n is the number of right-hand sides and p is the dimension of the space. :param b: The vector consisting of the right hand side of Ax = b. Again, n different right-hand sides are given by supplying an array of shape (n, p). :param cg_opt: The parameters for the conjugate gradient method, including: max_iter: Maximum number of iterations (default 50). verbose: The extent to which information on progress should be output to the terminal (default 1). iter_callback: If non-empty, specifies a function to be called at the end of every iteration. In this case, iter_callback must be a function handle taking as single argument the info structure at the current iteration. For information on the info structure, see below (default []). preconditioner: If non-empty, specifies a preconditioner to be used in every iteration as a function handle defining the linear operator x -> Px (default []). rel_tolerance: The relative error at which to stop the algorithm, even if it has not yet reached the maximum number of iterations (default 1e-15). store_iterates: Defines whether to store each intermediate results in the info structure under the x, p and r fields. Since this may require a large amount of memory, this is not recommended (default false). :param init: A structure specifying the starting point of the algorithm. This can contain values of x or p that will be used for initialization (default empty). :return: The output result includes: x: The result of the conjugate gradient method after max_iter iterations or once the residual norm has decreased below rel_tolerance, relative. obj: The value of the objective function at the last iteration. info: A structure array containing intermediate information obtained during each iteration. These fields include: - iter: The iteration number. - x (for store_iterates true): The value of x. - r (for store_iterates true): The residual vector. - p (for store_iterates true): The p vector. - res: The square norm of the residual. - obj: The objective function. """ def identity(input_x): return input_x default_opt = { "verbose": 0, "max_iter": 50, "iter_callback": [], "store_iterates": False, "rel_tolerance": 1e-15, "precision": b.dtype, "preconditioner": identity, } cg_opt = fill_struct(cg_opt, default_opt) default_init = {"x": None, "p": None} init = fill_struct(default_init, init) if init["x"] is None: x = np.zeros(b.shape, dtype=b.dtype) else: x = init["x"] b_norm = np.linalg.norm(b) r = b.copy() # Need the copy call to ensure that s and r are not identical in the case # of an identity preconditioner. s = cg_opt["preconditioner"](r.copy()) if np.any(x != 0): if cg_opt["verbose"]: logger.info("[CG] Calculating initial residual") a_x = a_fun(x) r = r - a_x s = cg_opt["preconditioner"](r) else: a_x = np.zeros(x.shape, dtype=b.dtype) obj = np.real(np.sum(x.conj() * a_x, -1) - 2 * np.real(np.sum(np.conj(b * x), -1))) if init["p"] is None: p = s.copy() else: p = init["p"] info = fill_struct(att_vals={"iter": [0], "res": [np.linalg.norm(r)], "obj": [obj]}) if cg_opt["store_iterates"]: info = fill_struct(info, att_vals={"x": [x], "r": [r], "p": [p]}) if cg_opt["verbose"]: logger.info( "[CG] Initialized. Residual: {}. Objective: {}".format( np.linalg.norm(info["res"][0]), np.sum(info["obj"][0]) ) ) if b_norm == 0: # Matlat code returns b_norm == 0, this break the Python code when b = 0 return x, obj, info for i in range(1, cg_opt["max_iter"] + 1): if cg_opt["verbose"]: logger.info("[CG] Applying matrix & preconditioner") a_p = a_fun(p) old_gamma = np.real(np.sum(s.conj() * r, -1)) alpha = old_gamma / np.real(np.sum(p.conj() * a_p, -1)) x += alpha[..., np.newaxis] * p a_x += alpha[..., np.newaxis] * a_p r -= alpha[..., np.newaxis] * a_p s = cg_opt["preconditioner"](r.copy()) new_gamma = np.real(np.sum(r.conj() * s, -1)) beta = new_gamma / old_gamma p *= beta[..., np.newaxis] p += s obj = np.real( np.sum(x.conj() * a_x, -1) - 2 * np.real(np.sum(np.conj(b * x), -1)) ) res = np.sqrt(np.sum(r**2, -1)) info["iter"].append(i) info["res"].append(res) info["obj"].append(obj) if cg_opt["store_iterates"]: info["x"].append(x) info["r"].append(r) info["p"].append(p) if cg_opt["verbose"]: logger.info( "[CG] Iteration {}. Residual: {}. Objective: {}".format( i, np.linalg.norm(info["res"][i]),
np.sum(info["obj"][i])
numpy.sum
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num =
N.array([0,0,2])
numpy.array
# -*- coding: utf-8 -*- """ @author: <NAME> @time: 2022-2-18 16:55 """ import numpy as np class HMM(object): def __init__(self, state_num, observe_num, train_params = 'ste'): self.s_n = state_num self.o_n = observe_num self.A = np.random.rand(self.s_n, self.s_n) self.A = self.A/self.A.sum(axis = 1).reshape([-1,1]) self.B = np.random.rand(self.s_n, self.o_n) self.B = self.B/self.B.sum(axis = 1).reshape([-1,1]) self.pi = np.random.rand(self.s_n) self.pi = self.pi/sum(self.pi) self.train_data = [] self.train_params = train_params #input_data 格式为 [[o1,o2,o3,...,ox], [o1,o2,o3,...,oy]] #支持多观测序列输入,观测序列的输入是index化后的值,需要提前根据实际的观测值字典去映射,解码出的隐状态值也是一样,都是index数据,需要再根据映射还原 def add_data(self, input_data): self.train_data.extend(input_data) #计算所有的前向概率 # [[o1,o2,o3,...,ot1], [o1,o2,o3,...,ot2]] # [t1 * s_n, t2 * s_n] def forward(self, o_seqs): self.alpha = [] for seq in o_seqs: alpha = np.zeros((len(seq),self.s_n)) for i in range(self.s_n): alpha[0,i] = self.pi[i] * self.B[i,seq[0]] for r in range(1,len(seq)): for i in range(self.s_n): alpha[r,i] = sum([alpha[r-1,j]*self.A[j,i] for j in range(self.s_n)])*self.B[i,seq[r]] self.alpha.append(alpha) #计算所有的后向概率 # [[o1,o2,o3,...,ot1], [o1,o2,o3,...,ot2]] # [t1 * s_n, t2 * s_n] def backward(self, o_seqs): self.beta = [] for seq in o_seqs: beta = np.zeros((len(seq),self.s_n)) for i in range(self.s_n): beta[len(seq)-1,i] = 1 for r in range(len(seq)-2,-1,-1): for i in range(self.s_n): beta[r,i] = sum([self.A[i,j]*self.B[j,seq[r+1]]*beta[r+1,j] for j in range(self.s_n)]) self.beta.append(beta) #给定模型参数和观测序列,时刻t的状态为xx的概率 # t * s_n # 多条观测序列输入 则为[t1 * s_n, t2 * s_n, ... , tk * s_n] def gamma_matrix(self): self.gamma = [] for i in range(len(self.alpha)): alpha = self.alpha[i] beta = self.beta[i] self.gamma.append(alpha*beta/sum(alpha[len(alpha)-1])) #给定模型参数和观测序列,时刻t的状态为xx,且t+1的状态为yy的概率 # t * s_n * s_n # 多条观测序列输入 则为[t1-1 * s_n * s_n, t2-1 * s_n * s_n, ... , tk-1 * s_n * s_n] def ksi_matrix(self): self.ksi = [] for i in range(len(self.train_data)): seq = self.train_data[i] alpha = self.alpha[i] beta = self.beta[i] ksi = np.zeros((len(seq)-1, self.s_n, self.s_n)) for t in range(len(seq)-1): for i in range(self.s_n): for j in range(self.s_n): ksi[t,i,j] = alpha[t,i]*self.A[i,j]*self.B[j,seq[t+1]]*beta[t+1,j]/sum(alpha[len(alpha)-1]) self.ksi.append(ksi) #EM思想 Baum-Welch算法 def train(self, maxStep = 10, delta = 0.01): step = 0 while step < maxStep: print("=============== step {} ===============".format(step)) #固定模型参数计算隐含数据 ''' self.forward(self.train_data) ''' #这里estimate_prob中计算了forward,所以 不用单独计算一次forward log_prob = [np.log(p) for p in self.estimate_prob(self.train_data)] self.backward(self.train_data) self.gamma_matrix() self.ksi_matrix() #固定隐含数据计算模型参数 new_pi = sum([gamma[0] for gamma in self.gamma])/len(self.gamma) new_A = sum([ksi.sum(axis = 0) for ksi in self.ksi])/np.reshape(sum([gamma[:-1].sum(axis = 0) for gamma in self.gamma]), [-1,1]) sn_on_list = [] for i in range(len(self.train_data)): seq = np.array(self.train_data[i]) gamma = self.gamma[i] sn_on = [] for o in range(self.o_n): sn_o = (np.reshape(seq == o, [-1,1]) * gamma).sum(axis = 0).reshape([-1,1]) sn_on.append(sn_o) sn_on_list.append(np.concatenate(sn_on,axis = 1)) new_B = sum(sn_on_list)/np.reshape(sum([gamma.sum(axis = 0) for gamma in self.gamma]), [-1,1]) #误差小也停止 pi_error = np.sum(
np.square(new_pi - self.pi)
numpy.square
""" Implements Citation-KNN """ import numpy as np import scipy.spatial.distance as dist class CKNN(object): """ Citation-KNN """ def __init__(self): self._bags = None self._bag_predictions = None self._labels = None self._full_bags = None self._DM = None def fit(self, train_bags, train_labels, **kwargs): """ @param bags : a sequence of n bags; each bag is an m-by-k array-like object containing m instances with k features @param y : an array-like object of length n containing -1/+1 labels """ self._bags = train_bags self._labels = train_labels self._R = kwargs['references'] self._C = kwargs['citers'] def predict(self, Testbags): """ @param bags : a sequence of n bags; each bag is an m-by-k array-like object containing m instances with k features @return : an array of length n containing real-valued label predictions @R : References @C : Citers """ #Unir Bolsas de Training and Testing train_bags = self._bags full_bags = self._bags+Testbags pred_labels = np.array([]) self._DM = self.DistanceMatrix(full_bags) for num in range(len(self._bags),len(full_bags) ): number = num REFERENCES = self._DM[number,0:self._R] CiteMatrix =self._DM[:,0:self._C] CITERS,j = np.where(CiteMatrix == number) LabelsTrainCiters = self._labels[CITERS[CITERS<len(train_bags)]] LabelsTrainRef = self._labels[REFERENCES[REFERENCES<len(train_bags)]] Rp = np.count_nonzero(LabelsTrainRef == 1) Rn = np.count_nonzero(LabelsTrainRef == 0) Cp = np.count_nonzero(LabelsTrainCiters == 1) Cn = np.count_nonzero(LabelsTrainCiters == 0) if Rp+Cp> Rn+Cn: label_out = 1 else: label_out = 0 pred_labels =
np.append(pred_labels,label_out)
numpy.append
import sys import unittest import numpy as np import luigi import z5py import nifty.ground_truth as ngt import nifty.distributed as ndist import nifty.tools as nt try: from ..base import BaseTest except ValueError: sys.path.append('..') from base import BaseTest class TestNodeLabels(BaseTest): input_key = 'volumes/segmentation/groundtruth' output_key = 'labels' @staticmethod def compute_overlaps(seg_a, seg_b, max_overlap=True): seg_ids = np.unique(seg_a) comp = ngt.overlap(seg_a, seg_b) overlaps = [comp.overlapArrays(ida, True) for ida in seg_ids] if max_overlap: # the max overlap can be ambiguous, need to filtr for this mask = np.array([ovlp[1][0] != ovlp[1][1] if ovlp[1].size > 1 else True for ovlp in overlaps]) overlaps = np.array([ovlp[0][0] for ovlp in overlaps]) assert mask.shape == overlaps.shape return overlaps, mask else: overlaps = {seg_id: ovlp for seg_id, ovlp in zip(seg_ids, overlaps)} return overlaps def load_data(self): # compute the expected max overlaps with z5py.File(self.input_path) as f: ds_ws = f[self.ws_key] ds_ws.n_threads = self.max_jobs ws = ds_ws[:] ds_inp = f[self.input_key] ds_inp.n_threads = self.max_jobs inp = ds_inp[:] return ws, inp def check_overlaps(self, ids, overlaps, overlaps_exp): self.assertEqual(len(ids), len(overlaps)) self.assertEqual(len(overlaps), len(overlaps_exp)) for seg_id in ids: this_ovlps = overlaps[seg_id] ovlp_ids = np.array(list(this_ovlps.keys())) ovlp_counts = np.array(list(this_ovlps.values())) sorted_ids = np.argsort(ovlp_ids) ovlp_ids = ovlp_ids[sorted_ids] ovlp_counts = ovlp_counts[sorted_ids] ovlp_ids_exp, ovlp_counts_exp = overlaps_exp[seg_id] sorted_ids = np.argsort(ovlp_ids_exp) ovlp_ids_exp = ovlp_ids_exp[sorted_ids] ovlp_counts_exp = ovlp_counts_exp[sorted_ids] self.assertTrue(
np.allclose(ovlp_ids, ovlp_ids_exp)
numpy.allclose
#!/usr/bin/env python # coding: utf-8 """ compute mean similarity overall and within clusters """ import os import argparse import numpy import pandas import json import matplotlib.pyplot as plt from narps import Narps, hypnums hypnames = ['%d' % i for i in hypnums] hypnames[:2] = ['1/3', '2/4'] def get_similarity_summary(narps, corrtype='spearman'): corr_summary = [] for i, hyp in enumerate(hypnums): print('hyp', hyp) # load correlations and cluster info corrdata = pandas.read_csv( os.path.join( narps.dirs.dirs['output'], 'correlation_unthresh', '%s_unthresh_hyp%d.csv' % (corrtype, hyp)), index_col=0 ) jsonfile = os.path.join( narps.dirs.dirs['output'], 'correlation_unthresh', 'unthresh_cluster_membership_spearman.json') with open(jsonfile) as f: clusterinfo = json.load(f) # overall correlation corrvals = corrdata.values corrvals_triu = corrvals[numpy.triu_indices_from(corrvals, 1)] corr_summary.append([hypnames[i], 'mean', corrvals.shape[0], numpy.mean(corrvals_triu)]) # plot histogram without zeros plt.figure(figsize=(8, 8)) plt.hist(corrvals_triu, 50, (-1, 1)) histfile = os.path.join( narps.dirs.dirs['figures'], 'correlation_unthresh', '%s_unthresh_hyp%d_mean.png' % (corrtype, hyp)) if not os.path.exists(os.path.dirname(histfile)): os.mkdir(os.path.dirname(histfile)) plt.savefig(histfile) plt.close() # per-cluster correlation ci = clusterinfo['%d' % hyp] for cluster in ci: clusterdata = corrdata.loc[ci[cluster]][ci[cluster]] assert (clusterdata.index == clusterdata.columns).all() cluster_corrvals = clusterdata.values cluster_corrvals_triu = cluster_corrvals[ numpy.triu_indices_from(cluster_corrvals, 1)] corr_summary.append([hypnames[i], 'cluster%s' % cluster, len(ci[cluster]),
numpy.mean(cluster_corrvals_triu)
numpy.mean
import wml_utils as wmlu import os import json import numpy as np import cv2 as cv import object_detection2.visualization as odv import copy import img_utils as wmli import random import matplotlib.pyplot as plt import sys import cv2 from object_detection2.standard_names import * import glob def trans_odresult_to_annotations_list(data): labels = data[RD_LABELS] res = [] for i in range(len(labels)): annotation = {} annotation["category_id"] = labels[i] annotation["segmentation"] = data[RD_FULL_SIZE_MASKS] res.append(annotation) return res def trans_absolute_coord_to_relative_coord(image_info,annotations_list): H = image_info['height'] W = image_info['width'] res_bbox = [] res_segmentation = [] res_labels = [] for ann in annotations_list: box = ann['bbox'] xmin = box[0]/W ymin = box[1]/H xmax = (box[0]+box[2])/W ymax = (box[1]+box[3])/H res_bbox.append([ymin,xmin,ymax,xmax]) res_segmentation.append(ann['segmentation']) res_labels.append(ann['category_id']) if len(annotations_list)>0: return np.array(res_bbox),np.array(res_labels),np.array(res_segmentation) else: return np.zeros([0,4],dtype=np.float32),np.zeros([0],dtype=np.int32),np.zeros([0,H,W],dtype=np.uint8) def get_files(data_dir, img_suffix="jpg"): files = wmlu.recurse_get_filepath_in_dir(data_dir, suffix=".json") res = [] for file in files: img_file = wmlu.change_suffix(file, img_suffix) if os.path.exists(img_file): res.append((img_file, file)) return res ''' output: image_info: {'height','width'} annotations_list: [{'bbox','segmentation','category_id','points_x','points_y'}' #bbox[xmin,ymin,width,height] absolute coordinate, 'segmentation' [H,W] ''' def read_labelme_data(file_path,label_text_to_id=lambda x:int(x),use_semantic=True): annotations_list = [] image = {} with open(file_path,"r",encoding="gb18030") as f: print(file_path) data_str = f.read() try: json_data = json.loads(data_str) img_width = int(json_data["imageWidth"]) img_height = int(json_data["imageHeight"]) image["height"] = int(img_height) image["width"] = int(img_width) image["file_name"] = wmlu.base_name(file_path) for shape in json_data["shapes"]: mask = np.zeros(shape=[img_height,img_width],dtype=np.uint8) all_points = np.array([shape["points"]]).astype(np.int32) if len(all_points)<1: continue points = np.transpose(all_points[0]) x,y = np.vsplit(points,2) x = np.reshape(x,[-1]) y = np.reshape(y,[-1]) x = np.minimum(np.maximum(0,x),img_width-1) y = np.minimum(np.maximum(0,y),img_height-1) xmin = np.min(x) xmax = np.max(x) ymin = np.min(y) ymax = np.max(y) segmentation = cv.drawContours(mask,all_points,-1,color=(1),thickness=cv.FILLED) if label_text_to_id is not None: label = label_text_to_id(shape["label"]) else: label = shape["label"] annotations_list.append({"bbox":(xmin,ymin,xmax-xmin+1,ymax-ymin+1), "segmentation":segmentation, "category_id":label, "points_x":x, "points_y":y}) except: print(f"Read file {os.path.basename(file_path)} faild.") pass if use_semantic: ''' Each pixel only belong to one classes, and the latter annotation will overwrite the previous ''' if len(annotations_list) > 2: mask = 1 - annotations_list[-1]['segmentation'] for i in reversed(range(len(annotations_list) - 1)): annotations_list[i]['segmentation'] = np.logical_and(annotations_list[i]['segmentation'], mask) mask = np.logical_and(mask, 1 - annotations_list[i]['segmentation']) return image,annotations_list def save_labelme_data(file_path,image_path,image,annotations_list,label_to_text=lambda x:str(x)): data={} shapes = [] data["version"] = "3.10.1" data["flags"] = {} for ann in annotations_list: shape = {} shape["label"] = label_to_text(ann["category_id"]) #shape["line_color"]=None #shape["fill_color"]=None shape["shape_type"]="polygon" contours, hierarchy = cv.findContours(ann["segmentation"], cv.RETR_LIST, cv.CHAIN_APPROX_SIMPLE) for cont in contours: points = cont if len(cont.shape)==3 and cont.shape[1]==1: points = np.squeeze(points,axis=1) points = points.tolist() shape["points"] = points shapes.append(shape) data["shapes"] = shapes data["imagePath"] = os.path.basename(image_path) data["imageWidth"] = image["width"] data["imageHeight"] = image["height"] with open(file_path,"w") as f: json.dump(data,f) def get_labels_and_bboxes(image,annotations_list): labels = [] bboxes = [] width = image["width"] height = image["height"] for ann in annotations_list: t_box = ann["bbox"] xmin = t_box[0]/width ymin = t_box[1]/height xmax = xmin+t_box[2]/width ymax = ymin+t_box[3]/height bboxes.append([ymin,xmin,ymax,xmax]) labels.append(ann["category_id"]) return np.array(labels),np.array(bboxes) def get_labels_bboxes_and_masks(image,annotations_list): labels = [] bboxes = [] masks = [] width = image["width"] height = image["height"] for ann in annotations_list: t_box = ann["bbox"] xmin = t_box[0]/width ymin = t_box[1]/height xmax = xmin+t_box[2]/width ymax = ymin+t_box[3]/height bboxes.append([ymin,xmin,ymax,xmax]) labels.append(ann["category_id"]) masks.append(ann["segmentation"]) return np.array(labels),
np.array(bboxes)
numpy.array
# -*- coding: utf-8 -*- """ Created on Mon Apr 2 11:19:50 2018 @author: mayank """ import numpy as np from sklearn.model_selection import StratifiedKFold from sklearn.metrics.pairwise import linear_kernel,rbf_kernel,manhattan_distances,polynomial_kernel,sigmoid_kernel,cosine_similarity,laplacian_kernel,paired_euclidean_distances,pairwise_distances from sklearn.kernel_approximation import RBFSampler, Nystroem from sklearn.utils import resample from numpy.matlib import repmat from sklearn.neighbors import NearestNeighbors from sklearn.cluster import MiniBatchKMeans from sklearn.decomposition import IncrementalPCA from numpy.linalg import eigh from sklearn.preprocessing import OneHotEncoder from sparse import COO from scipy.sparse import csr_matrix, lil_matrix from scipy.sparse import issparse from scipy.sparse import hstack #%% class utils: # def __init__(self): # return None def add_bias(self,xTrain): """ Adds bias to the data Parameters: ----------- xTrain: 2D numpy ndarray/csr_matrix of shape (n_samples, n_features) Returns: -------- xTrain: 2D numpy ndarray/csr_matrix of shape (n_samples, n_features + 1) """ N = xTrain.shape[0] if(xTrain.size!=0): if(issparse(xTrain)==True): xTrain = csr_matrix(hstack([xTrain,np.ones((N,1))])) else: xTrain=np.hstack((xTrain,np.ones((N,1)))) return xTrain def logsig(self,x): return 1 / (1 + np.exp(-x)) def saturate_fcn1(self,x,a = 2): y = np.zeros(x.shape) idx1 = (x <= a)*(x >=-a) idx2 = x > a idx3 = x < -a y[idx1] = x[idx1]/(2*a) + 1.0/2.0 y[idx2] = 1 y[idx3] = 0 return y def standardize(self,xTrain,centering): """ Transform the data so that each column has zero mean and unit standard deviation Parameters: ----------- xTrain: 2D numpy ndarray of shape (n_samples, n_features) centering: bool, whether to perform standardization, if False, it returns me = np.zeros((xTrain.shape[1],)) and std_dev = np.ones((xTrain.shape[1],)) Returns: -------- xTrain: 2D numpy ndarray of shape (n_samples, n_features) me: mean of the columns std_dev: standard deviation of the columns """ if(centering == True): me=np.mean(xTrain,axis=0) std_dev=np.std(xTrain,axis=0) else: me = np.zeros((xTrain.shape[1],)) std_dev = np.ones((xTrain.shape[1],)) #remove columns with zero std idx=(std_dev!=0.0) # print(idx.shape) xTrain[:,idx]=(xTrain[:,idx]-me[idx])/std_dev[idx] return xTrain,me,std_dev def divide_into_batches_stratified(self,yTrain,batch_sz): """ Divides the data into batches such that each batch contains similar proportion of labels in it Parameters: ---------- yTrain: np.ndarray labels for the datset of shape (n_samples, ) Returns: -------- idx_batches: list index of yTrain in each batch sample_weights: np.ndarray of size (n_samples,) weights for each sample in batch = 1/#class_j num_batches: int number of batches formed """ #data should be of the form samples X features N=yTrain.shape[0] num_batches=int(np.ceil(N/batch_sz)) sample_weights=list() numClasses=np.unique(yTrain).size idx_batches=list() skf=StratifiedKFold(n_splits=num_batches, random_state=1, shuffle=True) j=0 for train_index, test_index in skf.split(np.zeros(N), yTrain): idx_batches.append(test_index) class_weights=np.zeros((numClasses,)) sample_weights1=np.zeros((test_index.shape[0],)) temp=yTrain[test_index,] for i in range(numClasses): idx1=(temp==i) class_weights[i]=1.0/(np.sum(idx1)+1e-09)#/idx.shape[0] sample_weights1[idx1]=class_weights[i] sample_weights.append(sample_weights1) j+=1 return idx_batches,sample_weights,num_batches def margin_kernel(self, X1, kernel_type = 'linear', gamma =1.0): """ Forms the kernel matrix using the samples X1 Parameters: ---------- X1: np.ndarray data (n_samples,n_features) to form a kernel of shape (n_samples,n_samples) kernel_type : str type of kernel to be used gamma: float kernel parameter Returns: ------- X: np.ndarray the kernel of shape (n_samples,n_samples) """ if(kernel_type == 'linear'): X = linear_kernel(X1,X1) elif(kernel_type == 'rbf'): X = rbf_kernel(X1,X1,gamma) elif(kernel_type == 'tanh'): X = sigmoid_kernel(X1,X1,-gamma) elif(kernel_type == 'sin'): # X = np.sin(gamma*manhattan_distances(X1,X1)) X = np.sin(gamma*pairwise_distances(X1,X1)**2) elif(kernel_type =='TL1'): X = np.maximum(0,gamma - manhattan_distances(X1,X1)) else: print('no kernel_type, returning None') return None return X def kernel_transform(self, X1, X2 = None, kernel_type = 'linear_primal', n_components = 100, gamma = 1.0): """ Forms the kernel matrix using the samples X1 Parameters: ---------- X1: np.ndarray data (n_samples1,n_features) to form a kernel of shape (n_samples1,n_samples1) X2: np.ndarray data (n_samples2,n_features) to form a kernel of shape (n_samples1,n_samples2) kernel_type : str type of kernel to be used gamma: float kernel parameter Returns: ------- X: np.ndarray the kernel of shape (n_samples,n_samples) """ if(kernel_type == 'linear'): X = linear_kernel(X1,X2) elif(kernel_type == 'rbf'): X = rbf_kernel(X1,X2,gamma) elif(kernel_type == 'tanh'): X = sigmoid_kernel(X1,X2,-gamma) elif(kernel_type == 'sin'): # X = np.sin(gamma*manhattan_distances(X1,X2)) X = np.sin(gamma*pairwise_distances(X1,X2)**2) elif(kernel_type =='TL1'): X = np.maximum(0,gamma - manhattan_distances(X1,X2)) elif(kernel_type == 'rff_primal'): rbf_feature = RBFSampler(gamma=gamma, random_state=1, n_components = n_components) X = rbf_feature.fit_transform(X1) elif(kernel_type == 'nystrom_primal'): #cannot have n_components more than n_samples1 if(n_components > X1.shape[0]): raise ValueError('n_samples should be greater than n_components') rbf_feature = Nystroem(gamma=gamma, random_state=1, n_components = n_components) X = rbf_feature.fit_transform(X1) elif(kernel_type == 'linear_primal'): X = X1 else: print('No kernel_type passed: using linear primal solver') X = X1 return X def generate_samples(self,X_orig,old_imbalance_ratio,new_imbalance_ratio): """ Generates samples based on new imbalance ratio, such that new imbalanced ratio is achieved Parameters: ---------- X_orig: np.array (n_samples , n_features) data matrix old_imbalance_ratio: float old imbalance ratio in the samples new_imbalance_ratio: float new imbalance ratio in the samples Returns: ------- X_orig: np.array (n_samples , n_features) data matrix X1: 2D np.array newly generated samples of shape (int((new_imbalance_ratio/old_imbalance_ratio)*n_samples - n_samples), n_features ) """ N=X_orig.shape[0] M=X_orig.shape[1] neighbors_thresh=10 if (new_imbalance_ratio < old_imbalance_ratio): raise ValueError('new ratio should be greater than old ratio') new_samples=int((new_imbalance_ratio/old_imbalance_ratio)*N - N) #each point must generate these many samples new_samples_per_point_orig=new_imbalance_ratio/old_imbalance_ratio - 1 new_samples_per_point=int(new_imbalance_ratio/old_imbalance_ratio - 1) #check if the number of samples each point has to generate is > 1 X1=np.zeros((0,M)) if(new_samples_per_point_orig>0 and new_samples_per_point_orig<=1): idx_samples=resample(np.arange(0,N), n_samples=int(N*new_samples_per_point_orig), random_state=1,replace=False) X=X_orig[idx_samples,] new_samples_per_point=1 N=X.shape[0] else: X=X_orig if(N==1): X1=repmat(X,new_samples,1) elif(N>1): if(N<=neighbors_thresh): n_neighbors=int(N/2) else: n_neighbors=neighbors_thresh nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree').fit(X) for i in range(N): #for each point find its n_neighbors nearest neighbors inds=nbrs.kneighbors(X[i,:].reshape(1,-1), n_neighbors, return_distance=False) temp_data=X[inds[0],:] std=np.std(temp_data,axis=0) me=np.mean(temp_data,axis=0) np.random.seed(i) x_temp=me + std*np.random.randn(new_samples_per_point,M) X1=np.append(X1,x_temp,axis=0) return X_orig, X1 def upsample(self,X,Y,new_imbalance_ratio): """ Upsamples the data based on label array, for classification only Parameters: ---------- X: np.array (n_samples, n_features) 2D data matrix Y: np.array (n_samples, ) label array, takes values between [0, numClasses-1] new_imbalance_ratio: float new imbalance ratio in the data, takes values between [0.5,1] Returns: ------- X3: np.array (n_samples1, n_features) new balanced 2D data matrix Y3: np.array (n_samples1, ) new balanced label array """ #xTrain: samples X features #yTrain : samples, #for classification only numClasses=np.unique(Y).size class_samples=np.zeros((numClasses,)) X3=np.zeros((0,X.shape[1])) Y3=np.zeros((0,)) #first find the samples per class per class for i in range(numClasses): idx1=(Y==i) class_samples[i]=np.sum(idx1) max_samples=np.max(class_samples) # new_imbalance_ratio=0.5 # if(upsample_type==1): old_imbalance_ratio_thresh=0.5 # else: # old_imbalance_ratio_thresh=1 for i in range(numClasses): idx1=(Y==i) old_imbalance_ratio=class_samples[i]/max_samples X1=X[idx1,:] Y1=Y[idx1,] if(idx1.size==1): X1=np.reshape(X1,(1,X.shape[1])) if(old_imbalance_ratio<=old_imbalance_ratio_thresh and class_samples[i]!=0): X1,X2=self.generate_samples(X1,old_imbalance_ratio,new_imbalance_ratio) new_samples=X2.shape[0] Y2=np.ones((new_samples,)) Y2=Y2*Y1[0,] #append original and generated samples X3=np.append(X3,X1,axis=0) X3=np.append(X3,X2,axis=0) Y3=np.append(Y3,Y1,axis=0) Y3=np.append(Y3,Y2,axis=0) else: #append original samples only X3=np.append(X3,X1,axis=0) Y3=np.append(Y3,Y1,axis=0) Y3=np.array(Y3,dtype=np.int32) return X3,Y3 def kmeans_select(self,X,represent_points,do_pca=False): """ Takes in data and number of prototype vectors and returns the indices of the prototype vectors. The prototype vectors are selected based on the farthest distance from the kmeans centers Parameters ---------- X: np.ndarray shape = n_samples, n_features represent_points: int number of prototype vectors to return do_pca: boolean whether to perform incremental pca for dimensionality reduction before selecting prototype vectors Returns ------- sv: list list of the prototype vector indices from the data array given by X """ # do_pca = self.do_pca_in_selection N = X.shape[0] if(do_pca == True): if(X.shape[1]>50): n_components = 50 ipca = IncrementalPCA(n_components=n_components, batch_size=np.min([128,X.shape[0]])) X = ipca.fit_transform(X) kmeans = MiniBatchKMeans(n_clusters=represent_points, batch_size=np.min([128,X.shape[0]]),random_state=0).fit(X) centers = kmeans.cluster_centers_ labels = kmeans.labels_ sv= [] unique_labels = np.unique(labels).size all_ind = np.arange(N) for j in range(unique_labels): X1 = X[labels == j,:] all_ind_temp = all_ind[labels==j] tempK = pairwise_distances(X1,np.reshape(centers[j,:],(1,X1.shape[1])))**2 inds = np.argmax(tempK,axis=0) sv.append(all_ind_temp[inds[0]]) return sv def renyi_select(self,X,represent_points,do_pca=False): """ Takes in data and number of prototype vectors and returns the indices of the prototype vectors. The prototype vectors are selected based on maximization of quadratic renyi entropy, which can be written in terms of log sum exp which is a tightly bounded by max operator. Now for rbf kernel, the max_{ij}(-\|x_i-x_j\|^2) is equivalent to min_{ij}(\|x_i-x_j\|^2). Parameters ---------- X: np.ndarray shape = n_samples, n_features represent_points: int number of prototype vectors to return do_pca: boolean whether to perform incremental pca for dimensionality reduction before selecting prototype vectors Returns ------- sv: list list of the prototype vector indices from the data array given by X """ # do_pca = self.do_pca_in_selection N= X.shape[0] capacity=represent_points selectionset=set([]) set_full=set(list(range(N)))
np.random.seed(1)
numpy.random.seed
from scipy import interpolate import collections import numpy as np import os import re import torch import pylab as plt import matplotlib.ticker as mtick import math import itertools from tensorboard.backend.event_processing import event_accumulator def get_run_names(logdir, patterns): run_names = [] for pattern in patterns: for root, subdirs, files in os.walk(logdir, followlinks=True): if re.match(pattern, root): run_names += [root] # print(run_names) run_names.sort() return run_names def get_run_names_events(logdir, patterns): run_names = {} for pattern in patterns: for root, subdirs, files in os.walk(logdir, followlinks=True): if re.match(pattern, root): run_names[root] = [] for file in files: if re.match('.*events\.out.*', file): run_names[root].append(file) run_names[root] = sorted(run_names[root]) # print(run_names) return run_names def get_data_pth(logdir, run_names, tag_names, batch_size=None): data = [] for run_name in run_names: d = {} logdata = torch.load(run_name + '/log.pth.tar') for tag_name in tag_names: if tag_name not in logdata: continue js = logdata[tag_name] d[tag_name] = np.array([[x[j] for x in js] for j in range(1, 3)]) data += [d] return data def get_data_pth_events(logdir, run_names, tag_names, batch_size=None): data = [] all_points = [] for run_name, events in run_names.items(): d = {} points = {} for event in events: ea = event_accumulator.EventAccumulator(run_name+'/'+event, size_guidance={ # see below regarding this argument event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) ea.Reload() for tag_name in tag_names: if tag_name not in ea.Tags()['scalars']: continue scalar = ea.Scalars(tag_name) if tag_name not in d: d[tag_name] = np.array( [[dp.step for dp in scalar], [dp.value for dp in scalar]]) points[tag_name] = [len(d[tag_name][0]) - 1] else: new_array = np.array([dp.step for dp in scalar]) indexes = new_array > d[tag_name][0][-1] res1 = np.concatenate( (d[tag_name][0], np.array([dp.step for dp in scalar])[indexes])) res2 = np.concatenate( (d[tag_name][1], np.array([dp.value for dp in scalar])[indexes])) points[tag_name].append(len(res2) - 1) d[tag_name] = (res1, res2) data += [d] all_points += [points] return data, all_points def plot_smooth(x, y, npts=100, order=3, points=None, vlines=None, *args, **kwargs): points = np.array(points, dtype=int) #plt.plot(x[points], y[points], 'o', ) x_smooth = np.linspace(x.min(), x.max(), npts) tck = interpolate.splrep(x, y, k=order) y_smooth = interpolate.splev(x_smooth, tck, der=0) plt.plot(x_smooth, y_smooth, *args, **kwargs) plt.ticklabel_format(axis="x", style="sci", scilimits=None) def plot_smooth_o1(x, y, points=None, vlines=None, *args, **kwargs): plot_smooth(x, y, 100, 1, points, vlines, *args, **kwargs) def get_legend(lg_tags, run_name, lg_replace=[]): lg = "" for lgt in lg_tags: res = ".*?($|,)" if ',' not in lgt and '$' not in lgt else '' mg = re.search(lgt + res, run_name) if mg: lg += mg.group(0) lg = lg.replace('_,', ',') lg = lg.strip(',') for a, b in lg_replace: lg = lg.replace(a, b) return lg class OOMFormatter(mtick.ScalarFormatter): def __init__(self, useOffset=None, useMathText=None, useLocale=None, acc_bits=None): super().__init__(useOffset=useOffset, useMathText=useMathText, useLocale=useLocale) if acc_bits is not None: self.acc_bits = acc_bits else: self.acc_bits = 3 def __call__(self, x, pos=None): """ Return the format for tick value *x* at position *pos*. """ if len(self.locs) == 0: return '' else: xp = (x - self.offset) / (10. ** self.orderOfMagnitude) if abs(xp) < 1e-8: xp = 0 if self._useLocale: s = locale.format_string(self.format, (xp,)) else: s = self.format % xp return self.fix_minus(s) def _set_format(self): bits = self.acc_bits # set the format string to format all the ticklabels if len(self.locs) < 2: # Temporarily augment the locations with the axis end points. _locs = [*self.locs, *self.axis.get_view_interval()] else: _locs = self.locs locs = (np.asarray(_locs) - self.offset) / 10. ** self.orderOfMagnitude loc_range = np.ptp(locs) # Curvilinear coordinates can yield two identical points. if loc_range == 0: loc_range = np.max(np.abs(locs)) # Both points might be zero. if loc_range == 0: loc_range = 1 if len(self.locs) < 2: # We needed the end points only for the loc_range calculation. locs = locs[:-2] loc_range_oom = int(math.floor(math.log10(loc_range))) # first estimate: sigfigs = max(0, bits - loc_range_oom) # refined estimate: thresh = 10 ** (-bits) * 10 ** (loc_range_oom) while sigfigs >= 0: if np.abs(locs - np.round(locs, decimals=sigfigs)).max() < thresh: sigfigs -= 1 else: break sigfigs = bits self.format = '%1.' + str(sigfigs) + 'f' if self._usetex or self._useMathText: self.format = r'$\mathdefault{%s}$' % self.format def plot_tag(data, plot_f, run_names, tag_name, lg_tags, ylim=None, color0=0, ncolor=None, lg_replace=[], no_title=False, points=None, xlim=None, vlines=None, orders=None, acc_bits=None, markeroff=True): xlabel = {} ylabel = {'Tacc': 'Training Accuracy (%)', 'Terror': 'Training Error (%)', 'train/accuracy': 'Training Accuracy (%)', 'Vacc': 'Test Accuracy (%)', 'Verror': 'Test Error (%)', 'valid/accuracy': 'Test Accuracy (%)', 'loss': 'Loss', 'epoch': 'Epoch', 'Tloss': 'Loss', 'Vloss': 'Loss', 'lr': 'Learning rate', 'grad_bias': 'Gradient Diff norm', 'est_var': 'Average Variance', 'est_snr': 'Mean SNR', 'nb_error': 'NB Error', 'est_nvar': 'Mean Normalized Variance'} titles = {'Tacc': 'Training Accuracy', 'Terror': 'Training Error', 'train/accuracy': 'Training Accuracy', 'Vacc': 'Test Accuracy', 'Verror': 'Test Error', 'loss': 'Loss', 'epoch': 'Epoch', 'Tloss': 'Loss on full training set', 'lr': 'Learning rate', 'Vloss': 'Loss on validation set', 'grad_bias': 'Optimization Step Bias', 'nb_error': 'Norm-based Variance Error', 'est_var': 'Optimization Step Variance', 'est_snr': 'Optimization Step SNR', 'est_nvar': 'Optimization Step Normalized Variance (w/o lr)', } yscale_log = ['Tloss', 'est_var'] # , 'est_var' yscale_log_offset= ['Vloss'] # , 'est_var' yscale_scalar= ['Vloss'] # , 'est_var' yscale_base = [] # yscale_sci = ['est_bias', 'est_var'] plot_fs = {'Tacc': plot_f, 'Vacc': plot_f, 'Terror': plot_f, 'Verror': plot_f, 'Tloss': plot_f, 'Vloss': plot_f, } for k in list(ylabel.keys()): if k not in xlabel: xlabel[k] = 'Training Iteration' if k not in plot_fs: plot_fs[k] = plot_f if k not in plot_fs: plot_fs[k] = plt.plot if not isinstance(data, list): data = [data] run_names = [run_names] # color = ['blue', 'orangered', 'darkred', 'darkkhaki', 'darkblue', 'grey'] color = [[0.00784314, 0.24313725, 1.], [1., 0.48627451, 0.], [0.10196078, 0.78823529, 0.21960784], [0.90980392, 0., 0.04313725], [0.54509804, 0.16862745, 0.88627451]] color = color[:ncolor] #style = ['-', '--', ':', '-.'] style = ['-'] color = [[0.00784314, 0.24313725, 1.], [1., 0.48627451, 0.], [0.10196078, 0.78823529, 0.21960784], [0.90980392, 0., 0.04313725], [0.54509804, 0.16862745, 0.88627451]] #style = ['-', '--', ':', '-.'] styles = ['-'] # markers = colors = color # styles = ['-', '--', ':', '-.'] markers = ['o', 'X', 'p', '*', 'd', 'v'] plt.rcParams.update({'font.size': 16}) plt.grid(linewidth=1) legends = [] # extract run index indexes = [int(run_names[i].split('/')[-1].split('_')[1]) for i in range(len(run_names))] s_indexes =
np.argsort(indexes)
numpy.argsort
