prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np from jams.const import eps def zacharias(h, clay, sand, db, params=None, thetar=False, thetas=False, lnalpha=False, n=False): """ Soil water content with the van Genuchten equation and the pedotransfer functions of Zacharias et al. (2007). Definition ---------- def zacharias(h, clay, sand, db, params=None, thetar=False, thetas=False, lnalpha=False, n=False): Input ----- h pressure head, scalar or array [cm], 0=saturation, 15000=wilting point clay clay content, scalar or array [%, i.e. 0-100] sand sand content, scalar or array [%, i.e. 0-100] db bulk density, scalar or array [g/cm3], quartz=2.65 Optional Input -------------- params Parameter for Zacharias et al. (2007) pedotransfer functions If None, values from Zacharias et al. will be taken that are different between sandy and non-sandy soil (<66.5% sand) Options ------- thetar If True, outputs residual water content thetar as well [m3 m-3] thetas If True, outputs saturation water content thetas as well [m3 m-3] lnalpha If True, outpus logarithm of shape parameter alpha as well [1/cm] n If True, output exponent n as well Output ------ Soil water content theta [m^3 m^-3] Restrictions ------------ Does not check the validity of the parameter set, i.e. negative soil moistures can occur, for example. Use zacharias_check to check the parameter set first. Examples -------- >>> h = np.array([0.0000000, 0.0000000, 10.000000, 31.622777, ... 100.00000, 199.52623, 199.52623, ... 501.18723, 2511.8864, 15848.932]) >>> sand = np.array([12.800000, 61.600000, 17.200000, 85.800000, ... 16.500000, 12.800000, 61.600000, ... 17.200000, 85.800000, 16.500000]) >>> clay = np.array([30.500000, 17.200000, 25.500000, 8.9000000, ... 28.100000, 30.500000, 17.200000, ... 25.500000, 8.9000000, 28.100000]) >>> rho = np.array([1.2100000, 1.3400000, 1.4600000, 1.6300000, ... 1.3000000, 1.2100000, 1.3400000, ... 1.4600000, 1.6300000, 1.3000000]) >>> from autostring import astr >>> print(astr(zacharias(h, clay, sand, rho),3,pp=True)) ['0.500' '0.453' '0.421' '0.245' '0.393' '0.381' '0.285' '0.313' '0.039' '0.221'] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2016 <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written, MC, Jun 2012 Modified, MC, Feb 2013 - ported to Python 3 MC, Nov 2016 - const.tiny -> const.eps """ # # Check input ih = np.where(h==0., eps, h) if np.any(ih < 0.) | np.any(ih > 1e6): raise ValueError('h must be >=0 and <= 1e6 (=pf6)') iclay = np.where(clay==0., eps, clay) if np.any(iclay < 0.) | np.any(iclay > 100.): raise ValueError('clay must be >=0 and <= 100.') isand = np.where(sand==0., eps, sand) if np.any(isand < 0.) | np.any(isand > 100.): raise ValueError('sand must be >=0 and <= 100.') idb = np.array(db) if np.any(idb < 0.) | np.any(idb > 2.65): raise ValueError('db must be >=0 and <= 2.65.') nn = np.size(isand) if (np.size(iclay) != nn) | (np.size(idb) != nn) | (np.size(ih) != nn): raise ValueError('h, sand, clay, and db must have the same sizes.') if params is not None: if np.size(params) != 15: raise ValueError('size(params) must be 15.') # save output shape ns = np.shape(isand) iclay = np.ravel(iclay) isand = np.ravel(isand) idb = np.ravel(idb) # Take right params par0 = np.empty(nn) par1 = np.empty(nn) par2 = np.empty(nn) par3 = np.empty(nn) par4 = np.empty(nn) par5 = np.empty(nn) par6 = np.empty(nn) par7 =
np.empty(nn)
numpy.empty
#!/usr/bin/python3 """ sys.argv[1] - input database file sys.argv[2] - output mat file Composed by <NAME> @THU_IVG Last revision: <NAME> @THU_IVG @Oct 3rd, 2019 CST """ import json import scipy.io as sio import numpy as np import itertools import sys db_f = sys.argv[1] with open(db_f) as f: database = json.load(f)["database"] steps = list(sorted(set(itertools.chain.from_iterable( int(an["id"]) for an in itertools.chain.from_iterable( v["annotation"] for v in database.values()))))) min_id = steps[0] nb_step = len(steps) init_dist = np.zeros((nb_step,)) frequency_mat = np.zeros((nb_step, nb_step)) for v in database: if database[v]["subset"]!="training": continue for i, an in enumerate(database[v]["annotation"]): if i==0: init_dist[int(an["id"])-min_id] += 1 else: frequency_mat[int(pan["id"])-min_id, int(an["id"])-min_id] += 1 pan = an normalized_init_dist = init_dist/np.sum(init_dist) frequency_mat_sum = np.sum(frequency_mat, axis=1) normalized_frequency_mat =
np.copy(frequency_mat)
numpy.copy
import sys import logging def calc_ticks(image, dz=1, dx=1): """ calculate axial and lateral mesh using image dimensions and input values for axial and lateral sampling intervals :param image: input image for display :param dz: axial sampling interval :param dx: lateral sampling interval :return: axi, lat (np.array) """ import numpy as np image = np.array(image) xdim, zdim = image.shape # calculate lateral axis with origin (0,0) in the center if xdim % 2: x = np.array([dx*ii for ii in range(int(-(xdim-1)/2), int((xdim-1)/2+1))]) else: x = np.array([dx*(ii+0.5) for ii in range(int(-xdim/2), int(xdim/2))]) # calculate axial axis z = np.array([dz*ii for ii in range(0, zdim)]) # generate mesh using calculated axial and lateral axes axi, lat = np.meshgrid(z, x, indexing='xy') msg = '[calc_ticks] Image mesh generated.' print(msg) logging.debug(msg) return axi, lat def calc_b_geometry(fs, beam_spacing, c=1540., units='cm'): """ calculate b-mode sample spacing with user specified units :param fs: rf sampling frequency (Hz) :param c: speed of sound (m/s) :param beam_spacing: spacing between lateral beams (m) :param units: units of output values :return: dz, dx (float) """ if units == 'cm': scale = 100. elif units == 'mm': scale = 1000. elif units == 'm': scale = 1. else: msg = 'ERROR [calc_b_geometry] Invalid unit type specified. Exiting ' \ 'script...' logging.error(msg) print(msg) sys.exit() c = float(c) beam_spacing = float(beam_spacing) fs = float(fs) # calculate axial and lateral pixel spacings dz = scale*c*1/fs/2 dx = scale*beam_spacing logging.info('Axial tick size: ' + str(dz) + ' ' + units) logging.info('Lateral tick size: ' + str(dx) + ' ' + units) return dz, dx def create_dir(filepath): """ create new folder if directory in file path does not exist :param filepath: file path and name """ import os out_dir = os.path.dirname(filepath) if not os.path.exists(out_dir): try: os.makedirs(out_dir) except: msg = 'ERROR [create_dir] Invalid output path ' + out_dir + \ '. Exiting script...' print(msg) logging.error(msg) sys.exit() def generate_image(image, dz=1, dx=1, dynamic_range=[0, 1], hist_eq=False, post_proc=False, z_label='z', x_label='x', filename='./bmode.png', save_flag=True, display_flag=False): """ display/save output image with user-specified dynamic range :param image: input image for display :param dz: axial sampling interval :param dx: lateral sampling interval :param dynamic_range: displayed dynamic range :param hist_eq: enable to perform histogram equalization :param post_proc: apply image post-processing :param z_label: label for z (axial) axis :param x_label: label for x (lateral) axis :param filename: file path and name of saved .png :param save_flag: enable to save .png :param display_flag: enable to display image """ if not display_flag: import matplotlib matplotlib.use('Agg') msg = 'WARNING [generate_image] Using Agg matplotlib backend.' print(msg) logging.warning(msg) import matplotlib.pyplot as plt import numpy as np uint16_scale = 65535 # generate lat and axi meshes based on pixel spacing (dz and dx) axi, lat = calc_ticks(image, dz, dx) if dynamic_range[0] > dynamic_range[1]: tmp = dynamic_range dynamic_range[0] = tmp[1] dynamic_range[1] = tmp[0] msg = 'WARNING [generate_image] Dynamic range bounds out of order. ' \ 'Reversing bounds for display...' print(msg) logging.warning(msg) # perform post-processing on full image if post_proc: from skimage import filters msg = '[generate_image] Performing image post-processing...' logging.debug(msg) print(msg) raw = image image = filters.gaussian(raw, sigma=0.75) # clip image bounds based on specified dynamic range if dynamic_range[0] < np.min(image): dynamic_range[0] = np.min(image) image = np.clip(image, dynamic_range[0], dynamic_range[1]) # perform histogram equalization on clipped and normalized image if hist_eq: from skimage import exposure msg = '[generate_image] Performing histogram equalization...' logging.debug(msg) print(msg) image += np.abs(dynamic_range[0]) image /=
np.abs(dynamic_range[0])
numpy.abs
import cv2 import base as bs import numpy as np def binarize(img, thr): ret = np.zeros(img.shape, dtype='uint8') ret[img >= thr] = 255 return ret def conv_to_gray(img): return (0.0722 * img[:, :, 0] + 0.7152 * img[:, :, 1] + 0.2126 * img[:, :, 2]).astype(np.uint8) def Otsu_binarize(img): img = img.astype(np.float) thres_set = range(255) argmin_thr = 0 max_sigma_b = None for thr in thres_set: c_1 = np.array(img[img <= thr]) c_2 = np.array(img[img > thr]) w_1 = len(c_1) w_2 = len(c_2) if(len(c_1) == 0 or len(c_2) == 0): continue else: tmp_sigma_b = w_1 * w_2 * np.power(np.mean(c_1) -
np.mean(c_2)
numpy.mean
""" The ``surface`` and ``curve`` classes are used to define non-rectangular geometries for simulation blocks. Every block in a simulation can accept instances of the ``surface`` or ``curve`` class to override the rectangular geometry defined by the lower left coordinate and block length. Any block edge that is not defined by a surface or curve will automatically take on the rectangular geometry, so you only need to define surfaces or curves for edges that do not match the rectangular geometry defined in this way. The ``surface`` and ``curve`` classes rely on Numpy arrays to hold the coordinate values of the block edges. In particular, each surface holds three (n1,n2)-shaped arrays ``x``, ``y``, and ``z`` that define the coordinates of the surface. Curves similarly hold two (n1,1) arrays ``x`` and ``y`` (``z`` is defined but holds a single point and is not used). Surfaces are defined by providing the number of grid points, normal direction in the computational space (a string ``'x'``, ``'y'``, or ``'z'``), and the arrays ``x``, ``y``, and ``z`` holding the coordinates. An example of how to define a surface in the ``'z'`` direction is as follows: >>> import fdfault >>> import numpy as np >>> nx = 401 >>> ny = 201 >>> x = np.linspace(0., 40., nx) >>> y = np.linspace(0., 20., ny) >>> xm, ym = np.meshgrid(x, y, index='ij') >>> z = np.exp(-(x-20.)**2/5.-(y-10.)**2/5.) >>> surf = fdfault.surface(nx, ny, 'z', xm, ym, z) Note that this example uses a uniform grid spacing on the x and y coordinates. This is not required, and you are free to use irregular grid spacing as long as the resulting 3D grid meets the smoothness requirements imposed by the numerical method (precisely, the metric tensor for the grid must have a positive Jacobian everywhere). Similarly, you can define a curve, though fewer arguments are needed: >>> import fdfault >>> import numpy as np >>> nx = 401 >>> x = np.linspace(0., 40., nx) >>> y = np.sin(np.pi*x/40.) >>> curv = fdfault.curve(nx, 'y', x, y) Once the surfaces or curves are created, you can use the ``set_block_surf`` method of a problem to set the bounding surfaces or curves of a given block. The necessary binary files holding the coordinates will be automatically written to file when the ``write_input``method of the problem is called. In addition to these basic classes, the code also has several functions designed to generate surfaces and curves from more basic information. These include ``points_to_curve``, which generates a curve connecting two points with a uniform grid spacing, and ``curves_to_surf``, which generates a surface bounded by four 3D curves using transfinite interpolation. """ from __future__ import division, print_function import numpy as np class surface(object): ''' The surface class represents a surface for defining interfaces and block boundaries Each surface contains the following attributes: :ivar n1: Number of grid points in the first spatial direction (x unless the interface is an ``'x'`` interface) :type n1: int :ivar n2: Number of grid points in the second spatial direction (z unless the interface is a ``'z'`` interface) :type n1: int :ivar direction: Normal direction in computational space :type direction: str :ivar x: Numpy array holding x coordinates, must have shape (n1,n2) :type x: ndarray :ivar y: Numpy array holding y coordinates, must have shape (n1,n2) :type y: ndarray :ivar z: Numpy array holding z coordinates, must have shape (n1,n2) :type z: ndarray ''' def __init__(self, n1, n2, direction, x, y, z): ''' Initialize a ``surface`` instance Required arguments are n1 and n2, which are number of grid points in each direction, a direction which indicates the surface orientation in computational space (``'x'``, ``'y'``, or ``'z'``), plus three arrays x, y, and z (must have shape ``(n1, n2)`` that hold the coordinates for the new surface. Initializing with a negative number of grid points, with arrays that do not have the correct shape, or with a bad string for the surface orientation will result in an error. :param n1: Number of grid points along first dimension :type n1: int :param n2: Number of grid points along second dimension :type n2: int :param direction: String indicating surface normal direction in computational space (must be ``'x'``, ``'y'``, or ``'z'``) :type direction: str :param x: Array holding surface x coordinates (must have shape ``(n1, n2)``) :type x: ndarray :param y: Array holding surface y coordinates (must have shape ``(n1, n2)``) :type y: ndarray :param z: Array holding surface z coordinates (must have shape ``(n1, n2)``) :type z: ndarray :returns: New surface with specified properties :rtype: surface ''' assert(direction == 'x' or direction == 'y' or direction == 'z') assert(n1 > 0) assert(n2 > 0) n1 = int(n1) n2 = int(n2) self.n1 = n1 self.n2 = n2 self.direction = direction self.x = np.array(x) self.y = np.array(y) self.z = np.array(z) assert (n1, n2) == self.x.shape, "x must have shape (n1, n2)" assert (n1, n2) == self.y.shape, "y must have shape (n1, n2)" assert (n1, n2) == self.z.shape, "z must have shape (n1, n2)" def get_direction(self): """ Returns approximate normal direction :returns: Normal direction in computational space :rtype: str """ return self.direction def get_n1(self): ''' Returns number of grid points along first dimension :returns: Number of grid points along first dimension (x unless interface direction is ``'x'``) :rtype: int ''' return self.n1 def get_n2(self): ''' Returns number of grid points along second dimension :returns: Number of grid points along second dimension (z unless interface direction is ``'z'``) :rtype: int ''' return self.n2 def get_x(self, i=None): ''' Returns x coordinate array if no argument is provided, the method returns the entire array. Otherwise, ``i`` must be a valid index tuple for the array. :param i: Index tuple (must be a valid index into the array). Optional, if not provided or if ``None`` is given, this returns the entire array. :type i: tuple or None :returns: Value of x coordinate :rtype: ndarray or float ''' if i is None: return self.x else: return self.x[i] def get_y(self, i=None): ''' Returns y coordinate array if no argument is provided, the method returns the entire array. Otherwise, ``i`` must be a valid index tuple for the array. :param i: Index tuple (must be a valid index into the array). Optional, if not provided or if ``None`` is given, this returns the entire array. :type i: tuple or None :returns: Value of y coordinate :rtype: ndarray or float ''' if i is None: return self.y else: return self.y[i] def get_z(self, i=None): ''' Returns z coordinate array if no argument is provided, the method returns the entire array. Otherwise, ``i`` must be a valid index tuple for the array. :param i: Index tuple (must be a valid index into the array). Optional, if not provided or if ``None`` is given, this returns the entire array. :type i: tuple or None :returns: Value of z coordinate :rtype: ndarray or float ''' if i is None: return self.z else: return self.z[i] def __eq__(self, othersurf): ''' compares two surfaces, returns boolean indicating if all coordinates are identical ''' return (np.allclose(self.get_x(), othersurf.get_x()) and np.allclose(self.get_y(), othersurf.get_y()) and np.allclose(self.get_z(), othersurf.get_z())) def has_same_edge(self, edge1, edge2, othersurf): ''' Compares the edges of two surfaces The method compares the edges of two surfaces, using the indices 0-3 to indicate the edges (one argument must be provided for each surface) * 0 means edge where second index is zero * 1 means edge where first index is zero * 2 means edge where second index is n2-1 * 3 means edge where first index is n1-1 Returns a boolean. :param edge1: Edge of first surface to be used. Must be integer 0-3 :type edge1: int :param edge2: Edge of second surface to be used. Must be integer 0-3 :type edge2: int :param othersurf: The second surface, must be a surface :type othersurf: surface :returns: Whether or not the selected edges match :rtype: bool ''' assert type(edge1) is int and edge1 >= 0 and edge1 < 4, "edge1 out of range" assert type(edge2) is int and edge2 >= 0 and edge2 < 4, "edge2 out of range" assert type(othersurf) is surface if (edge1%2 == 0): if (edge1 == 0): edge1index = 0 else: edge1index = self.get_n2()-1 if (edge2%2 == 0): if (edge2 == 0): edge2index = 0 else: edge2index = othersurf.get_n2()-1 return (np.allclose(self.get_x()[:,edge1index], othersurf.get_x()[:,edge2index]) and np.allclose(self.get_y()[:,edge1index], othersurf.get_y()[:,edge2index]) and np.allclose(self.get_z()[:,edge1index], othersurf.get_z()[:,edge2index])) else: if (edge2 == 1): edge2index = 0 else: edge2index = othersurf.get_n1()-1 return (np.allclose(self.get_x()[:,edge1index], othersurf.get_x()[edge2index,:]) and np.allclose(self.get_y()[:,edge1index], othersurf.get_y()[edge2index,:]) and np.allclose(self.get_z()[:,edge1index], othersurf.get_z()[edge2index,:])) else: if (edge1 == 1): edge1index = 0 else: edge1index = self.get_n1()-1 if (edge2%2 == 0): if (edge2 == 0): edge2index = 0 else: edge2index = othersurf.get_n2()-1 return (np.allclose(self.get_x()[edge1index,:], othersurf.get_x()[:,edge2index]) and np.allclose(self.get_y()[edge1index,:], othersurf.get_y()[:,edge2index]) and np.allclose(self.get_z()[edge1index,:], othersurf.get_z()[:,edge2index])) else: if (edge2 == 1): edge2index = 0 else: edge2index = othersurf.get_n1()-1 return (np.allclose(self.get_x()[edge1index,:], othersurf.get_x()[edge2index,:]) and np.allclose(self.get_y()[edge1index,:], othersurf.get_y()[edge2index,:]) and np.allclose(self.get_z()[edge1index,:], othersurf.get_z()[edge2index,:])) def write(self, filename, endian = '='): ''' Write surface to binary file Method writes the surface to a binary file. Input arguments include the desired filename (required) and the byte ordering of the file (``'='`` native, ``'>'`` big endian, ``'<'`` little endian; default is native) :param filename: Filename for output :type filename: str :param endian: Byte ordering of output (optional, default is native) :type endian: str :returns: None ''' assert(endian == '=' or endian == '>' or endian == '<'), "bad value for endianness" f = open(filename, 'wb') f.write(self.get_x().astype(endian+'f8').tobytes()) f.write(self.get_y().astype(endian+'f8').tobytes()) f.write(self.get_z().astype(endian+'f8').tobytes()) f.close() def __str__(self): ''' returns string representation of surface for printing ''' return 'Surface with normal direction ' + self.direction +', n1 = ' + str(self.n1) + ', n2 = ' + str(self.n2) class curve3d(surface): """ The curve3d clas represents a curve in 3 dimensions. Used only to define flat surfaces more easily curve3d is simply a curve with n2 = 1 """ def __init__(self, n1, direction, x, y, z): ''' Initialize a ``surface`` instance Required arguments are n1 and n2, which are number of grid points in each direction, a direction which indicates the surface orientation in computational space (``'x'``, ``'y'``, or ``'z'``), plus three arrays x, y, and z (must have shape ``(n1, n2)`` that hold the coordinates for the new surface. Initializing with a negative number of grid points, with arrays that do not have the correct shape, or with a bad string for the surface orientation will result in an error. :param n1: Number of grid points along first dimension :type n1: int :param n2: Number of grid points along second dimension :type n2: int :param direction: String indicating surface normal direction in computational space (must be ``'x'``, ``'y'``, or ``'z'``) :type direction: str :param x: Array holding surface x coordinates (must have shape ``(n1, n2)``) :type x: ndarray :param y: Array holding surface y coordinates (must have shape ``(n1, n2)``) :type y: ndarray :param z: Array holding surface z coordinates (must have shape ``(n1, n2)``) :type z: ndarray :returns: New surface with specified properties :rtype: surface ''' n1 = int(n1) x = np.reshape(np.array(x), (n1,1)) y = np.reshape(
np.array(y)
numpy.array
import math import numpy as np import scipy.ndimage as nd from pyCudaImageWarp import cudaImageWarp """ Pad the image to have a singleton channel dimension. """ def __pad_channel__(im): ndim = 3 return np.expand_dims(im, ndim) if len(im.shape) < ndim + 1 else im """ As __pad_channel__, but for shapes rather than arrays. """ def __shape_pad_channel__(shape): ndim = 3 if len(shape) < ndim + 1: shape = shape + (1,) * (ndim + 1 - len(shape)) return shape """ Adjust the translation component of an affine transform so that it maps 'point' to 'target'. Does not change the linear component. """ def set_point_target_affine(mat, point, target): mat = mat.astype(float) mat[0:3, 3] = target - mat[0:3, 0:3].dot(point[np.newaxis].T).T return mat def jitter_mask(labels, pQuit=0.5, maxIter=1, pKeep=0.5, pJagged=0.5): """ Slightly modify a set of labels, with randomness. Only modifies the image mask, that is, the labels less than zero. Jitters the perimeter """ # With probability pQuit, do nothing at all if np.random.uniform() <= pQuit: return labels # Do nothing if all the labels are valid invalid = labels == -1 if not np.any(invalid): return labels # Randomly draw the number of iterations iters = int(round(np.random.uniform(low=1, high=maxIter))) # Erode or dilate smoothly if np.random.uniform() > pJagged: if np.random.uniform() > 0.5: invalid = nd.morphology.binary_erosion(invalid, iterations=iters) else: invalid = nd.morphology.binary_dilation(invalid, iterations=iters) else: # Jitter the boundary in each iteration for i in range(iters): # Chose whether to erode or dilate if np.random.uniform() > 0.5: new = nd.morphology.binary_erosion(invalid) else: new = nd.morphology.binary_dilation(invalid) # Get the difference and randomly choose whether to keep them diff = new ^ invalid invalid[diff] = np.random.uniform(size=(np.sum(diff),)) <= pKeep # Return the result result = np.zeros_like(labels) result[invalid] = -1 result[~invalid] = labels[~invalid] return result def get_translation_affine(offset): """ Returns a 4x4 affine matrix (homogeneous coordinates) shifting by the given offset. """ mat = np.eye(4) mat[0:3, 3] = offset return mat """ Check that the image shape is compatible with the xform shape, up to ndim. Ignores channels unless they're >1. """ def __check_shapes__(imShape, xformShape, ndim=3): hasChannels = len(imShape) > ndim and imShape[ndim] > 1 if hasChannels and xformShape[ndim] != imShape[ndim]: raise ValueError("Output shape has %d channels, while input has %d" % \ (xformShape[3], imShape[3])) if len(xformShape[:ndim]) != len(imShape[:ndim]): raise ValueError(""" Input and output shapes have mismatched number of dimensions. Input: %s, Output: %s" """ % (xformShape, imShape)) def __shape_center__(shape): return (np.array(shape[:3]) - 1.0) / 2.0 def __crop_uniform__(im_center, crop_half_range): """ Choose uniformly between valid crops. For compatibility with more complicated methods, returns the displacement and object center, which is just the center of the image in this case. """ crop_offset = np.random.uniform(low=-crop_half_range, high=crop_half_range) crop_center = im_center + crop_offset return crop_center, crop_center def __crop_in_mask__(crop_half_range, mask, printFun=None): """ Crop only in this mask, if at all possible. Returns the displacement the center of the object around which we're trying to crop. """ return __sparse_crop_in_mask__(crop_half_range, mask.shape, np.flatnonzero(mask), printFun) def __sparse_crop_in_mask__(crop_half_range, in_shape, inds, printFun=None): # Compute shape parameters im_center = __shape_center__(in_shape) # Check if the mask is empty if len(inds) == 0: if printFun is not None: printFun("Defaulting to uniform crop...") return __crop_uniform__(im_center, crop_half_range) # Pick a random center in the range center_idx = np.random.choice(inds) object_center = np.array(np.unravel_index(center_idx, in_shape)) # Pick the valid crop with a center closest to this one (clamps coordinates) object_disp = object_center - im_center crop_disp = np.minimum( crop_half_range, np.maximum(object_disp, -crop_half_range) ) crop_center = im_center + crop_disp return crop_center, object_center """ Randomly generates a 3D affine map based on the given parameters. Then applies the map to warp the input image and, optionally, the segmentation. Warping is done on the GPU using pyCudaImageWarp. By default, the output shape is the same as that of the input image. By default, the function only generates the identity map. The affine transform distribution is controlled by the following parameters: inShape - The shape of the input image. seg - The input segmentation, same shape as im (optional). outShape - The output shape (optional). init - The initial linear transform. Defaults to identity. rotMax - Uniform rotation about (x,y,z) axes. For example, (10,10,10) means +-10 degrees in about each axis. pReflect - Chance of reflecting about (x,y,z) axis. For example, (.5, 0, 0) means there is a 50% chance of reflecting about the x-axis. shearMax - Uniform shearing about each axis. For example, (1.1, 1.1, 1.1) shears in each axis in the range (1.1, 1 / 1.1) transMax - Uniform translation in each coordinate. For example, (10, 10, 10) translates by at most +-10 voxels in each coordinate. otherScale - Gaussian-distributed affine transform. This controls the variance of each parameter. randomCrop - Choose whether to randomly crop the image. Possible modes: 'none' - Do no cropping (default). 'uniform' - All crops are equally likely. 'valid' - Like uniform, but only for crops with non-negative label. 'nonzero' - Choose only from crops whose centers have a positive label. Cannot be used if seg is None. noiseLevel - An array of C elements. Decide the amount of noise for each channel using this standard deviation. windowMin - A 2xC matrix, where C is the number of channels in the image, from which the lower window threshold is sampled uniformly. By default, this does nothing. The cth row defines the limits for the cth channel. windowMax - A matrix from which the upper window threshold is sampled uniformly. Same format as winMin. By default, this does nothing. occludeProb - Probability that we randomly take out a chunk of out of the image. oob_label - The label assigned to out-of-bounds pixels (default: 0) printFun - If provided, use this function to print the parameters. oob_image_val - If provided, set out-of-bounds voxels to this value. api - The underlying computation platform. Either 'cuda' or 'scipy'. device - The index of the CUDA device, if provided. All transforms fix the center of the image, except for translation. """ def get_xform(inShape, seg=None, outShape=None, randSeed=None, rotMax=(0, 0, 0), pReflect=(0, 0, 0), init=np.eye(3), shearMax=(1,1,1), transMax=(0,0,0), otherScale=0, randomCrop='none', noiseLevel=None, windowMin=None, windowMax=None, occludeProb=0.0, printFun=None): # Default to the same output as input shape if outShape is None: outShape = inShape # Pad the shapes with missing dimensions inShape = __shape_pad_channel__(inShape) outShape = __shape_pad_channel__(outShape) numChannels = outShape[-1] # Check that the input and output shapes are compatible __check_shapes__(inShape, outShape) # Set the random seed, if specified if randSeed is not None: np.random.seed(randSeed) # ---Randomly generate the desired transforms, in homogeneous coordinates--- # Draw the noise level if noiseLevel is not None: noiseScale = [np.abs(
np.random.normal(scale=n)
numpy.random.normal
import time import os import datetime import pathlib import json import cv2 import carla from leaderboard.autoagents import autonomous_agent from team_code.planner import RoutePlanner import numpy as np from PIL import Image, ImageDraw SAVE_PATH = os.environ.get('SAVE_PATH', None) class BaseAgent(autonomous_agent.AutonomousAgent): def setup(self, path_to_conf_file): self.track = autonomous_agent.Track.SENSORS self.config_path = path_to_conf_file self.step = -1 self.wall_start = time.time() self.initialized = False self._sensor_data = { 'width': 400, 'height': 300, 'fov': 100 } self._3d_bb_distance = 50 self.weather_id = None self.save_path = None if SAVE_PATH is not None: now = datetime.datetime.now() string = pathlib.Path(os.environ['ROUTES']).stem + '_' string += '_'.join(map(lambda x: '%02d' % x, (now.month, now.day, now.hour, now.minute, now.second))) print (string) self.save_path = pathlib.Path(os.environ['SAVE_PATH']) / string self.save_path.mkdir(parents=True, exist_ok=False) for sensor in self.sensors(): if hasattr(sensor, 'save') and sensor['save']: (self.save_path / sensor['id']).mkdir() (self.save_path / '3d_bbs').mkdir(parents=True, exist_ok=True) (self.save_path / 'affordances').mkdir(parents=True, exist_ok=True) (self.save_path / 'measurements').mkdir(parents=True, exist_ok=True) (self.save_path / 'lidar').mkdir(parents=True, exist_ok=True) (self.save_path / 'semantic_lidar').mkdir(parents=True, exist_ok=True) (self.save_path / 'topdown').mkdir(parents=True, exist_ok=True) for pos in ['front', 'left', 'right', 'rear']: for sensor_type in ['rgb', 'seg', 'depth', '2d_bbs']: name = sensor_type + '_' + pos (self.save_path / name).mkdir() def _init(self): self._command_planner = RoutePlanner(7.5, 25.0, 257) self._command_planner.set_route(self._global_plan, True) self.initialized = True self._sensor_data['calibration'] = self._get_camera_to_car_calibration(self._sensor_data) self._sensors = self.sensor_interface._sensors_objects def _get_position(self, tick_data): gps = tick_data['gps'] gps = (gps - self._command_planner.mean) * self._command_planner.scale return gps def sensors(self): return [ { 'type': 'sensor.camera.rgb', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_front' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_front' }, { 'type': 'sensor.camera.depth', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_front' }, { 'type': 'sensor.camera.rgb', 'x': -1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 180.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_rear' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': -1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 180.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_rear' }, { 'type': 'sensor.camera.depth', 'x': -1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 180.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_rear' }, { 'type': 'sensor.camera.rgb', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': -60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_left' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': -60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_left' }, { 'type': 'sensor.camera.depth', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': -60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_left' }, { 'type': 'sensor.camera.rgb', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'rgb_right' }, { 'type': 'sensor.camera.semantic_segmentation', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'seg_right' }, { 'type': 'sensor.camera.depth', 'x': 1.3, 'y': 0.0, 'z': 2.3, 'roll': 0.0, 'pitch': 0.0, 'yaw': 60.0, 'width': self._sensor_data['width'], 'height': self._sensor_data['height'], 'fov': self._sensor_data['fov'], 'id': 'depth_right' }, { 'type': 'sensor.lidar.ray_cast', 'x': 1.3, 'y': 0.0, 'z': 2.5, 'roll': 0.0, 'pitch': 0.0, 'yaw': -90.0, 'id': 'lidar' }, { 'type': 'sensor.lidar.ray_cast_semantic', 'x': 1.3, 'y': 0.0, 'z': 2.5, 'roll': 0.0, 'pitch': 0.0, 'yaw': -90.0, 'id': 'semantic_lidar' }, { 'type': 'sensor.other.imu', 'x': 0.0, 'y': 0.0, 'z': 0.0, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'sensor_tick': 0.05, 'id': 'imu' }, { 'type': 'sensor.other.gnss', 'x': 0.0, 'y': 0.0, 'z': 0.0, 'roll': 0.0, 'pitch': 0.0, 'yaw': 0.0, 'sensor_tick': 0.01, 'id': 'gps' }, { 'type': 'sensor.speedometer', 'reading_frequency': 20, 'id': 'speed' } ] def tick(self, input_data): self.step += 1 affordances = self._get_affordances() traffic_lights = self._find_obstacle('*traffic_light*') stop_signs = self._find_obstacle('*stop*') depth = {} seg = {} bb_3d = self._get_3d_bbs(max_distance=self._3d_bb_distance) bb_2d = {} for pos in ['front', 'left', 'right', 'rear']: seg_cam = 'seg_' + pos depth_cam = 'depth_' + pos _segmentation = np.copy(input_data[seg_cam][1][:, :, 2]) depth[pos] = self._get_depth(input_data[depth_cam][1][:, :, :3]) self._change_seg_tl(_segmentation, depth[pos], traffic_lights) self._change_seg_stop(_segmentation, depth[pos], stop_signs, seg_cam) bb_2d[pos] = self._get_2d_bbs(seg_cam, affordances, bb_3d, _segmentation) #self._draw_2d_bbs(_segmentation, bb_2d[pos]) seg[pos] = _segmentation rgb_front = cv2.cvtColor(input_data['rgb_front'][1][:, :, :3], cv2.COLOR_BGR2RGB) rgb_rear = cv2.cvtColor(input_data['rgb_rear'][1][:, :, :3], cv2.COLOR_BGR2RGB) rgb_left = cv2.cvtColor(input_data['rgb_left'][1][:, :, :3], cv2.COLOR_BGR2RGB) rgb_right = cv2.cvtColor(input_data['rgb_right'][1][:, :, :3], cv2.COLOR_BGR2RGB) gps = input_data['gps'][1][:2] speed = input_data['speed'][1]['speed'] compass = input_data['imu'][1][-1] depth_front = cv2.cvtColor(input_data['depth_front'][1][:, :, :3], cv2.COLOR_BGR2RGB) depth_left = cv2.cvtColor(input_data['depth_left'][1][:, :, :3], cv2.COLOR_BGR2RGB) depth_right = cv2.cvtColor(input_data['depth_right'][1][:, :, :3], cv2.COLOR_BGR2RGB) depth_rear = cv2.cvtColor(input_data['depth_rear'][1][:, :, :3], cv2.COLOR_BGR2RGB) weather = self._weather_to_dict(self._world.get_weather()) return { 'rgb_front': rgb_front, 'seg_front': seg['front'], 'depth_front': depth_front, '2d_bbs_front': bb_2d['front'], 'rgb_rear': rgb_rear, 'seg_rear': seg['rear'], 'depth_rear': depth_rear, '2d_bbs_rear': bb_2d['rear'], 'rgb_left': rgb_left, 'seg_left': seg['left'], 'depth_left': depth_left, '2d_bbs_left': bb_2d['left'], 'rgb_right': rgb_right, 'seg_right': seg['right'], 'depth_right': depth_right, '2d_bbs_right': bb_2d['right'], 'lidar' : input_data['lidar'][1], 'semantic_lidar': input_data['semantic_lidar'][1], 'gps': gps, 'speed': speed, 'compass': compass, 'weather': weather, 'affordances': affordances, '3d_bbs': bb_3d } def save(self, near_node, far_node, near_command, steer, throttle, brake, target_speed, tick_data): frame = self.step // 10 pos = self._get_position(tick_data) theta = tick_data['compass'] speed = tick_data['speed'] weather = tick_data['weather'] data = { 'x': pos[0], 'y': pos[1], 'theta': theta, 'speed': speed, 'target_speed': target_speed, 'x_command': far_node[0], 'y_command': far_node[1], 'command': near_command.value, 'steer': steer, 'throttle': throttle, 'brake': brake, 'weather': weather, 'weather_id': self.weather_id, 'near_node_x': near_node[0], 'near_node_y': near_node[1], 'far_node_x': far_node[0], 'far_node_y': far_node[1], 'is_vehicle_present': self.is_vehicle_present, 'is_pedestrian_present': self.is_pedestrian_present, 'is_red_light_present': self.is_red_light_present, 'is_stop_sign_present': self.is_stop_sign_present, 'should_slow': self.should_slow, 'should_brake': self.should_brake, 'angle': self.angle, 'angle_unnorm': self.angle_unnorm, 'angle_far_unnorm': self.angle_far_unnorm, } measurements_file = self.save_path / 'measurements' / ('%04d.json' % frame) f = open(measurements_file, 'w') json.dump(data, f, indent=4) f.close() for pos in ['front', 'left', 'right', 'rear']: name = 'rgb_' + pos Image.fromarray(tick_data[name]).save(self.save_path / name / ('%04d.png' % frame)) for sensor_type in ['seg', 'depth']: name = sensor_type + '_' + pos Image.fromarray(tick_data[name]).save(self.save_path / name / ('%04d.png' % frame)) for sensor_type in ['2d_bbs']: name = sensor_type + '_' + pos np.save(self.save_path / name / ('%04d.npy' % frame), tick_data[name], allow_pickle=True) Image.fromarray(tick_data['topdown']).save(self.save_path / 'topdown' / ('%04d.png' % frame)) np.save(self.save_path / 'lidar' / ('%04d.npy' % frame), tick_data['lidar'], allow_pickle=True) np.save(self.save_path / 'semantic_lidar' / ('%04d.npy' % frame), tick_data['semantic_lidar'], allow_pickle=True) np.save(self.save_path / '3d_bbs' / ('%04d.npy' % frame), tick_data['3d_bbs'], allow_pickle=True) np.save(self.save_path / 'affordances' / ('%04d.npy' % frame), tick_data['affordances'], allow_pickle=True) def _weather_to_dict(self, carla_weather): weather = { 'cloudiness': carla_weather.cloudiness, 'precipitation': carla_weather.precipitation, 'precipitation_deposits': carla_weather.precipitation_deposits, 'wind_intensity': carla_weather.wind_intensity, 'sun_azimuth_angle': carla_weather.sun_azimuth_angle, 'sun_altitude_angle': carla_weather.sun_altitude_angle, 'fog_density': carla_weather.fog_density, 'fog_distance': carla_weather.fog_distance, 'wetness': carla_weather.wetness, 'fog_falloff': carla_weather.fog_falloff, } return weather def _create_bb_points(self, bb): """ Returns 3D bounding box world coordinates. """ cords = np.zeros((8, 4)) extent = bb[1] loc = bb[0] cords[0, :] = np.array([loc[0] + extent[0], loc[1] + extent[1], loc[2] - extent[2], 1]) cords[1, :] = np.array([loc[0] - extent[0], loc[1] + extent[1], loc[2] - extent[2], 1]) cords[2, :] = np.array([loc[0] - extent[0], loc[1] - extent[1], loc[2] - extent[2], 1]) cords[3, :] = np.array([loc[0] + extent[0], loc[1] - extent[1], loc[2] - extent[2], 1]) cords[4, :] = np.array([loc[0] + extent[0], loc[1] + extent[1], loc[2] + extent[2], 1]) cords[5, :] = np.array([loc[0] - extent[0], loc[1] + extent[1], loc[2] + extent[2], 1]) cords[6, :] = np.array([loc[0] - extent[0], loc[1] - extent[1], loc[2] + extent[2], 1]) cords[7, :] = np.array([loc[0] + extent[0], loc[1] - extent[1], loc[2] + extent[2], 1]) return cords def _translate_tl_state(self, state): if state == carla.TrafficLightState.Red: return 0 elif state == carla.TrafficLightState.Yellow: return 1 elif state == carla.TrafficLightState.Green: return 2 elif state == carla.TrafficLightState.Off: return 3 elif state == carla.TrafficLightState.Unknown: return 4 else: return None def _get_affordances(self): # affordance tl affordances = {} affordances["traffic_light"] = None affecting = self._vehicle.get_traffic_light() if affecting is not None: for light in self._traffic_lights: if light.id == affecting.id: affordances["traffic_light"] = self._translate_tl_state(self._vehicle.get_traffic_light_state()) affordances["stop_sign"] = self._affected_by_stop return affordances def _get_3d_bbs(self, max_distance=50): bounding_boxes = { "traffic_lights": [], "stop_signs": [], "vehicles": [], "pedestrians": [] } bounding_boxes['traffic_lights'] = self._find_obstacle_3dbb('*traffic_light*', max_distance) bounding_boxes['stop_signs'] = self._find_obstacle_3dbb('*stop*', max_distance) bounding_boxes['vehicles'] = self._find_obstacle_3dbb('*vehicle*', max_distance) bounding_boxes['pedestrians'] = self._find_obstacle_3dbb('*walker*', max_distance) return bounding_boxes def _get_2d_bbs(self, seg_cam, affordances, bb_3d, seg_img): """Returns a dict of all 2d boundingboxes given a camera position, affordances and 3d bbs Args: seg_cam ([type]): [description] affordances ([type]): [description] bb_3d ([type]): [description] Returns: [type]: [description] """ bounding_boxes = { "traffic_light": list(), "stop_sign": list(), "vehicles": list(), "pedestrians": list() } if affordances['stop_sign']: baseline = self._get_2d_bb_baseline(self._target_stop_sign) bb = self._baseline_to_box(baseline, seg_cam) if bb is not None: bounding_boxes["stop_sign"].append(bb) if affordances['traffic_light'] is not None: baseline = self._get_2d_bb_baseline(self._vehicle.get_traffic_light(), distance=8) tl_bb = self._baseline_to_box(baseline, seg_cam, height=.5) if tl_bb is not None: bounding_boxes["traffic_light"].append({ "bb": tl_bb, "state": self._translate_tl_state(self._vehicle.get_traffic_light_state()) }) for vehicle in bb_3d["vehicles"]: trig_loc_world = self._create_bb_points(vehicle).T cords_x_y_z = self._world_to_sensor(trig_loc_world, self._get_sensor_position(seg_cam), False) cords_x_y_z = np.array(cords_x_y_z)[:3, :] veh_bb = self._coords_to_2d_bb(cords_x_y_z) if veh_bb is not None: if np.any(seg_img[veh_bb[0][1]:veh_bb[1][1],veh_bb[0][0]:veh_bb[1][0]] == 10): bounding_boxes["vehicles"].append(veh_bb) for pedestrian in bb_3d["pedestrians"]: trig_loc_world = self._create_bb_points(pedestrian).T cords_x_y_z = self._world_to_sensor(trig_loc_world, self._get_sensor_position(seg_cam), False) cords_x_y_z = np.array(cords_x_y_z)[:3, :] ped_bb = self._coords_to_2d_bb(cords_x_y_z) if ped_bb is not None: if np.any(seg_img[ped_bb[0][1]:ped_bb[1][1],ped_bb[0][0]:ped_bb[1][0]] == 4): bounding_boxes["pedestrians"].append(ped_bb) return bounding_boxes def _draw_2d_bbs(self, seg_img, bbs): """For debugging only Args: seg_img ([type]): [description] bbs ([type]): [description] """ for bb_type in bbs: _region = np.zeros(seg_img.shape) if bb_type == "traffic_light": for bb in bbs[bb_type]: _region = np.zeros(seg_img.shape) box = bb['bb'] _region[box[0][1]:box[1][1],box[0][0]:box[1][0]] = 1 seg_img[(_region == 1)] = 23 else: for bb in bbs[bb_type]: _region[bb[0][1]:bb[1][1],bb[0][0]:bb[1][0]] = 1 if bb_type == "stop_sign": seg_img[(_region == 1)] = 26 elif bb_type == "vehicles": seg_img[(_region == 1)] = 10 elif bb_type == "pedestrians": seg_img[(_region == 1)] = 4 def _find_obstacle_3dbb(self, obstacle_type, max_distance=50): """Returns a list of 3d bounding boxes of type obstacle_type. If the object does have a bounding box, this is returned. Otherwise a bb of size 0.5,0.5,2 is returned at the origin of the object. Args: obstacle_type (String): Regular expression max_distance (int, optional): max search distance. Returns all bbs in this radius. Defaults to 50. Returns: List: List of Boundingboxes """ obst = list() _actors = self._world.get_actors() _obstacles = _actors.filter(obstacle_type) for _obstacle in _obstacles: distance_to_car = _obstacle.get_transform().location.distance(self._vehicle.get_location()) if 0 < distance_to_car <= max_distance: if hasattr(_obstacle, 'bounding_box'): loc = _obstacle.bounding_box.location _obstacle.get_transform().transform(loc) extent = _obstacle.bounding_box.extent _rotation_matrix = self.get_matrix(carla.Transform(carla.Location(0,0,0), _obstacle.get_transform().rotation)) rotated_extent = np.squeeze(np.array((np.array([[extent.x, extent.y, extent.z, 1]]) @ _rotation_matrix)[:3])) bb = np.array([ [loc.x, loc.y, loc.z], [rotated_extent[0], rotated_extent[1], rotated_extent[2]] ]) else: loc = _obstacle.get_transform().location bb = np.array([ [loc.x, loc.y, loc.z], [0.5, 0.5, 2] ]) obst.append(bb) return obst def _get_2d_bb_baseline(self, obstacle, distance=2, cam='seg_front'): """Returns 2 coordinates for the baseline for 2d bbs in world coordinates (distance behind trigger volume, as seen from camera) Args: obstacle (Actor): obstacle with distance (int, optional): Distance behind trigger volume. Defaults to 2. Returns: np.ndarray: Baseline """ trigger = obstacle.trigger_volume bb = self._create_2d_bb_points(trigger) trig_loc_world = self._trig_to_world(bb, obstacle, trigger) #self._draw_line(trig_loc_world[:,0], trig_loc_world[:,3], 0.7, color=(0, 255, 255)) cords_x_y_z = np.array(self._world_to_sensor(trig_loc_world, self._get_sensor_position(cam))) indices = (-cords_x_y_z[0]).argsort() # check crooked up boxes if self._get_dist(cords_x_y_z[:,indices[0]],cords_x_y_z[:,indices[1]]) < self._get_dist(cords_x_y_z[:,indices[0]],cords_x_y_z[:,indices[2]]): cords = cords_x_y_z[:, [indices[0],indices[2]]] +
np.array([[distance],[0],[0],[0]])
numpy.array
# -*- coding: utf-8 -*- import numpy as np from scipy.stats import f #fisher from . import dv, zero_finding import lmfit LinAlgError = np.linalg.LinAlgError from .base_functions import (_fold_exp, _coh_gaussian, _fold_exp_and_coh) import scipy.linalg as linalg posv = linalg.get_lapack_funcs(('posv')) def direct_solve(a, b): c, x, info = posv(a, b, lower=False, overwrite_a=True, overwrite_b=False) return x alpha = 0.001 def solve_mat(A, b_mat, method='ridge'): """ Returns the solution for the least squares problem |Ax - b_i|^2. """ if method == 'fast': #return linalg.solve(A.T.dot(A), A.T.dot(b_mat), sym_pos=True) return direct_solve(A.T.dot(A), A.T.dot(b_mat)) elif method == 'ridge': X = np.dot(A.T, A) X.flat[::A.shape[1] + 1] += alpha Xy = np.dot(A.T, b_mat) #return linalg.solve(X, Xy, sym_pos=True, overwrite_a=True) return direct_solve(X, Xy) elif method == 'qr': cq, r = linalg.qr_multiply(A, b_mat) return linalg.solve_triangular(r, cq) elif method == 'cho': c, l = linalg.cho_factor( A.T.dot(A)) return linalg.cho_solve((c, l), A.T.dot(b_mat)) elif method == 'lstsq': return np.linalg.lstsq(A, b_mat)[0] elif method == 'lasso': import sklearn.linear_model as lm s = lm.Lasso(fit_intercept=False) s.alpha = alpha s.fit(A, b_mat) return s.coef_.T elif method == 'enet': import sklearn.linear_model as lm s = lm.ElasticNet(fit_intercept=False, l1_ratio=0.2) s.alpha = alpha s.fit(A, b_mat) return s.coef_.T else: raise ValueError('Unknow lsq method, use ridge, qr, fast or lasso') class Fitter(object): """ The fit object, takes all the need data and allows to fit it. There a two different methods to fit the data. The fast one assumes, that the data has no dispersion, so the base vectors are the same for each channel. It is recommended to first work with the fast version. Note that the fast version is able to handle dispersion by using linear interpolation to transform the data to dispersion free data. The slower version calculates the base vector for each channel, in which the dispersion is integrated. The slower methods using the prefix full. Parameters ---------- wl : ndarray(M) Array containing the wavelength-coordinates. t : ndarray(N) Array containing the time-coordinates. data : ndarry(N,M) The 2d-data to fit. model_coh : bool If the model contains coherent artifacts at the time zero, defaults to False. model_disp : int Degree of the polynomial which models the dispersion. If 1, only a offset is modeled, which is very fast. """ def __init__(self, tup, model_coh=False, model_disp=1): wl, t, data = tup self.t = t self.wl = wl self.data = data self.verbose = False self.model_coh = model_coh self.model_disp = model_disp self.lsq_method = 'ridge' self.num_exponentials = -1 self.weights = None if model_disp > 1: self.org = data[:] self.disp_x = (wl - np.min(wl)) / (wl.max() - wl.min()) self.used_disp = np.zeros(model_disp) def make_model(self, para): """ Calculates the model for given parameters. After calling, the DAS is at self.c, the model at self.model. If the dispersion is modeled, it is done via linear interpolation. This way, the base- vectors and their decomposition are only calculated once. Parameters ---------- para : ndarray(N) para has the following form: [p_0, ..., p_M, w, tau_1, ..., tau_N] Where p are the coefficients of the dispersion polynomial, w is the width of the system response and tau are the decay times. M is equal to self.model_disp. """ self.last_para = np.asarray(para) if self._chk_for_disp_change(para): # Only calculate interpolated data if necessary: self.tn = np.poly1d(para[:self.model_disp])(self.disp_x) tup = dv.tup(self.wl, self.t, self.org) self.data = zero_finding.interpol(tup, self.tn)[2] self.used_disp[:] = para[:self.model_disp] self.num_exponentials = self.last_para.size - self.model_disp - 1 if self.model_disp <= 1: self._build_xvec(para) self.x_vec = np.nan_to_num(self.x_vec) self.c = solve_mat(self.x_vec, self.data, self.lsq_method) self.model = np.dot(self.x_vec, self.c) self.c = self.c.T def _chk_for_disp_change(self, para): if self.model_disp > 1: if np.any(para[:self.model_disp] != self.used_disp): return True return False def _build_xvec(self, para): """ Build the base (the folded functions) for given parameters. """ para = np.array(para) if self.verbose: print(para) try: idx = (para != self._last) except AttributeError: #self._l idx = [True] * len(para) if self.model_disp == 1: x0, w, taus = para[0], para[1], para[2:] tau_idx = idx[2:] else: x0, w, taus = 0., para[0], para[1:] tau_idx = idx[1:] if any(idx[:2]) or self.model_disp or True: if self.model_coh: x_vec = np.zeros((self.t.size, self.num_exponentials + 3)) #print(taus) a, b = _fold_exp_and_coh(self.t[:, None], w, x0, taus) #print(a.shape, b.shape) x_vec[:, -3:] = b[..., 0, :] x_vec[:, :-3] = a[..., 0, :] else: x_vec = _fold_exp(self.t[:, None], w, x0, taus).squeeze() self.x_vec =
np.nan_to_num(x_vec)
numpy.nan_to_num