from os import system import numpy as np import scipy.optimize as op import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d.art3d import Poly3DCollection, Line3DCollection from anytree import AnyNode, RenderTree #################################################################### def concatenateVectors(X,Y): return np.concatenate((X,Y),axis=1) #################################################################### def getPlot(): return plt #################################################################### def clearScreen(): system('cls') return #################################################################### def loadData(fileName): data= np.loadtxt(fileName, delimiter=',',unpack=True,dtype=float) data=data.T if (len(data.shape)==1): data.shape=(data.shape[0],1) return data #################################################################### def accurracy(Xy,NewXy): Xy=np.sort(Xy,axis=0) NewXy=np.sort(NewXy,axis=0) Y1=Xy[:,-1] Y2=NewXy[:,-1] m=np.mean(np.where(Y1==Y2,1,0)) return m*100 #################################################################### def SplitTree(X, y,Level=1,Node=AnyNode(id="root",vPredictedClass=-1),ThresholdCount=1): ri,ci=GetBestSplit(X,y,ThresholdCount) if( ri!=-1 and ci!=-1): SplitFeature=ci SplitValue=X[ri,ci] #PlotTreeSplit(X,SplitFeature,SplitValue,Level) #Plot While Training X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] s0 = AnyNode(id="Level_"+str(Level)+"_Left("+"X"+str(SplitFeature)+"<"+str(round(SplitValue,1))+")", parent=Node,vLevel=Level,vSplitFeature=SplitFeature,vOp="<",vSplitValue=SplitValue,vSplitSign=-1,vPredictedClass=-1) s1 = AnyNode(id="Level_"+str(Level)+"_Right("+"X"+str(SplitFeature)+">"+str(round(SplitValue,1))+")", parent=Node,vLevel=Level,vSplitFeature=SplitFeature,vOp=">",vSplitValue=SplitValue,vSplitSign=1,vPredictedClass=-1) s0=SplitTree(X0,Y0,Level+1,s0,ThresholdCount=ThresholdCount) s1=SplitTree(X1,Y1,Level+1,s1,ThresholdCount=ThresholdCount) else: PredictedClass=0 PredictedClassLen=0 for i in range(int(y.max()+1)): if (len(y[np.where(y==i)])>PredictedClassLen): PredictedClass=i PredictedClassLen=len(y[np.where(y==i)]) Node.vPredictedClass=PredictedClass return Node #################################################################### def PredictTree(X,y,Node): if(len(Node.children)!=0): SplitFeature=Node.children[0].vSplitFeature SplitValue=Node.children[0].vSplitValue X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] newX1,newY1=PredictTree(X0,Y0,Node.children[0]) newX2,newY2=PredictTree(X1,Y1,Node.children[1]) newX= np.concatenate((newX1,newX2),axis=0) newY=np.concatenate((newY1,newY2),axis=0) else: newX=X for i in range(len(y)): y[i]=Node.vPredictedClass newY=y return newX,newY #################################################################### def PruneTree(X,y,Node,ThresholdCount): if(len(Node.children)!=0): SplitFeature=Node.children[0].vSplitFeature SplitValue=Node.children[0].vSplitValue X0=X[np.where(X[:,SplitFeature]<=SplitValue)] Y0=y[np.where(X[:,SplitFeature]<=SplitValue)] X1=X[np.where(X[:,SplitFeature]>SplitValue)] Y1=y[np.where(X[:,SplitFeature]>SplitValue)] if (X0.shape[0]<ThresholdCount or X1.shape[0]<ThresholdCount): Node.children=[] PredictedClass=0 PredictedClassLen=0 for i in range(int(y.max()+1)): if (len(y[np.where(y==i)])>PredictedClassLen): PredictedClass=i PredictedClassLen=len(y[np.where(y==i)]) Node.vPredictedClass=PredictedClass else: PruneTree(X0,Y0,Node.children[0],ThresholdCount) PruneTree(X1,Y1,Node.children[1],ThresholdCount) return Node #################################################################### def GetBestSplit(X,y,ThresholdCount): ri=0 ci=0 for i in range(int(y.max()+1)): if(len(y[np.where(y==i)])==len(y)): ri=-1 ci=-1 if(X.shape[0]<=ThresholdCount): ri=-1 ci=-1 if(ri!=-1 and ci!=-1): G=np.zeros((X.shape)) for ri in range(G.shape[0]): for ci in range(G.shape[1]): G[ri,ci]=GetGiniScore(X,y,ri,ci) ri=np.unravel_index(np.argmax(G, axis=None), G.shape)[0] ci=np.unravel_index(np.argmax(G, axis=None), G.shape)[1] return ri,ci #################################################################### def GetGiniScore(X,y,ri,ci): G0=0 G1=0 Y0=y[np.where(X[:,ci]<=X[ri,ci])] Y1=y[np.where(X[:,ci]>X[ri,ci])] if (len(Y0)!=0): for i in range(int(y.max()+1)): P=len(Y0[np.where(Y0==i)])/len(Y0) G0=G0+P*P if (len(Y1)!=0): for i in range(int(y.max()+1)): P=len(Y1[np.where(Y1==i)])/len(Y1) G1=G1+P*P G_Score=(len(Y0)/len(y)) * G0 + (len(Y1)/len(y)) * G1 return G_Score #################################################################### def PlotTreeSplit(ax,X,SplitFeature,SplitValue,Level): x_min, x_max = X[:, 0].min() , X[:, 0].max() y_min, y_max = X[:, 1].min() , X[:, 1].max() z_min, z_max = X[:, 2].min() , X[:, 2].max() u = np.linspace(x_min, x_max, 2) v = np.linspace(y_min, y_max, 2) w = np.linspace(z_min, z_max, 2) if (SplitFeature==0): u = np.zeros(( len(v), len(w) )) V,W=np.meshgrid(v,w) for i in range(len(v)): for j in range(len(w)): u[i,j] =SplitValue U = np.transpose(u) if (SplitFeature==1): v = np.zeros(( len(u), len(w) )) U,W=np.meshgrid(u,w) for i in range(len(u)): for j in range(len(w)): v[i,j] =SplitValue V = np.transpose(v) if (SplitFeature==2): w = np.zeros(( len(u), len(v) )) U,V=np.meshgrid(u,v) for i in range(len(u)): for j in range(len(v)): w[i,j] =SplitValue W = np.transpose(w) ax.plot_surface(U,V,W,alpha=0.6,zorder=5) ax.text(U[0][0], V[0][0], W[0][0], Level, color='red') return #################################################################### def PlotTree(ax,X,y,Node): if(Node.id=="root"): ax.scatter(X[np.where(y==0),0],X[np.where(y==0),1],X[
np.where(y==0)
numpy.where
import logging import numpy from bmipy import Bmi from grpc_status import rpc_status from google.protobuf import any_pb2 from google.rpc import code_pb2, status_pb2, error_details_pb2 import traceback from grpc4bmi.reserve import reserve_values, reserve_grid_shape, reserve_grid_nodes, reserve_grid_padding, \ reserve_values_at_indices from . import bmi_pb2, bmi_pb2_grpc log = logging.getLogger(__name__) class BmiServer(bmi_pb2_grpc.BmiServiceServicer): """ BMI Server class, wrapping an existing python implementation and exposing it via GRPC across the memory space (to listening client processes). The class takes a package, module and class name and instantiates the BMI implementation by assuming a default constructor with no arguments. Args: model: Bmi model object which must be wrapped by grpc debug: If true then returns stacktrace in an error response. The stacktrace is returned in the trailing metadata as a DebugInfo (https://github.com/googleapis/googleapis/blob/07244bb797ddd6e0c1c15b02b4467a9a5729299f/google/rpc/error_details.proto#L46-L52) message. """ def __init__(self, model, debug=False): # type: (BmiServer, Bmi, bool) -> None super(bmi_pb2_grpc.BmiServiceServicer, self).__init__() self.bmi_model_ = model self.debug = debug def exception_handler(self, exc, context): log.exception(exc) detail = any_pb2.Any() if self.debug: detail.Pack( error_details_pb2.DebugInfo( stack_entries=traceback.format_stack(), detail=repr(exc) ) ) status = status_pb2.Status( code=code_pb2.INTERNAL, message=str(exc), details=[detail] ) context.abort_with_status(rpc_status.to_status(status)) def initialize(self, request, context): ifile = str(request.config_file) if not ifile: ifile = None try: self.bmi_model_.initialize(ifile) return bmi_pb2.Empty() except Exception as e: self.exception_handler(e, context) def update(self, request, context): try: self.bmi_model_.update() return bmi_pb2.Empty() except Exception as e: self.exception_handler(e, context) def updateUntil(self, request, context): try: self.bmi_model_.update_until(request.time) return bmi_pb2.Empty() except Exception as e: self.exception_handler(e, context) def finalize(self, request, context): try: self.bmi_model_.finalize() return bmi_pb2.Empty() except Exception as e: self.exception_handler(e, context) def getComponentName(self, request, context): try: return bmi_pb2.GetComponentNameResponse(name=self.bmi_model_.get_component_name()) except Exception as e: self.exception_handler(e, context) def getInputItemCount(self, request, context): try: return bmi_pb2.GetCountResponse(count=self.bmi_model_.get_input_item_count()) except Exception as e: self.exception_handler(e, context) def getOutputItemCount(self, request, context): try: return bmi_pb2.GetCountResponse(count=self.bmi_model_.get_output_item_count()) except Exception as e: self.exception_handler(e, context) def getInputVarNames(self, request, context): try: return bmi_pb2.GetVarNamesResponse(names=self.bmi_model_.get_input_var_names()) except Exception as e: self.exception_handler(e, context) def getOutputVarNames(self, request, context): try: return bmi_pb2.GetVarNamesResponse(names=self.bmi_model_.get_output_var_names()) except Exception as e: self.exception_handler(e, context) def getTimeUnits(self, request, context): try: return bmi_pb2.GetTimeUnitsResponse(units=self.bmi_model_.get_time_units()) except Exception as e: self.exception_handler(e, context) def getTimeStep(self, request, context): try: return bmi_pb2.GetTimeStepResponse(interval=self.bmi_model_.get_time_step()) except Exception as e: self.exception_handler(e, context) def getCurrentTime(self, request, context): try: return bmi_pb2.GetTimeResponse(time=self.bmi_model_.get_current_time()) except Exception as e: self.exception_handler(e, context) def getStartTime(self, request, context): try: return bmi_pb2.GetTimeResponse(time=self.bmi_model_.get_start_time()) except Exception as e: self.exception_handler(e, context) def getEndTime(self, request, context): try: return bmi_pb2.GetTimeResponse(time=self.bmi_model_.get_end_time()) except Exception as e: self.exception_handler(e, context) def getVarGrid(self, request, context): try: return bmi_pb2.GetVarGridResponse(grid_id=self.bmi_model_.get_var_grid(request.name)) except Exception as e: self.exception_handler(e, context) def getVarType(self, request, context): try: return bmi_pb2.GetVarTypeResponse(type=self.bmi_model_.get_var_type(request.name)) except Exception as e: self.exception_handler(e, context) def getVarItemSize(self, request, context): try: return bmi_pb2.GetVarItemSizeResponse(size=self.bmi_model_.get_var_itemsize(request.name)) except Exception as e: self.exception_handler(e, context) def getVarUnits(self, request, context): try: return bmi_pb2.GetVarUnitsResponse(units=self.bmi_model_.get_var_units(request.name)) except Exception as e: self.exception_handler(e, context) def getVarNBytes(self, request, context): try: return bmi_pb2.GetVarNBytesResponse(nbytes=self.bmi_model_.get_var_nbytes(request.name)) except Exception as e: self.exception_handler(e, context) def getVarLocation(self, request, context): location_name = self.bmi_model_.get_var_location(request.name) location = bmi_pb2.GetVarLocationResponse.Location.Value(location_name.upper()) return bmi_pb2.GetVarLocationResponse(location=location) def getValue(self, request, context): try: values = reserve_values(self.bmi_model_, request.name) values = self.bmi_model_.get_value(request.name, values) if values.dtype in (numpy.int64, numpy.int32, numpy.int16): return bmi_pb2.GetValueResponse(values_int=bmi_pb2.IntArrayMessage(values=values.flatten())) if values.dtype in (numpy.float32, numpy.float16): return bmi_pb2.GetValueResponse(values_float=bmi_pb2.FloatArrayMessage(values=values.flatten())) if values.dtype == numpy.float64: return bmi_pb2.GetValueResponse(values_double=bmi_pb2.DoubleArrayMessage(values=values.flatten())) raise NotImplementedError("Arrays with type %s cannot be transmitted through this GRPC channel" % values.dtype) except Exception as e: self.exception_handler(e, context) def getValuePtr(self, request, context): raise NotImplementedError("Array references cannot be transmitted through this GRPC channel") def getValueAtIndices(self, request, context): try: indices = numpy.array(request.indices) values = reserve_values_at_indices(self.bmi_model_, request.name, indices) values = self.bmi_model_.get_value_at_indices(request.name, values, indices) if values.dtype in (numpy.int64, numpy.int32, numpy.int16): return bmi_pb2.GetValueAtIndicesResponse(values_int=bmi_pb2.IntArrayMessage(values=values.flatten())) if values.dtype in (numpy.float32, numpy.float16): return bmi_pb2.GetValueAtIndicesResponse(values_float=bmi_pb2.FloatArrayMessage(values=values.flatten())) if values.dtype == numpy.float64: return bmi_pb2.GetValueAtIndicesResponse(values_double=bmi_pb2.DoubleArrayMessage(values=values.flatten())) raise NotImplementedError("Arrays with type %s cannot be transmitted through this GRPC channel" % values.dtype) except Exception as e: self.exception_handler(e, context) def setValue(self, request, context): try: if request.HasField("values_int"): array = numpy.array(request.values_int.values, dtype=numpy.int64) self.bmi_model_.set_value(request.name, array) if request.HasField("values_float"): array = numpy.array(request.values_float.values, dtype=numpy.float32) self.bmi_model_.set_value(request.name, array) if request.HasField("values_double"): array = numpy.array(request.values_double.values, dtype=numpy.float64) self.bmi_model_.set_value(request.name, array) return bmi_pb2.Empty() except Exception as e: self.exception_handler(e, context) def setValueAtIndices(self, request, context): try: index_array = numpy.array(request.indices) if request.HasField("values_int"): array = numpy.array(request.values_int.values, dtype=numpy.int64) self.bmi_model_.set_value_at_indices(request.name, index_array, array) if request.HasField("values_float"): array = numpy.array(request.values_float.values, dtype=numpy.float32) self.bmi_model_.set_value_at_indices(request.name, index_array, array) if request.HasField("values_double"): array = numpy.array(request.values_double.values, dtype=numpy.float64) self.bmi_model_.set_value_at_indices(request.name, index_array, array) return bmi_pb2.Empty() except Exception as e: self.exception_handler(e, context) def getGridSize(self, request, context): try: return bmi_pb2.GetGridSizeResponse(size=self.bmi_model_.get_grid_size(request.grid_id)) except Exception as e: self.exception_handler(e, context) def getGridRank(self, request, context): try: return bmi_pb2.GetGridRankResponse(rank=self.bmi_model_.get_grid_rank(request.grid_id)) except Exception as e: self.exception_handler(e, context) def getGridType(self, request, context): try: return bmi_pb2.GetGridTypeResponse(type=self.bmi_model_.get_grid_type(request.grid_id)) except Exception as e: self.exception_handler(e, context) def getGridShape(self, request, context): try: values = reserve_grid_shape(self.bmi_model_, request.grid_id) return bmi_pb2.GetGridShapeResponse(shape=self.bmi_model_.get_grid_shape(request.grid_id, values)) except Exception as e: self.exception_handler(e, context) def getGridSpacing(self, request, context): try: values = reserve_grid_padding(self.bmi_model_, request.grid_id) return bmi_pb2.GetGridSpacingResponse(spacing=self.bmi_model_.get_grid_spacing(request.grid_id, values)) except Exception as e: self.exception_handler(e, context) def getGridOrigin(self, request, context): try: values = reserve_grid_padding(self.bmi_model_, request.grid_id) return bmi_pb2.GetGridOriginResponse(origin=self.bmi_model_.get_grid_origin(request.grid_id, values)) except Exception as e: self.exception_handler(e, context) def getGridX(self, request, context): try: values = reserve_grid_nodes(self.bmi_model_, request.grid_id, 0) return bmi_pb2.GetGridPointsResponse(coordinates=self.bmi_model_.get_grid_x(request.grid_id, values)) except Exception as e: self.exception_handler(e, context) def getGridY(self, request, context): try: values = reserve_grid_nodes(self.bmi_model_, request.grid_id, 1) return bmi_pb2.GetGridPointsResponse(coordinates=self.bmi_model_.get_grid_y(request.grid_id, values)) except Exception as e: self.exception_handler(e, context) def getGridZ(self, request, context): try: values = reserve_grid_nodes(self.bmi_model_, request.grid_id, 2) return bmi_pb2.GetGridPointsResponse(coordinates=self.bmi_model_.get_grid_z(request.grid_id, values)) except Exception as e: self.exception_handler(e, context) def getGridNodeCount(self, request, context): try: return bmi_pb2.GetCountResponse(count=self.bmi_model_.get_grid_node_count(request.grid_id)) except Exception as e: self.exception_handler(e, context) def getGridEdgeCount(self, request, context): try: return bmi_pb2.GetCountResponse(count=self.bmi_model_.get_grid_edge_count(request.grid_id)) except Exception as e: self.exception_handler(e, context) def getGridFaceCount(self, request, context): try: return bmi_pb2.GetCountResponse(count=self.bmi_model_.get_grid_face_count(request.grid_id)) except Exception as e: self.exception_handler(e, context) def getGridEdgeNodes(self, request, context): try: size = 2 * self.bmi_model_.get_grid_edge_count(request.grid_id) links =
numpy.empty(size, dtype=numpy.int64)
numpy.empty
import sys import numpy as np import os import time from CNA import Utilities sys.path.append("../../") class patterns(): def __init__(self, frame = 0, System = None, Pattern_Input = None, MasterKey = None): tick = time.time() self.frame = frame self.System = System self.Pattern_Input = Pattern_Input if self. System is not None: self.filename = System['base_dir']+System['movie_file_name'] self.npz_dir = System['base_dir'] + 'CNA_npz' with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\n') f.write(' # '*50) f.write('\nComputing CNA patterns for frame %s.\n'%frame) f.close() else: try: self.filename = 'movie.xyz' except FileNotFoundError: with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\nCould not find a suitable file to examine.\n') f.close() self.script_path = os.path.dirname(os.path.realpath(__file__))+'/' self.cwd = os.getcwd() if MasterKey is None: self.MasterKey = Utilities.CNA_Masterkey().Key() else: self.MasterKey = MasterKey if self.Pattern_Input['APPEND_DICTIONARY'] is True: os.chdir(self.script_path) os.chdir('../') self.Temp_Dict = np.load( 'CNA_npz/pattern_dictionary.npz', allow_pickle=True) self.Pattern_Dict = {} for file in self.Temp_Dict.files: self.Pattern_Dict[file] = self.Temp_Dict[file] elif (self.Pattern_Input['NEW_DICTIONARY'] is True): self.Pattern_Dict = {} self.Pattern_Dict = self.pattern_dictionary_maker() self.dictionary_saver() with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write("\nGenerating CNA Patterns took %.3f seconds.\n" %(time.time()-tick)) os.chdir(self.cwd) def run(self): Info = self.Pattern_Dict[self.System['movie_file_name'][:-4]+'-'+str(self.frame)] Pats = np.zeros(len(Info)) for i, atom in enumerate(Info): for j, val in enumerate(atom): if val: Pats[i] = j+1 return Pats def pattern_CNA_Reader(self): """ Armand Formatting from the npz files, gives the cna patterns found and prints them. This isnt meant to be run normally, add it within the filename loop when you want to inspect a FEW files. Doesn't use the masterkey, so prepare to have a LOT of data printed at you at once. """ self.CNA_arrays=np.load(self.npz_dir+'/CNA_'+self.filename[:-4]+'-'+str(self.frame)+'.npz', allow_pickle=True) with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\nTypes of CNA bonds found with each atom:\n') f.close() for i in range(len(self.CNA_arrays['signature_cna_count'])): with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\n%d Atoms had CNA patterns (no: %d)\n'%(self.CNA_arrays['\nSignature_cna_count'][i], i)) f.close() non_zero_values=np.nonzero(self.CNA_arrays['signature_cna'][i]) for j in range(len(non_zero_values[0])): with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\n%s on %s of its bonds.\n' %(self.MasterKey[non_zero_values[0][j]], self.CNA_arrays['signature_cna'][i][non_zero_values[0][j]])) f.close() with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\nCoordination number: %s\n'%np.sum(self.CNA_arrays['signature_cna'][i])) f.close() def cna_pattern_master_key_maker(self): """ Armand This function creates a new cna pattern masterkey by running through ALL files within xyz_dir. This is meant for studying all cna patterns with the variable SAVING_XYZ == True, not for Support Vector Clustering. """ self.CNA_arrays=np.load(self.npz_dir+'/CNA_'+self.filename[:-4]+'-'+str(self.frame)+'.npz', allow_pickle=True) self.cna_patterns=[] with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write("\nCreating the CNA pattern master key...\n") f.close() #Looping over the atoms for i in range(len(self.CNA_arrays['signature_cna_count'])): #Creating the atomistic pattern list self.atom_pattern=[] #Finding the non zero CNA signatures, and looping over them non_zero_values = np.nonzero(self.CNA_arrays['signature_cna'][i]) for j in range(len(non_zero_values[0])): #Retrieving the CNA signature from the Master Key cna_sign = self.MasterKey[non_zero_values[0][j]] #Counting them count = self.CNA_arrays['signature_cna'][i][non_zero_values[0][j]] #Appending the tuples found within the list self.atom_pattern.append((cna_sign,count)) #Checking if the atomic pattern is in the cna_pattern_masterkey if self.atom_pattern not in self.cna_patterns: self.cna_patterns.append(self.atom_pattern) #Ordering the pattern masterkey by the Coordination Number self.cna_pattern_array = np.asarray(self.cna_patterns) self.cna_pattern_master_key=np.copy(self.cna_pattern_array) a=[] for i in range(len(self.cna_pattern_array)): a.append(np.sum(self.cna_pattern_array[i],axis=0)[1]) l=np.asarray(a).argsort()[::-1] for i in range(len(l)): self.cna_pattern_master_key[i]=self.cna_pattern_array[l[i]] #returning the pattern masterkey return self.cna_pattern_master_key def pattern_dictionary_maker(self): """ Armand This is where the magic happens. The function first asks for a new MasterKey or receives one from memory. The function goes over all files within xyz_dir, and uses the npz files in npz_dir to find all of the atoms whose patterns are in MasterKey. """ #READING THE MASTERKEY FROM PATTERN DICTIONARY NPZ if (self.Pattern_Input['FROM_MEMORY'] is True): self.Pattern_Dict['masterkey'] = np.load( self.System['base_dir'] + self.System['npz_dir'] + 'pattern_dictionary.npz', allow_pickle = True)['masterkey'] with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write()('\nKey CNA Patterns found in memory:\n') f.close() #CREATING A NEW MASTERKEY elif (self.Pattern_Input['FROM_MEMORY'] is False): #USING THE MASTERKEY FOR SUPPORT VECTOR CLUSTERING if (self.Pattern_Input['BULK_MASTERKEY'] is True): self.Pattern_Dict = Utilities.Bulk_Masterkey(self.Pattern_Dict).Key() with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\nUsing bulk pattern dictionary from Utilities.\n') #CREATING A NEW MASTERKEY FROM ALL PATTERNS FOUND WITHIN THE THE XYZ_DIR if(self.Pattern_Input['BULK_MASTERKEY'] is False): self.Pattern_Dict['masterkey'] = self.cna_pattern_master_key_maker(self.System, self.MasterKey) with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\nFound key CNA Patterns:\n') #printing it for key in self.Pattern_Dict['masterkey']: with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a+') as f: f.write('\n') f.write('\t'.join(str(item) for item in key)) f.write('\n') f.close() #Looping over all files again with open(self.System['base_dir'] + 'CNA_Pattern_Info.txt', 'a') as f: f.write('\nCalculating CNA Patterns of: '+self.System['movie_file_name']+'\n') f.write('\n Reading CNA arrays from:\n' + self.npz_dir) f.close() self.CNA_arrays=np.load(self.npz_dir+'/CNA_'+self.System['movie_file_name'][:-4]+'-'+str(self.frame)+'.npz', allow_pickle=True) #pattern_CNA_Reader(arrays_filename, MasterKey) #Loading the CNA arrays self.Pattern_Dict[self.System['movie_file_name'][:-4]+'-'+str(self.frame)] = np.zeros( (len(self.CNA_arrays['particle_cnas']), len(self.Pattern_Dict['masterkey'])),dtype=bool) #Looping over the atoms for i in range(len(self.CNA_arrays['particle_cnas'])): #Creating the atomistic pattern list self.atom_pattern=[] #Finding the non zero CNA signatures, and looping over them self.non_zero_values =
np.nonzero(self.CNA_arrays['particle_cnas'][i])
numpy.nonzero
import cv2 import sys import os import time import numpy as np import pandas as pd import matplotlib.pyplot as plt from time import sleep from keras.models import load_model from scipy import stats from collections import Counter class EmotionFacePredictor(): ''' Class for handling model building and new data classification ''' def __init__(self, home, cv2_path, model_path): self.home = home # where script lives self.cv2_path = cv2_path # where face processing files can be found (from cv2) self.cascade_file = self.cv2_path+'haarcascade_frontalface_alt.xml' self.model_path = model_path self.emo_dict = {0:'Angry', 1: 'Fear', 2:'Happy', 3: 'Sad', 4:'Surprise', 5: 'Neutral'} # new dict of output labels self.x_range = list(range(6)) self.emo_list = list(self.emo_dict.values()) # labels def run_setup(self): self.load_model() self.load_face_cascade() # plt.ion() self.best_model._make_predict_function() def load_model(self): if os.path.exists(self.model_path): self.best_model = load_model(self.model_path) else: print(f'Model not found check path:\n{self.model_path}') def load_face_cascade(self): if os.path.exists(self.cascade_file): self.faceCascade = cv2.CascadeClassifier(self.cascade_file) else: print(f'Model not found check path:\n{self.cascade_file}') def classify_faces_image(self, img): self.img = cv2.imread(img) self.gray = cv2.cvtColor(self.img, cv2.COLOR_BGR2GRAY) # convert img to grayscale faces = self.faceCascade.detectMultiScale( self.gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv2.CASCADE_SCALE_IMAGE ) print(f'Found {len(faces)} faces') if len(faces)>0: # Create array to average responses face_paths = [] df_probas = [] df_predict = [] cnt = 1 # Draw a rectangle around the faces for (x, y, w, h) in faces: cv2.rectangle(self.gray, (x, y), (x+w, y+h), (0, 255, 0), 2) self.sub_face = self.gray[y:y+h, x:x+w] sb2 = cv2.resize(self.sub_face, (48, 48)) sb3 =
np.expand_dims(sb2, axis=3)
numpy.expand_dims
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Utility functions models code """ import numpy as np import numpy.lib.recfunctions as nprf from six import integer_types from six.moves import range from sm2.compat.python import asstr2 from sm2.tools.linalg import pinv_extended, nan_dot, chain_dot # noqa:F841 from sm2.tools.data import _is_using_pandas, _is_recarray from sm2.base.naming import make_dictnames as _make_dictnames def not_ported(name, used=False, tested=False, msg=None, sandbox=False): if msg is None: msg = "{name} not ported from upstream".format(name=name) if sandbox: msg += ", as it is used only in neglected sandbox/example files." elif not used and not tested: msg += ", as it is neither used nor tested there." elif not used: msg += ", as it is not used there." def func(*args, **kwargs): # pragma: no cover # TODO: Maybe make a NotPortedError? raise NotImplementedError(msg) func.__name__ = name return func drop_missing = not_ported("drop_missing") recipr0 = not_ported("drop_missing") unsqueeze = not_ported("unsqueeze", used=1, tested=False) _ensure_2d = not_ported("_ensure_2d", tested=False, sandbox=1) # TODO: needs to better preserve dtype and be more flexible # ie., if you still have a string variable in your array you don't # want to cast it to float # TODO: add name validator (ie., bad names for datasets.grunfeld) def categorical(data, col=None, dictnames=False, drop=False, ): """ Returns a dummy matrix given an array of categorical variables. Parameters ---------- data : array A structured array, recarray, or array. This can be either a 1d vector of the categorical variable or a 2d array with the column specifying the categorical variable specified by the col argument. col : 'string', int, or None If data is a structured array or a recarray, `col` can be a string that is the name of the column that contains the variable. For all arrays `col` can be an int that is the (zero-based) column index number. `col` can only be None for a 1d array. The default is None. dictnames : bool, optional If True, a dictionary mapping the column number to the categorical name is returned. Used to have information about plain arrays. drop : bool Whether or not keep the categorical variable in the returned matrix. Returns -------- dummy_matrix, [dictnames, optional] A matrix of dummy (indicator/binary) float variables for the categorical data. If dictnames is True, then the dictionary is returned as well. Notes ----- This returns a dummy variable for EVERY distinct variable. If a a structured or recarray is provided, the names for the new variable is the old variable name - underscore - category name. So if the a variable 'vote' had answers as 'yes' or 'no' then the returned array would have to new variables-- 'vote_yes' and 'vote_no'. There is currently no name checking. Examples -------- >>> import numpy as np >>> import sm2.api as sm Univariate examples >>> import string >>> string_var = [string.ascii_lowercase[0:5], \ string.ascii_lowercase[5:10], \ string.ascii_lowercase[10:15], \ string.ascii_lowercase[15:20], \ string.ascii_lowercase[20:25]] >>> string_var *= 5 >>> string_var = np.asarray(sorted(string_var)) >>> design = sm.tools.categorical(string_var, drop=True) Or for a numerical categorical variable >>> instr = np.floor(np.arange(10,60, step=2)/10) >>> design = sm.tools.categorical(instr, drop=True) With a structured array >>> num = np.random.randn(25,2) >>> struct_ar = np.zeros((25,1), dtype=[('var1', 'f4'),('var2', 'f4'), \ ('instrument','f4'),('str_instr','a5')]) >>> struct_ar['var1'] = num[:,0][:,None] >>> struct_ar['var2'] = num[:,1][:,None] >>> struct_ar['instrument'] = instr[:,None] >>> struct_ar['str_instr'] = string_var[:,None] >>> design = sm.tools.categorical(struct_ar, col='instrument', drop=True) Or >>> design2 = sm.tools.categorical(struct_ar, col='str_instr', drop=True) """ if isinstance(col, (list, tuple)): if len(col) != 1: # pragma: no cover raise ValueError("Can only convert one column at a time") col = col[0] # TODO: add a NameValidator function # catch recarrays and structured arrays if data.dtype.names or data.__class__ is np.recarray: if not col and np.squeeze(data).ndim > 1: # pragma: no cover raise IndexError("col is None and the input array is not 1d") if isinstance(col, integer_types): col = data.dtype.names[col] if col is None and data.dtype.names and len(data.dtype.names) == 1: col = data.dtype.names[0] tmp_arr = np.unique(data[col]) # if the cols are shape (#,) vs (#,1) need to add an axis and flip _swap = True if data[col].ndim == 1: tmp_arr = tmp_arr[:, None] _swap = False tmp_dummy = (tmp_arr == data[col]).astype(float) if _swap: tmp_dummy = np.squeeze(tmp_dummy).swapaxes(1, 0) if not tmp_arr.dtype.names: # TODO: how do we get to this code path? tmp_arr = [asstr2(item) for item in np.squeeze(tmp_arr)] elif tmp_arr.dtype.names: tmp_arr = [asstr2(item) for item in np.squeeze(tmp_arr.tolist())] # prepend the varname and underscore, if col is numeric attribute # lookup is lost for recarrays... if col is None: try: col = data.dtype.names[0] except (AttributeError, TypeError, IndexError): col = 'var' # TODO: the above needs to be made robust because there could be many # var_yes, var_no varaibles for instance. tmp_arr = [col + '_' + item for item in tmp_arr] # TODO: test this for rec and structured arrays!!! if drop is True: if len(data.dtype) <= 1: if tmp_dummy.shape[0] < tmp_dummy.shape[1]: tmp_dummy = np.squeeze(tmp_dummy).swapaxes(1, 0) dt = list(zip(tmp_arr, [tmp_dummy.dtype.str] * len(tmp_arr))) # preserve array type return np.array(list(map(tuple, tmp_dummy.tolist())), dtype=dt).view(type(data)) data = nprf.drop_fields(data, col, usemask=False, asrecarray=type(data) is np.recarray) data = nprf.append_fields(data, tmp_arr, data=tmp_dummy, usemask=False, asrecarray=type(data) is np.recarray) return data # handle ndarrays and catch array-like for an error elif data.__class__ is np.ndarray or not isinstance(data, np.ndarray): # TODO: Do we not allow subclasses of ndarray? why not just isinstance? if not isinstance(data, np.ndarray): # pragma: no cover # TODO: WTF isnt the error message the exact opposite of correct? raise NotImplementedError("Array-like objects are not supported") if isinstance(col, integer_types): offset = data.shape[1] # need error catching here? tmp_arr = np.unique(data[:, col]) tmp_dummy = (tmp_arr[:, np.newaxis] == data[:, col]).astype(float) tmp_dummy = tmp_dummy.swapaxes(1, 0) if drop is True: offset -= 1 data = np.delete(data, col, axis=1).astype(float) data = np.column_stack((data, tmp_dummy)) if dictnames is True: col_map = _make_dictnames(tmp_arr, offset) return data, col_map return data elif col is None and np.squeeze(data).ndim == 1: tmp_arr = np.unique(data) tmp_dummy = (tmp_arr[:, None] == data).astype(float) tmp_dummy = tmp_dummy.swapaxes(1, 0) if drop is True: if dictnames is True: col_map = _make_dictnames(tmp_arr) return tmp_dummy, col_map return tmp_dummy else: data =
np.column_stack((data, tmp_dummy))
numpy.column_stack
import salome import SMESH from salome.geom import geomBuilder from salome.smesh import smeshBuilder import sys import math import numpy as np from numpy.linalg import norm from numpy.random import uniform from pathlib import Path from auxiliaryFunctions import clusteringAlgorithm from auxiliaryFunctions import getTranslationalRiskAngleRefAxis from itertools import product import os salome.salome_init() geompy = geomBuilder.New() smesh = smeshBuilder.New() def smallestLineOnFace(face): bndVertices_Slm = geompy.ExtractShapes(face, geompy.ShapeType["VERTEX"], True) indexList = [(0,1), (0,2), (0,3)] distances = [geompy.MinDistance(bndVertices_Slm[i], bndVertices_Slm[j]) for i,j in indexList] index = distances.index(min(distances)) p1 = bndVertices_Slm[indexList[index][0]] p2 = bndVertices_Slm[indexList[index][1]] line = geompy.MakeLineTwoPnt(p1,p2) return line class Line: def __init__(self, Point1, Point2): self.origin = Point1 self.dest = Point2 v1 = geompy.MakeVertex(*list(Point1)) v2 = geompy.MakeVertex(*list(Point2)) self.geom = geompy.MakeLineTwoPnt(v1, v2) def addToStudy(self, name = 'Line'): geompy.addToStudy(self.geom, name) def extendLine(self, multiplier): self.geom = geompy.ExtendEdge(self.geom, 0, multiplier) # Obtain the Salome vertexes: New Entity-Explode-SubShapes Selection [v1, v2] = geompy.ExtractShapes(self.geom, geompy.ShapeType["VERTEX"], True) v1coords = geompy.PointCoordinates(v1) v2coords = geompy.PointCoordinates(v2) self.dest = v2coords if
np.allclose(v1coords, self.origin)
numpy.allclose
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import pytest import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.neural_network import flexible_shape_utils from coremltools.models.utils import macos_version, is_macos np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: # check if shape has 0 valued dimension if np.prod(np_preds.shape) == 0 and np.prod(coreml_preds.shape) == 0: return True return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) try: prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) finally: # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(not is_macos() or macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) self.assertEquals(len(input_dim), builder._get_rank('output')) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) for output_ in output_names: self.assertEqual(len(input_dim), builder._get_rank(output_)) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) self.assertEqual(len(input_dim), builder._get_rank('output')) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_linear_activation(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected) def test_padding_constant(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) builder.add_padding(name='pad', left=1, right=0, top=2, bottom=0, value=-1, input_name='data', output_name='output') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape( np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3], [-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_padding_replication(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name='pad', left=1, top=2, input_name='data', output_name='output', padding_type='replication') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_3(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_reshape_target_shape_4(self): input_dim = (1, 2, 5) # (C,H,W) target_dim = (1, 10, 1, 1) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=target_dim, mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (1, 10, 1, 1))} self._test_model(builder.spec, input, expected) self.assertEqual(len(target_dim), builder._get_rank('output')) def test_bias_matrix_cpu(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_linear_activation_cpu(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=True) @unittest.skipIf(not is_macos() or macos_version() < LAYERS_10_15_MACOS_VERSION, 'macOS 10.15+ required. Skipping tests.') class NewLayersSimpleTest(CorrectnessTest): def test_shape_flexibility_range(self): input_features = [('data', datatypes.Array(*(3,4)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data', lower_bounds=[1,1], upper_bounds=[-1,5]) shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)] for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration(self, rank=4): default_shape = tuple(np.random.randint(1, 15, size=rank)) input_features = [('data', datatypes.Array(*default_shape))] builder = neural_network.NeuralNetworkBuilder( input_features=input_features, output_features=[('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec shapes = [tuple(np.random.randint(1, 15, size=rank)), tuple(np.random.randint(1, 15, size=rank))] flexible_shape_utils.add_multiarray_ndshape_enumeration( spec, feature_name='data', enumerated_shapes=shapes) shapes.append(default_shape) for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_shape_flexibility_enumeration_rank3(self): self.test_shape_flexibility_enumeration(rank=3) def test_shape_flexibility_enumeration_rank2(self): self.test_shape_flexibility_enumeration(rank=2) def test_transpose_cpu(self): for rank in range(1, 6): axes = np.random.permutation(rank) axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes] input_shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_transpose(name='TransposeND', axes=axes, input_name='data', output_name='output') x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.transpose(x, axes)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_dynamic_weight_conv(self): input_dim = (1, 3, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (4, 3, 3, 3) output_dim = (1, 4, 14, 14) kernel_channels = input_dim[0] output_channels, kernel_channels, height, width = weight_dim input_features = [ ('input', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='two_input_conv_layer', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, input_name=['input', 'weight'], output_name='output') # Assigning everything to ones should cover the execution path # and engine failures, but is not a complete check on numerics. input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'input': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected, useCPUOnly=True) self._test_model(builder.spec, feed_dict, expected, useCPUOnly=False) @pytest.mark.xfail def test_dynamic_weight_deconv(self): # Expect to fail in Core ML 3 input_dim = (1, 1, 16, 16) # weight layout: (output_channels, kernel_channels, height, width) weight_dim = (1, 1, 3, 3) output_dim = (1, 1, 18, 18) output_channels, kernel_channels, height, width = weight_dim input_features = [ ('data', datatypes.Array(*input_dim)), ('weight', datatypes.Array(*weight_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_convolution( name='deconv', kernel_channels=kernel_channels, output_channels=output_channels, height=height, width=width, stride_height=1, stride_width=1, border_mode='valid', groups=1, W=None, b=None, has_bias=False, is_deconv=True, input_name=['data', 'weight'], output_name='output') input_val = np.ones(input_dim) weight_val = np.ones(weight_dim) expected = np.ones(output_dim) * 27 feed_dict = {'data': input_val, 'weight': weight_val} expected = {'output': expected} self._test_model(builder.spec, feed_dict, expected) def test_batched_mat_mul_cpu(self, cpu_only=True): a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4), (1, 3, 1, 2, 3), (2, 3, 1, 3, 4)] b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5), (1, 4, 3, 2), (2, 1, 2, 4, 5)] out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5), (1, 3, 4, 2, 2), (2, 3, 2, 3, 5)] for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes): input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['A', 'B'], output_name='output', transpose_a=False, transpose_b=False) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input_ = {'A': a, 'B': b} expected = {'output': np.array(np.matmul(a, b))} shape_dict = {'output': outShape} self._test_model(builder.spec, input_, expected, useCPUOnly=cpu_only, output_name_shape_dict=shape_dict) self.assertEqual(len(outShape), builder._get_rank('output')) def test_batched_mat_mul_gpu(self): self.test_batched_mat_mul_cpu(cpu_only=False) def test_batched_mat_mul_with_transposes_cpu(self, cpu_only=True): for transpose_a, transpose_b in itertools.product([True, False], [True, False]): a_shape = (3, 4) b_shape = (4, 5) a_shape = a_shape[::-1] if transpose_a else a_shape b_shape = b_shape[::-1] if transpose_b else b_shape input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_batched_mat_mul( name='BatchedMatMul', input_names=['A', 'B'], output_name='output', transpose_a=transpose_a, transpose_b=transpose_b ) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) inputs = {'A': a, 'B': b} a = a.T if transpose_a else a b = b.T if transpose_b else b expected = {'output': np.matmul(a, b)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_batched_mat_mul_with_transposes_gpu(self): self.test_batched_mat_mul_with_transposes_cpu(cpu_only=False) def test_batched_mat_mul_single_input_cpu(self, model_precision=_MLMODEL_FULL_PRECISION, cpu_only=True): X1 = 11 X2 = 23 W = np.random.rand(X1, X2) bias = np.random.rand(X2) input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1), (2, 3, 1, 5, X1)] for input_shape in input_shapes: x = np.random.rand(*input_shape) np_out = np.matmul(x, W) + bias expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['data'], output_name='output', weight_matrix_rows=X1, weight_matrix_columns=X2, W=W, bias=bias) inputs = {'data': x} self._test_model( builder.spec, inputs, expected, model_precision=model_precision, useCPUOnly=cpu_only) def test_batched_mat_mul_single_input_half_precision_cpu(self): self.test_batched_mat_mul_single_input_cpu( model_precision=_MLMODEL_HALF_PRECISION, cpu_only=True) def test_batched_mat_mul_single_input_gpu(self): self.test_batched_mat_mul_single_input_cpu(model_precision=_MLMODEL_FULL_PRECISION, cpu_only=False) def test_embedding_nd_cpu( self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True): vocab_size = 10 embedding_size = 19 W = np.random.rand(embedding_size, vocab_size) input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1), (2, 3, 1, 5, 1)] for input_shape in input_shapes: x = np.random.randint(vocab_size, size=input_shape) np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0) expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_embedding_nd(name='embedding_nd', input_name='data', output_name='output', vocab_size=vocab_size, embedding_size=embedding_size, W=W) input = {'data': x.astype(np.float32)} self._test_model( builder.spec, input, expected, model_precision=model_precision, useCPUOnly=use_cpu_only) def test_embedding_nd_half_precision_cpu(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True) def test_embedding_nd_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False) def test_embedding_nd_half_precision_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False) def test_softmax_nan_bug_cpu(self): input_shape = [2,2] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] for axis in [0,1]: builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.array([[0.5, 0.5],[1e8, 1e8]]) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_softmax_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.random.rand(*input_shape) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_softmax_nd_gpu(self): self.test_softmax_nd_cpu(cpu_only=False) def test_concat_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_inputs = np.random.choice(range(2, 5)) output_shape = np.random.randint(low=2, high=5, size=rank) output_shape[axis] = 0 input_shapes = [] input_features = [] input_names = [] for _ in range(n_inputs): input_shapes.append(np.copy(output_shape)) input_shapes[-1][axis] = np.random.choice(range(2, 8)) output_shape[axis] += input_shapes[-1][axis] for i, input_dim in enumerate(input_shapes): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append((input_name, datatypes.Array(*input_dim))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) builder.add_concat_nd(name='concat_nd', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for input_dim in input_shapes: input_tensors.append(np.random.rand(*input_dim)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.concatenate(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_concat_nd_gpu(self): self.test_concat_nd_cpu(cpu_only=False) def test_fill_like_cpu(self, cpu_only=True): for rank in range(1, 6): target_shape = np.random.randint(low=2, high=6, size=rank) value = float(np.random.rand()) input_features = [('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_like(name='fill_like', input_name='tensor', output_name='output', value=value) tensor = np.random.rand(*target_shape) input = {'tensor': tensor} expected = {'output': np.zeros(target_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_fill_like_gpu(self): self.test_fill_like_cpu(cpu_only=False) def test_fill_static_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] value = float(np.random.rand()) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_static(name='fill_static', output_name='tmp', output_shape=list(shape), value=value) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.random.rand(*shape) input = {'data': data} expected = {'output': data + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(shape), builder._get_rank('output')) def test_fill_static_gpu(self): self.test_fill_static_cpu(cpu_only=False) def test_fill_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) value = float(np.random.rand()) input_features = [('shape', datatypes.Array(len(input_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic', input_name='shape', output_name='output', value=value) input = {'shape': np.array(input_shape, dtype='float')} expected = {'output': np.zeros(input_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_fill_dynamic_gpu(self): self.test_fill_dynamic_cpu(cpu_only=False) def test_broadcast_to_like_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_like(name='broadcast_to_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_broadcast_to_like_gpu(self): self.test_broadcast_to_like_cpu(cpu_only=False) def test_broadcast_to_static_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_static(name='broadcast_to_static', input_name='data', output_name='output', output_shape=list(target_shape)) data = np.random.rand(*input_shape) input = {'data': data} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_broadcast_to_static_gpu(self): self.test_broadcast_to_static_cpu(cpu_only=False) def test_broadcast_to_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.broadcast_to(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(builder._get_rank('output'), -1) def test_broadcast_to_dynamic_gpu(self): self.test_broadcast_to_dynamic_cpu(cpu_only=False) # Test Rank being set to unknown when one of the input rank is unknown # For max rank case def test_unknown_rank(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank = np.random.randint(low=rank, high=6) target_shape = [np.random.randint(low=2, high=8) if (-i > rank or input_shape[i] == 1) else input_shape[i] for i in range(-1, -target_rank - 1, -1)][::-1] input_features = [('x', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_broadcast_to_dynamic(name='broadcast_to_dynamic', input_names=['x', 'shape'], output_name='y') condition = np.random.randint(0, 2, input_shape).astype(np.float32) builder.add_load_constant_nd(name='load_constant_condition', output_name='condition', constant_value=condition, shape=input_shape) builder.add_where_broadcastable(name='where', input_names=['condition', 'x', 'y'], output_name='output') self.assertEqual(builder._get_rank('output'), -1) def test_trigonometry_cpu(self, cpu_only=True): ops = ['sin', 'cos', 'tan', 'asin', 'acos', 'atan', 'sinh', 'cosh', 'tanh', 'asinh', 'acosh', 'atanh'] for op in ops: for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) x = np.random.rand(*shape) if op == 'sin': builder.add_sin(name=op, input_name='data', output_name='output') expected = {'output': np.sin(x)} elif op == 'cos': builder.add_cos(name=op, input_name='data', output_name='output') expected = {'output': np.cos(x)} elif op == 'tan': builder.add_tan(name=op, input_name='data', output_name='output') expected = {'output': np.tan(x)} elif op == 'asin': builder.add_asin(name=op, input_name='data', output_name='output') expected = {'output': np.arcsin(x)} elif op == 'acos': builder.add_acos(name=op, input_name='data', output_name='output') expected = {'output': np.arccos(x)} elif op == 'atan': builder.add_atan(name=op, input_name='data', output_name='output') expected = {'output': np.arctan(x)} elif op == 'sinh': builder.add_sinh(name=op, input_name='data', output_name='output') expected = {'output': np.sinh(x)} elif op == 'cosh': builder.add_cosh(name=op, input_name='data', output_name='output') expected = {'output': np.cosh(x)} elif op == 'tanh': builder.add_tanh(name=op, input_name='data', output_name='output') expected = {'output': np.tanh(x)} elif op == 'asinh': builder.add_asinh(name=op, input_name='data', output_name='output') expected = {'output': np.arcsinh(x)} elif op == 'acosh': x = np.random.choice([10, np.e, 1], tuple(shape)).astype(np.float32) builder.add_acosh(name=op, input_name='data', output_name='output') expected = {'output': np.arccosh(x)} elif op == 'atanh': builder.add_atanh(name=op, input_name='data', output_name='output') expected = {'output': np.arctanh(x)} self._test_model(builder.spec, {'data': x}, expected, useCPUOnly=cpu_only) def test_trigonometry_gpu(self): self.test_trigonometry_cpu(cpu_only=False) def test_exp2_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_exp2(name='exp2', input_name='data', output_name='output') x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.exp2(x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_exp2_gpu(self): self.test_exp2_cpu(cpu_only=False) def test_elementwise_binary_cpu(self, cpu_only=True): input_names = ['A', 'B'] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal', 'logical_and', 'logical_or', 'logical_xor', 'add', 'subtract', 'multiply', 'divide', 'power', 'maximum', 'minimum', 'floor_divide', 'mod'] for test_case in test_cases: for _ in range(10): rank_a = np.random.randint(low=1, high=6) rank_b = np.random.randint(low=1, high=6) rank_out = max(rank_a, rank_b) shape_a = np.random.randint(low=2, high=8, size=rank_a) shape_b = np.random.randint(low=2, high=8, size=rank_b) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_a: dims.append(shape_a[i]) if -i <= rank_b: dims.append(shape_b[i]) dim = np.random.choice(dims) if -i <= rank_a: shape_a[i] = np.random.choice([1, dim]) if -i <= rank_b: shape_b[i] = np.random.choice([1, dim]) input_shapes = [shape_a, shape_b] input_features = [('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1]))] builder = neural_network.NeuralNetworkBuilder(input_features, [ ('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output') elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output') elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output') elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True) elif test_case == 'logical_and': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='AND') elif test_case == 'logical_or': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='OR') elif test_case == 'logical_xor': builder.add_logical(test_case, input_names=input_names, output_name='output', mode='XOR') elif test_case == 'add': builder.add_add_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'subtract': builder.add_subtract_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'multiply': builder.add_multiply_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'divide': builder.add_divide_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'power': builder.add_pow_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'maximum': builder.add_max_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'minimum': builder.add_min_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'floor_divide': builder.add_floor_div_broadcastable(test_case, input_names=input_names, output_name='output') elif test_case == 'mod': builder.add_mod_broadcastable(test_case, input_names=input_names, output_name='output') a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input = {'A': a, 'B': b} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_binary_gpu(self): self.test_elementwise_binary_cpu(cpu_only=False) def test_elementwise_boolean_unary_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] test_cases = ['greater', 'less', 'equal', 'not_equal', 'greater_equal', 'less_equal'] for test_case in test_cases: for shape in shapes: input_features = [('input', datatypes.Array(*shape))] b = np.random.rand() builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) func = getattr(np, test_case) if test_case == 'greater': builder.add_greater_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'less': builder.add_less_than(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'equal': builder.add_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'not_equal': builder.add_not_equal(test_case, input_names=input_names, output_name='output', alpha=b) elif test_case == 'greater_equal': builder.add_greater_than(test_case, input_names=input_names, output_name='output', use_greater_than_equal=True, alpha=b) elif test_case == 'less_equal': builder.add_less_than(test_case, input_names=input_names, output_name='output', use_less_than_equal=True, alpha=b) a = np.random.rand(*shape) input = {'input': a} expected = {'output': func(a, b, dtype=np.float32)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_elementwise_boolean_unary_gpu(self): self.test_elementwise_boolean_unary_cpu(cpu_only=False) def test_logical_not_cpu(self, cpu_only=True): input_names = ['input'] shapes = [(1, 2, 3, 1), (3, 1, 2, 1, 2), (1, 2, 1, 3), (2, 3), (2, 1, 1), (2, 3, 4), (2, 4), (1,), (1,)] for shape in shapes: input_features = [('input', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_logical('logical_not', input_names=input_names, output_name='output', mode='NOT') a = np.random.rand(*shape) input = {'input': a} expected = {'output': np.logical_not(a)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_logical_not_gpu(self): self.test_logical_not_cpu(cpu_only=False) def test_stack_cpu(self, cpu_only=True): for input_rank in range(1, 5): for axis in range(-input_rank - 1, input_rank + 1): n_inputs = np.random.choice(range(2, 5)) input_shape = np.random.randint(low=2, high=5, size=input_rank) input_features = [] input_names = [] for i in range(n_inputs): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append( (input_name, datatypes.Array(*input_shape))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_stack(name='stack', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for _ in range(n_inputs): input_tensors.append(np.random.rand(*input_shape)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.stack(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(input_rank + 1, builder._get_rank('output')) def test_stack_gpu(self): self.test_stack_cpu(cpu_only=False) def test_ceil_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_ceil(name='ceil', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.ceil(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_ceil_gpu(self): self.test_ceil_cpu(cpu_only=False) def test_floor_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_floor(name='floor', input_name='data', output_name='output') x = np.random.rand(*shape) inputs = {'data': x} expected = {'output': np.floor(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_floor_gpu(self): self.test_floor_cpu(cpu_only=False) def test_round_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_round(name='round', input_name='data', output_name='output') x = np.float32(np.random.rand(*shape) * np.random.randint(low=-100, high=101)) inputs = {'data': x} expected = {'output': np.around(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_round_gpu(self): self.test_round_cpu(cpu_only=False) def test_sign_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sign(name='sign', input_name='data', output_name='output') x = np.random.choice([-np.random.rand(1), 0.0, np.random.rand(1)], tuple(shape)).astype(np.float32) inputs = {'data': x} expected = {'output': np.sign(x)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_sign_gpu(self): self.test_sign_cpu(cpu_only=False) def test_clip_cpu(self, cpu_only=True): for rank in range(1, 6): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', datatypes.Array(*shape))] x = np.random.rand(*shape) min_value = np.percentile(x, 25) max_value = np.percentile(x, 75) input = {'data': x} builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_clip(name='clip', input_name='data', output_name='output', min_value=min_value, max_value=max_value) expected = {'output': np.clip(x, min_value, max_value)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_clip_gpu(self): self.test_clip_cpu(cpu_only=False) def test_split_nd_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes = [] output_features = [] output_names = [] almost_equal = random.choice([True, False]) remainder = np.random.choice( range(1, n_outputs)) if almost_equal else 0 value = np.random.choice(range(2, 5)) for k in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][ axis] = value + 1 if k < remainder else value input_shape[axis] += output_shapes[-1][axis] for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, num_splits=n_outputs) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip( output_names, np.array_split(x, n_outputs, axis=axis) if almost_equal else np.split(x, n_outputs, axis=axis) ) ) # Explicitly trying to compare against both versions of numpy split self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_gpu(self): self.test_split_nd_cpu(cpu_only=False) def test_split_nd_with_split_sizes_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank): n_outputs = np.random.choice(range(2, 4)) input_shape = np.random.randint(low=2, high=5, size=rank) input_shape[axis] = 0 output_shapes, output_features, output_names = [], [], [] sections, split_sizes = [], [] for _ in range(n_outputs): output_shapes.append(np.copy(input_shape)) output_shapes[-1][axis] = np.random.choice(range(2, 5)) input_shape[axis] += output_shapes[-1][axis] sections.append(input_shape[axis]) split_sizes.append(output_shapes[-1][axis]) sections.pop() for i in range(n_outputs): output_name = 'output_%s' % str(i) output_names.append(output_name) output_features.append( (output_name, None)) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_split_nd(name='split_nd', input_name='data', output_names=output_names, axis=axis, split_sizes=split_sizes) x = np.random.rand(*input_shape) input = {'data': x} expected = dict( zip(output_names, np.split(x, sections, axis=axis))) self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) for output_ in output_names: self.assertEqual(rank, builder._get_rank(output_)) def test_split_nd_with_split_sizes_gpu(self): self.test_split_nd_with_split_sizes_cpu(cpu_only=False) def test_slice_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(200): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_slice_static('slice_static', 'data', 'output', begin_ids=begin_ids, end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) x = np.random.rand(*input_shape) inputs = {'data': x} expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_static_gpu(self): self.test_slice_static_cpu(cpu_only=False) def test_slice_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.array([5 for _ in range(rank)]) objs, strides, begin_masks, end_ids, end_masks, begin_ids = [], [], [], [], [], [] for dim in range(rank): stride = random.choice([-3, -1, 1, 2]) begin_mask = random.choice([True, False]) end_mask = random.choice([True, False]) length = 0 while length <= 0: begin_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) end_id = np.random.randint(low=-input_shape[dim], high=input_shape[dim]) obj = slice(None if begin_mask else begin_id, None if end_mask else end_id, stride) length = np.arange(input_shape[dim])[(obj,)].shape[0] objs.append(obj), strides.append(stride), begin_masks.append( begin_mask) end_masks.append(end_mask), begin_ids.append( begin_id), end_ids.append(end_id) # test different number of inputs, from 2 inputs up to 6 inputs # when num_inputs == 2, begin_ids are inputs, rest are read from parameters # when num_inputs == 6, all read from inputs, none are read from parameters for num_inputs in [2, 3, 4, 5, 6]: x = np.random.rand(*input_shape) input_features = [('data', datatypes.Array(*input_shape))] input_names = ['data'] inputs = dict() inputs['data'] = x if num_inputs == 2: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids)))] input_names = ['data', 'begin_ids'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) elif num_inputs == 3: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids)))] input_names = ['data', 'begin_ids', 'end_ids'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) elif num_inputs == 4: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) elif num_inputs == 5: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides))), ('begin_masks', datatypes.Array(len(begin_masks)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32) elif num_inputs == 6: input_features = [('data', datatypes.Array(*input_shape)), ('begin_ids', datatypes.Array(len(begin_ids))), ('end_ids', datatypes.Array(len(end_ids))), ('strides', datatypes.Array(len(strides))), ('begin_masks', datatypes.Array(len(begin_masks))), ('end_masks', datatypes.Array(len(end_masks)))] input_names = ['data', 'begin_ids', 'end_ids', 'strides', 'begin_masks', 'end_masks'] inputs['begin_ids'] = np.array(begin_ids, dtype=np.int32) inputs['end_ids'] = np.array(end_ids, dtype=np.int32) inputs['strides'] = np.array(strides, dtype=np.int32) inputs['begin_masks'] = np.array(begin_masks, dtype=np.int32) inputs['end_masks'] = np.array(end_masks, dtype=np.int32) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) if num_inputs == 2: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', end_ids=end_ids, strides=strides, begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 3: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', strides=strides, begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 4: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', begin_masks=begin_masks, end_masks=end_masks) elif num_inputs == 5: builder.add_slice_dynamic('slice_dynamic', input_names, 'output', end_masks=end_masks) elif num_inputs == 6: builder.add_slice_dynamic('slice_dynamic', input_names, 'output') expected = {'output': x[tuple(objs)]} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_slice_dynamic_gpu(self): self.test_slice_dynamic_cpu(cpu_only=False) def test_tile_cpu(self, cpu_only=True): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=5, size=rank) for rep_rank in range(1,rank+1): reps = list(np.random.randint(low=1, high=9, size=rep_rank)) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_tile('Tile', 'data', 'output', reps) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.tile(x, reps)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_tile_gpu(self): self.test_tile_cpu(cpu_only=False) def test_sliding_windows_cpu(self, cpu_only=True): def numpy_sliding_windows(a, np_axis, np_size, np_step): n = (a.shape[np_axis] - np_size) // np_step + 1 shape = list(a.shape) shape[np_axis] = n if np_axis < 0: np_axis += len(shape) shape.insert(np_axis + 1, np_size) strides = list(a.strides) effstride = strides[np_axis] * np_step strides.insert(np_axis, effstride) return np.lib.stride_tricks.as_strided(a, shape, strides) for rank in range(1, 5): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) output_shape = list(input_shape) window_size = np.random.randint(low=1, high=input_shape[axis]) length = 0 while length <= 0: step = np.random.randint(low=1, high=input_shape[axis]) length = (input_shape[axis] - window_size) // step + 1 output_shape[axis] = length pos_axis = axis if axis >= 0 else axis + rank output_shape.insert(pos_axis + 1, window_size) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_sliding_windows('sliding_windows', input_name='data', output_name='output', axis=axis, window_size=window_size, step=step) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': numpy_sliding_windows(x, axis, window_size, step)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(rank+1, builder._get_rank('output')) def test_sliding_windows_gpu(self): self.test_sliding_windows_cpu(cpu_only=False) def test_range_static_cpu(self, cpu_only=True): params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2), (5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)] for param in params: start, end, step = param input_features = [('multiplicative_input', datatypes.Array(1))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_range_static('range_static', 'output_range', end=end, start=start, step=step) builder.add_multiply_broadcastable( name='multiply_broadcastable', input_names=['multiplicative_input', 'output_range'], output_name='output') # save the model model_dir = tempfile.mkdtemp() model_path = os.path.join(model_dir, 'test_layer.mlmodel') coremltools.utils.save_spec(builder.spec, model_path) inputs = dict() inputs['multiplicative_input'] = np.ones((1,), dtype=np.float64) expected = {'output': np.arange(start, end, step)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(1, builder._get_rank('output')) def test_range_static_gpu(self): self.test_range_static_cpu(cpu_only=False) def test_range_dynamic_cpu(self, cpu_only=True): params = [(-10.4, 23, 12.2), (0, 1000, 1), (50.5, 90.5, 1.5), (5, 8, 2), (5, 8, 98), (5, 8, 1.5), (10, 5, -0.6), (24, -65, -2)] # input size == 1: end is input, start and step are read from parameters # input size == 2: end, start are inputs, step is read from parameters # input size == 3: start, end, step are all inputs, none of the parameters are used. for num_inputs in [1, 2, 3]: for param in params: inputs = dict() start, end, step = param if num_inputs == 1: input_features = [('end', datatypes.Array(1))] elif num_inputs == 2: input_features = [('end', datatypes.Array(1)), ('start', datatypes.Array(1))] elif num_inputs == 3: input_features = [('end', datatypes.Array(1)), ('start', datatypes.Array(1)), ('step', datatypes.Array(1))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) if num_inputs == 1: inputs['end'] = end * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end'], start=start, step=step) elif num_inputs == 2: inputs['end'] = end * np.ones((1,), dtype=np.float64) inputs['start'] = start * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end', 'start'], step=step) elif num_inputs == 3: inputs['end'] = end * np.ones((1,), dtype=np.float64) inputs['start'] = start * np.ones((1,), dtype=np.float64) inputs['step'] = step * np.ones((1,), dtype=np.float64) builder.add_range_dynamic('range_dynamic', output_name='output', input_names=['end', 'start', 'step']) expected = {'output': np.arange(start, end, step)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(1, builder._get_rank('output')) def test_range_dynamic_gpu(self): self.test_range_dynamic_cpu(cpu_only=False) def test_linear_activation_different_ranks_cpu(self, cpu_only=True): for input_dim in [(10, 15), (10, 15, 2, 3), (10, 2, 4, 15, 1, 4), (6,)]: input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_linear_activation_different_ranks_gpu(self): self.test_linear_activation_different_ranks_cpu(cpu_only=False) def test_topk_cpu(self, cpu_only=True): test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)] K = [3, 5] axes = [[0], [0, 1], [1, 2], [0, 3, 1], [1, 3, 4]] for ii, input_shape in enumerate(test_input_shapes): for k in K: for n_inputs in [1, 2]: for bottom_k_flag in [False, True]: for axis in axes[ii]: for negative_axis in [False, True]: if negative_axis: axis = axis - len(input_shape) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('values', None), ('indices', None)] input_names = ['data'] output_names = ['values', 'indices'] if n_inputs == 2: input_names.append('k_in') input_features.append(('k_in', datatypes.Array(1))) builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_topk('topk', input_names, output_names, axis=axis, use_bottom_k=bottom_k_flag) else: builder.add_topk('topk', input_names, output_names, k=k, axis=axis, use_bottom_k=bottom_k_flag) data = np.random.randint(low=0, high=int(np.prod(input_shape)), size=input_shape) data = data.astype(np.float32) input = {'data': data} if n_inputs == 2: input['k_in'] = k * np.ones([1], dtype=np.float32) # numpy reference values if bottom_k_flag: ref_indices = np.argsort(data, axis=axis) else: ref_indices = np.argsort(-data, axis=axis) slc = [slice(None)] * len(input_shape) slc[axis] = slice(0, k) ref_indices = ref_indices[tuple(slc)] ref_values = np.take_along_axis(data, ref_indices, axis=axis) expected = {'values': ref_values, 'indices': ref_indices} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_topk_gpu(self): self.test_topk_cpu(cpu_only=False) def test_const_pad_cpu(self, cpu_only=True): def get_reference(data, pads, value): with tf.Graph().as_default(), tf.Session() as sess: x = tf.placeholder(tf.float32, shape=data.shape) p = tf.placeholder(tf.int32, shape=pads.shape) y = tf.pad(x, p, mode='CONSTANT', constant_values=value) return sess.run(y, feed_dict={x: data, p: pads}) value = 34.0 shapes = [(3,), (4, 5), (2, 4, 5), (12, 6, 3, 5, 7), (1, 24, 2, 4, 8)] ctr = 0 for shape in shapes: rank = len(shape) for force_zeros_in_end in [0, 2, 6]: for max_pad_value in range(1, 6): for n_inputs in [1, 2]: pads = np.random.randint(low=0, high=max_pad_value, size=(rank, 2)) if force_zeros_in_end > 2 * rank: continue # pads = np.reshape(np.array([1,1,1,0,0,1]), (rank, 2)) if force_zeros_in_end != 0: pads[-force_zeros_in_end:] = 0 data = np.random.rand(*shape) reference = get_reference(data, pads, value) ctr += 1 input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] input_names = ['data'] if n_inputs == 2: input_names.append('pads') input_features.append(('pads', datatypes.Array(2*rank,))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_constant_pad('pad', input_names, 'output', value=value) else: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_amounts=pads.flatten()) input = {'data': data} if n_inputs == 2: input['pads'] = pads.flatten().astype(np.float) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_const_pad_gpu(self): self.test_const_pad_cpu(cpu_only=False) def test_const_pad_mode2_cpu(self, cpu_only=True): def get_reference(data, output_shape, value, left_pad=False): with tf.Graph().as_default(), tf.Session() as sess: x = tf.placeholder(tf.float32, shape=data.shape) p = tf.placeholder(tf.int32, shape=(len(output_shape), 2)) y = tf.pad(x, p, mode='CONSTANT', constant_values=value) pads = np.zeros((len(output_shape), 2)) if left_pad: pads[:, 0] = np.array(output_shape) - np.array(data.shape) else: pads[:, 1] = np.array(output_shape) - np.array(data.shape) return sess.run(y, feed_dict={x: data, p: pads}) value = 34.0 shapes = [(3,), (4, 5), (2, 4, 5), (12, 6, 3, 5, 7), (1, 24, 2, 4, 8)] out_shapes = [(5,), (4, 8), (2, 4, 10), (20, 6, 7, 10, 7), (5, 24, 10, 4, 10)] ctr = 0 for ii, shape in enumerate(shapes): rank = len(shape) for left_pad in [True, False]: for n_inputs in [1, 2]: data = np.random.rand(*shape) reference = get_reference(data, out_shapes[ii], value, left_pad) pads = np.zeros((rank, 2)) tmp = np.zeros((rank)) for i in range(rank): if out_shapes[ii][i] == shape[i]: tmp[i] = 0 else: tmp[i] = out_shapes[ii][i] if left_pad: pads[:, 0] = tmp else: pads[:, 1] = tmp ctr += 1 input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] input_names = ['data'] if n_inputs == 2: input_names.append('pads') input_features.append(('pads', datatypes.Array(2*rank,))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) if n_inputs == 2: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_to_given_output_size_mode=True) else: builder.add_constant_pad('pad', input_names, 'output', value=value, pad_amounts=pads.flatten(), pad_to_given_output_size_mode=True) input = {'data': data} if n_inputs == 2: input['pads'] = pads.flatten().astype(np.float) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_const_pad_mode2_gpu(self): self.test_const_pad_mode2_cpu(cpu_only=False) def test_nms_cpu(self, cpu_only=True): def _compute_iou_matrix(boxes): # input is (N,4), in order [center_w, center_h, width, height] assert len(boxes.shape) == 2 assert boxes.shape[1] == 4 boxes = boxes.astype(np.float) center_w, center_h, width, height = np.split(boxes, 4, axis=1) # outs are all (N,1) top = center_h + 0.5 * height bottom = center_h - 0.5 * height left = center_w - 0.5 * width right = center_w + 0.5 * width area = width * height hB = np.minimum(top, np.transpose(top)) wB = np.minimum(right, np.transpose(right)) hA = np.maximum(bottom, np.transpose(bottom)) wA = np.maximum(left, np.transpose(left)) intersection_area = np.maximum(0, hB - hA) * np.maximum(0, wB - wA) union_area = area + np.transpose(area) - intersection_area iou = intersection_area / union_area return iou def _nms_TF(boxes, scores, iou_threshold, score_threshold, per_class_suppression, M): # boxes is (B,N,4), in order [center_w, center_h, width, height] # scores is (B,N,C) # output shapes: (B,M,4), (B,M,C), (B,M), (B,) ''' this is implementation of CoreML's NMS layer ''' B, N, C = scores.shape iou_threshold = iou_threshold.astype(np.float32) score_threshold = score_threshold.astype(np.float32) # convert box ids to TF style center_w, center_h, width, height = np.split(boxes, 4, axis=-1) # outs are all (B,N,1) y1 = center_h - 0.5 * height y2 = center_h + 0.5 * height x1 = center_w - 0.5 * width x2 = center_w + 0.5 * width boxes_tf = np.concatenate((y1, x1, y2, x2), axis=-1) # (B,N,4) out1 = np.zeros((B, M, 4)) out2 = np.zeros((B, M, C)) out3 = -1 * np.ones((B, M)) out4 = np.zeros((B,)) for b in range(B): box_coord_matrix = boxes_tf[b, :, :] # (N,4) score_vector = np.max(scores[b, :, :], axis=-1) # (N,) if not per_class_suppression: # this is the simple case as TF directly supports it with tf.Graph().as_default(), tf.Session() as sess: box_coord_matrix_pl = tf.placeholder(tf.float32, shape=box_coord_matrix.shape) score_vector_pl = tf.placeholder(tf.float32, shape=score_vector.shape) ids_g = tf.image.non_max_suppression(box_coord_matrix_pl, score_vector_pl, max_output_size=M, iou_threshold=iou_threshold, score_threshold=score_threshold) ids = sess.run(ids_g, feed_dict={box_coord_matrix_pl: box_coord_matrix, score_vector_pl: score_vector}) else: # this is slightly complicated as TF does not directly support it class_ids = np.argmax(scores[b, :, :], axis=-1) # (N,) sorted_score_ids = np.argsort(-score_vector) box_coord_matrix2 = np.take(box_coord_matrix, sorted_score_ids, axis=0) score_vector2 = np.take(score_vector, sorted_score_ids) class_ids = np.take(class_ids, sorted_score_ids) classes_seen = dict() ids_intermediate = np.array([], dtype=np.int) for n in range(N): if class_ids[n] in classes_seen: continue c = class_ids[n] classes_seen[c] = True current_class_ids = np.where(class_ids == c)[0] if len(current_class_ids) > 0: feed_in1 = np.take(box_coord_matrix2, current_class_ids, axis=0) feed_in2 = np.take(score_vector2, current_class_ids) with tf.Graph().as_default(), tf.Session() as sess: box_coord_matrix_pl = tf.placeholder(tf.float32, shape=feed_in1.shape) score_vector_pl = tf.placeholder(tf.float32, shape=feed_in2.shape) cur_ids_g = tf.image.non_max_suppression(box_coord_matrix_pl, score_vector_pl, max_output_size=M, iou_threshold=iou_threshold, score_threshold=score_threshold) cur_ids = sess.run(cur_ids_g, feed_dict={box_coord_matrix_pl: feed_in1, score_vector_pl: feed_in2}) from_sort_ids = np.take(current_class_ids, cur_ids) ids_intermediate = np.append(ids_intermediate, from_sort_ids) ids_intermediate.sort() ids = np.take(sorted_score_ids, ids_intermediate) xx = len(ids) if xx == 0: ids = np.array([np.argmax(score_vector)]) xx = 1 if xx > M: ids = ids[:M] xx = len(ids) out1[b, :xx, :] = np.take(boxes[b, :, :], ids, axis=0) out2[b, :xx, :] = np.take(scores[b, :, :], ids, axis=0) out3[b, :xx] = ids out4[b] = xx return out1, out2, out3, out4 iou_threshold_percentile = [0, 30, 80, 100] score_threshold_percentile_arr = [0, 40, 100] N_M_pairs_to_test = [[100, 48], [100, 112]] # N : boxes in, M: max boxes out number_of_test = 0 for N_M in N_M_pairs_to_test: for B in [1, 5]: for C in [1, 7]: N, M = N_M boxes = np.random.rand(B, N, 4) scores = np.random.rand(B, N, C) iou_matrix = _compute_iou_matrix(boxes[0, :, :]) # (N,N) iou_matrix = iou_matrix[~np.eye(iou_matrix.shape[0], dtype=bool)].reshape(iou_matrix.shape[0], -1) for per_class_suppression in [False, True]: for iou_thresh in iou_threshold_percentile: for score_thresh in score_threshold_percentile_arr: for is_dynamic in [False, True]: if score_thresh == 0: score_threshold = np.min(scores) - 1 elif score_thresh == 100: score_threshold = np.max(scores) + 1 else: score_threshold = np.percentile(scores, score_thresh) + .01 if iou_thresh == 0: iou_threshold = np.maximum(np.min(iou_matrix) - .01, 0.0) else: iou_threshold = np.percentile(iou_matrix, iou_thresh) + .01 number_of_test += 1 tf_boxes, tf_scores, tf_ids, tf_num_boxes = _nms_TF(boxes, scores, iou_threshold, score_threshold, per_class_suppression, M) expected = dict() expected['selected_boxes'] = tf_boxes expected['selected_scores'] = tf_scores expected['selected_box_ids'] = tf_ids expected['number_of_boxes'] = tf_num_boxes # define CoreML model input_features = [('boxes', datatypes.Array(B,N,4)), ('scores', datatypes.Array(B,N,C))] output_features = [('selected_boxes', None), ('selected_scores', None), ('selected_box_ids', None), ('number_of_boxes', None)] input_names = ['boxes', 'scores'] if is_dynamic: input_names.extend(['iou_threshold', 'score_threshold', 'max_boxes']) input_features.append(('iou_threshold', datatypes.Array(1, ))) input_features.append(('score_threshold', datatypes.Array(1, ))) input_features.append(('max_boxes', datatypes.Array(1, ))) builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) input_dict = dict() input_dict['boxes'] = boxes input_dict['scores'] = scores if is_dynamic: builder.add_nms('nms', input_names, ['selected_boxes', 'selected_scores', 'selected_box_ids','number_of_boxes'], per_class_suppression=per_class_suppression) input_dict['iou_threshold'] = iou_threshold * np.ones([1], dtype=np.float) input_dict['score_threshold'] = score_threshold * np.ones([1], dtype=np.float) input_dict['max_boxes'] = M * np.ones([1], dtype=np.float) else: builder.add_nms('nms', input_names, ['selected_boxes', 'selected_scores', 'selected_box_ids','number_of_boxes'], iou_threshold=iou_threshold, score_threshold=score_threshold, max_boxes=M, per_class_suppression=per_class_suppression) self._test_model(builder.spec, input_dict, expected, useCPUOnly=cpu_only) def test_nms_gpu(self): self.test_nms_cpu(cpu_only=False) def test_rank_preserving_reshape(self): input_shapes = [(20, 10), (20, 10, 5), (10, 3, 5)] target_shapes = [(5, -1), (0, 2, 25), (25, 0, -1)] output_shapes = [(5, 40), (20, 2, 25), (25, 3, 2)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_rank_preserving_reshape( name='rank_preserving_reshape', input_name='data', output_name='output', output_shape=target_shapes[i]) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_expand_dims(self): input_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (10,)] axes = [(0, 1), (0, 2), (2, 0), (-2, -1), (1, 0, -2)] output_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (1, 10, 1, 5), (10, 5, 1, 1), (1, 1, 1, 10)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_expand_dims( name='expand_dims', input_name='data', output_name='output', axes=axes[i] ) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_squeeze(self): input_shapes = [(1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7)] axes = [(0, 1), (0, 2), (-2, -1), (-1, -2), (0,), (3, -2), (1,)] output_shapes = [(10, 5), (10, 5), (10, 5), (10, 5), (1,), (10, 5), (3, 7)] for i in range(len(input_shapes)): input_features = [('data', datatypes.Array(*input_shapes[i]))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_squeeze(name='squeeze_layer', input_name='data', output_name='output', axes=list(axes[i])) x = np.random.rand(*input_shapes[i]) input = {'data': x} expected = {'output': np.reshape(x, output_shapes[i])} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(output_shapes[i]), builder._get_rank('output')) def test_squeeze_all(self): input_shapes = [ (1, 1, 10, 5), (1, 10, 1, 5), (10, 5, 1, 1), (10, 5, 1, 1), (1,), (10, 5, 1, 1), (3, 1, 7), (3,), (5, 6) ] for input_shape in input_shapes: input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_squeeze(name='squeeze_layer', input_name='data', output_name='output', squeeze_all=True) x = np.random.rand(*input_shape) input = {'data': x} reference = np.squeeze(x) if not reference.shape: reference = np.reshape(reference, (1,)) expected = {'output': reference} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(-1, builder._get_rank('output')) def test_argmax_argmin(self): test_input_shapes = [(9,), (8, 6), (9, 8, 10), (5, 9, 7, 9), (12, 8, 6, 6, 7)] # (1+2+3+4+5) * 2^3 = 120 test cases for input_shape in test_input_shapes: for negative_axis in [False, True]: for mode in ['argmax', 'argmin']: for keep_dims in [True, False]: for axis in np.arange(len(input_shape)): if negative_axis: axis_val = axis - len(input_shape) else: axis_val = axis input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) x = np.random.rand(*input_shape) if mode == 'argmax': builder.add_argmax('argmax', 'data', 'output', axis=axis_val, keepdims=keep_dims) np_out = np.argmax(x, axis=axis_val) else: builder.add_argmin('argmin', 'data', 'output', axis=axis_val, keepdims=keep_dims) np_out = np.argmin(x, axis=axis_val) if keep_dims: np_out = np.expand_dims(np_out, axis=axis_val) elif len(input_shape) == 1: np_out = np.expand_dims(np_out, axis=axis_val) input = {'data': x} expected = {'output': np_out} self._test_model(builder.spec, input, expected, useCPUOnly=True) self.assertEqual(len(np_out.shape), builder._get_rank('output')) def test_get_shape(self): dims = [1, 2, 3, 4, 5] for rank in range(1, len(dims) + 1): input_shape = dims[:rank] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_get_shape(name='get_shape_layer', input_name='data', output_name='output') feed = {'data': np.random.rand(*input_shape)} expected = {'output': np.array(input_shape)} self._test_model(builder.spec, feed, expected, useCPUOnly=True) self.assertEqual(1, builder._get_rank('output')) def test_load_constant_nd(self): dims = [2, 3, 4, 5, 6] for rank in range(1, len(dims) + 1): input_shape = dims[:rank] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_load_constant_nd('load_const_nd_layer', 'tmp', constant_value=np.ones(input_shape), shape=input_shape) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') feed = {'data': np.random.rand(*input_shape)} expected = {'output': feed['data'] + 1} self._test_model(builder.spec, feed, expected, useCPUOnly=True) self.assertEqual(rank, builder._get_rank('output')) @unittest.skip('fix') def test_simple_array_alloc_scatter(self): alloc_shape = [2, 3, 4] value_shape = [1, 3, 4] input_features = [('alloc_shape', datatypes.Array(len(alloc_shape))), ('value', datatypes.Array(*value_shape)), ('index', datatypes.Array(1))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic_layer', input_name='alloc_shape', output_name='array', value=np.float(0.0)) # CoreML input order: container (array), indices, slices (value) builder.add_scatter(name='scatter_layer', input_names=['array', 'index', 'value'], output_name='output') value = np.random.rand(*value_shape).astype('float') feed = {'alloc_shape': np.array(alloc_shape, dtype='float'), 'value': value, 'index': np.array([1], dtype='float')} ref = np.zeros(alloc_shape) ref[1, :, :] = value expected = {'output': ref} self._test_model(builder.spec, feed, expected, useCPUOnly=True) def test_erf_activation_cpu(self, cpu_only=True): input_features = [('data', datatypes.Array(10, 45))] output_features = [('output', datatypes.Array(10, 45))] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_erf(name='erf', input_name='data', output_name='output') x = np.random.rand(10, 45) input = {'data': x} expected = { 'output': np.asarray([math.erf(i) for i in x.flatten().tolist()]).reshape(10, 45) } self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_erf_activation_gpu(self): self.test_erf_activation_cpu(cpu_only=False) def test_gelu_activation(self): for mode in ['EXACT', 'TANH_APPROXIMATION', 'SIGMOID_APPROXIMATION']: for rank in range(1, 6): shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_gelu(name='gelu', input_name='data', output_name='output', mode=mode) x = np.random.rand(*shape) input = {'data': x} exact = np.asarray([0.5 * i * (1.0 + math.erf(i / math.sqrt(2))) for i in x.flatten().tolist()]).reshape(*shape) expected = {'output': exact} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_lower_triangular_cpu(self, cpu_only=True): for rank in range(2, 6): for k in range(-3, 4): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_lower_triangular('tril', 'data', 'output', k=k) x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.tril(x, k=k)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_lower_triangular_gpu(self): self.test_lower_triangular_cpu(cpu_only=False) def test_upper_triangular_cpu(self, cpu_only=True): for rank in range(2, 6): for k in range(-3, 4): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_upper_triangular('triu', 'data', 'output', k=k) x = np.random.rand(*shape) input = {'data': x} expected = {'output': np.triu(x, k=k)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_upper_triangular_gpu(self): self.test_upper_triangular_cpu(cpu_only=False) def test_where_broadcastable_cpu(self, cpu_only=True): for _ in range(150): rank_cond = np.random.randint(low=1, high=6) rank_true = np.random.randint(low=1, high=6) rank_false = np.random.randint(low=1, high=6) rank_out = max(rank_cond, rank_true, rank_false) shape_cond = np.random.randint(low=2, high=8, size=rank_cond) shape_true = np.random.randint(low=2, high=8, size=rank_true) shape_false = np.random.randint(low=2, high=8, size=rank_false) for i in range(-1, -rank_out - 1, -1): dims = [] if -i <= rank_cond: dims.append(shape_cond[i]) if -i <= rank_true: dims.append(shape_true[i]) if -i <= rank_false: dims.append(shape_false[i]) dim = np.random.choice(dims) if -i <= rank_cond: shape_cond[i] = np.random.choice([1, dim]) if -i <= rank_true: shape_true[i] = np.random.choice([1, dim]) if -i <= rank_false: shape_false[i] = np.random.choice([1, dim]) input_features = [ ('cond', datatypes.Array(*shape_cond)), ('true', datatypes.Array(*shape_true)), ('false', datatypes.Array(*shape_false)) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_where_broadcastable('if_broadcastable', input_names=['cond', 'true', 'false'], output_name='output') cond = np.random.choice([1.0, 0.0], size=shape_cond) true = np.random.rand(*shape_true) false = np.random.rand(*shape_false) input = {'cond': cond, 'true': true, 'false': false} expected = {'output': np.where(cond, true, false)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(len(expected['output'].shape), builder._get_rank('output')) def test_where_broadcastable_gpu(self): self.test_where_broadcastable_cpu(cpu_only=False) def test_random_normal_like_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(5, -1, -1): if rank > 0: low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) else: # one extra test to test more moments shape = np.array([10, 10, 10, 10, 10000]) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_like(name='random_normal_like', input_name='tensor', output_name='output', mean=mean, stddev=stddev, seed=seed) inputs = {'tensor': np.random.rand(*shape)} expected = {'output': np.random.normal(mean, stddev, shape)} if rank > 0: CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) else: # one extra test to test more moments CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=6) def test_random_normal_like_gpu(self): self.test_random_normal_like_cpu(cpu_only=False) def test_random_normal_static_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_static(name='random_normal_static', output_name='tmp', output_shape=list(shape), mean=mean, stddev=stddev, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.normal(mean, stddev, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_normal_static_gpu(self): self.test_random_normal_static_cpu(cpu_only=False) def test_random_normal_dynamic_cpu(self, cpu_only=True): mean, stddev, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_normal_dynamic(name='random_normal_dynamic', input_names=['shape'], output_name='output', mean=mean, stddev=stddev, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.normal(mean, stddev, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected, num_moments=2) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_random_normal_dynamic_gpu(self): self.test_random_normal_dynamic_cpu(cpu_only=False) def test_random_uniform_like_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_like(name='random_uniform_like', input_name='tensor', output_name='output', minval=minval, maxval=maxval, seed=seed) tensor = np.random.rand(*shape) inputs = {'tensor': tensor} expected = {'output': np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_uniform_like_gpu(self): self.test_random_uniform_like_cpu(cpu_only=False) def test_random_uniform_static_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_static(name='random_uniform_static', output_name='tmp', output_shape=list(shape), minval=minval, maxval=maxval, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(rank, builder._get_rank('output')) def test_random_uniform_static_gpu(self): self.test_random_uniform_static_cpu(cpu_only=False) def test_random_uniform_dynamic_cpu(self, cpu_only=True): minval, maxval, seed = 0., 1., 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_uniform_dynamic(name='random_uniform_dynamic', input_names=['shape'], output_name='output', minval=minval, maxval=maxval, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.uniform(minval, maxval, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_random_uniform_dynamic_gpu(self): self.test_random_uniform_dynamic_cpu(cpu_only=False) def test_random_bernoulli_like_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('tensor', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_like(name='random_bernoulli_like', input_name='tensor', output_name='output', prob=prob, seed=seed) tensor = np.random.rand(*shape) inputs = {'tensor': tensor} expected = {'output': np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_like_gpu(self): self.test_random_bernoulli_like_cpu(cpu_only=False) def test_random_bernoulli_static_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_static(name='random_bernoulli_static', output_name='tmp', output_shape=list(shape), prob=prob, seed=seed) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.zeros(shape) inputs = {'data': data} expected = {'output': data + np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_static_gpu(self): self.test_random_bernoulli_static_cpu(cpu_only=False) def test_random_bernoulli_dynamic_cpu(self, cpu_only=True): prob, seed = 0.5, 42 for rank in range(1, 6): low_factor = np.random.randint(low=2, high=4) low = int(np.power(1000, 1. / rank)) * low_factor high = int(np.power(2000, 1. / rank)) * np.random.randint(low=low_factor, high=4) shape = np.random.randint(low=low, high=high, size=rank) input_features = [('shape', datatypes.Array(len(shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_random_bernoulli_dynamic(name='random_bernoulli_dynamic', input_names=['shape'], output_name='output', prob=prob, seed=seed) inputs = {'shape': np.array(shape, np.float)} expected = {'output': np.random.binomial(1, prob, shape)} CorrectnessTest._compare_moments(builder.spec, inputs, expected) self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) def test_random_bernoulli_dynamic_gpu(self): self.test_random_bernoulli_dynamic_cpu(cpu_only=False) def test_categorical_distribution_cpu_shapes(self): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) num_samples = np.random.randint(low=10, high=1000) input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name='data', output_name='output', num_samples=num_samples) x = np.random.randint(low=0, high=20, size=shape).astype(np.float32) inputs = {'data': x} shape[-1] = num_samples expected = {'output': np.random.rand(*shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=True, validate_shapes_only=True) def test_categorical_distribution_cpu_logits(self): def softmax(data): e_data = np.exp(data - np.max(data)) return e_data / e_data.sum() num_samples, num_class = 50000, 10 input_name, output_name = 'data', 'output' shapes = [(2, num_class), (2, 1, num_class), (1, 2, num_class), (2, 1, 1, num_class), (1, 2, 1, num_class), (1, 1, 2, num_class), (2, 1, 1, 1, num_class), (1, 2, 1, 1, num_class), (1, 1, 2, 1, num_class), (1, 1, 1, 2, num_class)] for shape in shapes: input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name=input_name, output_name=output_name, num_samples=num_samples, is_logits=True, seed=42) x = np.random.rand(*shape) inputs = {input_name: x} model = builder.spec if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=True) prediction = model.predict(inputs, useCPUOnly=True) # validate each distribution separately logits = x.reshape(2, num_class) probs = [softmax(logits[0]), softmax(logits[1])] ref0 = np.random.multinomial(num_samples, probs[0]) ref1 = np.random.multinomial(num_samples, probs[1]) pre0 = prediction[output_name].reshape(2, num_samples)[0] pre1 = prediction[output_name].reshape(2, num_samples)[1] expected = {output_name: np.stack((pre0, pre1))} # convert to bincount and validate probabilities pre0 = np.bincount(np.array(pre0).astype(np.int), minlength=num_class) pre1 = np.bincount(np.array(pre1).astype(np.int), minlength=num_class) assert np.allclose(np.true_divide(pre0, num_samples), probs[0], atol=1e-2) assert np.allclose(np.true_divide(pre0, num_samples), np.true_divide(ref0, num_samples), atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), probs[1], atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), np.true_divide(ref1, num_samples), atol=1e-2) self._test_model(model, inputs, expected, useCPUOnly=True, output_name_shape_dict={'output': prediction['output'].shape}) def test_categorical_distribution_cpu_probs(self): def softmax(data): e_data = np.exp(data - np.max(data)) return e_data / e_data.sum() num_samples, num_class = 50000, 10 input_name, output_name = 'data', 'output' shapes = [(2, num_class), (2, 1, num_class), (1, 2, num_class), (2, 1, 1, num_class), (1, 2, 1, num_class), (1, 1, 2, num_class), (2, 1, 1, 1, num_class), (1, 2, 1, 1, num_class), (1, 1, 2, 1, num_class), (1, 1, 1, 2, num_class)] for shape in shapes: input_features = [('data', datatypes.Array(*shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_categorical_distribution(name='categorical_distribution', input_name=input_name, output_name=output_name, num_samples=num_samples, is_logits=False, seed=42) x = np.random.rand(*shape) probs = x.reshape(2, num_class) probs[0], probs[1] = softmax(probs[0]), softmax(probs[1]) inputs = {input_name: np.reshape(probs, shape)} model = builder.spec if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=True) prediction = model.predict(inputs, useCPUOnly=True) # validate each distribution separately probs = probs.reshape(2, num_class) ref0 = np.random.multinomial(num_samples, probs[0]) ref1 = np.random.multinomial(num_samples, probs[1]) pre0 = prediction[output_name].reshape(2, num_samples)[0] pre1 = prediction[output_name].reshape(2, num_samples)[1] expected = {output_name: np.stack((pre0, pre1))} # convert to bincount and validate probabilities pre0 = np.bincount(np.array(pre0).astype(np.int), minlength=num_class) pre1 = np.bincount(np.array(pre1).astype(np.int), minlength=num_class) assert np.allclose(np.true_divide(pre0, num_samples), probs[0], atol=1e-2) assert np.allclose(np.true_divide(pre0, num_samples), np.true_divide(ref0, num_samples), atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), probs[1], atol=1e-2) assert np.allclose(np.true_divide(pre1, num_samples), np.true_divide(ref1, num_samples), atol=1e-2) self._test_model(model, inputs, expected, useCPUOnly=True, output_name_shape_dict={'output': prediction['output'].shape}) def test_reverse_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) reverse_dim = [np.random.choice([True, False]) for _ in range(rank)] axes = [i for i in range(rank) if reverse_dim[i] == True] input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_reverse('reverse', 'data', 'output', reverse_dim) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.flip(x, axis=axes)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reverse_gpu(self): self.test_reverse_cpu(cpu_only=False) def test_matrix_band_part_cpu(self, cpu_only=True): for rank in range(2, 6): for _ in range(20): num_lower = np.random.randint(low=-7, high=8) num_upper = np.random.randint(low=-7, high=8) shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_matrix_band_part('matrix_band_part', 'data', 'output', num_lower=num_lower, num_upper=num_upper) x = np.random.rand(*shape) input = {'data': x} rows, cols = shape[-2:] band = np.ones((rows, cols)) for m in range(rows): for n in range(cols): band[m, n] = (num_lower < 0 or (m - n) <= num_lower) and (num_upper < 0 or (n - m) <= num_upper) expected = {'output': np.multiply(band, x)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_matrix_band_part_gpu(self): self.test_matrix_band_part_cpu(cpu_only=False) def test_flatten_to_2d_cpu(self, cpu_only=True): for rank in range(1, 6): for axis in range(-rank, rank + 1): shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_flatten_to_2d('flatten_to_2d', 'data', 'output', axis=axis) x = np.random.rand(*shape) np_axis = axis + rank if axis < 0 else axis pl, pr = 1, 1 for i in range(0, np_axis): pl *= shape[i] for i in range(np_axis, len(shape)): pr *= shape[i] new_shape = [pl, pr] ref = x.reshape(new_shape) input = {'data': x} expected = {'output': ref} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) self.assertEqual(2, builder._get_rank('output')) def test_flatten_to_2d_gpu(self): self.test_flatten_to_2d_cpu(cpu_only=False) def test_reshape_like_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = n // np.prod(target_shape) np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape)), ('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_like(name='reshape_like', input_names=['data', 'tensor'], output_name='output') data = np.random.rand(*input_shape) tensor = np.random.rand(*target_shape) inputs = {'data': data, 'tensor': tensor} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(target_rank, builder._get_rank('output')) def test_reshape_like_gpu(self): self.test_reshape_like_cpu(cpu_only=False) def test_reshape_static_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = -1 np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_static(name='reshape_static', input_name='data', output_name='output', output_shape=target_shape) data = np.random.rand(*input_shape) inputs = {'data': data} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(len(target_shape), builder._get_rank('output')) def test_reshape_static_gpu(self): self.test_reshape_static_cpu(cpu_only=False) def test_reshape_dynamic_cpu(self, cpu_only=True): for rank in range(1, 6): for _ in range(20): input_shape = np.random.randint(low=2, high=8, size=rank) n = int(np.prod(input_shape)) divisors = [d for d in range(1, n) if n % d == 0] target_rank = np.random.randint(low=2, high=6) target_shape = [1] for i in range(target_rank - 1): dim_size = np.random.choice(divisors) while n % (np.prod(target_shape) * dim_size) != 0: dim_size = np.random.choice(divisors) target_shape.append(dim_size) target_shape[0] = -1 np.random.shuffle(target_shape) input_features = [('data', datatypes.Array(*input_shape)), ('shape', datatypes.Array(len(target_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_reshape_dynamic(name='reshape_dynamic', input_names=['data', 'shape'], output_name='output') data = np.random.rand(*input_shape) inputs = {'data': data, 'shape': np.array(target_shape, dtype='float')} expected = {'output': np.reshape(data, target_shape)} self._test_model(builder.spec, inputs, expected, useCPUOnly=cpu_only) self.assertEqual(-1, builder._get_rank('output')) def test_reshape_dynamic_gpu(self): self.test_reshape_dynamic_cpu(cpu_only=False) def test_reduce_sum_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_sum('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.add.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) expected_rank = len(expected['output'].shape) if expected_rank == 0: expected_rank = 1 self.assertEqual(expected_rank, builder._get_rank('output')) def test_reduce_sum_gpu(self): self.test_reduce_sum_cpu(cpu_only=False) def test_reduce_prod_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_prod('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.multiply.reduce(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) expected_rank = len(expected['output'].shape) if expected_rank == 0: expected_rank = 1 self.assertEqual(expected_rank, builder._get_rank('output')) def test_reduce_prod_gpu(self): self.test_reduce_prod_cpu(cpu_only=False) def test_reduce_mean_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if np.random.choice([True, False]) else axis - rank for axis in axes]) reduce_all = False else: reduce_all = True for keep_dims in [True, False]: input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_reduce_mean('reduce', 'data', 'output', axes, keepdims=keep_dims, reduce_all=reduce_all) x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.mean(x, axes, keepdims=keep_dims)} self._test_model(builder.spec, input, expected, useCPUOnly=cpu_only) def test_reduce_mean_gpu(self): self.test_reduce_mean_cpu(cpu_only=False) def test_reduce_max_cpu(self, cpu_only=True): for rank in range(1, 6): axes_list = [axes for length in range(1, rank + 1) for axes in itertools.combinations(range(rank), length)] axes_list.append(None) for axes in axes_list: if axes: axes = tuple([axis if
np.random.choice([True, False])
numpy.random.choice
import numpy as np def bind_function(input_data, smallest, largest): return (input_data - smallest) / (largest - smallest) def sigmoid(t): return 1/(1+np.exp(-t)) def sigmoid_derivative(p): return p * (1 - p) class NeuralNetwork: def __init__(self, x, y, learning_rate): self.input = x self.bind_values(x) self.weights1 = [[0.2, 0.3, 0.2], [0.1, 0.1, 0.1]] self.weights2 = [[0.5, 0.1]] self.target = y self.bind_values(y) self.learning_rate = learning_rate @staticmethod def bind_values(values): min_value = values[np.unravel_index( np.argmin(values, axis=None), values.shape)] max_value = values[np.unravel_index( np.argmax(values, axis=None), values.shape)] new_values = np.array([bind_function(i, min_value, max_value) for i in np.nditer(values)], dtype=np.float64).reshape(values.shape) np.put(values, range(values.size), new_values) def feed_forward(self): new_inputs = [] for epoch in self.input: epoch = np.array(epoch, ndmin=2).T layer1 = sigmoid(
np.dot(self.weights1, epoch)
numpy.dot
import numpy as np import pandas from ggplot import * """ In this question, you need to: 1) implement the compute_cost() and gradient_descent() procedures 2) Select features (in the predictions procedure) and make predictions. """ def normalize_features(df): """ Normalize the features in the data set. """ mu = df.mean() sigma = df.std() if (sigma == 0).any(): raise Exception("One or more features had the same value for all samples, and thus could " + \ "not be normalized. Please do not include features with only a single value " + \ "in your model.") df_normalized = (df - df.mean()) / df.std() return df_normalized, mu, sigma def compute_cost(features, values, theta): """ Compute the cost function given a set of features / values, and the values for our thetas. This can be the same code as the compute_cost function in the lesson #3 exercises, but feel free to implement your own. """ m = len(values) sum_of_square_errors = np.square(
np.dot(features, theta)
numpy.dot
import numpy as np import matplotlib.pyplot as plt class PayOff: def __init__(self, TheOptionsType_, Strike_): ''' Inputs: ========= TheOptionsType_: string (European call, European put, Binary call, Binary put) Strike_: float strike price ''' self.__TheOptionsType = TheOptionsType_ self.__Strike = Strike_ def __call__(self,spot): # Overloading the ( ) operator ''' inputs: ========= spot: numpy array of spot prices returns: ========= payoff value for each option ''' if self.__TheOptionsType == 'European call': return np.maximum(spot - self.__Strike,0) elif self.__TheOptionsType == 'European put': return
np.maximum(self.__Strike - spot,0)
numpy.maximum
from __future__ import division import matplotlib matplotlib.use('TkAgg') import multiprocessing as mp import itertools import numpy as np from scipy import interpolate from pylab import flipud import pandas as pd try: from pandas import Categorical except ImportError: from pandas.core.categorical import Categorical import re from collections import defaultdict from multiflexxlib import plotting from multiflexxlib import ub from multiflexxlib.ub import UBMatrix, etok, ktoe, angle_to_q import pyclipper import matplotlib.pyplot as plt import matplotlib.patches as mpl_patches import matplotlib.path as mpl_path from matplotlib.collections import PatchCollection from matplotlib.colors import LogNorm from matplotlib.widgets import Button from mpl_toolkits.axisartist import Subplot from mpl_toolkits.axisartist.grid_helper_curvelinear import GridHelperCurveLinear import pickle import sys import os import pkg_resources from multiflexxlib._version import __version__ try: import tkinter from tkinter import filedialog except ImportError: import Tkinter as tkinter import tkFileDialog as filedialog import logging logger = logging.getLogger() logger.setLevel('INFO') logger.addHandler(logging.StreamHandler(sys.stdout)) BIN_ADAPTIVE = 'adaptive' BIN_REGULAR = 'regular' NUM_CHANNELS = 31 EF_LIST = [2.5, 3.0, 3.5, 4.0, 4.5] CHANNEL_SEPARATION = 2.5 NORM_FACTOR = [1.0, 1.16, 1.23, 1.30, 1.27] # Apeture angle correction try: DETECTOR_WORKING = np.loadtxt(pkg_resources.resource_filename(__name__, 'res/alive.csv')) except IOError: print('Dead detector map not found - assuming all working.') DETECTOR_WORKING = np.ones([NUM_CHANNELS, len(EF_LIST)]) try: WEIGHTS = np.loadtxt(pkg_resources.resource_filename(__name__, 'res/weights.csv'), delimiter=',') except IOError: print('Boundary angle channel strategy not defined - assuming equal weights.') WEIGHTS = np.ones([NUM_CHANNELS, len(EF_LIST)]) try: INTENSITY_COEFFICIENT = np.loadtxt(pkg_resources.resource_filename(__name__, 'res/int_corr.csv'), delimiter=',') except IOError: print('Intensity correction matrix not found - assuming all ones.') INTENSITY_COEFFICIENT = np.ones([NUM_CHANNELS, len(EF_LIST)]) # TODO: do something with this abomination INTENSITY_COEFFICIENT = INTENSITY_COEFFICIENT / NORM_FACTOR def _nan_float(string): try: return float(string) except ValueError: if '*' in string: return np.NaN else: raise def _nan_int(string): try: return int(string) except ValueError: if '*' in string: return np.NaN else: raise def _extract_ki_from_header(en, fx, kfix): e_fix = ktoe(kfix) if fx == 2: ei = e_fix + en return etok(ei) elif fx == 1: ei = e_fix - en return etok(ei) else: raise ValueError('Invalid FX value: 2 for fix kf, 1 for fix ki, got %d' % fx) def _number_to_scan(num): if isinstance(num, int): return '{:06d}'.format(num) else: return num def _parse_flatcone_line(line): data = np.array([_nan_int(x) for x in line.split()]) array = np.reshape(data, (-1, len(EF_LIST)))[0: -1, :] # throws out last line which is only artifact ang_channels = np.asarray([np.arange(1, NUM_CHANNELS + 1)]).T # starts at 1 to match stickers array_with_ch_no = np.hstack([ang_channels, array]) dataframe_flatcone = pd.DataFrame(data=array_with_ch_no, columns=['aCh', 'e1', 'e2', 'e3', 'e4', 'e5']) dataframe_flatcone.set_index('aCh', inplace=True) return dataframe_flatcone def _parse_param_line(line): line_name = line[0:5] line_body = line[6:].strip() if line_name == 'COMND': no_points = int(re.findall('(?<=NP)[\s\t0-9]*', line_body)[0].strip()) return line_name, {'value': line_body, 'NP': no_points} elif '=' not in line_body: return line_name, line_body else: equations = line_body.split(',') line_dict = {} for eq in equations: param_name, value_raw = [x.strip() for x in eq.split('=')] try: value = _nan_float(value_raw) except ValueError: value = value_raw line_dict[param_name] = value return line_name, line_dict def parse_ill_data(file_object, start_flag='DATA_:\n'): """ Parses ILL TASMAD scan files. :param file_object: Handle to opened file or stream. Or alternately path to scan file. :param start_flag: Start flag of data section. Omit for default. :return: (header_dict, dataframe) """ # first parse headers try: file_object.seek(0, 0) except AttributeError: file_object = open(file_object, 'r') text_data = file_object.read() headers = re.findall('^[A-Z_]{5}:.*', text_data, re.MULTILINE) header_dict = defaultdict(dict) for line in headers: line_name, line_body = _parse_param_line(line) if type(line_body) is dict: header_dict[line_name].update(line_body) else: header_dict[line_name].update({'value': line_body}) # then parse scan parameters and counts data_section = text_data[text_data.find(start_flag) + len(start_flag) + 1:] column_names = data_section.splitlines()[0].split() # line only w 0-9, . -, spc, tab parameters_text_lines = re.findall('^[0-9*\-\s\t.]+?$', data_section, re.MULTILINE) parameters_value_array = np.asarray([[_nan_float(num) for num in line.split()] for line in parameters_text_lines]) data_frame = pd.DataFrame(data=parameters_value_array, columns=column_names) data_frame['PNT'] = data_frame['PNT'].astype('int16') df_clean = data_frame.T.drop_duplicates().T # parse flatcone data if present flat_all = re.findall('(?<=flat: )[0-9w\s\t\n*]+(?=endflat)', text_data, re.MULTILINE) flat_number_lines = len(flat_all) if len(df_clean) == 0: raise ValueError('file %s does contain any data.' % file_object.name) if len(df_clean) - flat_number_lines <= 1: # sanity check: only 1 missing flatcone line is acceptable flat_frames = [] for nth, line in enumerate(flat_all): try: flat_frames.append(_parse_flatcone_line(line)) except ValueError: raise ValueError('point %d in file %s is faulty.' % (nth + 1, file_object.name)) if len(df_clean) - flat_number_lines == 1: df_clean.drop(df_clean.index[-1], inplace=True) # if only one line is missing then just drop last line df_clean = df_clean.assign(flat=flat_frames) else: pass return dict(header_dict), df_clean def ub_from_header(scan_header): # type: ((dict, Scan)) -> UBMatrix """ Make a UBMatrix object from TASMAD scan header. :param scan_header: :return: UBMatrix object """ if isinstance(scan_header, Scan): scan_header = scan_header.header param = scan_header['PARAM'] lattice_parameters = [param['AS'], param['BS'], param['CS'], param['AA'], param['BB'], param['CC']] hkl1 = [float(param['AX']), float(param['AY']), float(param['AZ'])] hkl2 = [float(param['BX']), float(param['BY']), float(param['BZ'])] ub_matrix = UBMatrix(lattice_parameters, hkl1, hkl2) return ub_matrix class Scan(object): """ Reads a TASMAD scan file, extracts metadata and do essential conversions. Assumes const-Ei scan! Usually not instantiated on its own. Use read_mf_scan() or read_mf_scans() instead. """ def __init__(self, file_name, ub_matrix=None, intensity_matrix=None, a3_offset=0.0, a4_offset=0.0): """ Scan object. :param file_name: File name of TASMAD scan file. :param ub_matrix: UBMatrix object to be used. Omit to generate from file header. :param intensity_matrix: Intensity correction matrix to be used. Omit to use default. :return: Scan object. Examples: >>> import multiflexxlib as mfl >>> s1 = mfl.Scan('068577') # opens scan file 068577 >>> s2 = mfl.Scan(68577) # also possible to provide filename in number form. Will be padded to full length. >>> u = mfl.UBMatrix([4.05, 4.05, 4.05, 90, 90, 90], [1, 0, 0], [0, 0, 1]) >>> s3 = mfl.Scan(68577, ub_matrix=u, a3_offset=1.2) # Applies a custom UBMatrix and add 1.2 degrees to all A3 angles. >>> s3.a3_offset = 1.95 # a3_offset and a4_offset can be set after creation. """ file_name = _number_to_scan(file_name) f = open(file_name) self.header, self.data = parse_ill_data(f) self.file_name = os.path.abspath(file_name) self._a3_offset = a3_offset self._a4_offset = a4_offset self._apply_offsets(a3_offset, a4_offset) if 'flat' not in self.data.columns: raise AttributeError('%s does not contain MultiFLEXX data.' % file_name) elif 'A3' not in self.header['STEPS'].keys(): raise AttributeError('%s is not A3 scan.' % file_name) elif 'EI' in self.header['STEPS'].keys(): raise AttributeError('%s is not a const-E scan.' % file_name) if intensity_matrix: self.intensity_matrix = intensity_matrix else: self.intensity_matrix = INTENSITY_COEFFICIENT if not ub_matrix: self.ub_matrix = ub_from_header(self.header) else: self.ub_matrix = ub_matrix self.converted_dataframes = [] self._update_data_array() print('finished loading %s, a3_offset = %.2f, a4_offset = %.2f' % (file_name, self.a3_offset, self.a4_offset)) @property def ki(self): try: ki = self.data.iloc[0]['KI'] except KeyError: try: ki = etok(self.data.iloc[0]['EI']) except KeyError: ki = _extract_ki_from_header(self.header['POSQE']['EN'], self.header['PARAM']['FX'], self.header['PARAM']['KFIX']) return ki @property def tt(self): try: tt = self.data.iloc[-1]['TT'] # takes final value as signature value for the scan except KeyError: tt = None return tt @property def mag(self): try: mag = self.data.iloc[-1]['MAG'] except KeyError: mag = None return mag @property def ei(self): """ Initial Energy (Ei) of scan. :return: Ei in meV """ return ktoe(self.ki) @property def np_planned(self): """ Total planned points in scan based on command. :return: Integer steps. """ return self.header['COMND']['NP'] @property def np_actual(self): """ Actual finished points. Different from planned if scan is unfinished. :return: Integer steps. """ return len(self.data) @property def scan_number(self): """ Scan number. :return: String of scan file name, which should be numeric for TASMAD files. """ return os.path.split(self.file_name)[1] @property def a3_offset(self): return self._a3_offset @property def a4_offset(self): return self._a4_offset @a3_offset.setter def a3_offset(self, value): a3_offset_old = self.a3_offset a3_offset_new = value a3_add = a3_offset_new - a3_offset_old self._apply_offsets(a3_add, 0.0) self._update_data_array() self._a3_offset = a3_offset_new @a4_offset.setter def a4_offset(self, value): a4_offset_old = self.a3_offset a4_offset_new = value a4_add = a4_offset_new - a4_offset_old self._apply_offsets(0.0, a4_add) self._update_data_array() self._a4_offset = a4_offset_new @property def planned_locus_list(self): kf_list = [etok(e) for e in EF_LIST] a3_start, a3_end_actual, a3_end_planned = self.a3_ranges a4_start, a4_end_actual, a4_end_planned = self.a4_ranges return [calculate_locus(self.ki, kf, a3_start, a3_end_planned, a4_start, a4_end_planned, self.ub_matrix, expand_a3=True) for kf in kf_list] @property def actual_locus_list(self): kf_list = [etok(e) for e in EF_LIST] a3_start, a3_end_actual, a3_end_planned = self.a3_ranges a4_start, a4_end_actual, a4_end_planned = self.a4_ranges return [calculate_locus(self.ki, kf, a3_start, a3_end_actual, a4_start, a4_end_actual, self.ub_matrix) for kf in kf_list] def _apply_offsets(self, a3_offset, a4_offset): self.data.A3 = self.data.A3 + a3_offset self.data.A4 = self.data.A4 + a4_offset def _update_data_array(self): num_ch = NUM_CHANNELS channel_separation = CHANNEL_SEPARATION num_flat_frames = len(self.data) # an numpy array caching a3, a4 angles and monitor counts, shared across all energy channels a3_a4_mon_array = np.zeros([num_flat_frames * num_ch, 3]) a4_angle_mask = np.linspace(-channel_separation * (num_ch - 1) / 2, channel_separation * (num_ch - 1) / 2, num_ch) for i in range(num_flat_frames): a3_a4_mon_array[i * num_ch: (i + 1) * num_ch, 0] = self.data.loc[i, 'A3'] a3_a4_mon_array[i * num_ch: (i + 1) * num_ch, 1] = self.data.loc[i, 'A4'] + a4_angle_mask a3_a4_mon_array[i * num_ch: (i + 1) * num_ch, 2] = self.data.loc[i, 'M1'] data_template = pd.DataFrame(index=range(num_flat_frames * num_ch), columns=['A3', 'A4', 'MON', 'px', 'py', 'pz', 'h', 'k', 'l', 'counts', 'valid', 'coeff', 'ach', 'point'], dtype='float64') data_template.loc[:, ['A3', 'A4', 'MON']] = a3_a4_mon_array self.converted_dataframes = [data_template.copy() for _ in range(len(EF_LIST))] for ef_channel_num, ef in enumerate(EF_LIST): qs = self.ub_matrix.angle_to_q(self.ki, etok(ef), a3_a4_mon_array[:, 0], a3_a4_mon_array[:, 1]) self.converted_dataframes[ef_channel_num].loc[:, ['px', 'py', 'pz']] = self.ub_matrix.convert(qs, 'sp').T self.converted_dataframes[ef_channel_num].loc[:, ['h', 'k', 'l']] = self.ub_matrix.convert(qs, 'sr').T coefficient = INTENSITY_COEFFICIENT detector_working = DETECTOR_WORKING for ef_channel_num in range(len(EF_LIST)): dataframe = self.converted_dataframes[ef_channel_num] counts = np.zeros(num_ch * num_flat_frames, dtype='float64') valid = np.zeros(num_ch * num_flat_frames, dtype='float64') coeff =