import unittest import numpy as np import numpy.testing as npt from scipy.linalg import toeplitz from doatools.model.array_elements import CustomNonisotropicSensor from doatools.model.perturbations import LocationErrors, GainErrors, \ PhaseErrors, MutualCoupling from doatools.model.arrays import GridBasedArrayDesign from doatools.model.arrays import UniformLinearArray, CoPrimeArray, \ NestedArray, MinimumRedundancyLinearArray, \ UniformCircularArray, UniformRectangularArray from doatools.model.sources import FarField1DSourcePlacement class Test1DArrayDesigns(unittest.TestCase): def setUp(self): self.wavelength = 1 def test_ula(self): d0 = 2. custom_name = 'TestULA' ula = UniformLinearArray(6, d0, custom_name) self.assertEqual(ula.size, 6) self.assertEqual(ula.ndim, 1) self.assertEqual(ula.name, custom_name) npt.assert_allclose(ula.d0, np.array([d0])) npt.assert_allclose(ula.bases, np.array([[d0]])) npt.assert_array_equal( ula.element_indices, np.array([0, 1, 2, 3, 4, 5]).reshape((-1, 1)) ) npt.assert_array_equal( ula.element_locations, np.array([0., 2., 4., 6., 8., 10.]).reshape((-1, 1)) ) def test_nested(self): d0 = 1. nea = NestedArray(4, 3, d0) self.assertEqual(nea.n1, 4) self.assertEqual(nea.n2, 3) self.assertEqual(nea.size, 7) self.assertEqual(nea.ndim, 1) npt.assert_allclose(nea.d0, np.array([d0])) npt.assert_allclose(nea.bases, np.array([[d0]])) npt.assert_array_equal( nea.element_indices, np.array([0, 1, 2, 3, 4, 9, 14]).reshape((-1, 1)) ) npt.assert_array_equal( nea.element_locations, np.array([0., 1., 2., 3., 4., 9., 14.]).reshape((-1, 1)) ) def test_coprime(self): d0 = self.wavelength / 2 # M cpa1 = CoPrimeArray(3, 5, d0, 'm') self.assertEqual(cpa1.coprime_pair, (3, 5)) self.assertEqual(cpa1.mode, 'm') self.assertEqual(cpa1.size, 7) self.assertEqual(cpa1.ndim, 1) npt.assert_array_equal(cpa1.d0, np.array([d0])) npt.assert_array_equal(cpa1.bases, np.array([[d0]])) npt.assert_array_equal( cpa1.element_indices, np.array([0, 3, 6, 9, 12, 5, 10]).reshape((-1, 1)) ) npt.assert_allclose( cpa1.element_locations, np.array([0., 1.5, 3., 4.5, 6., 2.5, 5.]).reshape((-1, 1)) ) # 2M cpa2 = CoPrimeArray(3, 5, d0, '2m') self.assertEqual(cpa2.coprime_pair, (3, 5)) self.assertEqual(cpa2.mode, '2m') self.assertEqual(cpa2.size, 10) self.assertEqual(cpa2.ndim, 1) npt.assert_array_equal(cpa2.d0, np.array([d0])) npt.assert_array_equal(cpa2.bases, np.array([[d0]])) npt.assert_array_equal( cpa2.element_indices, np.array([0, 3, 6, 9, 12, 5, 10, 15, 20, 25]).reshape((-1, 1)) ) npt.assert_allclose( cpa2.element_locations, np.array([0., 1.5, 3., 4.5, 6., 2.5, 5., 7.5, 10., 12.5]).reshape((-1, 1)) ) def test_mra(self): custom_name = 'TestMRA' d0 = self.wavelength / 2 mra = MinimumRedundancyLinearArray(5, d0, custom_name) self.assertEqual(mra.size, 5) self.assertEqual(mra.ndim, 1) npt.assert_array_equal(mra.d0, np.array([d0])) npt.assert_array_equal(mra.bases,
np.array([[d0]])
numpy.array
import numpy as np def confusion_matrix_binary(y_true,y_pred): """ Confusion matrix is an evaluation metric that is used to output the values of true positive and false negative (row wise). In this function the actual classes come along the rows. :param y_true: true class labels :param y_pred: predicted class labels :return: Returns the unique classes which points out the row-order of confusion matrix and the confusion matrix """ y_true =
np.array(y_true)
numpy.array
# You are at the top. If you attempt to go any higher # you will go beyond the known limits of the code # universe where there are most certainly monsters # might be able to get a speedup where I'm appending move and -move # to do: # use point raycaster to make a cloth_wrap option # self colisions # maybe do dynamic margins for when cloth is moving fast # object collisions # collisions need to properly exclude pinned and vertex pinned # add bending springs # add curl by shortening bending springs on one axis or diagonal # independantly scale bending springs and structural to create buckling # option to cache animation? # Custom Source shape option for animated shapes # collisions: # Only need to check one of the edges for groups connected to a vertex # for edge to face intersections... # figure out where the edge hit the face # figure out which end of the edge is inside the face # move along the face normal to the surface for the point inside. # if I reflect by flipping the vel around the face normal # if it collides on the bounce it will get caught on the next iteration # Sewing # Could create super sewing that doesn't use edges but uses scalars along the edge to place virtual points # sort of a barycentric virtual spring. Could even use it to sew to faces if I can think of a ui for where on the face. # On an all triangle mesh, where sew edges come together there are long strait lines. This probably causes those edges to fold. # in other words... creating diagonal springs between these edges will not solve the fold problem. Bend spring could do this. # Bend springs: # need to speed things up # When faces have various sizes, the forces don't add up # self collision # where points are pinned, stuff is all jittery '''??? Would it make sense to do self collisions with virtual edges ???''' '''??? Could do dynamic collision margins for stuff moving fast ???''' bl_info = { "name": "Modeling Cloth", "author": "<NAME> (<EMAIL>.com), <NAME> (@ucupumar)", "version": (1, 0), "blender": (2, 79, 0), "location": "View3D > Extended Tools > Modeling Cloth", "description": "Maintains the surface area of an object so it behaves like cloth", "warning": "There might be an angry rhinoceros behind you", "wiki_url": "", "category": '3D View'} import bpy import bmesh import numpy as np from numpy import newaxis as nax from bpy_extras import view3d_utils from bpy.props import * from bpy.app.handlers import persistent from mathutils import * import time, sys #enable_numexpr = True enable_numexpr = False if enable_numexpr: import numexpr as ne you_have_a_sense_of_humor = False #you_have_a_sense_of_humor = True if you_have_a_sense_of_humor: import antigravity def get_co(ob, arr=None, key=None): # key """Returns vertex coords as N x 3""" c = len(ob.data.vertices) if arr is None: arr = np.zeros(c * 3, dtype=np.float32) if key is not None: ob.data.shape_keys.key_blocks[key].data.foreach_get('co', arr.ravel()) arr.shape = (c, 3) return arr ob.data.vertices.foreach_get('co', arr.ravel()) arr.shape = (c, 3) return arr def get_proxy_co(ob, arr, me): """Returns vertex coords with modifier effects as N x 3""" if arr is None: arr = np.zeros(len(me.vertices) * 3, dtype=np.float32) arr.shape = (arr.shape[0] //3, 3) c = arr.shape[0] me.vertices.foreach_get('co', arr.ravel()) arr.shape = (c, 3) return arr def triangulate(me, ob=None): """Requires a mesh. Returns an index array for viewing co as triangles""" obm = bmesh.new() obm.from_mesh(me) bmesh.ops.triangulate(obm, faces=obm.faces) #obm.to_mesh(me) count = len(obm.faces) #tri_idx = np.zeros(count * 3, dtype=np.int32) #me.polygons.foreach_get('vertices', tri_idx) tri_idx = np.array([[v.index for v in f.verts] for f in obm.faces]) # Identify bend spring groups. Each edge gets paired with two points on tips of tris around edge # Restricted to edges with two linked faces on a triangulated version of the mesh if ob is not None: link_ed = [e for e in obm.edges if len(e.link_faces) == 2] ob.bend_eidx = np.array([[e.verts[0].index, e.verts[1].index] for e in link_ed]) fv = np.array([[[v.index for v in f.verts] for f in e.link_faces] for e in link_ed]) fv.shape = (fv.shape[0],6) ob.bend_tips = np.array([[idx for idx in fvidx if idx not in e] for e, fvidx in zip(ob.bend_eidx, fv)]) obm.free() return tri_idx#.reshape(count, 3) def tri_normals_in_place(col, tri_co): """Takes N x 3 x 3 set of 3d triangles and returns non-unit normals and origins""" col.origins = tri_co[:,0] col.cross_vecs = tri_co[:,1:] - col.origins[:, nax] col.normals = np.cross(col.cross_vecs[:,0], col.cross_vecs[:,1]) col.nor_dots = np.einsum("ij, ij->i", col.normals, col.normals) col.normals /= np.sqrt(col.nor_dots)[:, nax] def get_tri_normals(tr_co): """Takes N x 3 x 3 set of 3d triangles and returns non-unit normals and origins""" origins = tr_co[:,0] cross_vecs = tr_co[:,1:] - origins[:, nax] return cross_vecs, np.cross(cross_vecs[:,0], cross_vecs[:,1]), origins def closest_points_edge(vec, origin, p): '''Returns the location of the point on the edge''' vec2 = p - origin d = (vec2 @ vec) / (vec @ vec) cp = vec * d[:, nax] return cp, d def proxy_in_place(col, me): """Overwrite vert coords with modifiers in world space""" me.vertices.foreach_get('co', col.co.ravel()) col.co = apply_transforms(col.ob, col.co) def apply_rotation(col): """When applying vectors such as normals we only need to rotate""" m = np.array(col.ob.matrix_world) mat = m[:3, :3].T col.v_normals = col.v_normals @ mat def proxy_v_normals_in_place(col, world=True, me=None): """Overwrite vert coords with modifiers in world space""" me.vertices.foreach_get('normal', col.v_normals.ravel()) if world: apply_rotation(col) def proxy_v_normals(ob, me): """Overwrite vert coords with modifiers in world space""" arr = np.zeros(len(me.vertices) * 3, dtype=np.float32) me.vertices.foreach_get('normal', arr) arr.shape = (arr.shape[0] //3, 3) m = np.array(ob.matrix_world, dtype=np.float32) mat = m[:3, :3].T # rotates backwards without T return arr @ mat def apply_transforms(ob, co): """Get vert coords in world space""" m = np.array(ob.matrix_world, dtype=np.float32) mat = m[:3, :3].T # rotates backwards without T loc = m[:3, 3] return co @ mat + loc def apply_in_place(ob, arr, cloth): """Overwrite vert coords in world space""" m = np.array(ob.matrix_world, dtype=np.float32) mat = m[:3, :3].T # rotates backwards without T loc = m[:3, 3] arr[:] = arr @ mat + loc #cloth.co = cloth.co @ mat + loc def applied_key_co(ob, arr=None, key=None): """Get vert coords in world space""" c = len(ob.data.vertices) if arr is None: arr = np.zeros(c * 3, dtype=np.float32) ob.data.shape_keys.key_blocks[key].data.foreach_get('co', arr) arr.shape = (c, 3) m = np.array(ob.matrix_world) mat = m[:3, :3].T # rotates backwards without T loc = m[:3, 3] return co @ mat + loc def revert_transforms(ob, co): """Set world coords on object. Run before setting coords to deal with object transforms if using apply_transforms()""" m = np.linalg.inv(ob.matrix_world) mat = m[:3, :3].T # rotates backwards without T loc = m[:3, 3] return co @ mat + loc def revert_in_place(ob, co): """Revert world coords to object coords in place.""" m = np.linalg.inv(ob.matrix_world) mat = m[:3, :3].T # rotates backwards without T loc = m[:3, 3] co[:] = co @ mat + loc def revert_rotation(ob, co): """When reverting vectors such as normals we only need to rotate""" #m = np.linalg.inv(ob.matrix_world) m = np.array(ob.matrix_world) mat = m[:3, :3] # rotates backwards without T return co @ mat def get_last_object(): """Finds cloth objects for keeping settings active while selecting other objects like pins""" cloths = [i for i in bpy.data.objects if i.mclo.enable] # so we can select an empty and keep the settings menu up if bpy.context.object.mclo.enable: return cloths, bpy.context.object if len(cloths) > 0: ob = bpy.context.scene.mclo.last_object return cloths, ob return None, None def get_poly_centers(ob, type=np.float32, mesh=None): mod = False m_count = len(ob.modifiers) if m_count > 0: show = np.zeros(m_count, dtype=np.bool) ren_set = np.copy(show) ob.modifiers.foreach_get('show_render', show) ob.modifiers.foreach_set('show_render', ren_set) mod = True p_count = len(mesh.polygons) center = np.zeros(p_count * 3, dtype=type) mesh.polygons.foreach_get('center', center) center.shape = (p_count, 3) if mod: ob.modifiers.foreach_set('show_render', show) return center def simple_poly_centers(ob, key=None): if key is not None: s_key = ob.data.shape_keys.key_blocks[key].data return np.squeeze([[np.mean([ob.data.vertices[i].co for i in p.vertices], axis=0)] for p in ob.data.polygons]) def get_poly_normals(ob, type=np.float32, mesh=None): mod = False m_count = len(ob.modifiers) if m_count > 0: show = np.zeros(m_count, dtype=np.bool) ren_set = np.copy(show) ob.modifiers.foreach_get('show_render', show) ob.modifiers.foreach_set('show_render', ren_set) mod = True p_count = len(mesh.polygons) normal = np.zeros(p_count * 3, dtype=type) mesh.polygons.foreach_get('normal', normal) normal.shape = (p_count, 3) if mod: ob.modifiers.foreach_set('show_render', show) return normal def get_v_normals(ob, arr, mesh): """Since we're reading from a shape key we have to use a proxy mesh.""" mod = False m_count = len(ob.modifiers) if m_count > 0: show = np.zeros(m_count, dtype=np.bool) ren_set = np.copy(show) ob.modifiers.foreach_get('show_render', show) ob.modifiers.foreach_set('show_render', ren_set) mod = True #v_count = len(mesh.vertices) #normal = np.zeros(v_count * 3)#, dtype=type) mesh.vertices.foreach_get('normal', arr.ravel()) #normal.shape = (v_count, 3) if mod: ob.modifiers.foreach_set('show_render', show) def get_v_nor(ob, nor_arr): ob.data.vertices.foreach_get('normal', nor_arr.ravel()) return nor_arr def closest_point_edge(e1, e2, p): '''Returns the location of the point on the edge''' vec1 = e2 - e1 vec2 = p - e1 d = np.dot(vec2, vec1) / np.dot(vec1, vec1) cp = e1 + vec1 * d return cp def create_vertex_groups(groups=['common', 'not_used'], weights=[0.0, 0.0], ob=None): '''Creates vertex groups and sets weights. "groups" is a list of strings for the names of the groups. "weights" is a list of weights corresponding to the strings. Each vertex is assigned a weight for each vertex group to avoid calling vertex weights that are not assigned. If the groups are already present, the previous weights will be preserved. To reset weights delete the created groups''' if ob is None: ob = bpy.context.object vg = ob.vertex_groups for g in range(0, len(groups)): if groups[g] not in vg.keys(): # Don't create groups if there are already there vg.new(groups[g]) vg[groups[g]].add(range(0,len(ob.data.vertices)), weights[g], 'REPLACE') else: vg[groups[g]].add(range(0,len(ob.data.vertices)), 0, 'ADD') # This way we avoid resetting the weights for existing groups. def get_bmesh(obj=None): ob = get_last_object()[1] if ob is None: ob = obj obm = bmesh.new() if ob.mode == 'OBJECT': obm.from_mesh(ob.data) elif ob.mode == 'EDIT': obm = bmesh.from_edit_mesh(ob.data) return obm def get_minimal_edges(ob): obm = get_bmesh(ob) obm.edges.ensure_lookup_table() obm.verts.ensure_lookup_table() obm.faces.ensure_lookup_table() # get sew edges: sew = [i.index for i in obm.edges if len(i.link_faces)==0] # so if I have a vertex with one or more sew edges attached # I need to get the mean location of all verts shared by those edges # every one of those verts needs to move towards the total mean # get linear edges e_count = len(obm.edges) eidx = np.zeros(e_count * 2, dtype=np.int32) e_bool = np.zeros(e_count, dtype=np.bool) e_bool[sew] = True ob.data.edges.foreach_get('vertices', eidx) eidx.shape = (e_count, 2) # get diagonal edges: diag_eidx = [] start = 0 stop = 0 step_size = [len(i.verts) for i in obm.faces] p_v_count = np.sum(step_size) p_verts = np.ones(p_v_count, dtype=np.int32) ob.data.polygons.foreach_get('vertices', p_verts) # can only be understood on a good day when the coffee flows (uses rolling and slicing) # creates uniqe diagonal edge sets for f in obm.faces: fv_count = len(f.verts) stop += fv_count if fv_count > 3: # triangles are already connected by linear springs skip = 2 f_verts = p_verts[start:stop] for fv in range(len(f_verts)): if fv > 1: # as we go around the loop of verts in face we start overlapping skip = fv + 1 # this lets us skip the overlap so we don't have mirror duplicates roller = np.roll(f_verts, fv) for r in roller[skip:-1]: diag_eidx.append([roller[0], r]) start += fv_count # eidx groups sew_eidx = eidx[e_bool] lin_eidx = eidx[~e_bool] diag_eidx = np.array(diag_eidx) # deal with sew verts connected to more than one edge s_t_rav = sew_eidx.T.ravel() s_uni, s_inv, s_counts = np.unique(s_t_rav,return_inverse=True, return_counts=True) s_multi = s_counts > 1 multi_groups = None if np.any(s_counts): multi_groups = [] ls = sew_eidx[:,0] rs = sew_eidx[:,1] for i in s_uni[s_multi]: gr = np.array([i]) gr = np.append(gr, ls[rs==i]) gr = np.append(gr, rs[ls==i]) multi_groups.append(gr) return lin_eidx, diag_eidx, sew_eidx, multi_groups def add_remove_virtual_springs(remove=False): ob = get_last_object()[1] cloth = get_cloth_data(ob) obm = get_bmesh() obm.verts.ensure_lookup_table() count = len(obm.verts) idxer = np.arange(count, dtype=np.int32) sel = np.array([v.select for v in obm.verts]) selected = idxer[sel] virtual_springs = np.array([[vs.vertex_id_1, vs.vertex_id_2] for vs in ob.mclo.virtual_springs]) if virtual_springs.shape[0] == 0: virtual_springs.shape = (0, 2) if remove: ls = virtual_springs[:, 0] in_sel = np.in1d(ls, idxer[sel]) deleter = np.arange(ls.shape[0], dtype=np.int32)[in_sel] for i in reversed(deleter): ob.mclo.virtual_springs.remove(i) return existing = np.append(cloth.eidx, virtual_springs, axis=0) flip = existing[:, ::-1] existing = np.append(existing, flip, axis=0) ls = existing[:,0] #springs = [] for i in idxer[sel]: # to avoid duplicates: # where this vert occurs on the left side of the existing spring list v_in = existing[i == ls] v_in_r = v_in[:,1] not_in = selected[~np.in1d(selected, v_in_r)] idx_set = not_in[not_in != i] for sv in idx_set: #springs.append([i, sv]) new_vs = ob.mclo.virtual_springs.add() new_vs.vertex_id_1 = i new_vs.vertex_id_2 = sv # gets appended to eidx in the cloth_init function after calling get connected polys in case geometry changes def generate_guide_mesh(): """Makes the arrow that appears when creating pins""" verts = [[0.0, 0.0, 0.0], [-0.01, -0.01, 0.1], [-0.01, 0.01, 0.1], [0.01, -0.01, 0.1], [0.01, 0.01, 0.1], [-0.03, -0.03, 0.1], [-0.03, 0.03, 0.1], [0.03, 0.03, 0.1], [0.03, -0.03, 0.1], [-0.01, -0.01, 0.2], [-0.01, 0.01, 0.2], [0.01, -0.01, 0.2], [0.01, 0.01, 0.2]] edges = [[0, 5], [5, 6], [6, 7], [7, 8], [8, 5], [1, 2], [2, 4], [4, 3], [3, 1], [5, 1], [2, 6], [4, 7], [3, 8], [9, 10], [10, 12], [12, 11], [11, 9], [3, 11], [9, 1], [2, 10], [12, 4], [6, 0], [7, 0], [8, 0]] faces = [[0, 5, 6], [0, 6, 7], [0, 7, 8], [0, 8, 5], [1, 3, 11, 9], [1, 2, 6, 5], [2, 4, 7, 6], [4, 3, 8, 7], [3, 1, 5, 8], [12, 10, 9, 11], [4, 2, 10, 12], [3, 4, 12, 11], [2, 1, 9, 10]] name = 'ModelingClothPinGuide' if 'ModelingClothPinGuide' in bpy.data.objects: mesh_ob = bpy.data.objects['ModelingClothPinGuide'] else: mesh = bpy.data.meshes.new('ModelingClothPinGuide') mesh.from_pydata(verts, edges, faces) mesh.update() mesh_ob = bpy.data.objects.new(name, mesh) bpy.context.scene.objects.link(mesh_ob) mesh_ob.show_x_ray = True return mesh_ob def create_guide(): """Spawns the guide""" if 'ModelingClothPinGuide' in bpy.data.objects: mesh_ob = bpy.data.objects['ModelingClothPinGuide'] return mesh_ob mesh_ob = generate_guide_mesh() bpy.context.scene.objects.active = mesh_ob bpy.ops.object.material_slot_add() if 'ModelingClothPinGuide' in bpy.data.materials: mat = bpy.data.materials['ModelingClothPinGuide'] else: mat = bpy.data.materials.new(name='ModelingClothPinGuide') mat.use_transparency = True mat.alpha = 0.35 mat.emit = 2 mat.game_settings.alpha_blend = 'ALPHA_ANTIALIASING' mat.diffuse_color = (1, 1, 0) mesh_ob.material_slots[0].material = mat return mesh_ob def delete_guide(): """Deletes the arrow""" if 'ModelingClothPinGuide' in bpy.data.objects: bpy.data.objects.remove(bpy.data.objects['ModelingClothPinGuide']) if 'ModelingClothPinGuide' in bpy.data.meshes: guide_mesh = bpy.data.meshes['ModelingClothPinGuide'] guide_mesh.user_clear() bpy.data.meshes.remove(guide_mesh) def scale_source(multiplier): """grow or shrink the source shape""" ob = get_last_object()[1] if ob is not None: if ob.mclo.enable: count = len(ob.data.vertices) co = np.zeros(count*3, dtype=np.float32) ob.data.shape_keys.key_blocks['modeling cloth source key'].data.foreach_get('co', co) co.shape = (count, 3) mean = np.mean(co, axis=0) co -= mean co *= multiplier co += mean ob.data.shape_keys.key_blocks['modeling cloth source key'].data.foreach_set('co', co.ravel()) cloth = get_cloth_data(ob) if hasattr(cloth, 'cy_dists'): cloth.cy_dists *= multiplier def reset_shapes(ob=None): """Sets the modeling cloth key to match the source key. Will regenerate shape keys if they are missing""" if ob is None: if bpy.context.object.mclo.enable: ob = bpy.context.object else: ob = bpy.context.scene.mclo.last_object if ob.data.shape_keys == None: ob.shape_key_add('Basis') if 'modeling cloth source key' not in ob.data.shape_keys.key_blocks: ob.shape_key_add('modeling cloth source key') if 'modeling cloth key' not in ob.data.shape_keys.key_blocks: ob.shape_key_add('modeling cloth key') ob.data.shape_keys.key_blocks['modeling cloth key'].value=1 keys = ob.data.shape_keys.key_blocks count = len(ob.data.vertices) co = np.zeros(count * 3, dtype=np.float32) keys['Basis'].data.foreach_get('co', co) #co = applied_key_co(ob, None, 'modeling cloth source key') #keys['modeling cloth source key'].data.foreach_set('co', co) keys['modeling cloth key'].data.foreach_set('co', co) # reset the data stored in the class cloth = get_cloth_data(ob) cloth.vel[:] = 0 co.shape = (co.shape[0]//3, 3) cloth.co = co keys['modeling cloth key'].mute = True keys['modeling cloth key'].mute = False def get_spring_mix(ob, eidx): rs = [] ls = [] minrl = [] for i in eidx: r = eidx[eidx == i[1]].shape[0] l = eidx[eidx == i[0]].shape[0] rs.append (min(r,l)) ls.append (min(r,l)) mix = 1 / np.array(rs + ls, dtype=np.float32) ** 1.2 return mix def collision_data_update(self, context): ob = self.id_data if ob.mclo.self_collision: create_cloth_data(ob) def refresh_noise(self, context): ob = self.id_data cloth = get_cloth_data(ob) if cloth: zeros = np.zeros(cloth.count, dtype=np.float32) random = np.random.random(cloth.count) zeros[:] = random cloth.noise = ((zeros + -0.5) * ob.mclo.noise * 0.1)[:, nax] def generate_wind(wind_vec, ob, cloth): """Maintains a wind array and adds it to the cloth vel""" tri_nor = cloth.normals # non-unit calculated by tri_normals_in_place() per each triangle w_vec = revert_rotation(ob, wind_vec) turb = ob.mclo.turbulence if turb != 0: w_vec += np.random.random(3).astype(np.float32) * turb * np.mean(w_vec) * 4 # only blow on verts facing the wind perp = np.abs(tri_nor @ w_vec) cloth.wind += w_vec cloth.wind *= perp[:, nax][:, nax] # reshape for add.at shape = cloth.wind.shape cloth.wind.shape = (shape[0] * 3, 3) cloth.wind *= cloth.tri_mix np.add.at(cloth.vel, cloth.tridex.ravel(), cloth.wind) cloth.wind.shape = shape def generate_inflate(ob, cloth): """Blow it up baby!""" tri_nor = cloth.normals #* ob.mclo.inflate # non-unit calculated by tri_normals_in_place() per each triangle #tri_nor /= np.einsum("ij, ij->i", tri_nor, tri_nor)[:, nax] # reshape for add.at shape = cloth.inflate.shape cloth.inflate += tri_nor[:, nax] * ob.mclo.inflate# * cloth.tri_mix cloth.inflate.shape = (shape[0] * 3, 3) cloth.inflate *= cloth.tri_mix np.add.at(cloth.vel, cloth.tridex.ravel(), cloth.inflate) cloth.inflate.shape = shape cloth.inflate *= 0 def get_quat(rad, axis): theta = (rad * 0.5) w = np.cos(theta) q_axis = axis * np.sin(theta)[:, nax] return w, q_axis def q_rotate(co, w, axis): """Takes an N x 3 numpy array and returns that array rotated around the axis by the angle in radians w. (standard quaternion)""" move1 = np.cross(axis, co) move2 = np.cross(axis, move1) move1 *= w[:, nax] return co + (move1 + move2) * 2 def bend_springs(cloth, co, measure=None): bend_eidx, tips = cloth.bend_eidx, cloth.bend_tips tips_co = co[tips] bls, brs = bend_eidx[:,0], bend_eidx[:, 1] b_oris = co[bls] be_vecs = co[brs] - b_oris te_vecs = tips_co - b_oris[:, nax] bcp_dots = np.einsum('ij,ikj->ik', be_vecs, te_vecs) be_dots = np.einsum('ij,ij->i', be_vecs, be_vecs) b_div = np.nan_to_num(bcp_dots / be_dots[:, nax]) tcp = be_vecs[:, nax] * b_div[:, :, nax] # tip vecs from cp tcp_vecs = te_vecs - tcp tcp_dots = np.einsum('ijk,ijk->ij',tcp_vecs, tcp_vecs) u_tcp_vecs = tcp_vecs / np.sqrt(tcp_dots)[:, :, nax] u_tcp_ls = u_tcp_vecs[:, 0] u_tcp_rs = u_tcp_vecs[:, 1] # dot of unit tri tips around axis angle_dot = np.einsum('ij,ij->i', u_tcp_ls, u_tcp_rs) #paralell = angle_dot < -.9999999 angle = np.arccos(np.clip(angle_dot, -1, 1)) # values outside and arccos gives nan #angle = np.arccos(angle_dot) # values outside and arccos gives nan # get the angle sign tcp_cross = np.cross(u_tcp_vecs[:, 0], u_tcp_vecs[:, 1]) sign = np.sign(np.einsum('ij,ij->i', be_vecs, tcp_cross)) if measure is None: s = np.arccos(angle_dot) s *= sign s[angle_dot < -.9999999] = np.pi return s angle *= sign # rotate edges with quaternypoos u_be_vecs = be_vecs / np.sqrt(be_dots)[:, nax] b_dif = angle - measure l_ws, l_axes = get_quat(b_dif, u_be_vecs) r_ws, r_axes = l_ws, -l_axes # move tcp vecs so their origin is in the middle: #u_tcp_vecs *= 0.5 # should I rotate the unit vecs or the source? # rotating the unit vecs here. #stiff = cloth.ob.modeling_cloth_bend_stiff * 0.0057 stiff = cloth.ob.mclo.bend_stiff * 0.0057 rot_ls = q_rotate(u_tcp_ls, l_ws, l_axes) l_force = (rot_ls - u_tcp_ls) * stiff rot_rs = q_rotate(u_tcp_rs, r_ws, r_axes) r_force = (rot_rs - u_tcp_rs) * stiff np.add.at(cloth.co, tips[:, 0], l_force) np.add.at(cloth.co, tips[:, 1], r_force) np.subtract.at(cloth.co, bend_eidx.ravel(), np.tile(r_force * .5, 2).reshape(r_force.shape[0] * 2, 3)) np.subtract.at(cloth.co, bend_eidx.ravel(), np.tile(l_force * .5, 2).reshape(l_force.shape[0] * 2, 3)) return cloth.co[tips[:, 0]] += l_force cloth.co[tips[:, 1]] += r_force #cloth.co[bend_eidx] -= l_force cloth.co[bend_eidx] -= r_force[:, nax] cloth.co[bend_eidx] -= l_force[:, nax] #cloth.co[brs] -= r_force #print("bend here") # will need to read bend springs continuously when using # a dynamic source shape. Guess I should do that now... # need the angle at each edge # need to get the tips of each tri around each edge # should be a pair everywhere there is a link face in # the tri bmesh """ With no sign I just get the dot in radians. Rotation should move towards the shortest distance to the same dot in radians. Without getting the sign at all, it will always rotate in the same direction to go back to the target. By multiplying the dif by the sign, I can make it spin the other way to go back to the target dot in rads """ # sewing functions ---------------->>> def create_sew_edges(): bpy.ops.mesh.bridge_edge_loops() bpy.ops.mesh.delete(type='ONLY_FACE') return #highlight a sew edge #compare vertex counts #subdivide to match counts #distribute and smooth back into mesh #create sew lines # sewing functions ---------------->>> def check_and_get_pins_and_hooks(ob): scene = bpy.context.scene pins = [] hooks = [] cull_ids = [] for i, pin in enumerate(ob.mclo.pins): # Check if hook object still exists if not pin.hook or (pin.hook and not scene.objects.get(pin.hook.name)): cull_ids.append(i) else: #vert = ob.data.vertices[pin.vertex_id] pins.append(pin.vertex_id) hooks.append(pin.hook) # Delete missing hooks pointers for i in reversed(cull_ids): pin = ob.mclo.pins[i] if pin.hook: bpy.data.objects.remove(pin.hook) ob.mclo.pins.remove(i) return pins, hooks class ClothData: pass def create_cloth_data(ob): """Creates instance of cloth object with attributes needed for engine""" scene = bpy.context.scene data = scene.modeling_cloth_data_set # Try to get the cloth data first try: cloth = data[ob.name] except: # Search for possible name changes cloth = None for ob_name, c in data.items(): if c.ob == ob: # Rename the key data[ob.name] = data.pop(ob_name) cloth = data[ob.name] break # If cloth still not found if not cloth: cloth = ClothData() data[ob.name] = cloth cloth.ob = ob # get proxy object #proxy = ob.to_mesh(bpy.context.scene, False, 'PREVIEW') # ---------------- scene.objects.active = ob cloth.idxer = np.arange(len(ob.data.vertices), dtype=np.int32) # data only accesible through object mode mode = ob.mode if mode == 'EDIT': bpy.ops.object.mode_set(mode='OBJECT') # data is read from a source shape and written to the display shape so we can change the target springs by changing the source shape #cloth.name = ob.name if ob.data.shape_keys == None: ob.shape_key_add('Basis') if 'modeling cloth source key' not in ob.data.shape_keys.key_blocks: ob.shape_key_add('modeling cloth source key') if 'modeling cloth key' not in ob.data.shape_keys.key_blocks: ob.shape_key_add('modeling cloth key') ob.data.shape_keys.key_blocks['modeling cloth key'].value=1 cloth.count = len(ob.data.vertices) # we can set a large group's pin state using the vertex group. No hooks are used here if 'modeling_cloth_pin' not in ob.vertex_groups: cloth.pin_group = create_vertex_groups(groups=['modeling_cloth_pin'], weights=[0.0], ob=None) for i in range(cloth.count): try: ob.vertex_groups['modeling_cloth_pin'].weight(i) except RuntimeError: # assign a weight of zero ob.vertex_groups['modeling_cloth_pin'].add(range(0,len(ob.data.vertices)), 0.0, 'REPLACE') cloth.pin_bool = ~np.array([ob.vertex_groups['modeling_cloth_pin'].weight(i) for i in range(cloth.count)], dtype=np.bool) # unique edges------------>>> uni_edges = get_minimal_edges(ob) if len(uni_edges[1]) > 0: cloth.eidx = np.append(uni_edges[0], uni_edges[1], axis=0) else: cloth.eidx = uni_edges[0] #cloth.eidx = uni_edges[0][0] if len(ob.mclo.virtual_springs) > 0: virtual_springs = np.array([[vs.vertex_id_1, vs.vertex_id_2] for vs in ob.mclo.virtual_springs]) cloth.eidx = np.append(cloth.eidx, virtual_springs, axis=0) cloth.eidx_tiler = cloth.eidx.T.ravel() mixology = get_spring_mix(ob, cloth.eidx) #eidx1 = np.copy(cloth.eidx) cloth.pindexer = np.arange(cloth.count, dtype=np.int32)[cloth.pin_bool] cloth.unpinned = np.in1d(cloth.eidx_tiler, cloth.pindexer) cloth.eidx_tiler = cloth.eidx_tiler[cloth.unpinned] cloth.sew_edges = uni_edges[2] cloth.multi_sew = uni_edges[3] # unique edges------------>>> #cloth.pcount = pindexer.shape[0] cloth.sco = np.zeros(cloth.count * 3, dtype=np.float32) ob.data.shape_keys.key_blocks['modeling cloth source key'].data.foreach_get('co', cloth.sco) cloth.sco.shape = (cloth.count, 3) cloth.co = np.zeros(cloth.count * 3, dtype=np.float32) ob.data.shape_keys.key_blocks['modeling cloth key'].data.foreach_get('co', cloth.co) cloth.co.shape = (cloth.count, 3) co = cloth.co cloth.vel = np.zeros(cloth.count * 3, dtype=np.float32) cloth.vel.shape = (cloth.count, 3) cloth.vel_start = np.zeros(cloth.count * 3, dtype=np.float32) cloth.vel_start.shape = (cloth.count, 3) cloth.self_col_vel = np.copy(co) cloth.v_normals = np.zeros(co.shape, dtype=np.float32) #get_v_normals(ob, cloth.v_normals, proxy) #noise--- noise_zeros = np.zeros(cloth.count, dtype=np.float32) random = np.random.random(cloth.count).astype(np.float32) noise_zeros[:] = random cloth.noise = ((noise_zeros + -0.5) * ob.mclo.noise * 0.1)[:, nax] #cloth.waiting = False #cloth.clicked = False # for the grab tool # this helps with extra springs behaving as if they had more mass---->>> cloth.mix = mixology[cloth.unpinned][:, nax] # -------------->>> # new self collisions: cloth.tridex = triangulate(ob.data, cloth) cloth.tridexer = np.arange(cloth.tridex.shape[0], dtype=np.int32) cloth.tri_co = cloth.co[cloth.tridex] tri_normals_in_place(cloth, cloth.tri_co) # non-unit normals # -------------->>> tri_uni, tri_inv, tri_counts = np.unique(cloth.tridex, return_inverse=True, return_counts=True) cloth.tri_mix = (1 / tri_counts[tri_inv])[:, nax] cloth.wind = np.zeros(cloth.tri_co.shape, dtype=np.float32) cloth.inflate = np.zeros(cloth.tri_co.shape, dtype=np.float32) bpy.ops.object.mode_set(mode=mode) # for use with a static source shape: cloth.source_angles = bend_springs(cloth, cloth.sco, None) svecs = cloth.sco[cloth.eidx[:, 1]] - cloth.sco[cloth.eidx[:, 0]] cloth.sdots = np.einsum('ij,ij->i', svecs, svecs) # for doing static cling # cloth.col_idx = np.array([], dtype=np.int32) # cloth.re_col = np.empty((0,3), dtype=np.float32) print('INFO: Cloth data for', ob.name, 'is created!') return cloth def run_handler(ob, cloth): T = time.time() scene = bpy.context.scene extra_data = scene.modeling_cloth_data_set_extra col_data = scene.modeling_cloth_data_set_colliders if not ob.mclo.waiting and ob.mode != 'OBJECT': ob.mclo.waiting = True if ob.mclo.waiting: if ob.mode == 'OBJECT': create_cloth_data(ob) ob.mclo.waiting = False if not ob.mclo.waiting: eidx = cloth.eidx # world's most important variable ob.data.shape_keys.key_blocks['modeling cloth source key'].data.foreach_get('co', cloth.sco.ravel()) sco = cloth.sco co = cloth.co co[cloth.pindexer] += cloth.noise[cloth.pindexer] #co += cloth.noise cloth.noise *= ob.mclo.noise_decay # mix in vel before collisions and sewing co[cloth.pindexer] += cloth.vel[cloth.pindexer] cloth.vel_start[:] = co # measure source -------------------------->>> dynamic = True # can store for speedup if source shape is static # bend spring calculations: if ob.mclo.bend_stiff != 0: # measure bend source if using dynamic source: source_angles = cloth.source_angles if dynamic: source_angles = bend_springs(cloth, sco, None) # linear spring measure sdots = cloth.sdots if dynamic: ob.data.shape_keys.key_blocks['modeling cloth source key'].data.foreach_get('co', sco.ravel()) svecs = sco[eidx[:, 1]] - sco[eidx[:, 0]] sdots = np.einsum('ij,ij->i', svecs, svecs) # ----------------------------------------->>> force = ob.mclo.spring_force mix = cloth.mix * force pin_list = [] if len(ob.mclo.pins) > 0: pin_list, hook_list = check_and_get_pins_and_hooks(ob) hook_co = np.array([ob.matrix_world.inverted() * hook.matrix_world.to_translation() for hook in hook_list]) ers = eidx[:, 1] els = eidx[:, 0] for x in range(ob.mclo.iterations): # bend spring calculations: if ob.mclo.bend_stiff != 0: bend_springs(cloth, co, source_angles) # add pull vecs = co[eidx[:, 1]] - co[eidx[:, 0]] dots = np.einsum('ij,ij->i', vecs, vecs) div = np.nan_to_num(sdots / dots) swap = vecs * np.sqrt(div)[:, nax] move = vecs - swap # pull separate test--->>> push = ob.mclo.push_springs if push == 0: move[div > 1] = 0 else: move[div > 1] *= push # pull only test--->>> tiled_move = np.append(move, -move, axis=0)[cloth.unpinned] * mix # * mix for stability: force multiplied by 1/number of springs np.add.at(cloth.co, cloth.eidx_tiler, tiled_move) # for doing static cling # cloth.co[cloth.col_idx] = cloth.re_col cloth.co[~cloth.pin_bool] = cloth.vel_start[~cloth.pin_bool] if pin_list: cloth.co[pin_list] = hook_co # grab inside spring iterations if ob.mclo.clicked: # for the grab tool cloth.co[extra_data['vidx']] = np.array(extra_data['stored_vidx']) + np.array(+ extra_data['move']) # refresh normals for inflate wind and self collisions cloth.tri_co = cloth.co[cloth.tridex] tri_normals_in_place(cloth, cloth.tri_co) # unit normals # add effects of velocity and Gravity to the vel array for later spring_dif = cloth.co - cloth.vel_start #if ob.mclo.bend_stiff > 0: #for # non-unit normals might be better for inflate and wind because # their strength is affected by the area as it is should be #place after wind and inflate unless those are added to vel after collisions # get proxy object #proxy = ob.to_mesh(bpy.context.scene, False, 'PREVIEW') #proxy = ob.data #get_v_normals(ob, cloth.v_normals, proxy) # gravity grav = ob.mclo.gravity * 0.01# / ob.mclo.iterations) if grav != 0: cloth.vel += revert_rotation(ob, np.array([0, 0, grav])) / np.array(ob.scale) # can cheat here: #spring_mean = np.mean(spring_dif, axis=0) #cloth.vel += spring_mean * 20 # inextensible calc: cloth.vel += spring_dif * 2 # The amount of drag increases with speed. # have to convert to to a range between 0 and 1 #squared_move_dist = np.sqrt(np.einsum("ij, ij->i", cloth.vel, cloth.vel)) squared_move_dist = np.einsum("ij, ij->i", cloth.vel, cloth.vel) squared_move_dist += 1 cloth.vel *= (1 / (squared_move_dist / ob.mclo.velocity))[:, nax] #cloth.vel *= ob.mclo.velocity # wind: x = ob.mclo.wind_x y = ob.mclo.wind_y z = ob.mclo.wind_z wind_vec = np.array([x,y,z]) check_wind = wind_vec != 0 if np.any(check_wind): generate_wind(wind_vec, ob, cloth) # inflate inflate = ob.mclo.inflate if inflate != 0: generate_inflate(ob, cloth) #cloth.v_normals *= inflate #cloth.vel += cloth.v_normals if ob.mclo.sew != 0: if len(cloth.sew_edges) > 0: sew_edges = cloth.sew_edges rs = co[sew_edges[:,1]] ls = co[sew_edges[:,0]] sew_vecs = (rs - ls) * 0.5 * ob.mclo.sew co[sew_edges[:,1]] -= sew_vecs co[sew_edges[:,0]] += sew_vecs # for sew verts with more than one sew edge if cloth.multi_sew is not None: for sg in cloth.multi_sew: cosg = co[sg] meanie = np.mean(cosg, axis=0) sg_vecs = meanie - cosg co[sg] += sg_vecs * ob.mclo.sew # !!!!! need to try adding in the velocity before doing the collision stuff # !!!!! so vel would be added here after wind and inflate but before collision # floor --- if ob.mclo.floor: floored = cloth.co[:,2] < 0 cloth.vel[:,2][floored] *= -1 cloth.vel[floored] *= .1 cloth.co[:, 2][floored] = 0 # floor --- # objects --- #T = time.time() if ob.mclo.object_collision_detect: if ob.mclo.self_collision: self_collide(ob) cull_ids = [] for i, cp in enumerate(scene.mclo.collider_pointers): # Check if object is still exists if not cp.ob or (cp.ob and not scene.objects.get(cp.ob.name)): cull_ids.append(i) continue #if cp.ob == ob: # self_collide(ob) if cp.ob != ob: object_collide(ob, cp.ob) # Remove collider missing object from pointer list for i in reversed(cull_ids): o = scene.mclo.collider_pointers[i].ob if o: o.mclo.object_collision = False else: scene.mclo.collider_pointers.remove(i) #print(time.time()-T, "the whole enchalada") # objects --- cloth.co[~cloth.pin_bool] = cloth.vel_start[~cloth.pin_bool] if pin_list: cloth.co[pin_list] = hook_co cloth.vel[pin_list] = 0 if ob.mclo.clicked: # for the grab tool cloth.co[extra_data['vidx']] = np.array(extra_data['stored_vidx']) + np.array(+ extra_data['move']) ob.data.shape_keys.key_blocks['modeling cloth key'].data.foreach_set('co', cloth.co.ravel()) ob.data.shape_keys.key_blocks['modeling cloth key'].mute = True ob.data.shape_keys.key_blocks['modeling cloth key'].mute = False # remove proxy #proxy.user_clear() #bpy.data.meshes.remove(proxy) #del(proxy) #print(time.time()-T, "the entire handler time") # +++++++++++++ object collisions ++++++++++++++ def bounds_check(co1, co2, fudge): """Returns True if object bounding boxes intersect. Have to add the fudge factor for collision margins""" check = False co1_max = None # will never return None if check is true co1_min = np.min(co1, axis=0) co2_max = np.max(co2, axis=0) if np.all(co2_max + fudge > co1_min): co1_max = np.max(co1, axis=0) co2_min = np.min(co2, axis=0) if np.all(co1_max > co2_min - fudge): check = True return check, co1_min, co1_max # might as well reuse the checks def triangle_bounds_check(tri_co, co_min, co_max, idxer, fudge): """Returns a bool aray indexing the triangles that intersect the bounds of the object""" # min check cull step 1 tri_min = np.min(tri_co, axis=1) - fudge check_min = co_max > tri_min in_min = np.all(check_min, axis=1) # max check cull step 2 idx = idxer[in_min] tri_max = np.max(tri_co[in_min], axis=1) + fudge check_max = tri_max > co_min in_max = np.all(check_max, axis=1) in_min[idx[~in_max]] = False return in_min, tri_min[in_min], tri_max[in_max] # can reuse the min and max def tri_back_check(co, tri_min, tri_max, idxer, fudge): """Returns a bool aray indexing the vertices that intersect the bounds of the culled triangles""" # min check cull step 1 tb_min = np.min(tri_min, axis=0) - fudge check_min = co > tb_min in_min = np.all(check_min, axis=1) idx = idxer[in_min] # max check cull step 2 tb_max = np.max(tri_max, axis=0) + fudge check_max = co[in_min] < tb_max in_max = np.all(check_max, axis=1) in_min[idx[~in_max]] = False return in_min # ------------------------------------------------------- # ------------------------------------------------------- def zxy_grid(co_y, tymin, tymax, subs, c, t, c_peat, t_peat): # create linespace grid between bottom and top of tri z #subs = 7 t_min = np.min(tymin) t_max = np.max(tymax) divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32) # figure out which triangles and which co are in each section co_bools = (co_y > divs[:-1][:, nax]) & (co_y < divs[1:][:, nax]) tri_bools = (tymin < divs[1:][:, nax]) & (tymax > divs[:-1][:, nax]) for i, j in zip(co_bools, tri_bools): if (np.sum(i) > 0) & (np.sum(j) > 0): c3 = c[i] t3 = t[j] c_peat.append(np.repeat(c3, t3.shape[0])) t_peat.append(np.tile(t3, c3.shape[0])) def zx_grid(co_x, txmin, txmax, subs, c, t, c_peat, t_peat, co_y, tymin, tymax): # create linespace grid between bottom and top of tri z #subs = 7 t_min = np.min(txmin) t_max = np.max(txmax) divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32) # figure out which triangles and which co are in each section co_bools = (co_x > divs[:-1][:, nax]) & (co_x < divs[1:][:, nax]) tri_bools = (txmin < divs[1:][:, nax]) & (txmax > divs[:-1][:, nax]) for i, j in zip(co_bools, tri_bools): if (np.sum(i) > 0) & (np.sum(j) > 0): c2 = c[i] t2 = t[j] zxy_grid(co_y[i], tymin[j], tymax[j], subs, c2, t2, c_peat, t_peat) def z_grid(co_z, tzmin, tzmax, subs, co_x, txmin, txmax, co_y, tymin, tymax): # create linespace grid between bottom and top of tri z #subs = 7 t_min = np.min(tzmin) t_max = np.max(tzmax) divs = np.linspace(t_min, t_max, num=subs, dtype=np.float32) # figure out which triangles and which co are in each section co_bools = (co_z > divs[:-1][:, nax]) & (co_z < divs[1:][:, nax]) tri_bools = (tzmin < divs[1:][:, nax]) & (tzmax > divs[:-1][:, nax]) c_ranger = np.arange(co_bools.shape[1]) t_ranger = np.arange(tri_bools.shape[1]) c_peat = [] t_peat = [] for i, j in zip(co_bools, tri_bools): if (np.sum(i) > 0) & (np.sum(j) > 0): c = c_ranger[i] t = t_ranger[j] zx_grid(co_x[i], txmin[j], txmax[j], subs, c, t, c_peat, t_peat, co_y[i], tymin[j], tymax[j]) if (len(c_peat) == 0) | (len(t_peat) == 0): return None, None return np.hstack(c_peat), np.hstack(t_peat) # ------------------------------------------------------- # ------------------------------------------------------- """Combined with numexpr the first check min and max is faster Combined without numexpr is slower. It's better to separate min and max""" def v_per_tri(co, tri_min, tri_max, idxer, tridexer, c_peat=None, t_peat=None): """Checks each point against the bounding box of each triangle""" co_x, co_y, co_z = co[:, 0], co[:, 1], co[:, 2] subs = 7 #subs = bpy.data.objects['Plane.002'].mclo.grid_size c_peat, t_peat = z_grid(co_z, tri_min[:, 2], tri_max[:, 2], subs, co_x, tri_min[:, 0], tri_max[:, 0], co_y, tri_min[:, 1], tri_max[:, 1]) if c_peat is None: return # X # Step 1 check x_min (because we're N squared here we break it into steps) check_x_min = co_x[c_peat] > tri_min[:, 0][t_peat] c_peat = c_peat[check_x_min] if c_peat.shape[0] == 0: return t_peat = t_peat[check_x_min] # Step 2 check x max check_x_max = co_x[c_peat] < tri_max[:, 0][t_peat] c_peat = c_peat[check_x_max] if c_peat.shape[0] == 0: return t_peat = t_peat[check_x_max] # Y # Step 3 check y min check_y_min = co_y[c_peat] > tri_min[:, 1][t_peat] c_peat = c_peat[check_y_min] if c_peat.shape[0] == 0: return t_peat = t_peat[check_y_min] # Step 4 check y max check_y_max = co_y[c_peat] < tri_max[:, 1][t_peat] c_peat = c_peat[check_y_max] if c_peat.shape[0] == 0: return t_peat = t_peat[check_y_max] # Z # Step 5 check z min check_z_min = co_z[c_peat] > tri_min[:, 2][t_peat] c_peat = c_peat[check_z_min] if c_peat.shape[0] == 0: return t_peat = t_peat[check_z_min] # Step 6 check y max check_z_max = co_z[c_peat] < tri_max[:, 2][t_peat] c_peat = c_peat[check_z_max] if c_peat.shape[0] == 0: return t_peat = t_peat[check_z_max] return idxer[c_peat], t_peat #return c_peat, t_peat def inside_triangles(tri_vecs, v2, co, tri_co_2, cidx, tidx, nor, ori, in_margin, offset=None): idxer = np.arange(in_margin.shape[0], dtype=np.int32)[in_margin] r_co = co[cidx[in_margin]] r_tri = tri_co_2[tidx[in_margin]] v0 = tri_vecs[:,0] v1 = tri_vecs[:,1] d00_d11 = np.einsum('ijk,ijk->ij', tri_vecs, tri_vecs) d00 = d00_d11[:,0] d11 = d00_d11[:,1] d01 = np.einsum('ij,ij->i', v0, v1) d02 = np.einsum('ij,ij->i', v0, v2) d12 = np.einsum('ij,ij->i', v1, v2) div = 1 / (d00 * d11 - d01 * d01) u = (d11 * d02 - d01 * d12) * div v = (d00 * d12 - d01 * d02) * div # !!! Watch out for this number. It could affect speed !!! if offset: check = (u > -offset) & (v > -offset) & (u + v < offset + 1) else: check = (u > 0) & (v > 0) & (u + v < 1) in_margin[idxer] = check def object_collide(cloth_ob, col_ob): cloth = get_cloth_data(cloth_ob) col = get_collider_data(col_ob) # for doing static cling # cloth.col_idx = np.array([], dtype=np.int32) # cloth.re_col = np.empty((0,3), dtype=np.float32) proxy = col_ob.to_mesh(bpy.context.scene, True, 'PREVIEW') # Recreate collider data if number of vertices is changing if col.co.shape[0] != len(proxy.vertices): col = create_collider_data(col_ob) proxy_in_place(col, proxy) apply_in_place(cloth_ob, cloth.co, cloth) inner_margin = col_ob.mclo.object_collision_inner_margin outer_margin = col_ob.mclo.object_collision_outer_margin fudge = max(inner_margin, outer_margin) # check object bounds: (need inner and out margins to adjust box size) box_check, co1_min, co1_max = bounds_check(cloth.co, col.co, fudge) # check for triangles inside the cloth bounds #anim = col_ob.mclo.collision_animated if box_check: proxy_v_normals_in_place(col, True, proxy) tri_co = col.co[col.tridex] tri_vo = col.vel[col.tridex] tris_in, tri_min, tri_max = triangle_bounds_check(tri_co, co1_min, co1_max, col.tridexer, fudge)#, object.ob.dimensions) # check for verts in the bounds around the culled triangles if np.any(tris_in): tri_co_2 = tri_co[tris_in] back_check = tri_back_check(cloth.co, tri_min, tri_max, cloth.idxer, fudge) # begin every vertex co against every tri if np.any(back_check): v_tris = v_per_tri(cloth.co[back_check], tri_min, tri_max, cloth.idxer[back_check], col.tridexer[tris_in]) if v_tris is not None: # update the normals. cross_vecs used by barycentric tri check # move the surface along the vertex normals by the outer margin distance marginalized = (col.co + col.v_normals * outer_margin)[col.tridex] tri_normals_in_place(col, marginalized) # add normals to make extruded tris u_norms = col.normals[tris_in] #u_norms = norms_2 / np.sqrt(np.einsum('ij, ij->i', norms_2, norms_2))[:, nax] cidx, tidx = v_tris ori = col.origins[tris_in][tidx] nor = u_norms[tidx] vec2 = cloth.co[cidx] - ori d = np.einsum('ij, ij->i', nor, vec2) # nor is unit norms in_margin = (d > -(inner_margin + outer_margin)) & (d < 0)#outer_margin) (we have offset outer margin) # <<<--- Inside triangle check --->>> # will overwrite in_margin: cross_2 = col.cross_vecs[tris_in][tidx][in_margin] inside_triangles(cross_2, vec2[in_margin], cloth.co, marginalized[tris_in], cidx, tidx, nor, ori, in_margin) if np.any(in_margin): # collision response --------------------------->>> #if anim: t_in = tidx[in_margin] tri_vo = tri_vo[tris_in] tri_vel1 = np.mean(tri_co_2[t_in], axis=1) tri_vel2 = np.mean(tri_vo[t_in], axis=1) tvel = tri_vel1 - tri_vel2 col_idx = cidx[in_margin] cloth.co[col_idx] -= nor[in_margin] * (d[in_margin])[:, nax] cloth.vel[col_idx] = tvel # for doing static cling # cloth.re_col = np.copy(cloth.co[col_idx]) # cloth.col_idx = col_idx col.vel[:] = col.co revert_in_place(cloth_ob, cloth.co) #temp_ob = bpy.data.objects.new('__TEMP', proxy) #for key in proxy.shape_keys.key_blocks: # temp_ob.shape_key_remove(key) #bpy.data.objects.remove(temp_ob) bpy.data.meshes.remove(proxy) # self collider ============================================= def self_collide(ob): cloth = get_cloth_data(ob) margin = ob.mclo.object_collision_outer_margin tri_co = cloth.tri_co tri_min = np.min(tri_co, axis=1) - margin tri_max = np.max(tri_co, axis=1) + margin # begin every vertex co against every tri v_tris = v_per_tri(cloth.co, tri_min, tri_max, cloth.idxer, cloth.tridexer) if v_tris is not None: cidx, tidx = v_tris u_norms = cloth.normals # don't check faces the verts are part of check_neighbors = cidx[:, nax] == cloth.tridex[tidx] cull = np.any(check_neighbors, axis=1) cidx, tidx = cidx[~cull], tidx[~cull] ori = cloth.origins[tidx] nor = u_norms[tidx] vec2 = cloth.co[cidx] - ori d = np.einsum('ij, ij->i', nor, vec2) # nor is unit norms in_margin = (d > -margin) & (d < margin) # <<<--- Inside triangle check --->>> # will overwrite in_margin: cross_2 = cloth.cross_vecs[tidx][in_margin] inside_triangles(cross_2, vec2[in_margin], cloth.co, tri_co, cidx, tidx, nor, ori, in_margin, offset=0.0) if np.any(in_margin): # collision response --------------------------->>> t_in = tidx[in_margin] #tri_vel1 = np.mean(tri_co[t_in], axis=1) #tvel = np.mean(tri_vo[t_in], axis=1) #tvel = tri_vel1 - tri_vel2 t_vel = np.mean(cloth.vel[cloth.tridex][t_in], axis=1) col_idx = cidx[in_margin] d_in = d[in_margin] sign_margin = margin * np.sign(d_in) # which side of the face c_move = ((nor[in_margin] * d_in[:, nax]) - (nor[in_margin] * sign_margin[:, nax]))#) * -np.sign(d[in_margin])[:, nax] #c_move *= 1 / cloth.ob.modeling_cloth_grid_size #cloth.co[col_idx] -= ((nor[in_margin] * d_in[:, nax]) - (nor[in_margin] * sign_margin[:, nax]))#) * -np.sign(d[in_margin])[:, nax] cloth.co[col_idx] -= c_move #* .7 #cloth.vel[col_idx] = 0 cloth.vel[col_idx] = t_vel #col.vel[:] = col.co # self collider ============================================= # update functions --------------------->>> def tile_and_remove_neighbors(vidx, tidx, c_peat, t_peat): tshape = tidx.shape[0] vshape = vidx.shape[0] # eliminate tris that contain the point: # check the speed difference of doing a reshape with ravel at the end co_tidex = c_peat.reshape(vshape, tshape) tri_tidex = tidx[t_peat.reshape(vshape, tshape)] check = tri_tidex == vidx[co_tidex][:,:,nax] cull = ~np.any(check, axis=2) # duplicate of each tri for each vert and each vert for each tri c_peat = c_peat[cull.ravel()] t_peat = t_peat[cull.ravel()] return c_peat, t_peat class ColliderData: pass class SelfColliderData: pass def get_collider_data(ob): col_data = bpy.context.scene.modeling_cloth_data_set_colliders col = None for key, c in col_data.items(): if c.ob == ob: col = c if not col: col = create_collider_data(ob) return col def create_collider_data(ob): col_data = bpy.context.scene.modeling_cloth_data_set_colliders col = ColliderData() col_data[ob.name] = col col.ob = ob # get proxy proxy = ob.to_mesh(bpy.context.scene, True, 'PREVIEW') col.co = get_proxy_co(ob, None, proxy) col.idxer = np.arange(col.co.shape[0], dtype=np.int32) proxy_in_place(col, proxy) col.v_normals = proxy_v_normals(col.ob, proxy) col.vel = np.copy(col.co) col.tridex = triangulate(proxy) col.tridexer = np.arange(col.tridex.shape[0], dtype=np.int32) # cross_vecs used later by barycentric tri check proxy_v_normals_in_place(col, True, proxy) marginalized = np.array(col.co + col.v_normals * ob.mclo.object_collision_outer_margin, dtype=np.float32) col.cross_vecs, col.origins, col.normals = get_tri_normals(marginalized[col.tridex]) col.cross_vecs.dtype = np.float32 col.origins.dtype = np.float32 #col.normals.dtype = np.float32 # remove proxy bpy.data.meshes.remove(proxy) print('INFO: Collider data for', ob.name, 'is created!') return col # Self collision object def create_self_collider(ob): # maybe fixed? !!! bug where first frame of collide uses empty data. Stuff goes flying. col = ColliderData() col.ob = ob col.co = get_co(ob, None) proxy_in_place(col) col.v_normals = proxy_v_normals(ob) col.vel =
np.copy(col.co)