np.zeros(num_ch * num_flat_frames, dtype='float64')
numpy.zeros
import os import re import numpy as np import scipy.io as sio from scipy.fftpack import fft import pandas as pd from .movie import Movie, FullFieldFlashMovie pd.set_option('display.width', 1000) pd.set_option('display.max_columns', 100) ################################################# def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] ################################################## def compute_FFT_OneCycle(FR, TF, downsample): one_cyc = np.int(((1000. / downsample) / TF)) FR_cyc = list(chunks(FR, one_cyc)) if (TF == 15. or TF == 8.): FR_cyc = FR_cyc[:-1] FR_cyc_avg = np.mean(FR_cyc, axis=0) y = FR_cyc_avg AMP = 2 * np.abs(fft(y) / len(y)) F0 = 0.5 * AMP[0] assert (F0 - np.mean(y) < 1.e-4) F1 = AMP[1] return F0, F1 ################################################## def create_ff_mov(frame_rate, tst, tend, xrng, yrng): ff_mov_on = FullFieldFlashMovie(np.arange(xrng), np.arange(yrng), tst, tend, frame_rate=frame_rate, max_intensity=1).full(t_max=tend) # +0.5) ff_mov_off = FullFieldFlashMovie(np.arange(xrng), np.arange(yrng), tst, tend, frame_rate=frame_rate, max_intensity=-1).full(t_max=tend) # +0.5) return ff_mov_on, ff_mov_off ################################################## def create_grating_movie_list(gr_dir_name): gr_fnames = os.listdir(gr_dir_name) gr_fnames_ord = sorted(gr_fnames, key=lambda x: (int(re.sub('\D', '', x)), x)) gr_mov_list = [] for fname in gr_fnames_ord[:5]: movie_file = os.path.join(gr_dir_name, fname) m_file = sio.loadmat(movie_file) m_data_raw = m_file['mov'].T swid = np.shape(m_data_raw)[1] res = int(np.sqrt(swid / (8 * 16))) m_data = np.reshape(m_data_raw, (3000, 8 * res, 16 * res)) m1 = Movie(m_data[:500, :, :], row_range=np.linspace(0, 120, m_data.shape[1], endpoint=True), col_range=np.linspace(0, 120, m_data.shape[2], endpoint=True), frame_rate=1000.) gr_mov_list.append(m1) return gr_mov_list """ ################################################## metrics_dir = os.path.join(os.path.dirname(__file__), 'cell_metrics') def get_data_metrics_for_each_subclass(ctype): # Load csv file into dataframe if ctype.find('_sus') >= 0: prs_fn = os.path.join(metrics_dir, '{}_cells_v3.csv'.format(ctype)) else: prs_fn = os.path.join(metrics_dir, '{}_cell_data.csv'.format(ctype)) prs_df = pd.read_csv(prs_fn) N_class, nmet = np.shape(prs_df) # Group data by subclasses based on max F0 vals exp_df = prs_df.iloc[:, [13, 14, 17, 18, 28, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]].copy() # Bl_lat,Wh_lat,Bl_si, wh_si, spont, 5 F0s, 5 F1s sub_df = exp_df.iloc[:, [5, 6, 7, 8, 9]] exp_df['max_tf'] = sub_df.idxmax(axis=1).values # sub_df.idxmax(axis=1) exp_means = exp_df.groupby(['max_tf']).mean() exp_std = exp_df.groupby(['max_tf']).std() exp_nsub = exp_df.groupby(['max_tf']).size() max_ind_arr = np.where(exp_nsub == np.max(exp_nsub)) max_nsub_ind = max_ind_arr[0][0] # Get means and std dev for subclasses exp_prs_dict = {} for scn in np.arange(len(exp_nsub)): f0_exp = exp_means.iloc[scn, 5:10].values f1_exp = exp_means.iloc[scn, 10:].values spont_exp = exp_means.iloc[scn, 4:5].values if ctype.find('OFF') >= 0: si_exp = exp_means.iloc[scn, 2:3].values ttp_exp = exp_means.iloc[scn, 0:1].values elif ctype.find('ON') >= 0: si_exp = exp_means.iloc[scn, 3:4].values ttp_exp = exp_means.iloc[scn, 1:2].values else: si_exp = np.NaN * np.ones((1, 5)) ttp_exp = np.NaN * np.ones((1, 2)) nsub = exp_nsub.iloc[scn] if nsub == 1: f0_std = np.mean(exp_std.iloc[max_nsub_ind, 5:10].values) * np.ones((1, 5)) f1_std = np.mean(exp_std.iloc[max_nsub_ind, 10:].values) * np.ones((1, 5)) spont_std = np.mean(exp_std.iloc[max_nsub_ind, 4:5].values) * np.ones((1, 5)) if ctype.find('OFF') >= 0: si_std = np.mean(exp_std.iloc[max_nsub_ind, 2:3].values) * np.ones((1, 5)) elif ctype.find('ON') >= 0: si_std = np.mean(exp_std.iloc[max_nsub_ind, 3:4].values) * np.ones((1, 5)) else: si_std = np.NaN * np.ones((1, 5)) else: f0_std = exp_std.iloc[scn, 5:10].values f1_std = exp_std.iloc[scn, 10:].values spont_std = exp_std.iloc[scn, 4:5].values if ctype.find('OFF') >= 0: si_std = exp_std.iloc[scn, 2:3].values elif ctype.find('ON') >= 0: si_std = exp_std.iloc[scn, 3:4].values else: si_std = np.NaN * np.ones((1, 5)) if ctype.find('t') >= 0: tcross = 40. si_inf_exp = (si_exp - tcross / 200.) * (200. / (200. - tcross - 40.)) elif ctype.find('s') >= 0: tcross = 60. si_inf_exp = (si_exp - tcross / 200.) * (200. / (200. - tcross - 40.)) else: si_inf_exp = np.nan dict_key = exp_means.iloc[scn].name[3:] exp_prs_dict[dict_key] = {} exp_prs_dict[dict_key]['f0_exp'] = f0_exp exp_prs_dict[dict_key]['f1_exp'] = f1_exp exp_prs_dict[dict_key]['spont_exp'] = spont_exp exp_prs_dict[dict_key]['si_exp'] = si_exp exp_prs_dict[dict_key]['si_inf_exp'] = si_inf_exp exp_prs_dict[dict_key]['ttp_exp'] = ttp_exp exp_prs_dict[dict_key]['f0_std'] = f0_std exp_prs_dict[dict_key]['f1_std'] = f1_std exp_prs_dict[dict_key]['spont_std'] = spont_std exp_prs_dict[dict_key]['si_std'] = si_std exp_prs_dict[dict_key]['nsub'] = nsub exp_prs_dict[dict_key]['N_class'] = N_class return exp_prs_dict """ ################################################## def check_optim_results_against_bounds(bounds, opt_wts, opt_kpeaks): bds_wts0 = bounds[0] bds_wts1 = bounds[1] bds_kp0 = bounds[2] bds_kp1 = bounds[3] opt_wts0 = opt_wts[0] opt_wts1 = opt_wts[1] opt_kp0 = opt_kpeaks[0] opt_kp1 = opt_kpeaks[1] if (opt_wts0 == bds_wts0[0] or opt_wts0 == bds_wts0[1]): prm_on_bds = 'w0' elif (opt_wts1 == bds_wts1[0] or opt_wts1 == bds_wts1[1]): prm_on_bds = 'w1' elif (opt_kp0 == bds_kp0[0] or opt_kp0 == bds_kp0[1]): prm_on_bds = 'kp0' elif (opt_kp1 == bds_kp1[0] or opt_kp1 == bds_kp1[1]): prm_on_bds = 'kp1' else: prm_on_bds = 'None' return prm_on_bds def cross_from_above(x, threshold): """Return the indices into *x* where *x* crosses some threshold from above.""" x =
np.asarray(x)
numpy.asarray
# Copyright 2016-present CERN – European Organization for Nuclear Research # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from math import sqrt from typing import Union, Tuple, Sequence, List, Callable, Optional import matplotlib as plt import numpy as np from matplotlib.ticker import MaxNLocator from pandas import Timedelta from qf_lib.analysis.common.abstract_document import AbstractDocument from qf_lib.common.utils.error_handling import ErrorHandling from qf_lib.backtesting.fast_alpha_model_tester.scenarios_generator import ScenariosGenerator from qf_lib.backtesting.portfolio.trade import Trade from qf_lib.common.utils.miscellaneous.constants import DAYS_PER_YEAR_AVG from qf_lib.common.utils.numberutils.is_finite_number import is_finite_number from qf_lib.common.utils.returns.max_drawdown import max_drawdown from qf_lib.common.utils.returns.sqn import sqn, sqn_for100trades, avg_nr_of_trades_per1y from qf_lib.containers.dataframe.prices_dataframe import PricesDataFrame from qf_lib.containers.dataframe.qf_dataframe import QFDataFrame from qf_lib.containers.series.qf_series import QFSeries from qf_lib.containers.series.simple_returns_series import SimpleReturnsSeries from qf_lib.documents_utils.document_exporting.element.chart import ChartElement from qf_lib.documents_utils.document_exporting.element.df_table import DFTable from qf_lib.documents_utils.document_exporting.element.heading import HeadingElement from qf_lib.documents_utils.document_exporting.element.new_page import NewPageElement from qf_lib.documents_utils.document_exporting.pdf_exporter import PDFExporter from qf_lib.plotting.charts.chart import Chart from qf_lib.plotting.charts.histogram_chart import HistogramChart from qf_lib.plotting.charts.line_chart import LineChart from qf_lib.plotting.decorators.axes_formatter_decorator import AxesFormatterDecorator, PercentageFormatter from qf_lib.plotting.decorators.axes_label_decorator import AxesLabelDecorator from qf_lib.plotting.decorators.axes_locator_decorator import AxesLocatorDecorator from qf_lib.plotting.decorators.axes_position_decorator import AxesPositionDecorator from qf_lib.plotting.decorators.data_element_decorator import DataElementDecorator from qf_lib.plotting.decorators.legend_decorator import LegendDecorator from qf_lib.plotting.decorators.line_decorators import VerticalLineDecorator from qf_lib.plotting.decorators.title_decorator import TitleDecorator from qf_lib.settings import Settings @ErrorHandling.class_error_logging() class TradeAnalysisSheet(AbstractDocument): """ Creates a PDF containing main statistics of the trades. Parameters ------------- settings: Settings settings of the project pdf_exporter: PDFExporter tool that creates the pdf with the result nr_of_assets_traded: int number of assets traded trades: Sequence[Trade] list of trades start_date: datetime end_date: datetime title: str title of the document, will be a part of the filename. Do not use special characters """ def __init__(self, settings: Settings, pdf_exporter: PDFExporter, nr_of_assets_traded: int, trades: Sequence[Trade], start_date: datetime, end_date: datetime, initial_risk: Optional[float] = None, title: str = "Trades"): super().__init__(settings, pdf_exporter, title) self.start_date = start_date self.end_date = end_date self.initial_risk = initial_risk self.trades = sorted(trades, key=lambda t: (t.end_time, t.start_time)) self.nr_of_assets_traded = nr_of_assets_traded def build_document(self): self._add_header() self._add_returns_distribution() self._add_stats_table() self._add_simulation_results() def _add_returns_distribution(self): if self.initial_risk is not None: returns = SimpleReturnsSeries(data=[t.percentage_pnl / self.initial_risk for t in self.trades]) title = "Distribution of R multiples, Initial risk = {:.2%}".format(self.initial_risk) returns_histogram = self._get_distribution_plot(returns, title) else: returns = SimpleReturnsSeries(data=[t.percentage_pnl for t in self.trades]) title = "Distribution of returns [%]" returns_histogram = self._get_distribution_plot(returns, title) # Format the x-axis so that its labels are shown as a percentage in case of percentage returns axes_formatter_decorator = AxesFormatterDecorator(x_major=PercentageFormatter(), key="axes_formatter") returns_histogram.add_decorator(axes_formatter_decorator) self.document.add_element(ChartElement(returns_histogram, figsize=self.full_image_size, dpi=self.dpi)) def _add_stats_table(self): statistics = [] # type: List[Tuple] def append_to_statistics(measure_description: str, function: Callable, trades_containers, percentage_style: bool = False): style_format = "{:.2%}" if percentage_style else "{:.2f}" returned_values = (function(tc) for tc in trades_containers) returned_values = (value if is_finite_number(value) else 0.0 for value in returned_values) statistics.append((measure_description, *(style_format.format(val) for val in returned_values))) # Prepare trades data frame, used to generate all statistics trades_df = QFDataFrame.from_records( data=[(t.start_time, t.end_time, t.percentage_pnl, t.direction) for t in self.trades], columns=["start time", "end time", "percentage pnl", "direction"] ) # In case if the initial risk is not set all the return statistic will be computed using the percentage pnl, # otherwise the r_multiply = percentage pnl / initial risk is used unit = "%" if self.initial_risk is None else "R" trades_df["returns"] = trades_df["percentage pnl"] if self.initial_risk is None \ else trades_df["percentage pnl"] / self.initial_risk # Filter out only long and only long_trades_df = trades_df[trades_df["direction"] > 0] short_trades_df = trades_df[trades_df["direction"] < 0] all_dfs = [trades_df, long_trades_df, short_trades_df] append_to_statistics("Number of trades", len, all_dfs) append_to_statistics("% of trades number", lambda df: len(df) / len(trades_df) if len(trades_df) > 0 else 0, all_dfs, percentage_style=True) period_length_in_years = Timedelta(self.end_date - self.start_date) / Timedelta(days=1) / DAYS_PER_YEAR_AVG append_to_statistics("Avg number of trades per year", lambda df: len(df) / period_length_in_years, all_dfs) append_to_statistics("Avg number of trades per year per asset", lambda df: len(df) / period_length_in_years / self.nr_of_assets_traded, all_dfs) def percentage_of_positive_trades(df: QFDataFrame): return len(df[df["returns"] > 0]) / len(df) if len(df) > 0 else 0.0 append_to_statistics("% of positive trades", percentage_of_positive_trades, all_dfs, percentage_style=True) def percentage_of_negative_trades(df: QFDataFrame): return len(df[df["returns"] < 0]) / len(df) if len(df) > 0 else 0.0 append_to_statistics("% of negative trades", percentage_of_negative_trades, all_dfs, percentage_style=True) def avg_trade_duration(df: QFDataFrame): trades_duration = (df["end time"] - df["start time"]) / Timedelta(days=1) return trades_duration.mean() append_to_statistics("Average trade duration [days]", avg_trade_duration, all_dfs) append_to_statistics("Average trade return [{}]".format(unit), lambda df: df["returns"].mean(), all_dfs, percentage_style=(self.initial_risk is None)) append_to_statistics("Std trade return [{}]".format(unit), lambda df: df["returns"].std(), all_dfs, percentage_style=(self.initial_risk is None)) def avg_positive_trade_return(df: QFDataFrame): positive_trades = df[df["returns"] > 0] return positive_trades["returns"].mean() append_to_statistics("Average positive return [{}]".format(unit), avg_positive_trade_return, all_dfs, percentage_style=(self.initial_risk is None)) def avg_negative_trade_return(df: QFDataFrame): negative_trades = df[df["returns"] < 0] return negative_trades["returns"].mean() append_to_statistics("Average negative return [{}]".format(unit), avg_negative_trade_return, all_dfs, percentage_style=(self.initial_risk is None)) append_to_statistics("Best trade return [{}]".format(unit), lambda df: df["returns"].max(), all_dfs, percentage_style=(self.initial_risk is None)) append_to_statistics("Worst trade return [{}]".format(unit), lambda df: df["returns"].min(), all_dfs, percentage_style=(self.initial_risk is None)) append_to_statistics("SQN (per trade) [{}]".format(unit), lambda df: sqn(df["returns"]), all_dfs, percentage_style=(self.initial_risk is None)) append_to_statistics("SQN (per 100 trades) [{}]".format(unit), lambda df: sqn_for100trades(df["returns"]), all_dfs, percentage_style=(self.initial_risk is None)) def sqn_per_year(returns: QFSeries): sqn_per_year_value = sqn(returns) * sqrt(avg_nr_of_trades_per1y(returns, self.start_date, self.end_date)) return sqn_per_year_value append_to_statistics("SQN (per year) [{}]".format(unit), lambda df: sqn_per_year(df["returns"]), all_dfs, percentage_style=(self.initial_risk is None)) statistics_df = QFDataFrame.from_records(statistics, columns=["Measure", "All trades", "Long trades", "Short trades"]) table = DFTable(statistics_df, css_classes=['table', 'left-align']) table.add_columns_classes(["Measure"], 'wide-column') self.document.add_element(table) def _add_simulation_results(self): """ Generate a data frame consisting of a certain number of "scenarios" (each scenario denotes one single equity curve). """ self.document.add_element(NewPageElement()) self.document.add_element(HeadingElement(level=1, text="Monte Carlo simulations\n")) self.document.add_element(HeadingElement(level=2, text="Average number of trades per year: {}\n".format( int(self._average_number_of_trades_per_year())))) if self.initial_risk is not None: self.document.add_element(HeadingElement(level=2, text="Initial risk: {:.2%}".format(self.initial_risk))) scenarios_df, total_returns = self._get_scenarios() # Plot all the possible paths on a chart all_paths_chart = self._get_simulation_plot(scenarios_df) self.document.add_element(ChartElement(all_paths_chart, figsize=self.full_image_size, dpi=self.dpi)) # Plot the distribution plot distribution_plot = self._get_distribution_plot( total_returns, title="Monte Carlo Simulations Distribution (one year % return)", bins=200, crop=True) # Format the x-axis so that its labels are shown as a percentage in case of percentage returns axes_formatter_decorator = AxesFormatterDecorator(x_major=PercentageFormatter(), key="axes_formatter") distribution_plot.add_decorator(axes_formatter_decorator) self.document.add_element(ChartElement(distribution_plot, figsize=self.full_image_size, dpi=self.dpi)) simulations_summary_table = self._get_monte_carlos_simulator_outputs(scenarios_df, total_returns) self.document.add_element(simulations_summary_table) # Extract the results of each of the scenarios and summarize the data in the tables dist_summary_tables = self._get_distribution_summary_table(total_returns) self.document.add_element(dist_summary_tables) # Add the "Chances of dropping below" and "Simulations summary" tables ruin_chances_table = self._get_chances_of_dropping_below_table(scenarios_df) self.document.add_element(ruin_chances_table) def _get_scenarios(self, num_of_scenarios: int = 2500) -> Tuple[PricesDataFrame, SimpleReturnsSeries]: # Generate scenarios, each of which consists of a certain number of trades, equal to the average number # of trades per year scenarios_generator = ScenariosGenerator() trade_returns = [trade.percentage_pnl for trade in self.trades] # Generate the scenarios scenarios_df = scenarios_generator.make_scenarios( trade_returns, scenarios_length=int(self._average_number_of_trades_per_year()), num_of_scenarios=num_of_scenarios ) scenarios_df = scenarios_df.to_prices() return scenarios_df, scenarios_df.iloc[-1] / scenarios_df.iloc[0] - 1.0 def _average_number_of_trades_per_year(self): """ Computes the average number of trades per year. """ number_of_trades = len(self.trades) period_length_in_years = Timedelta(self.end_date - self.start_date) / Timedelta(days=1) / DAYS_PER_YEAR_AVG return number_of_trades / period_length_in_years def _get_simulation_plot(self, scenarios_df: PricesDataFrame) -> Chart: chart = LineChart(log_scale=True) for _, scenario in scenarios_df.items(): data_element = DataElementDecorator(scenario, linewidth=0.5) chart.add_decorator(data_element) # Add a legend legend = LegendDecorator(key="legend_decorator") # Add Ensemble average ensemble_avg = scenarios_df.mean(axis=1) ensemble_avg_data_element = DataElementDecorator(ensemble_avg, color="#e1e5f4", linewidth=3) chart.add_decorator(ensemble_avg_data_element) legend.add_entry(ensemble_avg_data_element, "Ensemble average") # Add Expectation (vol adjusted) trade_returns = QFSeries(data=[trade.percentage_pnl for trade in self.trades]) std = trade_returns.std() expectation_adj_series = np.ones(len(ensemble_avg)) * (trade_returns.mean() - 0.5 * std * std) expectation_adj_series = SimpleReturnsSeries(data=expectation_adj_series, index=ensemble_avg.index) expectation_adj_series = expectation_adj_series.to_prices() data_element = DataElementDecorator(expectation_adj_series, color="#46474b", linewidth=2) chart.add_decorator(data_element) legend.add_entry(data_element, "Expectation (vol adjusted)") # Add title title_decorator = TitleDecorator("Monte Carlo Simulations (log scale)", key="title") chart.add_decorator(title_decorator) position_decorator = AxesPositionDecorator(*self.full_image_axis_position) chart.add_decorator(position_decorator) chart.add_decorator(legend) return chart def _get_distribution_plot(self, data_series: SimpleReturnsSeries, title: str, bins: Union[int, str] = 50, crop: bool = False): colors = Chart.get_axes_colors() if crop: start_x = np.quantile(data_series, 0.01) end_x = np.quantile(data_series, 0.99) chart = HistogramChart(data_series, bins=bins, start_x=start_x, end_x=end_x) else: chart = HistogramChart(data_series, bins=bins) # Only show whole numbers on the y-axis. y_axis_locator = MaxNLocator(integer=True) axes_locator_decorator = AxesLocatorDecorator(y_major=y_axis_locator, key="axes_locator") chart.add_decorator(axes_locator_decorator) # Add an average line. avg_line = VerticalLineDecorator(data_series.mean(), color=colors[1], key="average_line_decorator", linestyle="--", alpha=0.8) chart.add_decorator(avg_line) # Add a legend. legend = LegendDecorator(key="legend_decorator") legend.add_entry(avg_line, "Mean") chart.add_decorator(legend) # Add a title. title_decorator = TitleDecorator(title, key="title") chart.add_decorator(title_decorator) chart.add_decorator(AxesLabelDecorator(title, "Occurrences")) position_decorator = AxesPositionDecorator(*self.full_image_axis_position) chart.add_decorator(position_decorator) return chart def _get_distribution_summary_table(self, scenarios_results: SimpleReturnsSeries) -> DFTable: rows = [] percentage_list = [0.05, 0.1, 0.2, 0.3] for percentage in percentage_list: rows.append(("{:.0%} Tail".format(percentage), "{:.2%}".format(np.quantile(scenarios_results, percentage)))) rows.append(("50%", "{:.2%}".format(np.quantile(scenarios_results, 0.5)))) for percentage in reversed(percentage_list): rows.append(("{:.0%} Top".format(percentage), "{:.2%}".format(np.quantile(scenarios_results, (1.0 - percentage))))) table = DFTable(data=QFDataFrame.from_records(rows, columns=["Measure", "Value"]), css_classes=['table', 'left-align']) table.add_columns_classes(["Measure"], 'wide-column') return table def _get_chances_of_dropping_below_table(self, scenarios_df: PricesDataFrame) -> DFTable: _, all_scenarios_number = scenarios_df.shape rows = [] crop_table = False for percentage in
np.linspace(0.1, 0.9, 9)
numpy.linspace
import collections import numpy as np from guesswhat.statistics.abstract_plotter import * import seaborn as sns import pandas as pd class SuccessDialogueLength(AbstractPlotter): def __init__(self, path, games, logger, suffix): super(SuccessDialogueLength, self).__init__(path, self.__class__.__name__, suffix) status_list = [] status_count = collections.defaultdict(int) length_list = [] for game in games: length_list.append(len(game.questions)) status_count[game.status] += 1 status_list.append(game.status) success = np.array([s == "success" for s in status_list]) + 0 failure = np.array([s == "failure" for s in status_list]) + 0 incomp = np.array([s == "incomplete" for s in status_list]) + 0 sns.set_style("whitegrid", {"axes.grid": False}) if sum(incomp) > 0: columns = ['Size of Dialogues', 'Success', 'Failure', 'Incomplete'] data = np.array([length_list, success, failure, incomp]).transpose() else: columns = ['Size of Dialogues', 'Success', 'Failure'] data =
np.array([length_list, success, failure])
numpy.array
__copyright__ = """ Copyright (C) 2020 University of Illinois Board of Trustees Copyright (C) 2021 <NAME> """ __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import sys import cantera as ct import numpy as np # noqa: F401 import pyrometheus as pyro import pytest try: import jax except ImportError: numpy_list = [np] jnp = None else: import jax.numpy as jnp # noqa: F401 jax.config.update("jax_enable_x64", 1) numpy_list = [np, jnp] def make_jax_pyro_class(ptk_base_cls, usr_np): if usr_np != jnp: return ptk_base_cls(usr_np) class PyroJaxNumpy(ptk_base_cls): def _pyro_make_array(self, res_list): """This works around (e.g.) numpy.exp not working with object arrays of numpy scalars. It defaults to making object arrays, however if an array consists of all scalars, it makes a "plain old" :class:`numpy.ndarray`. See ``this numpy bug <https://github.com/numpy/numpy/issues/18004>`__ for more context. """ from numbers import Number # Needed to play nicely with Jax, which frequently creates # arrays of shape () when handed numbers all_numbers = all( isinstance(e, Number) or (isinstance(e, self.usr_np.ndarray) and e.shape == ()) for e in res_list) if all_numbers: return self.usr_np.array(res_list, dtype=self.usr_np.float64) result = self.usr_np.empty_like(res_list, dtype=object, shape=(len(res_list),)) # 'result[:] = res_list' may look tempting, however: # https://github.com/numpy/numpy/issues/16564 for idx in range(len(res_list)): result[idx] = res_list[idx] return result def _pyro_norm(self, argument, normord): """This works around numpy.linalg norm not working with scalars. If the argument is a regular ole number, it uses :func:`numpy.abs`, otherwise it uses ``usr_np.linalg.norm``. """ # Wrap norm for scalars from numbers import Number if isinstance(argument, Number): return self.usr_np.abs(argument) # Needed to play nicely with Jax, which frequently creates # arrays of shape () when handed numbers if isinstance(argument, self.usr_np.ndarray) and argument.shape == (): return self.usr_np.abs(argument) return self.usr_np.linalg.norm(argument, normord) return PyroJaxNumpy(usr_np=usr_np) # Write out all the mechanisms for inspection @pytest.mark.parametrize("mechname", ["uiuc", "sanDiego"]) def test_generate_mechfile(mechname): """This "test" produces the mechanism codes.""" sol = ct.Solution(f"mechs/{mechname}.cti", "gas") with open(f"mechs/{mechname}.py", "w") as mech_file: code = pyro.gen_thermochem_code(sol) print(code, file=mech_file) @pytest.mark.parametrize("mechname", ["uiuc", "sanDiego"]) @pytest.mark.parametrize("usr_np", numpy_list) def test_get_rate_coefficients(mechname, usr_np): """This function tests that pyrometheus-generated code computes the rate coefficients matching Cantera for given temperature and composition""" sol = ct.Solution(f"mechs/{mechname}.cti", "gas") ptk_base_cls = pyro.get_thermochem_class(sol) ptk = make_jax_pyro_class(ptk_base_cls, usr_np) # Test temperatures temp = np.linspace(500.0, 3000.0, 10) for t in temp: # Set new temperature in Cantera sol.TP = t, ct.one_atm # Concentrations y = sol.Y rho = sol.density c = ptk.get_concentrations(rho, y) # Get rate coefficients and compare k_ct = sol.forward_rate_constants k_pm = ptk.get_fwd_rate_coefficients(t, c) print(k_ct) print(np.abs((k_ct-k_pm)/k_ct)) assert np.linalg.norm((k_ct-k_pm)/k_ct, np.inf) < 1e-14 return @pytest.mark.parametrize("mechname", ["uiuc", "sanDiego"]) @pytest.mark.parametrize("usr_np", numpy_list) def test_get_pressure(mechname, usr_np): """This function tests that pyrometheus-generated code computes the Cantera-predicted pressure for given density, temperature, and mass fractions """ # Create Cantera and pyrometheus objects sol = ct.Solution(f"mechs/{mechname}.cti", "gas") ptk_base_cls = pyro.get_thermochem_class(sol) ptk = make_jax_pyro_class(ptk_base_cls, usr_np) # Temperature, equivalence ratio, oxidizer ratio, stoichiometry ratio t = 300.0 phi = 2.0 alpha = 0.21 nu = 0.5 # Species mass fractions i_fu = ptk.species_index("H2") i_ox = ptk.species_index("O2") i_di = ptk.species_index("N2") x = np.zeros(ptk.num_species) x[i_fu] = (alpha * phi) / (nu + alpha * phi) x[i_ox] = nu * x[i_fu] / phi x[i_di] = (1.0 - alpha) * x[i_ox] / alpha # Get equilibrium composition sol.TPX = t, ct.one_atm, x sol.equilibrate("UV") t, rho, y = sol.TDY p_ct = sol.P # Compute pressure with pyrometheus and compare to Cantera p_pm = ptk.get_pressure(rho, t, y) assert abs(p_ct - p_pm) / p_ct < 1.0e-12 @pytest.mark.parametrize("mechname", ["uiuc", "sanDiego"]) @pytest.mark.parametrize("usr_np", numpy_list) def test_get_thermo_properties(mechname, usr_np): """This function tests that pyrometheus-generated code computes thermodynamic properties c_p, s_r, h_rt, and k_eq correctly by comparing against Cantera""" # Create Cantera and pyrometheus objects sol = ct.Solution(f"mechs/{mechname}.cti", "gas") ptk_base_cls = pyro.get_thermochem_class(sol) ptk = make_jax_pyro_class(ptk_base_cls, usr_np) # Loop over temperatures temp =
np.linspace(500.0, 3000.0, 10)
numpy.linspace
import librosa import librosa.display import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from matplotlib.pyplot import specgram import keras from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Embedding from keras.layers import LSTM from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.utils import to_categorical from keras.layers import Input, Flatten, Dropout, Activation from keras.layers import Conv1D, MaxPooling1D, AveragePooling1D from keras.models import Model from keras.callbacks import ModelCheckpoint from sklearn.metrics import confusion_matrix from keras import regularizers import pandas as pd import os import glob import time import numpy as np import os bookmark=0 y=[] ##Classification on Expanded Ravdess Dataset ( converting Audio Visual recordings to audio only recordings) #################################################################### ################################################################## ############################################################### ############################################################# ############################################################ import os import pandas as pd import glob import time import numpy as np path = 'Ravdess_Expanded' lst = [] import librosa start_time = time.time() for subdir, dirs, files in os.walk(path): for file in files: try: #Load librosa array, obtain mfcss, store the file and the mcss information in a new array X, sample_rate = librosa.load(os.path.join(subdir,file), res_type='kaiser_fast') mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T,axis=0) # The instruction below converts the labels (from 1 to 8) to a series from 0 to 7 # This is because our predictor needs to start from 0 otherwise it will try to predict also 0. file = int(file[7:8]) - 1 arr = mfccs, file lst.append(arr) # If the file is not valid, skip it except ValueError: continue print("--- Data loaded. Loading time: %s seconds ---" % (time.time() - start_time)) X, y = zip(*lst) X=np.asarray(X) y=np.asarray(y) y=np.reshape(y,(-1,1)) z=np.concatenate((X,y),axis=1) dataset=pd.DataFrame(z) dataset=dataset.dropna() array=[i for i in range(1440,2878)] df=dataset.drop(array,axis=0) X=df.iloc[:,:40].values y=df.iloc[:,40].values import pickle with open('X.pickle', 'wb') as f: pickle.dump([X], f) with open('y.pickle', 'wb') as f: pickle.dump([y], f) pickle_in = open("X.pickle","rb") X = pickle.load(pickle_in) pickle_in1 = open("y.pickle","rb") y = pickle.load(pickle_in1) X=
np.asarray(X)
numpy.asarray
import clustering import numpy as np from sklearn import datasets import matplotlib.pyplot as plt import dionysus as dion import random def plot_all(data, diagrams): fig = plt.figure(figsize=(20, 10)) for i in range(len(data)): num = 241 + i ax = plt.subplot(num) plt.scatter(data[i][:, 0], data[i][:, 1]) ax = plt.subplot(num + 4) plot_diagram(diagrams[i], ax, lims=[0, 1.5, 0, 1.75]) fig.suptitle("Datasets with corresponding persistence diagrams") plt.show() def compute_diagrams(data): diagrams = [] for i in range(len(data)): print("Processing data: " + str(i)) filtration = dion.fill_rips(data[i], 2, 3.0) homology = dion.homology_persistence(filtration) diagram = dion.init_diagrams(homology, filtration) diagrams.append(diagram[1]) print() return diagrams def plot_clusters(M): plt.scatter(M[0].T[0], M[0].T[1], c='r', label='Rings') plt.scatter(M[1].T[0], M[1].T[1], c='b', label='Noise') plt.xlim([0, 1.5]) plt.ylim([0, 1.75]) plt.plot([0.1, 1.2], [0.1, 1.2]) plt.legend() plt.title("Persistence Diagram Cluster Centres") plt.show() def gen_data(seed, noise=0.05, n_samples=100): print("\nGenerating data...\n") np.random.seed(seed) random.seed(seed) data = [] data.append(datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise, random_state=seed)[0]) data.append(datasets.make_circles(n_samples=n_samples, factor=0.99, noise=noise, random_state=seed + 1)[0]) data.append(np.random.normal(size=(100, 2), scale=0.5)) data.append(0.9 * np.random.normal(size=(100, 2), scale=0.5)) return data def gen_data2(seed, noise, n_samples): dataset = [] np.random.seed(seed) random.seed(seed) # Noise data =
np.random.normal(size=(100, 2), scale=0.5)
numpy.random.normal
import os import json import argparse import logging from pathlib import Path import time from typing import Tuple import pandas as pd import numpy as np import tqdm from melloddy_tuner.utils import hash_reference_set from melloddy_tuner.utils.helper import ( load_config, load_key, make_dir, read_input_file, create_log_files, sanity_check_assay_sizes, sanity_check_assay_type, sanity_check_uniqueness, save_df_as_csv, ) from melloddy_tuner.utils.config import ConfigDict from multiprocessing import Pool def init_arg_parser(): """Argparser module to load commandline arguments. Returns: [Namespace]: Arguments from argparser """ parser = argparse.ArgumentParser(description="smiles standardization") parser.add_argument( "-assay", "--assay_file", type=str, help="path of the assay metadata file T0", required=True, ) parser.add_argument( "-a", "--activity_file", type=str, help="path of the activity data file T1", required=True, ) parser.add_argument( "-mt", "--mapping_table", type=str, help="path of the mapping table T5", required=True, ) parser.add_argument( "-c", "--config_file", type=str, help="path of the config file", required=True ) parser.add_argument( "-k", "--key_file", type=str, help="path of the key file", required=True ) parser.add_argument( "-o", "--output_dir", type=str, help="path to the generated output directory", required=True, ) parser.add_argument( "-r", "--run_name", type=str, help="name of your current run", required=True ) parser.add_argument( "-rh", "--ref_hash", type=str, help="path to the reference hash key file provided by the consortium. (ref_hash.json)", ) parser.add_argument( "-ni", "--non_interactive", help="Enables an non-interactive mode for cluster/server usage", action="store_true", default=False, ) parser.add_argument( "-cpu", "--number_cpu", type=int, help="number of CPUs", default=1 ) args = parser.parse_args() return args def most_common_qualifier(qualifiers: list) -> str: """Determines the most common qualifier, in case of a tie including '=' returns '=' Input: qualifiers - list of qualifiers, accepted values '<', '>' and '=' Output: str: the most common qualifier. In case of a tie prefers '='. If a tie is between '<' and '>' - returns None """ counts = [] for qual in ["<", ">", "="]: counts.append((qual, qualifiers.count(qual))) counts.sort(key=lambda tup: tup[1], reverse=True) if counts[0][1] > counts[1][1]: return counts[0][0] elif counts[0][0] == "=" or counts[1][0] == "=" or counts[2][1] == counts[0][1]: return "=" else: return None def aggr_median(values, qualifiers) -> Tuple: """Identifies median of values and the most common qualifier""" return np.median(values), most_common_qualifier(list(qualifiers)) def aggr_min(values, qualifiers) -> Tuple: """Identifies the minimum value and teh corresponding qualifier""" return values[np.argmin(values)], qualifiers[np.argmin(values)] def aggr_max(values, qualifiers) -> Tuple: """Identifies the maximum values and the corresponding qualifier If '<' qualifier is present, only those elements ae considered """ if (">" in qualifiers) or ("=" in qualifiers): mask = np.array([i for i in range(len(qualifiers)) if qualifiers[i] != "<"]) ind = mask[np.argmax(np.array(values)[mask])] aggr_value = values[ind] aggr_qualifier = qualifiers[ind] else: aggr_value = values[
np.argmax(values)
numpy.argmax
# %% import os import sys from collections import Counter from datetime import datetime, timedelta from glob import glob from pathlib import Path from zipfile import ZipFile # data wrangling import geopandas as gpd import pandas as pd import numpy as np import requests from urllib.error import HTTPError # data maniuplation from convertbng.util import convert_lonlat # logging from shapely.geometry import Point import con_checks as con import geo_checks as geo # %% timestr = datetime.now().strftime("%Y_%m_%d") src_home = Path('./OpenNaPTAN/src/') data_home = Path('./OpenNaPTAN/data/') base_path = (f'{os.getcwd()}') download_home = str(os.path.join(Path.home(), "Downloads")) naptan_csv_url = 'http://naptan.app.dft.gov.uk/DataRequest/Naptan.ashx?format=csv' naptan_xml_url = 'http://naptan.app.dft.gov.uk/Datarequest/naptan.ashx' # config options pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', 5) # %% def intersect_list_to_masks(df, col_name, value_list): """[summary] This is a filter function, that performs an inner join when given a list object and returns a filtered dataframe of the values in the given list. You must pass a valid column name and a valid list of strings expected in that column, will filter out all values not in the list from the given column, returning a dataframe with only the found entries, that match the list given values in the given column. Arguments: colName {[str]} -- [the pandas column name, as a string] value_list {[list]} -- [the list of strings to filter the dataframe.] Returns: [gdf] -- [a filtered gdf, with only the found list values within. ] """ # uses numpy 1d intersection to filter an entire list of strings mask = df[col_name].apply(lambda x: np.intersect1d(x, value_list).size > 0) failed_nodes = df[mask] return failed_nodes # %% def downloads_naptan_data(format='csv', local_authority_code=''): """[summary] Downloads naptan csv files from the app.dft.gov.uk site. Assumes no longer is required for accessing the data this route. Args: format (str, optional): [description]. Defaults to 'csv'. local_authority_code (str, optional): [description]. Defaults to ''. Raises: NotImplementedError: [description] NotImplementedError: [description] ve: [description] """ dir = str(os.path.join(Path.home(), "Downloads")) file = Path(f'{download_home}/{timestr}_Naptan_Data.zip') try: # let's check if the naptan zip file exists. if not file.exists(): print('Downloading the entire Naptan Dataset.') url = 'http://naptan.app.dft.gov.uk/DataRequest/Naptan.ashx?format=csv' response = requests.get(url) with open(os.path.join(dir, file), 'wb') as f: f.write(response.content) response.close() # the below isn't supported yet. elif local_authority_code.isdigit(): url = (f'http://naptan.app.dft.gov.uk/DataRequest/Naptan.ashx?format={format}&LA={local_authority_code}') raise NotImplementedError # the below isn't support yet. elif format == 'xml': url = (f'http://naptan.app.dft.gov.uk/DataRequest/Naptan.ashx?format={format}&LA={local_authority_code}') raise NotImplementedError else: return(f'Naptan Data has been for {timestr} has been downloaded.') except ConnectionError as ce: sys.exit(f' {ce} No internet connection was found.') except ConnectionRefusedError as cre: sys.exit(f'{cre} This system is not allowed to access the Naptan Site.') except HTTPError as httperror: sys.exit(f'{httperror} the Naptan download server is unavailable.') except ValueError as ve: raise ve sys.exit('Site is not valid.') # %% def extract_naptan_files(): """[summary] Extracts the downloaded naptan zip file. Arguments: naptanzipfile {[type]} -- [description] dest_dir {[type]} -- [description] """ zip_file = Path(f'{download_home}/{timestr}_Naptan_Data.zip') destination = Path(f'{os.getcwd()}/data/{timestr}_Naptan_Data') try: if zip_file.is_file() and zip_file.suffix == '.zip': with ZipFile(zip_file, "r") as zipobj: # Extract all the contents of zip file in the working directory zipobj.extractall(destination) print(f'Extracting all {destination} files in archive.') except FileNotFoundError: sys.exit('Naptan archive file not found.') except FileExistsError: sys.exit('File already exists') except Exception as e: sys.exit(e) # %% def check_naptan_files(): """[summary] Lists the Naptan files available at the specificed location. If some files are missing/ or can't be open this should flag a warning. Arguments: file_list_location {[Path]} -- [description] file_ext {[file extension]} -- [description] Returns: [type] -- [description] """ # TODO check if files are readable file_list_location = (f'{os.getcwd()}/data/{timestr}_Naptan_Data/') file_ext = 'csv' expected_file_names = ['AirReferences', 'AlternativeDescriptors', 'AreaHierarchy', 'CoachReferences', 'FerryReferences', 'Flexible', 'HailRide', 'LocalityMainAccessPoints', 'MetroReferences', 'RailReferences', 'StopAreas', 'StopAvailability', 'StopLocalities', 'StopPlusbusZones', 'Stops', 'StopsInArea'] naptan_file_names = [] # we print out if all the expected files are found and if so in the # system where. for expected in expected_file_names: npfile = Path(f'{file_list_location}{expected}.{file_ext}') if npfile.is_file() and npfile.exists(): naptan_file_names.append(npfile.stem) print(f'{npfile.name} as a {file_ext} has been found.') else: print(f'The {npfile} is missing or the file extension is wrong.') # %% def convert_xml_to_df(xml_doc): # TODO -- convert xml into a pandas dataframe for easier verification. """ Description: We can take in the naptan data as a Args: xml_doc Returns: returns a panda dataframe of the xml document. """ attr = xml_doc.attrib doc_dict = pd.DataFrame for xml in xml_doc.iter('document'): doc_dir = attr.copy() doc_dir.update(xml.attrib) doc_dict['data'] = xml.text return doc_dict # %% def file_pep8_cleaning(home, ext): """Description: takes a directory and file extension and then renames them according to Args: home: the target directory, only one at once ext: a file type extension, only one at once Returns: """ home = Path(home) os.chdir(home) flist = [] for p in Path().iterdir(): if (p.is_file() and p.suffix == ext): g = Path(p).stem flist.append(g) h = string.capwords(g) i = h.title() j = '_'.join([s[0].upper() + s[1:] for s in i.split(' ')]) to_file = Path(home, j) flist.append(to_file) p.rename(to_file) with open((home, 'update_list.txt'), 'w+') as file: file.write(flist) # %% def convert_to_lat_long(df): """Descriptions: Converts 100,000+ coordinates in a dataframe into accurate longitude and latitude adding the columns where they are missing from a dataframe. Arguments: df {[type]} -- [description] file_name {[type]} -- [description] """ easting_np = np.array(df.Easting) northing_np = np.array(df.Northing) res_list_np = convert_lonlat(easting_np, northing_np) df['Longitude'], df['Latitude'] = res_list_np[0], res_list_np[1] # drop the easting and northing columns, now we are done with them. df = df.drop(columns=['Easting', 'Northing'], axis=1) return df # %% def deactivated_nodes(df): """[summary] - Returns a dataframe of only active, pending, or new nodes or deleted stops from the last 3 years, for representative sampling. deleted nodes are removed for the sake of this test. This test is also not, concerned with reporting errors, as this is a data cleaning function Arguments: df {[geopanda dataframe]} -- [The Naptan master dataframe.] Returns: [type] -- [description] """ # TODO filter this to stops with a modification date time within the last 3 # years so that there is a represenative sample of deactived stops. try: exp_date = (datetime.now() - timedelta(days=365*3)) # we filter all the missing deleted stops that are older than 3 yrs. mask = ~((df['Status'] == 'del') & (df['ModificationDateTime'] <= exp_date)) active_nodes = df[mask] # TODO needs to be integrated with reporting function. # inactive_nodes = df[~mask] # report.nodes_error_reporting('Inactive Nodes', # inactive_nodes) return active_nodes except FileNotFoundError as file_missing: raise file_missing sys.exit(f'{file_missing}') # %% def calculate_naptan_geometry(df): """[summary] Takes in a dataframe and returns a dataframe with a geometry column calculate from using lat and lon CRS. """ try: geom_list = [Point(lon, lat) for lon, lat in zip(df["Longitude"], df["Latitude"])] gdf = gpd.GeoDataFrame(df, geometry=geom_list, crs={"init": "EPSG:4326"}) return gdf except ValueError: print('Value Error could not be converted.') pass else: print('Naptan Geometry conversion failed.') # %% def get_centroid_naptan_area(df): """[summary] to determine where the folium map should be centred, when generating an ipython view. Arguments: df_subframe {[type]} -- [description] Returns: [rep_centroid] -- [a fix within geometry point, representative of all the points in the area.] """ length = df['Geometry'].shape[0] sum_x = np.sum(df['Latitude']) sum_y =
np.sum(df['Longitude'])
numpy.sum
import numpy as np import pandas as pd from numba import njit import pytest import os from collections import namedtuple from itertools import product, combinations from vectorbt import settings from vectorbt.utils import checks, config, decorators, math, array, random, enum, data, params from tests.utils import hash seed = 42 # ############# config.py ############# # class TestConfig: def test_config(self): conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=False) conf['b']['d'] = 2 conf = config.Config({'a': 0, 'b': {'c': 1}}, frozen=True) conf['a'] = 2 with pytest.raises(Exception) as e_info: conf['d'] = 2 with pytest.raises(Exception) as e_info: conf.update(d=2) conf.update(d=2, force_update=True) assert conf['d'] == 2 conf = config.Config({'a': 0, 'b': {'c': 1}}, read_only=True) with pytest.raises(Exception) as e_info: conf['a'] = 2 with pytest.raises(Exception) as e_info: del conf['a'] with pytest.raises(Exception) as e_info: conf.pop('a') with pytest.raises(Exception) as e_info: conf.popitem() with pytest.raises(Exception) as e_info: conf.clear() with pytest.raises(Exception) as e_info: conf.update(a=2) assert isinstance(conf.merge_with(dict(b=dict(d=2))), config.Config) assert conf.merge_with(dict(b=dict(d=2)), read_only=True).read_only assert conf.merge_with(dict(b=dict(d=2)))['b']['d'] == 2 conf = config.Config({'a': 0, 'b': {'c': [1, 2]}}) conf['a'] = 1 conf['b']['c'].append(3) conf['b']['d'] = 2 assert conf == {'a': 1, 'b': {'c': [1, 2, 3], 'd': 2}} conf.reset() assert conf == {'a': 0, 'b': {'c': [1, 2]}} def test_merge_dicts(self): assert config.merge_dicts({'a': 1}, {'b': 2}) == {'a': 1, 'b': 2} assert config.merge_dicts({'a': 1}, {'a': 2}) == {'a': 2} assert config.merge_dicts({'a': {'b': 2}}, {'a': {'c': 3}}) == {'a': {'b': 2, 'c': 3}} assert config.merge_dicts({'a': {'b': 2}}, {'a': {'b': 3}}) == {'a': {'b': 3}} def test_configured(self): class H(config.Configured): def __init__(self, a, b=2, **kwargs): super().__init__(a=a, b=b, **kwargs) assert H(1).config == {'a': 1, 'b': 2} assert H(1).copy(b=3).config == {'a': 1, 'b': 3} assert H(1).copy(c=4).config == {'a': 1, 'b': 2, 'c': 4} assert H(pd.Series([1, 2, 3])) == H(pd.Series([1, 2, 3])) assert H(pd.Series([1, 2, 3])) != H(pd.Series([1, 2, 4])) assert H(pd.DataFrame([1, 2, 3])) == H(pd.DataFrame([1, 2, 3])) assert H(pd.DataFrame([1, 2, 3])) != H(pd.DataFrame([1, 2, 4])) assert H(pd.Index([1, 2, 3])) == H(pd.Index([1, 2, 3])) assert H(pd.Index([1, 2, 3])) != H(pd.Index([1, 2, 4])) assert H(np.array([1, 2, 3])) == H(np.array([1, 2, 3])) assert H(np.array([1, 2, 3])) != H(np.array([1, 2, 4])) assert H(None) == H(None) assert H(None) != H(10.) # ############# decorators.py ############# # class TestDecorators: def test_class_or_instancemethod(self): class G: @decorators.class_or_instancemethod def g(self_or_cls): if isinstance(self_or_cls, type): return True # class return False # instance assert G.g() assert not G().g() def test_custom_property(self): class G: @decorators.custom_property(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_custom_method(self): class G: @decorators.custom_method(some='key') def cache_me(self): return np.random.uniform() assert 'some' in G.cache_me.kwargs assert G.cache_me.kwargs['some'] == 'key' def test_cached_property(self): np.random.seed(seed) class G: @decorators.cached_property def cache_me(self): return np.random.uniform() g = G() cached_number = g.cache_me assert g.cache_me == cached_number class G: @decorators.cached_property(hello="world", hello2="world2") def cache_me(self): return np.random.uniform() assert 'hello' in G.cache_me.kwargs assert G.cache_me.kwargs['hello'] == 'world' g = G() g2 = G() class G3(G): pass g3 = G3() cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 # clear_cache method cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me G.cache_me.clear_cache(g) assert g.cache_me != cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 # test blacklist # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((g, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(g) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((G, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(G) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G.cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('g') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # disabled globally G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # test whitelist # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((g, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(g) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((G, 'cache_me')) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(G) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G.cache_me') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('g') cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me == cached_number assert g2.cache_me == cached_number2 assert g3.cache_me == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me cached_number2 = g2.cache_me cached_number3 = g3.cache_me assert g.cache_me != cached_number assert g2.cache_me != cached_number2 assert g3.cache_me != cached_number3 settings.caching.reset() def test_cached_method(self): np.random.seed(seed) class G: @decorators.cached_method def cache_me(self, b=10): return np.random.uniform() g = G() cached_number = g.cache_me assert g.cache_me == cached_number class G: @decorators.cached_method(hello="world", hello2="world2") def cache_me(self, b=10): return np.random.uniform() assert 'hello' in G.cache_me.kwargs assert G.cache_me.kwargs['hello'] == 'world' g = G() g2 = G() class G3(G): pass g3 = G3() cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 # clear_cache method cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() G.cache_me.clear_cache(g) assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 # test blacklist # function G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(g.cache_me) cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((g, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(g) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append((G, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append(G) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G.cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('G') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append('g') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['blacklist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # disabled globally G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # test whitelist # function G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(g.cache_me) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # instance + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((g, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() # instance G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(g) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append((G, 'cache_me')) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append(G) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class name + name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G.cache_me') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('G') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # improper class name G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append('g') cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # kwargs G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() == cached_number assert g2.cache_me() == cached_number2 assert g3.cache_me() == cached_number3 settings.caching.reset() G.cache_me.clear_cache(g) G.cache_me.clear_cache(g2) G3.cache_me.clear_cache(g3) settings.caching['enabled'] = False settings.caching['whitelist'].append({'hello': 'world', 'hello2': 'world2', 'hello3': 'world3'}) cached_number = g.cache_me() cached_number2 = g2.cache_me() cached_number3 = g3.cache_me() assert g.cache_me() != cached_number assert g2.cache_me() != cached_number2 assert g3.cache_me() != cached_number3 settings.caching.reset() # disabled by non-hashable args G.cache_me.clear_cache(g) cached_number = g.cache_me(b=np.zeros(1)) assert g.cache_me(b=np.zeros(1)) != cached_number def test_traverse_attr_kwargs(self): class A: @decorators.custom_property(some_key=0) def a(self): pass class B: @decorators.cached_property(some_key=0, child_cls=A) def a(self): pass @decorators.custom_method(some_key=1) def b(self): pass class C: @decorators.cached_method(some_key=0, child_cls=B) def b(self): pass @decorators.custom_property(some_key=1) def c(self): pass assert hash(str(decorators.traverse_attr_kwargs(C))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key'))) == 16728515581653529580 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=1))) == 703070484833749378 assert hash(str(decorators.traverse_attr_kwargs(C, key='some_key', value=(0, 1)))) == 16728515581653529580 # ############# checks.py ############# # class TestChecks: def test_is_pandas(self): assert not checks.is_pandas(0) assert not checks.is_pandas(np.array([0])) assert checks.is_pandas(pd.Series([1, 2, 3])) assert checks.is_pandas(pd.DataFrame([1, 2, 3])) def test_is_series(self): assert not checks.is_series(0) assert not checks.is_series(np.array([0])) assert checks.is_series(pd.Series([1, 2, 3])) assert not checks.is_series(pd.DataFrame([1, 2, 3])) def test_is_frame(self): assert not checks.is_frame(0) assert not checks.is_frame(np.array([0])) assert not checks.is_frame(pd.Series([1, 2, 3])) assert checks.is_frame(pd.DataFrame([1, 2, 3])) def test_is_array(self): assert not checks.is_array(0) assert checks.is_array(np.array([0])) assert checks.is_array(pd.Series([1, 2, 3])) assert checks.is_array(pd.DataFrame([1, 2, 3])) def test_is_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x assert not checks.is_numba_func(test_func) assert checks.is_numba_func(test_func_nb) def test_is_hashable(self): assert checks.is_hashable(2) assert not checks.is_hashable(np.asarray(2)) def test_is_index_equal(self): assert checks.is_index_equal( pd.Index([0]), pd.Index([0]) ) assert not checks.is_index_equal( pd.Index([0]), pd.Index([1]) ) assert not checks.is_index_equal( pd.Index([0], name='name'), pd.Index([0]) ) assert checks.is_index_equal( pd.Index([0], name='name'), pd.Index([0]), strict=False ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.Index([0]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]]), pd.MultiIndex.from_arrays([[0], [1]]) ) assert checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']) ) assert not checks.is_index_equal( pd.MultiIndex.from_arrays([[0], [1]], names=['name1', 'name2']), pd.MultiIndex.from_arrays([[0], [1]], names=['name3', 'name4']) ) def test_is_default_index(self): assert checks.is_default_index(pd.DataFrame([[1, 2, 3]]).columns) assert checks.is_default_index(pd.Series([1, 2, 3]).to_frame().columns) assert checks.is_default_index(pd.Index([0, 1, 2])) assert not checks.is_default_index(pd.Index([0, 1, 2], name='name')) def test_is_equal(self): assert checks.is_equal(np.arange(3), np.arange(3), np.array_equal) assert not checks.is_equal(np.arange(3), None, np.array_equal) assert not checks.is_equal(None, np.arange(3), np.array_equal) assert checks.is_equal(None, None, np.array_equal) def test_is_namedtuple(self): assert checks.is_namedtuple(namedtuple('Hello', ['world'])(*range(1))) assert not checks.is_namedtuple((0,)) def test_method_accepts_argument(self): def test(a, *args, b=2, **kwargs): pass assert checks.method_accepts_argument(test, 'a') assert not checks.method_accepts_argument(test, 'args') assert checks.method_accepts_argument(test, '*args') assert checks.method_accepts_argument(test, 'b') assert not checks.method_accepts_argument(test, 'kwargs') assert checks.method_accepts_argument(test, '**kwargs') assert not checks.method_accepts_argument(test, 'c') def test_assert_in(self): checks.assert_in(0, (0, 1)) with pytest.raises(Exception) as e_info: checks.assert_in(2, (0, 1)) def test_assert_numba_func(self): def test_func(x): return x @njit def test_func_nb(x): return x checks.assert_numba_func(test_func_nb) with pytest.raises(Exception) as e_info: checks.assert_numba_func(test_func) def test_assert_not_none(self): checks.assert_not_none(0) with pytest.raises(Exception) as e_info: checks.assert_not_none(None) def test_assert_type(self): checks.assert_type(0, int) checks.assert_type(np.zeros(1), (np.ndarray, pd.Series)) checks.assert_type(pd.Series([1, 2, 3]), (np.ndarray, pd.Series)) with pytest.raises(Exception) as e_info: checks.assert_type(pd.DataFrame([1, 2, 3]), (np.ndarray, pd.Series)) def test_assert_subclass(self): class A: pass class B(A): pass class C(B): pass checks.assert_subclass(B, A) checks.assert_subclass(C, B) checks.assert_subclass(C, A) with pytest.raises(Exception) as e_info: checks.assert_subclass(A, B) def test_assert_type_equal(self): checks.assert_type_equal(0, 1) checks.assert_type_equal(np.zeros(1), np.empty(1)) with pytest.raises(Exception) as e_info: checks.assert_type(0, np.zeros(1)) def test_assert_dtype(self): checks.assert_dtype(np.zeros(1), np.float) checks.assert_dtype(pd.Series([1, 2, 3]), np.int) checks.assert_dtype(pd.DataFrame({'a': [1, 2], 'b': [3, 4]}), np.int) with pytest.raises(Exception) as e_info: checks.assert_dtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.int) def test_assert_subdtype(self): checks.assert_subdtype([0], np.number) checks.assert_subdtype(np.array([1, 2, 3]), np.number) checks.assert_subdtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.number) with pytest.raises(Exception) as e_info: checks.assert_subdtype(np.array([1, 2, 3]), np.float) with pytest.raises(Exception) as e_info: checks.assert_subdtype(pd.DataFrame({'a': [1, 2], 'b': [3., 4.]}), np.float) def test_assert_dtype_equal(self): checks.assert_dtype_equal([1], [1, 1, 1]) checks.assert_dtype_equal(pd.Series([1, 2, 3]), pd.DataFrame([[1, 2, 3]])) checks.assert_dtype_equal(pd.DataFrame([[1, 2, 3.]]), pd.DataFrame([[1, 2, 3.]])) with pytest.raises(Exception) as e_info: checks.assert_dtype_equal(pd.DataFrame([[1, 2, 3]]), pd.DataFrame([[1, 2, 3.]])) def test_assert_ndim(self): checks.assert_ndim(0, 0) checks.assert_ndim(np.zeros(1), 1) checks.assert_ndim(pd.Series([1, 2, 3]), (1, 2)) checks.assert_ndim(pd.DataFrame([1, 2, 3]), (1, 2)) with pytest.raises(Exception) as e_info: checks.assert_ndim(np.zeros((3, 3, 3)), (1, 2)) def test_assert_len_equal(self): checks.assert_len_equal([[1]], [[2]]) checks.assert_len_equal([[1]], [[2, 3]]) with pytest.raises(Exception) as e_info: checks.assert_len_equal([[1]], [[2], [3]]) def test_assert_shape_equal(self): checks.assert_shape_equal(0, 1) checks.assert_shape_equal([1, 2, 3], np.asarray([1, 2, 3])) checks.assert_shape_equal([1, 2, 3], pd.Series([1, 2, 3])) checks.assert_shape_equal(np.zeros((3, 3)), pd.Series([1, 2, 3]), axis=0) checks.assert_shape_equal(np.zeros((2, 3)), pd.Series([1, 2, 3]), axis=(1, 0)) with pytest.raises(Exception) as e_info: checks.assert_shape_equal(np.zeros((2, 3)), pd.Series([1, 2, 3]), axis=(0, 1)) def test_assert_index_equal(self): checks.assert_index_equal(pd.Index([1, 2, 3]), pd.Index([1, 2, 3])) with pytest.raises(Exception) as e_info: checks.assert_index_equal(pd.Index([1, 2, 3]), pd.Index([2, 3, 4])) def test_assert_meta_equal(self): index = ['x', 'y', 'z'] columns = ['a', 'b', 'c'] checks.assert_meta_equal(np.array([1, 2, 3]), np.array([1, 2, 3])) checks.assert_meta_equal(pd.Series([1, 2, 3], index=index), pd.Series([1, 2, 3], index=index)) checks.assert_meta_equal(pd.DataFrame([[1, 2, 3]], columns=columns), pd.DataFrame([[1, 2, 3]], columns=columns)) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.Series([1, 2]), pd.DataFrame([1, 2])) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.DataFrame([1, 2]), pd.DataFrame([1, 2, 3])) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.DataFrame([1, 2, 3]), pd.DataFrame([1, 2, 3], index=index)) with pytest.raises(Exception) as e_info: checks.assert_meta_equal(pd.DataFrame([[1, 2, 3]]), pd.DataFrame([[1, 2, 3]], columns=columns)) def test_assert_array_equal(self): index = ['x', 'y', 'z'] columns = ['a', 'b', 'c'] checks.assert_array_equal(np.array([1, 2, 3]), np.array([1, 2, 3])) checks.assert_array_equal(pd.Series([1, 2, 3], index=index), pd.Series([1, 2, 3], index=index)) checks.assert_array_equal(pd.DataFrame([[1, 2, 3]], columns=columns), pd.DataFrame([[1, 2, 3]], columns=columns)) with pytest.raises(Exception) as e_info: checks.assert_array_equal(np.array([1, 2]), np.array([1, 2, 3])) def test_assert_level_not_exists(self): i = pd.Index(['x', 'y', 'z'], name='i') multi_i = pd.MultiIndex.from_arrays([['x', 'y', 'z'], ['x2', 'y2', 'z2']], names=['i', 'i2']) checks.assert_level_not_exists(i, 'i2') checks.assert_level_not_exists(multi_i, 'i3') with pytest.raises(Exception) as e_info: checks.assert_level_not_exists(i, 'i') checks.assert_level_not_exists(multi_i, 'i') def test_assert_equal(self): checks.assert_equal(0, 0) checks.assert_equal(False, False) with pytest.raises(Exception) as e_info: checks.assert_equal(0, 1) def test_assert_dict_valid(self): checks.assert_dict_valid(dict(a=2, b=3), [['a', 'b', 'c']]) with pytest.raises(Exception) as e_info: checks.assert_dict_valid(dict(a=2, b=3, d=4), [['a', 'b', 'c']]) checks.assert_dict_valid(dict(a=2, b=3, c=dict(d=4, e=5)), [['a', 'b', 'c'], ['d', 'e']]) with pytest.raises(Exception) as e_info: checks.assert_dict_valid(dict(a=2, b=3, c=dict(d=4, f=5)), [['a', 'b', 'c'], ['d', 'e']]) # ############# math.py ############# # class TestMath: def test_is_close(self): a = 0.3 b = 0.1 + 0.2 # test scalar assert math.is_close_nb(a, a) assert math.is_close_nb(a, b) assert math.is_close_nb(-a, -b) assert not math.is_close_nb(-a, b) assert not math.is_close_nb(a, -b) assert math.is_close_nb(1e10 + a, 1e10 + b) # test np.nan assert not math.is_close_nb(np.nan, b) assert not math.is_close_nb(a, np.nan) # test np.inf assert not math.is_close_nb(np.inf, b) assert not math.is_close_nb(a, np.inf) assert not math.is_close_nb(-np.inf, b) assert not math.is_close_nb(a, -np.inf) assert not math.is_close_nb(-np.inf, -np.inf) assert not math.is_close_nb(np.inf, np.inf) assert not math.is_close_nb(-np.inf, np.inf) def test_is_close_or_less(self): a = 0.3 b = 0.1 + 0.2 # test scalar assert math.is_close_or_less_nb(a, a) assert math.is_close_or_less_nb(a, b) assert math.is_close_or_less_nb(-a, -b) assert math.is_close_or_less_nb(-a, b) assert not math.is_close_or_less_nb(a, -b) assert math.is_close_or_less_nb(1e10 + a, 1e10 + b) # test np.nan assert not math.is_close_or_less_nb(np.nan, b) assert not math.is_close_or_less_nb(a, np.nan) # test np.inf assert not math.is_close_or_less_nb(np.inf, b) assert math.is_close_or_less_nb(a, np.inf) assert math.is_close_or_less_nb(-np.inf, b) assert not math.is_close_or_less_nb(a, -np.inf) assert not math.is_close_or_less_nb(-np.inf, -np.inf) assert not math.is_close_or_less_nb(np.inf, np.inf) assert math.is_close_or_less_nb(-np.inf, np.inf) def test_is_less(self): a = 0.3 b = 0.1 + 0.2 # test scalar assert not math.is_less_nb(a, a) assert not math.is_less_nb(a, b) assert not math.is_less_nb(-a, -b) assert math.is_less_nb(-a, b) assert not math.is_less_nb(a, -b) assert not math.is_less_nb(1e10 + a, 1e10 + b) # test np.nan assert not math.is_less_nb(np.nan, b) assert not math.is_less_nb(a, np.nan) # test np.inf assert not math.is_less_nb(np.inf, b) assert math.is_less_nb(a, np.inf) assert math.is_less_nb(-np.inf, b) assert not math.is_less_nb(a, -np.inf) assert not math.is_less_nb(-np.inf, -np.inf) assert not math.is_less_nb(np.inf, np.inf) assert math.is_less_nb(-np.inf, np.inf) def test_is_addition_zero(self): a = 0.3 b = 0.1 + 0.2 assert not math.is_addition_zero_nb(a, b) assert math.is_addition_zero_nb(-a, b) assert math.is_addition_zero_nb(a, -b) assert not math.is_addition_zero_nb(-a, -b) def test_add_nb(self): a = 0.3 b = 0.1 + 0.2 assert math.add_nb(a, b) == a + b assert math.add_nb(-a, b) == 0 assert math.add_nb(a, -b) == 0 assert math.add_nb(-a, -b) == -(a + b) # ############# array.py ############# # class TestArray: def test_is_sorted(self): assert array.is_sorted(np.array([0, 1, 2, 3, 4])) assert array.is_sorted(np.array([0, 1])) assert array.is_sorted(np.array([0])) assert not array.is_sorted(np.array([1, 0])) assert not array.is_sorted(np.array([0, 1, 2, 4, 3])) # nb assert array.is_sorted_nb(np.array([0, 1, 2, 3, 4])) assert array.is_sorted_nb(np.array([0, 1])) assert array.is_sorted_nb(np.array([0])) assert not array.is_sorted_nb(np.array([1, 0])) assert not array.is_sorted_nb(np.array([0, 1, 2, 4, 3])) def test_insert_argsort_nb(self): a = np.random.uniform(size=1000) A = a.copy() I = np.arange(len(A)) array.insert_argsort_nb(A, I) np.testing.assert_array_equal(np.sort(a), A) np.testing.assert_array_equal(a[I], A) def test_get_ranges_arr(self): np.testing.assert_array_equal( array.get_ranges_arr(0, 3), np.array([0, 1, 2]) ) np.testing.assert_array_equal( array.get_ranges_arr(0, [1, 2, 3]), np.array([0, 0, 1, 0, 1, 2]) ) np.testing.assert_array_equal( array.get_ranges_arr([0, 3], [3, 6]), np.array([0, 1, 2, 3, 4, 5]) ) def test_uniform_summing_to_one_nb(self): @njit def set_seed(): np.random.seed(seed) set_seed() np.testing.assert_array_almost_equal( array.uniform_summing_to_one_nb(10), np.array([ 5.808361e-02, 9.791091e-02, 2.412011e-05, 2.185215e-01, 2.241184e-01, 2.456528e-03, 1.308789e-01, 1.341822e-01, 8.453816e-02, 4.928569e-02 ]) ) assert np.sum(array.uniform_summing_to_one_nb(10)) == 1 def test_renormalize(self): assert array.renormalize(0, [0, 10], [0, 1]) == 0 assert array.renormalize(10, [0, 10], [0, 1]) == 1 np.testing.assert_array_equal( array.renormalize(
np.array([0, 2, 4, 6, 8, 10])
numpy.array
import BeeVeeH.bvh as BVHLIB import math import copy import numpy as np from collections import Iterable class BVHChannel(object): ChannelTransformMatrixMap = { 'Xposition': lambda x: np.array([[1, 0, 0, x], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]), 'Yposition': lambda x: np.array([[1, 0, 0, 0], [0, 1, 0, x], [0, 0, 1, 0], [0, 0, 0, 1]]), 'Zposition': lambda x: np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, x], [0, 0, 0, 1]]), 'Xrotation': lambda x: np.array([[1, 0, 0, 0], [0, math.cos(math.radians(x)), -math.sin(math.radians(x)), 0], [0, math.sin(math.radians(x)), math.cos(math.radians(x)), 0], [0, 0, 0, 1]]), 'Yrotation': lambda x: np.array([[math.cos(math.radians(x)), 0, math.sin(math.radians(x)), 0], [0, 1, 0, 0], [-math.sin(math.radians(x)), 0, math.cos(math.radians(x)), 0], [0, 0, 0, 1]]), 'Zrotation': lambda x: np.array([[math.cos(math.radians(x)), -math.sin(math.radians(x)), 0, 0], [math.sin(math.radians(x)), math.cos(math.radians(x)), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) } def __init__(self, name): super().__init__() self.name = name self.value = 0.0 def set_value(self, value): self.value = value def matrix(self): return BVHChannel.ChannelTransformMatrixMap[self.name](self.value) def str(self): return 'Channel({name}) = {value}'.format(name=self.name, value=self.value) class BVHNode(object): def __init__(self, key, name, offsets, channel_names, children, weight=1): super().__init__() self.key = key self.name = name self.children = children # [] self.channels = [BVHChannel(cn) for cn in channel_names] # [] self.offsets = offsets # x, y, z # weight for calculate frame-frame distance self.weight = weight self.coordinates = [] self.localTrans = [] def search_node(self, name): if self.name == name: return self for child in self.children: result = child.search_node(name) if result: return result return None def filter(self, key): for child in self.children: if child.key == key: yield child def __load_frame(self, frame_data_array): ''' this function modify frame_data_array, so make sure you only call load_frame instead of this ''' for channel in self.channels: channel.set_value(frame_data_array.pop(0)) for child in self.children: child.__load_frame(frame_data_array) def load_frame(self, frame_data_array): frame_data_array = copy.copy(frame_data_array) self.__load_frame(frame_data_array) def apply_transformation(self, parent_tran_matrix=np.identity(4)): # calculate local trans self.localTrans = np.identity(4) for channel in self.channels: self.localTrans = np.dot(self.localTrans, channel.matrix()) # calculate total trans tran_matrix = np.dot(parent_tran_matrix, self.localTrans) # calculate coordinates cor = np.array([self.offsets]).T self.coordinates = np.dot(tran_matrix, np.append(cor, [[1]], axis=0))[:3] # iterate the children for child in self.children: child.apply_transformation(tran_matrix) def str(self, show_coordinates=False): s = 'Node({name}), offset({offset})\n'\ .format(name=self.name, offset=', '.join([str(o) for o in self.offsets])) if show_coordinates: try: s = s + '\tWorld coordinates: (%.2f, %.2f, %.2f)\n' % (self.coordinates[0], self.coordinates[1], self.coordinates[2]) except Exception as e: print('World coordinates is not available, call apply_transformation() first') s = s + '\tChannels:\n' for channel in self.channels: s = s + '\t\t' + channel.str() + '\n' for child in self.children: lines = child.str(show_coordinates=show_coordinates).split('\n') for line in lines: s = s + '\t' + line + '\n' return s def distance(node_a, node_b): assert(node_a.name == node_b.name and node_a.weight == node_b.weight) distance =
np.linalg.norm(node_a.coordinates - node_b.coordinates)
numpy.linalg.norm
import numpy as np from knapsack import knapsack_dp import math from scipy import stats def generate_summary(ypred, cps, n_frames, nfps, positions, proportion=0.15, method='knapsack'): """Generate keyshot-based video summary i.e. a binary vector. Args: --------------------------------------------- - ypred: predicted importance scores. - cps: change points, 2D matrix, each row contains a segment. - n_frames: original number of frames. - nfps: number of frames per segment. - positions: positions of subsampled frames in the original video. - proportion: length of video summary (compared to original video length). - method: defines how shots are selected, ['knapsack', 'rank']. """ n_segs = cps.shape[0] frame_scores = np.zeros((n_frames), dtype=np.float32) if positions.dtype != int: positions = positions.astype(np.int32) if positions[-1] != n_frames: positions = np.concatenate([positions, [n_frames]]) for i in range(len(positions) - 1): pos_left, pos_right = positions[i], positions[i+1] if i == len(ypred): frame_scores[pos_left:pos_right] = 0 else: frame_scores[pos_left:pos_right] = ypred[i] seg_score = [] for seg_idx in range(n_segs): start, end = int(cps[seg_idx,0]), int(cps[seg_idx,1]+1) scores = frame_scores[start:end] seg_score.append(float(scores.mean())) limits = int(math.floor(n_frames * proportion)) if method == 'knapsack': picks = knapsack_dp(seg_score, nfps, n_segs, limits) elif method == 'rank': order = np.argsort(seg_score)[::-1].tolist() picks = [] total_len = 0 for i in order: if total_len + nfps[i] < limits: picks.append(i) total_len += nfps[i] else: raise KeyError("Unknown method {}".format(method)) summary = np.zeros((1), dtype=np.float32) # this element should be deleted for seg_idx in range(n_segs): nf = nfps[seg_idx] if seg_idx in picks: tmp = np.ones((nf), dtype=np.float32) else: tmp = np.zeros((nf), dtype=np.float32) summary = np.concatenate((summary, tmp)) summary = np.delete(summary, 0) # delete the first element return summary def kendaltau(machine_summary, user_summary): machine_summary = machine_summary.astype(np.float32) user_summary = user_summary.astype(np.float32) n_users = user_summary.shape[0] human_tau = [] # print("shape machinesumm:{} \t shape usersum:{}".format(machine_summary.shape, user_summary.shape)) for idx0 in range(n_users - 1): u0_sort_order = np.argsort(user_summary[idx0]) u0_ranking = np.argsort(user_summary[idx0, u0_sort_order]) for idx1 in range(idx0+1, n_users): u1_ranking = np.argsort(user_summary[idx1, u0_sort_order]) human_tau.append(stats.kendalltau(u0_ranking, u1_ranking)) human_avg_score =
np.mean(human_tau)
numpy.mean