numpy.copy
import numpy as np import torch from utils.bbox_tools import loc2bbox, bbox_iou, bbox2loc class ProposalCreator: """ generate proposal ROIs by call this class """ def __init__(self, rpn_model, nms_thresh=0.7, n_train_pre_nms=12000, # on training mode: keep top-n1 bboxes before NMS n_train_post_nms=2000, # on training mode: keep top-n2 bboxes after NMS n_test_pre_nms=6000, # on test mode: keep top-n3 bboxes before NMS n_test_post_nms=300, # on test mode: keep top-n4 bboxes after NMS min_size=16 ): self.rpn_model = rpn_model self.nms_thresh = nms_thresh self.n_train_pre_nms = n_train_pre_nms self.n_train_post_nms = n_train_post_nms self.n_test_pre_nms = n_test_pre_nms self.n_test_post_nms = n_test_post_nms self.min_size = min_size def __call__(self, loc, score, anchor, img_size, scale=1.): """input should be ndarray Propose RoIs. Inputs :obj:`loc, score, anchor` refer to the same anchor when indexed by the same index. On notations, :math:`R` is the total number of anchors. This is equal to product of the height and the width of an image and the number of anchor bases per pixel. Type of the output is same as the inputs. Args: loc (array): Predicted offsets and scaling to anchors. Its shape is :math:`(R, 4)`. score (array): Predicted foreground probability for anchors. Its shape is :math:`(R,)`. anchor (array): Coordinates of anchors. Its shape is :math:`(R, 4)`. img_size (tuple of ints): A tuple :obj:`height, width`, which contains image size after scaling. scale (float): The scaling factor used to scale an image after reading it from a file. Returns: array: An array of coordinates of proposal boxes. Its shape is :math:`(S, 4)`. :math:`S` is less than :obj:`self.n_test_post_nms` in test time and less than :obj:`self.n_train_post_nms` in train time. :math:`S` depends on the size of the predicted bounding boxes and the number of bounding boxes discarded by NMS. """ # NOTE: when test, remember # r_fcn.eval() # to set self.traing = False if self.rpn_model.training: n_pre_nms = self.n_train_pre_nms n_post_nms = self.n_train_post_nms else: n_pre_nms = self.n_test_pre_nms n_post_nms = self.n_test_post_nms # Convert the anchors to the ROIs rois = loc2bbox(anchor, loc) # clip rois rois[:, slice(0, 4, 2)] = np.clip( rois[:, slice(0, 4, 2)], 0, img_size[0]) rois[:, slice(1, 4, 2)] = np.clip( rois[:, slice(1, 4, 2)], 0, img_size[1]) # remove small rois min_size = self.min_size * scale hs = rois[:, 2] - rois[:, 0] # height ws = rois[:, 3] - rois[:, 1] # width keep = np.where((hs >= min_size) & (ws >= min_size))[0] rois = rois[keep, :] score = score[keep] # sorted by score # get topN anchors to NMS, e.g.N=12000(training),6000(testing) order = score.ravel().argsort()[::-1] # [::-1]表示倒序 if n_pre_nms > 0: order = order[:n_pre_nms] # shape:(n_pre_nms, ) rois = rois[order, :] score = score[order] keep = torch.ops.torchvision.nms( torch.from_numpy(rois).cuda(), torch.from_numpy(score).cuda(), self.nms_thresh ) if n_post_nms > 0: keep = keep[:n_post_nms] rois = rois[keep.cpu().numpy()] # rois_score = score[keep.cpu().numpy()] return rois class ProposalTargetCreator(object): """Assign ground truth bounding boxes to given RoIs. The :meth:`__call__` of this class generates training targets for each object proposal. This is used to train Faster RCNN [#]_. .. [#] <NAME>, <NAME>, <NAME>, <NAME>. \ Faster R-CNN: Towards Real-Time Object Detection with \ Region Proposal Networks. NIPS 2015. Args: n_sample (int): The number of sampled regions. pos_ratio (float): Fraction of regions that is labeled as a foreground. pos_iou_thresh (float): IoU threshold for a RoI to be considered as a foreground. neg_iou_thresh_hi (float): RoI is considered to be the background if IoU is in [:obj:`neg_iou_thresh_hi`, :obj:`neg_iou_thresh_hi`). neg_iou_thresh_lo (float): See above. """ def __init__(self, n_sample=128, pos_ratio=0.25, pos_iou_thresh=0.5, neg_iou_thresh_hi=0.5, neg_iou_thresh_lo=0.0): self.n_sample = n_sample self.pos_ratio = pos_ratio self.pos_iou_thresh = pos_iou_thresh self.neg_iou_thresh_hi = neg_iou_thresh_hi self.neg_iou_thresh_lo = neg_iou_thresh_lo def __call__(self, roi, bbox, label, loc_normalize_mean=(0., 0., 0., 0.), loc_normalize_std=(0.1, 0.1, 0.2, 0.2)): """Assigns ground truth to sampled proposals. This function samples total of :obj:`self.n_sample` RoIs from the combination of :obj:`roi` and :obj:`bbox`. The RoIs are assigned with the ground truth class labels as well as bounding box offsets and scales to match the ground truth bounding boxes. As many as :obj:`pos_ratio * self.n_sample` RoIs are sampled as foregrounds. Offsets and scales of bounding boxes are calculated using :func:`model.utils.bbox_tools.bbox2loc`. Also, types of input arrays and output arrays are same. Here are notations. * :math:`S` is the total number of sampled RoIs, which equals \ :obj:`self.n_sample`. * :math:`L` is number of object classes possibly including the \ background. Args: roi (array): Region of Interests (RoIs) from which we sample. Its shape is :math:`(R, 4)` bbox (array): The coordinates of ground truth bounding boxes. Its shape is :math:`(R', 4)`. label (array): Ground truth bounding box labels. Its shape is :math:`(R',)`. Its range is :math:`[0, L - 1]`, where :math:`L` is the number of foreground classes. loc_normalize_mean (tuple of four floats): Mean values to normalize coordinates of bouding boxes. loc_normalize_std (tupler of four floats): Standard deviation of the coordinates of bounding boxes. Returns: (array, array, array): * **sample_roi**: Regions of interests that are sampled. \ Its shape is :math:`(S, 4)`. * **gt_roi_loc**: Offsets and scales to match \ the sampled RoIs to the ground truth bounding boxes. \ Its shape is :math:`(S, 4)`. * **gt_roi_label**: Labels assigned to sampled RoIs. Its shape is \ :math:`(S,)`. Its range is :math:`[0, L]`. The label with \ value 0 is the background. """ # get numbers of bbox n_bbox, _ = bbox.shape # Join GT bboxes roi = np.concatenate((roi, bbox), axis=0) # Preset number of positive samples pos_roi_per_image = np.round(self.n_sample * self.pos_ratio) # get IOU between roi and bbox iou = bbox_iou(roi, bbox) # argmax index of each ROI gt_assignment = iou.argmax(axis=1) # max IOU of each ROI max_iou = iou.max(axis=1) # label of each ROI, the positive label start with 1 gt_roi_label = label[gt_assignment] + 1 # positive ROIs pos_index = np.where(max_iou >= self.pos_iou_thresh)[0] pos_roi_per_this_image = int(min(pos_roi_per_image, pos_index.size)) if pos_index.size > 0: pos_index = np.random.choice( pos_index, size=pos_roi_per_this_image, replace=False ) # negative ROIs neg_index = np.where((max_iou < self.neg_iou_thresh_hi) & (max_iou >= self.neg_iou_thresh_lo))[0] # the number of negative ROIs neg_roi_per_this_image = self.n_sample - pos_roi_per_this_image neg_roi_per_this_image = int(min(neg_roi_per_this_image, neg_index.size)) if neg_index.size > 0: neg_index = np.random.choice( neg_index, size=neg_roi_per_this_image, replace=False ) keep_index = np.append(pos_index, neg_index) gt_roi_label = gt_roi_label[keep_index] gt_roi_label[pos_roi_per_this_image:] = 0 # set the lable of neg ROIs to zero sample_roi = roi[keep_index] gt_roi_loc = bbox2loc(sample_roi, bbox[gt_assignment[keep_index]]) gt_roi_loc = ((gt_roi_loc - np.array(loc_normalize_mean, np.float32)) / np.array(loc_normalize_std, np.float32)) return sample_roi, gt_roi_loc, gt_roi_label class AnchorTargetCreator(object): """ Assign the ground truth bounding boxes to anchors. params: n_sample the numbers of sample anchors pos_iou_thresh float, the anchor positive if its IOU with gt_bbox > pos_iou_thresh neg_iou_thresh float, the anchor negative if its IOU with gt_bbox < neg_iou_thresh pos_ratio: float, n_sample_pos / n_sample """ def __init__(self, n_sample=256, pos_iou_thresh=0.7, neg_iou_thresh=0.3, pos_ratio=0.5): self.n_sample = n_sample self.pos_iou_thresh = pos_iou_thresh self.neg_iou_thresh = neg_iou_thresh self.pos_ratio = pos_ratio def __call__(self, gt_bbox, anchor, img_size): """Assign ground truth supervision to sampled subset of anchors. Types of input arrays and output arrays are same. Here are notations. * :math:`S` is the number of anchors. * :math:`R` is the number of bounding boxes. Args: bbox (array): Coordinates of bounding boxes. Its shape is :math:`(R, 4)`. anchor (array): Coordinates of anchors. Its shape is :math:`(S, 4)`. img_size (tuple of ints): A tuple :obj:`H, W`, which is a tuple of height and width of an image. Returns: (array, array): #NOTE: it's scale not only offset * **loc**: Offsets and scales to match the anchors to \ the ground truth bounding boxes. Its shape is :math:`(S, 4)`. * **label**: Labels of anchors with values \ :obj:`(1=positive, 0=negative, -1=ignore)`. Its shape \ is :math:`(S,)`. """ img_H, img_W = img_size n_anchor = len(anchor) # Get the index of anchors completely inside the image, e.g. array[0, 1, 3, 6] inside_index = _get_inside_index(anchor, img_H, img_W) anchor = anchor[inside_index] # shape: (inside_anchor_num, ) & (inside_anchor_num, ) achor_argmax_ious, anchor_label = self._create_label(anchor, gt_bbox) # compute bounding box regression targets anchor_loc = bbox2loc(anchor, gt_bbox[achor_argmax_ious]) # shape:(inside_anchor_num, 4) # map up to original set of anchors anchor_label = _unmap(anchor_label, n_anchor, inside_index, fill=-1) # shape:(n_anchor, ) anchor_loc = _unmap(anchor_loc, n_anchor, inside_index, fill=0) # shape:(n_anchor, 4) return anchor_loc, anchor_label def _create_label(self, anchor, gt_bbox): # label: 1 is positive, 0 is negative, -1 is dont care anchor_label = np.empty((anchor.shape[0], ), dtype=np.int32) # shape:(inside_anchor_num, 4) anchor_label.fill(-1) # 初始化anchor标记为-1(弃用) anchor_argmax_ious, anchor_max_ious, gt_argmax_ious = self._calc_ious(anchor, gt_bbox) '''assign labels''' # assign negative labels first so that positive labels can clobber them anchor_label[anchor_max_ious < self.neg_iou_thresh] = 0 # positive label: for each gt, anchor with highest iou anchor_label[gt_argmax_ious] = 1 # positive label: above threshold IOU anchor_label[anchor_max_ious >= self.pos_iou_thresh] = 1 # subsample positive labels if we have too many n_pos = int(self.pos_ratio * self.n_sample) pos_index =
np.where(anchor_label == 1)
numpy.where
import torch from config import cfg import numpy as np from utils.box_overlaps import * from utils.anchor_utils import * def cal_anchors(): # Output: # Anchors: (w, l, 2, 7) x y z h w l r x = np.linspace(cfg.SCENE_X_MIN, cfg.SCENE_X_MAX, cfg.FEATURE_WIDTH) y = np.linspace(cfg.SCENE_Y_MIN, cfg.SCENE_Y_MAX, cfg.FEATURE_HEIGHT) cx, cy = np.meshgrid(x, y) # All are (w, l, 2) cx =
np.tile(cx[..., np.newaxis], 2)
numpy.tile
import numpy as np from utils import load_data from proposals import compute_iou, get_majority class ClusterDetProcessor(object): def __init__(self, dataset): self.dataset = dataset self.dtype = np.float32 def __len__(self): return self.dataset.size def build_graph(self, fn_node, fn_edge): """ build graph from graph file - nodes: NxD, each row represents the feature of a node - adj: NxN, a symmetric similarity matrix with self-connection """ node = load_data(fn_node) edge = load_data(fn_edge) assert len(node) > 1, '#node of {}: {}'.format(fn_node, len(node)) # take majority as label of the graph if not self.dataset.ignore_meta: lb2cnt = {} for idx in node: if idx not in self.dataset.idx2lb: continue lb = self.dataset.idx2lb[idx] if lb not in lb2cnt: lb2cnt[lb] = 0 lb2cnt[lb] += 1 gt_lb, _ = get_majority(lb2cnt) gt_node = self.dataset.lb2idxs[gt_lb] iou = compute_iou(node, gt_node) else: iou = -1. # compute adj node = list(node) abs2rel = {} for i, n in enumerate(node): abs2rel[n] = i size = len(node) adj = np.eye(size) for e in edge: w = 1. if len(e) == 2: e1, e2 = e elif len(e) == 3: e1, e2, dist = e if not self.dataset.wo_weight: w = 1. - dist else: raise ValueError('Unknown length of e: {}'.format(e)) v1 = abs2rel[e1] v2 = abs2rel[e2] adj[v1][v2] = w adj[v2][v1] = w if self.dataset.featureless: vertices = adj.sum(axis=1, keepdims=True) vertices /= vertices.sum(axis=1, keepdims=True) else: vertices = self.dataset.features[node, :] if self.dataset.is_norm_adj: adj /= adj.sum(axis=1, keepdims=True) return vertices, adj, iou def __getitem__(self, idx): """ each vertices is a NxD matrix, each adj is a NxN matrix, each label is a Nx1 matrix, which is a 0 or 1 representing the foreground and background """ if idx is None or idx > self.dataset.size: raise ValueError('idx({}) is not in the range of {}'.format(idx, self.dataset.size)) fn_node, fn_edge = self.dataset.lst[idx] ret = self.build_graph(fn_node, fn_edge) assert ret is not None vertices, adj, label = ret return vertices.astype(self.dtype), \ adj.astype(self.dtype), \
np.array(label, dtype=self.dtype)
numpy.array
# <NAME> 2017 # GMM implementation I made for a computer vision course during my honours degree at Wits import numpy as np from sklearn.mixture import GaussianMixture from scipy.stats import multivariate_normal # These are functions which can be run on GMMs class fn(): def zero_init(data, K): lambda_vect = np.full((K), 1.0/K) # init randomly between (0,1] # positive semi-def but already is # sigma_vect = np.full((K), np.var(data)) # diagonal sigma_list = [] mean_list = [] for k in range(K): mean = (1.-0.)*np.random.random_sample((data.shape[1])) + 0. mean_list.append(mean) sig = (1.0-0.001)*np.random.random_sample((data.shape[1],data.shape[1])) + 0.001 sig = np.dot(sig, sig.T) sig = np.diag(np.diag(sig)) sigma_list.append(sig) sigma = np.array(sigma_list) mean_vect = np.array(mean_list) # print(mean_vect) # print(lambda_vect) return lambda_vect, mean_vect, sigma def naive_bayes_classifier(data, GMM_fg, GMM_bg, prior, confidence=0.65): # test_label[i] = np.argmax(p)#(p>confidence) p1 = GMM_fg.probability(data) p2 = GMM_bg.probability(data) l1 = prior l2 = 1 - prior prob = np.divide(p1*l1, p1*l1 + p2*l2) # true if GMM_fg is greater if (prob > confidence): return True; return False; def classifier(data, GMM_fg, GMM_bg): # print("test") p1 = GMM_fg.probability(data) # print("test: ", p1) p2 = GMM_bg.probability(data) # print("test: ", p2) # true if GMM_fg is greater if (p1 > p2): return True; return False; def error(test_vector, label_vector, GMM_fg, GMM_bg): test_label = np.zeros(test_vector.shape[0]) sum = 0 for i in range(test_vector.shape[0]): test_label[i] = fn.classifier(test_vector.values[i], GMM_fg, GMM_bg) if test_label[i] != label_vector[i]: sum = sum + 1 # return np.sum(np.absolute(test_label-label_vector))/(label_vector.shape[0]*label_vector.shape[1]) return sum/label_vector.shape[0] def bayes_error(test_vector, label_vector, GMM_fg, GMM_bg, prior, confidence=0.65): test_label =
np.zeros(test_vector.shape[0])
numpy.zeros
# Covid Detection WebService # # $ curl -XPOST -F "[email protected]" http://127.0.0.1:5001 from flask import Flask, jsonify, request, redirect from flask_ngrok import run_with_ngrok import cv2 import PIL import numpy as np from sklearn.svm import NuSVC import pickle from scipy.io import loadmat import time # Create An SVM FV = loadmat('features.mat') X = FV['data'] Y = FV['labels'] # fix a bug where saving with scipy makes the matrix transposed. Y = Y.transpose() clf = NuSVC(nu=0.4, kernel='rbf', gamma=0.009876939713502824, shrinking=True, tol=0.00001, max_iter=176, random_state=1, class_weight='balanced', probability=True) clf.fit(X, Y) # Save the SVM to be used on the endpoint. with open('svm_model.pkl', 'wb') as f: pickle.dump(clf, f) # Perform all the steps at once and return a probabilty for covid. def detect(imagePath, models): s_time = time.time() covid19 = False image = imagePath feature_extractor, clf = models image = cv2.resize(image, (224, 224)) / 255. features = feature_extractor(
np.array([image])
numpy.array
import argparse import os import numpy as np from PIL import Image, ImageFont, ImageDraw, ImageOps, ImageFilter from tqdm import tqdm import imageio def get_ascii_chars(): return ''.join(chr(x) for x in range(32, 127)) def get_chinese_chars(): return open('assets/cn_charset.txt').read().strip() + ' ' def is_ascii(s): try: s.encode('ascii') except UnicodeEncodeError: return False else: return True def read_gif(path): im_list = imageio.mimread(path) im_list = [im[:, :, :3] for im in im_list] for i in range(1, len(im_list)): im_list[i] = np.where(im_list[i]>0, im_list[i], im_list[i-1]) duration = Image.open(path).info['duration'] / 1000. return im_list, duration class Font(): def __init__(self, path, size): self.font = ImageFont.truetype(font=path, size=size) width, height = self.font.getsize('A') self.patch_size = max(width, height) self.x_offset = (self.patch_size-width)//2 self.y_offset = (self.patch_size-height)//2 def get_patches(self, chars): size = self.patch_size patches = np.zeros([len(chars), size, size], dtype=np.uint8) if len(set(chars)) != len(chars): raise Exception('Duplicate characters exist') for i, c in enumerate(chars): p = np.zeros([size, size], dtype=np.uint8) p = Image.fromarray(p) draw = ImageDraw.Draw(p) draw.text([self.x_offset, self.y_offset], c, fill='white', font=self.font) patches[i] = p return patches def get_rank(arr): temp = np.argsort(arr) ranks = np.empty_like(temp) ranks[temp] = np.arange(len(arr)) return ranks # get intensities for patches def get_intensities(patches): densities = np.mean(patches, (1, 2)) / 255. intensities = get_rank(densities) scale = 255./np.max(intensities) intensities = intensities.astype(np.float32) intensities *= scale intensities = intensities.astype(np.uint8) return intensities # get a 256-element numpy array containing the index of characters def get_intensity2idx(chars, intensities): d = {} for idx, intensity in zip(range(len(chars)), intensities): if intensity in d: d[intensity].append(idx) else: d[intensity] = [idx] unique_intensities = [] char_idx = [] for intensity in d: unique_intensities.append(intensity) char_idx.append(np.random.choice(d[intensity])) unique_intensities = np.array(unique_intensities, dtype=np.uint8) char_idx = np.array(char_idx, dtype=np.int64) intensity2idx = np.arange(256, dtype=np.int64) intensity2idx = intensity2idx[:, np.newaxis] - unique_intensities[np.newaxis, :] intensity2idx = np.abs(intensity2idx) intensity2idx = np.argmin(intensity2idx, -1) intensity2idx = char_idx[intensity2idx] return intensity2idx # convert one frame to text image def im2text(im, patches, intensity2idx, grayscale=False): im =
np.array(im, dtype=np.uint8)
numpy.array
#!/usr/bin/env python3 """ Use TT-SVD to approximate a large square SVD """ __authors__ = ['<NAME> <<EMAIL>>'] __date__ = '2020-12-16' import numpy as np import pitts_py import functools import timeit import argparse def timer(func): """measure runtime of the decorated function""" @functools.wraps(func) def wrapper_fun(*args, **kwargs): wtime = timeit.default_timer() value = func(*args, **kwargs) wtime = timeit.default_timer() - wtime print(func.__name__, "wtime:", wtime) return value return wrapper_fun @timer def random_square_low_rank_matrix(n, r): sigma = np.linspace(1, 0, r, endpoint=False, dtype=np.float64) U, _ = np.linalg.qr(np.random.rand(n,r).astype(dtype=np.float64)) Vt, _ = np.linalg.qr(
np.random.rand(n,r)
numpy.random.rand
import numpy as np import scipy as sp from functools import reduce import time import os import sys import tempfile import h5py import pyscf from pyscf import gto, scf from pyscf import mcscf from pyscf.mcscf import addons from pyscf.dmrgscf import dmrgci from pyscf import dft from pyscf.dft import numint class MCPDFT: def __init__(self, mol, mc, ref_method=None): self.ref_method = ref_method self.cas = mc if mol == None: self.mol = gto.Mole() else: self.mol = mol # Check settings for DMRG if (self.ref_method == 'DMRG'): try: from pyscf.dmrgscf import settings except ImportError: settings = lambda: None settings.BLOCKEXE = getattr(__config__, 'dmrgscf_BLOCKEXE', None) settings.BLOCKEXE_COMPRESS_NEVPT = \ getattr(__config__, 'dmrgscf_BLOCKEXE_COMPRESS_NEVPT', None) settings.BLOCKSCRATCHDIR = getattr(__config__, 'dmrgscf_BLOCKSCRATCHDIR', None) settings.BLOCKRUNTIMEDIR = getattr(__config__, 'dmrgscf_BLOCKRUNTIMEDIR', None) settings.MPIPREFIX = getattr(__config__, 'dmrgscf_MPIPREFIX', None) settings.BLOCKVERSION = getattr(__config__, 'dmrgscf_BLOCKVERSION', None) if (settings.BLOCKEXE is None or settings.BLOCKSCRATCHDIR is None): import sys sys.stderr.write('settings.py not found for module dmrgci. Please create %s\n' % os.path.join(os.path.dirname(__file__), 'settings.py')) raise ImportError('settings.py not found') #self.cas.fcisolver = dmrgci.DMRGCI(mol, maxM=2000, tol=1.e-8) #self.cas.callback = self.cas.fcisolver.restart_scheduler_() #if self.cas.chkfile == self.cas._scf._chkfile.name: # # Do not delete chkfile after mcscf # self.cas.chkfile = tempfile.mktemp(dir=settings.BLOCKSCRATCHDIR) # if not os.path.exists(settings.BLOCKSCRATCHDIR): # os.makedirs(settings.BLOCKSCRATCHDIR) self.ci = mc.ci self.C_mo = mc.mo_coeff self.nao = mc.mo_coeff.shape[0] self.nmo = mc.mo_coeff.shape[1] self.nfrz = mc.frozen self.ncore = mc.ncore self.ncas = mc.ncas self.nelecas = mc.nelecas self.nocc = self.ncore + self.ncas self.virt = self.nmo - self.nocc self.amo = self.nmo - self.ncore - (0 if self.nfrz == None else self.nfrz) self.write_hdf5 = False def _print_active_space(self): print("\n") print("----------------------------------------------") print(" Number of AOs: %s" % self.nao) print(" Number of MOs: %s" % self.nmo) print(" Number of frozen orbitals: %s" % ('0' if self.nfrz == None else self.nfrz) ) print(" Number of core orbitals: %s" % self.ncore) print(" Number of active orbitals: %s" % self.ncas) print(" Number of active alpha electrons: %s" % self.nelecas[0]) print(" Number of active beta electrons: %s" % self.nelecas[1]) print("----------------------------------------------") print("\n") def make_active_rdm1s(self, cas=None, ci=None): if cas is None: cas = self.cas ncas = cas.ncas nelecas = cas.nelecas if self.ref_method == 'MCSCF': if ci is None: ci = self.ci casdm1a, casdm1b = cas.fcisolver.make_rdm1s(ci, ncas, nelecas) else: # ref_method == 'DMRG' # first argument takes 0 for ground and 1 for excited state casdm1a, casdm1b = cas.fcisolver.make_rdm1s(0, ncas, nelecas) return casdm1a, casdm1b def make_full_rdm1s(self, cas=None, ci=None): if cas is None: cas = self.cas if ci is None: ci = self.ci nmo = cas.mo_coeff.shape[1] ncore = cas.ncore ncas = cas.ncas nocc = ncore + ncas nelecas = cas.nelecas # building core part dm1a = np.zeros((nmo,nmo)) dm1b =
np.zeros((nmo,nmo))
numpy.zeros
# dataloader of augmented original t-less dataset import torch.utils.data as data from PIL import Image import os import os.path import torch import numpy as np import torchvision.transforms as transforms import argparse import time import random import numpy.ma as ma import scipy.misc import scipy.io as scio import yaml import json import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import open3d as o3d proj_dir = os.getcwd()+'/' # proj_dir = '/home/lthpc/yifeis/pose/StablePose/' # proj_dir = '/home/dell/yifeis/pose/pose_est_tless_3d/' class PoseDataset(data.Dataset): def __init__(self, mode, num_pt, add_noise, root, noise_trans, refine): if mode == 'train': self.mode = 'train' self.path = proj_dir + 'datasets/tless/dataset_config/bop_train_list.txt' elif mode == 'test': self.mode = 'test' self.path = proj_dir + 'datasets/tless/dataset_config/bop_final_test_list.txt' self.num_pt = num_pt self.root = root self.add_noise = add_noise self.noise_trans = noise_trans self.model_root = root self.list = [] # self.real = [] self.syn = [] input_file = open(self.path) # open data folder(include png,depth,label mat) while 1: input_line = input_file.readline() if not input_line: break if input_line[-1:] == '\n': input_line = input_line[:-1] # if input_line[:5] == 'train_primesense/': # self.real.append(input_line) # else: # self.syn.append(input_line) self.list.append(input_line) input_file.close() self.length = len(self.list) # self.len_real = len(self.real) self.len_syn = len(self.syn) model_info_file = open('{0}/models_reconst/models_info.json'.format(self.model_root), 'r', encoding='utf-8') self.model_info = json.load(model_info_file) self.cld = {} for class_id in range(1, 31): self.cld[class_id] = [] mesh = o3d.io.read_triangle_mesh('{0}/models_reconst/obj_{1}.ply'.format(self.model_root, str(class_id).zfill(6))) pcd = mesh.sample_points_uniformly(number_of_points=10000) pcd = np.asarray(pcd.points) # displayPoint(pcd, pcd,k) self.cld[class_id] = pcd if self.mode == 'train': self.xmap = np.array([[j for i in range(400)] for j in range(400)]) self.ymap = np.array([[i for i in range(400)] for j in range(400)]) self.rt_list = [] self.patch_num_list = [] self.crop_size_list = [] self.gt_list = [] self.info_list = [] self.cam_list = [] N = 31 for i in range(1, N): datadir = 'train_primesense/' + str(i).zfill(6) info_file = open('{0}/{1}/scene_gt_info.json'.format(self.root, datadir), 'r', encoding='utf-8') gt_file = open('{0}/{1}/scene_gt.json'.format(self.root, datadir), 'r', encoding='utf-8') cam_file = open('{0}/{1}/scene_camera.json'.format(self.root, datadir), 'r', encoding='utf-8') info = json.load(info_file) gt = json.load(gt_file) cam = json.load(cam_file) self.info_list.append(info) self.gt_list.append(gt) self.cam_list.append(cam) print('loading training ' + str(i) + 'json files') else: self.xmap = np.array([[j for i in range(720)] for j in range(540)]) self.ymap = np.array([[i for i in range(720)] for j in range(540)]) self.gt_list = [] self.info_list = [] self.cam_list = [] self.patch_num_list = [] ############# load json for i in range(1, 21): datadir = 'test_primesense/' + str(i).zfill(6) info_file = open('{0}/{1}/scene_gt_info.json'.format(self.root, datadir), 'r', encoding='utf-8') gt_file = open('{0}/{1}/scene_gt.json'.format(self.root, datadir), 'r', encoding='utf-8') cam_file = open('{0}/{1}/scene_camera.json'.format(self.root, datadir), 'r', encoding='utf-8') info = json.load(info_file) gt = json.load(gt_file) cam = json.load(cam_file) self.info_list.append(info) self.gt_list.append(gt) self.cam_list.append(cam) print('loading testing '+str(i)+' yml files') self.trancolor = transforms.ColorJitter(0.2, 0.2, 0.2, 0.05) self.noise_img_loc = 0.0 self.noise_img_scale = 7.0 self.minimum_num_pt = 100 self.trans = transforms.ToTensor() self.norm1 = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) self.norm2 = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) self.symmetry_obj_idx = [1-1, 2-1, 3-1, 4-1, 13-1, 14-1, 15-1, 16-1, 17-1, 24-1, 30-1,5-1, 6-1, 7-1, 8-1, 9-1, 10-1, 11-1, 12-1, 19-1, 20-1, 23-1, 25-1, 26-1, 27-1, 28-1, 29-1] # self.rot_index = [1, 2, 3, 4, 13, 14, 15, 16, 17, 24, 30] # self.ref_index = [5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 23, 25, 26, 27, 28, 29] # self.nosym_obj_idx = [18, 21, 22] self.rot_obj_idx = [1-1, 2-1, 3-1, 4-1, 13-1, 14-1, 15-1, 16-1, 17-1, 24-1, 30-1] self.ref_obj_idx = [5-1, 6-1, 7-1, 8-1, 9-1, 10-1, 11-1, 12-1, 19-1, 20-1, 23-1, 25-1, 26-1, 27-1, 28-1, 29-1] self.nosym_obj_idx = [18-1, 21-1, 22-1] self.num_pt_mesh_small = 5000 self.num_pt_mesh_large = 1000 self.refine = refine self.front_num = 2 self.img_noise = True self.t_noise = True # print(len(self.list)) def __getitem__(self, index): if self.mode == 'train': data_dir = self.list[index][:-7] dir_num = self.list[index][-13:-7] data_num = self.list[index][-6:] info = self.info_list[int(dir_num) - 1] gt = self.gt_list[int(dir_num) - 1] cam = self.cam_list[int(dir_num) - 1] choose_file = '{0}/{1}/{2}/{3}_choose.list'.format(self.root, data_dir, 'segmentation', data_num) label = Image.open( '{0}/{1}/{2}/{3}_{4}.png'.format(self.root, data_dir, 'mask_visib_occ', data_num, str(0).zfill(6))) img = Image.open('{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'rgb_occ', data_num)) depth = Image.open('{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'depth', data_num)) patch_file = Image.open('{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'segmentation', data_num)) normal_file = Image.open('{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'normal', data_num)) choose_file = '{0}/{1}/{2}/{3}_choose.list'.format(self.root, data_dir, 'segmentation', data_num) choose_ls = [] stable_ls = [] try: with open(choose_file) as f: data = f.readlines() if len(data) > 1: for ids in data: choose_id = ids[:-1].split(',')[:-1] stable = float(ids[:-1].split(',')[-1]) choose_ls.append([int(x) for x in choose_id]) stable_ls.append(stable) else: if data[0] != '0': choose_id = data[0].split(',')[:-1] stable = float(data[0].split(',')[-1]) choose_ls.append([int(x) for x in choose_id]) stable_ls.append(stable) else: stable_ls.append(0) except(OSError): print('choose_list file not exist') stable_ls.append(0) choose_ls = [] data = ['0'] # if self.img_noise: # img = self.trancolor(img) patch_label = np.array(patch_file) depth = np.array(depth) mask_occ = np.array(label) normal = np.array(normal_file) cam_k = cam[str(int(data_num))]['cam_K'] depth_scale = cam[str(int(data_num))]['depth_scale'] cam_k = np.array(cam_k).reshape(3, 3) obj_bb = info[str(int(data_num))][0]['bbox_visib'] obj_id = gt[str(int(data_num))][0]['obj_id'] model_info = self.model_info[str(obj_id)] depth_mask = ma.getmaskarray(ma.masked_not_equal(depth, 0)) mask_label = ma.getmaskarray(ma.masked_not_equal(mask_occ, 0)) mask = mask_label * depth_mask # mask_of_normal = mask.reshape(400, 400, 1).repeat(3, 2) # normal_masked = normal*mask_of_normal # mask_depth = mask * depth # mask_patch = mask * patch_label target_r = gt[str(int(data_num))][0]['cam_R_m2c'] target_r = np.array(target_r).reshape(3, 3).T target_t = np.array(gt[str(int(data_num))][0]['cam_t_m2c']) target_t = target_t / 1000 rt = np.append(target_r, target_t).reshape(1, 12) add = np.array([[0, 0, 0, 1]]) target_trans = np.append(target_r.T, target_t.reshape(3, 1), axis=1) target_trans = np.append(target_trans, add, axis=0) rmin, rmax, cmin, cmax = get_bbox(mask_label) img_masked = self.trans(img)[:, rmin:rmax, cmin:cmax] img_masked = torch.zeros(img_masked.shape) # img_masked1 = self.norm1(img_masked[:, rmin:rmax, cmin:cmax]) # img_masked2 = self.norm1(img_masked[:, rmin:rmax, cmin:cmax]) # img = np.array(img) # img_masked_ = np.transpose(img[:, :, :3], (2, 0, 1))[:, rmin:rmax, cmin:cmax] choose = mask[rmin:rmax, cmin:cmax].flatten().nonzero()[0] if len(choose) > self.num_pt: c_mask = np.zeros(len(choose), dtype=int) c_mask[:self.num_pt] = 1 np.random.shuffle(c_mask) choose = choose[c_mask.nonzero()] else: if len(choose) == 0: print(0) choose = np.pad(choose, (0, self.num_pt - len(choose)), 'wrap') normal_maskd = normal[rmin:rmax, cmin:cmax].reshape(-1,3)[choose][:,:, np.newaxis].astype(np.float32) patch_masked = patch_label[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32) depth_masked = depth[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32) xmap_masked = self.xmap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32) ymap_masked = self.ymap[rmin:rmax, cmin:cmax].flatten()[choose][:, np.newaxis].astype(np.float32) choose = np.array([choose]) cam_cx = cam_k[0, 2] cam_cy = cam_k[1, 2] cam_fx = cam_k[0, 0] cam_fy = cam_k[1, 1] pt3 = patch_masked pt2 =depth_masked*depth_scale / 1000 pt0 = (ymap_masked - cam_cx) * pt2 / cam_fx pt1 = (xmap_masked - cam_cy) * pt2 / cam_fy cloud = np.concatenate((pt0, pt1, pt2, pt3), axis=1) nx = normal_maskd[:, 0] / 255.0 * 2 - 1 ny = normal_maskd[:, 1] / 255.0 * 2 - 1 nz = normal_maskd[:, 2] / 255.0 * 2 - 1 normals = np.concatenate((nx, ny, nz), axis=1) dellist = [j for j in range(0, len(self.cld[obj_id]))] if self.refine: dellist = random.sample(dellist, len(self.cld[obj_id]) - self.num_pt_mesh_large) else: dellist = random.sample(dellist, len(self.cld[obj_id]) - self.num_pt_mesh_small) model_points = np.delete(self.cld[obj_id], dellist, axis=0) model_points = model_points / 1000 target = np.dot(model_points, target_r) target = np.add(target, target_t) # displayPoint(cloud, target, index) # patch_occ = patch_label[rmin:rmax, cmin:cmax] # num_patch = np.max(patch_occ) # num_list = [] # for n in range(1, num_patch + 1): # num = str(patch_occ.tolist()).count(str(n)) # num_list.append(num) # # num_list_new = [] # patch_id_list = [] # for m in num_list: # if m > 100: # num_list_new.append(m) # patch_id_list.append(num_list.index(m) + 1) im_id = 0 scene_id = 0 if self.mode == 'test': data_dir = self.list[index][:23] dir_num = self.list[index][16:22] data_num = self.list[index][23:29] obj_order = self.list[index][30:] idx = int(obj_order) im_id = int(data_num) scene_id = int(dir_num) info = self.info_list[int(dir_num) - 1] gt = self.gt_list[int(dir_num) - 1] cam = self.cam_list[int(dir_num) - 1] obj_num = len(gt[str(int(data_num))]) obj_id = gt[str(int(data_num))][idx]['obj_id'] model_info = self.model_info[str(obj_id)] depth = np.array(Image.open('{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'depth', data_num))) label = np.array(Image.open( '{0}/{1}/{2}/{3}_{4}.png'.format(self.root, data_dir, 'mask_visib', data_num, str(idx).zfill(6)))) patch_label = np.array(Image.open( '{0}/{1}/{2}/{3}_{4}.png'.format(self.root, data_dir, 'segmentation', data_num, str(idx).zfill(6)))) img = Image.open('{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'rgb', data_num.zfill(6))) normal = np.array(Image.open( '{0}/{1}/{2}/{3}.png'.format(self.root, data_dir, 'normal', data_num, str(idx).zfill(6)))) choose_file = '{0}/{1}/{2}/{3}_{4}_choose.list'.format(self.root, data_dir, 'segmentation', data_num, str(idx).zfill(6)) with open(choose_file) as f: data = f.readlines() choose_ls = [] stable_ls = [] if len(data) > 1: for ids in data: choose_id = ids[:-1].split(',')[:-1] stable = float(ids[:-1].split(',')[-1]) choose_ls.append([int(x) for x in choose_id]) stable_ls.append(stable) else: if data[0] != '0': choose_id = data[0].split(',')[:-1] stable = float(data[0].split(',')[-1]) choose_ls.append([int(x) for x in choose_id]) stable_ls.append(stable) else: stable_ls.append(0) depth_scale = cam[str(int(data_num))]['depth_scale'] cam_k = cam[str(int(data_num))]['cam_K'] cam_k = np.array(cam_k).reshape(3, 3) cam_cx = cam_k[0, 2] cam_cy = cam_k[1, 2] cam_fx = cam_k[0, 0] cam_fy = cam_k[1, 1] obj_bb = info[str(int(data_num))][idx]['bbox_visib'] cmin = obj_bb[0] cmax = cmin + obj_bb[2] rmin = obj_bb[1] rmax = rmin + obj_bb[3] img_masked = self.trans(img)[:, rmin:rmax, cmin:cmax] img_masked = torch.zeros(img_masked.shape) # img_masked = np.transpose(np.array(img)[:, :, :3], (2, 0, 1))[:, rmin:rmax, cmin:cmax] mask_depth = ma.getmaskarray(ma.masked_not_equal(depth, 0)) mask_label = ma.getmaskarray(ma.masked_equal(label, 255)) mask = mask_label * mask_depth mask_patch = mask * patch_label mask_num = len(mask.flatten().nonzero()[0]) target_r = gt[str(int(data_num))][idx]['cam_R_m2c'] target_r =
np.array(target_r)
numpy.array
import os import time import imgaug as ia import numpy as np from PIL import Image from imgaug import augmenters as iaa from pycocotools import mask as cocomask def from_pil(*images): images = [
np.array(image)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Nov 27 2019 @author: changyuchang """ import numpy as np from functools import partial def no_selection(community_function): """ Direct well-to-well transfer without selection """ n_wells = len(community_function) return np.eye(n_wells) # Make selection algorithms with similar names, using partial functions ## Select top n% def temp_select_top(community_function, p): n_wells = len(community_function) sorted_community_function = np.sort(community_function) cut_off = sorted_community_function[int(np.floor(len(community_function)*(1-p)))] winner_index = np.where(community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) t_new = range(n_wells) # New wells t_old = list(winner_index) * (int(np.ceil(1/p) + 1)) # Old wells for i in range(n_wells): transfer_matrix[t_new[i], t_old[i]] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['select_top%spercent' %i] = partial(temp_select_top, p = i/100) ## Select top n% control def temp_select_top_control(community_function, p): n_wells = len(community_function) randomized_community_function = community_function.copy() np.random.shuffle(randomized_community_function) sorted_community_function = np.sort(randomized_community_function) cut_off = sorted_community_function[int(np.floor(len(randomized_community_function)*(1-p)))] winner_index = np.where(randomized_community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) t_new = range(n_wells) # New wells t_old = list(winner_index) * (int(np.ceil(1/p)+1)) # Old wells for i in range(n_wells): transfer_matrix[t_new[i], t_old[i]] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['select_top%spercent_control' %i] = partial(temp_select_top_control, p = i/100) ## Pooling def temp_pool_top(community_function, p): n_wells = len(community_function) sorted_community_function = np.sort(community_function) cut_off = sorted_community_function[int(np.floor(len(community_function)*(1-p)))] winner_index = np.where(community_function >= cut_off)[0][::-1] transfer_matrix = np.zeros((n_wells,n_wells)) transfer_matrix[:, list(winner_index)] = 1 return transfer_matrix for i in [10, 15, 16, 20, 25, 28, 30, 33, 40, 50, 60]: globals()['pool_top%spercent' %i] = partial(temp_pool_top, p = i/100) ## Pooling control def temp_pool_top_control(community_function, p): n_wells = len(community_function) randomized_community_function = community_function.copy() np.random.shuffle(randomized_community_function) sorted_community_function =
np.sort(randomized_community_function)
numpy.sort
"""The lattice module define the class to handle 3D crystal lattices (the 14 Bravais lattices). """ import os from pymicro.external import CifFile_module as CifFile import enum import functools import math import numpy as np from numpy import pi, dot, transpose, radians from matplotlib import pyplot as plt class Crystal: ''' The Crystal class to create any particular crystal structure. A crystal instance is composed by: * one of the 14 Bravais lattice * a point basis (or motif) ''' def __init__(self, lattice, basis=None, basis_labels=None, basis_sizes=None, basis_colors=None): ''' Create a Crystal instance with the given lattice and basis. This create a new instance of a Crystal object. The given lattice is assigned to the crystal. If the basis is not specified, it will be one atom at (0., 0., 0.). :param lattice: the :py:class:`~pymicro.crystal.lattice.Lattice` instance of the crystal. :param list basis: A list of tuples containing the position of the atoms in the motif. :param list basis_labels: A list of strings containing the description of the atoms in the motif. :param list basis_labels: A list of float between 0. and 1. (default 0.1) to sale the atoms in the motif. :param list basis_colors: A list of vtk colors of the atoms in the motif. ''' self._lattice = lattice if basis == None: # default to one atom at (0, 0, 0) self._basis = [(0., 0., 0.)] self._labels = ['?'] self._sizes = [0.1] self._colors = [(0., 0., 1.)] else: self._basis = basis self._labels = basis_labels self._sizes = basis_sizes self._colors = basis_colors class CrystallinePhase: def __init__(self, phase_id=1, name='unknown', lattice=None): """Create a new crystalline phase. The `phase_id` attribute is used to identify the phase in data sets where it can be referred to in phase_map for instance.""" self.phase_id = phase_id self.name = name self.description = '' self.formula = '' if lattice is None: lattice = Lattice.cubic(1.0) self.set_lattice(lattice) # a list of C_IJ values self.elastic_constants = [] def __repr__(self): """Generate a string representation of this instance.""" out = 'Phase %d (%s) \n\t-- ' % (self.phase_id, self.name) out += self.get_lattice().__repr__() if self.elastic_constants: out += '\n\t-- elastic constants: %s' % self.elastic_constants return out def get_lattice(self): """Returns the crystal lattice.""" return self._lattice def set_lattice(self, lattice): """Set the crystal lattice. :param Lattice lattice: the crystal lattice. """ self._lattice = lattice def get_symmetry(self): """Returns the type of `Symmetry` of the Lattice.""" return self.get_lattice().get_symmetry() def to_dict(self): d = {'phase_id': self.phase_id, 'name': self.name, 'description': self.description, 'formula': self.formula, 'symmetry': self.get_symmetry().to_string(), 'lattice_parameters': self.get_lattice().get_lattice_parameters(), 'lattice_parameters_unit': 'nm', 'elastic_constants': self.elastic_constants, 'elastic_constants_unit': 'MPa' } #print(d) return d @staticmethod def from_dict(d): sym = Symmetry.from_string(d['symmetry']) lattice = Lattice.from_symmetry(sym, d['lattice_parameters']) phase = CrystallinePhase(d['phase_id'], d['name'], lattice) phase.description = d['description'] phase.formula = d['formula'] phase.elastic_constants = d['elastic_constants'] return phase class Symmetry(enum.Enum): """ Class to describe crystal symmetry defined by its Laue class symbol. """ cubic = 'm3m' hexagonal = '6/mmm' orthorhombic = 'mmm' tetragonal = '4/mmm' trigonal = 'bar3m' monoclinic = '2/m' triclinic = 'bar1' @staticmethod def from_string(s): if s == 'cubic': return Symmetry.cubic elif s == 'hexagonal': return Symmetry.hexagonal elif s == 'orthorhombic': return Symmetry.orthorhombic elif s == 'tetragonal': return Symmetry.tetragonal elif s == 'trigonal': return Symmetry.trigonal elif s == 'monoclinic': return Symmetry.monoclinic elif s == 'triclinic': return Symmetry.triclinic else: return None def to_string(self): if self is Symmetry.cubic: return 'cubic' elif self is Symmetry.hexagonal: return 'hexagonal' elif self is Symmetry.orthorhombic: return 'orthorhombic' elif self is Symmetry.tetragonal: return 'tetragonal' elif self is Symmetry.trigonal: return 'trigonal' elif self is Symmetry.monoclinic: return 'monoclinic' elif self is Symmetry.triclinic: return 'triclinic' else: return None @staticmethod def from_space_group(space_group_number): """Create an instance of the `Symmetry` class from a TSL symmetry number. :raise ValueError: if the space_group_number is not between 1 and 230. :param int space_group_number: the number asociated with the space group (between 1 and 230). :return: an instance of the `Symmetry` class """ if space_group_number < 1 or space_group_number > 230: raise ValueError('space_group_number must be between 1 and 230') return None if space_group_number <= 2: return Symmetry.triclinic elif space_group_number <= 15: return Symmetry.monoclinic elif space_group_number <= 74: return Symmetry.orthorhombic elif space_group_number <= 142: return Symmetry.tetragonal elif space_group_number <= 167: return Symmetry.trigonal elif space_group_number <= 194: return Symmetry.hexagonal else: return Symmetry.cubic @staticmethod def from_tsl(tsl_number): """Create an instance of the `Symmetry` class from a TSL symmetry number. :return: an instance of the `Symmetry` class """ if tsl_number == 43: return Symmetry.cubic elif tsl_number == 62: return Symmetry.hexagonal elif tsl_number == 22: return Symmetry.orthorhombic elif tsl_number == 42: return Symmetry.tetragonal elif tsl_number == 32: return Symmetry.trigonal elif tsl_number == 2: return Symmetry.monoclinic elif tsl_number == 1: return Symmetry.triclinic else: return None def symmetry_operators(self, use_miller_bravais=False): """Define the equivalent crystal symmetries. Those come from Randle & Engler, 2000. For instance in the cubic crystal struture, for instance there are 24 equivalent cube orientations. :returns array: A numpy array of shape (n, 3, 3) where n is the \ number of symmetries of the given crystal structure. """ if self is Symmetry.cubic: sym = np.zeros((24, 3, 3), dtype=np.float) sym[0] = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) sym[1] = np.array([[0., 0., -1.], [0., -1., 0.], [-1., 0., 0.]]) sym[2] = np.array([[0., 0., -1.], [0., 1., 0.], [1., 0., 0.]]) sym[3] = np.array([[-1., 0., 0.], [0., 1., 0.], [0., 0., -1.]]) sym[4] = np.array([[0., 0., 1.], [0., 1., 0.], [-1., 0., 0.]]) sym[5] = np.array([[1., 0., 0.], [0., 0., -1.], [0., 1., 0.]]) sym[6] = np.array([[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]]) sym[7] = np.array([[1., 0., 0.], [0., 0., 1.], [0., -1., 0.]]) sym[8] = np.array([[0., -1., 0.], [1., 0., 0.], [0., 0., 1.]]) sym[9] = np.array([[-1., 0., 0.], [0., -1., 0.], [0., 0., 1.]]) sym[10] = np.array([[0., 1., 0.], [-1., 0., 0.], [0., 0., 1.]]) sym[11] = np.array([[0., 0., 1.], [1., 0., 0.], [0., 1., 0.]]) sym[12] = np.array([[0., 1., 0.], [0., 0., 1.], [1., 0., 0.]]) sym[13] = np.array([[0., 0., -1.], [-1., 0., 0.], [0., 1., 0.]]) sym[14] = np.array([[0., -1., 0.], [0., 0., 1.], [-1., 0., 0.]]) sym[15] = np.array([[0., 1., 0.], [0., 0., -1.], [-1., 0., 0.]]) sym[16] = np.array([[0., 0., -1.], [1., 0., 0.], [0., -1., 0.]]) sym[17] = np.array([[0., 0., 1.], [-1., 0., 0.], [0., -1., 0.]]) sym[18] = np.array([[0., -1., 0.], [0., 0., -1.], [1., 0., 0.]]) sym[19] = np.array([[0., 1., 0.], [1., 0., 0.], [0., 0., -1.]]) sym[20] = np.array([[-1., 0., 0.], [0., 0., 1.], [0., 1., 0.]]) sym[21] = np.array([[0., 0., 1.], [0., -1., 0.], [1., 0., 0.]]) sym[22] = np.array([[0., -1., 0.], [-1., 0., 0.], [0., 0., -1.]]) sym[23] = np.array([[-1., 0., 0.], [0., 0., -1.], [0., -1., 0.]]) elif self is Symmetry.hexagonal: if use_miller_bravais: # using the Miller-Bravais representation here sym = np.zeros((12, 4, 4), dtype=np.int) sym[0] = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) sym[1] = np.array([[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) sym[2] = np.array([[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]]) sym[3] = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]]) sym[4] = np.array([[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, -1]]) sym[5] = np.array([[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, -1]]) sym[6] = np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) sym[7] = np.array([[0, 0, -1, 0], [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 1]]) sym[8] = np.array([[0, -1, 0, 0], [0, 0, -1, 0], [-1, 0, 0, 0], [0, 0, 0, 1]]) sym[9] = np.array([[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, -1]]) sym[10] = np.array([[0, 0, -1, 0], [-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, -1]]) sym[11] = np.array([[0, -1, 0, 0], [0, 0, -1, 0], [-1, 0, 0, 0], [0, 0, 0, -1]]) else: sym = np.zeros((12, 3, 3), dtype=np.float) s60 = np.sin(60 * np.pi / 180) sym[0] = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) sym[1] = np.array([[0.5, s60, 0.], [-s60, 0.5, 0.], [0., 0., 1.]]) sym[2] = np.array([[-0.5, s60, 0.], [-s60, -0.5, 0.], [0., 0., 1.]]) sym[3] = np.array([[-1., 0., 0.], [0., -1., 0.], [0., 0., 1.]]) sym[4] = np.array([[-0.5, -s60, 0.], [s60, -0.5, 0.], [0., 0., 1.]]) sym[5] = np.array([[0.5, -s60, 0.], [s60, 0.5, 0.], [0., 0., 1.]]) sym[6] = np.array([[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]]) sym[7] = np.array([[0.5, s60, 0.], [s60, -0.5, 0.], [0., 0., -1.]]) sym[8] = np.array([[-0.5, s60, 0.], [s60, 0.5, 0.], [0., 0., -1.]]) sym[9] = np.array([[-1., 0., 0.], [0., 1., 0.], [0., 0., -1.]]) sym[10] = np.array([[-0.5, -s60, 0.], [-s60, 0.5, 0.], [0., 0., -1.]]) sym[11] = np.array([[0.5, -s60, 0.], [-s60, -0.5, 0.], [0., 0., -1.]]) elif self is Symmetry.orthorhombic: sym = np.zeros((4, 3, 3), dtype=np.float) sym[0] = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) sym[1] = np.array([[1., 0., 0.], [0., -1., 0.], [0., 0., -1.]]) sym[2] =
np.array([[-1., 0., -1.], [0., 1., 0.], [0., 0., -1.]])
numpy.array
""" runs using 1) python/3.3.2 2) numpy/1.11.1/python/3.3 3) scipy/0.17.1/python/3.3 module load python3/3.3.2 /scratch/mhess/py3p3/3.3 Aim: do MOR steady state solver with efficient matrices """ import numpy as np import time from ITHACA_SEM_code import ROM_Oseen_Iteration_step from ITHACA_SEM_code import Generate_Advection_Terms from ITHACA_SEM_code import ROM_Oseen_Iteration_step def remove_from_matrix(matrix, columns, rows): return [ [float(matrix[row_num][col_num]) for col_num in range(len(matrix[row_num])) if not col_num in columns] for row_num in range(len(matrix)) if not row_num in rows] #(Dbnd, Dint, sing_A, sing_B, sing_Btilde, sing_C, M_trafo_no_pp_incl_dbc) = gen_Mats_cav.gen() def Oseen_Iteration(mu_vec, Dbnd, Dint, sing_A, sing_B, sing_Btilde, sing_C, M_trafo_no_pp_incl_dbc, glodofphys, LocGloMapMatA, LocGloSign, LocGloMap, snap, ngc, nlc, bmap, imap, num_elem, nsize_bndry, nsize_int, nsize_p, nvel, c_f_bnd, c_f_p, c_f_int, NumDirBCs, nGlobHomBndDofs, no_loc_dbc, elem_loc_dbc, no_not_loc_dbc, elem_not_loc_dbc, IP, IPp, bwdtrans, cartmap0, cartmap1, LocGloBndSign, LocGloBndMap, BndCondCoeffsToGlobalCoeffsMap , init_bnd, forcing): print("snap.shape ", snap.shape) snap_x = snap[:, 0:ngc] snap_y = snap[:, ngc:2*ngc] print("snap_x.shape ", snap_x.shape) print("snap_y.shape ", snap_y.shape) snap_x_mean = np.mean(snap_x, axis=0) snap_y_mean = np.mean(snap_y, axis=0) nbmap = bmap.shape[0] nimap = imap.shape[0] nbnd = nbmap nint = nimap nsize_bndry_p1 = nsize_bndry + 1 nsize_p_m1 = nsize_p - 1 u_x = snap_x_mean u_y = snap_y_mean supr_f_bnd = np.dot( np.transpose(Dbnd) , c_f_p ) supr_f_int = np.dot( np.transpose(Dint) , c_f_p ) c_f_all = np.r_[c_f_bnd, c_f_p, c_f_int] (c_f_all, R1, R2) = np.linalg.svd(c_f_all, full_matrices=False) c_f_all = c_f_all[:, 0:np.max(np.where(np.cumsum(R1)/np.sum(R1) < .99))+1] c_f_bnd = c_f_all[0:c_f_bnd.shape[0],:] c_f_p = c_f_all[c_f_bnd.shape[0]:c_f_bnd.shape[0]+c_f_p.shape[0],:] c_f_int = c_f_all[c_f_bnd.shape[0]+c_f_p.shape[0]:c_f_bnd.shape[0]+c_f_p.shape[0]+c_f_int.shape[0],:] print("c_f_bnd.shape ", c_f_bnd.shape) print("c_f_p.shape ", c_f_p.shape) print("c_f_int.shape ", c_f_int.shape) nBndDofs = nGlobHomBndDofs + NumDirBCs nGlobBndDofs = nBndDofs no_of_dbc_in_loc = no_loc_dbc loc_dbc_set = elem_loc_dbc RBsize = c_f_bnd.shape[1] V_f_bnd = np.zeros([num_elem*nsize_bndry - no_of_dbc_in_loc, c_f_bnd.shape[1]]) cropped_counter = 0 for i in range(0, num_elem*nsize_bndry): if i not in loc_dbc_set: V_f_bnd[cropped_counter,:] = c_f_bnd[i,:] cropped_counter = cropped_counter + 1 V_f_p = c_f_p V_f_int = c_f_int f_bnd_dbc = 0*np.arange((num_elem*nsize_bndry - no_not_loc_dbc)*1.0) non_cropped_counter = 0 for i in range(0,num_elem*nsize_bndry): if i in loc_dbc_set: f_bnd_dbc[non_cropped_counter] = c_f_bnd[i,0] non_cropped_counter += 1 t = time.time() sing_A_M = np.dot(np.transpose(M_trafo_no_pp_incl_dbc),sing_A) sing_A_MM = np.dot(M_trafo_no_pp_incl_dbc,sing_A_M) Dbnd_M = np.dot(Dbnd, M_trafo_no_pp_incl_dbc) Dbnd_MM = np.dot(Dbnd_M, np.transpose(M_trafo_no_pp_incl_dbc)) sing_B_M = np.dot(np.transpose(M_trafo_no_pp_incl_dbc),sing_B) sing_B_MM = np.dot(M_trafo_no_pp_incl_dbc,sing_B_M) sing_A_MM_cropped = np.array(remove_from_matrix(sing_A_MM, loc_dbc_set, loc_dbc_set)) sing_A_MM_Aud = np.array(remove_from_matrix(sing_A_MM, elem_not_loc_dbc, loc_dbc_set)) Dbnd_crop = np.array(remove_from_matrix(Dbnd, loc_dbc_set, set())) sing_Dbnd_Aud = np.array(remove_from_matrix(Dbnd, elem_not_loc_dbc, set())) sing_B_MM_cropped = np.array(remove_from_matrix(sing_B_MM, set(), loc_dbc_set)) Dbnd_MM_crop = np.array(remove_from_matrix(Dbnd_MM, loc_dbc_set, set())) sing_Btilde_cropped = np.array(remove_from_matrix(sing_Btilde, set(), loc_dbc_set)) sing_Btilde_Aud = np.array(remove_from_matrix(sing_Btilde, set(), elem_not_loc_dbc)) A_11_1 = np.dot(np.dot(np.transpose(V_f_bnd), sing_A_MM_cropped), V_f_bnd) A_21_alt = -np.dot(np.dot(np.transpose(V_f_p), Dbnd_crop), V_f_bnd) A_31_1 = np.dot(np.dot(np.transpose(V_f_int), np.transpose(sing_Btilde_cropped)), V_f_bnd) A_12_alt = -np.dot(np.dot(np.transpose(V_f_bnd), np.transpose(Dbnd_MM_crop)), V_f_p) A_32_alt = -np.dot(np.dot(np.transpose(V_f_int), np.transpose(Dint)), V_f_p) A_13_1 = np.dot(np.dot(np.transpose(V_f_bnd), sing_B_MM_cropped), V_f_int) A_23_alt = np.transpose(A_32_alt) A_33_1 = np.dot(np.dot(np.transpose(V_f_int), sing_C), V_f_int) r1_1 = np.dot(np.dot(np.transpose(V_f_bnd), sing_A_MM_Aud), f_bnd_dbc) r2_1 = -np.dot(np.dot(np.transpose(V_f_p), sing_Dbnd_Aud), f_bnd_dbc) r3_1 = np.dot(np.dot(np.transpose(V_f_int), np.transpose(sing_Btilde_Aud)), f_bnd_dbc) Dbnd_M = np.dot(Dbnd, M_trafo_no_pp_incl_dbc) Dbnd_MM = np.dot(Dbnd_M, np.transpose(M_trafo_no_pp_incl_dbc)) Dbnd_crop = np.array(remove_from_matrix(Dbnd, loc_dbc_set, set())) sing_Dbnd_Aud = np.array(remove_from_matrix(Dbnd, elem_not_loc_dbc, set())) Dbnd_MM_crop = np.array(remove_from_matrix(Dbnd_MM, loc_dbc_set, set())) row1_2 = -np.dot(np.transpose(c_f_bnd), np.dot(np.transpose(Dbnd), c_f_p)) row2_1 = -np.dot(np.transpose(c_f_p), np.dot(Dbnd, c_f_bnd)) row2_3 = -np.dot(np.transpose(c_f_p), np.dot(Dint, c_f_int)) row3_2 = -np.dot(np.transpose(c_f_int), np.dot(np.transpose(Dint), c_f_p)) sing_A_pt1_proj = np.dot(np.dot(np.transpose(c_f_bnd), sing_A), c_f_bnd) sing_B_pt1_proj = np.dot(np.dot(np.transpose(c_f_bnd), sing_B), c_f_int) sing_Btilde_pt1_proj = np.dot(np.dot(np.transpose(c_f_int), np.transpose(sing_Btilde)), c_f_bnd) sing_C_pt1_proj = np.dot(np.dot(np.transpose(c_f_int), sing_C), c_f_int) elapsed = time.time() - t print('time MatMults: ', elapsed) t = time.time() sing_A_MM_cropped_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_B_MM_cropped_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_A_MM_Aud_proj_x = np.zeros([RBsize, RBsize]) sing_A_MM_cropped_proj_y = np.zeros([RBsize, RBsize, RBsize]) sing_B_MM_cropped_proj_y = np.zeros([RBsize, RBsize, RBsize]) sing_A_MM_Aud_proj_y = np.zeros([RBsize, RBsize]) sing_Btilde_cropped_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_Btilde_cropped_proj_y = np.zeros([RBsize, RBsize, RBsize]) sing_Btilde_Aud_proj_x = np.zeros([RBsize, RBsize]) sing_Btilde_Aud_proj_y = np.zeros([RBsize, RBsize]) sing_C_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_C_proj_y = np.zeros([RBsize, RBsize, RBsize]) sing_A_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_A_proj_y = np.zeros([RBsize, RBsize, RBsize]) sing_B_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_B_proj_y = np.zeros([RBsize, RBsize, RBsize]) sing_Btilde_proj_x = np.zeros([RBsize, RBsize, RBsize]) sing_Btilde_proj_y = np.zeros([RBsize, RBsize, RBsize]) nphys = glodofphys.shape[1] phys_basis_x = np.zeros([nphys,RBsize]) phys_basis_y = np.zeros([nphys,RBsize]) # use unit inverse tt_cd mapping # inv_tt_cd = 0*tt_cd[0:ngc] inv_tt_cd = np.arange(ngc) for i in range(0,ngc): inv_tt_cd[i] = int(i) #inv_tt_cd[tt_cd[i]] = int(i) # compute for all basis functions, the gen_Mats_adv nplanecoeffs = nlc for curr_basis in range(0, c_f_bnd.shape[1]): cnt = 0 cnt1 = 0 offset = 0 fields = np.zeros( [nvel, nplanecoeffs] ) for curr_elem in range(0, num_elem): for j in range(0, nvel): for k in range(0, nbnd): fields[j, offset + int(bmap[k])] = c_f_bnd[cnt + k, curr_basis] for k in range(0, nint): fields[j, offset + int(imap[k])] = c_f_int[cnt1+k, curr_basis] cnt += nbnd cnt1 += nint offset += nbnd + nint # is 169 nvel = 2 cnt = 0 offset = 0 velo0 = np.zeros( [ngc] ) velo1 = np.zeros( [ngc] ) for i in range(0, nplanecoeffs): velo0 = np.dot(LocGloMapMatA, np.transpose(fields[0,:])) velo1 = np.dot(LocGloMapMatA, np.transpose(fields[1,:])) # velo0[int(LocGloMapA[i])] = int(LocGloSignA[i]) * fields[0,i] # velo1[int(LocGloMapA[i])] = int(LocGloSignA[i]) * fields[1,i] # use here inv_tt_cd ?? velo0 = velo0[inv_tt_cd[0:ngc]] velo1 = velo1[inv_tt_cd[0:ngc]] basis_x = np.dot(velo0, glodofphys) basis_y = np.dot(velo1, glodofphys) phys_basis_x[:,curr_basis] = basis_x phys_basis_y[:,curr_basis] = basis_y (phys_basis_x, R1, R2) = np.linalg.svd(phys_basis_x, full_matrices=False) (phys_basis_y, R1, R2) =
np.linalg.svd(phys_basis_y, full_matrices=False)
numpy.linalg.svd
import pytest import os import numpy as np import matplotlib.pyplot as plt from astropy.io import fits from sklearn.model_selection import cross_val_score from sklearn.datasets import make_classification from sklearn.exceptions import NotFittedError from mcalf.models import ModelBase, IBIS8542Model, FitResults from mcalf.profiles.voigt import voigt, double_voigt from ..helpers import data_path_function, figure_test data_path = data_path_function('models') class DummyClassifier: def __init__(self, trained=False, n_features=None, classifications=None): self.trained = trained self.n_features = n_features self.defined_return = True if classifications is not None else False self.classifications = classifications def train(self, X, y): assert np.ndim(X) == 2 # (n_samples, n_features) assert np.ndim(y) == 1 # (n_samples) assert len(X) == len(y) self.trained = True self.n_features = X.shape[-1] def test(self, X, y): if not self.trained: raise NotFittedError() assert np.ndim(X) == 2 # (n_samples, n_features) assert np.ndim(y) == 1 # (n_samples) assert X.shape[-1] == self.n_features assert len(X) == len(y) def predict(self, X): if self.defined_return: return self.classifications.flatten() if not self.trained: raise NotFittedError() assert np.ndim(X) == 2 # (n_samples, n_features) assert X.shape[-1] == self.n_features return np.asarray(X[:, -1] * 100, dtype=int) @pytest.mark.parametrize('model', (ModelBase, IBIS8542Model)) def test_default_parameters(model): # Test default parameters with pytest.raises(ValueError) as e: model() assert 'original_wavelengths' in str(e.value) def test_ibis8542model_basic(): # Will break if default parameters are changes in mcalf.models.IBIS8542Model wl = 1000.97 x_orig = np.linspace(999.81, 1002.13, num=25) prefilter_main = 1 - np.abs(x_orig - wl) * 0.1 prefilter_wvscl = x_orig - wl m = IBIS8542Model(stationary_line_core=wl, original_wavelengths=x_orig, prefilter_ref_main=prefilter_main, prefilter_ref_wvscl=prefilter_wvscl) bg = 1327.243 arr = voigt(x_orig, -231.42, wl+0.05, 0.2, 0.21, bg) m.load_array(np.array([arr, arr]), names=['row', 'wavelength']) m.load_background(np.array([bg, bg]), names=['row']) # Fit with assumed neural network classification fit1, fit2 = m.fit(row=[0, 1], classifications=np.array([0, 0])) fit3 = m.fit_spectrum(arr, classifications=0, background=bg) # Make sure this is equiv truth = [-215.08275199, 1001.01035476, 0.00477063, 0.28869302] assert np.array_equal(fit1.parameters, fit2.parameters) assert np.array_equal(fit1.parameters, fit3.parameters) assert list(fit1.parameters) == pytest.approx(truth) def test_ibis8542model_configfile(): # Enter the data directory (needed to find the files referenced in the config files) original_dir = os.getcwd() os.chdir(data_path()) # Test with config file IBIS8542Model(config="ibis8542model_config.yml") # Turn off sigma IBIS8542Model(config="ibis8542model_config.yml", sigma=False) # Test with defined prefilter with pytest.deprecated_call(): IBIS8542Model(config="ibis8542model_config_prefilter.yml") # Test with no prefilter IBIS8542Model(config="ibis8542model_config_noprefilter.yml") # TODO Check that the parameters were imported correctly # Go back to original directory os.chdir(original_dir) @pytest.fixture def valid_kwargs(): stationary_line_core = 8542.099145376844 defaults = { 'stationary_line_core': stationary_line_core, 'original_wavelengths': np.linspace(stationary_line_core - 2, stationary_line_core + 2, num=25), 'constant_wavelengths': np.linspace(stationary_line_core - 1.7, stationary_line_core + 1.7, num=30), 'prefilter_response': np.loadtxt(data_path('ibis8542model_prefilter.csv'), delimiter=','), } return defaults @pytest.mark.parametrize('model', (ModelBase, IBIS8542Model)) def test_validate_parameters(model, valid_kwargs): # Default parameters should work model(**valid_kwargs) # original_wavelengths or constant_wavelengths not sorted for wavelengths in ('original_wavelengths', 'constant_wavelengths'): with pytest.raises(ValueError) as e: defaults_mod = valid_kwargs.copy() unsorted = defaults_mod[wavelengths].copy() # Copy the numpy array before shuffling unsorted[10] = unsorted[12] # Copy the 12th element to the 10th (now out of order) defaults_mod[wavelengths] = unsorted # Replace the sorted array with the unsorted model(**defaults_mod) # Initialise the model assert wavelengths in str(e.value) and 'must be sorted ascending' in str(e.value) # assert warning when constant_wavelengths extrapolates original_wavelengths (1e-5 over below and above) delta_lambda = 0.05 for match, i, delta in [ ("Upper bound of `constant_wavelengths` is outside of `original_wavelengths` range.", -1, delta_lambda + 1e-5), ("Lower bound of `constant_wavelengths` is outside of `original_wavelengths` range.", 0, -1e-5) ]: with pytest.warns(Warning, match=match): defaults_mod = valid_kwargs.copy() extrapolate = defaults_mod['constant_wavelengths'].copy() extrapolate[i] = defaults_mod['original_wavelengths'][i] + delta defaults_mod['constant_wavelengths'] = extrapolate model(**defaults_mod, delta_lambda=delta_lambda) # Initialise the model # stationary_line_core is not a float with pytest.raises(ValueError) as e: defaults_mod = valid_kwargs.copy() defaults_mod.update({'stationary_line_core': int(8542)}) model(**defaults_mod) assert 'stationary_line_core' in str(e.value) and 'float' in str(e.value) # stationary_line_core out of wavelength range with pytest.raises(ValueError) as e: defaults_mod = valid_kwargs.copy() defaults_mod.update({'stationary_line_core': float(1000)}) model(**defaults_mod) assert 'stationary_line_core' in str(e.value) and 'is not within' in str(e.value) # Check that length of prefilter response is enforced with pytest.raises(ValueError) as e: defaults_mod = valid_kwargs.copy() defaults_mod.update({'prefilter_response': valid_kwargs['prefilter_response'][:-1]}) m = model(**defaults_mod) m._set_prefilter() assert 'prefilter_response' in str(e.value) and 'must be the same length' in str(e.value) # Check that unexpected kwargs raise an error with pytest.raises(TypeError) as e: model(**valid_kwargs, qheysnfebsy=None) assert 'got an unexpected keyword argument' in str(e.value) and 'qheysnfebsy' in str(e.value) # TODO Verify remaining conditions @pytest.mark.parametrize('model', (ModelBase, IBIS8542Model)) def test_load_data(model, valid_kwargs): # Initialise model m = model(**valid_kwargs) # Unknown target array = np.random.rand(5, 10, 15, 30) with pytest.raises(ValueError) as e: m._load_data(array, names=['time', 'row', 'column', 'wavelength'], target='arrrrray') assert 'array target must be' in str(e.value) and 'arrrrray' in str(e.value) # Ensure a single spectrum array cannot be loaded (not supported) for target, names, array in [('array', ['wavelength'], np.random.rand(30)), ('background', [], 723.23)]: with pytest.raises(ValueError) as e: m._load_data(array, names=names, target=target) assert 'cannot load an array containing one spectrum' in str(e.value) # Ensure dimension names are validated for meth in (m.load_array, m.load_background): array = np.random.rand(5, 10, 15, 30) with pytest.raises(ValueError) as e: meth(array) assert 'dimension names must be specified' in str(e.value) array = np.random.rand(5, 10, 15, 30) with pytest.raises(ValueError) as e: meth(array, names=['row', 'column', 'wavelength']) assert 'number of dimension names do not match number of columns' in str(e.value) array = np.random.rand(5, 10, 15, 30) with pytest.raises(ValueError) as e: meth(array, names=['wavelength', 'row', 'column', 'wavelength']) assert 'duplicate dimension names found' in str(e.value) array = np.random.rand(5, 10, 15) with pytest.raises(ValueError) as e: m.load_array(array, names=['time', 'row', 'column']) assert 'array must contain a wavelength dimension' in str(e.value) # 'wavelengths' not valid background dimension array = np.random.rand(5, 10, 15) with pytest.raises(ValueError) as e: m.load_background(array, names=['row', 'column', 'wavelength']) assert "name 'wavelength' is not a valid dimension name" in str(e.value) # 'rows' should be 'row' etc. array = np.random.rand(5, 10, 15, 30) with pytest.raises(ValueError) as e: m.load_array(array, names=['time', 'rows', 'column', 'wavelength']) assert "name 'rows' is not a valid dimension name" in str(e.value) array = np.random.rand(5, 10, 15) with pytest.raises(ValueError) as e: m.load_background(array, names=['time', 'rows', 'column']) assert "name 'rows' is not a valid dimension name" in str(e.value) array = np.random.rand(5, 10, 15, 30) with pytest.raises(ValueError) as e: m.load_array(array, names=['time', 'row', 'column', 'wavelength']) assert 'length of wavelength dimension not equal length of original_wavelengths' in str(e.value) array = np.random.rand(5, 10, 15) m.load_background(array, names=['time', 'row', 'column']) array = np.random.rand(5, 7, 15, 25) with pytest.warns(UserWarning, match="shape of spectrum array indices does not match shape of background array"): m.load_array(array, names=['time', 'row', 'column', 'wavelength']) @pytest.mark.parametrize('model', (ModelBase, IBIS8542Model)) def test_get_time_row_column(model, valid_kwargs): # Initialise model m = model(**valid_kwargs) array = np.random.rand(4, 5, 6, 25) names = ['time', 'row', 'column', 'wavelength'] m.load_array(array.copy(), names=names) # (test get_spectra with multiple spectra -- only supports a single spectrum) with pytest.raises(ValueError) as e: m.get_spectra(spectrum=np.random.rand(10, 30)) assert 'explicit spectrum must have one dimension' in str(e.value) # All dimensions loaded so make sure all dimensions required for dim in names[:-1]: with pytest.raises(ValueError) as e: drop_a_name = names[:-1].copy() drop_a_name.remove(dim) m._get_time_row_column(**{k: 2 for k in drop_a_name}) assert f"{dim} index must be specified as multiple indices exist" == str(e.value) # Drop a dimension and don't specify it array = array[0] # Drop one (arbitrary) dimension for dim in names[:-1]: drop_a_name = names.copy() drop_a_name.remove(dim) m.load_array(array.copy(), names=drop_a_name) m._get_time_row_column(**{k: 2 for k in drop_a_name[:-1]}) def test_modelbase_fit(valid_kwargs): m = ModelBase(**valid_kwargs) array = np.random.rand(4, 5, 6, 25) array[0] = np.nan # For testing no spectra given names = ['time', 'row', 'column', 'wavelength'] m.load_array(array.copy(), names=names) # `_fit` method must be implemented in a subclass with pytest.raises(NotImplementedError): m._fit(np.random.rand(30)) # Must raise exception if no spectra presented for fitting with pytest.raises(ValueError) as e: m.fit(time=0, row=range(5), column=range(6)) assert 'no valid spectra given' in str(e.value) def test_ibis8542model_validate_parameters(valid_kwargs): stationary_line_core = valid_kwargs['stationary_line_core'] defaults = { 'absorption_guess': [-1000, stationary_line_core, 0.2, 0.1], 'emission_guess': [1000, stationary_line_core, 0.2, 0.1], 'absorption_min_bound': [-np.inf, stationary_line_core - 0.15, 1e-6, 1e-6], 'emission_min_bound': [0, -np.inf, 1e-6, 1e-6], 'absorption_max_bound': [0, stationary_line_core + 0.15, 1, 1], 'emission_max_bound': [np.inf, np.inf, 1, 1], 'absorption_x_scale': [1500, 0.2, 0.3, 0.5], 'emission_x_scale': [1500, 0.2, 0.3, 0.5] } # Incorrect Lengths for key, value in defaults.items(): # For each parameter with pytest.raises(ValueError) as e: # Catch ValueErrors defaults_mod = defaults.copy() # Create a copy of the default parameters defaults_mod.update({key: value[:-1]}) # Crop the parameter's value IBIS8542Model(**valid_kwargs, **defaults_mod) # Pass the cropped parameter with the other default params assert key in str(e.value) and 'length' in str(e.value) # Error must be about length of current parameter # Check that the sign of the following amplitudes are enforced for sign, bad_number, parameters in [('positive', -10.42, ('emission_guess', 'emission_min_bound')), ('negative', +10.42, ('absorption_guess', 'absorption_max_bound'))]: for p in parameters: with pytest.raises(ValueError) as e: bad_value = defaults[p].copy() bad_value[0] = bad_number defaults_mod = defaults.copy() defaults_mod.update({p: bad_value}) IBIS8542Model(**valid_kwargs, **defaults_mod) assert p in str(e.value) and sign in str(e.value) # TODO Verify remaining conditions def test_ibis8542model_get_sigma(): # Enter the data directory (needed to find the files referenced in the config files) original_dir = os.getcwd() os.chdir(data_path()) m = IBIS8542Model(config="ibis8542model_config.yml") sigma = np.loadtxt("ibis8542model_sigma.csv", delimiter=',') assert np.array_equal(m._get_sigma(classification=0), sigma[0]) for c in (1, 2, 3, 4): assert np.array_equal(m._get_sigma(classification=c), sigma[1]) for i in (0, 1): assert np.array_equal(m._get_sigma(sigma=i), sigma[i]) x = np.array([1.4325, 1421.43, -1325.342, 153.3, 1.2, 433.0]) assert np.array_equal(m._get_sigma(sigma=x), x) # Go back to original directory os.chdir(original_dir) @pytest.fixture(scope='module') def ibis8542model_init(): # Enter the data directory (needed to find the files referenced in the config files) original_dir = os.getcwd() os.chdir(data_path()) x_orig = np.loadtxt("ibis8542model_wavelengths_original.csv") m = IBIS8542Model(config="ibis8542model_init_config.yml", constant_wavelengths=x_orig, original_wavelengths=x_orig, prefilter_response=np.ones(25)) m.neural_network = DummyClassifier(trained=True, n_features=25) # Go back to original directory os.chdir(original_dir) return m def test_ibis8542model_classify_spectra(ibis8542model_init): np.random.seed(0) spectra = np.random.rand(30, 25) * 100 + 1000 truth = np.array([10, 37, 72, 0, 27, 100, 81, 44, 17, 49, 22, 97, 28, 100, 22, 17, 64, 91, 94, 47, 0, 34, 96, 98, 97, 3, 82, 87, 40, 51], dtype=int) m = ibis8542model_init classifications = m.classify_spectra(spectra=spectra, only_normalise=True) assert np.array_equal(classifications, truth) for i in range(len(truth)): classifications = m.classify_spectra(spectra=spectra[i], only_normalise=False) assert classifications[0] == truth[i] and len(classifications) == 1 m.neural_network.trained = False with pytest.raises(NotFittedError): m.classify_spectra(spectra=spectra, only_normalise=True) @pytest.fixture(scope='module') def ibis8542model_spectra(ibis8542model_init): """IBIS8542Model with random data loaded""" m = ibis8542model_init spectra = np.empty((2, 3, 4, len(m.original_wavelengths)), dtype=np.float64) classifications = np.empty((2, 3, 4), dtype=int) np.random.seed(253) a1_array = np.random.rand(*spectra.shape[:-1]) * 500 - 800 a2_array = np.random.rand(*spectra.shape[:-1]) * 500 + 300 b1_array = np.random.rand(*spectra.shape[:-1]) / 2 - 0.25 + m.stationary_line_core b2_array = np.random.rand(*spectra.shape[:-1]) / 2 - 0.25 + m.stationary_line_core s1_array = np.random.rand(*spectra.shape[:-1]) / 2 + 0.1 s2_array = np.random.rand(*spectra.shape[:-1]) / 2 + 0.1 g1_array = np.random.rand(*spectra.shape[:-1]) / 2 + 0.1 g2_array = np.random.rand(*spectra.shape[:-1]) / 2 + 0.1 d_array = np.random.rand(*spectra.shape[:-1]) * 600 + 700 a1_array[0, 1] = np.nan a2_array[1, :2] = np.nan for i in range(len(spectra)): for j in range(len(spectra[0])): for k in range(len(spectra[0, 0])): if np.isnan(a1_array[i, j, k]): classifications[i, j, k] = 4 spectra[i, j, k] = voigt(m.original_wavelengths, a2_array[i, j, k], b2_array[i, j, k], s2_array[i, j, k], g2_array[i, j, k], d_array[i, j, k]) elif np.isnan(a2_array[i, j, k]): classifications[i, j, k] = 0 spectra[i, j, k] = voigt(m.original_wavelengths, a1_array[i, j, k], b1_array[i, j, k], s1_array[i, j, k], g1_array[i, j, k], d_array[i, j, k]) else: classifications[i, j, k] = 1 spectra[i, j, k] = double_voigt(m.original_wavelengths, a1_array[i, j, k], a2_array[i, j, k], b1_array[i, j, k], b2_array[i, j, k], s1_array[i, j, k], s2_array[i, j, k], g1_array[i, j, k], g2_array[i, j, k], d_array[i, j, k]) m.load_array(spectra, names=['time', 'row', 'column', 'wavelength']) m.load_background(d_array, names=['time', 'row', 'column']) return m, classifications @pytest.fixture(scope='module') def ibis8542model_results(ibis8542model_spectra): # Load model with random spectra loaded m, classifications = ibis8542model_spectra # Test with explicit classifications result = m.fit(time=range(2), row=range(3), column=range(4), classifications=classifications) return result, m, classifications def assert_results_equal(res1, res2): for i in range(len(res1)): assert res1[i].parameters == pytest.approx(res2[i].parameters, nan_ok=True) assert res1[i].classification == res2[i].classification assert res1[i].profile == res2[i].profile assert res1[i].success == res2[i].success assert np.array_equal(res1[i].index, res2[i].index) def test_ibis8542model_wrong_length_of_classifications(ibis8542model_spectra): # Load model with random spectra loaded m, classifications = ibis8542model_spectra assert classifications.shape == (2, 3, 4) # This is what the test needs to work (verifies fixture) # Test with too few classifications c1 = classifications[:, :, [0, 1]] assert c1.shape == (2, 3, 2) c2 = classifications[:, [0, 1]] assert c2.shape == (2, 2, 4) c3 = classifications[[1]] assert c3.shape == (1, 3, 4) c_wrong_shape = np.transpose(classifications) # ...but correct size so would not fail otherwise assert c_wrong_shape.shape == (4, 3, 2) for c in [c1, c2, c3, c_wrong_shape]: with pytest.raises(ValueError) as e: m.fit(time=range(2), row=range(3), column=range(4), classifications=c) assert 'classifications do not match' in str(e.value) # Test with too many classifications for t, r, c in [ # (range(2), range(3), range(4)), # Correct values (1, range(3), range(4)), (range(2), range(1, 3), range(4)), (range(2), range(3), range(2, 4)), (range(2), range(3), 3), (0, 1, 2), ]: with pytest.raises(ValueError) as e: m.fit(time=t, row=r, column=c, classifications=classifications) assert 'classifications do not match' in str(e.value) # Test with dimensions of length 1 removed (res1 and res2 should be equivalent) c = classifications[:, np.newaxis, 0] assert c.shape == (2, 1, 4) res1 = m.fit(time=range(2), row=range(1), column=range(4), classifications=c) c = classifications[:, 0] assert c.shape == (2, 4) res2 = m.fit(time=range(2), row=range(1), column=range(4), classifications=c) assert len(res1) == len(res2) == 2 * 1 * 4 assert_results_equal(res1, res2) @pytest.fixture() def ibis8542model_resultsobjs(ibis8542model_results): def fits2array(results): results0 = FitResults((3, 4), 8, time=0) results1 = FitResults((3, 4), 8, time=1) for i in range(len(results)): if results[i].index[0] == 0: results0.append(results[i]) elif results[i].index[0] == 1: results1.append(results[i]) else: raise ValueError("invalid time") return results0, results1 return fits2array def test_ibis8542model_fit(ibis8542model_results, ibis8542model_resultsobjs): # # METHOD 1: Test with explicit classifications res1, m, classifications = ibis8542model_results # # METHOD 2: Test with dummy classifier m.neural_network = DummyClassifier(trained=True, classifications=classifications) res2 = m.fit(time=range(2), row=range(3), column=range(4)) assert len(res1) == len(res2) == 2*3*4 assert_results_equal(res1, res2) # # METHOD 3: Test over 4 processing pools res3 = m.fit(time=range(2), row=range(3), column=range(4), n_pools=4) # (n_pools must be an integer) with pytest.raises(TypeError) as e: m.fit(time=range(2), row=range(3), column=range(4), n_pools=float(4)) assert 'n_pools must be an integer' in str(e.value) # # Test that FitResults objects can be created consistently for all of the methods # Create the FitResults objects from the list of FitResult objects results10, results11 = ibis8542model_resultsobjs(res1) # time : 0, 1 results20, results21 = ibis8542model_resultsobjs(res2) results30, results31 = ibis8542model_resultsobjs(res3) # Compare METHOD 1, METHOD 2, METHOD 3 for t0, t1 in [(results20, results21), (results30, results31)]: # For each alternative method (tn) for results, tn in [(results10, t0), (results11, t1)]: # Compare to main method (results) assert results.parameters == pytest.approx(tn.parameters, nan_ok=True) assert
np.array_equal(results.profile, tn.profile)
numpy.array_equal
import numpy as np from scipy import interpolate import pdb import tqdm def _estim_dist_old(quantiles, percentiles, y_min, y_max, smooth_tails, tau): """ Estimate CDF from list of quantiles, with smoothing """ noise = np.random.uniform(low=0.0, high=1e-8, size=((len(quantiles),))) noise_monotone = np.sort(noise) quantiles = quantiles + noise_monotone # Smooth tails def interp1d(x, y, a, b): return interpolate.interp1d(x, y, bounds_error=False, fill_value=(a, b), assume_sorted=True) cdf = interp1d(quantiles, percentiles, 0.0, 1.0) inv_cdf = interp1d(percentiles, quantiles, y_min, y_max) if smooth_tails: # Uniform smoothing of tails quantiles_smooth = quantiles tau_lo = tau tau_hi = 1-tau q_lo = inv_cdf(tau_lo) q_hi = inv_cdf(tau_hi) idx_lo = np.where(percentiles < tau_lo)[0] idx_hi = np.where(percentiles > tau_hi)[0] if len(idx_lo) > 0: quantiles_smooth[idx_lo] = np.linspace(quantiles[0], q_lo, num=len(idx_lo)) if len(idx_hi) > 0: quantiles_smooth[idx_hi] = np.linspace(q_hi, quantiles[-1], num=len(idx_hi)) cdf = interp1d(quantiles_smooth, percentiles, 0.0, 1.0) inv_cdf = interp1d(percentiles, quantiles_smooth, y_min, y_max) return cdf, inv_cdf def _estim_dist(quantiles, percentiles, y_min, y_max, smooth_tails, tau): """ Estimate CDF from list of quantiles, with smoothing """ noise = np.random.uniform(low=0.0, high=1e-5, size=((len(quantiles),))) noise_monotone = np.sort(noise) quantiles = quantiles + noise_monotone # Smooth tails def interp1d(x, y, a, b): return interpolate.interp1d(x, y, bounds_error=False, fill_value=(a, b), assume_sorted=True) cdf = interp1d(quantiles, percentiles, 0.0, 1.0) inv_cdf = interp1d(percentiles, quantiles, y_min, y_max) if smooth_tails: # Uniform smoothing of tails quantiles_smooth = quantiles tau_lo = tau tau_hi = 1-tau q_lo = inv_cdf(tau_lo) q_hi = inv_cdf(tau_hi) idx_lo = np.where(percentiles < tau_lo)[0] idx_hi = np.where(percentiles > tau_hi)[0] if len(idx_lo) > 0: quantiles_smooth[idx_lo] = np.linspace(quantiles[0], q_lo, num=len(idx_lo)) if len(idx_hi) > 0: quantiles_smooth[idx_hi] = np.linspace(q_hi, quantiles[-1], num=len(idx_hi)) cdf = interp1d(quantiles_smooth, percentiles, 0.0, 1.0) inv_cdf = interp1d(percentiles, quantiles_smooth, y_min, y_max) # Standardize breaks = np.linspace(y_min, y_max, num=1000, endpoint=True) cdf_hat = cdf(breaks) f_hat =
np.diff(cdf_hat)
numpy.diff
from sklearn.metrics import coverage_error, accuracy_score from sklearn.metrics import label_ranking_loss from sklearn.metrics import label_ranking_average_precision_score from sklearn.metrics import hamming_loss from sklearn import metrics from collections import Counter import math import numpy as np def patk(predictions, labels): pak = np.zeros(3) K = np.array([1, 3, 5]) for i in range(predictions.shape[0]): pos = np.argsort(-predictions[i, :]) y = labels[i, :] y = y[pos] for j in range(3): k = K[j] pak[j] += (np.sum(y[:k]) / k) pak = pak / predictions.shape[0] return pak def cm_precision_recall(prediction, truth): """Evaluate confusion matrix, precision and recall for given set of labels and predictions Args prediction: a vector with predictions truth: a vector with class labels Returns: cm: confusion matrix precision: precision score recall: recall score""" confusion_matrix = Counter() positives = [1] binary_truth = [x in positives for x in truth] binary_prediction = [x in positives for x in prediction] for t, p in zip(binary_truth, binary_prediction): confusion_matrix[t, p] += 1 cm = np.array([confusion_matrix[True, True], confusion_matrix[False, False], confusion_matrix[False, True], confusion_matrix[True, False]]) # print cm precision = (cm[0] / (cm[0] + cm[2] + 0.000001)) recall = (cm[0] / (cm[0] + cm[3] + 0.000001)) return cm, precision, recall def bipartition_scores(labels, predictions): """ Computes bipartitation metrics for a given multilabel predictions and labels Args: logits: Logits tensor, float - [batch_size, NUM_LABELS]. labels: Labels tensor, int32 - [batch_size, NUM_LABELS]. Returns: bipartiation: an array with micro_precision, micro_recall, micro_f1,macro_precision, macro_recall, macro_f1""" sum_cm = np.zeros((4)) macro_precision = 0 macro_recall = 0 for i in range(labels.shape[1]): truth = labels[:, i] prediction = predictions[:, i] cm, precision, recall = cm_precision_recall(prediction, truth) sum_cm += cm macro_precision += precision macro_recall += recall macro_precision = macro_precision / labels.shape[1] macro_recall = macro_recall / labels.shape[1] # print(macro_recall, macro_precision) macro_f1 = 2 * (macro_precision) * (macro_recall) / (macro_precision + macro_recall + 0.000001) micro_precision = sum_cm[0] / (sum_cm[0] + sum_cm[2] + 0.000001) micro_recall = sum_cm[0] / (sum_cm[0] + sum_cm[3] + 0.000001) micro_f1 = 2 * (micro_precision) * (micro_recall) / (micro_precision + micro_recall + 0.000001) bipartiation = np.asarray([micro_precision, micro_recall, micro_f1, macro_precision, macro_recall, macro_f1]) return bipartiation def BAE(labels, predictions): abs_error = (1 - predictions) * labels # consider error only for true classes freq = np.sum(labels, axis=0) + 1e-15 # count the frequency of each label num_labels = np.shape(labels)[1] bae = np.sum(
np.sum(abs_error, axis=0)
numpy.sum
import sentencepiece as spm import re import numpy as np from collections import OrderedDict from typing import List from tensorlayerx import logging class Trie: """ Trie in Python. Creates a Trie out of a list of words. The trie is used to split on `added_tokens` in one pass Loose reference https://en.wikipedia.org/wiki/Trie """ def __init__(self): self.data = {} def add(self, word: str): """ Passes over every char (utf-8 char) on word and recursively adds it to the internal `data` trie representation. The special key `""` is used to represent termination. This function is idempotent, adding twice the same word will leave the trie unchanged Example:: >>> trie = Trie() >>> trie.add("Hello 友達") >>> trie.data {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} >>> trie.add("Hello") >>> trie.data {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} """ if not word: # Prevent empty string return ref = self.data for char in word: ref[char] = char in ref and ref[char] or {} ref = ref[char] ref[""] = 1 def split(self, text: str) -> List[str]: """ Will look for the words added to the trie within `text`. Output is the original string splitted along the boundaries of the words found. This trie will match the longest possible word first ! Example:: >>> trie = Trie() >>> trie.split("[CLS] This is a extra_id_100") ["[CLS] This is a extra_id_100"] >>> trie.add("[CLS]") >>> trie.add("extra_id_1") >>> trie.add("extra_id_100") >>> trie.split("[CLS] This is a extra_id_100") ["[CLS]", " This is a ", "extra_id_100"] """ # indexes are counted left of the chars index. # "hello", index 0, is left of h, index 1 is between h and e. # index 5 is right of the "o". # States are going to capture every possible start (indexes as above) # as keys, and have as values, a pointer to the position in the trie # where we're at. This is a partial match for now. # This enables to keep track of multiple matches while we're iterating # the string # If the trie contains, "blowing", and "lower" and we encounter the # string "blower", we need to split into ["b", "lower"]. # This is where we need to keep track of multiple possible starts. states = OrderedDict() # This will contain every indices where we need # to cut. # We force to cut at offset 0 and len(text) (added later) offsets = [0] # This is used by the lookahead which needs to skip over # some text where the full match exceeded the place in the initial # for loop skip = None # Main loop, Giving this algorithm O(n) complexity for current, current_char in enumerate(text): if skip and current < skip: # Prevents the lookahead for matching twice # like extra_id_100 and id_100 continue # This will track every state # that stop matching, we need to stop tracking them. # If we look at "lowball", we're going to match "l" (add it to states), "o", "w", then # fail on "b", we need to remove 0 from the valid states. to_remove = set() # Whenever we found a match, we need to drop everything # this is a greedy algorithm, it will match on the first found token reset = False # In this case, we already have partial matches (But unfinished) for start, trie_pointer in states.items(): if "" in trie_pointer: # This is a final match, we need to reset and # store the results in `offsets`. # Lookahead to match longest first # Important in case of extra_id_1 vs extra_id_100 # Here we are also actively looking for other earlier partial # matches # "[CLS]", "L", we need to match CLS even if L is special for lookstart, looktrie_pointer in states.items(): if lookstart > start: # This partial match is later, we can stop looking break elif lookstart < start: # This partial match is earlier, the trie pointer # was already updated, so index is + 1 lookahead_index = current + 1 end = current + 1 else: # Here lookstart == start and # looktrie_pointer == trie_pointer # It wasn't updated yet so indices are current ones lookahead_index = current end = current next_char = text[lookahead_index] if lookahead_index < len(text) else None while next_char in looktrie_pointer: looktrie_pointer = looktrie_pointer[next_char] lookahead_index += 1 if "" in looktrie_pointer: start = lookstart end = lookahead_index skip = lookahead_index if lookahead_index == len(text): # End of string break next_char = text[lookahead_index] # End lookahead # Storing and resetting offsets.append(start) offsets.append(end) reset = True break elif current_char in trie_pointer: # The current character being looked at has a match within the trie # update the pointer (it will be stored back into states later). trie_pointer = trie_pointer[current_char] # Storing back the new pointer into the states. # Partial matches got longer by one. states[start] = trie_pointer else: # The new character has not match in the trie, we need # to stop keeping track of this partial match. # We can't do it directly within the loop because of how # python iteration works to_remove.add(start) # Either clearing the full start (we found a real match) # Or clearing only the partial matches that didn't work. if reset: states = {} else: for start in to_remove: del states[start] # If this character is a starting character within the trie # start keeping track of this partial match. if current_char in self.data: states[current] = self.data[current_char] # We have a cut at the end with states. for start, trie_pointer in states.items(): if "" in trie_pointer: # This is a final match, we need to reset and # store the results in `offsets`. end = len(text) offsets.append(start) offsets.append(end) # Longest cut is always the one with lower start so the first # item so we need to break. break return self.cut_text(text, offsets) def cut_text(self, text, offsets): # We have all the offsets now, we just need to do the actual splitting. # We need to eventually add the first part of the string and the eventual # last part. offsets.append(len(text)) tokens = [] start = 0 for end in offsets: if start > end: logging.error( "There was a bug in Trie algorithm in tokenization. Attempting to recover. Please report it anyway." ) continue elif start == end: # This might happen if there's a match at index 0 # we're also preventing zero-width cuts in case of two # consecutive matches continue tokens.append(text[start:end]) start = end return tokens class T5Transform(object): def __init__( self, vocab_file=None, eos_token="</s>", unk_token="<unk>", pad_token="<pad>", extra_ids=100, prefix="translate English to French: ", next_prefix=None, task="text", source_max_length=512, label_max_length=512, **kwargs ): self.vocab_file = vocab_file self.eos_token = eos_token self.unk_token = unk_token self.pad_token = pad_token self.extra_ids = extra_ids self.source_max_length = source_max_length self.prefix = prefix self.task = task self.next_prefix = next_prefix self.label_max_length = label_max_length if self.extra_ids > 0: self.additional_special_tokens = [f"<extra_id_{i}>" for i in range(self.extra_ids)] if self.eos_token is not None: self.additional_special_tokens.append(self.eos_token) if self.unk_token is not None: self.additional_special_tokens.append(self.unk_token) if self.pad_token is not None: self.additional_special_tokens.append(self.pad_token) self._create_trie(self.additional_special_tokens) if self.vocab_file is None: raise ValueError(f"vocab file is None.") self.sp_model = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) self.is_train = True super(T5Transform, self).__init__(**kwargs) def set_train(self): self.is_train = True def set_eval(self): self.is_train = False @property def vocab_size(self): return self.sp_model.get_piece_size() + self.extra_ids def _create_trie(self, unique_no_split_tokens): trie = Trie() for token in unique_no_split_tokens: if hasattr(self, "do_lower_case") and self.do_lower_case and token not in self.all_special_tokens: trie.add(token.lower()) else: trie.add(token) self.tokens_trie = trie def _tokenize(self, token): return self.sp_model.encode(token, out_type=str) def tokenize(self, text): no_split_token = set(self.additional_special_tokens) tokens = self.tokens_trie.split(text) # ["This is something", "<special_token_1>", " else"] for i, token in enumerate(tokens): if token in no_split_token: left = tokens[i - 1] if i > 0 else None right = tokens[i + 1] if i < len(tokens) - 1 else None # We strip left and right by default if right: tokens[i + 1] = right.lstrip() if left: tokens[i - 1] = left.rstrip() # ["This is something", "<special_token_1>", "else"] tokenized_text = [] for token in tokens: # Need to skip eventual empty (fully stripped) tokens if not token: continue if token in no_split_token: tokenized_text.append(token) else: tokenized_text.extend(self._tokenize(token)) # ["This", " is", " something", "<special_token_1>", "else"] return tokenized_text def convert_tokens_to_ids(self, tokens): if tokens is None: return None if isinstance(tokens, str): return self._convert_token_to_id_with_added_voc(tokens) ids = [] for token in tokens: ids.append(self._convert_token_to_id_with_added_voc(token)) return ids def _convert_token_to_id_with_added_voc(self, token): if token is None: return None return self._convert_token_to_id(token) def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if token.startswith("<extra_id_"): match = re.match(r"<extra_id_(\d+)>", token) num = int(match.group(1)) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(token) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" if index < self.sp_model.get_piece_size(): token = self.sp_model.IdToPiece(index) else: token = f"<extra_id_{self.vocab_size - 1 - index}>" return token def convert_tokens_to_string(self, tokens, remove_special_token=False): """Converts a sequence of tokens (string) in a single string.""" current_sub_tokens = [] out_string = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.additional_special_tokens: if not remove_special_token: out_string += self.sp_model.decode_pieces(current_sub_tokens) + token + " " current_sub_tokens = [] else: current_sub_tokens.append(token) out_string += self.sp_model.decode_pieces(current_sub_tokens) return out_string.strip() def ids_to_string(self, ids, remove_special_token=True): tokens = [self._convert_id_to_token(int(index)) for index in ids if index >= 0] return self.convert_tokens_to_string(tokens, remove_special_token=remove_special_token) def string_to_ids(self, text, max_length=None): if isinstance(text, list): input_ids = [] attention_masks = [] for i in text: input_id, attention_mask = self.string_to_ids(i, max_length=max_length) input_ids.append(input_id) attention_masks.append(attention_mask) return {"inputs": np.array(input_ids), "attention_mask": np.array(attention_masks)} tokens = self.tokenize(text) if max_length is None: tokens = tokens + [self.eos_token] attention_mask = [1] * len(tokens) else: if not isinstance(max_length, int): raise ValueError(f"{max_length} is not int.") else: tokens_length = len(tokens) if tokens_length >= (max_length - 1): tokens = tokens[:max_length - 1] + [self.eos_token] attention_mask = [1] * len(tokens) else: attention_mask = [1] * (len(tokens) + 1) + [0] * (max_length - tokens_length - 1) tokens = tokens + [self.eos_token] + [self.pad_token] * ( max_length - tokens_length - 1) ids = self.convert_tokens_to_ids(tokens) return {"inputs": np.array(ids), "attention_mask": np.array(attention_mask)} def process_token(self, text, label, source_max_length=None): ids = [] labels = [] for token, l in zip(text, label): token = self.tokenize(token) id = self.convert_tokens_to_ids(token) l = [l] * len(id) ids += id labels += l if source_max_length is None: ids = ids + self.convert_tokens_to_ids([self.eos_token]) attention_mask = [1] * len(ids) labels = labels + [-100] else: if not isinstance(source_max_length, int): raise ValueError(f"{source_max_length} is not int.") else: ids_length = len(ids) if ids_length >= (source_max_length - 1): ids = ids[:source_max_length - 1] + self.convert_tokens_to_ids([self.eos_token]) attention_mask = [1] * len(ids) labels = labels[:source_max_length - 1] + [-100] else: attention_mask = [1] * (len(ids) + 1) + [0] * (source_max_length - ids_length - 1) ids = ids + self.convert_tokens_to_ids([self.eos_token]) + self.convert_tokens_to_ids( [self.pad_token]) * (source_max_length - ids_length - 1) labels = labels + [-100] * (source_max_length - ids_length) return {"inputs": np.array(ids), "attention_mask": np.array(attention_mask), "labels": np.array(labels)}, \ {"labels":
np.array(labels)
numpy.array
import unittest from ..utils import spectrogram from ..trials import slice from ..nodes import TFC from ..dataset import DataSet import numpy as np FS = 256. class TestTFC(unittest.TestCase): def setUp(self): data = np.array([np.sin(i * 4 * 60 * np.linspace(0, np.pi * 2, 60 * FS)) for i in range(16)]) labels = np.zeros(data.shape[1], dtype=np.int) labels[[1000, 2000, 3000, 4000]] = 1 ids = np.arange(data.shape[1]) / FS self.d = slice(DataSet(data, labels, ids), {1:'fake'}, [-512, 512]) def test_setup(self): d = self.d self.assertEqual(d.feat_shape, (16, 1024)) self.assertEqual(d.nclasses, 1) self.assertEqual(d.ninstances, 4) def test_tfc(self): d = self.d w_size, w_step = 64, 32 tfc = TFC(w_size, w_step) tfc.train(d) td = tfc.apply(d) nwindows = int(np.floor((d.feat_shape[1] - w_size + w_step) / float(w_step))) self.assertEqual(td.feat_shape, (d.feat_shape[0], nwindows, w_size/2+1)) self.assertEqual(td.nclasses, d.nclasses) self.assertEqual(td.ninstances, d.ninstances) for ci in range(td.feat_shape[0]): a = td.data[ci,:,:,0] b = spectrogram(d.data[ci,:,0], w_size, w_step)
np.testing.assert_equal(a, b)
numpy.testing.assert_equal
import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline import os,os.path import re from numpy.lib.recfunctions import append_fields from . import localpath class SN1a_feedback(object): def __init__(self): """ this is the object that holds the feedback table for SN1a .masses gives a list of masses .metallicities gives a list of possible yield metallicities .elements gives the elements considered in the yield table .table gives a dictionary where the yield table for a specific metallicity can be queried .table[0.02] gives a yield table. Keys of this object are ['Mass','mass_in_remnants','elements'] Mass is in units of Msun 'mass_in_remnants' in units of Msun but with a '-' 'elements' yield in Msun normalised to Mass. i.e. integral over all elements is unity """ def Seitenzahl(self): """ Seitenzahl 2013 from Ivo txt """ y = np.genfromtxt(localpath + 'input/yields/Seitenzahl2013/0.02.txt', names = True, dtype = None) self.metallicities = list([0.02]) self.masses = list([1.4004633930489443]) names = list(y.dtype.names) self.elements = names[2:] base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) for name in names: if name in ['Mass','mass_in_remnants']: yield_tables_final_structure_subtable[name] = y[name] else: yield_tables_final_structure_subtable[name] = np.divide(y[name],self.masses) yield_tables_final_structure = {} yield_tables_final_structure[0.02] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def Thielemann(self): """ Thilemann 2003 yields as compiled in Travaglio 2004 """ y = np.genfromtxt(localpath + 'input/yields/Thielemann2003/0.02.txt', names = True, dtype = None) metallicity_list = [0.02] self.metallicities = metallicity_list self.masses = [1.37409] names = y.dtype.names base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) for name in names: if name in ['Mass','mass_in_remnants']: yield_tables_final_structure_subtable[name] = y[name] else: yield_tables_final_structure_subtable[name] = np.divide(y[name],self.masses) self.elements = list(y.dtype.names[2:]) yield_tables_final_structure = {} yield_tables_final_structure[0.02] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure def Iwamoto(self): ''' Iwamoto99 yields building up on Nomoto84 ''' import numpy.lib.recfunctions as rcfuncs tdtype = [('species1','|S4'),('W7',float),('W70',float),('WDD1',float),('WDD2',float),('WDD3',float),('CDD1',float),('CDD2',float)] metallicity_list = [0.02,0.0] self.metallicities = metallicity_list self.masses = [1.38] y = np.genfromtxt(localpath + 'input/yields/Iwamoto/sn1a_yields.txt',dtype = tdtype, names = None) ## Python3 need transformation between bytes and strings element_list2 = [] for j,jtem in enumerate(y['species1']): element_list2.append(jtem.decode('utf8')) y = rcfuncs.append_fields(y,'species',element_list2,usemask = False) ################################ without_radioactive_isotopes=True if without_radioactive_isotopes:### without radioactive isotopes it should be used this way because the radioactive nuclides are already calculated in here carbon_list = ['12C','13C'] nitrogen_list = ['14N','15N'] oxygen_list = ['16O','17O','18O'] fluorin_list = ['19F'] neon_list = ['20Ne','21Ne','22Ne']#,'22Na'] sodium_list = ['23Na'] magnesium_list = ['24Mg','25Mg','26Mg']#,'26Al'] aluminium_list = ['27Al'] silicon_list = ['28Si','29Si','30Si'] phosphorus_list = ['31P'] sulfur_list = ['32S','33S','34S','36S'] chlorine_list = ['35Cl','37Cl'] argon_list = ['36Ar','38Ar','40Ar']#, '36Cl'] potassium_list = ['39K','41K']#, '39Ar', '41Ca'] calcium_list = ['40Ca','42Ca','43Ca','44Ca','46Ca','48Ca']#, '40K'] scandium_list = ['45Sc']#,'44Ti'] titanium_list = ['46Ti','47Ti','48Ti','49Ti','50Ti']#,'48V','49V'] vanadium_list = ['50V','51V'] chromium_list = ['50Cr','52Cr','53Cr','54Cr']#,'53Mn'] manganese_list = ['55Mn'] iron_list = ['54Fe', '56Fe','57Fe','58Fe']#,'56Co','57Co'] cobalt_list = ['59Co']#,'60Fe','56Ni','57Ni','59Ni'] nickel_list = ['58Ni','60Ni','61Ni','62Ni','64Ni']#,'60Co'] copper_list = ['63Cu','65Cu']#,'63Ni'] zinc_list = ['64Zn','66Zn','67Zn','68Zn'] ##### with radioactive isotopes (unclear weather they are double, probably not but remnant mass is too big) else: carbon_list = ['12C','13C'] nitrogen_list = ['14N','15N'] oxygen_list = ['16O','17O','18O'] fluorin_list = ['19F'] neon_list = ['20Ne','21Ne','22Ne','22Na'] sodium_list = ['23Na'] magnesium_list = ['24Mg','25Mg','26Mg','26Al'] aluminium_list = ['27Al'] silicon_list = ['28Si','29Si','30Si'] phosphorus_list = ['31P'] sulfur_list = ['32S','33S','34S','36S'] chlorine_list = ['35Cl','37Cl'] argon_list = ['36Ar','38Ar','40Ar', '36Cl'] potassium_list = ['39K','41K', '39Ar', '41Ca'] calcium_list = ['40Ca','42Ca','43Ca','44Ca','46Ca','48Ca', '40K'] scandium_list = ['45Sc','44Ti'] titanium_list = ['46Ti','47Ti','48Ti','49Ti','50Ti','48V','49V'] vanadium_list = ['50V','51V'] chromium_list = ['50Cr','52Cr','53Cr','54Cr','53Mn'] manganese_list = ['55Mn'] iron_list = ['54Fe', '56Fe','57Fe','58Fe','56Co','57Co','56Ni','57Ni'] cobalt_list = ['59Co','60Fe','59Ni'] nickel_list = ['58Ni','60Ni','61Ni','62Ni','64Ni','60Co'] copper_list = ['63Cu','65Cu','63Ni'] zinc_list = ['64Zn','66Zn','67Zn','68Zn'] indexing = {} indexing['C'] = carbon_list indexing['N'] = nitrogen_list indexing['O'] = oxygen_list indexing['F'] = fluorin_list indexing['Ne'] = neon_list indexing['Na'] = sodium_list indexing['Mg'] = magnesium_list indexing['Al'] = aluminium_list indexing['Si'] = silicon_list indexing['P'] = phosphorus_list indexing['S'] = sulfur_list indexing['Cl'] = chlorine_list indexing['Ar'] = argon_list indexing['K'] = potassium_list indexing['Ca'] = calcium_list indexing['Sc'] = scandium_list indexing['Ti'] = titanium_list indexing['V'] = vanadium_list indexing['Cr'] = chromium_list indexing['Mn'] = manganese_list indexing['Fe'] = iron_list indexing['Co'] = cobalt_list indexing['Ni'] = nickel_list indexing['Cu'] = copper_list indexing['Zn'] = zinc_list self.elements = list(indexing.keys()) ################################# yield_tables_final_structure = {} for metallicity_index,metallicity in enumerate(metallicity_list[:]): if metallicity == 0.02: model = 'W7' elif metallicity == 0.0: model = 'W70' else: print('this metallicity is not represented in the Iwamoto yields. They only have solar (0.02) and zero (0.0001)') additional_keys = ['Mass', 'mass_in_remnants'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = self.masses[0] total_mass = [] for i,item in enumerate(self.elements): for j,jtem in enumerate(indexing[item]): cut = np.where(y['species']==jtem) yield_tables_final_structure_subtable[item] += y[model][cut] total_mass.append(y[model][cut]) yield_tables_final_structure_subtable['mass_in_remnants'] = -sum(total_mass) for i,item in enumerate(self.elements): yield_tables_final_structure_subtable[item] = np.divide(yield_tables_final_structure_subtable[item],-yield_tables_final_structure_subtable['mass_in_remnants']) yield_tables_final_structure[metallicity] = yield_tables_final_structure_subtable self.table = yield_tables_final_structure class SN2_feedback(object): def __init__(self): """ This is the object that holds the feedback table for CC-SN. Different tables can be loaded by the methods. """ def Portinari(self): ''' Loading the yield table from Portinari1998. ''' self.metallicities = [0.0004,0.004,0.008,0.02,0.05] x = np.genfromtxt(localpath + 'input/yields/Portinari_1998/0.02.txt',names=True) self.masses = list(x['Mass']) self.elements = list(x.dtype.names[3:]) yield_tables_final_structure = {} for metallicity in self.metallicities: additional_keys = ['Mass', 'mass_in_remnants','unprocessed_mass_in_winds'] names = additional_keys + self.elements base = np.zeros(len(self.masses)) list_of_arrays = [] for i in range(len(names)): list_of_arrays.append(base) yield_tables_final_structure_subtable = np.core.records.fromarrays(list_of_arrays,names=names) yield_tables_final_structure_subtable['Mass'] = np.array(self.masses) x =
np.genfromtxt(localpath + 'input/yields/Portinari_1998/%s.txt' %(metallicity),names=True)
numpy.genfromtxt
""" Classes to simplify and standardize the process of drawing samples from the posterior distribution in Bayesian inference problems. """ import numpy as np import scipy as sp class Quad_Sampler(object): """ Class for drawing samples from an arbitrary one-dimensional probability distribution using numerical integration and interpolation. In general this will be superior to more sophisticated sampling methods for 1D problems. Assumes that priors are uniform. Args: ln_likelihood: Function which takes the independent variable x as its first argument and returns the log of the likelihood function, p(d|x,I), up to a constant. May take other *args or **kwargs. priors: List-type of the form [a,b], where a and b define the upper and lower bounds of the uniform prior p(x|I). optioinal: vect: (bool) Set to true if the log-likelihood accepts a vectorized input. """ def __init__(self, ln_likelihood, priors, vect=False): self._ln_likelihood = ln_likelihood self._a, self._b = priors self._vect = vect # Default values self.ln_Z = np.nan self.mean = np.nan self.std = np.nan def fit(self, n_pts=200, args=(), **kwargs): """ Perform the fit. Optional: n_pts: (int) Number of evenly-spaced points over which to compute the probability. args: (tuple) All additional arguments to be passed on the the likelihood function. **kwargs: All other keywords are passed on the the likelihood function. """ # Evaluate the pdf self.xs = np.linspace(self._a, self._b, num=n_pts) if self._vect: self.ln_pdf = self._ln_likelihood(self.xs, *args, **kwargs) else: self.ln_pdf = np.array([self._ln_likelihood(x, *args, **kwargs) for x in self.xs]) # Rescale with the maxima ln_C = np.amax(self.ln_pdf) pdf_scaled = np.exp(self.ln_pdf - ln_C) # Compute the evidence and rescale Z_scaled = np.trapz(pdf_scaled, x=self.xs) self.ln_Z = np.log(Z_scaled) + ln_C self.pdf = pdf_scaled / Z_scaled self.cdf = sp.integrate.cumtrapz(self.pdf, x=self.xs, initial=0) # Estimate summary statistics - assuming a normal distribution samples = self.get_samples(1000) self.mean = np.mean(samples) self.std = np.std(samples) def get_samples(self, n_samples): """ """ u_samp = np.random.rand(n_samples) return np.interp(u_samp, self.cdf, self.xs) class Quad_Sampler_ND(object): """ Class for drawing samples from an arbitrary N-dimensional probability distribution using numerical integration and interpolation. This can be useful for problems with a low number of dimensions (~3) for which the likelihood function can be computed quickly (<< 1 second). Assumes that priors are uniform. Currently does not support vectorized likelihoods. Args: ln_likelihood: Function which takes the independent variables (x1, x2, ..., xN) as its first argument and returns the log of the likelihood function, p(d|x1,...,I), up to a constant. May take other *args or **kwargs. priors: List of tuples, of the form [(a1,b1), (a2,b2), ..., (aN,bN)] where a and b define the upper and lower bounds of the uniform prior p(x1,...|I). optioinal: vect: (bool) Set to true if the log-likelihood accepts a vectorized input. """ def __init__(self, ln_likelihood, ndim, priors): self._ln_likelihood = ln_likelihood self.ndim = ndim self._a = np.zeros(self.ndim) self._b = np.zeros(self.ndim) for n in range(self.ndim): self._a[n], self._b[n] = priors[n] # Default values self.ln_Z = np.nan self.mean = np.nan self.std = np.nan def fit(self, n_pts=200, args=(), **kwargs): """ Perform the fit. Optional: n_pts: (int) Number of evenly-spaced points over which to compute the probability. args: (tuple) All additional arguments to be passed on the the likelihood function. **kwargs: All other keywords are passed on the the likelihood function. This doesn't work yet. """ # Construct the evaluation grid self.xs = np.zeros([self.ndim, n_pts]) for n in range(slef.ndim): self.xs[n,:] = np.linspace(self._a[n], self._b[n], num=n_pts) # Evaluate the pdf self.ln_pdf = np.zeros([self.ndim, n_pts]) for n in range(slef.ndim): self.ln_pdf[n] = np.array([self._ln_likelihood(x, *args, **kwargs) for x in self.xs[n]]) # Rescale with the maxima ln_C = np.amax(self.ln_pdf) pdf_scaled = np.exp(self.ln_pdf - ln_C) # Compute the evidence and rescale Z_scaled = np.trapz(pdf_scaled, x=self.xs) self.ln_Z = np.log(Z_scaled) + ln_C self.pdf = pdf_scaled / Z_scaled self.cdf = sp.integrate.cumtrapz(self.pdf, x=self.xs, initial=0) # Estimate summary statistics - assuming a normal distribution samples = self.get_samples(1000) self.mean = np.mean(samples) self.std = np.std(samples) def get_samples(self, n_samples): """ """ u_samp = np.random.rand(n_samples) return np.interp(u_samp, self.cdf, self.xs) # ------------------------------------------------ MESXR Sampler ------------------------------------------------ import time import emcee import mst_ida.models.mesxr3 as m3 import mst_ida.data.mesxr as mesxr import mst_ida.analysis.ida as ida import mst_ida.analysis.emissivity as em import mst_ida.models.base.response as rsp from mst_ida.utilities.functions import identify_outliers from mst_ida.models.base.geometry import flux_coords, sunflower_points default_priors = { 'alpha':((10, 14), (0.1,18), (0.1,18)) } class MESXR_Emiss_Sampler(object): """ """ def __init__(self, shot, frame, flux=None, Ec_ref=3.0, priors=None, indices=np.arange(5,55), Ew=300., method='alpha', nwalkers=32, center=True, delta_a=0.06, delta_h=0.01, manual=None): # Load the data self.shot = shot if manual is not None: self.mesxr_data = manual['data'] self.mesxr_sigmas = manual['sigmas'] self.signed_ps = manual['impact_p'] self.thresholds = manual['thresholds'] else: self.frame = frame self.mesxr_data, self.mesxr_sigmas, self.signed_ps, self.thresholds = mesxr.get_8c_data(self.shot, self.frame, center=center) # Model and geometry if flux is None: self.flux = flux_coords(delta_a=delta_a, delta_h=delta_h) else: self.flux = flux self.method = method self.p3det = m3.MESXR(shot=self.shot, center=center) self.gij_set = {} self.ss_set = {} for Ec in self.thresholds: self.gij_set[Ec], self.ss_set[Ec] = em.get_geometry_matrix(self.flux, self.p3det) # Include specified data points self.indices = np.arange(6,55) z = {Ec:np.maximum(self.mesxr_data[Ec][self.indices]+1, 1) for Ec in self.thresholds} self.ln_data_fact = {Ec:-np.sum(sp.special.loggamma(z[Ec])) for Ec in self.thresholds} # Set up the priors if priors is None: self.priors = default_priors[self.method] else: self.priors = priors # Sampler parameters self.nwalkers = nwalkers self.pos0 = self.get_pos0() self.ndim = self.pos0.shape[1] # Set up the samplers moves = [(emcee.moves.DEMove(), 0.8), (emcee.moves.DESnookerMove(), 0.2),] self.samplers = {} for index, Ec in enumerate(self.thresholds): self.samplers[Ec] = emcee.EnsembleSampler(self.nwalkers, self.ndim, self.ln_prob, moves=moves, kwargs={'Ec':Ec}) # Set up ratio curves self.Ew = Ew self.Ec_ref = Ec_ref self.temps = np.linspace(10, 3000, num=6000) self.ratios= {} for Ec in self.thresholds: if Ec != self.Ec_ref: self.ratios[Ec] = np.array([self.model_ratio(Te,Ec*1000.) for Te in self.temps]) def fit(self, nsteps=10000, remove_outliers=True, resume=False, burn_step=3000, n_samples=5000, progress=True): """ """ # MCMC sampling if nsteps is not None: for Ec in self.thresholds: if not resume: #print('Beginning sampling for Ec = ' + str(Ec) + ' keV') time.sleep(1) self.samplers[Ec].run_mcmc(self.pos0, nsteps, progress=progress) else: #print('Resuming sampling for Ec = ' + str(Ec) + ' keV') time.sleep(1) self.samplers[Ec].run_mcmc(None, nsteps, progress=progress) self.samples = {Ec:self.samplers[Ec].get_chain(discard=burn_step, flat=True) for Ec in self.thresholds} # Remove points from poorly-converged walkers if remove_outliers: for Ec in self.thresholds: self.samples[Ec] = identify_outliers(self.samples[Ec]) # Save the average fit parameters self.theta_avg = {Ec:np.average(self.samples[Ec], axis=0) for Ec in self.thresholds} # Get the emissivity profile samples self.n_samples = n_samples self.emiss_samples = {Ec:self.get_emiss_samples(self.samples[Ec], Ec=Ec, n_samples=n_samples) for Ec in self.thresholds} self.emiss_CIs = {Ec:ida.profile_confidence(self.emiss_samples[Ec]) for Ec in self.thresholds} def get_Te_samples(self, slim=0.7, include=[4.0, 5.0]): """ """ ss = self.ss_set[self.Ec_ref].ravel() sn = np.argmin(np.abs(ss - slim)) s_vals = self.ss_set[self.Ec_ref].ravel()[:sn] Te_avg_prof_samples = np.zeros([self.n_samples, sn]) for s_index in range(sn): ratios = {Ec:self.emiss_samples[Ec][:,s_index]/self.emiss_samples[self.Ec_ref][:,s_index] for Ec in include} Te_samples = {Ec:self.Te_from_R(ratios[Ec], Ec=Ec) for Ec in include} Te_avg_prof_samples[:,s_index] = sum([Te_samples[Ec] for Ec in include]) / len(include) Te_avg_CI = ida.profile_confidence(Te_avg_prof_samples) return s_vals, Te_avg_prof_samples, Te_avg_CI # ----------------------------------------------- Emissivity Model ----------------------------------------------- def emiss_model_alpha(self, ss, Xem, alpha, beta): return (10.**Xem)*(1 - ss**alpha)**beta def emiss_model(self, *args): if self.method == 'alpha': return self.emiss_model_alpha(*args) else: raise KeyError('Please select a valid fitting method.') def get_model(self, theta, Ec=3.0): gij = self.gij_set[Ec] ss = self.ss_set[Ec] emiss = self.emiss_model(ss, *theta) bright = np.dot(gij, emiss).squeeze() return self.p3det.etendue[Ec]*bright # ----------------------------------------------- Bayesian Methods ----------------------------------------------- def ln_prob(self, theta, Ec=3.0): lp = self.ln_prior(theta) if np.isfinite(lp): return lp + self.ln_likelihood(theta, Ec=Ec) else: return -np.inf def ln_likelihood(self, theta, Ec=3.0): data = self.mesxr_data[Ec][self.indices] model = self.get_model(theta, Ec=Ec)[self.indices] return -np.sum(model - data*np.log(model)) + self.ln_data_fact[Ec] def ln_prior(self, theta): if self.method == 'alpha': return self.ln_prior_alpha(*theta) else: raise KeyError('Method not recognized.') def ln_prior_alpha(self, Xem, alpha, beta): X_min, X_max = self.priors[0] al_min, al_max = self.priors[1] bt_min, bt_max = self.priors[2] if (X_min < Xem < X_max) and (al_min < alpha < al_max) and (bt_min < beta < bt_max): return 0.0 else: return - np.inf def get_pos0(self): if self.method == 'alpha': X_min, X_max = self.priors[0] al_min, al_max = self.priors[1] bt_min, bt_max = self.priors[2] pos0 = np.zeros([self.nwalkers, 3]) pos0[:,0] = (X_max - X_min)*np.random.random(size=self.nwalkers) + X_min pos0[:,1] = (al_max - al_min)*np.random.random(size=self.nwalkers) + al_min pos0[:,2] = (bt_max - bt_min)*np.random.random(size=self.nwalkers) + bt_min return pos0 # ----------------------------------------------- Ratio Model ----------------------------------------------- def Te_from_R(self, rs, Ec=4.0): if Ec > self.Ec_ref: return np.interp(rs, self.ratios[Ec], self.temps) else: # Reverse to avoid interpolation error return np.interp(rs, np.flip(self.ratios[Ec]), np.flip(self.temps)) def get_en_int(self, Te, Ec): """ Model the local emissivity, to a constant factor. """ en = np.linspace(1500, 20000, num=1000) resp = rsp.Pilatus_Response(Ec, self.Ew) return np.trapz(resp(en)*np.exp(-en/Te)/