import unittest import numpy as np import numpy.testing as npt import wisdem.drivetrainse.layout as lay import wisdem.drivetrainse.drive_structure as ds from wisdem.commonse import gravity npts = 12 class TestDirectStructure(unittest.TestCase): def setUp(self): self.inputs = {} self.outputs = {} self.discrete_inputs = {} self.discrete_outputs = {} self.opt = {} self.discrete_inputs["upwind"] = True self.inputs["L_12"] = 2.0 self.inputs["L_h1"] = 1.0 self.inputs["L_generator"] = 3.25 # self.inputs['L_2n'] = 1.5 # self.inputs['L_grs'] = 1.1 # self.inputs['L_gsn'] = 1.1 self.inputs["L_hss"] = 0.75 self.inputs["L_gearbox"] = 1.2 self.inputs["overhang"] = 6.25 self.inputs["drive_height"] = 4.875 self.inputs["tilt"] = 4.0 self.inputs["access_diameter"] = 0.9 myones = np.ones(5) self.inputs["lss_diameter"] = 3.3 * myones self.inputs["lss_wall_thickness"] = 0.45 * myones self.inputs["hss_diameter"] = 1.6 * np.ones(3) self.inputs["hss_wall_thickness"] = 0.25 * np.ones(3) self.inputs["nose_diameter"] = 2.2 * myones self.inputs["nose_wall_thickness"] = 0.1 * myones self.inputs["bedplate_wall_thickness"] = 0.06 * np.ones(npts) self.inputs["bedplate_flange_width"] = 1.5 self.inputs["bedplate_flange_thickness"] = 0.05 # self.inputs['bedplate_web_height'] = 1.0 self.inputs["bedplate_web_thickness"] = 0.05 self.inputs["D_top"] = 6.5 self.inputs["hub_diameter"] = 4.0 self.inputs["other_mass"] = 200e3 self.inputs["mb1_mass"] = 10e3 self.inputs["mb1_I"] = 10e3 * 0.5 * 2 ** 2 * np.ones(3) self.inputs["mb2_mass"] = 10e3 self.inputs["mb2_I"] = 10e3 * 0.5 * 1.5 ** 2 * np.ones(3) self.inputs["mb1_max_defl_ang"] = 0.008 self.inputs["mb2_max_defl_ang"] = 0.008 self.inputs["m_stator"] = 100e3 self.inputs["cm_stator"] = -0.3 self.inputs["I_stator"] = np.array([1e6, 5e5, 5e5, 0.0, 0.0, 0.0]) self.inputs["generator_rotor_mass"] = 100e3 self.inputs["cm_rotor"] = -0.3 self.inputs["generator_rotor_I"] = np.array([1e6, 5e5, 5e5, 0.0, 0.0, 0.0]) self.inputs["generator_stator_mass"] = 100e3 self.inputs["cm_rotor"] = -0.3 self.inputs["generator_stator_I"] = np.array([1e6, 5e5, 5e5, 0.0, 0.0, 0.0]) self.inputs["generator_mass"] = 200e3 self.inputs["generator_I"] = np.array([2e6, 1e6, 1e6, 0.0, 0.0, 0.0]) self.inputs["gearbox_mass"] = 100e3 self.inputs["gearbox_I"] = np.array([1e6, 5e5, 5e5]) self.inputs["brake_mass"] = 10e3 self.inputs["brake_I"] = np.array([1e4, 5e3, 5e3]) self.inputs["carrier_mass"] = 10e3 self.inputs["carrier_I"] = np.array([1e4, 5e3, 5e3]) self.inputs["gear_ratio"] = 1.0 self.inputs["F_mb1"] = np.array([2409.750e3, -1716.429e3, 74.3529e3]).reshape((3, 1)) self.inputs["F_mb2"] = np.array([2409.750e3, -1716.429e3, 74.3529e3]).reshape((3, 1)) self.inputs["M_mb1"] = np.array([-1.83291e7, 6171.7324e3, 5785.82946e3]).reshape((3, 1)) self.inputs["M_mb2"] = np.array([-1.83291e7, 6171.7324e3, 5785.82946e3]).reshape((3, 1)) self.inputs["hub_system_mass"] = 100e3 self.inputs["hub_system_cm"] = 2.0 self.inputs["hub_system_I"] = np.array([2409.750e3, -1716.429e3, 74.3529e3, 0.0, 0.0, 0.0]) self.inputs["F_hub"] = np.array([2409.750e3, 0.0, 74.3529e2]).reshape((3, 1)) self.inputs["M_hub"] = np.array([-1.83291e4, 6171.7324e2, 5785.82946e2]).reshape((3, 1)) self.inputs["lss_E"] = self.inputs["hss_E"] = self.inputs["bedplate_E"] = 210e9 self.inputs["lss_G"] = self.inputs["hss_G"] = self.inputs["bedplate_G"] = 80.8e9 self.inputs["lss_rho"] = self.inputs["hss_rho"] = self.inputs["bedplate_rho"] = 7850.0 self.inputs["lss_Xy"] = self.inputs["hss_Xy"] = self.inputs["bedplate_Xy"] = 250e6 self.opt["gamma_f"] = 1.35 self.opt["gamma_m"] = 1.3 self.opt["gamma_n"] = 1.0 def compute_layout(self, direct=True): myobj = lay.DirectLayout() if direct else lay.GearedLayout() myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) for k in self.outputs.keys(): self.inputs[k] = self.outputs[k] def testBaseF_BaseM(self): self.inputs["tilt"] = 0.0 self.inputs["F_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["F_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb2"] = np.zeros(3).reshape((3, 1)) self.compute_layout() myobj = ds.Nose_Stator_Bedplate_Frame(modeling_options=self.opt, n_dlcs=1) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][-1], 0.0) F0 = self.outputs["base_F"] M0 = self.outputs["base_M"] self.inputs["other_mass"] += 500e3 myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1]) npt.assert_almost_equal(self.outputs["base_M"][2], 0.0) self.inputs["M_mb1"] = 10e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"], M0 + self.inputs["M_mb1"], decimal=0) self.inputs["M_mb2"] = 20e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"], M0 + self.inputs["M_mb1"] + self.inputs["M_mb2"], decimal=-1) self.inputs["F_mb1"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) self.inputs["F_mb2"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 2 * self.inputs["F_mb2"][:2]) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity + 2 * 50e2) def testBaseF_BaseM_withTilt(self): self.inputs["tilt"] = 5.0 self.inputs["F_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["F_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb2"] = np.zeros(3).reshape((3, 1)) self.compute_layout() myobj = ds.Nose_Stator_Bedplate_Frame(modeling_options=self.opt, n_dlcs=1) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][-1], 0.0) F0 = self.outputs["base_F"] M0 = self.outputs["base_M"] self.inputs["other_mass"] += 500e3 myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1]) npt.assert_almost_equal(self.outputs["base_M"][2], 0.0) self.inputs["M_mb1"] = 10e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1] + self.inputs["M_mb1"][1], decimal=0) self.inputs["M_mb2"] = 20e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal( self.outputs["base_M"][1], M0[1] + self.inputs["M_mb1"][1] + self.inputs["M_mb2"][1], decimal=-1 ) self.inputs["F_mb1"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) self.inputs["F_mb2"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][1], 2 * self.inputs["F_mb2"][1]) def testBaseF_BaseM_Downwind(self): self.inputs["tilt"] = 0.0 self.discrete_inputs["upwind"] = False self.inputs["F_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["F_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb2"] = np.zeros(3).reshape((3, 1)) self.compute_layout() myobj = ds.Nose_Stator_Bedplate_Frame(modeling_options=self.opt, n_dlcs=1) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][-1], 0.0) F0 = self.outputs["base_F"] M0 = self.outputs["base_M"] self.inputs["other_mass"] += 500e3 myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1]) npt.assert_almost_equal(self.outputs["base_M"][2], 0.0) self.inputs["M_mb1"] = 10e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"], M0 + self.inputs["M_mb1"], decimal=0) self.inputs["M_mb2"] = 20e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"], M0 + self.inputs["M_mb1"] + self.inputs["M_mb2"], decimal=-1) self.inputs["F_mb1"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) self.inputs["F_mb2"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 2 * self.inputs["F_mb2"][:2]) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity + 2 * 50e2) def testBaseF_BaseM_withTilt_Downwind(self): self.inputs["tilt"] = 5.0 self.discrete_inputs["upwind"] = False self.inputs["F_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["F_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb2"] = np.zeros(3).reshape((3, 1)) self.compute_layout() myobj = ds.Nose_Stator_Bedplate_Frame(modeling_options=self.opt, n_dlcs=1) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][-1], 0.0) F0 = self.outputs["base_F"] M0 = self.outputs["base_M"] self.inputs["other_mass"] += 500e3 myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][0], 0.0) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1]) npt.assert_almost_equal(self.outputs["base_M"][2], 0.0) self.inputs["M_mb1"] = 10e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1] + self.inputs["M_mb1"][1], decimal=0) self.inputs["M_mb2"] = 20e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2], F0[2] - 500e3 * gravity) npt.assert_almost_equal( self.outputs["base_M"][1], M0[1] + self.inputs["M_mb1"][1] + self.inputs["M_mb2"][1], decimal=-1 ) self.inputs["F_mb1"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) self.inputs["F_mb2"] = np.array([30e2, 40e2, 50e2]).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][1], 2 * self.inputs["F_mb2"][1]) def testBaseF_BaseM_Geared(self): self.inputs["tilt"] = 0.0 self.inputs["F_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["F_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["F_torq"] = np.zeros(3).reshape((3, 1)) self.inputs["F_generator"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["M_torq"] = np.zeros(3).reshape((3, 1)) self.inputs["M_generator"] = np.zeros(3).reshape((3, 1)) self.compute_layout(False) myobj = ds.Bedplate_IBeam_Frame(modeling_options=self.opt, n_dlcs=1) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2, 0], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_M"][[0, 2], 0], 0.0, decimal=2) F0 = self.outputs["base_F"][:, 0] M0 = self.outputs["base_M"][:, 0] self.inputs["other_mass"] += 500e3 myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2, 0], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2, 0], F0[2] - 500e3 * gravity) npt.assert_almost_equal(self.outputs["base_M"][[0, 2], 0], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_M"][1], M0[1]) self.inputs["M_mb1"] = 10e3 * np.arange(1, 4).reshape((3, 1)) self.inputs["M_mb2"] = 20e3 * np.arange(1, 4).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2, 0], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_F"][2, 0], F0[2] - 500e3 * gravity, decimal=0) # npt.assert_almost_equal(self.outputs['base_M'], M0+self.inputs['M_mb1']+self.inputs['M_mb2'], decimal=-1) self.inputs["F_mb1"] = self.inputs["F_mb2"] = self.inputs["F_generator"] = self.inputs["F_torq"] = np.array( [30e2, 40e2, 50e2] ).reshape((3, 1)) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2, 0], 4 * self.inputs["F_mb1"][:2, 0], decimal=1) npt.assert_almost_equal(self.outputs["base_F"][2, 0], F0[2] - 500e3 * gravity + 4 * 50e2, decimal=0) def testBaseF_BaseM_withTilt_Geared(self): self.inputs["tilt"] = 5.0 self.inputs["F_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["F_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["F_torq"] = np.zeros(3).reshape((3, 1)) self.inputs["F_generator"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb1"] = np.zeros(3).reshape((3, 1)) self.inputs["M_mb2"] = np.zeros(3).reshape((3, 1)) self.inputs["M_torq"] = np.zeros(3).reshape((3, 1)) self.inputs["M_generator"] = np.zeros(3).reshape((3, 1)) self.compute_layout(False) myobj = ds.Bedplate_IBeam_Frame(modeling_options=self.opt, n_dlcs=1) myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2, 0], 0.0, decimal=2) npt.assert_almost_equal(self.outputs["base_M"][[0, 2], 0], 0.0, decimal=2) F0 = self.outputs["base_F"][:, 0] M0 = self.outputs["base_M"][:, 0] self.inputs["other_mass"] += 500e3 myobj.compute(self.inputs, self.outputs, self.discrete_inputs, self.discrete_outputs) npt.assert_almost_equal(self.outputs["base_F"][:2, 0], 0.0, decimal=1)
npt.assert_almost_equal(self.outputs["base_F"][2, 0], F0[2] - 500e3 * gravity)
numpy.testing.assert_almost_equal
# Copyright 2021 The TensorFlow Quantum Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests that specifically target tfq_inner_product_grad.""" import copy import numpy as np from absl.testing import parameterized import tensorflow as tf import cirq from tensorflow_quantum.core.ops.math_ops import inner_product_op from tensorflow_quantum.python import util class InnerProductAdjGradTest(tf.test.TestCase, parameterized.TestCase): """Tests tfq_inner_product_grad.""" def test_inner_product_grad_inputs(self): """Makes sure that inner_product_adj_grad fails on bad inputs.""" n_qubits = 5 batch_size = 5 n_other_programs = 3 symbol_names = ['alpha'] qubits = cirq.GridQubit.rect(1, n_qubits) prev_grad = np.ones((batch_size, n_other_programs)) circuit_batch, resolver_batch = \ util.random_symbol_circuit_resolver_batch( qubits, symbol_names, batch_size) symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch]) other_batch = [ util.random_circuit_resolver_batch(qubits, n_other_programs)[0] for i in range(batch_size) ] with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'programs must be rank 1'): # Circuit tensor has too many dimensions. inner_product_op._inner_product_grad( util.convert_to_tensor([circuit_batch]), symbol_names, symbol_values_array, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'symbol_names must be rank 1.'): # symbol_names tensor has too many dimensions. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), np.array([symbol_names]), symbol_values_array, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'symbol_values must be rank 2.'): # symbol_values_array tensor has too many dimensions. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, np.array([symbol_values_array]), util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'symbol_values must be rank 2.'): # symbol_values_array tensor has too few dimensions. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array[0], util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'other_programs must be rank 2.'): # other_programs tensor has too few dimensions. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor(circuit_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'other_programs must be rank 2.'): # pauli_sums tensor has too many dimensions. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor([[x] for x in other_batch]), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'Unparseable proto'): # circuit tensor has the right type but invalid values. inner_product_op._inner_product_grad( ['junk'] * batch_size, symbol_names, symbol_values_array, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'Could not find symbol in parameter map'): # symbol_names tensor has the right type but invalid values. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), ['junk'], symbol_values_array, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'not found in reference circuit'): # other_programs tensor has the right type but operates on # qubits that the reference ciruit doesn't have. new_qubits = [cirq.GridQubit(5, 5), cirq.GridQubit(9, 9)] new_circuits, _ = util.random_circuit_resolver_batch( new_qubits, batch_size) inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor([[x] for x in new_circuits]), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, 'not found in paired circuit'): # other_programs tensor has the right type but operates on # qubits that the reference ciruit doesn't have. new_qubits = cirq.GridQubit.rect(1, n_qubits - 1) new_circuits, _ = util.random_circuit_resolver_batch( new_qubits, batch_size) inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor([[x] for x in new_circuits]), prev_grad) with self.assertRaisesRegex(TypeError, 'Cannot convert'): # circuits tensor has the wrong type. inner_product_op._inner_product_grad( [1.0] * batch_size, symbol_names, symbol_values_array, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(TypeError, 'Cannot convert'): # symbol_names tensor has the wrong type. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), [0.1234], symbol_values_array, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(tf.errors.UnimplementedError, ''): # symbol_values tensor has the wrong type. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, [['junk']] * batch_size, util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex(TypeError, 'Cannot convert'): # other_programs tensor has the wrong type. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, [[1.0]] * batch_size, prev_grad) with self.assertRaisesRegex(TypeError, 'missing'): # we are missing an argument. # pylint: disable=no-value-for-parameter inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, prev_grad) # pylint: enable=no-value-for-parameter with self.assertRaisesRegex(TypeError, 'positional arguments'): # pylint: disable=too-many-function-args inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor(other_batch), prev_grad, []) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, expected_regex='do not match'): # batch programs has wrong batch size. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor(other_batch[:int(batch_size * 0.5)]), prev_grad) with self.assertRaisesRegex(tf.errors.InvalidArgumentError, expected_regex='do not match'): # batch programs has wrong batch size. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array[::int(batch_size * 0.5)], util.convert_to_tensor(other_batch), prev_grad) with self.assertRaisesRegex( tf.errors.InvalidArgumentError, expected_regex='Found symbols in other_programs'): # other_programs has symbols. inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array, util.convert_to_tensor([[x] for x in circuit_batch]), prev_grad) res = inner_product_op._inner_product_grad( util.convert_to_tensor(circuit_batch), symbol_names, symbol_values_array.astype(np.float64), util.convert_to_tensor(other_batch), prev_grad) self.assertDTypeEqual(res, np.complex64) @parameterized.parameters([ { 'n_qubits': 5, 'batch_size': 1, 'inner_dim_size': 5 }, { 'n_qubits': 5, 'batch_size': 10, 'inner_dim_size': 1 }, { 'n_qubits': 10, 'batch_size': 10, 'inner_dim_size': 2 }, { 'n_qubits': 5, 'batch_size': 10, 'inner_dim_size': 5 }, ]) def test_correctness_with_symbols(self, n_qubits, batch_size, inner_dim_size): """Tests that inner_product works with symbols.""" symbol_names = ['alpha', 'beta', 'gamma'] n_params = len(symbol_names) qubits = cirq.GridQubit.rect(1, n_qubits) circuit_batch, resolver_batch = \ util.random_symbol_circuit_resolver_batch( qubits, symbol_names, batch_size) other_batch = [ util.random_circuit_resolver_batch(qubits, inner_dim_size)[0] for i in range(batch_size) ] symbol_values_array = np.array( [[resolver[symbol] for symbol in symbol_names] for resolver in resolver_batch]) programs = util.convert_to_tensor(circuit_batch) other_programs = util.convert_to_tensor(other_batch) symbol_names_tensor = tf.convert_to_tensor(symbol_names, dtype=tf.dtypes.string) symbol_values = tf.convert_to_tensor(symbol_values_array) prev_grad = tf.cast(tf.random.normal((batch_size, inner_dim_size)), tf.complex64) out = inner_product_op._inner_product_grad(programs, symbol_names_tensor, symbol_values, other_programs, prev_grad) out_arr =
np.zeros((batch_size, n_params), dtype=np.complex64)
numpy.zeros
import numpy as np class GoGame: def __init__(self, game_size=19, handicap=None, rule='weiqi'): # assert game_size in [9, 13, 19] assert rule in ['weiqi', 'wuzi'] self.end_game = False self.game_size = game_size # game_board represent the current state of the game, 1 represent black stone, 2 represent white stone self.game_board = np.zeros(shape=(game_size, game_size), dtype=np.int8) # boardered is game_board with boarders, boarders are '3's. It has a new coordinate system which (x, y) = (x + 1, y + 1) self.boardered = None # map storing information of whether a stone have qi or not self.qi_map = np.zeros(shape=(game_size, game_size), dtype=np.int8) # group_map show which group each stone belows to self.group_map = np.zeros(shape=(game_size, game_size), dtype=np.int8) self.group_indexes = [] # da_jie is a boolean whether there is a jie self.da_jie = False self.game_history = [] self.player = 1 # black goes self.rule = rule if handicap: self.handicap = [] self.player = 2 # white goes first when handicap def add_boarder(self): # this method give boader to the game_board matrix, which will generate the boadered map of all stones vertical = np.ones(shape=(1, self.game_size), dtype=np.int8).T self.boardered = np.column_stack((3 * vertical, self.game_board, 3 * vertical)) horizontal =
np.ones(shape=(1, self.game_size + 2))
numpy.ones
""" miscelallaneous functions and classes to extract connectivity metrics Author: <NAME>, PhD [<EMAIL>], https://twitter.com/davemomi """ import numpy as np import pandas as pd from math import pi import glob import seaborn as sns import matplotlib.pyplot as plt import bct as bct class Connectivity_metrics(object): def __init__(self, matrices_files, net_label_txt, labels_dic): self.matrices_files = matrices_files self.net_label_txt = net_label_txt self.labels_dic = labels_dic def nodes_overall_conn(self, make_symmetric=True, upper_threshold=None, lower_threshold=None): ''' computing the overall connectivity of each node regardless of network affiliation Parameters ---------- make_symmetric: Boolean| True indicate that the matrix is either upper or lower triangular and need to be symmetrize False indicate that the matrix is a full matrix already upper_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value under that threshold will be 0 (Default is None) lower_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value above that threshold will be 0 (Default is None) Returns ------- float data : numpy array | numpy array (dim number of subject X number of node) representing the connectivity of each node regardless of network affiliation ''' self.nodes_conn = [] for subj in range(len(self.matrices_files)): self.matrix = pd.read_csv(self.matrices_files[subj], sep= ' ', header=None) self.matrix = np.array(self.matrix) if make_symmetric==True: self.matrix = self.matrix + self.matrix.T - np.diag(self.matrix.diagonal()) else: self.matrix = self.matrix self.max=np.max(self.matrix.flatten()) if upper_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix < upper_threshold*self.max/100 ] = 0 if lower_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix > lower_threshold*self.max/100 ] = 0 np.fill_diagonal(self.matrix,0) for nodes in range(self.matrix.shape[0]): self._node_conn = np.sum(self.matrix[nodes]) self.nodes_conn.append(self._node_conn) self.nodes_conn = np.array(self.nodes_conn) self.nodes_conn = self.nodes_conn.reshape(len(self.matrices_files), self.matrix.shape[0]) return self.nodes_conn def node_inner_conn(self, sbj_number, nodes_number, make_symmetric=True, upper_threshold=None, lower_threshold=None): ''' computing the connectivity of each node with its own network Parameters ---------- sbj_number: int | number of subjects nodes_number: int| number of nodes make_symmetric: Boolean| True indicate that the matrix is either upper or lower triangular and need to be symmetrize False indicate that the matrix is a full matrix already upper_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value under that threshold will be 0 (Default is None) lower_threshold: int | an integer value ranging from 0 to 100 representing the percentage of values as respect to maximum. The value above that threshold will be 0 (Default is None) Returns ------- float data : numpy array | numpy array (dim number of subject X number of node) representing the connectivity of each node with its own network ''' with open(self.net_label_txt) as f: net=f.read().splitlines() self.all_conn = np.zeros([sbj_number, nodes_number]) for subj in range(len(self.matrices_files)): self.matrix = pd.read_csv(self.matrices_files[subj], sep= ' ', header=None) self.matrix = np.array(self.matrix) if make_symmetric==True: self.matrix = self.matrix + self.matrix.T - np.diag(self.matrix.diagonal()) else: self.matrix = self.matrix self.max=np.max(self.matrix.flatten()) if upper_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix < upper_threshold*self.max/100 ] = 0 if lower_threshold==None: self.matrix= self.matrix else: self.matrix[self.matrix > lower_threshold*self.max/100 ] = 0 np.fill_diagonal(self.matrix,0) for network in net: for nodes in self.labels_dic[network]: self.sub_matrix =self.matrix[nodes] self.streamlines_sum =
np.sum(self.sub_matrix[self.labels_dic[network]])
numpy.sum
import numpy as np import scipy import matplotlib.pyplot as plt import statsmodels.api as sm from matplotlib.collections import PatchCollection from matplotlib.patches import Rectangle import matplotlib.gridspec as gridspec from hydroDL import utils import string import os # manually add package # os.environ[ # 'PROJ_LIB'] = r'C:\pythonenvir\pkgs\proj4-5.2.0-ha925a31_1\Library\share' from mpl_toolkits import basemap def plotBoxFig(data, label1=None, label2=None, colorLst='rbkgcmy', title=None, figsize=(8, 6), sharey=True, legOnly=False): nc = len(data) fig, axes = plt.subplots(ncols=nc, sharey=sharey, figsize=figsize) for k in range(0, nc): ax = axes[k] if nc > 1 else axes temp = data[k] if type(temp) is list: for kk in range(len(temp)): tt = temp[kk] if tt is not None and tt != []: tt = tt[~np.isnan(tt)] temp[kk] = tt else: temp[kk] = [] else: temp = temp[~np.isnan(temp)] bp = ax.boxplot(temp, patch_artist=True, notch=True, showfliers=False) for kk in range(0, len(bp['boxes'])): plt.setp(bp['boxes'][kk], facecolor=colorLst[kk]) if label1 is not None: ax.set_xlabel(label1[k]) else: ax.set_xlabel(str(k)) ax.set_xticks([]) # ax.ticklabel_format(axis='y', style='sci') if label2 is not None: ax.legend(bp['boxes'], label2, loc='best') if legOnly is True: ax.legend(bp['boxes'], label2, bbox_to_anchor=(1, 0.5)) if title is not None: fig.suptitle(title) return fig def plotTS(t, y, *, ax=None, tBar=None, figsize=(12, 4), cLst='rbkgcmy', markerLst=None, legLst=None, title=None, linewidth=2): newFig = False if ax is None: fig = plt.figure(figsize=figsize) ax = fig.subplots() newFig = True if type(y) is np.ndarray: y = [y] for k in range(len(y)): tt = t[k] if type(t) is list else t yy = y[k] legStr = None if legLst is not None: legStr = legLst[k] if markerLst is None: if True in np.isnan(yy): ax.plot(tt, yy, '*', color=cLst[k], label=legStr) else: ax.plot( tt, yy, color=cLst[k], label=legStr, linewidth=linewidth) else: if markerLst[k] is '-': ax.plot( tt, yy, color=cLst[k], label=legStr, linewidth=linewidth) else: ax.plot( tt, yy, color=cLst[k], label=legStr, marker=markerLst[k]) # ax.set_xlim([np.min(tt), np.max(tt)]) if tBar is not None: ylim = ax.get_ylim() tBar = [tBar] if type(tBar) is not list else tBar for tt in tBar: ax.plot([tt, tt], ylim, '-k') if legLst is not None: ax.legend(loc='best') if title is not None: ax.set_title(title) if newFig is True: return fig, ax else: return ax def plotVS(x, y, *, ax=None, title=None, xlabel=None, ylabel=None, titleCorr=True, plot121=True, doRank=False, figsize=(8, 6)): if doRank is True: x = scipy.stats.rankdata(x) y = scipy.stats.rankdata(y) corr = scipy.stats.pearsonr(x, y)[0] pLr = np.polyfit(x, y, 1) xLr = np.array([np.min(x), np.max(x)]) yLr = np.poly1d(pLr)(xLr) if ax is None: fig = plt.figure(figsize=figsize) ax = fig.subplots() else: fig = None if title is not None: if titleCorr is True: title = title + ' ' + r'$\rho$={:.2f}'.format(corr) ax.set_title(title) else: if titleCorr is True: ax.set_title(r'$\rho$=' + '{:.2f}'.format(corr)) if xlabel is not None: ax.set_xlabel(xlabel) if ylabel is not None: ax.set_ylabel(ylabel) # corr = np.corrcoef(x, y)[0, 1] ax.plot(x, y, 'b.') ax.plot(xLr, yLr, 'r-') if plot121 is True: plot121Line(ax) return fig, ax def plot121Line(ax, spec='k-'): xlim = ax.get_xlim() ylim = ax.get_ylim() vmin = np.min([xlim[0], ylim[0]]) vmax = np.max([xlim[1], ylim[1]]) ax.plot([vmin, vmax], [vmin, vmax], spec) def plotMap(data, *, ax=None, lat=None, lon=None, title=None, cRange=None, shape=None, pts=None, figsize=(8, 4), plotColorBar=True): if cRange is not None: vmin = cRange[0] vmax = cRange[1] else: temp = flatData(data) vmin = np.percentile(temp, 5) vmax = np.percentile(temp, 95) if ax is None: fig, ax = plt.figure(figsize=figsize) if len(data.squeeze().shape) == 1: isGrid = False else: isGrid = True mm = basemap.Basemap( llcrnrlat=
np.min(lat)
numpy.min
import os import cv2 import xml.etree.ElementTree as ET import numpy as np def argsProcessor(): import argparse parser = argparse.ArgumentParser() parser.add_argument("-d", "--dataPath", help="DataPath") parser.add_argument("-o", "--outputFiles", help="outputFiles", default="bar") return parser.parse_args() if __name__ == '__main__': args = argsProcessor() dir = args.dataPath output_dir = args.outputFiles if (not os.path.isdir(output_dir)): os.mkdir(output_dir) import csv with open(args.outputFiles+"/gt.csv", 'a') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) for folder in os.listdir(dir): a = 0 print (str(folder)) if (os.path.isdir(dir + "/" + folder)): for file in os.listdir(dir + "/" + folder): images_dir = dir + "/" + folder + "/" + file if (os.path.isdir(images_dir)): list_gt = [] tree = ET.parse(images_dir + "/" + file + ".gt") root = tree.getroot() for a in root.iter("frame"): if a.attrib["rejected"] != "false": print ("Some frames are not valid") 0/0 list_gt.append(a) #print list_gt for image in os.listdir(images_dir): if image.endswith(".jpg"): try: # Now we have opened the file and GT. Write code to create multiple files and scale gt list_of_points = {} img = cv2.imread(images_dir + "/" + image) #print image[0:-4] for point in list_gt[int(float(image[0:-4])) - 1].iter("point"): myDict = point.attrib list_of_points[myDict["name"]] = ( int(float(myDict['x'])), int(float(myDict['y']))) doc_height = min(list_of_points["bl"][1] - list_of_points["tl"][1], list_of_points["br"][1] - list_of_points["tr"][1]) doc_width = min(list_of_points["br"][0] - list_of_points["bl"][0], list_of_points["tr"][0] - list_of_points["tl"][0]) ptr1 = (min(list_of_points["tl"][0], list_of_points["bl"][0], list_of_points["tr"][0], list_of_points["br"][0]), min(list_of_points["tr"][1], list_of_points["tl"][1], list_of_points["br"][1], list_of_points["bl"][1])) ptr2 = (max(list_of_points["tl"][0], list_of_points["bl"][0], list_of_points["tr"][0], list_of_points["br"][0]),max(list_of_points["tr"][1], list_of_points["tl"][1], list_of_points["br"][1], list_of_points["bl"][1])) start_x = np.random.randint(0,ptr1[0]-2) start_y = np.random.randint(0,ptr1[1]-2) end_x = np.random.randint(ptr2[0]+2, img.shape[1]) end_y = np.random.randint(ptr2[1]+2, img.shape[0]) myGt =
np.asarray((list_of_points["tl"], list_of_points["tr"], list_of_points["br"], list_of_points["bl"]))
numpy.asarray
import argparse import glob import os import pickle import sys import time from itertools import product import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import pandas as pd import seaborn as sns import statsmodels.nonparametric.api as smnp import swifter import utils import graphs N_PROC = 10 BASE_DIR = '/home/johnmcbride/projects/Scales/Data_compare/' RAW_DIR = '/home/johnmcbride/projects/Scales/Toy_model/Data/Raw/' PRO_DIR = '/home/johnmcbride/projects/Scales/Toy_model/Data/Processed/' REAL_DIR = os.path.join(BASE_DIR, 'Processed/Real', 'Samples') DIST_DIR = os.path.join(BASE_DIR, 'Processed/Real', 'Sample_dist') def calc_relative_entropy(pk, qk): RE = 0.0 for i in range(len(pk)): if pk[i] <= 0 or qk[i] <= 0: pass else: RE += pk[i] * np.log(pk[i] / qk[i]) return RE def calc_jensen_shannon_distance(pk, qk): mk = 0.5 * (pk + qk) return (0.5 * (calc_relative_entropy(pk, mk) + calc_relative_entropy(qk, mk))) ** 0.5 def smooth_dist_kde(df, cat='pair_ints', hist=False, nbins=1202): X = [float(x) for y in df.loc[:,cat] for x in y.split(';')] kde = smnp.KDEUnivariate(
np.array(X)
numpy.array
from online_inference import SecondBackend, build_network, inference import numpy as np import csv from PIL import Image import matplotlib.pyplot as plt import matplotlib.patches as patches BOX_COLOUR_SCHEME = { 'Car': '#00FF00', # Green 'Pedestrian': '#00FFFF', # Teal 'Cyclist': '#FFFF00' # Yellow } fig_size = (16, 9) gt_classes = ['Car', 'Pedestrian'] class ObjectLabel: """Object Label Class 1 type Describes the type of object: 'Car', 'Van', 'Truck', 'Pedestrian', 'Person_sitting', 'Cyclist', 'Tram', 'Misc' or 'DontCare' 1 truncated Float from 0 (non-truncated) to 1 (truncated), where truncated refers to the object leaving image boundaries 1 occluded Integer (0,1,2,3) indicating occlusion state: 0 = fully visible, 1 = partly occluded 2 = largely occluded, 3 = unknown 1 alpha Observation angle of object, ranging [-pi..pi] 4 bbox 2D bounding box of object in the image (0-based index): contains left, top, right, bottom pixel coordinates 3 dimensions 3D object dimensions: height, width, length (in meters) 3 location 3D object location x,y,z in camera coordinates (in meters) 1 rotation_y Rotation ry around Y-axis in camera coordinates [-pi..pi] 1 score Only for results: Float, indicating confidence in detection, needed for p/r curves, higher is better. """ def __init__(self): self.type = "" # Type of object self.truncation = 0. self.occlusion = 0. self.alpha = 0. self.x1 = 0. self.y1 = 0. self.x2 = 0. self.y2 = 0. self.h = 0. self.w = 0. self.l = 0. self.t = (0., 0., 0.) self.ry = 0. self.score = 0. def __eq__(self, other): """Compares the given object to the current ObjectLabel instance. :param other: object to compare to this instance against :return: True, if other and current instance is the same """ if not isinstance(other, ObjectLabel): return False if self.__dict__ != other.__dict__: return False else: return True def visualization(image, display=True): """Forms the plot figure and axis for the visualization Keyword arguments: :param image_dir -- directory of image files in the wavedata :param display -- display the image in non-blocking fashion :param fig_size -- (optional) size of the figure """ def set_plot_limits(axes, image): # Set the plot limits to the size of the image, y is inverted axes.set_xlim(0, image.shape[1]) axes.set_ylim(image.shape[0], 0) # Create the figure fig, (ax1, ax2) = plt.subplots(2, 1, figsize=fig_size, sharex=True) fig.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, hspace=0.0) # plot images ax1.imshow(image) ax2.imshow(image) set_plot_limits(ax1, image) set_plot_limits(ax2, image) if display: plt.show(block=False) return fig, ax1, ax2 def visualization_single_plot(image, display=True): """Forms the plot figure and axis for the visualization Keyword arguments: :param image_dir -- directory of image files in the wavedata :param img_idx -- index of the image file to present :param flipped -- flag to enable image flipping :param display -- display the image in non-blocking fashion :param fig_size -- (optional) size of the figure """ # Create the figure fig, ax = plt.subplots(1, figsize=fig_size, facecolor='black') fig.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=1.0, hspace=0.0, wspace=0.0) # Set axes settings ax.set_axis_off() ax.set_xlim(0, image.shape[1]) ax.set_ylim(image.shape[0], 0) # plot images ax.imshow(image) if display: plt.show(block=False) return fig, ax def project_to_image(point_cloud, p): """ Projects a 3D point cloud to 2D points for plotting :param point_cloud: 3D point cloud (3, N) :param p: Camera matrix (3, 4) :return: pts_2d: the image coordinates of the 3D points in the shape (2, N) """ pts_2d = np.dot(p, np.append(point_cloud, np.ones((1, point_cloud.shape[1])), axis=0)) pts_2d[0, :] = pts_2d[0, :] / pts_2d[2, :] pts_2d[1, :] = pts_2d[1, :] / pts_2d[2, :] pts_2d = np.delete(pts_2d, 2, 0) return pts_2d def compute_box_corners_3d(object_label): """Computes the 3D bounding box corner positions from an ObjectLabel :param object_label: ObjectLabel to compute corners from :return: a numpy array of 3D corners if the box is in front of the camera, an empty array otherwise """ # Compute rotational matrix rot = np.array([[+np.cos(object_label.ry), 0, +np.sin(object_label.ry)], [0, 1, 0], [-np.sin(object_label.ry), 0, +
np.cos(object_label.ry)
numpy.cos
# -*- coding: utf-8 -*- """ Created on Sat Nov 28 17:08:13 2015 @author: jordan """ import os import sys import glob from datetime import datetime, timedelta import warnings import numpy as np from astropy.table import Table, Column, hstack from astropy.stats import sigma_clipped_stats, gaussian_fwhm_to_sigma from astropy.wcs import WCS from astropy.wcs.utils import proj_plane_pixel_area from astropy import units as u from astropy.coordinates import SkyCoord from astropy.modeling import models, fitting from astroquery.vizier import Vizier import scipy.odr as odr from skimage.measure import moments from matplotlib import pyplot as plt from photutils import daofind, aperture_photometry, CircularAperture, CircularAnnulus import emcee import corner import pdb # Add the AstroImage class from astroimage.astroimage import AstroImage # This is the location where all pyPol data will be saved pyPol_data = 'C:\\Users\\Jordan\\FITS_data\\PRISM_data\\pyPol_data\\201501\\' # Set the saturation limit for this image (a property of the detector) satLimit = 12e3 satLimit = 16e3 # satLimit = 60e3 # Setup new directory for polarimetry data polarimetryDir = os.path.join(pyPol_data, 'Polarimetry') if (not os.path.isdir(polarimetryDir)): os.mkdir(polarimetryDir, 0o755) polAngDir = os.path.join(polarimetryDir, 'polAngImgs') if (not os.path.isdir(polAngDir)): os.mkdir(polAngDir, 0o755) stokesDir = os.path.join(polarimetryDir, 'stokesImgs') if (not os.path.isdir(stokesDir)): os.mkdir(stokesDir, 0o755) ################################################################################ # Import the utility functions to be used here... from utils_08b import * # Build a dictionary contaning references to these transformation functions USNOBtransforms = dict(zip(['V', 'R' , 'V-R'], [USNOB_V, USNOB_R, USNOB_VR])) # Read in the indexFile data and select the filenames print('\nReading file index from disk') indexFile = os.path.join(pyPol_data, 'reducedFileIndex.csv') fileIndex = Table.read(indexFile, format='ascii.csv') fileList = fileIndex['Filename'] # Determine which parts of the fileIndex pertain to science images useFiles = np.logical_and((fileIndex['Use'] == 1), (fileIndex['Dither'] == 'ABBA')) # Cull the file index to only include files selected for use fileIndex = fileIndex[np.where(useFiles)] # Group the fileIndex by... # 1. Target # 2. Waveband # 3. Dither (pattern) fileIndexByTarget = fileIndex.group_by(['Target', 'Dither']) # Use the following data for final calibration # Bands and zero point flux [in Jy = 10^(-26) W /(m^2 Hz)] # Following table from Bessl, Castelli & Plez (1998) # Passband Effective wavelength (microns) Zero point (Jy) # U 0.366 1790 # B 0.438 4063 # V 0.545 3636 # R 0.641 3064 # I 0.798 2416 # J 1.22 1589 # H 1.63 1021 # K 2.19 640 zeroFlux = dict(zip(['U', 'B', 'V', 'R' , 'I' ], [1790.0, 4063.0, 3636.0, 3064.0, 2416.0])) wavelength = dict(zip(['U', 'B', 'V', 'R' , 'I' ], [0.366, 0.438, 0.545, 0.798, 0.798])) # Following table from Hu (2011) # Data from Gaomeigu Observational Station # Passband | K'(lambda) [mag/airmass] | K'' [mag/(color*airmass)] # U 0.560 +/- 0.023 0.061 +/- 0.004 # B 0.336 +/- 0.021 0.012 +/- 0.003 # V 0.198 +/- 0.024 -0.015 +/- 0.004 # R 0.142 +/- 0.021 -0.067 +/- 0.005 # I 0.093 +/- 0.020 0.023 +/- 0.006 # Following table from Schmude (1994) # Data from Texas A & M University Observatory # Passband | K(lambda) [mag/airmass] | dispersion on K(lambda) # U 0.60 +/- 0.05 0.120 # B 0.40 +/- 0.06 0.165 # V 0.26 +/- 0.03 0.084 # R 0.19 +/- 0.03 0.068 # I 0.16 +/- 0.02 0.055 kappa = dict(zip(['U', 'B', 'V', 'R' ], [0.60, 0.40, 0.26, 0.19 ])) # Loop through each group groupKeys = fileIndexByTarget.groups.keys for group in fileIndexByTarget.groups: # Grab the current target information thisTarget = str(np.unique(group['Target'].data)[0]) print('\nProcessing images for {0}'.format(thisTarget)) # Look for a photometric star catalog for this target catFile = os.path.join(stokesDir, thisTarget + '_stars.csv') if os.path.isfile(catFile): starCatalog = Table.read(catFile, format='ascii.csv') else: print('Could not find catalog file for this target') print('Please re-run script "08a_selectPhotStars.py"') continue # Search for all Stokes Intensity images Ifile = os.path.join(stokesDir, thisTarget + '*I.fits') Ifiles = glob.glob(Ifile) # Search for all the Stokes U images Ufile = os.path.join(stokesDir, thisTarget + '*U.fits') Ufiles = glob.glob(Ufile) # Search for all the Stokes Q images Qfile = os.path.join(stokesDir, thisTarget + '*Q.fits') Qfiles = glob.glob(Qfile) # Read in all the Stokes Images found for this target, and strip the # waveband from the header of each stokesIimgs = [AstroImage(file1) for file1 in Ifiles] waveBands = [img.header['FILTNME3'].strip() for img in stokesIimgs] # Read in the Stokes U images stokesUimgs = [AstroImage(file1) for file1 in Ufiles] # Read in the Stokes Q images stokesQimgs = [AstroImage(file1) for file1 in Qfiles] # Compose a dictionary of stokes I, U, and Q images stokesIdict = dict(zip(waveBands, stokesIimgs)) stokesUdict = dict(zip(waveBands, stokesUimgs)) stokesQdict = dict(zip(waveBands, stokesQimgs)) del stokesIimgs, stokesUimgs, stokesQimgs, waveBands # Grab the WCS info from the header of the stokes Images wcsDict = {} yr2000 = datetime(2000,1,1) deltaTime = timedelta(0) for key, img in stokesIdict.items(): wcsDict[key] = WCS(img.header) thisDate = img.header['DATE'].split('T')[0] thisDate = datetime.strptime(thisDate, '%Y-%m-%d') deltaTime += (thisDate - yr2000) # Divide accumulated time vectors by number of measurements secPerYr = 365.25*24*60*60 deltaTime = deltaTime.total_seconds()/(float(len(stokesIdict))*secPerYr) # Form a "catalog" of position entries for matching ra1 = starCatalog['_RAJ2000'].data.data*u.deg dec1 = starCatalog['_DEJ2000'].data.data*u.deg # Propagate proper motions into ra1 and dec1 positions pmRA = starCatalog['pmRA'].data.data*(1e-3)*u.arcsec pmDE = starCatalog['pmRA'].data.data*(1e-3)*u.arcsec ra = ra1 + pmRA*deltaTime dec = dec1 + pmDE*deltaTime # Determine PSF properties for each image # Initalize a 2D gaussian model and fitter g_init = models.Gaussian2D(amplitude = 2e2, x_mean = 8.0, y_mean = 8.0, x_stddev = 3.0, y_stddev = 3.0, theta = 0.0) fit_g = fitting.LevMarLSQFitter() ##### ##### # PERHAPS I NEED TO ALIGN THE IMAGES *BEFORE* I PERFORM PHOTOMETRY. # THAT WAY, THERE ARE NO EXTRA TRANSFORMATIONS APPLIED TO THE IMAGE BETWEEN # CALIBRATION AND SAVING TO DISK. ##### ##### # 1) Loop through all the images # 2) Determine more accurate star pixel positions (store in dictionary) # 3) Determine star PSF properties (store in dictionary) PSF_FWHMs = [] xyStarsDict = {} keepStarsDict = {} for key, img in stokesIdict.items(): # Convert the stellar celestial coordinates to pixel positions xStars, yStars = wcsDict[key].wcs_world2pix(ra, dec, 0) # Grab the image shape ny, nx = img.arr.shape # Loop through each star starFWHMs = [] xStars1 = [] yStars1 = [] keepStars = [] for xs, ys in zip(xStars, yStars): # Cut out a 16x16 pixel region around this estimated location x0 = np.int(np.round(xs)) - 8 if np.int(np.round(xs)) - 8 >= 1 else 1 y0 = np.int(np.round(ys)) - 8 if np.int(np.round(ys)) - 8 >= 1 else 1 # Compute upper bounds based on lower bounds x1 = x0 + 16 y1 = y0 + 16 # Double check that upper bounds don't break the rules either if x1 > nx - 2: x1 = nx - 2 x0 = x1 - 16 if y1 > ny - 2: y1 = ny - 2 y0 = y1 - 16 # Cut out the actual star patch patch = img.arr[y0:y1, x0:x1] # Estimate the local sky value bigPatch = img.arr[y0-1:y1+1, x0-1:x1+1] padPatch = np.pad(patch, ((1,1), (1,1)), mode='constant') skyPatch = bigPatch - padPatch skyPix = (np.abs(skyPatch) > 1e-3) if np.sum(skyPix) > 0: skyInds = np.where(skyPix) skyVals = skyPatch[skyInds] else: print('Cannot find sky') pdb.set_trace() skyVal = np.median(skyVals) # Do a centroid estimate to find the star position m = moments(patch - skyVal, 1) xcen = (m[1, 0]/m[0, 0]) + x0 ycen = (m[0, 1]/m[0, 0]) + y0 # Re-cut a 16x16 pixel region around this corrected star position x0 = np.int(np.round(xcen)) - 8 if np.int(np.round(xcen)) - 8 >= 0 else 0 y0 = np.int(np.round(ycen)) - 8 if np.int(np.round(ycen)) - 8 >= 0 else 0 # Compute upper bounds based on lower bounds x1 = x0 + 16 y1 = y0 + 16 # Double check that upper bounds don't break the rules either if x1 > nx - 1: x1 = nx - 1 x0 = x1 - 16 if y1 > ny - 1: y1 = ny - 1 y0 = y1 - 16 # Cut out the actual star patch patch = img.arr[y0:y1, x0:x1] # Redo a centroid estimate to find the star position. # Use this value to test whether or not the Gaussian fit is good. m = moments(patch - skyVal, 1) xcen = (m[1, 0]/m[0, 0]) ycen = (m[0, 1]/m[0, 0]) xcen1 = xcen + x0 ycen1 = ycen + y0 # Fit a Gaussian to the star cutout with warnings.catch_warnings(): # Ignore model linearity warning from the fitter warnings.simplefilter('ignore') yy, xx = np.mgrid[0:patch.shape[0], 0:patch.shape[1]] g_fit = fit_g(g_init, xx, yy, patch - skyVal) # Test whether the fitted gaussian is close to the epected location xFit, yFit = (g_fit.x_mean.value, g_fit.y_mean.value) fitDist = np.sqrt((xcen - xFit)**2 + (ycen - yFit)**2) # Test for fitting and saturation problems fitBool = (fitDist < 2.5) satBool = (patch.max() < satLimit) and (patch.min() > -100) thisKeepBool = fitBool and satBool if thisKeepBool == True: keepStars.append(True) xStars1.append(xcen1) yStars1.append(ycen1) else: # Build the problem analysis string probString = '' if fitBool: probString = probString + 'fitting ' if satBool: if len(probString) > 0: probString = probString + 'and saturation' else: probString = probString + 'saturation ' probString = probString + 'problems' print('skipping star at ({0:4d}, {1:4d}): for {2}'.format( np.int(xs.round()), np.int(ys.round()), probString)) keepStars.append(False) xStars1.append(-1) yStars1.append(-1) continue # Store the Gaussian fitted PSF properties in the starFWHMs list thisSigma = np.sqrt(np.abs(g_fit.x_stddev.value*g_fit.y_stddev.value)) thisFWHM = thisSigma/gaussian_fwhm_to_sigma starFWHMs.append(thisFWHM) # Store the mean PSF value in the FWHMlist mean, med, std = sigma_clipped_stats(starFWHMs) # mode = 3.0*med - 2.0*mean # mode = 2.5*med - 1.5*mean # PSF_FWHMs.append(mode) PSF_FWHMs.append(mean) # Store star positions in the xyStarsDict xyStars = np.array([(xs, ys) for xs, ys in zip(xStars1, yStars1)]) xyStarsDict[key] = xyStars # Store the star test booleans in the keepStarDict keepStarsDict[key] = keepStars # Grab maximum stellar PSF width and use apRad = 2.5*FWHM for photometry maxFWHM = np.max(PSF_FWHMs) apRad = 2.5*maxFWHM anInRad = apRad + 2.0 anOutRad = apRad + 4.0 # Cull the starCatalog entry to only include non-saturated stars. # First check which stars passed the test in ALL bands. keepStars = np.ones(len(starCatalog), dtype=bool) for key, val in keepStarsDict.items(): # Make sure the keep tests are all passed keepStars = np.logical_and(keepStars, val) # Make sure the stars are also far enough from the edge using the newly # determined aperture radius to compute the edge criterion. ny, nx = stokesIdict[key].arr.shape edgeCut = np.ceil(anOutRad) edgeBool = xyStarsDict[key][:,0] > edgeCut edgeBool = np.logical_and(edgeBool, xyStarsDict[key][:,0] < nx - 1 - edgeCut) edgeBool = np.logical_and(edgeBool, xyStarsDict[key][:,1] > edgeCut) edgeBool = np.logical_and(edgeBool, xyStarsDict[key][:,1] < ny - 1 - edgeCut) # Combine the edge test with the previously determined photometry test keepStars = np.logical_and(keepStars, edgeBool) # Test if at least 4 stars passed the tests in all bands if np.sum(keepStars) >= 4: # Cull the star catalog to only include detected stars keepInds = np.where(keepStars) starCatalog = starCatalog[keepInds] # Also cull the list of star positions to match between all bands xyStarsDict1 = xyStarsDict.copy() for key, val in xyStarsDict.items(): xyStarsDict1[key] = val[keepInds] # Delete temporary variables xyStarsDict = xyStarsDict1.copy() del xyStarsDict1 else: print('Fewer than 4 stars passed the quality tests in all bands.') print('Color photometry for this target is impossible') pdb.set_trace() # Separate out O, J, E, F magnitudes for predicting V and R bands # Surveys used for USNO-B1.0: # ---------------------------------------------------------- # # Name Emuls B/R Wavelen. Zones Fld Dates Epoch # (nm) (Dec) Obs. # ---------------------------------------------------------- # 0 = POSS-I 103a-O (B) 350-500 -30..