np.sqrt(Te)
numpy.sqrt
import numpy as np K = np.array([-10.3, -3.0, 1.0]) # Original triangle L = np.array([12.0, -4.0, 1.0]) M = np.array([11.0, 10.0, 1.0]) K1 = np.array([ -2.0, -8.0, 1.0]) # Image triangle L1 = np.array([ -5.0, 4.0, 1.0]) M1 = np.array([ -2.0, 1.0, 1.0]) MA1 = np.matrix([K, L, M]) MA2 = np.matrix([K1, L1, M1]) print(np.linalg.inv(MA1)) print(MA2) res =
np.linalg.inv(MA1)
numpy.linalg.inv
import numpy as np def mean_or_nan(xs): """Return its mean a non-empty sequence, numpy.nan for a empty one.""" return
np.mean(xs)
numpy.mean
""" MIT License Copyright (c) 2020 vqdang Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np from scipy import ndimage as ndi from typing import Tuple, Dict from src.utils import bounding_box, center_crop, remove_small_objects # ported from # https://github.com/vqdang/hover_net/blob/195ed9b6cc67b12f908285492796fb5c6c15a000/src/loader/augs.py#L21 def gen_hv_maps( inst_map: np.ndarray, crop_shape: Tuple[int]=(256, 256) ) -> Dict[str, np.ndarray]: """ Generates horizontal and vertical maps from instance labels The map is calculated only for instances within the crop portion but based on the original shape in original image. Perform following operation: Obtain the horizontal and vertical distance maps for each nuclear instance. Args: --------- inst_map (np.ndarray): inst map crop_shape (Tuple[int]): crop shape if network output smaller dims than the input Returns: --------- Dict[str, np.ndarray]: Dict containing keys "xmap" & "ymap". "xmap" maps to horizontal gradient map and "ymap" maps to vertical gradient map of the input mask. Both are of shape: (H, W) """ if inst_map.shape[0] > crop_shape[0]: inst_map = center_crop(inst_map, crop_shape[0], crop_shape[1]) remove_small_objects(inst_map, min_size=30, out=inst_map) x_map = np.zeros_like(inst_map, dtype=np.float32) y_map = np.zeros_like(inst_map, dtype=np.float32) inst_list = list(np.unique(inst_map)) inst_list.remove(0) # 0 is background for inst_id in inst_list: inst = np.array(inst_map == inst_id, np.int32) y1, y2, x1, x2 = bounding_box(inst) y1 = y1 - 2 if y1 - 2 >= 0 else y1 x1 = x1 - 2 if x1 - 2 >= 0 else x1 x2 = x2 + 2 if x2 + 2 <= inst_map.shape[1] - 1 else x2 y2 = y2 + 2 if y2 + 2 <= inst_map.shape[0] - 1 else y2 inst = inst[y1:y2, x1:x2] # instance center of mass, rounded to nearest pixel inst_com = list(ndi.measurements.center_of_mass(inst)) inst_com[0] = int(inst_com[0] + 0.5) inst_com[1] = int(inst_com[1] + 0.5) inst_x_range = np.arange(1, inst.shape[1]+1) inst_y_range = np.arange(1, inst.shape[0]+1) # shifting center of pixels grid to instance center of mass inst_x_range -= inst_com[1] inst_y_range -= inst_com[0] inst_x, inst_y = np.meshgrid(inst_x_range, inst_y_range) # remove coord outside of instance inst_x[inst == 0] = 0 inst_y[inst == 0] = 0 inst_x = inst_x.astype('float32') inst_y = inst_y.astype('float32') # normalize min into -1 scale if np.min(inst_x) < 0: inst_x[inst_x < 0] /= (-np.amin(inst_x[inst_x < 0])) if np.min(inst_y) < 0: inst_y[inst_y < 0] /= (-
np.amin(inst_y[inst_y < 0])
numpy.amin
# text_file = open("../build/example.txt", "r") # lines = text_file.readlines() # print lines # # print len(lines) # text_file.close() import math as math import numpy as np # import math as math # import matplotlib # import matplotlib.cm as cm # import matplotlib.mlab as mlab # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D # from scipy.constants import pi # from PyKEP import epoch, DAY2SEC, AU, MU_SUN, lambert_problem, epoch_from_string # from PyKEP.planet import jpl_lp # from PyKEP.orbit_plots import plot_planet, plot_lambert, plot_kepler from numpy import loadtxt import matplotlib.pyplot as plt # import numpy as np mylegend = ['0 revolutions','1 revolution','2 revolutions','3 revolutions','4 revolutions','5 revolutions'] # test1 = [4,3,2,1,0]#0,5,1) test1 = np.arange(0,5,1) for j in (test1): filename = "../data/dv_" + str(j) + ".txt" # print filename counter = loadtxt("../data/i.txt", comments="#", delimiter=" ", unpack=False) dV = loadtxt(filename, comments="#", delimiter=" ", unpack=False) # for i in np.size(counter):cd # np.array(i) = dV[i] # print dV, np.size(dV) # print counter, np.size(counter) dvmin = np.amin(dV) # print dvmin total = np.ndarray(shape=(np.size(dV),2), dtype=float, order='F') # total[1,1] = 5 for i in np.arange(0,np.size(dV)): total[i,0] = dV[i] total[i,1] = counter[i] # itemindex = 1 itemindex = np.where(total[:,0]<100000) indexs = np.amin(itemindex) total = np.delete(total, np.arange(0,indexs,1), 0) plt.plot(total[:,1], total[:,0],label=mylegend[j]) # plt.axis([0, np.size(counter)*0.3/10000, 0, 2500])#np.amax(dV)*1.1]) plt.axis([0,
np.size(counter)
numpy.size
from osgeo import gdal import math import matplotlib.pyplot as plt import numpy as np import os from osgeo import gdal_array import pandas as pd import uuid import warnings from .pipesegment import PipeSegment, LoadSegment, MergeSegment class Image: def __init__(self, data, name='image', metadata={}): self.name = name self.metadata = metadata self.set_data(data) def set_data(self, data): if isinstance(data, np.ndarray) and data.ndim == 2: data =
np.expand_dims(data, axis=0)
numpy.expand_dims
""" This implements a shooting trajectory optimization algorithm. The closest known algorithm is perhaps MPPI and hence we stick to that terminology. Uses a filtered action sequence to generate smooth motions. """ import numpy as np from trajopt.algos.trajopt_base import Trajectory from trajopt.utils import gather_paths_parallel from trajopt.envs.herb_pushing_env import HerbEnv import trimesh import cv2 import os import open3d as o3d class MPPI(Trajectory): def __init__(self, run_num, env, top_dir, task, H, paths_per_cpu, num_cpu=1, kappa=1.0, gamma=1.0, mean=None, filter_coefs=None, default_act='repeat', seed=123 ): self.top_dir=top_dir self.task=task self.env, self.seed = env, seed self.n, self.m = env.observation_dim, env.action_dim self.H, self.paths_per_cpu, self.num_cpu = H, paths_per_cpu, num_cpu self.mean, self.filter_coefs, self.kappa, self.gamma = mean, filter_coefs, kappa, gamma if mean is None: self.mean = np.zeros(self.m) if filter_coefs is None: self.filter_coefs = [np.ones(self.m), 1.0, 0.0, 0.0] self.default_act = default_act self.sol_state = [] self.sol_act = [] self.sol_reward = [] self.sol_obs = [] self.act_sequences=[] self.env.reset_model(seed=self.seed) self.sol_state.append(self.env.get_env_state().copy()) self.sol_obs.append(self.env._get_obs()) self.act_sequence = np.repeat(np.expand_dims(self.sol_state[-1]['qp'][:15], 0), self.H, axis=0) #self.act_sequence = np.ones((self.H, self.m)) * self.mean self.env_pool=[HerbEnv(top_dir, None, run_num, obs=False, task=self.task) for i in range(self.num_cpu)] def update(self, paths): num_traj = len(paths) act = np.array([paths[i]["actions"] for i in range(num_traj)]) vel= np.array([paths[i]["vels"] for i in range(num_traj)]) R = self.score_trajectory(paths) S = np.exp(self.kappa*(R-np.max(R))) best_reward=-float('inf') for i in range(len(paths)): if paths[i]["rewards"][-1]>best_reward: best_reward=paths[i]["rewards"][-1] # blend the action sequence weighted_seq = S*act.T act_sequence = np.sum(weighted_seq.T, axis=0)/(np.sum(S) + 1e-6) weighted_vels = S*vel.T weighted_vels =
np.sum(weighted_vels.T, axis=0)
numpy.sum
import itertools import cmath import h5py from pauxy.systems.hubbard import Hubbard from pauxy.trial_wavefunction.free_electron import FreeElectron from pauxy.trial_wavefunction.uhf import UHF from pauxy.trial_wavefunction.harmonic_oscillator import HarmonicOscillator from pauxy.estimators.ci import simple_fci_bose_fermi, simple_fci from pauxy.estimators.hubbard import local_energy_hubbard_holstein, local_energy_hubbard from pauxy.systems.hubbard_holstein import HubbardHolstein from pauxy.utils.linalg import reortho from pauxy.estimators.greens_function import gab_spin import time from pauxy.utils.linalg import diagonalise_sorted from pauxy.estimators.greens_function import gab_spin import scipy from scipy.linalg import expm import scipy.sparse.linalg from scipy.optimize import minimize try: from jax.config import config config.update("jax_enable_x64", True) import jax from jax import grad, jit import jax.numpy as np import jax.scipy.linalg as LA import numpy except ModuleNotFoundError: import numpy np = numpy def jit(function): def wrapper(): function return wrapper() import math @jit def gab(A, B): r"""One-particle Green's function. This actually returns 1-G since it's more useful, i.e., .. math:: \langle \phi_A|c_i^{\dagger}c_j|\phi_B\rangle = [B(A^{\dagger}B)^{-1}A^{\dagger}]_{ji} where :math:`A,B` are the matrices representing the Slater determinants :math:`|\psi_{A,B}\rangle`. For example, usually A would represent (an element of) the trial wavefunction. .. warning:: Assumes A and B are not orthogonal. Parameters ---------- A : :class:`numpy.ndarray` Matrix representation of the bra used to construct G. B : :class:`numpy.ndarray` Matrix representation of the ket used to construct G. Returns ------- GAB : :class:`numpy.ndarray` (One minus) the green's function. """ # Todo: check energy evaluation at later point, i.e., if this needs to be # transposed. Shouldn't matter for Hubbard model. inv_O = np.linalg.inv((A.conj().T).dot(B)) GAB = B.dot(inv_O.dot(A.conj().T)) return GAB @jit def local_energy_hubbard_holstein_jax(T,U,g,m,w0, G, X, Lap, Ghalf=None): r"""Calculate local energy of walker for the Hubbard-Hostein model. Parameters ---------- system : :class:`HubbardHolstein` System information for the HubbardHolstein model. G : :class:`numpy.ndarray` Walker's "Green's function" Returns ------- (E_L(phi), T, V): tuple Local, kinetic and potential energies of given walker phi. """ nbasis = T[0].shape[1] ke = np.sum(T[0] * G[0] + T[1] * G[1]) pe = U * np.dot(G[0].diagonal(), G[1].diagonal()) pe_ph = 0.5 * w0 ** 2 * m * np.sum(X * X) ke_ph = -0.5 * np.sum(Lap) / m - 0.5 * w0 * nbasis rho = G[0].diagonal() + G[1].diagonal() e_eph = - g * np.sqrt(m * w0 * 2.0) * np.dot(rho, X) etot = ke + pe + pe_ph + ke_ph + e_eph Eph = ke_ph + pe_ph Eel = ke + pe Eeb = e_eph return (etot, ke+pe, ke_ph+pe_ph+e_eph) def gradient(x, nbasis, nup, ndown, T, U, g, m, w0, c0,restricted,restricted_shift): grad = numpy.array(jax.grad(objective_function)(x, nbasis, nup, ndown, T, U, g, m, w0, c0,restricted,restricted_shift)) return grad def hessian(x, nbasis, nup, ndown, T, U, g, m, w0, c0, restricted): H = numpy.array(jax.hessian(objective_function)(x, nbasis, nup, ndown, T, U, g, m, w0, c0,restricted,restricted_shift)) return H def hessian_product(x, p, nbasis, nup, ndown, T, U, g, m, w0, c0): h = 1e-5 xph = x + p * h xmh = x - p * h gph = gradient(xph, nbasis, nup, ndown, T, U, g, m, w0, c0) gmh = gradient(xmh, nbasis, nup, ndown, T, U, g, m, w0, c0) Hx = (gph - gmh) / (2.0 * h) return Hx @jit def compute_exp(Ua, tmp, theta_a): for i in range(1,50): tmp = np.einsum("ij,jk->ik", theta_a, tmp) Ua += tmp / math.factorial(i) return Ua def compute_greens_function_from_x (x, nbasis, nup, ndown, c0, restricted): shift = x[0:nbasis] nbsf = nbasis nocca = nup noccb = ndown nvira = nbasis - nocca nvirb = nbasis - noccb nova = nocca*nvira novb = noccb*nvirb daia = np.array(x[nbsf:nbsf+nova],dtype=np.float64) daib = np.array(x[nbsf+nova:nbsf+nova+novb],dtype=np.float64) daia = daia.reshape((nvira, nocca)) daib = daib.reshape((nvirb, noccb)) if (restricted): daib = jax.ops.index_update(daib, jax.ops.index[:,:], daia) theta_a = np.zeros((nbsf, nbsf),dtype=np.float64) theta_b = np.zeros((nbsf, nbsf),dtype=np.float64) theta_a = jax.ops.index_update(theta_a, jax.ops.index[nocca:nbsf,:nocca], daia) theta_a = jax.ops.index_update(theta_a, jax.ops.index[:nocca, nocca:nbsf], -np.transpose(daia)) theta_b = jax.ops.index_update(theta_b, jax.ops.index[noccb:nbsf,:noccb], daib) theta_b = jax.ops.index_update(theta_b, jax.ops.index[:noccb, noccb:nbsf], -np.transpose(daib)) Ua = np.eye(nbsf,dtype=np.float64) tmp = np.eye(nbsf,dtype=np.float64) Ua = compute_exp(Ua, tmp, theta_a) C0a = np.array(c0[:nbsf*nbsf].reshape((nbsf,nbsf)),dtype=np.float64) Ca = C0a.dot(Ua) Ga = gab(Ca[:,:nocca], Ca[:,:nocca]) if (noccb > 0): C0b = np.array(c0[nbsf*nbsf:].reshape((nbsf,nbsf)),dtype=np.float64) Ub = np.eye(nbsf) tmp = np.eye(nbsf) Ub = compute_exp(Ub, tmp, theta_b) Cb = C0b.dot(Ub) Gb = gab(Cb[:,:noccb], Cb[:,:noccb]) else: Gb = numpy.zeros_like(Ga) G = np.array([Ga, Gb],dtype=np.float64) return G def objective_function (x, nbasis, nup, ndown, T, U, g, m, w0, c0, restricted, restricted_shift): nbasis = int(round(nbasis)) nup = int(round(nup)) ndown = int(round(ndown)) shift = x[0:nbasis] nbsf = nbasis nocca = nup noccb = ndown nvira = nbasis - nocca nvirb = nbasis - noccb nova = nocca*nvira novb = noccb*nvirb daia = np.array(x[nbsf:nbsf+nova],dtype=np.float64) daib = np.array(x[nbsf+nova:nbsf+nova+novb],dtype=np.float64) daia = daia.reshape((nvira, nocca)) daib = daib.reshape((nvirb, noccb)) if (restricted): daib = jax.ops.index_update(daib, jax.ops.index[:,:], daia) theta_a = np.zeros((nbsf, nbsf),dtype=np.float64) theta_b = np.zeros((nbsf, nbsf),dtype=np.float64) theta_a = jax.ops.index_update(theta_a, jax.ops.index[nocca:nbsf,:nocca], daia) theta_a = jax.ops.index_update(theta_a, jax.ops.index[:nocca, nocca:nbsf], -np.transpose(daia)) theta_b = jax.ops.index_update(theta_b, jax.ops.index[noccb:nbsf,:noccb], daib) theta_b = jax.ops.index_update(theta_b, jax.ops.index[:noccb, noccb:nbsf], -np.transpose(daib)) Ua = np.eye(nbsf,dtype=np.float64) tmp = np.eye(nbsf,dtype=np.float64) Ua = compute_exp(Ua, tmp, theta_a) C0a = np.array(c0[:nbsf*nbsf].reshape((nbsf,nbsf)),dtype=np.float64) Ca = C0a.dot(Ua) Ga = gab(Ca[:,:nocca], Ca[:,:nocca]) if (noccb > 0): C0b = np.array(c0[nbsf*nbsf:].reshape((nbsf,nbsf)),dtype=np.float64) Ub = np.eye(nbsf) tmp = np.eye(nbsf) Ub = compute_exp(Ub, tmp, theta_b) Cb = C0b.dot(Ub) Gb = gab(Cb[:,:noccb], Cb[:,:noccb]) else: Gb = np.zeros_like(Ga) G = np.array([Ga, Gb],dtype=np.float64) if (restricted_shift): shift = jax.ops.index_update(shift, jax.ops.index[:nbasis], x[0]) phi = HarmonicOscillator(m, w0, order=0, shift = shift) Lap = phi.laplacian(shift) etot, eel, eph = local_energy_hubbard_holstein_jax(T,U, g,m,w0, G, shift, Lap) return etot.real class CoherentState(object): def __init__(self, system, options, verbose=False): self.verbose = verbose if verbose: print ("# Parsing free electron input options.") init_time = time.time() self.name = "coherent_state" self.type = "coherent_state" self.trial_type = complex self.initial_wavefunction = options.get('initial_wavefunction', 'coherent_state') if verbose: print ("# Diagonalising one-body Hamiltonian.") (self.eigs_up, self.eigv_up) = diagonalise_sorted(system.T[0]) (self.eigs_dn, self.eigv_dn) = diagonalise_sorted(system.T[1]) self.reference = options.get('reference', None) self.exporder = options.get('exporder', 6) self.maxiter = options.get('maxiter', 3) self.maxscf = options.get('maxscf', 500) self.ueff = options.get('ueff', system.U) if verbose: print("# exporder in CoherentState is 15 no matter what you entered like {}".format(self.exporder)) self.psi = numpy.zeros(shape=(system.nbasis, system.nup+system.ndown), dtype=self.trial_type) assert (system.name == "HubbardHolstein") self.m = system.m self.w0 = system.w0 self.nbasis = system.nbasis self.nocca = system.nup self.noccb = system.ndown self.algorithm = options.get('algorithm',"bfgs") self.random_guess = options.get('random_guess',False) self.symmetrize = options.get('symmetrize',False) if verbose: print("# random guess = {}".format(self.random_guess)) if verbose: print("# Symmetrize Coherent State = {}".format(self.symmetrize)) self.wfn_file = options.get('wfn_file', None) self.coeffs = None self.perms = None if self.wfn_file is not None: if verbose: print ("# Reading trial wavefunction from %s"%(self.wfn_file)) f = h5py.File(self.wfn_file, "r") self.shift = f["shift"][()].real self.psi = f["psi"][()] f.close() if (len(self.psi.shape) == 3): if verbose: print("# MultiCoherent trial detected") self.symmetrize = True self.perms = None f = h5py.File(self.wfn_file, "r") self.coeffs = f["coeffs"][()] f.close() self.nperms = self.coeffs.shape[0] assert(self.nperms == self.psi.shape[0]) assert(self.nperms == self.shift.shape[0]) self.boson_trial = HarmonicOscillator(m = system.m, w = system.w0, order = 0, shift=self.shift[0,:]) self.G = None if verbose: print("# A total of {} coherent states are used".format(self.nperms)) else: gup = gab(self.psi[:, :system.nup], self.psi[:, :system.nup]).T if (system.ndown > 0): gdown = gab(self.psi[:, system.nup:], self.psi[:, system.nup:]).T else: gdown = numpy.zeros_like(gup) self.G = numpy.array([gup, gdown], dtype=self.psi.dtype) self.boson_trial = HarmonicOscillator(m = system.m, w = system.w0, order = 0, shift=self.shift) else: free_electron = options.get('free_electron', False) if (free_electron): trial_elec = FreeElectron(system, trial=options, verbose=self.verbose) else: trial_elec = UHF(system, trial=options, verbose=self.verbose) self.psi[:, :system.nup] = trial_elec.psi[:, :system.nup] if (system.ndown > 0): self.psi[:, system.nup:] = trial_elec.psi[:, system.nup:] Pa = self.psi[:, :system.nup].dot(self.psi[:, :system.nup].T) Va = (
numpy.eye(system.nbasis)
numpy.eye
import argparse import configparser import os import numpy as np from datetime import datetime, date from pandas import DataFrame from coverage import root_dir import coverage.tools.dataloader as dataloader from coverage.tools import common_utils import coverage.tools.model_utils as model_utils from coverage.tools.coverage_utils import execute_sampling, SurpriseCoverage def get_aggregated_indices(labels, select_idx): sampled_indices_list = [] for class_id in select_idx: sampled_indices = np.nonzero(labels == class_id)[0] sampled_indices_list.append(sampled_indices) aggregated_indices = np.concatenate(sampled_indices_list) return aggregated_indices if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--sample_capacity", help="number of images", type=int, default=800) parser.add_argument("--repeat_times", help="number of selected classes", type=int, default=2) parser.add_argument("--dataset_network", help="selected class id", type=str, default="cifar100_resnet32") parser.add_argument("--attack", help="adversarial attack", type=str, default="cw") parser.add_argument("--exp_date", help="data_of_exp", type=str,) parser.add_argument("--split_id", help="id number of select split", type=int, default=1) console_args = parser.parse_args() print(console_args) dataset_network = console_args.dataset_network exp_cfg = configparser.ConfigParser() coverage_parameters = {"n_bucket": 1000} exp_cfg.read(f"{root_dir}/config/exp.conf") total_group_nums = exp_cfg['parameters'].getint("group_nums") coverage_parameters["kmnc_k_section"] = exp_cfg['parameters'].getint("kmnc_k_section") coverage_parameters["tknc_k_value"] = exp_cfg['parameters'].getint("tknc_k_value") coverage_parameters["nc_threshold"] = exp_cfg['parameters'].getfloat("nc_threshold") coverage_parameters["idc_relevant_neurons"] = exp_cfg['parameters'].getint("idc_relevant_neurons") rq3_path = exp_cfg['parameters'].get("rq3_path") sa_dir_name = exp_cfg['parameters'].get("sa_intermediate") sa_intermedia_path = os.path.join(root_dir, sa_dir_name) idc_dir_name = exp_cfg['parameters'].get("idc_intermediate") idc_intermedia_path = os.path.join(root_dir, idc_dir_name) coverage_parameters["idc_intermedia_path"] = idc_intermedia_path console_args.exp_date = str(date.today()) if console_args.exp_date is None else console_args.exp_date dataset_network_dir = os.path.join(root_dir, rq3_path, console_args.exp_date, dataset_network) common_utils.create_path(sa_intermedia_path, idc_intermedia_path, rq3_path, dataset_network_dir) dataset_name, network_name = tuple(dataset_network.split("_")) num_classes = dataloader.class_num(dataset_name) test_sizes = dataloader.test_sizes[dataset_name] s0 = datetime.now() # load model and boundary classifier = model_utils.load_model(network=network_name, dataset=dataset_name) boundary = common_utils.load_boundary(dataset_name, network_name) # direct use `size_per_class` correctly classified images x_test, y_test = dataloader.load_dataset(dataset_name) x_test = dataloader.preprocess_dataset(dataset_name, network_name, x_test) print(f"INFO: {dataset_name, network_name} value range of clean images :[{np.min(x_test)},{np.max(x_test)}]") # the adversarial inputs are already preprocessed. adv_x, adv_y = dataloader.load_adversarial_images(dataset_name, network_name, console_args.attack, mode="full") print(f"INFO: {dataset_name, network_name} value range of adv images :[{np.min(adv_x)},{np.max(adv_x)}]") # I skip loading train set here. We don't need train-set because we have generated SA and IDC intermediate files skip_train = True if skip_train: x_train = y_train = None else: # note that the y_train is not in one-vector format. It's just an array of class ids. x_train, y_train = dataloader.load_train_set(console_args.dataset) x_train = dataloader.preprocess_dataset(console_args.dataset, console_args.network, x_train) print(f"INFO: {console_args.dataset, console_args.network} " f"value range of train images :[{np.min(x_train)},{np.max(x_train)}]") print(f"Data & Model preparing time:{datetime.now() - s0}") sampling_indices = common_utils.sampling_indices_dict(500, dataset_model=dataset_network, test_size=console_args.sample_capacity) correct_indices = sampling_indices['pure_correct_indices'] pure_correct_labels = y_test[correct_indices].copy() # we divide the classes into ten splits section_num = 10 class_ids = np.arange(num_classes) section_length = int(num_classes / section_num) adv_lsa, adv_dsa, adv_mdsa = common_utils.cached_sa(dataset_network=dataset_network, attack_type=console_args.attack, test_size=test_sizes) clean_lsa, clean_dsa, clean_mdsa = common_utils.cached_sa(dataset_network=dataset_network, attack_type="normal", test_size=test_sizes) sa_dict = dict() sa_dict["clean_lsa"], sa_dict["adv_lsa"] = clean_lsa, adv_lsa sa_dict["clean_dsa"], sa_dict["adv_dsa"] = clean_dsa, adv_dsa sa_dict["clean_mdsa"], sa_dict["adv_mdsa"] = clean_mdsa, adv_mdsa sa_dict["lsa_boundary"] = SurpriseCoverage.filter_outliers("LSA",np.concatenate([clean_lsa,adv_lsa]).copy()) sa_dict["dsa_boundary"] = SurpriseCoverage.filter_outliers("DSA",np.concatenate([clean_dsa,adv_dsa]).copy()) sa_dict["mdsa_boundary"] = SurpriseCoverage.filter_outliers("MDSA",np.concatenate([clean_mdsa,adv_mdsa]).copy()) start_class_id = int(section_length * console_args.split_id) top_idx = class_ids[start_class_id:start_class_id + section_length] print(f"Selecting spilt:{console_args.split_id},classes:{top_idx}") df_titles = ["Sampling_Name", "correct_proportion", "NC", "NBC", "SNAC", "TKNC", 'KMNC', "LSC", "DSC", "MDSC", "IDC", "error_rate"] df_path = os.path.join(dataset_network_dir, f"{console_args.dataset_network}_{console_args.attack}_size{console_args.sample_capacity}" f"_class_ratio-split{console_args.split_id}.xlsx") df = DataFrame(columns=df_titles) row_id = 0 _aggregated_correct_idx = get_aggregated_indices(pure_correct_labels, top_idx) aggregated_correct_idx = correct_indices[_aggregated_correct_idx] aggregated_wrong_idx = get_aggregated_indices(adv_y, top_idx) s0 = datetime.now() for rid in range(console_args.repeat_times): if len(aggregated_correct_idx) >= console_args.sample_capacity: adv_minimum = 0 else: adv_minimum = console_args.sample_capacity - len(aggregated_correct_idx) adv_maximum = int(console_args.sample_capacity * 0.7) assert adv_maximum > adv_minimum, f"Maximum {adv_maximum} <= Minimum {adv_minimum}. " \ f"Only {len(aggregated_correct_idx)} correct inputs are found." wrong_num = np.random.randint(low=adv_minimum, high=adv_maximum + 1) correct_num = console_args.sample_capacity - wrong_num print(f"Repeat times: {rid} of {console_args.repeat_times}, correct: {correct_num}, wrong: {wrong_num}") select_correct_idx = np.random.choice(a=aggregated_correct_idx, size=correct_num, replace=False) select_wrong_idx =
np.random.choice(a=aggregated_wrong_idx, size=wrong_num, replace=False)
numpy.random.choice
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import scipy.spatial from .complexity_embedding import complexity_embedding from .fractal_correlation import fractal_correlation def complexity_dimension(signal, delay=1, dimension_max=20, method="afnn", show=False, **kwargs): """Automated selection of the optimal Dimension (m) for time-delay embedding. From this `thread <https://www.researchgate.net/post/How-can-we-find-out-which-value-of-embedding-dimensions-is-more-accurate>`_: "In the early days, the method of choice was to calculate the correlation dimension in various embeddings and look for a saturation in its value as the embedding dimension increases. However, a saturation will always occur when you no longer have enough data to adequately fill your high-dimensional space. More recently the method of choice has been false nearest neighbors, although that suffers from the same problem when the neighborhood does not contain sufficiently many points. As a rule of thumb, you might demand that each dimension have at least ten points." Parameters ---------- signal : Union[list, np.array, pd.Series] The signal (i.e., a time series) in the form of a vector of values. delay : int Time delay (often denoted 'Tau', sometimes referred to as 'lag'). In practice, it is common to have a fixed time lag (corresponding for instance to the sampling rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see ``complexity_delay()``). dimension_max : int The maximum embedding dimension (often denoted 'm' or 'd', sometimes referred to as 'order') to test. method : str Method can either be 'afnn' (average false nearest neighbour), 'fnn' (false nearest neighbour), or 'correlation' (correlation dimension). show : bool Visualize the result. **kwargs Other arguments, such as ``R=10.0``, ``A=2.0`` (relative and absolute tolerance, only for 'fnn' method). Returns ------- delay : int Optimal dimension. parameters : dict A dictionary containing additional information regarding the parameters used to compute the optimal dimension. See Also ------------ complexity_delay, complexity_embedding Examples --------- >>> import neurokit2 as nk >>> >>> # Artifical example >>> signal = nk.signal_simulate(duration=10, frequency=1, noise=0.01) >>> # Find optimal delay >>> delay, parameters = nk.complexity_delay(signal, delay_max=500) >>> >>> # Find optimal dimension >>> optimal_dimension, info = nk.complexity_dimension(signal, delay=delay, dimension_max=20, method='afnn', show=True) >>> optimal_dimension, info = nk.complexity_dimension(signal, delay=delay, dimension_max=20, method='fnn', show=True) References ----------- - <NAME>. (1997). Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlinear Phenomena, 110(1-2), 43-50. """ # Initialize vectors if isinstance(dimension_max, int): dimension_seq = np.arange(1, dimension_max + 1) else: dimension_seq = np.array(dimension_max) # Method method = method.lower() if method in ["afnn"]: # Append value (as it gets cropped afterwards anyway) dimension_seq = np.append(dimension_seq, [dimension_seq[-1] + 1]) E, Es = _embedding_dimension_afn(signal, dimension_seq=dimension_seq, delay=delay, **kwargs) E1 = E[1:] / E[:-1] E2 = Es[1:] / Es[:-1] # To find where E1 saturates, set a threshold of difference # threshold = 0.1 * (np.max(E1) - np.min(E1)) min_dimension = [i for i, x in enumerate(E1 >= 0.85 * np.nanmax(E1)) if x][0] + 1 # To standardize the length of dimension_seq with E1 and E2 dimension_seq = dimension_seq[:-1] # Store information info = {"Method": method, "Values": dimension_seq, "E1": E1, "E2": E2} if show is True: _embedding_dimension_plot( method=method, dimension_seq=dimension_seq, min_dimension=min_dimension, E1=E1, E2=E2, ) elif method in ["fnn"]: f1, f2, f3 = _embedding_dimension_ffn( signal, dimension_seq=dimension_seq, delay=delay, **kwargs ) min_dimension = [i for i, x in enumerate(f3 <= 1.85 * np.min(f3[np.nonzero(f3)])) if x][0] # Store information info = {"Method": method, "Values": dimension_seq, "f1": f1, "f2": f2, "f3": f3} if show is True: _embedding_dimension_plot( method=method, dimension_seq=dimension_seq, min_dimension=min_dimension, f1=f1, f2=f2, f3=f3, ) elif method in ["correlation", "cd"]: CDs = _embedding_dimension_correlation(signal, dimension_seq, delay=delay, **kwargs) # Find elbow (TODO: replace by better method of elbow localization) min_dimension = dimension_seq[np.where(CDs >= 0.66 * np.max(CDs))[0][0]] # Store information info = {"Method": method, "Values": dimension_seq, "CD": CDs} if show is True: _embedding_dimension_plot( method=method, dimension_seq=dimension_seq, min_dimension=min_dimension, CD=CDs, ) else: raise ValueError("NeuroKit error: complexity_dimension(): 'method' not recognized.") return min_dimension, info # ============================================================================= # Methods # ============================================================================= def _embedding_dimension_correlation(signal, dimension_seq, delay=1, **kwargs): """Return the Correlation Dimension (CD) for a all d in dimension_seq.""" CDs = np.zeros(len(dimension_seq)) for i, d in enumerate(dimension_seq): CDs[i] = fractal_correlation(signal, dimension=d, delay=delay, **kwargs)[0] return CDs def _embedding_dimension_afn(signal, dimension_seq, delay=1, **kwargs): """Return E(d) and E^*(d) for a all d in dimension_seq. E(d) and E^*(d) will be used to calculate E1(d) and E2(d). El(d) = E(d + 1)/E(d). E1(d) stops changing when d is greater than some value d0 if the time series comes from an attractor. Then d0 + 1 is the minimum embedding dimension we look for. E2(d) = E*(d + 1)/E*(d). E2(d) is a useful quantity to distinguish deterministic signals from stochastic signals. For random data, since the future values are independent of the past values, E2(d) will be equal to 1 for any d. For deterministic data, E2(d) is certainly related to d, it cannot be a constant for all d; there must exist somed's such that E2(d) is not 1. """ values = np.asarray( [ _embedding_dimension_afn_d(signal, dimension, delay, **kwargs) for dimension in dimension_seq ] ).T E, Es = values[0, :], values[1, :] return E, Es def _embedding_dimension_afn_d( signal, dimension, delay=1, metric="chebyshev", window=10, maxnum=None, **kwargs ): """Return E(d) and E^*(d) for a single d. Returns E(d) and E^*(d) for the AFN method for a single d. """ d, dist, index, y2 = _embedding_dimension_d(signal, dimension, delay, metric, window, maxnum) # Compute the ratio of near-neighbor distances in d + 1 over d dimension # Its average is E(d) if any(d == 0) or any(dist == 0): E = np.nan Es = np.nan else: E = np.mean(d / dist) # Calculate E^*(d) Es = np.mean(np.abs(y2[:, -1] - y2[index, -1])) return E, Es def _embedding_dimension_ffn(signal, dimension_seq, delay=1, R=10.0, A=2.0, **kwargs): """Compute the fraction of false nearest neighbors. The false nearest neighbors (FNN) method described by Kennel et al. (1992) to calculate the minimum embedding dimension required to embed a scalar time series. Returns 3 vectors: - f1 : Fraction of neighbors classified as false by Test I. - f2 : Fraction of neighbors classified as false by Test II. - f3 : Fraction of neighbors classified as false by either Test I or Test II. """ values = np.asarray( [ _embedding_dimension_ffn_d(signal, dimension, delay, R=R, A=A, **kwargs) for dimension in dimension_seq ] ).T f1, f2, f3 = values[0, :], values[1, :], values[2, :] return f1, f2, f3 def _embedding_dimension_ffn_d( signal, dimension, delay=1, R=10.0, A=2.0, metric="euclidean", window=10, maxnum=None ): """Return fraction of false nearest neighbors for a single d.""" d, dist, index, y2 = _embedding_dimension_d(signal, dimension, delay, metric, window, maxnum) # Find all potential false neighbors using Kennel et al.'s tests. dist[dist == 0] = np.nan # assign nan to avoid divide by zero error in next line f1 = np.abs(y2[:, -1] - y2[index, -1]) / dist > R f2 = d / np.std(signal) > A f3 = f1 | f2 return np.mean(f1), np.mean(f2), np.mean(f3) # ============================================================================= # Internals # ============================================================================= def _embedding_dimension_d(signal, dimension, delay=1, metric="chebyshev", window=10, maxnum=None): # We need to reduce the number of points in dimension d by tau # so that after reconstruction, there'll be equal number of points # at both dimension d as well as dimension d + 1. y1 = complexity_embedding(signal[:-delay], delay=delay, dimension=dimension) y2 = complexity_embedding(signal, delay=delay, dimension=dimension + 1) # Find near neighbors in dimension d. index, dist = _embedding_dimension_neighbors(y1, metric=metric, window=window, maxnum=maxnum) # Compute the near-neighbor distances in d + 1 dimension # TODO: is there a way to make this faster? d = [scipy.spatial.distance.chebyshev(i, j) for i, j in zip(y2, y2[index])] return np.asarray(d), dist, index, y2 def _embedding_dimension_neighbors(y, metric="chebyshev", window=0, maxnum=None, show=False): """Find nearest neighbors of all points in the given array. Finds the nearest neighbors of all points in the given array using SciPy's KDTree search. Parameters ---------- y : ndarray embedded signal: N-dimensional array containing time-delayed vectors. delay : int Time delay (often denoted 'Tau', sometimes referred to as 'lag'). In practice, it is common to have a fixed time lag (corresponding for instance to the sampling rate; Gautama, 2003), or to find a suitable value using some algorithmic heuristics (see ``delay_optimal()``). dimension_max : int The maximum embedding dimension (often denoted 'm' or 'd', sometimes referred to as 'order') to test. metric : str Metric to use for distance computation. Must be one of "cityblock" (aka the Manhattan metric), "chebyshev" (aka the maximum norm metric), or "euclidean". Defaults to 'chebyshev'. window : int Minimum temporal separation (Theiler window) that should exist between near neighbors. This is crucial while computing Lyapunov exponents and the correlation dimension. Defaults to 0. maxnum : int Maximum number of near neighbors that should be found for each point. In rare cases, when there are no neighbors that are at a nonzero distance, this will have to be increased (i.e., beyond 2 * window + 3). Defaults to None (optimum). show : bool Defaults to False. Returns ------- index : array Array containing indices of near neighbors. dist : array Array containing near neighbor distances. """ if metric == "chebyshev": p = np.inf elif metric == "cityblock": p = 1 elif metric == "euclidean": p = 2 else: raise ValueError( 'Unknown metric. Should be one of "cityblock", ' '"euclidean", or "chebyshev".' ) tree = scipy.spatial.cKDTree(y) # pylint: disable=E1102 n = len(y) if not maxnum: maxnum = (window + 1) + 1 + (window + 1) else: maxnum = max(1, maxnum) if maxnum >= n: raise ValueError("maxnum is bigger than array length.") # Query for k numbers of nearest neighbors distances, indices = tree.query(y, k=range(1, maxnum + 2), p=p) # Substract the first point valid = indices - np.tile(np.arange(n), (indices.shape[1], 1)).T # Remove points that are closer than min temporal separation valid = np.abs(valid) > window # Remove also self reference (d > 0) valid = valid & (distances > 0) # Get indices to keep valid = (np.arange(len(distances)),
np.argmax(valid, axis=1)
numpy.argmax
# -------------------------------------------------------- # Multi-Epitope-Ligand Cartography (MELC) phase-contrast image based segmentation pipeline # # # Written by <NAME> # -------------------------------------------------------- # Official libraries import numpy as np import pandas as pd import cv2 import tifffile as tiff import json import scipy.signal as signal from numpy.random import randint from scipy.signal import medfilt2d from os.path import join, isfile, exists from copy import deepcopy # My libraries and packages import MELC.utils.Files as myF import MELC.Client.Registration as myReg import os if os.name == 'nt': from configWin import * else: from config import * from MELC.DLManager.Augmenter import CellObjectAugmenter, ImageAugmenter from MELC.Client.Annotation import SVGAnnot from numpy.random import randint, uniform #visualisation class MELCDataset: """ A class representing one Run of MELC Dataset in raw format. Class for loading MELC Run data saved in the native raw format. It browses relevant folders, decodes filenames, reads data, registers images and subtracts background. Automatically performs image registration. Class stores META data for the MELC Run including the registration indexes. If loading next time, class reads META data, at first, and verifies them. If everything is fine, the class uses those META, instead compute evertyhing from the beginning. When loading fluorescence images, the class takes care about correct light field and background correction and also performes median filtration to prevent impulse noise present in most of the fluorescent images. Subtracted and filtered images are simultaneously saved into META data folder. If all META data are matching raw files, in the next class initialization, saved META images are used insted of the all computation again to save time. ... Attributes ---------- PATH_DATA : str Path to the MELC Run raw data folder containing source and bleach folder with *.png files. Defined during initialization, by input parameter. PATH_META : str Path to the META folder PATH_META_IMG : int Path to the folder, where META images are stored. Generated automatically. FILE_META_RUN : str Path to the file, where META data about Run are stored. Generated automatically files_pd : pandas.DataFrame pandas.DataFrame containing META data about image files in the Run. Keys : 'path', 'fid', 'step_index', 'filter', 'integration_time', 'antibody', 'modality', 'type', 'registration' calib_pd : pandas.DataFrame pandas.DataFrame containing META data about calibration (light and dark field) images. Keys : 'integration_time', 'calib_type', 'filter', 'path' antibodies : numpy.array Array of all present antibodies in the Run border_min_y : int Field of view for all registred images. It is smaller, than actual size of the image because of the various shift caused by moving of the field of view. border_max_y : int Field of view for all registred images. It is smaller, than actual size of the image because of the various shift caused by moving of the field of view. border_min_x : int Field of view for all registred images. It is smaller, than actual size of the image because of the various shift caused by moving of the field of view. border_max_x : int Field of view for all registred images. It is smaller, than actual size of the image because of the various shift caused by moving of the field of view. Methods ------- __init__(data_path) Initializes class object and calls all methods for META data reading, validation, or creation. __len__() Returns the number of antibodies present in Run __META_create(data_path) Browses given folder and creates META data to *.png all files. Decodes names and stores all information into the self.files_pd variable. The output contains calibration images as well. __META_write() Writes META data into *.csv file to the position defined by FILE_META_RUN variable. __META_read() Reads *.csv file from FILE_META_RUN filepath. And converts registration indexes from string to int. __META_verify() Checks if all files from META data exist. __META_remove_all() Removes meta for current run with all files and subfolders __register_dataset() Performs image coregistration. Two indexes are added to the files_pd. Coeficients are then translated in get_image_META() function into the coeficients __init_calibrations() Initialize calib_pd ready to use. Performs further decoding of the calibration file filenames. get_image_META(index) index: int Returns Dictionary with metadata for all files relating to the antibody with *index*. Metadata for fluorescence and background fluorescence with corresponding phase contrast images are provided. get_subtracted(index) index: int Returns phase contras, fluorescence image and metadata of antibody indexed by input variable. Background image and light field artifacts are already corrected for fluorescence. get_average_phase() Average phase image of registered phase contrast images from source (only fluorescence image corresponding phase contrast images, not bleaching) folder of original raw data. """ def __init__(self, data_path): """ Initializes MELC Run class object given by filepath data_path and calls all methods for META data reading, validation, or creation. :param: data_path: str """ # generating paths self.PATH_DATA = data_path self.PATH_META = join(PATH_DATA_META, 'MELC_data', data_path.split(SEPARATOR)[-1]) self.PATH_META_IMG = join(PATH_DATA_META, 'MELC_data', data_path.split(SEPARATOR)[-1], 'imgs') self.FILE_META_RUN = join(self.PATH_META, data_path.split(SEPARATOR)[-1] + '.csv') # check if self.FILE_META_RUN exists. if not, create neccesary folders and create metadata # do registration and save them if not isfile(self.FILE_META_RUN): if not exists(self.PATH_META): if not exists(join(PATH_DATA_META, 'MELC_data')): myF.create_folder(join(PATH_DATA_META, 'MELC_data')) myF.create_folder(self.PATH_META) self.files_pd = self.__META_create(data_path) self.__register_dataset() self.__META_write() # if yes, then read them and validate. If files are NOT the same as metadata, create new metadata. # remove all old metadata and save the new ones else: try: self.__META_read() except: try: myF.remove_folder(data_path) except: pass self.__META_create(data_path) self.__register_dataset() self.__META_write() if not self.__META_verify(): try: myF.remove_folder(data_path) except: pass self.__META_create(data_path) self.__register_dataset() self.__META_write() if not exists(self.PATH_META_IMG): # checks the if folder for saving images exists, if not -> create myF.create_folder(self.PATH_META_IMG) # separate DataFrame for antibody images and calibration images self.calib_pd = deepcopy(self.files_pd.loc[self.files_pd['step_index'] == 0].reset_index(drop='True')) self.files_pd = deepcopy(self.files_pd.loc[self.files_pd['step_index'] > 0].reset_index(drop='True')) self.__init_calibrations() # transform calibration dataframe to ready-to-use form # stores the antibodies of dataset into the var # self.antibody_indexes = np.array() # now I can ask for length of antibody array # checks all antibodies, which are not NONE or PBS # the aim is to exclude PBS files which can appear in the middle of the run self.antibody_indexes = np.array([]) for idx in np.unique(self.files_pd['step_index']): temp = np.unique(self.files_pd.loc[self.files_pd['step_index'] == \ np.unique(self.files_pd['step_index'])[idx - 1]]['antibody']) for staining in temp: if not (staining == 'PBS' or staining == 'NONE'): self.antibody_indexes = np.append(self.antibody_indexes, idx) self.antibodies = np.empty(self.__len__(), dtype="<U20") # array allocation for k in range(0, self.__len__()): # takes antibody notation by its step_number temp = np.unique(self.files_pd.loc[self.files_pd['step_index'] == self.antibody_indexes[k]]['antibody']) self.antibodies[k] = temp[(temp!='PBS') & (temp!='NONE')][0] # takes the antibody of given step. there is k+2 because calibration (0) and PBS (1) do not count as an antibody # Decrease the size of field of view for run based on registration coeficients self.border_min_y = 0 self.border_max_y = 0 self.border_min_x = 0 self.border_max_x = 0 for row in self.files_pd.iterrows(): temp = row[1]['registration'] if temp[0] < self.border_min_y: self.border_min_y = temp[0] elif temp[0] > self.border_max_y: self.border_max_y = temp[0] if temp[1] < self.border_min_x: self.border_min_x = temp[1] elif temp[1] > self.border_max_x: self.border_max_x = temp[1] def __get_MELCDataset_len__(self): """ Returns value of the number of valid antibodies in the run. :return length: int """ return len(self.antibody_indexes) def __len__(self): """ Returns value of the number of valid antibodies in the run. :return length: int """ return self.__get_MELCDataset_len__() def __META_create(self, data_path): """ Browses given folder and creates META data to *.png all files. Return pandas.DataFrame with decoded names and pointers. The output contains calibration coeficients as well. :param data_path: str :return files_pd: pandas.DataFrame """ files_png = myF.get_files(data_path, ('png', 'PNG')) files_pd = pd.DataFrame(files_png) def get_FID(x): """ separates file id from the MELC Run path :param x: pandas.DataFrame (row) :return fid: str """ temp = x['path'].split(SEPARATOR) return temp[len(temp) - 1][0:-4] def get_order_index(x): """ extracts index at which step (antibody) the image was acquired from data path :param x: pandas.DataFrame (row) :return step_index: str """ return int(x['path'].split(SEPARATOR)[-1].split('_')[-1][0:-4]) def get_filter(x): """ extracts the filter used during this image acquisition :param x: pandas.DataFrame (row) :return filter: str """ temp = x['path'].split(SEPARATOR)[-1].split('_') if len(temp) > 3: return temp[-2] else: return '' def get_integration_time(x): """ extracts the time integration time of given image :param x: pandas.DataFrame (row) :return integration_time: str """ temp = x['path'].split(SEPARATOR)[-1].split('_') if len(temp) > 3: return int(temp[-3]) else: return 0 def get_antibody(x): """ extracts antibody of given image :param x: pandas.DataFrame (row) :return antibody: str """ return x['fid'].split('_')[1] def get_modality(x): """ extracts whether the image was phase-contrast of fluorescent image :param x: pandas.DataFrame (row) :return modality: str """ temp = x['fid'].split('_')[0] if temp == 'o' or temp == 'b': return 'fluo' elif temp == 'p' or temp == 'pb': return 'phase' else: return '' def get_image_type(x): """ extracts wheter image is acquired during source or bleaching phase of the cycle :param x: pandas.DataFrame (row) :return image_phase: str """ temp = x['path'].split(SEPARATOR)[-2] if temp == 'source': return temp elif temp == 'bleach': return temp else: return '' # extract all neccesary information from the filenames and insert them into the DataFrame files_pd = files_pd.rename(columns={0: "path"}) files_pd['fid'] = files_pd.apply(lambda x: get_FID(x), axis=1) files_pd['step_index'] = files_pd.apply(lambda x: get_order_index(x), axis=1) files_pd['filter'] = files_pd.apply(lambda x: get_filter(x), axis=1) files_pd['integration_time'] = files_pd.apply(lambda x: get_integration_time(x), axis=1) files_pd['antibody'] = files_pd.apply(lambda x: get_antibody(x), axis=1) files_pd['modality'] = files_pd.apply(lambda x: get_modality(x), axis=1) files_pd['type'] = files_pd.apply(lambda x: get_image_type(x), axis=1) files_pd = files_pd.loc[files_pd['integration_time'] > 0].reset_index(drop='True') return files_pd def __META_write(self): """ Writes META data into the file given by self.FILE_META_RUN variable :return: """ self.files_pd.to_csv(self.FILE_META_RUN) def __META_read(self): """ Reads METADATA from the file given by self.FILE_META_RUN variable. :return: """ def convert_registration_to_int(x): """ Converts string array like '[ 0, -1]' into a numpy integer array. This solves the problem, that indexes are string array after reading META csv file. :param x: :return: """ temp = np.array(x['registration'][1:-1].split(' ')) temp_array = np.array([], dtype=temp.dtype) for ele in temp: if len(ele) > 0: temp_array = np.append(temp_array, ele) return temp_array.astype(np.int16) self.files_pd = pd.read_csv(self.FILE_META_RUN) self.files_pd = self.files_pd.drop(columns=self.files_pd.keys()[0]) # read_csv includes indexes as an column. Here is removed self.files_pd['registration'] = self.files_pd.apply(lambda x: convert_registration_to_int(x), axis=1) # converts registration from string like '[ 0, -1]' into int numpy array def __META_verify(self): """ Checks if all files from META data exist. Returns True or False method. :return is_it_fine: bool """ if len(self.files_pd) == len(self.__META_create(self.PATH_DATA)): for file in self.files_pd['path']: if not isfile(file): return False return True else: return False def __META_remove_all(self): """ Removes all meta folder with all files and subfolders :return: """ myF.remove_folder(self.PATH_META) def __register_dataset(self): """ Performs image coregistration. Two indexes are added to the files_pd. Registrates all images to the first phase-contrast source-image. Coeficients are then translated in get_image_META() function into the coeficients :return: """ def do_register(ref_img, x): """ reads image given by path in DataFrame (row) and calls registration functions from MELC.Client.Registration :param ref_img: numpy.array :param x: pandas.DataFrame (row) :return registration_index: numpy.array of int indexes """ if x['modality'] == 'phase': # registers only phase contrast images temp = x['path'] img = cv2.imread(temp, 2).astype(np.float32) img = myReg.get_diff(img) # cost function is computed from image representation, estimated using this func reg_idx, heatmap = myReg.register_images(ref_img, img, (100, 100), (750, 750), (26, 26)) # registers img on referenc image ref_img with a window of size (100, 100)px at the position at (750,750)px # and browses raster of size (maximum shift) (26, 26)px reg_idx = np.array([reg_idx[0], reg_idx[1]]).astype(np.int16) return reg_idx else: return np.array([0, 0], dtype = np.int16) reference = deepcopy(self.files_pd.loc[self.files_pd['modality'] == 'phase']).reset_index(drop='True').iloc[0] ref_img = cv2.imread(reference['path'], 2).astype(np.float32) ref_img = myReg.get_diff(ref_img) print('Registration ' + self.PATH_DATA.split(SEPARATOR)[-1]) self.files_pd['registration'] = self.files_pd.apply(lambda x: do_register(ref_img, x), axis=1) for index, row in self.files_pd.iterrows(): if row['modality'] == 'fluo' and row['step_index'] > 0: temp = self.files_pd.loc[ (self.files_pd['step_index'] == row['step_index']) & (self.files_pd['modality'] == 'phase') & (self.files_pd['type'] == row['type']) ] row['registration'][0] = temp['registration'][temp.index[0]][0] row['registration'][1] = temp['registration'][temp.index[0]][1] def __init_calibrations(self): """ Initialize calib_pd ready to use. Performs further decoding of the calibration file filenames. Transforms calib_pd DataFrame to another with relevant details for image correction, like integration time, dark or bright field and so on. :return: """ def get_calib_type(x): """ Returns b or d, depends on the file id. Represents bright and dark field. """ return x['fid'].split('_')[2][0] self.calib_pd['calib_type'] = self.calib_pd.apply(lambda x: get_calib_type(x), axis=1) calib = np.unique(self.calib_pd['calib_type']) int_time = np.unique(self.calib_pd['integration_time']) filt = np.unique(self.calib_pd['filter']) calib_pd = { 'integration_time': [], 'calib_type': [], 'filter': [], 'path': [] } to_erase = np.array([]) cntr = 0 for cal in calib: for int_t in int_time: for f in filt: calib_pd['calib_type'].append(cal) calib_pd['integration_time'].append(int_t) calib_pd['filter'].append(f) files = deepcopy(self.calib_pd.loc[ (self.calib_pd['calib_type'] == cal) & (self.calib_pd['integration_time'] == int_t) & (self.calib_pd['filter'] == f) ]).reset_index(drop='True') if len(files) > 0: img_path = files['path'][0] #img = cv2.imread(files['path'][0], 2).astype(np.float32) #for k in range(1, len(files)): # img = img + cv2.imread(files['path'][k], 2).astype(np.float32) #img = img / len(files) else: img_path = '' #img_path = np.array([]) to_erase = np.append(to_erase, cntr) cntr += 1 #calib_pd['image'].append(img) calib_pd['path'].append(img_path) calib_pd = pd.DataFrame(calib_pd) calib_pd = calib_pd.drop(to_erase) self.calib_pd = calib_pd def get_image_META(self, index): """ Returns Dictionary with metadata for all files relating to the antibody with *index*. Metadata for fluorescence and background fluorescence with corresponding phase contrast images are provided. :param index: int :return: """ def consistence_check_bleach(): pass_coef = True emsg = 'Following run is inconsistent: ' + self.PATH_DATA.split(SEPARATOR)[-1] if len(bleach_fluo) == 0: print('======================================') print(emsg) print('') print('File: ') print('Index:' + str(index)) print('Step file index: ' + str(self.antibody_indexes[index])) print('Antibody: ' + source_fluo['antibody']) print('Filter: ' + source_fluo['filter']) print('Integration time: ' + str(source_fluo['integration_time'])) print('Bleaching-fluorescence contrast file missing') print('======================================') pass_coef = False if len(bleach_phase) == 0: print('======================================') print(emsg) print('') print('File') print('Index:' + str(index)) print('Step file index: ' + str(self.antibody_indexes[index])) print('Antibody: ' + source_fluo['antibody']) print('Bleaching-phase contrast file missing') print('======================================') pass_coef = False return pass_coef def consistence_check_source(): pass_coef = True emsg = 'Following run is inconsistent: ' + self.PATH_DATA.split(SEPARATOR)[-1] if len(source_fluo) == 0: print(emsg) print('File with index/antibody: ' + str(index) + 'does not exist') pass_coef = False if len(source_phase) == 0: print(emsg) print('Following file') print('Index:' + str(index) + ' Antibody: ' + source_fluo['antibody']) print('Misses file source-phase-contrast file with') pass_coef = False return pass_coef if index >= self.__get_MELCDataset_len__(): return False source_fluo = self.files_pd.loc[ (self.files_pd['step_index'] == self.antibody_indexes[index]) & (self.files_pd['modality'] == 'fluo') & (self.files_pd['type'] == 'source') & ((self.files_pd['antibody'] != 'NONE')) ] if len(source_fluo) == 1: source_fluo = source_fluo.iloc[0] else: source_fluo = [] raise Exception('fuck') bleach_fluo = self.files_pd.loc[ (self.files_pd['step_index'] == self.antibody_indexes[index]-1) & (self.files_pd['modality'] == 'fluo') & (self.files_pd['type'] == 'bleach') & (self.files_pd['filter'] == source_fluo['filter']) & (self.files_pd['integration_time'] == source_fluo['integration_time']) ] if len(bleach_fluo) == 1: bleach_fluo = bleach_fluo.iloc[0] else: bleach_fluo = [] source_phase = self.files_pd.loc[ (self.files_pd['step_index'] == self.antibody_indexes[index]) & (self.files_pd['modality'] == 'phase') & (self.files_pd['type'] == 'source') ] if len(source_phase) == 1: source_phase = source_phase.iloc[0] else: source_phase = [] bleach_phase = self.files_pd.loc[ (self.files_pd['step_index'] == self.antibody_indexes[index]-1) & (self.files_pd['modality'] == 'phase') & (self.files_pd['type'] == 'bleach') ] if len(bleach_phase) == 1: bleach_phase = bleach_phase.iloc[0] else: bleach_phase = [] if consistence_check_source(): source_fluo['indexes_1'] = np.array([self.border_max_y - source_fluo['registration'][0], self.border_min_y - source_fluo['registration'][0]]) source_fluo['indexes_2'] = np.array([self.border_max_x - source_fluo['registration'][1], self.border_min_x - source_fluo['registration'][1]]) source_phase['indexes_1'] = np.array([self.border_max_y - source_phase['registration'][0], self.border_min_y - source_phase['registration'][0]]) source_phase['indexes_2'] = np.array([self.border_max_x - source_phase['registration'][1], self.border_min_x - source_phase['registration'][1]]) else: return False if consistence_check_bleach(): bleach_fluo['indexes_1'] = np.array([self.border_max_y - bleach_fluo['registration'][0], self.border_min_y - bleach_fluo['registration'][0]]) bleach_fluo['indexes_2'] = np.array([self.border_max_x - bleach_fluo['registration'][1], self.border_min_x - bleach_fluo['registration'][1]]) bleach_phase['indexes_1'] = np.array([self.border_max_y - bleach_phase['registration'][0], self.border_min_y - bleach_phase['registration'][0]]) bleach_phase['indexes_2'] = np.array([self.border_max_x - bleach_phase['registration'][1], self.border_min_x - bleach_phase['registration'][1]]) else: bleach_phase = False bleach_fluo = False print('Image is processed WITHOUT BACKGROUND SUBTRACTION') return {'source_fluo': source_fluo, 'source_phase': source_phase, 'bleach_fluo': bleach_fluo, 'bleach_phase': bleach_phase } def get_subtracted(self, index): """ Returns phase contrast, fluorescence image and metadata of antibody indexed by input variable. Background image and light field artifacts are already corrected for fluorescence. :param index: int :return: """ temp = self.get_image_META(index) if temp == False: return False bleach_bool = True if type(temp['bleach_fluo']) == type(False): bleach_bool = False fluo_name = temp['source_fluo']['fid'] phase_name = temp['source_phase']['fid'] if exists(join(self.PATH_META_IMG, fluo_name + '.tif')) and exists(join(self.PATH_META_IMG, phase_name + '.tif')): phase = tiff.imread(join(self.PATH_META_IMG, phase_name + '.tif')).astype(np.float32) fluo = tiff.imread(join(self.PATH_META_IMG, fluo_name + '.tif')).astype(np.float32) else: try: calib = cv2.imread(self.calib_pd.loc[ (self.calib_pd['calib_type'] == 'b') & (self.calib_pd['filter'] == temp['source_fluo']['filter']) & (self.calib_pd['integration_time'] == temp['source_fluo']['integration_time']) ].iloc[0]['path'], 2) except: ## BCS THERE IS ONE RUN WITH INTEGRATION 8000ms and NO corresponding background file calib = np.zeros(cv2.imread(temp['source_fluo']['path'], 2).astype(np.float32).shape) print('There is missing calibration file to the file with index ' + str(index+2)) print('Image will be processed without background. CONSIDER the using of this image for further analysis') source_fluo = cv2.imread(temp['source_fluo']['path'], 2).astype(np.float32) source_phase = cv2.imread(temp['source_phase']['path'], 2).astype(np.float32) if bleach_bool: bleach_fluo =cv2.imread(temp['bleach_fluo']['path'], 2).astype(np.float32) #bleach_phase = cv2.imread(temp['source_fluo']['path'], 2).astype(np.float32) source_fluo = source_fluo - calib if bleach_bool: bleach_fluo = bleach_fluo - calib source_fluo = source_fluo[ temp['source_fluo']['indexes_1'][0]: source_fluo.shape[0] + temp['source_fluo']['indexes_1'][1], temp['source_fluo']['indexes_2'][0]: source_fluo.shape[1] + temp['source_fluo']['indexes_2'][1] ] if bleach_bool: bleach_fluo = bleach_fluo[ temp['bleach_fluo']['indexes_1'][0]: bleach_fluo.shape[0] + temp['bleach_fluo']['indexes_1'][1], temp['bleach_fluo']['indexes_2'][0]: bleach_fluo.shape[1] + temp['bleach_fluo']['indexes_2'][1] ] source_phase = source_phase[ temp['source_phase']['indexes_1'][0]: source_phase.shape[0] + temp['source_phase']['indexes_1'][1], temp['source_phase']['indexes_2'][0]: source_phase.shape[1] + temp['source_phase']['indexes_2'][1] ] if bleach_bool: fluo = source_fluo - bleach_fluo else: fluo = source_fluo fluo = medfilt2d(fluo, 3) phase = source_phase fluo[fluo < 0] = 0 tiff.imsave(join(self.PATH_META_IMG, phase_name + '.tif'), phase.astype(np.uint16)) tiff.imsave(join(self.PATH_META_IMG, fluo_name + '.tif'), fluo.astype(np.uint16)) return phase, fluo, temp def get_average_phase(self): """ Average phase image of registered phase contrast images from source (only fluorescence image corresponding phase contrast images, not bleaching) folder of original raw data. :return: """ print(self.PATH_META_IMG) if exists(join(self.PATH_META_IMG, 'average_phase.tif')): phase = tiff.imread(join(self.PATH_META_IMG, 'average_phase.tif')).astype(np.float32) else: temp_phase, fluo, temp = self.get_subtracted(0) for k in range(1, self.__get_MELCDataset_len__()): phase, fluo, temp = self.get_subtracted(k) temp_phase = temp_phase + phase phase = temp_phase / self.__get_MELCDataset_len__() phase = phase.round() phase[phase < 0] = 0 tiff.imsave(join(self.PATH_META_IMG, 'average_phase.tif'), phase.astype(np.uint16)) return phase class MELCTiler(MELCDataset): def __init__(self, path_data, path_annotations): super(MELCTiler, self).__init__(path_data) # calls __init__ of MELCDataset to initialize all paths and run all the init. Everything is changed in this class then #MELCDataset.__init__(self, path_data) self.tile_size = 256 self.tile_overlap = 128 self.phase_average = self.get_average_phase() self.im_shape = self.phase_average.shape self.PATH_ANNOTATIONS = path_annotations if not ('_'.join(self.PATH_ANNOTATIONS.split(SEPARATOR)[-1].split('_')[1:]) == '_'.join(self.PATH_DATA.split(SEPARATOR)[-1].split('_')[:2])): error_str = 'Annotations ' '_'.join(self.PATH_ANNOTATIONS.split(SEPARATOR)[-1].split('_')[:2]) + ' do not match ' + \ '_'.join(self.PATH_DATA.split(SEPARATOR)[-1].split('_')[:2]) + ' data' raise Exception(error_str) self.annot_pd = self.__META_ANNOTATION_create() def __META_ANNOTATION_create(self): def get_FID(x): return x['path'].split(SEPARATOR)[-1] def get_X_idx(x): temp = np.array(x['fid'].split('X')[-1].split('.')[0].split('_')) temp_array = np.array([], dtype=temp.dtype) for ele in temp: if len(ele) > 0: temp_array = np.append(temp_array, ele) return temp_array.astype(np.int16) def get_Y_idx(x): temp = np.array(x['fid'].split('X')[0].split('Y')[-1].split('_')) temp_array = np.array([], dtype=temp.dtype) for ele in temp: if len(ele) > 0: temp_array = np.append(temp_array, ele) return temp_array.astype(np.int16) annotations_svg = myF.get_files(self.PATH_ANNOTATIONS, ('svg', 'SVG')) annot_pd = pd.DataFrame(annotations_svg) annot_pd = annot_pd.rename(columns={0: "path"}) annot_pd['fid'] = annot_pd.apply(lambda x: get_FID(x), axis=1) annot_pd['Y_indexes'] = annot_pd.apply(lambda x: get_Y_idx(x), axis=1) annot_pd['X_indexes'] = annot_pd.apply(lambda x: get_X_idx(x), axis=1) return annot_pd class MELCSynthesiser(MELCTiler): def __init__(self, path_data, path_annotations): self.annot_pd = [] #super(MELCTiler, self).__init__(path_data) super(MELCSynthesiser, self).__init__(path_data, path_annotations) #MELCTiler.__init__(self, path_data, path_annotations) # take image of the background, initialise source files - annotations done by hand # employ what has already been done. self.background = self._get_background(self.phase_average) fid = open(join(path_annotations, 'meta.json'), 'r') self.annot_meta = json.loads(fid.read()) fid.close() if self.annot_meta['original_file'].split('_')[0] == 'pb': refImg_path = \ self.files_pd.loc[(self.files_pd['modality'] == 'phase') & (self.files_pd['type'] == 'bleach')][ 'path'].reset_index(drop='True')[0] else: refImg_path = \ self.files_pd.loc[(self.files_pd['modality'] == 'phase') & (self.files_pd['type'] == 'source')][ 'path'].reset_index(drop='True')[0] ## TODO IMPLEMENT POSSIBILITY FOR PHASE_AVERAGE DATA refImg_path = refImg_path.split(SEPARATOR) refImg_path[-1] = self.annot_meta['original_file'] refImg_path = SEPARATOR.join(refImg_path) refImg_whole = cv2.imread(refImg_path, 2) self.refImg_whole = refImg_whole cell_list = [] cell_dict = { 'image': np.array([]), 'contour': np.array([]) } frame = 25 for k in range(self.annot_pd.__len__()): AnnotObj = SVGAnnot(self.annot_pd['path'][k]) annotations = AnnotObj.get_contours() temp = self.annot_pd['path'][k].split(SEPARATOR)[-1].split('.')[0].split('_') idx1_IMG = np.array([int(temp[3]), int(temp[4])]) idx2_IMG = np.array([int(temp[-2]), int(temp[-1])]) idx1_IMG = idx1_IMG + self.annot_meta['idx1'] idx2_IMG = idx2_IMG + self.annot_meta['idx2'] refImg = refImg_whole[idx1_IMG[0]:idx1_IMG[1], idx2_IMG[0]:idx2_IMG[1]] for annot in annotations: if len(annot > 0):# bcs there may be faulty annotation, just one click idx1 = np.array([annot[:, 0, 1].min() - frame, annot[:, 0, 1].max() + frame]) idx2 = np.array([annot[:, 0, 0].min() - frame, annot[:, 0, 0].max() + frame]) if idx1[0] > frame and idx2[0] > frame \ and idx1[1] < refImg.shape[1] - 1 - frame and idx2[1] < refImg.shape[1] - frame - 1: idx1[idx1 < 0] = 0 idx2[idx2 < 0] = 0 idx1[idx1 >= refImg.shape[0]] = refImg.shape[0] - 1 idx2[idx2 >= refImg.shape[1]] = refImg.shape[1] - 1 annotImg = np.zeros(refImg.shape, dtype=np.uint8) annotImg = cv2.drawContours(annotImg, [annot], -1, 255, -1) temp_dict = deepcopy(cell_dict) temp_dict['image'] = refImg[idx1[0]:idx1[1], idx2[0]:idx2[1]] #temp_dict['mask'] = annotImg[idx1[0]:idx1[1], idx2[0]:idx2[1]] temp_dict['contour'] = annot temp_dict['contour'][:, 0, 0] = temp_dict['contour'][:, 0, 0] - idx2[0] temp_dict['contour'][:, 0, 1] = temp_dict['contour'][:, 0, 1] - idx1[0] #temp_dict['image'] = refImg #temp_dict['mask'] = annotImg cell_list.append(temp_dict) self.cell_list = cell_list self.CellAugmenter = CellObjectAugmenter() ## WORKS SO FAR TO HERE @classmethod def _extend(cls, x, extend): temp = np.array([]) extend = int(extend) temp = np.append(temp, x[0, :].flatten()) temp = np.append(temp, x[-1, :].flatten()) temp = np.append(temp, x[:, 0].flatten()) temp = np.append(temp, x[:, -1].flatten()) y = np.zeros((x.shape[0] + 2 * extend, x.shape[1] + 2 * extend)) y[extend:-extend, extend:-extend] = x return y @classmethod def _get_blurring_mask(self, size, std): winY = signal.gaussian(size[0], std) tempY = np.zeros((size[0], 1)) tempY[:, 0] = winY[:] tempY = np.repeat(tempY, size[1], axis=1) winX = signal.gaussian(size[1], std) tempX = np.zeros((1, size[1])) tempX[0, :] = winX[:] tempX = np.repeat(tempX, size[0], axis=0) win = tempX * tempY win = win / win.sum() return win def _get_random_artificial_cell(self): temp = self._get_random_cell() img = temp['image'] contour = temp['contour'] img, contour = self.CellAugmenter.get_random_transform(img, [contour]) img, contour = self.CellAugmenter.get_random_resize(img, contour) cntr2D = np.zeros(img.shape, dtype=np.uint8) mask = cv2.drawContours(cntr2D, contour, -1, 255, -1) halo_mask = cv2.dilate(mask, np.ones((3, 3), dtype=np.uint8), iterations=2).astype(np.uint16) halo_mask = halo_mask - mask halo_max_value = img[halo_mask == 255].max() img_base_value = img[halo_mask + mask > 0].min() img = img - img_base_value synthImg = np.zeros(img.shape) synthImg[mask == 255] = halo_max_value synthImg[halo_mask == 255] = img[halo_mask == 255] win = self._get_blurring_mask((11, 11), 100) synthImg = signal.convolve2d(self._extend(synthImg, 5), win, 'valid') #figure() #imshow(synthImg, cmap='gray') #figure(999) #plot(synthImg[:, 35]) win = self._get_blurring_mask((7, 7), 10) for k in range(2): synthImg[mask == 255] = halo_max_value synthImg[halo_mask == 255] = img[halo_mask == 255] #figure() #imshow(synthImg, cmap='gray') #figure(9999) #plot(synthImg[:, 35]) synthImg = signal.convolve2d(self._extend(synthImg, 3), win, 'valid') #figure() #imshow(synthImg, cmap='gray') #figure(9999) #plot(synthImg[:, 35]) win = self._get_blurring_mask((3, 3), 3) for k in range(2): synthImg[mask == 255] = halo_max_value synthImg[halo_mask == 255] = img[halo_mask == 255] #figure() #imshow(synthImg, cmap='gray') #figure(99999) #plot(synthImg[:, 35]) synthImg = signal.convolve2d(self._extend(synthImg, 1), win, 'valid') #figure() #imshow(synthImg, cmap='gray') #figure(99999) #plot(synthImg[:, 35]) synthImg[mask+halo_mask > 0] = img[mask+halo_mask > 0] win = self._get_blurring_mask((3, 3), 0.8) synthImg = signal.convolve2d(self._extend(synthImg, 1), win, 'valid') # synthImg = synthImg + img_base_value return synthImg, contour def _get_random_cell(self): return self.cell_list[randint(self.cell_list.__len__()-1)] def _get_random_background(self, size_tuple): s1 = size_tuple[0] s2 = size_tuple[1] beg0 = np.random.randint(100, self.background.shape[0] - 100 - s1) beg1 = np.random.randint(100, self.background.shape[1] - 100 - s2) return self.background[beg0:beg0 + s1, beg1:beg1 + s2] @classmethod def _get_background(cls, phase_contrast): # suppression background = deepcopy(phase_contrast).astype(np.float32) threshold_value = 30. background_value = np.median(background) * 0.96 #figure() #plot(self.phase_average[:, 1000]) #plot(np.ones(2000) + background_value) #figure() #imshow(self.background, cmap='gray') for k in range(5): temp_img = background.copy() - background_value temp1 = np.zeros(background.shape) temp2 = np.zeros(background.shape) temp1[temp_img > threshold_value] = 1 temp2[temp_img < -2*threshold_value] = 1 background[temp1 == 1] = background[temp1 == 1] - background_value background[temp1 == 1] = background[temp1 == 1] / 2 + background_value background[temp2 == 1] = background[temp2 == 1] - background_value background[temp2 == 1] = 2*background[temp2 == 1] / 3 + background_value return background #figure() #plot(self.phase_average[:, 1000]) #plot(self.background[:, 1000]) #plot(np.zeros(2000) + background_value) #plot(np.zeros(2000) + threshold_value + background_value) #plot(np.zeros(2000) - threshold_value + background_value) #figure() #temp = self.background.copy() #temp[-1, -1] = self.phase_average.max() #temp[0, 0] = self.phase_average.min() #imshow(temp, cmap='gray') def generate_synthetic_image(self, size_tuple): step_px = 40 border_px = 25 # 30 max_shift_px = 20 probability_of_cell_placement = np.random.rand() * 0.2 + 0.7 probability_of_cell_placement = 1 background_multiply_ratio = np.random.rand()*0.2+0.9 annotations = list() Y = np.zeros(size_tuple) Y_background = self._get_random_background(size_tuple) * background_multiply_ratio Y_nobackground = np.zeros(Y.shape) Y_masks = np.zeros(Y.shape) grid1 = np.arange(max_shift_px + border_px, Y.shape[0] - border_px - max_shift_px, step_px).round().astype(np.int32) grid2 = np.arange(max_shift_px + border_px, Y.shape[0] - border_px - max_shift_px, step_px).round().astype(np.int32) cntr = 0 for k1 in grid1: for k2 in grid2: luck = np.random.rand() if luck < probability_of_cell_placement: cntr += 1 global_position_center_1 = k1 global_position_center_2 = k2 shift_1 = np.random.randint(-max_shift_px, +max_shift_px, 1)[0] shift_2 = np.random.randint(-max_shift_px, +max_shift_px, 1)[0] global_position_center_1 += shift_1 global_position_center_2 += shift_2 cell_image, annotation_contour = self._get_random_artificial_cell() if cell_image.shape[0] % 2 == 0: temp_cell_image = np.zeros((cell_image.shape[0] + 1, cell_image.shape[1])) temp_cell_image[:-1, :] = cell_image cell_image = temp_cell_image if cell_image.shape[1] % 2 == 0: temp_cell_image = np.zeros((cell_image.shape[0], cell_image.shape[1] + 1)) temp_cell_image[:, :-1] = cell_image cell_image = temp_cell_image cell_center = np.array( [ np.floor((annotation_contour[0][:, 0, 1].max() + annotation_contour[0][:, 0, 1].min()) / 2), np.floor((annotation_contour[0][:, 0, 0].max() + annotation_contour[0][:, 0, 0].min()) / 2) ] ) annotation_mask = np.zeros(cell_image.shape, dtype=np.uint8) annotation_mask = cv2.drawContours(annotation_mask, annotation_contour, -1, 255, -1) contour_to_img = deepcopy(annotation_contour[0]) contour_to_img[:, 0, 0] = contour_to_img[:, 0, 0] - cell_center[1] + global_position_center_2 contour_to_img[:, 0, 1] = contour_to_img[:, 0, 1] - cell_center[0] + global_position_center_1 temp_big_mask = np.zeros(Y.shape) temp_big_mask = cv2.drawContours(temp_big_mask, [contour_to_img], -1, 255, -1) temp_big_img =
np.zeros(Y.shape)
numpy.zeros
''' desisim.quickcat ================ Code for quickly generating an output zcatalog given fiber assignment tiles, a truth catalog, and optionally a previous zcatalog. ''' from __future__ import absolute_import, division, print_function import os import yaml from collections import Counter from pkg_resources import resource_filename from time import asctime import numpy as np from astropy.io import fits from astropy.table import Table, Column, vstack import sys import scipy.special as sp import desisim from desisim.targets import get_simtype import astropy.constants c = astropy.constants.c.to('km/s').value from desitarget.targetmask import desi_mask, bgs_mask, mws_mask from desiutil.log import get_logger log = get_logger() #- redshift errors, zwarn, cata fail rate fractions from #- /project/projectdirs/desi/datachallenge/redwood/spectro/redux/redwood/ #- sigmav = c sigmaz / (1+z) _sigma_v = { # 'ELG': 38.03, # 'LRG': 67.38, 'BGS': 37.70, # 'QSO': 182.16, 'STAR': 51.51, 'WD':54.35, 'SKY': 9999, #- meaningless 'UNKNOWN': 9999, #- meaningless } _zwarn_fraction = { # 'ELG': 0.087, # 'LRG': 0.007, # 'QSO': 0.020, 'BGS': 0.024, 'STAR': 0.345, 'WD':0.094, 'SKY': 1.0, 'UNKNOWN': 1.0, } _cata_fail_fraction = { # 'ELG': 0.020, # 'LRG': 0.002, # 'QSO': 0.012, 'BGS': 0.003, 'STAR': 0.050, 'WD':0.0, 'SKY': 0., 'UNKNOWN': 0., } def get_zeff_obs(simtype, obsconditions): ''' ''' if(simtype=='LRG'): p_v = [1.0, 0.15, -0.5] p_w = [1.0, 0.4, 0.0] p_x = [1.0, 0.06, 0.05] p_y = [1.0, 0.0, 0.08] p_z = [1.0, 0.0, 0.0] sigma_r = 0.02 elif(simtype=='QSO'): p_v = [1.0, -0.2, 0.3] p_w = [1.0, -0.5, 0.6] p_x = [1.0, -0.1, -0.075] p_y = [1.0, -0.08, -0.04] p_z = [1.0, 0.0, 0.0] sigma_r = 0.05 elif(simtype=='ELG'): p_v = [1.0, -0.1, -0.2] p_w = [1.0, 0.25, -0.75] p_x = [1.0, 0.0, 0.05] p_y = [1.0, 0.2, 0.1] p_z = [1.0, -10.0, 300.0] sigma_r = 0.075 else: log.warning('No model for how observing conditions impact {} redshift efficiency'.format(simtype)) return np.ones(len(obsconditions)) ncond = len(np.atleast_1d(obsconditions['AIRMASS'])) # airmass v = obsconditions['AIRMASS'] - np.mean(obsconditions['AIRMASS']) pv = p_v[0] + p_v[1] * v + p_v[2] * (v**2. - np.mean(v**2)) # ebmv if 'EBMV' in obsconditions : w = obsconditions['EBMV'] - np.mean(obsconditions['EBMV']) pw = p_w[0] + p_w[1] * w + p_w[2] * (w**2 - np.mean(w**2)) else : pw = np.ones(ncond) # seeing x = obsconditions['SEEING'] - np.mean(obsconditions['SEEING']) px = p_x[0] + p_x[1]*x + p_x[2] * (x**2 - np.mean(x**2)) # transparency if 'LINTRANS' in obsconditions : y = obsconditions['LINTRANS'] - np.mean(obsconditions['LINTRANS']) py = p_y[0] + p_y[1]*y + p_y[2] * (y**2 - np.mean(y**2)) else : py = np.ones(ncond) # moon illumination fraction z = obsconditions['MOONFRAC'] - np.mean(obsconditions['MOONFRAC']) pz = p_z[0] + p_z[1]*z + p_z[2] * (z**2 - np.mean(z**2)) #- if moon is down phase doesn't matter pz = np.ones(ncond) pz[obsconditions['MOONALT'] < 0] = 1.0 pr = 1.0 + np.random.normal(size=ncond, scale=sigma_r) #- this correction factor can be greater than 1, but not less than 0 pobs = (pv * pw * px * py * pz * pr).clip(min=0.0) return pobs def get_redshift_efficiency(simtype, targets, truth, targets_in_tile, obsconditions, params, ignore_obscondition=False): """ Simple model to get the redshift effiency from the observational conditions or observed magnitudes+redshuft Args: simtype: ELG, LRG, QSO, MWS, BGS targets: target catalog table; currently used only for TARGETID truth: truth table with OIIFLUX, TRUEZ targets_in_tile: dictionary. Keys correspond to tileids, its values are the arrays of targetids observed in that tile. obsconditions: table observing conditions with columns 'TILEID': array of tile IDs 'AIRMASS': array of airmass values on a tile 'EBMV': array of E(B-V) values on a tile 'LINTRANS': array of atmospheric transparency during spectro obs; floats [0-1] 'MOONFRAC': array of moonfraction values on a tile. 'SEEING': array of FWHM seeing during spectroscopic observation on a tile. parameter_filename: yaml file with quickcat parameters ignore_obscondition: if True, no variation of efficiency with obs. conditions (adjustment of exposure time should correct for mean change of S/N) Returns: tuple of arrays (observed, p) both with same length as targets observed: boolean array of whether the target was observed in these tiles p: probability to get this redshift right """ targetid = targets['TARGETID'] n = len(targetid) try: if 'DECAM_FLUX' in targets.dtype.names : true_gflux = targets['DECAM_FLUX'][:, 1] true_rflux = targets['DECAM_FLUX'][:, 2] else: true_gflux = targets['FLUX_G'] true_rflux = targets['FLUX_R'] except: raise Exception('Missing photometry needed to estimate redshift efficiency!') a_small_flux=1e-40 true_gflux[true_gflux<a_small_flux]=a_small_flux true_rflux[true_rflux<a_small_flux]=a_small_flux if (obsconditions is None) or ('OIIFLUX' not in truth.dtype.names): raise Exception('Missing obsconditions and flux information to estimate redshift efficiency') if (simtype == 'ELG'): # Read the model OII flux threshold (FDR fig 7.12 modified to fit redmonster efficiency on OAK) # filename = resource_filename('desisim', 'data/quickcat_elg_oii_flux_threshold.txt') # Read the model OII flux threshold (FDR fig 7.12) filename = resource_filename('desisim', 'data/elg_oii_flux_threshold_fdr.txt') fdr_z, modified_fdr_oii_flux_threshold = np.loadtxt(filename, unpack=True) # Compute OII flux thresholds for truez oii_flux_limit = np.interp(truth['TRUEZ'],fdr_z,modified_fdr_oii_flux_threshold) oii_flux_limit[oii_flux_limit<1e-20]=1e-20 # efficiency is modeled as a function of flux_OII/f_OII_threshold(z) and an arbitrary sigma_fudge snr_in_lines = params["ELG"]["EFFICIENCY"]["SNR_LINES_SCALE"]*7*truth['OIIFLUX']/oii_flux_limit snr_in_continuum = params["ELG"]["EFFICIENCY"]["SNR_CONTINUUM_SCALE"]*true_rflux snr_tot =
np.sqrt(snr_in_lines**2+snr_in_continuum**2)
numpy.sqrt
import datetime import os import tempfile import numpy as np import scipy.stats as st import xarray as xr from wildfire.data import goes_level_1 def test_goes_band(goes_level_1_mesoscale): actual = goes_level_1.GoesBand(dataset=goes_level_1_mesoscale) assert actual.region == "M1" assert actual.satellite == "G16" np.testing.assert_almost_equal(actual.band_wavelength_micrometers, 0.47, decimal=2) assert actual.scan_time_utc == datetime.datetime(2020, 1, 1, 0, 1, 26, 200000) assert actual.band_id == 1 assert actual.parse().equals(actual.reflectance_factor) assert np.isnan(actual.reflectance_factor.data).sum() == 0 assert ( np.isnan(actual.brightness_temperature.data).sum() == actual.dataset.Rad.data.size ) np.testing.assert_array_equal( actual.normalize(), st.zscore(actual.reflectance_factor, axis=None) ) np.testing.assert_array_equal( actual.normalize(use_radiance=True), st.zscore(actual.dataset.Rad, axis=None), ) with tempfile.TemporaryDirectory() as temp_directory: filepath = actual.to_netcdf(directory=temp_directory) assert os.path.exists(filepath) assert isinstance(xr.open_dataset(filepath), xr.core.dataset.Dataset) def test_reflective_band(goes_level_1_mesoscale): actual = goes_level_1.GoesBand(dataset=goes_level_1_mesoscale) assert actual.parse().equals(actual.reflectance_factor) assert np.isnan(actual.reflectance_factor.data).sum() == 0 np.testing.assert_array_equal( actual.normalize(), st.zscore(actual.reflectance_factor, axis=None) ) def test_emissive_band(goes_level_1_channel_7): actual = goes_level_1.GoesBand(dataset=goes_level_1_channel_7) assert actual.parse().equals(actual.brightness_temperature) assert
np.isnan(actual.brightness_temperature.data)
numpy.isnan
import time from numpy.linalg import norm import numpy as np from multiprocessing import Process, Manager, Lock, Pool from ctypes import c_int from itertools import product import pandas as pd Ntotlock = Lock() class Scan: def __init__(self, likelihood, par_min, par_max, N_iters): self.likelihood = likelihood if isinstance(par_min, float) and isinstance(par_max, float): self.Npars = 1 self.par_min = [par_min,] self.par_max = [par_max,] elif len(par_min) == len(par_max): self.Npars = len(par_min) self.par_min = par_min self.par_max = par_max else: raise Exception("The length of the limits of the parameter doesn't match!") self.N_iters = N_iters self.points = [] self.lh_list = [] self.Ntot = 0 self.mp = False def run(self, *args): raise NotImplementedError("You have to define the scan") def run_time(self, *args): self.start = time.time() self.run(*args) self.end = time.time() print("Running time: " + str(self.end-self.start) + 's') def increasecounter(self, Ntot): if self.mp: with Ntotlock: self.Ntot.value += Ntot else: self.Ntot += Ntot def run_mp(self, cores, *args): self.mp = True with Manager() as manager: self.points = manager.list(self.points) self.lh_list = manager.list(self.lh_list) self.Ntot = manager.Value(c_int, self.Ntot) processes = [] for i in range(0, cores): p = Process(target = self.run, args = args) p.start() np.random.seed(int(p.pid + time.time())) #We have to reseed each process, or else they will produce the same random numbers processes.append(p) for p in processes: p.join() self.points = list(self.points) self.lh_list = list(self.lh_list) self.Ntot = int(self.Ntot.value) self.mp = False def run_mp_time(self, cores): self.start = time.time() self.run_mp(cores) self.end = time.time() print("Running time: " + str(self.end-self.start) + 's') def clear(self): self.points = [] self.lh_list = [] self.Ntot = 0 def get_points(self): return self.points def get_lh_list(self, index=None): if index == None: return self.lh_list else: s = [] for i in range(0, len(self.lh_list)): s.append(self.lh_list[i][index]) return s def get_point_series(self, coord): s = [] for i in range(0, len(self.points)): s.append(self.points[i][coord]) return s def interpolate(self, point): num = 0 den = 0 for i in range(0, len(self.points)): d = norm(np.array(point) - np.array(self.points[i])) if d == 0: return self.lh_list[i] else: num += self.lh_list[i]/d**4 den += 1/d**4 return num/den def write(self, fout, mode='wt'): with open(fout, mode) as f: for p, l in zip(self.points, self.lh_list): for i in range(0, self.Npars): f.write(str(p[i])+'\t') f.write(str(l)+'\n') def save_csv(self, fout): df_points = pd.DataFrame(self.points, columns=['x','y']) df_lh = pd.DataFrame(self.lh_list) df_total = pd.concat([df_points, df_lh], axis=1, join='outer') df_total.to_csv(fout, sep='\t', index=False) def inthebox(self, point): for p in range(0, self.Npars): if point[p] < self.par_min[p]: return False if point[p] > self.par_max[p]: return False return True def acceptance(self): return len(self.points)/self.Ntot def bestpoint(self): return self.points[np.argmax(self.lh_list)] def expectedvalue(self, func, *args): lhmax =
np.max(self.lh_list)
numpy.max
from __future__ import division from __future__ import print_function import panoramasdk import cv2 import numpy as np import boto3 # Global Variables HEIGHT = 512 WIDTH = 512 MODEL = 'pikachu' class PikachuDetection(panoramasdk.base): def interface(self): return { "parameters": ( ("float", "threshold", "Detection threshold", 0.50), ("model", "pokemon_detection", "Model for detecting pokemon", MODEL), ("int", "batch_size", "Model batch size", 1), ("float", "pokemon_index", "pokemon index based on dataset used", 0), ), "inputs": ( ("media[]", "video_in", "Camera input stream"), ), "outputs": ( ("media[video_in]", "video_out", "Camera output stream"), ) } def init(self, parameters, inputs, outputs): try: # Frame Number Initialization self.frame_num = 0 # Index for pokemon from parameters self.index = parameters.pokemon_index # Set threshold for model from parameters self.threshold = parameters.threshold # set number of pokemon self.number_pokemon = 0 # Load model from the specified directory. print("loading the model...") self.model = panoramasdk.model() self.model.open(parameters.pokemon_detection, 1) print("model loaded") # Create input and output arrays. class_info = self.model.get_output(0) prob_info = self.model.get_output(1) rect_info = self.model.get_output(2) self.class_array = np.empty(class_info.get_dims(), dtype=class_info.get_type()) self.prob_array = np.empty(prob_info.get_dims(), dtype=prob_info.get_type()) self.rect_array = np.empty(rect_info.get_dims(), dtype=rect_info.get_type()) return True except Exception as e: print("Exception: {}".format(e)) return False def preprocess(self, img): resized = cv2.resize(img, (HEIGHT, WIDTH)) mean = [0.485, 0.456, 0.406] # RGB std = [0.229, 0.224, 0.225] # RGB img = resized.astype(np.float32) / 255. # converting array of ints to floats img_a = img[:, :, 0] img_b = img[:, :, 1] img_c = img[:, :, 2] # Extracting single channels from 3 channel image # The above code could also be replaced with cv2.split(img) << which will return 3 numpy arrays (using opencv) # normalizing per channel data: img_a = (img_a - mean[0]) / std[0] img_b = (img_b - mean[1]) / std[1] img_c = (img_c - mean[2]) / std[2] # putting the 3 channels back together: x1 = [[[], [], []]] x1[0][0] = img_a x1[0][1] = img_b x1[0][2] = img_c # x1 = mx.nd.array(np.asarray(x1)) x1 = np.asarray(x1) return x1 def get_number_pokemon(self, class_data, prob_data): # get indices of people detections in class data pokemon_indices = [i for i in range(len(class_data)) if int(class_data[i]) == self.index] # use these indices to filter out anything that is less than 95% threshold from prob_data prob_pokemon_indices = [i for i in pokemon_indices if prob_data[i] >= self.threshold] return prob_pokemon_indices def entry(self, inputs, outputs): self.frame_num += 1 for i in range(len(inputs.video_in)): stream = inputs.video_in[i] pokemon_image = stream.image stream.add_label('Number of Pikachu : {}'.format(self.number_pokemon), 0.6, 0.05) x1 = self.preprocess(pokemon_image) # Do inference on the new frame. self.model.batch(0, x1) self.model.flush() # Get the results. resultBatchSet = self.model.get_result() class_batch = resultBatchSet.get(0) prob_batch = resultBatchSet.get(1) rect_batch = resultBatchSet.get(2) class_batch.get(0, self.class_array) prob_batch.get(0, self.prob_array) rect_batch.get(0, self.rect_array) class_data = self.class_array[0] prob_data = self.prob_array[0] rect_data = self.rect_array[0] # Get Indices of classes that correspond to Pokemon pokemon_indices = self.get_number_pokemon(class_data, prob_data) print('pokemon indices is {}'.format(pokemon_indices)) try: self.number_pokemon = len(pokemon_indices) except: self.number_pokemon = 0 # Draw Bounding Boxes on HDMI Output if self.number_pokemon > 0: for index in pokemon_indices: left = np.clip(rect_data[index][0] / np.float(HEIGHT), 0, 1) top = np.clip(rect_data[index][1] /
np.float(HEIGHT)
numpy.float
import copy as python_copy import itertools import uuid from pprint import pprint from typing import Any, Dict, List, Optional, Tuple, Union import networkx as nx import numpy as np from numpy import cos, float64, int64, mod, ndarray, pi, sin from omegaconf import OmegaConf from omegaconf.listconfig import ListConfig from phidl.device_layout import Device, DeviceReference, Label, _parse_layer from pp.compare_cells import hash_cells from pp.config import conf from pp.get_netlist import get_netlist from pp.port import Port, select_ports def copy(D): """returns a copy of a Component.""" D_copy = Component(name=D._internal_name) D_copy.info = python_copy.deepcopy(D.info) for ref in D.references: new_ref = ComponentReference( ref.parent, origin=ref.origin, rotation=ref.rotation, magnification=ref.magnification, x_reflection=ref.x_reflection, ) new_ref.owner = D_copy D_copy.add(new_ref) for alias_name, alias_ref in D.aliases.items(): if alias_ref == ref: D_copy.aliases[alias_name] = new_ref for port in D.ports.values(): D_copy.add_port(port=port) for poly in D.polygons: D_copy.add_polygon(poly) for label in D.labels: D_copy.add_label( text=label.text, position=label.position, layer=(label.layer, label.texttype), ) return D_copy class SizeInfo: def __init__(self, bbox: ndarray) -> None: self.west = bbox[0, 0] self.east = bbox[1, 0] self.south = bbox[0, 1] self.north = bbox[1, 1] self.width = self.east - self.west self.height = self.north - self.south xc = 0.5 * (self.east + self.west) yc = 0.5 * (self.north + self.south) self.sw = np.array([self.west, self.south]) self.se = np.array([self.east, self.south]) self.nw = np.array([self.west, self.north]) self.ne = np.array([self.east, self.north]) self.cw = np.array([self.west, yc]) self.ce = np.array([self.east, yc]) self.nc =
np.array([xc, self.north])
numpy.array
from __future__ import division import numpy as np import scipy import scipy.stats import scipy.fftpack import scipy.optimize import stingray.lightcurve as lightcurve import stingray.utils as utils from stingray.exceptions import StingrayError from stingray.gti import cross_two_gtis, bin_intervals_from_gtis, check_gtis __all__ = ["Crossspectrum", "AveragedCrossspectrum", "coherence"] def coherence(lc1, lc2): """ Estimate coherence function of two light curves. Parameters ---------- lc1: lightcurve.Lightcurve object The first light curve data for the channel of interest. lc2: lightcurve.Lightcurve object The light curve data for reference band Returns ------- coh : np.ndarray Coherence function """ if not isinstance(lc1, lightcurve.Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, lightcurve.Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") cs = Crossspectrum(lc1, lc2, norm='none') return cs.coherence() class Crossspectrum(object): def __init__(self, lc1=None, lc2=None, norm='none', gti=None): """ Make a cross spectrum from a (binned) light curve. You can also make an empty Crossspectrum object to populate with your own fourier-transformed data (this can sometimes be useful when making binned periodograms). Parameters ---------- lc1: lightcurve.Lightcurve object, optional, default None The first light curve data for the channel/band of interest. lc2: lightcurve.Lightcurve object, optional, default None The light curve data for the reference band. norm: {'frac', 'abs', 'leahy', 'none'}, default 'none' The normalization of the (real part of the) cross spectrum. Other Parameters ---------------- gti: 2-d float array [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care! Attributes ---------- freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples power: numpy.ndarray The array of cross spectra (complex numbers) df: float The frequency resolution m: int The number of averaged cross-spectra amplitudes in each bin. n: int The number of data points/time bins in one segment of the light curves. nphots1: float The total number of photons in light curve 1 nphots2: float The total number of photons in light curve 2 """ if isinstance(norm, str) is False: raise TypeError("norm must be a string") if norm.lower() not in ["frac", "abs", "leahy", "none"]: raise ValueError("norm must be 'frac', 'abs', 'leahy', or 'none'!") self.norm = norm.lower() # check if input data is a Lightcurve object, if not make one or # make an empty Crossspectrum object if lc1 == None or lc2 == None if lc1 is None or lc2 is None: if lc1 is not None or lc2 is not None: raise TypeError("You can't do a cross spectrum with just one " "light curve!") else: self.freq = None self.power = None self.df = None self.nphots1 = None self.nphots2 = None self.m = 1 self.n = None return self.gti = gti self.lc1 = lc1 self.lc2 = lc2 self._make_crossspectrum(lc1, lc2) def _make_crossspectrum(self, lc1, lc2): # make sure the inputs work! if not isinstance(lc1, lightcurve.Lightcurve): raise TypeError("lc1 must be a lightcurve.Lightcurve object") if not isinstance(lc2, lightcurve.Lightcurve): raise TypeError("lc2 must be a lightcurve.Lightcurve object") # Then check that GTIs make sense if self.gti is None: self.gti = cross_two_gtis(lc1.gti, lc2.gti) check_gtis(self.gti) if self.gti.shape[0] != 1: raise TypeError("Non-averaged Cross Spectra need " "a single Good Time Interval") lc1 = lc1.split_by_gti()[0] lc2 = lc2.split_by_gti()[0] # total number of photons is the sum of the # counts in the light curve self.nphots1 = np.float64(np.sum(lc1.counts)) self.nphots2 = np.float64(np.sum(lc2.counts)) self.meancounts1 = np.mean(lc1.counts) self.meancounts2 = np.mean(lc2.counts) # the number of data points in the light curve if lc1.n != lc2.n: raise StingrayError("Light curves do not have same number " "of time bins per segment.") if lc1.dt != lc2.dt: raise StingrayError("Light curves do not have " "same time binning dt.") self.n = lc1.n # the frequency resolution self.df = 1.0/lc1.tseg # the number of averaged periodograms in the final output # This should *always* be 1 here self.m = 1 # make the actual Fourier transform and compute cross spectrum self.freq, self.unnorm_power = self._fourier_cross(lc1, lc2) # If co-spectrum is desired, normalize here. Otherwise, get raw back # with the imaginary part still intact. self.power = self._normalize_crossspectrum(self.unnorm_power, lc1.tseg) def _fourier_cross(self, lc1, lc2): """ Fourier transform the two light curves, then compute the cross spectrum. Computed as CS = lc1 x lc2* (where lc2 is the one that gets complex-conjugated) Parameters ---------- lc1: lightcurve.Lightcurve object One light curve to be Fourier transformed. Ths is the band of interest or channel of interest. lc2: lightcurve.Lightcurve object Another light curve to be Fourier transformed. This is the reference band. Returns ------- fr: numpy.ndarray The squared absolute value of the Fourier amplitudes """ fourier_1 = scipy.fftpack.fft(lc1.counts) # do Fourier transform 1 fourier_2 = scipy.fftpack.fft(lc2.counts) # do Fourier transform 2 freqs = scipy.fftpack.fftfreq(lc1.n, lc1.dt) cross = fourier_1[freqs > 0] * np.conj(fourier_2[freqs > 0]) return freqs[freqs > 0], cross def rebin(self, df, method="mean"): """ Rebin the cross spectrum to a new frequency resolution df. Parameters ---------- df: float The new frequency resolution Returns ------- bin_cs = Crossspectrum object The newly binned cross spectrum """ # rebin cross spectrum to new resolution binfreq, bincs, step_size = utils.rebin_data(self.freq, self.power, df, method=method) # make an empty cross spectrum object # note: syntax deliberate to work with subclass Powerspectrum bin_cs = self.__class__() # store the binned periodogram in the new object bin_cs.freq = binfreq bin_cs.power = bincs bin_cs.df = df bin_cs.n = self.n bin_cs.norm = self.norm bin_cs.nphots1 = self.nphots1 bin_cs.nphots2 = self.nphots2 bin_cs.m = int(step_size)*self.m return bin_cs def _normalize_crossspectrum(self, unnorm_power, tseg): """ Normalize the real part of the cross spectrum to Leahy, absolute rms^2, fractional rms^2 normalization, or not at all. Parameters ---------- unnorm_power: numpy.ndarray The unnormalized cross spectrum. tseg: int The length of the Fourier segment, in seconds. Returns ------- power: numpy.nd.array The normalized co-spectrum (real part of the cross spectrum). For 'none' normalization, imaginary part is returned as well. """ # The "effective" counst/bin is the geometrical mean of the counts/bin # of the two light curves log_nphots1 = np.log(self.nphots1) log_nphots2 = np.log(self.nphots2) actual_nphots = np.float64(np.sqrt(np.exp(log_nphots1 + log_nphots2))) actual_mean = np.sqrt(self.meancounts1 * self.meancounts2) assert actual_mean > 0.0, \ "Mean count rate is <= 0. Something went wrong." if self.norm.lower() == 'leahy': c = unnorm_power.real power = c * 2. / actual_nphots elif self.norm.lower() == 'frac': c = unnorm_power.real / np.float(self.n**2.) power = c * 2. * tseg / (actual_mean**2.0) elif self.norm.lower() == 'abs': c = unnorm_power.real / np.float(self.n**2.) power = c * (2. * tseg) elif self.norm.lower() == 'none': power = unnorm_power else: raise Exception("Normalization not recognized!") return power def rebin_log(self, f=0.01): """ Logarithmic rebin of the periodogram. The new frequency depends on the previous frequency modified by a factor f: dnu_j = dnu_{j-1}*(1+f) Parameters ---------- f: float, optional, default 0.01 parameter that steers the frequency resolution Returns ------- binfreq: numpy.ndarray the binned frequencies binpower: numpy.ndarray the binned powers nsamples: numpy.ndarray the samples of the original periodogram included in each frequency bin """ minfreq = self.freq[1] * 0.5 # frequency to start from maxfreq = self.freq[-1] # maximum frequency to end binfreq = [minfreq, minfreq + self.df] # first df = self.freq[1] # the frequency resolution of the first bin # until we reach the maximum frequency, increase the width of each # frequency bin by f while binfreq[-1] <= maxfreq: binfreq.append(binfreq[-1] + df*(1.0+f)) df = binfreq[-1] - binfreq[-2] # compute the mean of the powers that fall into each new frequency bin. # we cast to np.double due to scipy's bad handling of longdoubles binpower, bin_edges, binno = scipy.stats.binned_statistic( self.freq.astype(np.double), self.power.astype(np.double), statistic="mean", bins=binfreq) # compute the number of powers in each frequency bin nsamples = np.array([len(binno[np.where(binno == i)[0]]) for i in range(np.max(binno))]) # the frequency resolution df = np.diff(binfreq) # shift the lower bin edges to the middle of the bin and drop the # last right bin edge binfreq = binfreq[:-1] + df/2 return binfreq, binpower, nsamples def coherence(self): """ Compute Coherence function of the cross spectrum. Coherence is a Fourier frequency dependent measure of the linear correlation between time series measured simultaneously in two energy channels. Returns ------- coh : numpy.ndarray Coherence function References ---------- .. [1] http://iopscience.iop.org/article/10.1086/310430/pdf """ # this computes the averaged power spectrum, but using the # cross spectrum code to avoid circular imports ps1 = Crossspectrum(self.lc1, self.lc1) ps2 = Crossspectrum(self.lc2, self.lc2) return self.unnorm_power/(ps1.unnorm_power * ps2.unnorm_power) def _phase_lag(self): """Return the fourier phase lag of the cross spectrum.""" return np.angle(self.power) def time_lag(self): """ Calculate the fourier time lag of the cross spectrum. The time lag is calculate using the center of the frequency bins. """ if self.__class__ in [Crossspectrum, AveragedCrossspectrum]: ph_lag = self._phase_lag() return ph_lag / (2 * np.pi * self.freq) else: raise AttributeError("Object has no attribute named 'time_lag' !") class AveragedCrossspectrum(Crossspectrum): def __init__(self, lc1=None, lc2=None, segment_size=None, norm='none', gti=None): """ Make an averaged cross spectrum from a light curve by segmenting two light curves, Fourier-transforming each segment and then averaging the resulting cross spectra. Parameters ---------- lc1: lightcurve.Lightcurve object OR iterable of lightcurve.Lightcurve objects One light curve data to be Fourier-transformed. This is the band of interest or channel of interest. lc2: lightcurve.Lightcurve object OR iterable of lightcurve.Lightcurve objects Second light curve data to be Fourier-transformed. This is the reference band. segment_size: float The size of each segment to average. Note that if the total duration of each Lightcurve object in lc1 or lc2 is not an integer multiple of the segment_size, then any fraction left-over at the end of the time series will be lost. Otherwise you introduce artefacts. norm: {'frac', 'abs', 'leahy', 'none'}, default 'none' The normalization of the (real part of the) cross spectrum. Other Parameters ---------------- gti: 2-d float array [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care! Attributes ---------- freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples power: numpy.ndarray The array of cross spectra df: float The frequency resolution m: int The number of averaged cross spectra n: int The number of time bins per segment of light curve? nphots1: float The total number of photons in the first (interest) light curve nphots2: float The total number of photons in the second (reference) light curve gti: 2-d float array [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] -- Good Time intervals. They are calculated by taking the common GTI between the two light curves """ self.type = "crossspectrum" if segment_size is not None: if not np.isfinite(segment_size): raise ValueError("segment_size must be finite") self.segment_size = segment_size Crossspectrum.__init__(self, lc1, lc2, norm, gti=gti) return def _make_segment_spectrum(self, lc1, lc2, segment_size): # TODO: need to update this for making cross spectra. assert isinstance(lc1, lightcurve.Lightcurve) assert isinstance(lc2, lightcurve.Lightcurve) if lc1.dt != lc2.dt: raise ValueError("Light curves do not have same time binning dt.") if lc1.tseg != lc2.tseg: raise ValueError("Lightcurves do not have same tseg.") if self.gti is None: self.gti = cross_two_gtis(lc1.gti, lc2.gti) check_gtis(self.gti) cs_all = [] nphots1_all = [] nphots2_all = [] start_inds, end_inds = \ bin_intervals_from_gtis(self.gti, segment_size, lc1.time) for start_ind, end_ind in zip(start_inds, end_inds): time_1 = lc1.time[start_ind:end_ind] counts_1 = lc1.counts[start_ind:end_ind] time_2 = lc2.time[start_ind:end_ind] counts_2 = lc2.counts[start_ind:end_ind] lc1_seg = lightcurve.Lightcurve(time_1, counts_1) lc2_seg = lightcurve.Lightcurve(time_2, counts_2) cs_seg = Crossspectrum(lc1_seg, lc2_seg, norm=self.norm) cs_all.append(cs_seg) nphots1_all.append(np.sum(lc1_seg.counts)) nphots2_all.append(
np.sum(lc2_seg.counts)
numpy.sum
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Conditional Random Field layer.""" import itertools import os import math import tempfile import pytest import numpy as np import tensorflow as tf from tensorflow_addons.layers.crf import CRF from tensorflow_addons.text.crf import crf_log_likelihood from tensorflow_addons.utils import test_utils def get_test_data(): x = np.array( [ [ # O B-X I-X B-Y I-Y [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0, 0.0], ], [ # O B-X I-X B-Y I-Y [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0], ], ] ) y = np.array([[1, 2, 2], [1, 1, 1]]) # B-X I-X I-X # B-X B-X B-X return x, y def get_test_data_extended(): logits = np.array( [ [[0, 0, 0.5, 0.5, 0.2], [0, 0, 0.3, 0.3, 0.1], [0, 0, 0.9, 10, 1]], [[0, 0, 0.2, 0.5, 0.2], [0, 0, 3, 0.3, 0.1], [0, 0, 0.9, 1, 1]], ] ) tags = np.array([[2, 3, 4], [3, 2, 2]]) transitions = np.array( [ [0.1, 0.2, 0.3, 0.4, 0.5], [0.8, 0.3, 0.1, 0.7, 0.9], [-0.3, 2.1, -5.6, 3.4, 4.0], [0.2, 0.4, 0.6, -0.3, -0.4], [1.0, 1.0, 1.0, 1.0, 1.0], ] ) boundary_values = np.ones((5,)) crf_layer = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=tf.keras.initializers.Constant(transitions), use_boundary=True, boundary_initializer=tf.keras.initializers.Constant(boundary_values), name="crf_layer", ) return logits, tags, transitions, boundary_values, crf_layer @pytest.mark.usefixtures("run_with_mixed_precision_policy") def test_keras_model_inference(): logits, _, _, _, crf_layer = get_test_data_extended() input_tensor = tf.keras.layers.Input(shape=(3, 5)) decoded_sequence, _, _, _ = crf_layer(input_tensor) model = tf.keras.Model(input_tensor, decoded_sequence) model.predict(logits) model(logits).numpy() @pytest.mark.usefixtures("run_with_mixed_precision_policy") def test_unmasked_viterbi_decode(): x_np, y_np = get_test_data() transitions = np.ones([5, 5]) boundary_value = np.ones(5) layer = CRF( units=5, use_kernel=False, # disable kernel transform chain_initializer=tf.keras.initializers.Constant(transitions), use_boundary=True, boundary_initializer=tf.keras.initializers.Constant(boundary_value), ) decoded_sequence, _, _, _ = layer(x_np) decoded_sequence = decoded_sequence.numpy() np.testing.assert_equal(decoded_sequence, y_np) assert decoded_sequence.dtype == np.int32 def unpack_data(data): if len(data) == 2: return data[0], data[1], None elif len(data) == 3: return data else: raise TypeError("Expected data to be a tuple of size 2 or 3.") class ModelWithCRFLoss(tf.keras.Model): """Wrapper around the base model for custom training logic.""" def __init__(self, base_model): super().__init__() self.base_model = base_model def call(self, inputs): return self.base_model(inputs) def compute_loss(self, x, y, sample_weight, training=False): y_pred = self(x, training=training) _, potentials, sequence_length, chain_kernel = y_pred # we now add the CRF loss: crf_loss = -crf_log_likelihood(potentials, y, sequence_length, chain_kernel)[0] if sample_weight is not None: crf_loss = crf_loss * sample_weight return tf.reduce_mean(crf_loss), sum(self.losses) def train_step(self, data): x, y, sample_weight = unpack_data(data) with tf.GradientTape() as tape: crf_loss, internal_losses = self.compute_loss( x, y, sample_weight, training=True ) total_loss = crf_loss + internal_losses gradients = tape.gradient(total_loss, self.trainable_variables) self.optimizer.apply_gradients(zip(gradients, self.trainable_variables)) return {"crf_loss": crf_loss, "internal_losses": internal_losses} def test_step(self, data): x, y, sample_weight = unpack_data(data) crf_loss, internal_losses = self.compute_loss(x, y, sample_weight) return {"crf_loss_val": crf_loss, "internal_losses_val": internal_losses} @pytest.mark.usefixtures("run_with_mixed_precision_policy") def test_traing(): x_np, y_np = get_test_data() get_some_model(x_np, y_np) def get_some_model(x_np, y_np, sanity_check=True): x_input = tf.keras.layers.Input(shape=x_np.shape[1:]) crf_outputs = CRF(5, name="L")(x_input) base_model = tf.keras.Model(x_input, crf_outputs) model = ModelWithCRFLoss(base_model) model.compile("adam") if sanity_check: model.fit(x=x_np, y=y_np) model.evaluate(x_np, y_np) model.predict(x_np) return model @pytest.mark.usefixtures("run_with_mixed_precision_policy") def test_mask_right_padding(): x_np, y_np = get_test_data() mask = np.array([[1, 1, 1], [1, 1, 0]]) x = tf.keras.layers.Input(shape=x_np.shape[1:]) crf_layer_outputs = CRF(5)(x, mask=tf.constant(mask)) base_model = tf.keras.Model(x, crf_layer_outputs) model = ModelWithCRFLoss(base_model) # check shape inference model.compile("adam") old_weights = model.get_weights() model.fit(x_np, y_np) new_weights = model.get_weights() # we check that the weights were updated during the training phase. with pytest.raises(AssertionError): assert_all_equal(old_weights, new_weights) model.predict(x_np) @pytest.mark.usefixtures("run_with_mixed_precision_policy") def test_mask_left_padding(): x_np, y_np = get_test_data() mask =
np.array([[0, 1, 1], [1, 1, 1]])
numpy.array
from tkinter import * from tkinter import filedialog from PIL import Image, ImageTk from tkinter.ttk import Frame, Style import os, time, cv2 import numpy as np from scipy.ndimage.morphology import distance_transform_edt import tkinter.messagebox as mbox from our_func_cvpr18 import cly_our_func, our_func, build from cly_instance_property import miniCOCO, SBD from tqdm import tqdm import tensorflow as tf def get_next_anno_point(pred, gt, seq_points): fndist_map = distance_transform_edt(np.pad((gt == 1) & (pred == 0), ((1, 1), (1, 1)), 'constant'))[1:-1, 1:-1] fpdist_map = distance_transform_edt(np.pad((gt == 0) & (pred == 1), ((1, 1), (1, 1)), 'constant'))[1:-1, 1:-1] fndist_map[seq_points[:, 1], seq_points[:, 0]], fpdist_map[seq_points[:, 1], seq_points[:, 0]] = 0, 0 [usr_map, if_pos] = [fndist_map, 1] if fndist_map.max() > fpdist_map.max() else [fpdist_map, 0] [y_mlist, x_mlist] = np.where(usr_map == usr_map.max()) pt_next = (x_mlist[0], y_mlist[0], if_pos) return pt_next def get_next_anno_point_prob(pred, gt, seq_points): fndist_map = distance_transform_edt(
np.pad((gt == 1) & (pred == 0), ((1, 1), (1, 1)), 'constant')
numpy.pad
import argparse import csv import matplotlib import matplotlib.ticker as tck import matplotlib.pyplot as plt import numpy as np # Matplotlib export settings matplotlib.use('pgf') import matplotlib.pyplot as plt matplotlib.rcParams.update({ 'pgf.texsystem': 'pdflatex', 'font.size': 10, 'font.family': 'serif', # use serif/main font for text elements 'text.usetex': True, # use inline math for ticks 'pgf.rcfonts': False # don't setup fonts from rc parameters }) # Main function def main(args): C_zero = 7.5240e-03 * 1e-6 # Farads/km C_pos = 1.2027e-02 * 1e-6 # Farads/km G_zero = 2.0000e-08 # Mhos/km G_pos = 2.0000e-08 # Mhos/km length = 300 # km FREQ_INDEX = 0 R_ZERO_INDEX = 1 L_ZERO_INDEX = 2 R_POS_INDEX = 3 L_POS_INDEX = 4 MAGNITUDE_INDEX = 0 PHASE_INDEX = 1 # prepopulate data with a list of five empty lists data = [[] for i in range(5)] # Read in PSCAD .CSV data print('*** Opening assignment 4 CSV data file...') with open('data_assign04.csv') as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0 # Read in row data for row in csv_reader: if line_count == 0: print('Column names are: ' + ', '.join(row)) line_count += 1 else: data[FREQ_INDEX].append(float(row[0])) data[R_ZERO_INDEX].append(float(row[1])) # Ohms/km data[L_ZERO_INDEX].append(float(row[2]) * 1e-3) # Henries/km data[R_POS_INDEX].append(float(row[3])) # Ohms/km data[L_POS_INDEX].append(float(row[4]) * 1e-3) # Henries/km line_count += 1 # Figure out when break switched print('Processed ' + str(line_count) + ' lines.') num_data_points = len(data[FREQ_INDEX]) # Prepare values for Z(w) magnitude and phase impedance_zero = [[],[]] impedance_pos = [[],[]] for index in range(num_data_points): omega = 2*np.pi*data[FREQ_INDEX][index] impedance_zero_val = np.sqrt((data[R_ZERO_INDEX][index] + (1j*omega*data[L_ZERO_INDEX][index]))/(G_zero + (1j*omega*C_zero))) impedance_pos_val = np.sqrt((data[R_POS_INDEX][index] + (1j*omega*data[L_POS_INDEX][index])) /(G_pos + (1j*omega*C_pos))) # print("F: " + str(data[FREQ_INDEX][index])) # print("Omega: " + str(omega)) # print("R_0: " + str(data[R_ZERO_INDEX][index])) # print("L_0: " + str(data[L_ZERO_INDEX][index])) # print("C_0: " + str(C_zero)) # print("G_0: " + str(G_zero)) # print("R_+: " + str(data[R_POS_INDEX][index])) # print("L_+: " + str(data[L_POS_INDEX][index])) # print("C_+: " + str(C_pos)) # print("G_+: " + str(G_pos)) # print("Zc_0: " + str(impedance_zero_val)) # print("Zc_0 mag: " + str(np.absolute(impedance_zero_val))) # print("Zc_+: " + str(impedance_pos_val)) # print("Zc_+ mag: " + str(np.absolute(impedance_pos_val))) impedance_zero[MAGNITUDE_INDEX].append(
np.absolute(impedance_zero_val)
numpy.absolute
import numpy as np import scipy.io as sio import matplotlib.pyplot as plt from SpectrogramTools import * from CQT import * from NMF import * from NMFGPU import * from NMFJoint import * from SongAnalogies import * def testNMFJointSynthetic(): np.random.seed(100) N = 20 M = 100 K = 6 H = np.random.rand(K, M) W1 = np.random.rand(N, K) W2 = np.random.rand(N, K) X1 = W1.dot(H) X2 = W2.dot(H) lambdas = [0.01]*2 plotfn = lambda Xs, Us, Vs, VStar, errs: \ plotJointNMFwGT(Xs, Us, Vs, VStar, [W1, W2], [H.T, H.T], errs) res = doJointNMF([X1, X2], lambdas, K, tol = 0.01, Verbose = True, plotfn = plotfn) res['X1'] = X1 res['X2'] = X2 sio.savemat("JointNMF.mat", res) def testNMF1DConvSynthetic(): np.random.seed(100) N = 20 M = 40 K = 3 L = 80 T = 10 V = 0*np.ones((N, M)) V[5+np.arange(T), np.arange(T)] = 1 V[5+np.arange(T), 5+np.arange(T)] = 0.5 V[15-np.arange(T), 10+np.arange(T)] = 1 V[5+np.arange(T), 20+np.arange(T)] = 1 V[15-np.arange(T), 22+np.arange(T)] = 0.5 V[5+np.arange(T), 10+np.arange(T)] += 0.7 V *= 1000 #doNMF(V, K*T, L, plotfn=plotNMFSpectra) doNMF1DConv(V, K, T+5, L, plotfn=plotNMF1DConvSpectra) def testNMF2DConvSynthetic(): initParallelAlgorithms() np.random.seed(300) N = 20 M = 40 K = 2 L = 200 T = 10 F = 5 V = 0.1*np.ones((N, M)) V[5+np.arange(T), np.arange(T)] = 1 V[8+np.arange(T), 5+np.arange(T)] = 0.5 V[15-np.arange(T), 10+np.arange(T)] = 1 V[6+np.arange(T), 20+np.arange(T)] = 1 V[10-np.arange(T), 22+np.arange(T)] = 0.5 V[10+np.arange(T), 10+np.arange(T)] += 0.7 doNMF2DConv(V, K, T, F, L, doKL = True, plotfn=plotNMF2DConvSpectra) #doNMF1DConv(V, K, T, L, plotfn=plotNMF1DConvSpectra) def get2DSyntheticJointExample(): T = 10 F = 10 K = 3 M = 20 N = 60 W1 = np.zeros((T, M, K)) W2 = np.zeros((T, M, K)) #Pattern 1: A tall block in A that goes to a fat block in A' [J, I] = np.meshgrid(np.arange(2), 4+np.arange(5)) W1[J.flatten(), I.flatten(), 0] = 1 [J, I] = np.meshgrid(np.arange(5), 7+np.arange(2)) W2[J.flatten(), I.flatten(), 0] = 1 #Pattern 2: An antidiagonal line in A that goes to a diagonal line in A' W1[np.arange(7), 9-np.arange(7), 1] = 1 W2[np.arange(7), np.arange(7), 1] = 1 #Pattern 3: A square in A that goes into a circle in A' [J, I] = np.meshgrid(np.arange(5), 10+np.arange(5)) I = I.flatten() J = J.flatten() W1[0, np.arange(10), 2] = 1 W1[9, np.arange(10), 2] = 1 W1[np.arange(10), 0, 2] = 1 W1[np.arange(10), 10, 2] = 1 [J, I] = np.meshgrid(np.arange(T), np.arange(T)) I = I.flatten() J = J.flatten() idx = np.arange(I.size) idx = idx[
np.abs((I-5)**2 + (J-5)**2 - 4**2)
numpy.abs
import matplotlib matplotlib.rcParams = matplotlib.rc_params_from_file('../../matplotlibrc') import matplotlib.pyplot as plt import matplotlib.widgets as wg from mpl_toolkits.mplot3d import Axes3D import numpy as np from mayavi import mlab import solutions png_size = (1024, 768) def exp_plot(): x = np.linspace(-2, 3, 501) y = np.exp(x) plt.plot(x, y) plt.savefig("exp_plot.pdf") plt.clf() def statemachine(): x = np.linspace(1, 10, 10) y = np.random.rand(10, 10) plt.cla() for n in y: plt.plot(x, n) plt.savefig("statemachine.pdf") plt.clf() def subplots(): x = np.linspace(-np.pi, np.pi, 400) y1 = np.sin(x) y2 = np.cos(x) plt.subplot(211) plt.plot(x, y1) plt.subplot(212) plt.plot(x, y2) plt.savefig("subplots.pdf") plt.clf() def sinxsiny(): n = 401 x = np.linspace(-6, 6, n) y = np.linspace(-6, 6, n) X, Y = np.meshgrid(x, y) # returns a coordinate matrix given coordinate vectors. C = np.sin(X) * np.sin(Y) plt.pcolormesh(X, Y, C, edgecolors='face', shading='flat') plt.savefig("sinxsiny.png", size=png_size) plt.clf() def pcolor2(): R = np.linspace(0, 2, 401) I = R.copy() R, I = np.meshgrid(R, I) X = R + complex(0,1)*I f = np.poly1d([1, 2, -1, 3]) Y = np.absolute(f(X)) plt.pcolormesh(R, I, Y, edgecolors='face', shading='flat') plt.savefig('pcolor2.png', size=png_size) plt.clf() def three_d_plot(): fig = plt.figure() ax = fig.gca(projection='3d') x = np.linspace(-6, 6, 301) y = x.copy() X, Y = np.meshgrid(x, y) Z = np.sin(X)*np.sin(Y) ax.plot_surface(X, Y, Z) plt.savefig("3dplot.pdf") plt.clf() def interact(): ax = plt.subplot(111) plt.subplots_adjust(bottom=.25) t = np.arange(0, 1, .001) a0, f0 = 5, 3 s = a0*np.sin(2*np.pi*f0*t) l = plt.plot(t, s)[0] plt.axis([0, 1, -10, 10]) axfreq = plt.axes([.25, .05, .65, .03]) axamp = plt.axes([.25, .1, .65, .03]) sfreq = wg.Slider(axfreq, 'Freq', 0.1, 30.0, valinit=f0) samp = wg.Slider(axamp, 'Amp', 0.1, 10.0, valinit=a0) def update(val): amp = samp.val freq = sfreq.val l.set_ydata(amp*np.sin(2*np.pi*freq*t)) plt.draw() sfreq.on_changed(update) samp.on_changed(update) plt.savefig("interact.pdf") plt.clf() def plot3d(): num = np.pi/1000 pts =
np.arange(0, 2*np.pi + num, num)
numpy.arange