+90 936 1949-1965 (1st) # 1 = POSS-I 103a-E (R) 620-670 -30..+90 936 1949-1965 (1st) # 2 = POSS-II IIIa-J (B) 385-540 +00..+87 897 1985-2000 (2nd) # 3 = POSS-II IIIa-F (R) 610-690 +00..+87 897 1985-1999 (2nd) # 4 = SERC-J IIIa-J (B) 385-540 -90..-05 606 1978-1990 (2nd) # 5 = ESO-R IIIa-F (R) 630-690 -90..-05 624 1974-1994 (1st) # 6 = AAO-R IIIa-F (R) 590-690 -90..-20 606 1985-1998 (2nd) # 7 = POSS-II IV-N (I) 730-900 +05..+87 800 1989-2000 (N/A) # 8 = SERC-I IV-N (I) 715-900 -90..+00 892 1978-2002 (N/A) # 9 = SERC-I* IV-N (I) 715-900 +05..+20 25 1981-2002 (N/A) # -------------------------------------------------- # Note: Check that the confirmed sources all come from the expected # surveys. If not, then stop and re-evaluate. # First grab all the sources used in this data (minus masked points) B1src = np.unique(starCatalog['B1S'].data.filled(255))[-2::-1] R1src = np.unique(starCatalog['R1S'].data.filled(255))[-2::-1] B2src = np.unique(starCatalog['B2S'].data.filled(255))[-2::-1] R2src = np.unique(starCatalog['R2S'].data.filled(255))[-2::-1] # Now test if all the specified sources are the expected ones B1eqO = all([src in [0] for src in B1src]) R1eqE = all([src in [1] for src in R1src]) B2eqJ = all([src in [2, 4] for src in B2src]) R2eqF = all([src in [3, 5, 6] for src in R2src]) if (B1eqO and R1eqE and B2eqJ and R2eqF): # If the sources are all the expected ones, then parse the emulsions Omags = starCatalog['B1mag'].data.data Emags = starCatalog['R1mag'].data.data Jmags = starCatalog['B2mag'].data.data Fmags = starCatalog['R2mag'].data.data # Build a dictionary of USNO-B1.0 magnitudes USNOBmagDict = dict(zip(['O', 'E', 'J', 'F' ], [Omags, Emags, Jmags, Fmags])) else: # Insert a pause if one of the sources is wrong... print('There are some unexpected sources for the magnitudes') print('...stopping...') pdb.set_trace() # 1) Loop through all the images. # 2) Do aperture photometry on the stars # 3) Store photometry in photDict # Initalize a dictionary to store the airmass corrected (AMC) stokes I imgs stokesIdict_AMC = {} # Initalize a dictionary to store the photometry tables photDict = {} for key, img in stokesIdict.items(): # Now that all the pre-requisites for photometry have been met, it is time # to apply a waveband based airmass correction and normalize by the exposure # time. The result, stored in the img1 variable, should be used for all # subsequent photometry atmExtMag = kappa[key]*img.header['AIRMASS'] expTime = img.header['EXPTIME'] img1 = img*((10.0**(0.4*atmExtMag))/expTime) # Store corrected image in the stokesIdict_AMC dictionary stokesIdict_AMC[key] = img1 # Grab the star positions xyStars = xyStarsDict[key] xStars, yStars = xyStars[:,0], xyStars[:,1] # Establish circular apertures for photometry apertures = CircularAperture(xyStars, r = apRad) annulus_apertures = CircularAnnulus(xyStars, r_in = anInRad, r_out = anOutRad) # Perform the basic photometry rawflux_table = aperture_photometry(img1.arr, apertures, error=img1.sigma) bkgflux_table = aperture_photometry(img1.arr, annulus_apertures, error=img1.sigma) phot_table = hstack([rawflux_table, bkgflux_table], table_names=['raw', 'bkg']) # Compute background contribution and subtract from raw photometry bkg_mean = phot_table['aperture_sum_bkg'] / annulus_apertures.area() bkg_sig = phot_table['aperture_sum_err_bkg'] / annulus_apertures.area() bkg_sum = bkg_mean * apertures.area() bkg_sig = bkg_sig * apertures.area() # Compute the variance in the background pixels for each star ny, nx = img1.arr.shape yy, xx = np.mgrid[0:ny, 0:nx] bkg_var = [] # Loop through each star and add the local variance to the uncertainty for xy in xyStars: xs, ys = xy distFromStar = np.sqrt((xx - xs)**2 + (yy - ys)**2) skyPixInds = np.where(np.logical_and( (distFromStar > anInRad), (distFromStar < anOutRad))) bkg_var.append(np.var(img1.arr[skyPixInds])) # Convert the background variance into an array bkg_var = np.array(bkg_var) # Compute the final photometry and its uncertainty final_sum = phot_table['aperture_sum_raw'] - bkg_sum final_sig = np.sqrt(phot_table['aperture_sum_err_raw']**2 + bkg_sig**2 + bkg_var) phot_table['residual_aperture_sum'] = final_sum phot_table['residual_aperture_sum_err'] = final_sig # Compute the signal-to-noise ratio and find the stars with SNR < 3.0 SNR = final_sum/final_sig # Now estimate the photometry from USNO-B1.0 and store it for later use catMags, sigCatMags = USNOBtransforms[key](USNOBmagDict) phot_table[key+'_catMag'] = catMags phot_table[key+'_sigCatMag'] = sigCatMags # Loop through all the stars and detect any duplicate entries. Mark each # entry with a semi-unique 'Star ID' # Extract the star positions from the photometry table # (this is redundant but a nice confirmation that these will be right) xStars = phot_table['xcenter_raw'] yStars = phot_table['ycenter_raw'] # Initalize an empty list to store the starIDs starIDs = -1*np.ones(len(phot_table), dtype=int) for ind, row in enumerate(phot_table): # Skip over any rows that have been previously treated if starIDs[ind] > 0: continue # Compute the distance between the current star and all other stars xs, ys = row['xcenter_raw'], row['ycenter_raw'] dist = np.sqrt((xs - xStars)**2 + (ys - yStars)**2).value if np.sum(dist < 2.0) > 0: # Mark all stars within 2.0 pixels of the current star with an # identical ID. IDinds = np.where(dist < 2.0) starIDs[IDinds] = ind # Add the StarID column to the phot_table phot_table.add_column(Column(name='star_id', data=starIDs), index=0) # plt.ion() # plt.imshow(stokesIdict[key].arr, vmin=0,vmax=800,cmap='gray_r') # plt.scatter(phot_table['xcenter_raw'], phot_table['ycenter_raw'], # marker='x', color='red') # pdb.set_trace() # Sort the phot_table by starID sortInds = phot_table['star_id'].data.argsort() phot_table = phot_table[sortInds] # Store this photometry table in the dictionary for later use photDict[key] = phot_table # ########################################################################### # # PRINT OUT THE PHOTOMETRY TO CHECK FOR CONSISTENCY # ########################################################################### # xFmtStr = '{x[0]:>6}.{x[1]:<3}' # yFmtStr = '{y[0]:>6}.{y[1]:<3}' # starFmtStr = '{star[0]:>9}.{star[1]:<3}' # bkgFmtStr = '{bkg[0]:>9}.{bkg[1]:<3}' # snrFmtStr = '{snr[0]:>9}.{snr[1]:<3}' # print('final photometry is...') # print(' x y Star Flux Bkg Flux SNR') # print('===========================================================') # printStr = xFmtStr + yFmtStr + starFmtStr + bkgFmtStr + snrFmtStr # for i in range(len(SNR)): # xVal = str(xStars[i]).split('.') # xVal[1] = (xVal[1])[0:3] # yVal = str(yStars[i]).split('.') # yVal[1] = (yVal[1])[0:3] # starVal = str(final_sum[i]).split('.') # starVal[1] = (starVal[1])[0:3] # bkgVal = str(bkg_sum[i]).split('.') # bkgVal[1] = (bkgVal[1])[0:3] # snrVal = str(SNR[i]).split('.') # snrVal[1] = (snrVal[1])[0:3] # print(printStr.format(x = xVal, y = yVal, star = starVal, # bkg = bkgVal, snr = snrVal)) # I need to simultaneously solve a set of linear regressions for photometric # zero-point magnitudes and color correction terms # # E.g. # (V_corrected - V_apparent) = a_0 + a_1 * (V_apparent - R_apparent) # and # (R_corrected - R_apparent) = a_2 + a_3 * (V_apparent - R_apparent) # and # (V_corrected - R_corrected) = a_4 + a_5 * (V_apparent - R_apparent) # # Grab all the successfully measured bandpasses bandKeys1 = [key for key in stokesIdict.keys()] # Ensure that they're in wavelength order # Start by constructing an array with # Column 0: list of wavebands # Column 1: list of wavelengths for that bands bandLamArr = np.array([[key, val] for key, val in wavelength.items()]) # Figure our how to sort this array by increasing wavelength, and create a # list of possible wavebands in that sorted order sortArr = bandLamArr[:,1].argsort() bandList = (bandLamArr[:,0].flatten())[sortArr] # Loop through the wavebands and construct a wavelength ordered list of # observed waveband keys in the stokesIdict dictionary. bandKeys = [] for band in bandList: if band in bandKeys1: bandKeys.append(band) # Loop through the bands and construct keys for a "color dictionary" colorKeys = [] for ind, band1 in enumerate(bandKeys[0:len(bandKeys)-1]): # Only worry about colors from adjacent wavebands, one index over band2 = bandKeys[ind+1] colorKeys.append('-'.join([band1, band2])) # Prepare for the linear regressions to be done on each band and color # Define the model to be used in the fitting def lineFunc(B, x): return B[1] + B[0]*x # Set up ODR with the model and data. lineModel = odr.Model(lineFunc) # loop through each linear regression for colorKey in colorKeys: print('Preparing the model outliers with MCMC') # Setup the walker count, burn-in steps, and production steps n_walkers = 100 n_burn_in_steps = 1000 n_steps = 2000 # Treat the photometric regressions for this set of bands... # Establish the boundaries of acceptable parameters for the prior labels = [ r"$\theta$", r"$b_p$", r"$P_b$", r"$M_x$", r"$\ln V_x$", r"$M_y$", r"$\ln V_y$"] # Create a separate set of labels and indices for those parameters which # will be plotted in the posterior distribution "corner plot" plotLabels = [ r"$\theta$", r"$b_p$", r"$P_b$", r"$\ln V_y$"] plotInds = np.array([0,1,2,6]) bounds1 = [(-1.0, 1.0), # Theta (angle of the line slope) (18.0, 28.0), # b_perp (min-dist(line-origin)) (0.0, 1.0), # Pb (Probability of sampling an outliers) (-8.0, +8.0), # Mx (<x> of outlier distribution) (-2.0, 5.0), # lnVx (log-x-variance of outlier distribution) (-8.0, +8.0), # My (<y> of outlier distribution) (-2.0, 5.0)] # lnVy (log-y-variance of outlier distribution) bounds2 = [(+0.0, +1.5), # Theta (angle of the line slope) (18.0, 28.0), # b_perp (min-dist(line-origin)) (0.0, 1.0), # Pb (Probability of sampling an outliers) (-8.0, +8.0), # Mx (<x> of outlier distribution) (-2.0, 5.0), # lnVx (log-x-variance of outlier distribution) (-8.0, +8.0), # My (<y> of outlier distribution) (-2.0, 5.0)] # lnVy (log-y-variance of outlier distribution) boundsC = [(-0.5, +1.0), # Theta (angle of the line slope) (-0.4, +0.75), # b_perp (min-dist(line-origin)) (0.0, 1.0), # Pb (Probability of sampling an outliers) (-8.0, +8.0), # Mx (<x> of outlier distribution) (-2.0, 5.0), # lnVx (log-x-variance of outlier distribution) (-8.0, +8.0), # My (<y> of outlier distribution) (-2.0, 5.0)] # lnVy (log-y-variance of outlier distribution) # Parse the bands used in this color band1, band2 = colorKey.split('-') # Grab the photometry table for these two bands phot_table1 = photDict[band1] phot_table2 = photDict[band2] # Double check that the star IDs are all matched up if len(phot_table1) != len(phot_table2): print('Photometry tables do not match!') pdb.set_trace() totalMatch = np.sum(phot_table1['star_id'].data == phot_table2['star_id'].data) if totalMatch < len(phot_table1): print('Photometry tables do not match!') pdb.set_trace() # Since we have confirmed that all the starIDs match up, we will store # the values from the first phot_table starIDs = phot_table['star_id'].data # Grab the fluxes for the calibration stars for these two bands flux1 = phot_table1['residual_aperture_sum'].data flux2 = phot_table2['residual_aperture_sum'].data sigFlux1 = phot_table1['residual_aperture_sum_err'].data sigFlux2 = phot_table2['residual_aperture_sum_err'].data # Compute the instrumental magnitudes for these two bands instMags1 = -2.5*np.log10(flux1) instMags2 = -2.5*np.log10(flux2) sigInstMags1 = 2.5*np.abs(sigFlux1/(flux1*np.log(10))) sigInstMags2 = 2.5*np.abs(sigFlux2/(flux2*np.log(10))) # Now grab the catalog magnitudes for the calibration stars catMags1 = phot_table1[band1+'_catMag'].data catMags2 = phot_table2[band2+'_catMag'].data sigCatMags1 = phot_table1[band1+'_sigCatMag'].data sigCatMags2 = phot_table2[band2+'_sigCatMag'].data # Begin by culling any data from extremely unexpected regions # Compute the catalog colors for these stars catColors, sig_catColors = USNOBtransforms[colorKey](USNOBmagDict) # Compute the band1 - band2 color xTest = instMags1 - instMags2 yTest = catColors # Set some boundaries for acceptable color-color data # slope1, intercept1 = np.tan(0.561), 0.0055/np.cos(0.561) # slope2, intercept2 = np.tan(0.658), 0.233/np.cos(0.658) slope1, intercept1 = np.tan(0.45), 0.00/np.cos(0.45) slope2, intercept2 = np.tan(0.70), 0.25/np.cos(0.70) keepPts = (yTest > (slope1*xTest + intercept1 - 0.25)) keepPts = np.logical_and(keepPts, (yTest < slope2*xTest + intercept2 + 0.25)) keepInds = np.where(keepPts) # Now perform the actual data cuts starIDs = starIDs[keepInds] instMags1 = instMags1[keepInds] instMags2 = instMags2[keepInds] sigInstMags1 = sigInstMags1[keepInds] sigInstMags2 = sigInstMags2[keepInds] catMags1 = catMags1[keepInds] catMags2 = catMags2[keepInds] sigCatMags1 = sigCatMags1[keepInds] sigCatMags2 = sigCatMags2[keepInds] catColors = catColors[keepInds] sig_catColors = sig_catColors[keepInds] ######################################################################## ############################# COLOR-COLOR ############################## ######################################################################## print('Running initial Color-Color regression') # Compute the colors for these stars xC = instMags1 - instMags2 yC = catColors sxC = np.sqrt(sigInstMags1**2 + sigInstMags2**2) syC = sig_catColors ### THIS CODE SIMPLY DISPLAYS THE DATA TO THE USER TO SEE IF ### THE SELECTED "GOOD-DATA" REGION IS ACCEPTABLE. ### # slope1, intercept1 = np.tan(0.45), 0.00/np.cos(0.45) # slope2, intercept2 = np.tan(0.70), 0.25/np.cos(0.70) # plt.errorbar(xC, yC, xerr=sxC, yerr=syC, fmt='None', ecolor='k') # plt.plot(xC, slope1*xC + intercept1 - 0.25, color='k') # plt.plot(xC, slope2*xC + intercept2 + 0.25, color='k') # pdb.set_trace() # plt.close('all') # continue # Perform the MCMC sampling of the posterior data = (xC, yC, sxC, syC) samplerC = MCMCfunc(data, boundsC, n_walkers=n_walkers, n_burn_in_steps=n_burn_in_steps, n_steps=n_steps) # Plot the posteriors to see if a reasonable result was obtained. # plotSamples = samplerC.flatchain[:,plotInds] # plotBounds = np.array(boundsC)[plotInds] # corner.corner(plotSamples, bins=100, # range=plotBounds, # labels=plotLabels) # # # Save the figure to disk # fname = os.path.join(stokesDir, thisTarget + '_MCMC.png') # plt.savefig(fname, dpi=300) # plt.close('all') # Compute the posterior probability that each data-point is "good" norm = 0.0 post_probC = np.zeros(len(data[0])) for i in range(samplerC.chain.shape[1]): for j in range(samplerC.chain.shape[0]): ll_fg, ll_bg = samplerC.blobs[i][j] post_probC += np.exp(ll_fg - np.logaddexp(ll_fg, ll_bg)) norm += 1 post_probC /= norm # Loop through all entries and eliminate the less probable of all # *PAIRED* entries. keepBool = np.zeros(len(post_probC), dtype=bool) for ind, idNum in enumerate(starIDs): # Skip over already treated indices if keepBool[ind] == True: continue # Test which starIDs equal *THIS* starID testBool = (starIDs == idNum) if np.sum(testBool) > 1: # If this ID number is shared by more than one entry, then # figure out which entry is more probable and keep only that one testIDs = np.where(starIDs == idNum) testProbs = post_probC[testIDs] testBool = testProbs == testProbs.max() testInds = np.where(testBool)[0] keepBool[testIDs] = testBool else: keepBool[ind] = True # Now that we've eliminated duplicate data-points, let's eliminate data # with less than a 50% posterior probability of being "good" keepBool = np.logical_and(keepBool, (post_probC > 0.50)) keepInds = np.where(keepBool) # Now cull the data and re-do the fit print('Culling duplicate and probable outlier data') starIDs = starIDs[keepInds] instMags1 = instMags1[keepInds] instMags2 = instMags2[keepInds] sigInstMags1 = sigInstMags1[keepInds] sigInstMags2 = sigInstMags2[keepInds] catMags1 = catMags1[keepInds] catMags2 = catMags2[keepInds] sigCatMags1 = sigCatMags1[keepInds] sigCatMags2 = sigCatMags2[keepInds] catColors = catColors[keepInds] sig_catColors = sig_catColors[keepInds] ######################################################################## ################################ BAND 1 ################################ ######################################################################## print('Running {0}-band regression'.format(band1)) x1 = instMags1 - instMags2 y1 = catMags1 - instMags1 sx1 = np.sqrt(sigInstMags1**2 + sigInstMags2**2) sy1 = np.sqrt(sigCatMags1**2 + sigInstMags1**2) # Perform the MCMC sampling of the posterior data = (x1, y1, sx1, sy1) sampler1 = MCMCfunc(data, bounds1, n_walkers=n_walkers, n_burn_in_steps=n_burn_in_steps, n_steps=n_steps) # # Plot the posteriors to see if a reasonable result was obtained. # plt.ion() # plotSamples = sampler1.flatchain[:,plotInds] # plotBounds = np.array(bounds1)[plotInds] # corner.corner(plotSamples, bins=100, # range=plotBounds, # labels=plotLabels) # pdb.set_trace() # plt.close('all') # Compute the posterior probability that each data-point is "good" norm = 0.0 post_prob1 = np.zeros(len(data[0])) for i in range(sampler1.chain.shape[1]): for j in range(sampler1.chain.shape[0]): ll_fg, ll_bg = sampler1.blobs[i][j] post_prob1 += np.exp(ll_fg - np.logaddexp(ll_fg, ll_bg)) norm += 1 post_prob1 /= norm # Track the outliers from the band-1 MCMC fit keepBool = (post_prob1 > 0.5) ######################################################################## ################################ BAND 2 ################################ ######################################################################## print('Running {0}-band regression'.format(band2)) x2 = instMags1 - instMags2 y2 = catMags2 - instMags2 sx2 = np.sqrt(sigInstMags1**2 + sigInstMags2**2) sy2 = np.sqrt(sigCatMags2**2 + sigInstMags2**2) # Perform the MCMC sampling of the posterior data = (x2, y2, sx2, sy2) sampler2 = MCMCfunc(data, bounds2, n_walkers=n_walkers, n_burn_in_steps=n_burn_in_steps, n_steps=n_steps) # # Plot the posteriors to see if a reasonable result was obtained. # plotSamples = sampler2.flatchain[:,plotInds] # plotBounds = np.array(bounds1)[plotInds] # corner.corner(plotSamples, bins=100, # range=plotBounds, # labels=plotLabels) # pdb.set_trace() # plt.close('all') # Compute the posterior probability that each data-point is "good" norm = 0.0 post_prob2 = np.zeros(len(data[0])) for i in range(sampler2.chain.shape[1]): for j in range(sampler2.chain.shape[0]): ll_fg, ll_bg = sampler2.blobs[i][j] post_prob2 += np.exp(ll_fg - np.logaddexp(ll_fg, ll_bg)) norm += 1 post_prob2 /= norm # Track the outliers from the band-2 MCMC fit keepBool = np.logical_and(keepBool, (post_prob2 > 0.5)) ######################################################################## ############################# COLOR-COLOR ############################## ######################################################################## # Begin by culling any data marked as outliers in band1 or band2 MCMC. keepInds = np.where(keepBool) # Now cull the data and perform ODR fits print('Culling probable outlier data') starIDs = starIDs[keepInds] instMags1 = instMags1[keepInds] instMags2 = instMags2[keepInds] sigInstMags1 = sigInstMags1[keepInds] sigInstMags2 = sigInstMags2[keepInds] catMags1 = catMags1[keepInds] catMags2 = catMags2[keepInds] sigCatMags1 = sigCatMags1[keepInds] sigCatMags2 = sigCatMags2[keepInds] catColors = catColors[keepInds] sig_catColors = sig_catColors[keepInds] # Make sure to identically cull the posterior probabilities too! post_prob1 = post_prob1[keepInds] post_prob2 = post_prob2[keepInds] print('Running final color-color regression') # Compute the colors for these stars xC = instMags1 - instMags2 yC = catColors sxC = np.sqrt(sigInstMags1**2 + sigInstMags2**2) syC = sig_catColors # Perform the MCMC sampling of the posterior data = (xC, yC, sxC, syC) samplerC = MCMCfunc(data, boundsC, n_walkers=n_walkers, n_burn_in_steps=n_burn_in_steps, n_steps=n_steps) # Compute the posterior probability that each data-point is "good" norm = 0.0 post_probC = np.zeros(len(data[0])) for i in range(samplerC.chain.shape[1]): for j in range(samplerC.chain.shape[0]): ll_fg, ll_bg = samplerC.blobs[i][j] post_probC += np.exp(ll_fg - np.logaddexp(ll_fg, ll_bg)) norm += 1 post_probC /= norm # # Track the outliers from the color-color MCMC fit # keepBool = np.logical_and(keepBool, (post_probC > 0.5)) if np.sum(post_probC < 0.5) > 0: print('Color-Color fit still has some outliers?!') pdb.set_trace() # Grab the "confidence intervals" for each parameter truthRanges = [(v[1], v[2]-v[1], v[1]-v[0]) for v in zip(*np.percentile(samplerC.flatchain, [16, 50, 84], axis=0))] truths = [t[0] for t in truthRanges] # Convert these data to slope-intercept space tmpData = np.array([ np.tan(samplerC.flatchain[:,0]), samplerC.flatchain[:,1]/np.cos(samplerC.flatchain[:,0])]) # Compute the median slope and intercept and the covariance matrix truthsC = np.percentile(tmpData, 50, axis=1) covC =
np.cov(tmpData)
numpy.cov
#!/usr/bin/env python # # Copyright (c) 2019 Opticks Team. All Rights Reserved. # # This file is part of Opticks # (see https://bitbucket.org/simoncblyth/opticks). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ cie.py: converts wavelength spectra into XYZ and RGB colorspaces =================================================================== Conversion of the binned wavelength spectra into XYZ (using CIE weighting functions) and then RGB produces a spectrum [FIXED] Unphysical color repetition ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Uniform scaling by maximal single X,Y,Z or R,G,B prior to clipping gets rid of the unphysical color repetition but theres kinda a between the green and the blue, where cyan should be #hRGB_raw /= hRGB_raw[0,:,0].max() # scaling by maximal red, results in muted spectrum #hRGB_raw /= hRGB_raw[0,:,1].max() # scaling by maximal green, OK #hRGB_raw /= hRGB_raw[0,:,2].max() # scaling by maximal blue, similar to green by pumps the blues and nice yellow The entire spectral locus is outside sRGB gamut (the triangle), so all bins are being clipped. Not clipping produces a psychedelic mess. [ISSUE] Blue/Green transition looks unphysical ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Need better way to handle out of gamut ? Raw numbers show that green ramps up thru 430..480 nm but its all negative, so that info is clipped. :: In [68]: np.set_printoptions(linewidth=150) In [75]: np.hstack([wd[:-1,None],c.raw[0],c.xyz[0],c.rgb[0]]) Out[75]: array([[ 350. , 0. , 0.016, 0.102, 0. , 0. , 0. , -0. , 0. , 0. ], [ 370. , 0.015, 0.105, 1.922, 0. , 0. , 0.001, -0.001, 0. , 0.001], [ 390. , 1.873, 0.582, 20.444, 0.001, 0. , 0.011, -0.003, 0. , 0.012], [ 410. , 49.306, 2.691, 205.061, 0.028, 0.002, 0.115, 0.03 , -0.019, 0.123], [ 430. , 273.393, 10.384, 1386.823, 0.153, 0.006, 0.779, 0.1 , -0.105, 0.83 ], [ 450. , 343.75 , 33.415, 1781.385, 0.193, 0.019, 1. , 0.098, -0.11 , 1.064], [ 470. , 191.832, 89.944, 1294.473, 0.108, 0.05 , 0.727, -0.091, 0.021, 0.764], [ 490. , 32.012, 213.069, 465.525, 0.018, 0.12 , 0.261, -0.256, 0.218, 0.253], [ 510. , 16.48 , 500.611, 155.962, 0.009, 0.281, 0.088, -0.446, 0.522, 0.036], [ 530. , 159.607, 869.052, 43.036, 0.09 , 0.488, 0.024, -0.472, 0.829, -0.069], [ 550. , 433.715, 994.463, 8.758, 0.243, 0.558, 0.005, -0.072, 0.812, -0.095], [ 570. , 772.904, 950.107, 1.308, 0.434, 0.533, 0.001, 0.586, 0.58 , -0.084], [ 590. , 1021.039, 762.587, 0.143, 0.573, 0.428, 0. , 1.199, 0.248, -0.055], [ 610. , 1000.205, 500.338, 0.012, 0.561, 0.281, 0. , 1.388, -0.017, -0.026], [ 630. , 656.21 , 263.667, 0.001, 0.368, 0.148, 0. , 0.966, -0.079, -0.01 ], [ 650. , 283.632, 110.045, 0. , 0.159, 0.062, 0. , 0.421, -0.038, -0.004], [ 670. , 80.766, 36.117, 0. , 0.045, 0.02 , 0. , 0.116, -0.006, -0.002], [ 690. , 17.024, 11.172, 0. , 0.01 , 0.006, 0. , 0.021, 0.003, -0.001]]) Chromatic Adaption ~~~~~~~~~~~~~~~~~~~~ * http://www.brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html Refs ~~~~~ https://github.com/colour-science/colour/issues/191 http://www.scipy-lectures.org/advanced/image_processing/index.html http://www.scipy-lectures.org/packages/scikit-image/index.html#scikit-image http://www.scipy.org/scikits.html separate from scipy, but under the "brand" """ import os, logging, numpy as np log = logging.getLogger(__name__) np.set_printoptions(linewidth=150) import matplotlib.pyplot as plt import ciexyz.ciexyz as _cie from env.graphics.ciexyz.XYZ import Spectrum from env.graphics.ciexyz.RGB import RGB class CIE(object): def __init__(self, colorspace="sRGB/D65", whitepoint=None): cs = RGB(colorspace) self.x2r = cs.x2r self.whitepoint = whitepoint def hist0d_XYZ(self,w, nb=100): X = np.sum(_cie.X(w)) Y = np.sum(_cie.Y(w)) Z = np.sum(_cie.Z(w)) hX = np.repeat(X, nb) hY = np.repeat(Y, nb) hZ = np.repeat(Z, nb) raw = np.dstack([hX,hY,hZ]) self.raw = np.copy(raw) return raw def hist1d_XYZ(self,w,x,xb): hX, hXx = np.histogram(x,bins=xb, weights=_cie.X(w)) hY, hYx = np.histogram(x,bins=xb, weights=_cie.Y(w)) hZ, hZx = np.histogram(x,bins=xb, weights=_cie.Z(w)) assert np.all(hXx == xb) & np.all(hYx == xb ) & np.all(hZx == xb) raw = np.dstack([hX,hY,hZ]) self.raw = np.copy(raw) return raw def hist2d_XYZ(self,w,x,y,xb,yb): bins = [xb,yb] hX, hXx, hXy = np.histogram2d(x,y,bins=bins, weights=_cie.X(w)) hY, hYx, hYy = np.histogram2d(x,y,bins=bins, weights=_cie.Y(w)) hZ, hZx, hZy = np.histogram2d(x,y,bins=bins, weights=_cie.Z(w)) assert np.all(hXx == xb) & np.all(hYx == xb ) & np.all(hZx == xb) assert np.all(hXy == yb) & np.all(hYy == yb ) &
np.all(hZy == yb)
numpy.all
""" In this module, we implement forward stepwise model selection for $K$ steps. The main goal of this is to produce a set of linear inequality constraints satisfied by $y$ after $K$ steps. """ import warnings from copy import copy import numpy as np from scipy.stats import norm as ndist # local imports from ..constraints.affine import (constraints, gibbs_test, stack as stack_con, gaussian_hit_and_run) from ..distributions.chain import parallel_test, serial_test from ..distributions.chisq import quadratic_test from ..distributions.discrete_family import discrete_family DEBUG = False class forward_step(object): """ Forward stepwise model selection. """ def __init__(self, X, Y, subset=None, fixed_regressors=None, intercept=True, covariance=None): """ Parameters ---------- X : ndarray Shape (n,p) -- the design matrix. Y : ndarray Shape (n,) -- the response. subset : ndarray (optional) Shape (n,) -- boolean indicator of which cases to use. Defaults to np.ones(n, np.bool) fixed_regressors: ndarray (optional) Shape (n, *) -- fixed regressors to regress out before computing score. intercept : bool Remove intercept -- this effectively includes np.ones(n) to fixed_regressors. covariance : ndarray (optional) Covariance matrix of errors. Defaults to np.identity(n). Returns ------- FS : `selection.algorithms.forward_step.forward_step` Notes ----- """ self.subset = subset self.X, self.Y = X, Y n, p = self.X.shape if fixed_regressors is not None: fixed_regressors = np.asarray(fixed_regressors).reshape((n,-1)) if intercept: if fixed_regressors is not None: fixed_regressors = np.hstack([fixed_regressors, np.ones((n, 1))]) else: fixed_regressors = np.ones((n, 1)) if fixed_regressors is not None: self.fixed_regressors = np.hstack(fixed_regressors) if self.fixed_regressors.ndim == 1: self.fixed_regressors = self.fixed_regressors.reshape((-1,1)) # regress out the fixed regressors # TODO should be fixed for subset # should we adjust within the subset or not? self.fixed_pinv = np.linalg.pinv(self.fixed_regressors) self.Y = self.Y - np.dot(self.fixed_regressors, np.dot(self.fixed_pinv, self.Y)) self.X = self.X - np.dot(self.fixed_regressors, np.dot(self.fixed_pinv, self.X)) else: self.fixed_regressors = None if self.subset is not None: self.working_X = self.X.copy()[subset] self.subset_X = self.X.copy()[subset] self.subset_Y = self.Y.copy()[subset] self.subset_selector = np.identity(self.X.shape[0])[subset] self.subset_fixed = self.fixed_regressors[subset] else: self.working_X = self.X.copy() self.subset_Y = self.Y.copy() self.subset_X = self.X.copy() self.subset_fixed = self.fixed_regressors # scale columns of X to have length 1 self.working_X /= np.sqrt((self.working_X**2).sum(0))[None, :] self.variables = [] # the sequence of selected variables self.Z = [] # the achieved Z scores self.Zfunc = [] # the linear functionals of Y that achieve the Z scores self.signs = [] # the signs of the achieved Z scores self.covariance = covariance # the covariance of errors self._resid_vector = self.subset_Y.copy() # the current residual -- already adjusted for fixed regressors # setup for iteration self.identity_constraints = [] # this will store linear functionals that identify the variables self.inactive = np.ones(p, np.bool) # current inactive set self.maxZ_offset = np.array([np.ones(p) * np.inf, np.ones(p) * np.inf]) # stored for computing # the limits of maxZ selected test self.maxZ_constraints = [] def step(self, compute_maxZ_pval=False, use_identity=False, ndraw=8000, burnin=2000, sigma_known=True, accept_reject_params=(100, 15, 2000)): """ Parameters ---------- compute_maxZ_pval : bool Compute a p-value for this step? Requires MCMC sampling. use_identity : bool If computing a p-value condition on the identity of the variable? ndraw : int (optional) Defaults to 1000. burnin : int (optional) Defaults to 1000. sigma_known : bool Is $\sigma$ assumed known? accept_reject_params : tuple If not () should be a tuple (num_trial, min_accept, num_draw). In this case, we first try num_trial accept-reject samples, if at least min_accept of them succeed, we just draw num_draw accept_reject samples. """ working_X, Y = self.working_X, self.subset_Y resid_vector = self._resid_vector n, p = working_X.shape # up to now inactive inactive = self.inactive # compute Z scores scale = self.scale = np.sqrt(np.sum(working_X**2, 0)) scale[~inactive] = np.inf # should never be used in any case Zfunc = working_X.T # [inactive] Zstat = np.dot(Zfunc, Y) / scale # [inactive] winning_var = np.argmax(np.fabs(Zstat)) winning_sign = np.sign(Zstat[winning_var]) winning_func = Zfunc[winning_var] / scale[winning_var] * winning_sign realized_maxZ = Zstat[winning_var] * winning_sign self.Z.append(realized_maxZ) if self.subset is not None: self.Zfunc.append(winning_func.dot(self.subset_selector)) else: self.Zfunc.append(winning_func) # keep track of identity for testing # variables other than the last one added # this adds a constraint to self.identity_constraints # losing_vars are variables that are inactive (i.e. not in self.variables) # and did not win in this step losing_vars = inactive.copy() losing_vars[winning_var] = False identity_linpart = np.vstack([ working_X[:,losing_vars].T / scale[losing_vars,None] - winning_func, -working_X[:,losing_vars].T / scale[losing_vars,None] - winning_func, - winning_func.reshape((1,-1))]) if self.subset is not None: identity_linpart = np.dot(identity_linpart, self.subset_selector) identity_con = constraints(identity_linpart, np.zeros(identity_linpart.shape[0])) if not identity_con(self.Y): raise ValueError('identity fail!') self.identity_constraints.append(identity_linpart) # form the maxZ constraint XI = self.subset_X[:,self.inactive] linear_part = np.vstack([XI.T, -XI.T]) if self.subset is not None: linear_part = np.dot(linear_part, self.subset_selector) inactive_offset = self.maxZ_offset[:, self.inactive] maxZ_con = constraints(linear_part,
np.hstack(inactive_offset)
numpy.hstack
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by <NAME> (<EMAIL>) # Modified by <NAME> (https://github.com/xingyizhou/CenterTrack/blob/master/src/lib/utils/image.py) # Then modified by <NAME> # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function from lib.utils.ddd_utils import compute_box_3d, project_to_image, alpha2rot_y from lib.utils.ddd_utils import draw_box_3d, unproject_2d_to_3d from tools.convert_pixset import box3d_from_loc_dim_rot import numpy as np import cv2 import random import torch from matplotlib.patches import Polygon from pioneer.common import linalg from matplotlib import pyplot as plt from pioneer.das.api.samples import Image from pioneer.das.api.platform import Platform def flip(img): return img[:, :, ::-1].copy() # @numba.jit(nopython=True, nogil=True) def transform_preds_with_trans(coords, trans): # target_coords = np.concatenate( # [coords, np.ones((coords.shape[0], 1), np.float32)], axis=1) target_coords = np.ones((coords.shape[0], 3), np.float32) target_coords[:, :2] = coords target_coords = np.dot(trans, target_coords.transpose()).transpose() return target_coords[:, :2] def transform_preds(coords, center, scale, output_size): target_coords = np.zeros(coords.shape) trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def get_affine_transform( center, scale, rot, output_size, shift=
np.array([0, 0], dtype=np.float32)
numpy.array
#!/usr/bin/env python """ Unit tests for Interval Data Class - test_create_interval - test_interval_properties - test_interval_conversion - test_interval_hash - test_interval_contains - test_interval_overlaps - test_interval_intersect - test_interval_union - test_interval_random_values - test_interval_random_intervals - test_interval_from_intersect - test_interval_from_union - test_interval_from_object - test_interval_from_text """ from dataclasses import asdict, astuple from typing import List from unittest import TestCase from numpy import mean from sources.core import Interval class TestInterval(TestCase): test_intervals: List[Interval] overlaps: List[List[bool]] def setUp(self): self.test_intervals = [] self.test_intervals.append(Interval(-10, 25)) self.test_intervals.append(Interval(10.5, 45)) self.test_intervals.append(Interval(-10.5, 45)) self.test_intervals.append(Interval(10.5, -45)) self.test_intervals.append(Interval(-10.5, -45)) self.test_intervals.append(Interval(5, 5)) self.test_intervals.append(Interval(5, 6)) self.overlaps = [ [True, True, True, True, False, True, True], [True, True, True, False, False, False, False], [True, True, True, True, False, True, True], [True, False, True, True, True, True, True], [False, False, False, True, True, False, False], [True, False, True, True, False, True, False], [True, False, True, True, False, False, True] ] def test_create_interval(self): test_intervals = [] test_intervals.append(Interval(10.5, 20)) test_intervals.append(Interval(20, '10.5')) test_intervals.append(Interval(**{'lower': 10.5, 'upper': 20})) test_intervals.append(Interval(*('20', '10.5'))) for interval in test_intervals: self.assertEqual(interval.lower, 10.5) self.assertEqual(interval.upper, 20) self.assertTrue(isinstance(interval.lower, float)) self.assertTrue(isinstance(interval.upper, float)) def test_interval_properties(self): for interval in self.test_intervals: #print(f'{interval}: length={interval.length} midpoint={interval.midpoint}') self.assertEqual(interval.length, interval.upper - interval.lower) self.assertEqual(interval.midpoint,
mean([interval.lower, interval.upper])
numpy.mean