#!/usr/bin/env python # -*- coding: utf-8 -*- # tifffile.py # Copyright (c) 2008-2014, <NAME> # Copyright (c) 2008-2014, The Regents of the University of California # Produced at the Laboratory for Fluorescence Dynamics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the copyright holders nor the names of any # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """Read and write image data from and to TIFF files. Image and meta-data can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, NIH, ImageJ, MicroManager, FluoView, SEQ and GEL files. Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 2**(0 to 6) bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images, which are commonly used in bio-scientific imaging. Specifically, reading JPEG/CCITT compressed image data or EXIF/IPTC/GPS/XMP meta-data is not implemented. Only primary info records are read for STK, FluoView, MicroManager, and NIH image formats. TIFF, the Tagged Image File Format, is under the control of Adobe Systems. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SEQ, GEL, and OME-TIFF, are custom extensions defined by MetaMorph, Carl Zeiss MicroImaging, Olympus, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively. For command line usage run ``python tifffile.py --help`` :Author: `<NAME> <http://www.lfd.uci.edu/~gohlke/>`_ :Organization: Laboratory for Fluorescence Dynamics, University of California, Irvine :Version: 2014.02.05 Requirements ------------ * `CPython 2.7 or 3.3 <http://www.python.org>`_ * `Numpy 1.7 <http://www.numpy.org>`_ * `Matplotlib 1.3 <http://www.matplotlib.org>`_ (optional for plotting) * `Tifffile.c 2013.01.18 <http://www.lfd.uci.edu/~gohlke/>`_ (recommended for faster decoding of PackBits and LZW encoded strings) Notes ----- The API is not stable yet and might change between revisions. Tested on little-endian platforms only. Other Python packages and modules for reading bio-scientific TIFF files: * `Imread <http://luispedro.org/software/imread>`_ * `PyLibTiff <http://code.google.com/p/pylibtiff>`_ * `SimpleITK <http://www.simpleitk.org>`_ * `PyLSM <https://launchpad.net/pylsm>`_ * `PyMca.TiffIO.py <http://pymca.sourceforge.net/>`_ * `BioImageXD.Readers <http://www.bioimagexd.net/>`_ * `Cellcognition.io <http://cellcognition.org/>`_ * `CellProfiler.bioformats <http://www.cellprofiler.org/>`_ Acknowledgements ---------------- * <NAME>, University of Manchester, for cz_lsm_scan_info specifics. * <NAME> for a bug fix and some read_cz_lsm functions. * <NAME> for help on reading MicroManager files. References ---------- (1) TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. http://partners.adobe.com/public/developer/tiff/ (2) TIFF File Format FAQ. http://www.awaresystems.be/imaging/tiff/faq.html (3) MetaMorph Stack (STK) Image File Format. http://support.meta.moleculardevices.com/docs/t10243.pdf (4) File Format Description - LSM 5xx Release 2.0. http://ibb.gsf.de/homepage/karsten.rodenacker/IDL/Lsmfile.doc (5) BioFormats. http://www.loci.wisc.edu/ome/formats.html (6) The OME-TIFF format. http://www.openmicroscopy.org/site/support/file-formats/ome-tiff (7) TiffDecoder.java http://rsbweb.nih.gov/ij/developer/source/ij/io/TiffDecoder.java.html (8) UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf (9) Micro-Manager File Formats. http://www.micro-manager.org/wiki/Micro-Manager_File_Formats Examples -------- >>> data = numpy.random.rand(301, 219) >>> imsave('temp.tif', data) >>> image = imread('temp.tif') >>> assert numpy.all(image == data) >>> tif = TiffFile('test.tif') >>> images = tif.asarray() >>> image0 = tif[0].asarray() >>> for page in tif: ... for tag in page.tags.values(): ... t = tag.name, tag.value ... image = page.asarray() ... if page.is_rgb: pass ... if page.is_palette: ... t = page.color_map ... if page.is_stk: ... t = page.mm_uic_tags.number_planes ... if page.is_lsm: ... t = page.cz_lsm_info >>> tif.close() """ from __future__ import division, print_function import sys import os import re import glob import math import zlib import time import json import struct import warnings import datetime import collections from fractions import Fraction from xml.etree import cElementTree as ElementTree import numpy __version__ = '2014.02.05' __docformat__ = 'restructuredtext en' __all__ = ['imsave', 'imread', 'imshow', 'TiffFile', 'TiffSequence'] def imsave(filename, data, photometric=None, planarconfig=None, resolution=None, description=None, software='tifffile.py', byteorder=None, bigtiff=False, compress=0, extratags=()): """Write image data to TIFF file. Image data are written in one stripe per plane. Dimensions larger than 2 or 3 (depending on photometric mode and planar configuration) are flattened and saved as separate pages. The 'sample_format' and 'bits_per_sample' TIFF tags are derived from the data type. Parameters ---------- filename : str Name of file to write. data : array_like Input image. The last dimensions are assumed to be image height, width, and samples. photometric : {'minisblack', 'miniswhite', 'rgb'} The color space of the image data. By default this setting is inferred from the data shape. planarconfig : {'contig', 'planar'} Specifies if samples are stored contiguous or in separate planes. By default this setting is inferred from the data shape. 'contig': last dimension contains samples. 'planar': third last dimension contains samples. resolution : (float, float) or ((int, int), (int, int)) X and Y resolution in dots per inch as float or rational numbers. description : str The subject of the image. Saved with the first page only. software : str Name of the software used to create the image. Saved with the first page only. byteorder : {'<', '>'} The endianness of the data in the file. By default this is the system's native byte order. bigtiff : bool If True, the BigTIFF format is used. By default the standard TIFF format is used for data less than 2000 MB. compress : int Values from 0 to 9 controlling the level of zlib compression. If 0, data are written uncompressed (default). extratags: sequence of tuples Additional tags as [(code, dtype, count, value, writeonce)]. code : int The TIFF tag Id. dtype : str Data type of items in `value` in Python struct format. One of B, s, H, I, 2I, b, h, i, f, d, Q, or q. count : int Number of data values. Not used for string values. value : sequence `Count` values compatible with `dtype`. writeonce : bool If True, the tag is written to the first page only. Examples -------- >>> data = numpy.ones((2, 5, 3, 301, 219), 'float32') * 0.5 >>> imsave('temp.tif', data, compress=6) >>> data = numpy.ones((5, 301, 219, 3), 'uint8') + 127 >>> value = u'{"shape": %s}' % str(list(data.shape)) >>> imsave('temp.tif', data, extratags=[(270, 's', 0, value, True)]) """ assert(photometric in (None, 'minisblack', 'miniswhite', 'rgb')) assert(planarconfig in (None, 'contig', 'planar')) assert(byteorder in (None, '<', '>')) assert(0 <= compress <= 9) if byteorder is None: byteorder = '<' if sys.byteorder == 'little' else '>' data = numpy.asarray(data, dtype=byteorder+data.dtype.char, order='C') data_shape = shape = data.shape data = numpy.atleast_2d(data) if not bigtiff and data.size * data.dtype.itemsize < 2000*2**20: bigtiff = False offset_size = 4 tag_size = 12 numtag_format = 'H' offset_format = 'I' val_format = '4s' else: bigtiff = True offset_size = 8 tag_size = 20 numtag_format = 'Q' offset_format = 'Q' val_format = '8s' # unify shape of data samplesperpixel = 1 extrasamples = 0 if photometric is None: if data.ndim > 2 and (shape[-3] in (3, 4) or shape[-1] in (3, 4)): photometric = 'rgb' else: photometric = 'minisblack' if photometric == 'rgb': if len(shape) < 3: raise ValueError("not a RGB(A) image") if planarconfig is None: planarconfig = 'planar' if shape[-3] in (3, 4) else 'contig' if planarconfig == 'contig': if shape[-1] not in (3, 4): raise ValueError("not a contiguous RGB(A) image") data = data.reshape((-1, 1) + shape[-3:]) samplesperpixel = shape[-1] else: if shape[-3] not in (3, 4): raise ValueError("not a planar RGB(A) image") data = data.reshape((-1, ) + shape[-3:] + (1, )) samplesperpixel = shape[-3] if samplesperpixel == 4: extrasamples = 1 elif planarconfig and len(shape) > 2: if planarconfig == 'contig': data = data.reshape((-1, 1) + shape[-3:]) samplesperpixel = shape[-1] else: data = data.reshape((-1, ) + shape[-3:] + (1, )) samplesperpixel = shape[-3] extrasamples = samplesperpixel - 1 else: planarconfig = None # remove trailing 1s while len(shape) > 2 and shape[-1] == 1: shape = shape[:-1] data = data.reshape((-1, 1) + shape[-2:] + (1, )) shape = data.shape # (pages, planes, height, width, contig samples) bytestr = bytes if sys.version[0] == '2' else ( lambda x: bytes(x, 'utf-8') if isinstance(x, str) else x) tifftypes = {'B': 1, 's': 2, 'H': 3, 'I': 4, '2I': 5, 'b': 6, 'h': 8, 'i': 9, 'f': 11, 'd': 12, 'Q': 16, 'q': 17} tifftags = { 'new_subfile_type': 254, 'subfile_type': 255, 'image_width': 256, 'image_length': 257, 'bits_per_sample': 258, 'compression': 259, 'photometric': 262, 'fill_order': 266, 'document_name': 269, 'image_description': 270, 'strip_offsets': 273, 'orientation': 274, 'samples_per_pixel': 277, 'rows_per_strip': 278, 'strip_byte_counts': 279, 'x_resolution': 282, 'y_resolution': 283, 'planar_configuration': 284, 'page_name': 285, 'resolution_unit': 296, 'software': 305, 'datetime': 306, 'predictor': 317, 'color_map': 320, 'extra_samples': 338, 'sample_format': 339} tags = [] # list of (code, ifdentry, ifdvalue, writeonce) def pack(fmt, *val): return struct.pack(byteorder+fmt, *val) def addtag(code, dtype, count, value, writeonce=False): # compute ifdentry and ifdvalue bytes from code, dtype, count, value # append (code, ifdentry, ifdvalue, writeonce) to tags list code = tifftags[code] if code in tifftags else int(code) if dtype not in tifftypes: raise ValueError("unknown dtype %s" % dtype) tifftype = tifftypes[dtype] rawcount = count if dtype == 's': value = bytestr(value) + b'\0' count = rawcount = len(value) value = (value, ) if len(dtype) > 1: count *= int(dtype[:-1]) dtype = dtype[-1] ifdentry = [pack('HH', code, tifftype), pack(offset_format, rawcount)] ifdvalue = None if count == 1: if isinstance(value, (tuple, list)): value = value[0] ifdentry.append(pack(val_format, pack(dtype, value))) elif struct.calcsize(dtype) * count <= offset_size: ifdentry.append(pack(val_format, pack(str(count)+dtype, *value))) else: ifdentry.append(pack(offset_format, 0)) ifdvalue = pack(str(count)+dtype, *value) tags.append((code, b''.join(ifdentry), ifdvalue, writeonce)) def rational(arg, max_denominator=1000000): # return nominator and denominator from float or two integers try: f = Fraction.from_float(arg) except TypeError: f = Fraction(arg[0], arg[1]) f = f.limit_denominator(max_denominator) return f.numerator, f.denominator if software: addtag('software', 's', 0, software, writeonce=True) if description: addtag('image_description', 's', 0, description, writeonce=True) elif shape != data_shape: addtag('image_description', 's', 0, "shape=(%s)" % (",".join('%i' % i for i in data_shape)), writeonce=True) addtag('datetime', 's', 0, datetime.datetime.now().strftime("%Y:%m:%d %H:%M:%S"), writeonce=True) addtag('compression', 'H', 1, 32946 if compress else 1) addtag('orientation', 'H', 1, 1) addtag('image_width', 'I', 1, shape[-2]) addtag('image_length', 'I', 1, shape[-3]) addtag('new_subfile_type', 'I', 1, 0 if shape[0] == 1 else 2) addtag('sample_format', 'H', 1, {'u': 1, 'i': 2, 'f': 3, 'c': 6}[data.dtype.kind]) addtag('photometric', 'H', 1, {'miniswhite': 0, 'minisblack': 1, 'rgb': 2}[photometric]) addtag('samples_per_pixel', 'H', 1, samplesperpixel) if planarconfig: addtag('planar_configuration', 'H', 1, 1 if planarconfig=='contig' else 2) addtag('bits_per_sample', 'H', samplesperpixel, (data.dtype.itemsize * 8, ) * samplesperpixel) else: addtag('bits_per_sample', 'H', 1, data.dtype.itemsize * 8) if extrasamples: if photometric == 'rgb': addtag('extra_samples', 'H', 1, 1) # alpha channel else: addtag('extra_samples', 'H', extrasamples, (0, ) * extrasamples) if resolution: addtag('x_resolution', '2I', 1, rational(resolution[0])) addtag('y_resolution', '2I', 1, rational(resolution[1])) addtag('resolution_unit', 'H', 1, 2) addtag('rows_per_strip', 'I', 1, shape[-3]) # use one strip per plane strip_byte_counts = (data[0, 0].size * data.dtype.itemsize, ) * shape[1] addtag('strip_byte_counts', offset_format, shape[1], strip_byte_counts) addtag('strip_offsets', offset_format, shape[1], (0, ) * shape[1]) # add extra tags from users for t in extratags: addtag(*t) # the entries in an IFD must be sorted in ascending order by tag code tags = sorted(tags, key=lambda x: x[0]) with open(filename, 'wb') as fh: seek = fh.seek tell = fh.tell def write(arg, *args): fh.write(pack(arg, *args) if args else arg) write({'<': b'II', '>': b'MM'}[byteorder]) if bigtiff: write('HHH', 43, 8, 0) else: write('H', 42) ifd_offset = tell() write(offset_format, 0) # first IFD for pageindex in range(shape[0]): # update pointer at ifd_offset pos = tell() seek(ifd_offset) write(offset_format, pos) seek(pos) # write ifdentries write(numtag_format, len(tags)) tag_offset = tell() write(b''.join(t[1] for t in tags)) ifd_offset = tell() write(offset_format, 0) # offset to next IFD # write tag values and patch offsets in ifdentries, if necessary for tagindex, tag in enumerate(tags): if tag[2]: pos = tell() seek(tag_offset + tagindex*tag_size + offset_size + 4) write(offset_format, pos) seek(pos) if tag[0] == 273: strip_offsets_offset = pos elif tag[0] == 279: strip_byte_counts_offset = pos write(tag[2]) # write image data data_offset = tell() if compress: strip_byte_counts = [] for plane in data[pageindex]: plane = zlib.compress(plane, compress) strip_byte_counts.append(len(plane)) fh.write(plane) else: # if this fails try update Python/numpy data[pageindex].tofile(fh) fh.flush() # update strip_offsets and strip_byte_counts if necessary pos = tell() for tagindex, tag in enumerate(tags): if tag[0] == 273: # strip_offsets if tag[2]: seek(strip_offsets_offset) strip_offset = data_offset for size in strip_byte_counts: write(offset_format, strip_offset) strip_offset += size else: seek(tag_offset + tagindex*tag_size + offset_size + 4) write(offset_format, data_offset) elif tag[0] == 279: # strip_byte_counts if compress: if tag[2]: seek(strip_byte_counts_offset) for size in strip_byte_counts: write(offset_format, size) else: seek(tag_offset + tagindex*tag_size + offset_size + 4) write(offset_format, strip_byte_counts[0]) break seek(pos) fh.flush() # remove tags that should be written only once if pageindex == 0: tags = [t for t in tags if not t[-1]] def imread(files, *args, **kwargs): """Return image data from TIFF file(s) as numpy array. The first image series is returned if no arguments are provided. Parameters ---------- files : str or list File name, glob pattern, or list of file names. key : int, slice, or sequence of page indices Defines which pages to return as array. series : int Defines which series of pages in file to return as array. multifile : bool If True (default), OME-TIFF data may include pages from multiple files. pattern : str Regular expression pattern that matches axes names and indices in file names. Examples -------- >>> im = imread('test.tif', 0) >>> im.shape (256, 256, 4) >>> ims = imread(['test.tif', 'test.tif']) >>> ims.shape (2, 256, 256, 4) """ kwargs_file = {} if 'multifile' in kwargs: kwargs_file['multifile'] = kwargs['multifile'] del kwargs['multifile'] else: kwargs_file['multifile'] = True kwargs_seq = {} if 'pattern' in kwargs: kwargs_seq['pattern'] = kwargs['pattern'] del kwargs['pattern'] if isinstance(files, basestring) and any(i in files for i in '?*'): files = glob.glob(files) if not files: raise ValueError('no files found') if len(files) == 1: files = files[0] if isinstance(files, basestring): with TiffFile(files, **kwargs_file) as tif: return tif.asarray(*args, **kwargs) else: with TiffSequence(files, **kwargs_seq) as imseq: return imseq.asarray(*args, **kwargs) class lazyattr(object): """Lazy object attribute whose value is computed on first access.""" __slots__ = ('func', ) def __init__(self, func): self.func = func def __get__(self, instance, owner): if instance is None: return self value = self.func(instance) if value is NotImplemented: return getattr(super(owner, instance), self.func.__name__) setattr(instance, self.func.__name__, value) return value class TiffFile(object): """Read image and meta-data from TIFF, STK, LSM, and FluoView files. TiffFile instances must be closed using the close method, which is automatically called when using the 'with' statement. Attributes ---------- pages : list All TIFF pages in file. series : list of Records(shape, dtype, axes, TiffPages) TIFF pages with compatible shapes and types. micromanager_metadata: dict Extra MicroManager non-TIFF metadata in the file, if exists. All attributes are read-only. Examples -------- >>> tif = TiffFile('test.tif') ... try: ... images = tif.asarray() ... except Exception as e: ... print(e) ... finally: ... tif.close() """ def __init__(self, arg, name=None, multifile=False): """Initialize instance from file. Parameters ---------- arg : str or open file Name of file or open file object. The file objects are closed in TiffFile.close(). name : str Human readable label of open file. multifile : bool If True, series may include pages from multiple files. """ if isinstance(arg, basestring): filename = os.path.abspath(arg) self._fh = open(filename, 'rb') else: filename = str(name) self._fh = arg self._fh.seek(0, 2) self._fsize = self._fh.tell() self._fh.seek(0) self.fname = os.path.basename(filename) self.fpath = os.path.dirname(filename) self._tiffs = {self.fname: self} # cache of TiffFiles self.offset_size = None self.pages = [] self._multifile = bool(multifile) try: self._fromfile() except Exception: self._fh.close() raise def close(self): """Close open file handle(s).""" for tif in self._tiffs.values(): if tif._fh: tif._fh.close() tif._fh = None self._tiffs = {} def _fromfile(self): """Read TIFF header and all page records from file.""" self._fh.seek(0) try: self.byteorder = {b'II': '<', b'MM': '>'}[self._fh.read(2)] except KeyError: raise ValueError("not a valid TIFF file") version = struct.unpack(self.byteorder+'H', self._fh.read(2))[0] if version == 43: # BigTiff self.offset_size, zero = struct.unpack(self.byteorder+'HH', self._fh.read(4)) if zero or self.offset_size != 8: raise ValueError("not a valid BigTIFF file") elif version == 42: self.offset_size = 4 else: raise ValueError("not a TIFF file") self.pages = [] while True: try: page = TiffPage(self) self.pages.append(page) except StopIteration: break if not self.pages: raise ValueError("empty TIFF file") if self.is_micromanager: # MicroManager files contain metadata not stored in TIFF tags. self.micromanager_metadata = read_micromanager_metadata(self._fh) @lazyattr def series(self): """Return series of TiffPage with compatible shape and properties.""" series = [] if self.is_ome: series = self._omeseries() elif self.is_fluoview: dims = {b'X': 'X', b'Y': 'Y', b'Z': 'Z', b'T': 'T', b'WAVELENGTH': 'C', b'TIME': 'T', b'XY': 'R', b'EVENT': 'V', b'EXPOSURE': 'L'} mmhd = list(reversed(self.pages[0].mm_header.dimensions)) series = [Record( axes=''.join(dims.get(i[0].strip().upper(), 'Q') for i in mmhd if i[1] > 1), shape=tuple(int(i[1]) for i in mmhd if i[1] > 1), pages=self.pages, dtype=numpy.dtype(self.pages[0].dtype))] elif self.is_lsm: lsmi = self.pages[0].cz_lsm_info axes = CZ_SCAN_TYPES[lsmi.scan_type] if self.pages[0].is_rgb: axes = axes.replace('C', '').replace('XY', 'XYC') axes = axes[::-1] shape = [getattr(lsmi, CZ_DIMENSIONS[i]) for i in axes] pages = [p for p in self.pages if not p.is_reduced] series = [Record(axes=axes, shape=shape, pages=pages, dtype=
numpy.dtype(pages[0].dtype)
numpy.dtype
#!/usr/bin/env python # -*- encoding: utf-8 -*- '''Tests for task decoding''' import numpy as np import pytest import jams import pumpp # Sampling rate and hop are simple here to keep things # divisible for inverse checks @pytest.fixture() def sr(): return 10 @pytest.fixture() def hop_length(): return 1 @pytest.fixture() def ann_tag(): ann = jams.Annotation(namespace='tag_gtzan', duration=10) ann.append(time=0, duration=5, value='blues') ann.append(time=1.5, duration=1.5, value='reggae') return ann @pytest.fixture() def ann_vector(): ann = jams.Annotation(namespace='vector', duration=1) ann.append(time=0, duration=0, value=np.arange(32)) return ann @pytest.fixture() def ann_beat(): ann = jams.Annotation(namespace='beat', duration=10) # for n, i in enumerate(np.arange(0, 10, 0.5)): # ann.append(time=i, duration=0, value=1 + (n % 4)) # Make up two measures of 4/4, plus two pickup beats for t, v in [(0, -2), (0.5, -1), (1, 1), (1.5, 2), (2, 3), (3, 4), (3.5, 1), (4, 2), (4.5, 3), (5, 4), (5.5, 1), (6, 2), (6.5, 3), (7, 4)]: ann.append(time=t, duration=0, value=v) return ann @pytest.fixture() def ann_chord(): ann = jams.Annotation(namespace='chord', duration=5) for t, c in [(0, 'C'), (1, 'C:maj'), (2, 'D:min/3'), (3, 'F#:7(*5)'), (4, 'G:sus2')]: ann.append(time=t, duration=1, value=c) return ann @pytest.fixture(params=[None, 0.5]) def p_self_chord(request): return request.param @pytest.fixture(params=[False, True]) def p_init_chord(request): if request.param: return np.ones(170) / 170 else: return None @pytest.fixture(params=[False, True]) def p_state_chord(request): if request.param: return np.ones(170) / 170 else: return None @pytest.fixture(params=[None, False, True]) def p_self_tags(request): if request.param is None: return None if request.param: return 0.5 * np.ones(10) # 10 tags in GTZAN else: return 0.5 @pytest.fixture(params=[False, True]) def p_init_tags(request): if request.param: return 0.5 * np.ones(10) else: return None @pytest.fixture(params=[False, True]) def p_state_tags(request): if request.param: return 0.5 * np.ones(10) else: return None @pytest.fixture(params=[None, False, True]) def p_self_beat(request): if request.param is None: return None elif request.param: return np.asarray([0.5, 0.0]) else: return 0.5 @pytest.fixture(params=[None, False, True]) def p_self_down(request): if request.param is None: return None elif request.param: return np.asarray([0.5, 0.0]) else: return 0.5 @pytest.fixture(params=[None, 0.5]) def p_init_beat(request): return request.param @pytest.fixture(params=[None, 0.5]) def p_init_down(request): return request.param @pytest.fixture(params=[None, 0.5]) def p_state_beat(request): return request.param @pytest.fixture(params=[None, 0.5]) def p_state_down(request): return request.param @pytest.fixture() def ann_segment(): ann = jams.Annotation(namespace='segment_open', duration=5) for t, c in [(0, 'A'), (1, 'B'), (2, 'A'), (3, 'B'), (4, 'C')]: ann.append(time=t, duration=1, value=c) return ann @pytest.fixture() def ann_key(): ann = jams.Annotation(namespace='key_mode', duration=5) for t, c in [(0, 'A:major'), (1, 'Bb:lydian'), (2, 'A:minor'), (3, 'B:major'), (4, 'C:dorian')]: ann.append(time=t, duration=1, value=c) return ann @pytest.fixture(params=[None, 0.5]) def p_self_key(request): return request.param @pytest.fixture(params=[False, True]) def p_init_key(request): if request.param: return np.ones(109) / 109 else: return None @pytest.fixture(params=[False, True]) def p_state_key(request): if request.param: return np.ones(109) / 109 else: return None def test_decode_tags_dynamic_hard(sr, hop_length, ann_tag, p_self_tags, p_init_tags, p_state_tags): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.DynamicLabelTransformer('genre', 'tag_gtzan', hop_length=hop_length, sr=sr, p_self=p_self_tags, p_init=p_init_tags, p_state=p_state_tags) data = tc.transform_annotation(ann_tag, ann_tag.duration) inverse = tc.inverse(data['tags'], duration=ann_tag.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_tag.duration) assert np.allclose(data['tags'], data2['tags']) def test_decode_tags_dynamic_soft(sr, hop_length, ann_tag, p_self_tags, p_init_tags, p_state_tags): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.DynamicLabelTransformer('genre', 'tag_gtzan', hop_length=hop_length, sr=sr, p_self=p_self_tags, p_init=p_init_tags, p_state=p_state_tags) data = tc.transform_annotation(ann_tag, ann_tag.duration) # Soften the data, but preserve the decisions tags_predict = 0.9 * data['tags'] + 0.1 * np.ones_like(data['tags']) / data['tags'].shape[1] inverse = tc.inverse(tags_predict, duration=ann_tag.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_tag.duration) assert np.allclose(data['tags'], data2['tags']) def test_decode_tags_static_hard(ann_tag): tc = pumpp.task.StaticLabelTransformer('genre', 'tag_gtzan') data = tc.transform_annotation(ann_tag, ann_tag.duration) inverse = tc.inverse(data['tags'], ann_tag.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_tag.duration) assert np.allclose(data['tags'], data2['tags']) def test_decode_tags_static_soft(ann_tag): tc = pumpp.task.StaticLabelTransformer('genre', 'tag_gtzan') data = tc.transform_annotation(ann_tag, ann_tag.duration) tags_predict = data['tags'] * 0.51 + 0.1 inverse = tc.inverse(tags_predict, ann_tag.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_tag.duration) assert np.allclose(data['tags'], data2['tags']) def test_decode_beat_hard(sr, hop_length, ann_beat, p_self_beat, p_init_beat, p_state_beat): tc = pumpp.task.BeatTransformer('beat', sr=sr, hop_length=hop_length, p_self_beat=p_self_beat, p_init_beat=p_init_beat, p_state_beat=p_state_beat) data = tc.transform_annotation(ann_beat, ann_beat.duration) inverse = tc.inverse(data['beat'], duration=ann_beat.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_beat.duration) assert np.allclose(data['beat'], data2['beat']) def test_decode_beat_soft(sr, hop_length, ann_beat, p_self_beat, p_init_beat, p_state_beat): tc = pumpp.task.BeatTransformer('beat', sr=sr, hop_length=hop_length, p_self_beat=p_self_beat, p_init_beat=p_init_beat, p_state_beat=p_state_beat) data = tc.transform_annotation(ann_beat, ann_beat.duration) beat_pred = 0.9 * data['beat'] + 0.1 * np.ones_like(data['beat']) / data['beat'].shape[-1] inverse = tc.inverse(beat_pred, duration=ann_beat.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_beat.duration) assert np.allclose(data['beat'], data2['beat']) def test_decode_beat_downbeat_hard(sr, hop_length, ann_beat, p_self_beat, p_init_beat, p_state_beat, p_self_down, p_init_down, p_state_down): tc = pumpp.task.BeatTransformer('beat', sr=sr, hop_length=hop_length, p_self_beat=p_self_beat, p_init_beat=p_init_beat, p_state_beat=p_state_beat, p_self_down=p_self_down, p_init_down=p_init_down, p_state_down=p_state_down) data = tc.transform_annotation(ann_beat, ann_beat.duration) inverse = tc.inverse(data['beat'], downbeat=data['downbeat'], duration=ann_beat.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_beat.duration) assert np.allclose(data['beat'], data2['beat']) def test_decode_beat_downbeat_soft(sr, hop_length, ann_beat, p_self_beat, p_init_beat, p_state_beat, p_self_down, p_init_down, p_state_down): tc = pumpp.task.BeatTransformer('beat', sr=sr, hop_length=hop_length, p_self_beat=p_self_beat, p_init_beat=p_init_beat, p_state_beat=p_state_beat, p_self_down=p_self_down, p_init_down=p_init_down, p_state_down=p_state_down) data = tc.transform_annotation(ann_beat, ann_beat.duration) beat_pred = 0.9 * data['beat'] + 0.1 * np.ones_like(data['beat']) / data['beat'].shape[-1] dbeat_pred = 0.9 * data['downbeat'] + 0.1 * np.ones_like(data['downbeat']) / data['downbeat'].shape[-1] inverse = tc.inverse(beat_pred, downbeat=dbeat_pred, duration=ann_beat.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_beat.duration) assert np.allclose(data['beat'], data2['beat']) def test_decode_vector(ann_vector): tc = pumpp.task.VectorTransformer('cf', 'vector', 32) data = tc.transform_annotation(ann_vector, ann_vector.duration) inverse = tc.inverse(data['vector'], duration=ann_vector.duration) data2 = tc.transform_annotation(inverse, ann_vector.duration) assert np.allclose(data['vector'], data2['vector']) @pytest.mark.xfail(raises=NotImplementedError) def test_decode_chord(sr, hop_length, ann_chord): tc = pumpp.task.ChordTransformer('chord', sr=sr, hop_length=hop_length) data = tc.transform_annotation(ann_chord, ann_chord.duration) inverse = tc.inverse(data['pitch'], data['root'], data['bass'], duration=ann_chord.duration) data2 = tc.transform_annotation(inverse, ann_chord.duration) assert np.allclose(data['pitch'], data2['pitch']) assert np.allclose(data['root'], data2['root']) assert np.allclose(data['bass'], data2['bass']) @pytest.mark.xfail(raises=NotImplementedError) def test_decode_simplechord(sr, hop_length, ann_chord): tc = pumpp.task.SimpleChordTransformer('chord', sr=sr, hop_length=hop_length) data = tc.transform_annotation(ann_chord, ann_chord.duration) inverse = tc.inverse(data['pitch'], duration=ann_chord.duration) data2 = tc.transform_annotation(inverse, ann_chord.duration) assert np.allclose(data['pitch'], data2['pitch']) def test_decode_chordtag_hard_dense(sr, hop_length, ann_chord): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=False) data = tc.transform_annotation(ann_chord, ann_chord.duration) inverse = tc.inverse(data['chord'], duration=ann_chord.duration) for obs in inverse: assert 0 <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_chord.duration) assert np.allclose(data['chord'], data2['chord']) def test_decode_chordtag_soft_dense(sr, hop_length, ann_chord, p_self_chord, p_init_chord, p_state_chord): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=False, p_self=p_self_chord, p_init=p_init_chord, p_state=p_state_chord) data = tc.transform_annotation(ann_chord, ann_chord.duration) chord_predict = 0.9 * data['chord'] + 0.1 * np.ones_like(data['chord']) / data['chord'].shape[1] inverse = tc.inverse(chord_predict, duration=ann_chord.duration) for obs in inverse: assert 0 <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_chord.duration) assert np.allclose(data['chord'], data2['chord']) def test_decode_chordtag_hard_sparse_sparse(sr, hop_length, ann_chord): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=True) data = tc.transform_annotation(ann_chord, ann_chord.duration) inverse = tc.inverse(data['chord'], duration=ann_chord.duration) for obs in inverse: assert 0 <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_chord.duration) assert np.allclose(data['chord'], data2['chord']) def test_decode_chordtag_hard_dense_sparse(sr, hop_length, ann_chord): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tcd = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=False) tcs = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=True) # Make a hard, dense encoding of the data data = tcd.transform_annotation(ann_chord, ann_chord.duration) # Invert using the sparse encoder inverse = tcs.inverse(data['chord'], duration=ann_chord.duration) for obs in inverse: assert 0 <= obs.confidence <= 1. data2 = tcs.transform_annotation(inverse, ann_chord.duration) dense_positions = np.where(data['chord'])[1] sparse_positions = data2['chord'][:, 0] assert np.allclose(dense_positions, sparse_positions) def test_decode_chordtag_soft_dense_sparse(sr, hop_length, ann_chord, p_self_chord, p_init_chord, p_state_chord): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tcd = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=False, p_self=p_self_chord, p_init=p_init_chord, p_state=p_state_chord) tcs = pumpp.task.ChordTagTransformer('chord', vocab='3567s', hop_length=hop_length, sr=sr, sparse=True, p_self=p_self_chord, p_init=p_init_chord, p_state=p_state_chord) # Make a soft, dense encoding of the data data = tcd.transform_annotation(ann_chord, ann_chord.duration) chord_predict = 0.9 * data['chord'] + 0.1 * np.ones_like(data['chord']) / data['chord'].shape[1] # Invert using the sparse encoder inverse = tcs.inverse(chord_predict, duration=ann_chord.duration) for obs in inverse: assert 0 <= obs.confidence <= 1. data2 = tcs.transform_annotation(inverse, ann_chord.duration) dense_positions = np.where(data['chord'])[1] sparse_positions = data2['chord'][:, 0] assert np.allclose(dense_positions, sparse_positions) @pytest.mark.xfail(raises=NotImplementedError) def test_decode_structure(sr, hop_length, ann_segment): tc = pumpp.task.StructureTransformer('struct', sr=sr, hop_length=hop_length) data = tc.transform_annotation(ann_segment, ann_segment.duration) inverse = tc.inverse(data['agree'], duration=ann_segment.duration) data2 = tc.transform_annotation(inverse, ann_segment.duration) assert np.allclose(data['agree'], data2['agree']) @pytest.mark.xfail(raises=NotImplementedError) def test_decode_beatpos(sr, hop_length, ann_beat): tc = pumpp.task.BeatPositionTransformer('beat', sr=sr, max_divisions=12, hop_length=hop_length) data = tc.transform_annotation(ann_beat, ann_beat.duration) inverse = tc.inverse(data['position'], duration=ann_beat.duration) data2 = tc.transform_annotation(inverse, ann_beat.duration) assert
np.allclose(data['position'], data2['position'])
numpy.allclose
# LSTM-Autoencoder based Anomaly Detection (LAAD) # detects abnormal RHR; uses all training data; augments 8 times the training data size. ###################################################### # Author: <NAME> # # Email: <EMAIL> # # Location: Dept.of Genetics, Stanford University # # Date: Nov 26 2020 # ###################################################### #python laad_RHR_keras_v4.py --heart_rate COVID-19-Wearables/ASFODQR_hr.csv --steps COVID-19-Wearables/ASFODQR_steps.csv --myphd_id ASFODQR --symptom_date 2024-08-14 import warnings warnings.filterwarnings('ignore') import sys import argparse import copy import numpy as np import pandas as pd import seaborn as sns import itertools from itertools import cycle from tqdm import tqdm import random from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler from scipy import interp from arff2pandas import a2p from datetime import date, datetime, timedelta from statsmodels.tsa.seasonal import seasonal_decompose import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Sequential, load_model, save_model from pylab import rcParams import matplotlib.pyplot as plt import matplotlib.dates as mdates from matplotlib.ticker import FormatStrFormatter from matplotlib import rc sns.set(style='whitegrid', palette='muted', font_scale=1.2) palette = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"] sns.set_palette(sns.color_palette(palette)) rcParams['figure.figsize'] = 12, 8 # as command prompts ----------------------- parser = argparse.ArgumentParser(description='Find anomalies in wearables time-series data') parser.add_argument('--heart_rate', metavar='', help ='raw heart rate count with a header = heartrate') parser.add_argument('--steps',metavar='', help ='raw steps count with a header = steps') parser.add_argument('--myphd_id',metavar='', default = 'myphd_id', help ='user myphd_id') parser.add_argument('--symptom_date', metavar='', default = 'NaN', help = 'symptom date with y-m-d format') parser.add_argument('--random_seed', metavar='', type=int, default=42, help='random seed') args = parser.parse_args() # as arguments ----------------------- fitbit_oldProtocol_hr = args.heart_rate fitbit_oldProtocol_steps = args.steps myphd_id = args.myphd_id symptom_date = args.symptom_date RANDOM_SEED = args.random_seed np.random.seed(RANDOM_SEED) tf.random.set_seed(RANDOM_SEED) random.seed(RANDOM_SEED) # Hyper-parameters -------------------- TIME_STEPS = 8 EPOCHS = 1200 BATCH_SIZE = 64 VALIDATION_SPLIT = 0.05 LEARNING_RATE = 0.0001 #BASE_LINE_DAYS = 10 class LAAD: # infer resting heart rate ------------------------------------------------------ def resting_heart_rate(self, heartrate, steps): """ This function uses heart rate and steps data to infer resting heart rate. It filters the heart rate with steps that are zero and also 12 minutes ahead. """ # heart rate data df_hr = pd.read_csv(fitbit_oldProtocol_hr) df_hr = df_hr.set_index('datetime') df_hr.index.name = None df_hr.index = pd.to_datetime(df_hr.index) # steps data df_steps = pd.read_csv(fitbit_oldProtocol_steps) df_steps = df_steps.set_index('datetime') df_steps.index.name = None df_steps.index = pd.to_datetime(df_steps.index) # merge dataframes #df_hr = df_hr.resample('1min').mean() #df_steps = df_steps.resample('1min').mean() df1 = pd.merge(df_hr, df_steps, left_index=True, right_index=True) df1 = df1.resample('1min').mean() df1 = df1.dropna() # define RHR as the HR measurements recorded when there were zero steps taken during a rolling time window of the preceding 12 minutes (including the current minute). df1['steps_window_12'] = df1['steps'].rolling(12).sum() df1 = df1.loc[(df1['steps_window_12'] == 0)] return df1 # pre-processing ------------------------------------------------------ def pre_processing(self, resting_heart_rate): """ It takes resting heart rate data and applies moving averages to smooth the data and aggregates to one hour by taking the avegare values """ # smooth data df_nonas = df1.dropna() df1_rom = df_nonas.rolling(400).mean() # resample df1_resmp = df1_rom.resample('1H').mean() df2 = df1_resmp.drop(['steps'], axis=1) df2 = df2.drop(['steps_window_12'], axis=1) #df2 = df2.resample('24H').mean() df2 = df2.dropna() df2 = df2.rename(columns={"heartrate": "RHR"}) return df2 # data splitting ------------------------------------------------------ def data_splitting(self, processed_data, symptom_date): """ It splits data into training data by taking first 10 days and the rest as testing data. It also creates windows of pre- and post-symptomatic COVID-periods. """ symptom_date1 = pd.to_datetime(symptom_date) symptom_date_before_7 = pd.to_datetime(symptom_date1) + timedelta(days=-7) symptom_date_after_21 = pd.to_datetime(symptom_date1) + timedelta(days=21) symptom_date_before_20 = pd.to_datetime(symptom_date1) + timedelta(days=-20) symptom_date_before_10 = pd.to_datetime(symptom_date1) + timedelta(days=-10) # train data #train = processed_data[:BASE_LINE_DAYS] processed_data = processed_data.reset_index() processed_data['date'] = [d.date() for d in processed_data['index']] processed_data['time'] = [d.time() for d in processed_data['index']] processed_data = processed_data.set_index('date') processed_data.index.name = None processed_data.index = pd.to_datetime(processed_data.index) # split data into train start = processed_data.index[0] train = processed_data[(processed_data.index.get_level_values(0) < symptom_date_before_20)] train = train.set_index('index') train = train.drop(['time'], axis=1) # test data processed_data = processed_data.reset_index() processed_data['date'] = [d.date() for d in processed_data['index']] processed_data['time'] = [d.time() for d in processed_data['index']] processed_data = processed_data.set_index('date') processed_data.index.name = None processed_data.index = pd.to_datetime(processed_data.index) start = processed_data.index[0] test = processed_data[(processed_data.index.get_level_values(0) >= symptom_date_before_20)] test = test.set_index('index') test = test.drop(['time'], axis=1) end = processed_data.index[-1] # calculate delta RHR train_reset = train.reset_index() train_baseline_RHR = train_reset['RHR'].mean() test_anomaly_RHR = test[symptom_date_before_7:symptom_date_after_21] test_anomaly_delta_RHR = test_anomaly_RHR['RHR'] - train_baseline_RHR with open(myphd_id+'_data_split_dates.csv', 'w') as f: print("id","start_date ","symptom_date1", "symptom_date_before_20 ","symptom_date_before_7 ", "symptom_date_before_10 ", "symptom_date_after_21 ","end_date ","\n", myphd_id, start, symptom_date, symptom_date_before_20, symptom_date_before_7, symptom_date_before_10, symptom_date_after_21, end, file=f) return symptom_date1, symptom_date_before_20, symptom_date_before_7, symptom_date_before_10, symptom_date_after_21, train, test, test_anomaly_delta_RHR # standardization ------------------------------------------------------ def standardization(self, train_data, test_data, symptom_date_before_20, symptom_date_before_7, symptom_date_before_10, symptom_date_after_21): """ It standardizes the data with zero mean and unit variance (Z-score). We should normalize the test data using the feature summary statistics computed from the training data. It also splits the test data into test-normal and tes-anomaly for metrics calcualtions later It calculates delta RHR for test-anomlay data using baseline/training data """ # standardize train data scaler = StandardScaler() train_data[['RHR']] = scaler.fit_transform(train_data[['RHR']]) # standardize test data test_data = test_data.drop(['level_0'], axis=1) test_data[['RHR']] = scaler.transform(test_data[['RHR']]) # split data for test_normal and test_anomaly test_anomaly = test_data[symptom_date_before_7:symptom_date_after_21] test_normal = test_data[symptom_date_before_20:symptom_date_before_10] all_merged = pd.concat([train_data, test_data]) #print(all_merged) with open(myphd_id+'_data_size.csv', 'w') as f: print("id","train ","test ", "test_normal ", "test_anomaly ","\n", myphd_id, train_data.shape, test_data.shape, test_normal.shape, test_anomaly.shape, file=f) return train_data, test_data, test_normal, test_anomaly, all_merged # creating LSTM input ------------------------------------------------------ """ Apply lag method to create subsequences by keeping the temporal order of the data constant """ def create_dataset(self, dataset, time_steps=1): Xs = [] for i in range(len(dataset) - time_steps): v = dataset.iloc[i:(i + time_steps)].values Xs.append(v) return np.array(Xs) # Data Augmentation ------------------------------------------------------ """ Applies a combination of different distortions to the data including scaling, rotating, permutating, magnitude warping, time-warping, window slicing, window warping """ def augmentation(self, dataset): def scaling(dataset, sigma=0.1): factor = np.random.normal(loc=1., scale=sigma, size=(dataset.shape[0],dataset.shape[2])) data_scaled = np.multiply(dataset, factor[:,np.newaxis,:]) return data_scaled def rotation(dataset): flip = np.random.choice([-1, 1], size=(dataset.shape[0],dataset.shape[2])) rotate_axis = np.arange(dataset.shape[2]) np.random.shuffle(rotate_axis) data_rotation = flip[:,np.newaxis,:] * dataset[:,:,rotate_axis] return data_rotation def permutation(dataset, max_segments=5, seg_mode="equal"): orig_steps = np.arange(dataset.shape[1]) num_segs = np.random.randint(1, max_segments, size=(dataset.shape[0])) data_permute = np.zeros_like(dataset) for i, pat in enumerate(dataset): if num_segs[i] > 1: if seg_mode == "random": split_points = np.random.choice(dataset.shape[1]-2, num_segs[i]-1, replace=False) split_points.sort() splits = np.split(orig_steps, split_points) else: splits = np.array_split(orig_steps, num_segs[i]) warp = np.concatenate(np.random.permutation(splits)).ravel() data_permute[i] = pat[warp] else: data_permute[i] = pat return data_permute def magnitude_warp(dataset, sigma=0.2, knot=4): from scipy.interpolate import CubicSpline orig_steps = np.arange(dataset.shape[1]) random_warps = np.random.normal(loc=1.0, scale=sigma, size=(dataset.shape[0], knot+2, dataset.shape[2])) warp_steps = (
np.ones((dataset.shape[2],1))
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 29 15:35:08 2018 @author: prmiles """ import numpy as np from pymcmcstat.MCMC import MCMC from pymcmcstat.settings.DataStructure import DataStructure from pymcmcstat.structures.ParameterSet import ParameterSet import os def removekey(d, key): r = dict(d) del r[key] return r # define test model function def modelfun(xdata, theta): m = theta[0] b = theta[1] nrow = xdata.shape[0] y = np.zeros([nrow,1]) y[:,0] = m*xdata.reshape(nrow,) + b return y def ssfun(theta, data, local=None): xdata = data.xdata[0] ydata = data.ydata[0] # eval model ymodel = modelfun(xdata, theta) # calc sos ss = sum((ymodel[:,0] - ydata[:,0])**2) return ss def custom_ssfun(theta, data, custom=None): return custom def basic_mcmc(): # Initialize MCMC object mcstat = MCMC() # Add data nds = 100 x = np.linspace(2, 3, num=nds) y = 2.*x + 3. + 0.1*np.random.standard_normal(x.shape) mcstat.data.add_data_set(x, y) mcstat.simulation_options.define_simulation_options(nsimu = int(5.0e3), updatesigma = 1, method = 'dram', verbosity = 0) # update model settings mcstat.model_settings.define_model_settings(sos_function = ssfun) mcstat.parameters.add_model_parameter(name = 'm', theta0 = 2., minimum = -10, maximum = np.inf, sample = 1) mcstat.parameters.add_model_parameter(name = 'b', theta0 = -5., minimum = -10, maximum = 100, sample = 0) mcstat.parameters.add_model_parameter(name = 'b2', theta0 = -5., minimum = -10, maximum = 100, sample = 1) return mcstat def setup_initialize_chains(CL, updatesigma = True, nsos = 1): mcstat = setup_mcmc_case_cp() mcstat.simulation_options.updatesigma = updatesigma mcstat.model_settings.nsos = nsos mcstat._MCMC__old_set = ParameterSet(theta = CL['theta'], ss = CL['ss'], prior = CL['prior'], sigma2 = CL['sigma2']) mcstat._MCMC__chain_index = mcstat.simulation_options.nsimu - 1 mcstat._MCMC__initialize_chains(chainind = 0, nsimu = mcstat.simulation_options.nsimu, npar = mcstat.parameters.npar, nsos = mcstat.model_settings.nsos, updatesigma = mcstat.simulation_options.updatesigma, sigma2 = mcstat.model_settings.sigma2) return mcstat def setup_case(): mcstat = basic_mcmc() mcstat._MCMC__chain = np.random.random_sample(size = (100,2)) mcstat._MCMC__sschain = np.random.random_sample(size = (100,2)) mcstat._MCMC__s2chain = np.random.random_sample(size = (100,2)) mcstat._covariance._R = np.array([[0.5, 0.2],[0., 0.3]]) mcstat._MCMC__chains = [] mcstat._MCMC__chains.append(dict(file = mcstat.simulation_options.chainfile, mtx = mcstat._MCMC__chain)) mcstat._MCMC__chains.append(dict(file = mcstat.simulation_options.sschainfile, mtx = mcstat._MCMC__sschain)) mcstat._MCMC__chains.append(dict(file = mcstat.simulation_options.s2chainfile, mtx = mcstat._MCMC__s2chain)) return mcstat def setup_mcmc(): mcstat = basic_mcmc() mcstat._initialize_simulation() # extract components model = mcstat.model_settings options = mcstat.simulation_options parameters = mcstat.parameters data = mcstat.data return model, options, parameters, data def setup_mcmc_case_mh(): mcstat = basic_mcmc() mcstat._initialize_simulation() # extract components sos_object = mcstat._MCMC__sos_object prior_object = mcstat._MCMC__prior_object parameters = mcstat.parameters return sos_object, prior_object, parameters def setup_mcmc_case_dr(): mcstat = basic_mcmc() mcstat._initialize_simulation() # extract components model = mcstat.model_settings options = mcstat.simulation_options parameters = mcstat.parameters data = mcstat.data covariance = mcstat._covariance rejected = {'total': 10, 'outside_bounds': 2} chain = np.zeros([options.nsimu, 2]) s2chain =
np.zeros([options.nsimu, 1])
numpy.zeros
""" Sensor Identification Module This module contains a class for choosing which irradiance sensor best describes a PV power or current data set. We assume a linear model between irradiance and power/current, and we use k-fold cross validation to assess which irradiance sensor provides the best predictive power. Generally speaking, we can try to assess a sensor's distance from an array and its plane-of-array mismatch. Hopefully, there exists a sensor that is both close by the array and well aligned; however, this is not always the case. We use clear sky data to assess POA mismatch and cloudy sky data to assess distance from array. If there is a discrepancy in which sensor is "best" under these two data filtering schemes, the algorithm alerts the user. """ import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression, HuberRegressor from sklearn.model_selection import KFold, TimeSeriesSplit def rmse(residuals): return np.sqrt(np.average(np.power(residuals, 2))) class SensorIdentification: def __init__(self, data_handler_obj): """ This class is always instantiated with a DataHandler class instance. This instance should have the pipeline run, with extra columns included that identify the candidate sensors. :param data_handler_obj: (required) a DataHandler class instance """ self.data_handler = data_handler_obj self.sensor_keys = np.array(list(self.data_handler.extra_matrices.keys())) if len(self.sensor_keys) == 0: print("Please add sensor columns to DataHandler pipeline.") return self.coverage_scores = self.data_handler.extra_quality_scores nan_masks = [~np.isnan(m[1]) for m in self.data_handler.extra_matrices.items()] self.compare_mask = np.alltrue(np.array(nan_masks), axis=0) # These attributes are set when running the identify method self.results_table = None self.chosen_sensor = None self.consistent_answer = None def identify( self, n_splits=20, model="least-squares", epsilon=1.35, max_iter=100, alpha=0.0001, ): # least squares is about 10x faster than huber, but less robust if model == "least-squares": lr = LinearRegression() elif model == "huber": lr = HuberRegressor(epsilon=epsilon, max_iter=max_iter, alpha=alpha) self.results_table = None self.consistent_answer = None self.chosen_sensor = None filters = { "no_errors": self.data_handler.daily_flags.no_errors, "clear": self.data_handler.daily_flags.clear, "cloudy": self.data_handler.daily_flags.cloudy, } results = pd.DataFrame( columns=["sensor", "filter", "corr", "cv-rmse", "cv-mbe"] ) counter = 0 for filter_key, filter in filters.items(): mask =
np.zeros_like(self.compare_mask, dtype=bool)
numpy.zeros_like
from collections import OrderedDict from glob import glob import numpy as np import os import tqdm import mne from mne.io.eeglab.eeglab import _check_load_mat, _get_info from mne.preprocessing import read_ica_eeglab from mne.io import read_raw_eeglab from .config import eegip_config, load_additionnal_config from .utils import load_montage from .path import get_path, parse_pattern from slurppy import Config def mark_bad_channels(raw, file_name, mark_to_remove=("manual", "rank")): raw_eeg = _check_load_mat(file_name, None) info, _, _ = _get_info(raw_eeg) chan_info = raw_eeg.marks["chan_info"] mat_chans = np.array(info["ch_names"]) assert(len(chan_info["flags"][0]) == len(mat_chans)) if len(np.array(chan_info["flags"]).shape) > 1: ind_chan_to_drop = np.unique(np.concatenate([np.where(flags)[0] for flags, label in zip(chan_info["flags"], chan_info["label"]) if label in mark_to_remove])) else: ind_chan_to_drop = np.where(chan_info["flags"])[0] bad_chan = [chan for chan in mat_chans[ind_chan_to_drop]] raw.info['bads'].extend(bad_chan) def channel_rejection(raw, file_name, mark_to_remove=("manual", "rank")): mark_bad_channels(raw, file_name, mark_to_remove) raw.drop_channels(raw.info['bads']) def add_bad_segment_annot(raw, file_name, mark_to_remove=("manual",)): raw_eeg = _check_load_mat(file_name, None) time_info = raw_eeg.marks["time_info"] if len(
np.array(time_info["flags"])
numpy.array
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """Generate plots of single grid point analysis. Example:: $ python single_loc_plots.py """ import numpy as np import matplotlib.pyplot as plt from scipy.stats import weibull_min from scipy.optimize import curve_fit if __name__ == '__main__': # TODO Added convenience utils here for now, hotfix to be able to run this from convenience_utils import hour_to_date_str, hour_to_date from process_data import eval_single_location, heights_of_interest, analyzed_heights, analyzed_heights_ids else: from ..utils.convenience_utils import hour_to_date_str, hour_to_date from .process_data import eval_single_location, heights_of_interest, analyzed_heights, analyzed_heights_ids # Timestamps for which the wind profiles are evaluated in figure 5. hours_wind_profile_plots = [1016833, 1016837, 1016841, 1016852, 1016876, 1016894, 1016910, 1016958] # Starting points used for constructing Weibull fits. curve_fit_starting_points = { '100 m fixed': (2.28998636, 0., 9.325903), '500 m fixed': (1.71507275, 0.62228813, 10.34787431), '1250 m fixed': (1.82862734, 0.30115809, 10.63203257), '300 m ceiling': (1.9782503629055668, 0.351604371, 10.447848193717771), '500 m ceiling': (1.82726087, 0.83650295, 10.39813481), '1000 m ceiling': (1.83612611, 1.41125279, 10.37226014), '1250 m ceiling': (1.80324619, 2.10282164, 10.26859976), } # Styling settings used for making plots. date_str_format = "%Y-%m-%d %H:%M" color_cycle_default = plt.rcParams['axes.prop_cycle'].by_key()['color'] marker_cycle = ('s', 'x', 'o', '+', 'v', '^', '<', '>', 'D') def plot_timeline(hours, data, ylabel='Power [W]', #heights_of_interest, ceiling_id, floor_id, #data_bounds=[50, 500], show_n_hours=24*7): # TODO rename """Plot optimal height and wind speed time series for the first week of data. Args: hours (list): Hour timestamps. v_ceiling (list): Optimal wind speed time series resulting from variable-height analysis. optimal_heights (list): Time series of optimal heights corresponding to `v_ceiling`. heights_of_interest (list): Heights above the ground at which the wind speeds are evaluated. ceiling_id (int): Id of the ceiling height in `heights_of_interest`, as used in the variable-height analysis. floor_id (int): Id of the floor height in `heights_of_interest`, as used in the variable-height analysis. """ shift = int(1e4) # TODO update docstring # TODO optional time range, not only from beginning # TODO heights_of_interest use cases fix -> height_bounds data = data[shift:shift+show_n_hours] dates = [hour_to_date(h) for h in hours[shift:shift+show_n_hours]] fig, ax = plt.subplots(1, 1) plt.subplots_adjust(bottom=.2) # Plot the height limits. dates_limits = [dates[0], dates[-1]] # ceiling_height = height_bounds[1] # heights_of_interest[ceiling_id] # floor_height = height_bounds[0] # heights_of_interest[floor_id] # ax[0].plot(dates_limits, [ceiling_height]*2, 'k--', label='height bounds') # ax[0].plot(dates_limits, [floor_height]*2, 'k--') # Plot the optimal height time series. ax.plot(dates, data, color='darkcyan') # Plot the markers at the points for which the wind profiles are plotted # in figure 5b. # TODO make optional # marker_ids = [list(hours).index(h) for h in hours_wind_profile_plots] # for i, h_id in enumerate(marker_ids): # ax[0].plot(dates[h_id], optimal_heights[h_id], marker_cycle[i], color=color_cycle_default[i], markersize=8, # markeredgewidth=2, markerfacecolor='None') ax.set_ylabel(ylabel) ax.set_xlabel('Time') # ax.set_ylim([0, 800]) ax.grid() # ax.legend() ax.set_xlim(dates_limits) # plt.axes(ax[1]) plt.xticks(rotation=70) #plt.savefig('/home/s6lathim/physik/AWE/meeting/ireland/power_timeline.pdf') def plot_figure_5a_new(hours, v_ceiling, optimal_heights, #heights_of_interest, ceiling_id, floor_id, height_range=None, ref_velocity=None, height_bounds=[200, 500], v_bounds=[None, None], show_n_hours=24*7): # TODO rename, update Docstring """Plot optimal height and wind speed time series for the first week of data. Args: hours (list): Hour timestamps. v_ceiling (list): Optimal wind speed time series resulting from variable-height analysis. optimal_heights (list): Time series of optimal heights corresponding to `v_ceiling`. heights_of_interest (list): Heights above the ground at which the wind speeds are evaluated. ceiling_id (int): Id of the ceiling height in `heights_of_interest`, as used in the variable-height analysis. floor_id (int): Id of the floor height in `heights_of_interest`, as used in the variable-height analysis. """ shift = int(1e4) # TODO optional time range, not only from beginning # TODO heights_of_interest use cases fix -> height_bounds optimal_heights = optimal_heights[shift:shift+show_n_hours] if not isinstance(hours[0], np.datetime64): dates = [hour_to_date(h) for h in hours[shift:shift+show_n_hours]] else: dates = hours[shift:shift+show_n_hours] v_ceiling = v_ceiling[shift:shift+show_n_hours] fig, ax = plt.subplots(2, 1, sharex=True, figsize=(7, 6)) plt.subplots_adjust(bottom=.2) # Plot the height limits. dates_limits = [dates[0], dates[-1]] ceiling_height = height_bounds[1] # heights_of_interest[ceiling_id] floor_height = height_bounds[0] # heights_of_interest[floor_id] if ceiling_height > 0: ax[0].plot(dates_limits, [ceiling_height]*2, 'k--', label='height bounds') if floor_height > 0: ax[0].plot(dates_limits, [floor_height]*2, 'k--') # Plot the optimal height time series. ax[0].plot(dates, optimal_heights, color='darkcyan', label='AWES height') if height_range is not None: ax[0].plot(dates, height_range['min'][shift:shift+show_n_hours], color='darkcyan', alpha=0.25) ax[0].plot(dates, height_range['max'][shift:shift+show_n_hours], color='darkcyan', alpha=0.25, label='max/min AWES height') print('heights plotted...') # Plot the markers at the points for which the wind profiles are plotted # in figure 5b. # TODO make optional #marker_ids = [list(hours).index(h) for h in hours_wind_profile_plots] #for i, h_id in enumerate(marker_ids): # ax[0].plot(dates[h_id], optimal_heights[h_id], marker_cycle[i], color=color_cycle_default[i], markersize=8, # markeredgewidth=2, markerfacecolor='None') ax[0].set_ylabel('Height [m]') # TODO automatize ylim ax[0].set_ylim([0, 600]) ax[0].grid() ax[0].legend() if ref_velocity is not None: print(ref_velocity.shape) ref_velocity = ref_velocity[shift:shift+show_n_hours] ax[1].plot(dates, ref_velocity, alpha=0.5, label='@ ref. height') print('ref velocity plotted') if v_bounds[0] is not None: ax[1].plot(dates_limits, [v_bounds[0]]*2, 'k--', label='wind speed bounds') if v_bounds[1] is not None: ax[1].plot(dates_limits, [v_bounds[1]]*2, 'k--') # Plot the optimal wind speed time series. ax[1].plot(dates, v_ceiling, label='@ AWES height', color='darkcyan') ax[1].legend() #for i, h_id in enumerate(marker_ids): # ax[1].plot(dates[h_id], v_ceiling[h_id], marker_cycle[i], color=color_cycle_default[i], markersize=8, # markeredgewidth=2, markerfacecolor='None') ax[1].set_ylabel('Wind speed [m/s]') ax[1].grid() ax[1].set_xlim(dates_limits) print('wind speeds plotted...') plt.axes(ax[1]) plt.xticks(rotation=70) #fig.savefig('/home/s6lathim/physik/AWE/meeting/ireland/harvesting_height_wind_speed_timeline.pdf') return dates def plot_figure_5a(hours, v_ceiling, optimal_heights, heights_of_interest, ceiling_id, floor_id): """Plot optimal height and wind speed time series for the first week of data. Args: hours (list): Hour timestamps. v_ceiling (list): Optimal wind speed time series resulting from variable-height analysis. optimal_heights (list): Time series of optimal heights corresponding to `v_ceiling`. heights_of_interest (list): Heights above the ground at which the wind speeds are evaluated. ceiling_id (int): Id of the ceiling height in `heights_of_interest`, as used in the variable-height analysis. floor_id (int): Id of the floor height in `heights_of_interest`, as used in the variable-height analysis. """ # Only keep the first week of data from the time series. show_n_hours = 24*7 optimal_heights = optimal_heights[:show_n_hours] dates = [hour_to_date(h) for h in hours[:show_n_hours]] v_ceiling = v_ceiling[:show_n_hours] fig, ax = plt.subplots(2, 1, sharex=True) plt.subplots_adjust(bottom=.2) # Plot the height limits. dates_limits = [dates[0], dates[-1]] ceiling_height = heights_of_interest[ceiling_id] floor_height = heights_of_interest[floor_id] ax[0].plot(dates_limits, [ceiling_height]*2, 'k--', label='height bounds') ax[0].plot(dates_limits, [floor_height]*2, 'k--') # Plot the optimal height time series. ax[0].plot(dates, optimal_heights, color='darkcyan', label='optimal height') # Plot the markers at the points for which the wind profiles are plotted in figure 5b. marker_ids = [list(hours).index(h) for h in hours_wind_profile_plots] for i, h_id in enumerate(marker_ids): ax[0].plot(dates[h_id], optimal_heights[h_id], marker_cycle[i], color=color_cycle_default[i], markersize=8, markeredgewidth=2, markerfacecolor='None') ax[0].set_ylabel('Height [m]') ax[0].set_ylim([0, 800]) ax[0].grid() ax[0].legend() # Plot the optimal wind speed time series. ax[1].plot(dates, v_ceiling) for i, h_id in enumerate(marker_ids): ax[1].plot(dates[h_id], v_ceiling[h_id], marker_cycle[i], color=color_cycle_default[i], markersize=8, markeredgewidth=2, markerfacecolor='None') ax[1].set_ylabel('Wind speed [m/s]') ax[1].grid() ax[1].set_xlim(dates_limits) plt.axes(ax[1]) plt.xticks(rotation=70) def plot_figure_5b(hours, v_req_alt, v_ceiling, optimal_heights, heights_of_interest, ceiling_id, floor_id): """Plot vertical wind speed profiles for timestamps in `hours_wind_profile_plots`. Args: hours (list): Hour timestamps. v_req_alt (ndarray): Time series of wind speeds at `heights_of_interest`. v_ceiling (list): Optimal wind speed time series resulting from variable-height analysis. optimal_heights (list): Time series of optimal heights corresponding to `v_ceiling`. heights_of_interest (list): Heights above the ground at which the wind speeds are evaluated. ceiling_id (int): Id of the ceiling height in `heights_of_interest`, as used in the variable-height analysis. floor_id (int): Id of the floor height in `heights_of_interest`, as used in the variable-height analysis. """ fig, ax = plt.subplots() # Plot the height limits. wind_speed_limits = [0., 30.] ceiling_height = heights_of_interest[ceiling_id] floor_height = heights_of_interest[floor_id] ax.plot(wind_speed_limits, [ceiling_height]*2, 'k--', label='height bounds') ax.plot(wind_speed_limits, [floor_height]*2, 'k--') # Plot the vertical wind profiles. dates = [hour_to_date_str(h, date_str_format) for h in hours] marker_ids = [list(hours).index(h) for h in hours_wind_profile_plots] for i, h_id in enumerate(marker_ids): ax.plot(v_req_alt[h_id, :], heights_of_interest, color=color_cycle_default[i]) ax.plot(v_ceiling[h_id], optimal_heights[h_id], '-' + marker_cycle[i], label=dates[h_id], color=color_cycle_default[i], markersize=8, markeredgewidth=2, markerfacecolor='None') plt.xlim(wind_speed_limits) plt.ylim([0, 800.]) plt.ylabel('Height [m]') plt.xlabel('Wind speed [m/s]') plt.grid() plt.legend(bbox_to_anchor=(1.05, 1.)) plt.subplots_adjust(right=0.65) def fit_and_plot_weibull(wind_speeds, x_plot, line_styling, line_label, percentiles): """Fit Weibull distribution to histogram data and plot result. The used fitting method yielded better fits than weibull_min.fit(). Args: wind_speeds (list): Series of wind speeds. x_plot (list): Wind speeds for which the Weibull fit is plotted. format string (str): A format string for setting basic line properties. line_label (str): Label name of line in legend. percentiles (list): Heights above the ground at which the wind speeds are evaluated. """ # Perform curve fitting. starting_point = curve_fit_starting_points.get(line_label, None) # Actual histogram data is used to fit the Weibull distribution to. hist, bin_edges =
np.histogram(wind_speeds, 100, range=(0., 35.))
numpy.histogram
#!/usr/bin/env python ''' mcu: Modeling and Crystallographic Utilities Copyright (C) 2019 <NAME>. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Email: <NAME> <<EMAIL>> ''' import numpy as np from ..utils import plot, str_format from ..utils.misc import check_exist from ..vasp import const from ..cell import utils as cell_utils from ..cell import cell from . import qe_io class main(cell.main, plot.main): def __init__(self, prefix=None): assert prefix is not None, "Provide a prefix name for your project, for example, prefix.scf.out, prefix.band.out, etc." self.prefix = prefix self.get_info() ############ General ################# def get_info(self, filename=None): '''Extract basis information from the vasprun.xml''' if filename is None: if check_exist(self.prefix + ".scf.out"): filename = self.prefix + ".scf.out" else: assert 0, "Cannot find any prefix.scf.out file" data = qe_io.read_pw_output(filename) self.nelec = data['nelec'] self.nbands = data['nbands'] self.soc = data['soc'] self.kpts = data['kpts'][:,:3] self.kpts_weight = data['kpts'][:,3] self.nkpts = self.kpts.shape[0] self.band = data['eigenvals'] self.ispin = self.band.shape[0] self.atom = data['atom'] self.natom = len(self.atom) self.element = [atm[0] for atm in data['species']] # Make a cell object in the spglib format alat = data['alat'] * const.AUTOA lattice = data['crystal axes'] * alat positions = data['atom_position'] numbers = cell_utils.convert_atomtype(self.atom) self.cell_init = (lattice, positions, numbers) self.cell = self.cell_init ############ Plotting ################# def get_efermi(self, data=None): '''Get Fermi energy''' if data is None: if check_exist(self.prefix + ".band.out"): filename = self.prefix + ".band.out" elif check_exist(self.prefix + ".scf.out"): filename = self.prefix + ".scf.out" data = qe_io.read_pw_output(filename) if data['hoco'] is not None: efermi = data['hoco'] elif data['efermi'] is not None: efermi = data['efermi'] elif check_exist(self.prefix + ".scf.out"): filename = self.prefix + ".scf.out" data = qe_io.read_pw_output(filename) efermi = data['efermi'] else: print("WARNING! Fermi energy is estimated from the number of electrons. \ For metallic systems, this may be wrong") # Take the HOMO as the E Fermi band = data['eigenvals'] nelec = int(data['nelec']) if band.shape[0] == 1: npairs = nelec//2 efermi = band[0,:,:npairs].max() else: nspin, nkpts, nband = band.shape band = np.sort(band.flatten()) nelecs = nelec * nkpts efermi = band[:nelecs].max() return efermi def get_band(self, filename=None): ''' if filename is not specified, band structure is obtained by searching for: (1) self.prefix + ".band.out" (2) self.prefix + ".scf.out" ''' if filename is None: if check_exist(self.prefix + ".band.out"): filename = self.prefix + ".band.out" elif check_exist(self.prefix + ".scf.out"): filename = self.prefix + ".scf.out" else: assert 0, "Cannot find any band structure file" # Collecting data from pw_output data = qe_io.read_pw_output(filename) band = data['eigenvals'] kpts = data['kpts'][:,:3] # the last column is the kpt weight alat = data['alat'] * const.AUTOA # in angstrom lattice = data['crystal axes'] * alat recip_lattice = data['reciprocal axes'] * 2*np.pi / alat # Find absolute kpts abs_kpts = kpts.dot(recip_lattice) # From fractional to absolute in A^-1 unit temp_kpts = np.empty_like(abs_kpts) temp_kpts[0] = abs_kpts[0] temp_kpts[1:] = abs_kpts[:-1] proj_kpath = np.matrix(np.sqrt(((temp_kpts - abs_kpts)**2).sum(axis=1)).cumsum()) efermi = self.get_efermi(data) return band, kpts, proj_kpath, recip_lattice, efermi def get_bandgap(self, filename=None): '''Get the bandgap''' band, kpath_frac, proj_kpath, recip_lattice, efermi = self.get_band(filename) nspin, nkpts, nbands = band.shape for spin in range(nspin): print('Spin:', spin) CBM = None for bandth in range(nbands): shifted_band = band[spin,:,bandth] - efermi if (shifted_band > 0.0).all() == True: CBM = band[spin,:, bandth] VBM = band[spin,:, bandth -1] break elif ((shifted_band < 0.0).any() == True) and ((shifted_band > 0.0).any() == True): print("This is a metal") break if CBM is not None: vbm_idx = np.argmax(VBM) cbm_idx = np.argmin(CBM) bandgap = CBM[cbm_idx] - VBM[vbm_idx] direct = False if vbm_idx == cbm_idx: direct = True print(' E(VBM) = %7.4f at k = [%6.4f,%6.4f,%6.4f]' % (VBM[vbm_idx], kpath_frac[vbm_idx,0], kpath_frac[vbm_idx,1], kpath_frac[vbm_idx,2])) print(' E(CBM) = %7.4f at k = [%6.4f,%6.4f,%6.4f]' % (CBM[cbm_idx], kpath_frac[cbm_idx,0], kpath_frac[cbm_idx,1], kpath_frac[cbm_idx,2])) if direct == True: print(' Direct bandgap : %6.3f' % (bandgap)) else: print(' Indirect bandgap : %6.3f' % (bandgap)) gap1 = CBM[vbm_idx] - VBM[vbm_idx] gap2 = CBM[cbm_idx] - VBM[cbm_idx] direct_gap = min(gap1, gap2) print(' Direct bandgap : %6.3f' % (direct_gap)) def _generate_band(self, filename=None, efermi=None, spin=0, klabel=None): '''Processing/collecting the band data before the plotting function klabel : a list of labels and corresponding coordinates for high symmetry k-points ''' band, kpath_frac, proj_kpath, recip_lattice, efermi_ = self.get_band(filename) if efermi is None: efermi = efermi_ band = band[spin] - efermi # Find absolute coordinates for high symmetric kpoints sym_kpoint_coor = None if klabel is not None: klabel, coor_kpts = str_format.format_klabel(klabel) assert coor_kpts is not None, "You need to provide the coordinates for high symmetric k in the klabel" abs_kpts = coor_kpts.dot(recip_lattice) temp_kpts = np.empty_like(abs_kpts) temp_kpts[0] = abs_kpts[0] temp_kpts[1:] = abs_kpts[:-1] sym_kpoint_coor = np.sqrt(((temp_kpts - abs_kpts)**2).sum(axis=1)).cumsum() return band, proj_kpath, sym_kpoint_coor, klabel def _generate_pband(self, filename=None, spin=0, gradient=False, lm='spd'): '''Processing/collecting the projected band data before the plotting function Note: In QE, each atom has its own set of atomic orbitals to project onto. For example, Fe has 1s, 2s, p, and d. O only has s and p Unlike QE, VASP decomposes the band into a list of atomic orbitals. For example, both Fe and O have contributations from s, p, d, .... Hence, the projected wf is sparser in VASP than in QE proj_wf = [kpts, band, # of orbitals] Examples for lm: lm = 'Ni:s ; p ; d' : three groups: (1) s of Ni ; (2) all p orbitals ; (3) all d orbitals lm = ['Ni:s,pd', 'O1:p;O2'] : two groups: (1) s,p,d of Ni ; (2) all p orbitals of the 1st O and all otbitals of O2 lm = ['Ni1;O', 'N'] : two groups: (1) the 1st Ni and all the O atoms ; (2) All N atom if gradient == True: user has to provide a TWO groups of orbitals for example, lm = 'Ni:s ; p' or ['Ni:s,pd', 'O1:p;O2'] ''' if filename is None: if check_exist(self.prefix + ".projwfc.out"): filename = self.prefix + ".projwfc.out" else: assert 0, "Cannot find any band structure file" data = qe_io.read_projwfc_output(filename) species = data['species'] l_list = data['l'] m_list = np.int64(data['m']) proj_wf = data['projwfc'][spin] # Create the possible lm list lm_data = {'0': ['s'], '1':['pz', 'px', 'py'], '2':['dz2', 'dxz', 'dyz', 'dx2-y2', 'dxy']} lm_list = [] for i, l in enumerate(l_list): lm_list.append(lm_data[l][m_list[i] - 1]) # Generate pband formatted_atom, formatted_lm = str_format.general_lm(lm) if gradient: assert len(formatted_atom) == 2, "For the gradient plot, you only need to provide two groups of orbitals, for example, lm = 's ; Ni:d' or lm = ['Ni:s', 'O']" # Calculate total band and remove zero values total = proj_wf.sum(axis=2) shape = total.shape idx_zeros = total.flatten() < 0.0001 total = total.flatten() total[idx_zeros] = 1.0 total = total.reshape(shape) pband = [] for i, atoms in enumerate(formatted_atom): proj_val = 0 for j, atom in enumerate(atoms): # Locate the atom if atom is None: idx_atom = np.arange(len(species)) else: atom_, id = str_format.format_atom(atom) assert atom_ in self.element, "This is wrong: " + atom + ". Check the lm string/list. Atom is must be in the element list: " + " ".join(self.element) available_atom = [(n, atm) for n, atm in enumerate(self.atom) if atm == atom_] natom = len(available_atom) if id is not None: assert id <= natom, "This is wrong: " + atom + ". Check the lm string/list. Atom id is must be <= " + str(natom) + " for: " + atom_ idx_atom = [] nspecies = species.count(atom_) nwfc = nspecies // natom count = 0 for n, atm in enumerate(species): if atm == atom_: if id is None: idx_atom.append(n) elif count // nwfc == id - 1: idx_atom.append(n) count += 1 # Locate the lm idx_lm = [] for idx in idx_atom: for each_lm in formatted_lm[i][j]: if each_lm is None: idx_lm.append(idx) elif lm_list[idx] == each_lm: idx_lm.append(idx) proj_val += (proj_wf[:,:,idx_lm]).sum(axis=2) pband.append(proj_val/total) pband = np.asarray(pband) if gradient: pband = pband[0]/(pband.sum(axis=0)) return pband def _generate_dos(self, prefix=None, efermi=None, spin=0, lm=None): '''Processing/collecting the DOS data before the plotting function TDOS dimensions: [spin , [E(eV), tdos(E)]] spin : spin of DOS. lm : string or a list of string, e.g. 'Ni:s' or ['Ni:s','C:s,px,pz'] ''' if lm is None: lm = [atom+':s,p,d' for atom in self.element] if prefix is None: prefix = self.prefix tdos_file = prefix + ".dos" assert check_exist(tdos_file), "Cannot find " + tdos_file # Compute pDOS if check_exist(prefix + ".pdos_tot"): # Get total DOS total_pdos_data = qe_io.read_pdos_output(prefix + ".pdos_tot") tdos = total_pdos_data[spin,:,:2] if efermi is None: efermi = self.get_efermi() # Collect the pdos files data = qe_io.read_projwfc_output(prefix + ".projwfc.out") species = data['species'] wfc_id = np.int64(data['wfc']) l_list = data['l'] m_list = np.int64(data['m']) pdos_data = [] for i, atm in enumerate(self.atom): idx_atom = [j for j, atom in enumerate(species) if atom == atm] wfc_idx = np.unique(wfc_id[idx_atom]) for wfc in wfc_idx: filename = prefix + ".pdos_atm#" + str(i + 1) + "(" + atm + ")" + "_wfc#" + str(wfc) if check_exist(filename + "(s)"): filename = filename + "(s)" elif check_exist(filename + "(p)"): filename = filename + "(p)" elif check_exist(filename + "(d)"): filename = filename + "(d)" lm_pdos_data = qe_io.read_pdos_output(filename)[spin] pdos_data.append(lm_pdos_data[:,2:]) pdos_data = np.concatenate(pdos_data, axis=1) # Create the possible lm list lm_data = {'0': ['s'], '1':['pz', 'px', 'py'], '2':['dz2', 'dxz', 'dyz', 'dx2-y2', 'dxy']} lm_list = [] for i, l in enumerate(l_list): lm_list.append(lm_data[l][m_list[i] - 1]) formatted_atom, formatted_lm = str_format.general_lm(lm) # Compute pDOS pdos = [] for i, atoms in enumerate(formatted_atom): proj_val = 0 for j, atom in enumerate(atoms): # Locate the atom if atom is None: idx_atom = np.arange(len(species)) else: atom_, id = str_format.format_atom(atom) assert atom_ in self.element, "This is wrong: " + atom + ". Check the lm string/list. Atom is must be in the element list: " + " ".join(self.element) available_atom = [(n, atm) for n, atm in enumerate(self.atom) if atm == atom_] natom = len(available_atom) if id is not None: assert id <= natom, "This is wrong: " + atom + ". Check the lm string/list. Atom id is must be <= " + str(natom) + " for: " + atom_ idx_atom = [] nspecies = species.count(atom_) nwfc = nspecies // natom count = 0 for n, atm in enumerate(species): if atm == atom_: if id is None: idx_atom.append(n) elif count // nwfc == id - 1: idx_atom.append(n) count += 1 # Locate the lm idx_lm = [] for idx in idx_atom: for each_lm in formatted_lm[i][j]: if each_lm is None: idx_lm.append(idx) elif lm_list[idx] == each_lm: idx_lm.append(idx) proj_val += (pdos_data[:,idx_lm]).sum(axis=1) pdos.append(proj_val) pdos = np.asarray(pdos).T else: # Get total DOS tdos_data = qe_io.read_tdos_output(tdos_file) tdos = tdos_data['dos'][spin,:,:2] if efermi is None: efermi = tdos_data['efermi'] else: efermi = 0 pdos = None # Shift the energy tdos[:,0] = tdos[:,0] - efermi return tdos, pdos def _generate_kdos(self, prefix=None, efermi=None, spin=0, lm=None, klabel=None): '''Processing/collecting the k-resolved DOS data before the plotting function The kDOS will be summed over all the lm kDOS dimensions: [spin , kpts, [E(eV), tdos(E)]] spin : spin of DOS. lm : string or a list of string, e.g. 'Ni:s' or ['Ni:s','C:s,px,pz'] ''' if prefix is None: prefix = self.prefix assert check_exist(prefix + ".pdos_tot"), "Cannot find " + tdos_file formatted_atom, formatted_lm = str_format.general_lm(lm) assert len(formatted_atom) == 1, "For kDOS plot, you only need to provide one groups of orbitals, for example, lm = 'Ni:sp', meaning " # Get total kDOS total_kdos_data = qe_io.read_kdos_output(prefix + ".pdos_tot") tdos = total_kdos_data[spin,:,:,:2] if efermi is None: efermi = self.get_efermi() # Collect the pdos files projwfc_data = qe_io.read_projwfc_output(prefix + ".projwfc.out") site = projwfc_data['site'] species = projwfc_data['species'] wfc_id = np.int64(projwfc_data['wfc']) l_list = projwfc_data['l'] m_list = np.int64(projwfc_data['m']) pdos_data = [] for i, atm in enumerate(self.atom): idx_atom = [j for j, atom in enumerate(species) if atom == atm] wfc_idx = np.unique(wfc_id[idx_atom]) for wfc in wfc_idx: filename = prefix + ".pdos_atm#" + str(i + 1) + "(" + atm + ")" + "_wfc#" + str(wfc) if check_exist(filename + "(s)"): filename = filename + "(s)" elif check_exist(filename + "(p)"): filename = filename + "(p)" elif check_exist(filename + "(d)"): filename = filename + "(d)" lm_pdos_data = qe_io.read_kdos_output(filename)[spin] pdos_data.append(lm_pdos_data[:,:,2:]) pdos_data = np.concatenate(pdos_data, axis=2) # Create the possible lm list lm_data = {'0': ['s'], '1':['pz', 'px', 'py'], '2':['dz2', 'dxz', 'dyz', 'dx2-y2', 'dxy']} lm_list = [] for i, l in enumerate(l_list): lm_list.append(lm_data[l][m_list[i] - 1]) # Compute kDOS for i, atoms in enumerate(formatted_atom): proj_val = 0 for j, atom in enumerate(atoms): # Locate the atom if atom is None: idx_atom = np.arange(len(species)) else: atom_, id = str_format.format_atom(atom) assert atom_ in self.element, "This is wrong: " + atom + ". Check the lm string/list. Atom is must be in the element list: " + " ".join(self.element) available_atom = [(n, atm) for n, atm in enumerate(self.atom) if atm == atom_] natom = len(available_atom) if id is not None: assert id <= natom, "This is wrong: " + atom + ". Check the lm string/list. Atom id is must be <= " + str(natom) + " for: " + atom_ idx_atom = [] nspecies = species.count(atom_) nwfc = nspecies // natom count = 0 for n, atm in enumerate(species): if atm == atom_: if id is None: idx_atom.append(n) elif count // nwfc == id - 1: idx_atom.append(n) count += 1 # Locate the lm idx_lm = [] for idx in idx_atom: for each_lm in formatted_lm[i][j]: if each_lm is None: idx_lm.append(idx) elif lm_list[idx] == each_lm: idx_lm.append(idx) proj_val += (pdos_data[:,:,idx_lm]).sum(axis=2) pdos = proj_val # Shift the energy tdos[:,:,0] = tdos[:,:,0] - efermi # Compute the kpath projected on 1D kpts = projwfc_data['kpts'] lattice = self.cell[0] recip_lattice = 2 * np.pi * np.linalg.inv(lattice).T abs_kpts = kpts.dot(recip_lattice) # From fractional to absolute in A^-1 unit temp_kpts =
np.empty_like(abs_kpts)
numpy.empty_like
import numpy as np from scipy.constants import m_p, c, e import matplotlib.pyplot as plt import PyHEADTAIL.particles.generators as generators from PyHEADTAIL.trackers.transverse_tracking import TransverseMap from PyHEADTAIL.trackers.detuners import Chromaticity, AmplitudeDetuning def run(): def track(bunch, map_): for i in range(n_turns): for m in map_: m.track(bunch) def generate_bunch(n_macroparticles, alpha_x, alpha_y, beta_x, beta_y, alpha_0, Q_s, R): intensity = 1.05e11 sigma_z = 0.059958 gamma = 3730.26 eta = alpha_0 - 1. / gamma**2 gamma_t = 1. / np.sqrt(alpha_0) p0 = np.sqrt(gamma**2 - 1) * m_p * c beta_z = eta * R / Q_s epsn_x = 3.75e-6 # [m rad] epsn_y = 3.75e-6 # [m rad] epsn_z = 4 * np.pi * sigma_z**2 * p0 / (beta_z * e) bunch = generators.generate_Gaussian6DTwiss( macroparticlenumber=n_macroparticles, intensity=intensity, charge=e, gamma=gamma, mass=m_p, circumference=C, alpha_x=alpha_x, beta_x=beta_x, epsn_x=epsn_x, alpha_y=alpha_y, beta_y=beta_y, epsn_y=epsn_y, beta_z=beta_z, epsn_z=epsn_z) #print bunch.sigma_z() return bunch # In[4]: # Basic parameters. n_turns = 3 n_segments = 1 n_macroparticles = 10 Q_x = 64.28 Q_y = 59.31 Q_s = 0.0020443 C = 26658.883 R = C / (2.*np.pi) alpha_x_inj = 0. alpha_y_inj = 0. beta_x_inj = 66.0064 beta_y_inj = 71.5376 alpha_0 = 0.0003225 # In[5]: # Parameters for transverse map. s = np.arange(0, n_segments + 1) * C / n_segments alpha_x = alpha_x_inj * np.ones(n_segments) beta_x = beta_x_inj * np.ones(n_segments) D_x = np.zeros(n_segments) alpha_y = alpha_y_inj *
np.ones(n_segments)
numpy.ones
''' Solver for step index fiber using analytical expression of the mode profile and solving numerically the analytical dispersion equation. ''' import time import numpy as np from scipy.optimize import root from scipy.special import jv, kn from ..modes import Modes from ..logger import get_logger logger = get_logger(__name__) from joblib import Parallel, delayed def solve_SI(indexProfile, wl, **options): degenerate_mode = options.get('degenerate_mode','sin') n_jobs = options.get('n_jobs', -2) modes = findPropagationConstants(wl,indexProfile) modes = associateLPModeProfiles(modes,indexProfile, degenerate_mode=degenerate_mode, n_jobs=n_jobs) return modes def findPropagationConstants(wl,indexProfile, tol=1e-9): ''' Find the propagation constants of a step index fiber by numerically finding the solution of the scalar dispersion relation [1]_ [2]_. Parameters ---------- wl : float wavelength in microns. indexProfile: IndexProfile object object that contains data about the transverse index profile. Returns ------- modes : Modes object Object containing data about the modes. Note that it does not fill the transverse profiles, only the data about the propagation constants and the mode numbers. See Also -------- associateLPModeProfiles() Notes ----- .. [1] <NAME>, "Fundamentals of optical waveguides" Academic Press, 2006 .. [2] <NAME>, "Modes of step index multimode fibers" http://wavefrontshaping.net/index.php/component/content/article/68-community/tutorials/multimode-fibers/118-modes-of-step-index-multimode-fibers ''' lbda = wl NA = indexProfile.NA a = indexProfile.a n1 = indexProfile.n1 logger.info('Finding the propagation constant of step index fiber by numerically solving the dispersion relation.') t0 = time.time() # Based on the dispersion relation,l eq. 3.74 # The normalized frequency, cf formula 3.20 of the book v=(2*np.pi/lbda*NA*a) roots = [0] m = 0 modes = Modes() interval = np.arange(np.spacing(10),v-np.spacing(10),v*1e-4) while len(roots): def root_func(u): w=np.sqrt(v**2-u**2) return jv(m,u)/(u*jv(m-1,u))+kn(m,w)/(w*kn(m-1,w)) guesses = np.argwhere(np.abs(np.diff(np.sign(root_func(interval))))) froot = lambda x0: root(root_func,x0,tol = tol) sols = map(froot, interval[guesses]) roots = [s.x for s in sols if s.success] # remove solution outside the valid interval, round the solutions and remove duplicates roots = np.unique([np.round(r/tol)*tol for r in roots if (r > 0 and r<v)]).tolist() roots_num = len(roots) if roots_num: degeneracy = 1 if m == 0 else 2 modes.betas.extend([np.sqrt((2*np.pi/lbda*n1)**2-(r/a)**2) for r in roots]*degeneracy) modes.u.extend(roots*degeneracy) modes.w.extend([np.sqrt(v**2-r**2) for r in roots]*degeneracy) modes.number += roots_num*degeneracy modes.m.extend([m]*roots_num*degeneracy) modes.l.extend([x+1 for x in range(roots_num)]*degeneracy) m += 1 logger.info("Found %g modes in %0.2f seconds." % (modes.number,time.time()-t0)) return modes def calc_mode(modes, idx, degenerate_mode, R, a, TH, Rlessa, Rgreatera): m = modes.m[idx] l = modes.l[idx] u = modes.u[idx] w = modes.w[idx] phase = m * TH psi = 0 degenerated = False if (m, l) in zip(modes.m[:idx], modes.l[:idx]): degenerated = True # Non-zero transverse component if degenerate_mode == 'sin': # two pi/2 rotated degenerate modes for m < 0 psi = np.pi/2 if m[idx] < 0 else 0 phase_mult = np.cos(phase + psi) elif degenerate_mode == 'exp': # noticably faster than writing exp(1j*phase) phase_mult =
np.cos(phase)
numpy.cos
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296':
np.array([-0.8211795643076093, -0.1186965077161071])
numpy.array
""" Main project source file. """ from typing import List, Tuple from actor import Actor from data_plotting import plot_accumulated_actor_graph, plot_accumulated_edges_graphs from simulator import Simulator from graph import RoadGraph from queue import PriorityQueue from utils import softmax_travel_times, compute_average_over_time, MultimodalDistribution from atis import PrevisionAtis, CurrentAtis, AdherenceAtis, Atis from statistics import SimStats from ipdb import set_trace from pprint import pprint from collections import defaultdict from tqdm import trange from functools import partial import argparse import numpy as np import json import os.path import networkx as nx PREVISION_ATIS = 1 REAL_ATIS = 2 ADHERENCE_ATIS = 3 def parse_args(): parser = argparse.ArgumentParser( description='Systems Modelling and Simulation') parser.add_argument("-n", "--num_actors", default=500, type=int, metavar="N", help="number of vehicles/actors to generate per simulation run") parser.add_argument("-r", "--runs", default=1, type=int, metavar="R", dest="n_runs", help="number of times to run the simulation for") parser.add_argument("-thr", "--congestion_threshold", default=0.9, type=float, metavar="THRESH", help="threshold when to consider a link congested, volume/capacity") parser.add_argument("-tmax", "--max_run_time", default=48.0, type=float, metavar="MAX_TIME", dest="max_run_time", help="max time of each simulation run (in hours)") parser.add_argument("-atis", "--atis_percentage", default=0.0, type=float, metavar="ATIS_P", help="percentage of vehicles using the ATIS system") parser.add_argument("-p", "--peak", type=float, nargs=2, action='append', dest='traffic_peaks', metavar=("TPEAK_MEAN", "TPEAK_STD"), help="mean and standard deviation of a normal distribution that represents a peak in traffic") parser.add_argument("-o", "--out_file", type=str, default=os.path.join("src", "results", "default.json"), dest='save_path', metavar="SAVE_PATH", help="place to save the result of running the simulations") parser.add_argument('-ap', '--atis-prevision', dest='used_atis', action='store_const', const=1, help="ATIS will make use of predictions to estimate the fastest route") parser.add_argument('-ar', '--atis-real', dest='used_atis', action='store_const', const=2, help="ATIS will make use of real times to estimate the fastest route") parser.add_argument('-aa', '--atis-adherence', dest='used_atis', action='store_const', const=3, help="ATIS will make use of other atis users' data to estimate the fastest route") parser.set_defaults(used_atis=2) parser.add_argument("-v", "--verbose", dest='verbose', action="store_true", help="allow helpful prints to be displayed") parser.set_defaults(verbose=False) parser.add_argument("-pl", "--plots", dest='plots', action="store_true", help="display plots at the end of the simulation regarding the network occupation") parser.set_defaults(plots=True) return parser.parse_args() def print_args(args): from pprint import PrettyPrinter pp = PrettyPrinter(indent=4) pp.pprint(vars(args)) print() def actor_constructor(use_atis_p: float, graph: RoadGraph, atis: Atis): """Calculate possible routes and give each one a probability based on how little time it takes to transverse it""" possible_routes = graph.get_all_routes() routes_times = [graph.get_optimal_route_travel_time(r) for r in possible_routes] routes_probs = softmax_travel_times(routes_times) idx = np.random.choice(len(possible_routes), p=routes_probs) return Actor( possible_routes[idx], np.random.choice([atis, None], p=[use_atis_p, 1-use_atis_p])) def atis_constructor(used_atis: bool, use_atis_p: float, num_actors: int, graph: RoadGraph, traffic_dist: MultimodalDistribution, events: PriorityQueue): # print("Created ATIS") switcher = { PREVISION_ATIS: PrevisionAtis(graph, use_atis_p, traffic_dist, num_actors), REAL_ATIS: CurrentAtis(graph, use_atis_p), ADHERENCE_ATIS: AdherenceAtis(graph, use_atis_p, events) } return switcher.get(used_atis, "Invalid Atis") def stats_constructor(graph: RoadGraph): # print("Created STATS") return SimStats(graph) def statistics_print(sim: Simulator): """Print of simulation statistics regarding ATIS and non ATIS users""" print() atis_yes, atis_no = [], [] for a in sim.actors: if a.atis is not None: atis_yes.append(a.total_travel_time) else: atis_no.append(a.total_travel_time) print("ATIS YES: mean: %f || std: %f" % (np.mean(atis_yes),
np.std(atis_yes)
numpy.std
import numpy as np import os import argparse prefix = './data/' np.random.seed(0) def load_data(args): n_user, n_item, train_data, eval_data, test_data = load_rating(args) n_entity, n_relation, adj_entity, adj_relation = load_kg(args) print('data loaded.') return n_user, n_item, n_entity, n_relation, train_data, eval_data, test_data, adj_entity, adj_relation def load_rating(args): print('reading rating file ...') # reading rating file rating_file = prefix + args.dataset + '/ratings_final' if os.path.exists(rating_file + '.npy'): rating_np = np.load(rating_file + '.npy') else: rating_np = np.loadtxt(rating_file + '.txt', dtype=np.int64) np.save(rating_file + '.npy', rating_np) n_user = len(set(rating_np[:, 0])) n_item = len(set(rating_np[:, 1])) train_data, eval_data, test_data = dataset_split(rating_np, args) return n_user, n_item, train_data, eval_data, test_data # return n_item, train_data def dataset_split(rating_np, args): print('splitting dataset ...') # train:eval:test = 6:2:2 eval_ratio = 0.2 test_ratio = 0.2 n_ratings = rating_np.shape[0] eval_indices = np.random.choice(list(range(n_ratings)), size=int(n_ratings * eval_ratio), replace=False) left = set(range(n_ratings)) - set(eval_indices) test_indices = np.random.choice(list(left), size=int(n_ratings * test_ratio), replace=False) train_indices = list(left - set(test_indices)) if args.ratio < 1: train_indices = np.random.choice(list(train_indices), size=int(len(train_indices) * args.ratio), replace=False) train_data = rating_np[train_indices] eval_data = rating_np[eval_indices] test_data = rating_np[test_indices] return train_data, eval_data, test_data def load_kg(args): print('reading KG file ...') # reading kg file kg_file = prefix + args.dataset + '/kg_final' if os.path.exists(kg_file + '.npy'): kg_np = np.load(kg_file + '.npy') else: kg_np = np.loadtxt(kg_file + '.txt', dtype=np.int64) np.save(kg_file + '.npy', kg_np) n_entity = len(set(kg_np[:, 0]) | set(kg_np[:, 2])) n_relation = len(set(kg_np[:, 1])) kg = construct_kg(kg_np) adj_row, adj_col, adj_relation = construct_adj(args, kg, n_entity) return n_entity, n_relation, (adj_row, adj_col), adj_relation def construct_kg(kg_np): print('constructing knowledge graph ...') kg = dict() for triple in kg_np: head = triple[0] relation = triple[1] + 1 tail = triple[2] # treat the KG as an undirected graph if head not in kg: kg[head] = [] kg[head].append((tail, relation)) if tail not in kg: kg[tail] = [] kg[tail].append((head, relation)) return kg def construct_adj(args, kg, entity_num): print('constructing adjacency matrix ...') # each line of adj_entity stores the sampled neighbor entities for a given entity # each line of adj_relation stores the corresponding sampled neighbor relations # adj_entity = np.zeros([entity_num, args.neighbor_sample_size], dtype=np.int64) # adj_relation = np.zeros([entity_num, args.neighbor_sample_size], dtype=np.int64) adj_row = [] adj_col = [] adj_relation = [] for entity in range(entity_num): neighbors = kg[entity] n_neighbors = len(neighbors) # if n_neighbors >= args.neighbor_sample_size: # sampled_indices = np.random.choice(list(range(n_neighbors)), size=args.neighbor_sample_size, replace=False) # else: # sampled_indices = np.random.choice(list(range(n_neighbors)), size=args.neighbor_sample_size, replace=True) # # adj_entity[entity] = np.array([neighbors[i][0] for i in sampled_indices]) # adj_relation[entity] = np.array([neighbors[i][1] for i in sampled_indices]) adj_row.extend([entity] * n_neighbors) adj_col.extend([neighbors[i][0] for i in range(n_neighbors)]) adj_relation.extend([neighbors[i][1] for i in range(n_neighbors)]) return np.array(adj_row), np.array(adj_col), np.array(adj_relation) # # if __name__ == '__main__': # parser = argparse.ArgumentParser() # parser.add_argument('--dataset', default='movie') # parser.add_argument('--ratio', default=1) # parser.add_argument('--neighbor_sample_size', default=8) # args = parser.parse_args() # load_kg(args) # i = 1 def load_kg_ver0(args): print('reading KG file ...') # reading kg file kg_file = prefix + args.dataset + '/kg_final' if os.path.exists(kg_file + '.npy'): kg_np = np.load(kg_file + '.npy') else: kg_np =
np.loadtxt(kg_file + '.txt', dtype=np.int64)
numpy.loadtxt
import numpy as np from scipy.interpolate import interp1d from scipy.integrate import solve_ivp import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.colors as mcolors import sys from os.path import dirname, realpath pypath = dirname(dirname(dirname(realpath(__file__)))) + '/python/' sys.path.insert(1, pypath) import utils from odes import scara_2dbint, scara # # Read the specification file dirpath = dirname(realpath(__file__)) spec = "gb2" specfile = '/' + spec + ".txt" dba = utils.read_spec_from_txt(dirpath+specfile) # # Read the controller files tag = [] pavings = [] ctlr = [] for k in range(dba.n_dba): w = "/controller_" + spec + "_w" + str(k) + ".h5" tau, X, U, _, _, p, t, c = utils.read_controller_itvl_from_h5(dirpath+w) tag.append(t) pavings.append(p) ctlr.append(c) controller = utils.CtlrItvl(U, pavings, tag, ctlr) model = scara(tau) # # Compute the percentage of winning set on the state space winset = pavings[dba.q0][np.argwhere(tag[dba.q0] == 1).squeeze()] print("\nWinning set coverage:") wsize = np.sum((winset[:, 1]-winset[:, 0]) * (winset[:, 3]-winset[:, 2]) * (winset[:, 5]-winset[:, 4]) * (winset[:, 7]-winset[:, 6])) winper = "{:.2%}".format( wsize/((X[0, 1]-X[0, 0])*(X[1, 1]-X[1, 0]) * (X[2, 1]-X[2, 0])*(X[3, 1]-X[3, 0])) ) print(winper) # # Set up workspace nG = 2 G = np.zeros(shape=(4, 2, 2)) G[:, :, 0] = np.array([[0.4980, 0.5772], [1.5739, 1.7055], [-0.1, 0.1], [-0.1, 0.1]]) G[:, :, 1] = np.array([[0.4903, 0.6069], [-0.9363, -0.8363], [-0.1, 0.1], [-0.1, 0.1]]) A = pavings[dba.q0][np.argwhere(tag[dba.q0] == -1).squeeze(), :] def get_labels(x, G, A): if(x[0] > G[0, 0, 0] and x[0] < G[0, 1, 0] and x[1] > G[1, 0, 0] and x[1] < G[1, 1, 0]): return 1 elif(x[0] > G[0, 0, 1] and x[0] < G[0, 1, 1] and x[1] > G[1, 0, 1] and x[1] < G[1, 1, 1]): return 2 elif(utils.index_in_interval_array(x, A).size > 0): return -1 else: return 0 # # Simulation rng = np.random.default_rng() Tsim = 50 x0 = np.array([0.0, 0.0, 0.0, 0.0]) t = 0 x = x0 q = dba.q0 tsim = [] xsim = [] usim = [] qsim = [] torqsim = [] lsim = [] while(t < Tsim): x_id = utils.index_in_interval_array(x, pavings[q]) if(x_id < 0): print("System state ") print(x) print(" is not inside the winning set.") break if(q < 0): print("System unsafe.") break if(any(ctlr[q][x_id, :])): uset = np.argwhere(ctlr[q][x_id, :]).squeeze() # get the indices of valid input else: print("No valid control input.") break if(uset.size > 1): if(t < tau): uid = rng.choice(uset, 1) # randomly pick one else: uid = uset[np.argmin(np.linalg.norm(U[uset, :]-upre, axis=1))] else: uid = int(uset) u = U[uid, :].squeeze() upre = u # Calculate torque torq = model.compute_torque(np.atleast_2d(u).T, np.atleast_2d(x[2:4]).T, np.atleast_2d(x[0:2]).T) # Integrate ode sol = solve_ivp(scara_2dbint, [0, tau], x, method='RK45', args=(u,)) tt = sol.t[-1] y = sol.y[:, -1] # Save trajectories tsim.append(t) xsim.append(x) usim.append(u) qsim.append(q) torqsim.append(torq.astype(float).T.squeeze()) lsim.append(get_labels(x, G, A)) # Update state q = dba.q_prime[q, get_labels(x, G, A)] x = y t += tt xsim = np.asarray(xsim) usim = np.asarray(usim) qsim = np.asarray(qsim) tsim =
np.asarray(tsim)
numpy.asarray
import argparse import os from importlib import import_module from abp.configs import NetworkConfig, ReinforceConfig, EvaluationConfig from abp.examples.pysc2.tug_of_war.device_handler import get_default_device, to_device, DeviceDataLoader import torch import numpy as np import torch.nn as nn from abp.adaptives import TransAdaptive from torch.utils.data.sampler import SubsetRandomSampler from torch.utils.data.dataloader import DataLoader from torch.optim import Adam def pre_process(data, output_indexes, output_shape): np_data = np.array(data) data_input = np.stack(np_data[:,0]) data_output = np.stack(np_data[:,1]) nexus_idx = output_indexes data_output = data_output[:,nexus_idx] data_x = normalize(data_input, output_indexes, output_shape) data_y = normalize(data_output, output_indexes, output_shape) tensor_x = torch.stack([torch.Tensor(i) for i in data_x]) tensor_y = torch.stack([torch.Tensor(i) for i in data_y]) tensor_dataset = torch.utils.data.TensorDataset(tensor_x, tensor_y) return tensor_dataset def normalize(np_data, output_indexes, output_shape): norm_vector_input = np.array([700, 50, 40, 20, 50, 40, 20, 3, 50, 40, 20, 50, 40, 20, 3, 50, 40, 20, 50, 40, 20, 50, 40, 20, 50, 40, 20, 2000, 2000, 2000, 2000, 40]) norm_vector_output = norm_vector_input[output_indexes] if len(np_data[0]) == output_shape: return np_data / norm_vector_output else: return np_data / norm_vector_input def calculate_baseline(data, val_indices): test_data = [data[i] for i in val_indices] val_set = np.array(test_data) baseline = np.stack(val_set[:, 0]) idx = [4, 9] baseline_hp = baseline[:, idx] bl_next_state_reward = np.stack(val_set[:, 1]) mse_baseline = ((baseline_hp - bl_next_state_reward)**2).mean(axis=None) print(mse_baseline) return mse_baseline def split_data(dataset, val_pct): # Determine size of validation set n_val = int(val_pct*dataset) # Create random permutation of 0 to n-1 idxs = np.random.permutation(dataset) # Pick first n_val indices for validation set return idxs[n_val:], idxs[:n_val] def load_data(tensor_dataset, indices, batch_size): sampler = SubsetRandomSampler(indices) data_loaded = DataLoader(tensor_dataset, batch_size, sampler=sampler) return data_loaded def run_task(evaluation_config, network_config, reinforce_config): trans_model = TransAdaptive(name= "TugOfWar2lNexusHealth", network_config=network_config, reinforce_config = reinforce_config)
np.set_printoptions(suppress=True)
numpy.set_printoptions
# coding: utf-8 import cmath import numpy as np from rcwa.common import matmul, redheffer_star_prod, get_input from rcwa.structure import HomogeneousStructure from rcwa.source import Source from rcwa._constants import UNIT_MAT_2D def save_outputs(R, T): with open('output.toml', 'w') as fid: fid.write('[R]\n00 = {:.4f}\n'.format(R)) fid.write('[T]\n00 = {:.4f}\n'.format(T)) fid.write('[R_T]\n00 = {:.4f}\n'.format(R + T)) class TMM(): '''Calculates transmission through a stack of uniform layers''' def __prepare(self, structure, source): nr1 = np.sqrt(structure.UR1*structure.ER1) self.k_inc = source.K0*nr1*\ np.array(([np.sin(source.THETA)*np.cos(source.PHI), np.sin(source.THETA)*np.sin(source.PHI), np.cos(source.THETA)])) S_global = np.array(([0, 0, 1, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 1, 0, 0])) return S_global def compute(self, structure, source): S_global = self.__prepare(structure, source) S_global = self.__compute_layers(structure, source, S_global) S_global = self.__compute_superstrate(structure, S_global) S_global = self.__compute_substrate(structure, S_global) R, T = self.__get_R_T(structure, source, S_global) return R, T def __compute_layers(self, structure, source, S_global): kx, ky = self.k_inc[0], self.k_inc[1] # take layers into account for i in range(0, structure.num_layers): ur = structure.ur_vec[i] er = structure.er_vec[i] l = structure.layer_thicknesses_vec[i] s_layer_mat = self.__calc_s_mat(l, ur, er, kx, ky, source.K0) S_global = redheffer_star_prod(S_global, s_layer_mat, UNIT_MAT_2D) return S_global @staticmethod def __calc_gap_layer_params(kx, ky): ur = 1 er = 1 q_mat = np.array(([kx*ky, ur*er+ky*ky], [-(ur*er+kx*kx), -kx*ky]))/ur v_mat = -1j*q_mat return v_mat @staticmethod def __calc_layer_params(ur, er, kx, ky): q_mat = np.array(([kx*ky, ur*er-kx*kx], [ky*ky-ur*er, -kx*ky]))/ur kz = cmath.sqrt(ur*er-kx*kx-ky*ky) omega_mat = 1j*kz*np.array(([1, 0], [0, 1])) v_mat = np.matmul(q_mat, np.linalg.inv(omega_mat)) return omega_mat, v_mat def __calc_s_mat(self, layer_thickness, ur, er, kx, ky, K0): omegai_mat, vi_mat = self.__calc_layer_params(ur, er, kx, ky) vg_mat = self.__calc_gap_layer_params(kx, ky) ai_mat = UNIT_MAT_2D + np.matmul(np.linalg.inv(vi_mat), vg_mat) bi_mat = UNIT_MAT_2D - np.matmul(np.linalg.inv(vi_mat), vg_mat) xi_mat = np.diag(np.exp(np.diag(omegai_mat)*K0*layer_thickness)) ai_inv_mat = np.linalg.inv(ai_mat) di_mat = ai_mat - matmul(xi_mat, bi_mat, ai_inv_mat, xi_mat, bi_mat) di_inv_mat = np.linalg.inv(di_mat) s_11_mat = matmul(di_inv_mat, matmul( xi_mat, bi_mat, ai_inv_mat, xi_mat, ai_mat) - bi_mat) s_12_mat = matmul(di_inv_mat, xi_mat, ai_mat - matmul(bi_mat, ai_inv_mat, bi_mat)) # S_12 = S_21, S_11 = S_22 s_mat = np.concatenate((np.concatenate((s_11_mat, s_12_mat), axis=1),
np.concatenate((s_12_mat, s_11_mat), axis=1)
numpy.concatenate
import torch import random import numpy as np import time class PuzzleN: def __init__(self, N): assert N in [3, 8, 15, 24, 35, 48], "N must be valid" self.N = N self.rowLength = int((N + 1) ** 0.5) self.actions = { "U": torch.tensor([1, 0]), "R": torch.tensor([0, -1]), "D": torch.tensor([-1, 0]), "L": torch.tensor([0, 1]), } self.state = self.getSolvedState() self.solvedState = self.getSolvedState() self.manDistMat = self.generateManDistMat() def getSolvedState(self): state = [] for i in range(self.rowLength): state.append( [n + self.rowLength * i for n in range(1, self.rowLength + 1)]) state[-1][-1] = 0 return torch.tensor(state, dtype=torch.uint8) def checkIfSolved(self, states): goals = torch.all(states == self.solvedState, 2) goals = goals.all(1) return goals def checkIfSolvedSingle(self, state): return torch.equal(state, self.solvedState) def nextState(self, states, actions): stateIdxs, missingY, missingX = torch.where(states == 0) missing = torch.stack((missingY, missingX), 1) movingSquare = missing + torch.stack( [self.actions[action] for action in actions] ) movingSquare = torch.cat((stateIdxs.unsqueeze(1), movingSquare), 1) missing = torch.cat((stateIdxs.unsqueeze(1), missing), 1) invalids = missing[ torch.any( (movingSquare[:, 1:] >= self.rowLength) | ( movingSquare[:, 1:] < 0), 1 ) ][:, 0] missing = missing[ torch.all( (movingSquare[:, 1:] < self.rowLength) & ( movingSquare[:, 1:] >= 0), 1 ) ] movingSquare = movingSquare[ torch.all( (movingSquare[:, 1:] < self.rowLength) & ( movingSquare[:, 1:] >= 0), 1 ) ] stateIdxs, missingY, missingX = missing[:, 0], missing[:, 1], missing[:, 2] movingSquareY, movingSquareX = movingSquare[:, 1], movingSquare[:, 2] states[stateIdxs, missingY, missingX] = states[ stateIdxs, movingSquareY, movingSquareX ] states[stateIdxs, movingSquareY, movingSquareX] = 0 return states, stateIdxs, invalids def doAction(self, action, state=None): assert action in self.actions if state is None: state = self.state missing = torch.tensor(torch.where(state == 0)) movingSquare = missing + self.actions[action] if self.validAction(movingSquare): state[tuple(missing)], state[tuple(movingSquare)], = ( state[tuple(movingSquare)], 0, ) return state def validAction(self, movedSquare): return ( 0 <= movedSquare[0] < self.rowLength and 0 <= movedSquare[1] < self.rowLength ) def generateScramble(self, noMoves): state = self.solvedState.clone() missing = [self.rowLength - 1, self.rowLength - 1] scramble = [] movesDone = 0 while movesDone < noMoves: randomMove = random.choice(list(self.actions.values())) movingSquare = [sum(x) for x in zip(missing, randomMove)] if self.validAction(movingSquare): movesDone += 1 state[tuple(missing)], state[tuple(movingSquare)], = ( state[tuple(movingSquare)], 0, ) missing = movingSquare return state def generateScrambles(self, numStates, maxScrambles, minScrambles=0): states = self.solvedState.repeat(numStates, 1, 1) scrambleNums = np.random.randint(minScrambles, maxScrambles + 1, numStates) numMoves = np.zeros(numStates) while
np.max(numMoves < scrambleNums)
numpy.max
import numpy as np import matplotlib.pyplot as plt import math import matplotlib.patches as patches import matplotlib.animation as animation import gym import random from datetime import date float_formatter = "{:.2f}".format np.set_printoptions(formatter={'float_kind':float_formatter}) import numpy as np #%matplotlib qt import matplotlib.pyplot as plt import math import matplotlib.patches as patches from matplotlib.collections import PatchCollection import matplotlib.animation as animation from matplotlib.offsetbox import TextArea, DrawingArea, OffsetImage, AnnotationBbox import matplotlib.image as mpimg float_formatter = "{:.2f}".format np.set_printoptions(formatter={'float_kind':float_formatter}) class UnbreakableSeaweed(gym.Env): """ Description: A one D model of Aplysia californica feeding. The goal is to ingest the most edible food Source: This enviornment cooresponds to the model of Aplysia feeding presented in Control for Multifunctionality: Bioinspired Control Based on Feeding in Aplysia californica 2 Observation (7-element): Type: Num Observation Min Max 0 x_h 0 1 1 x_g 0 1 2 force_on_object -Inf Inf 3 pressure_grasper -Inf Inf 4 pressure_jaws -Inf Inf 5 edible -1 1 6 grasper_friction_state 0 1 Actions (32-element): Type: 5 element array element 0 - B7 state element 1 - B6/B9/B3 state element 2 - B 8a/b state element 3 - B31/B32 state element 4 - B38 state Control frequency: 20 Hz Reward: Reward is proportional to the amount of seaweed ingested Episode Termination: Episode is greater than max_steps_per_iteration. Default: 1000 """ ##properties for visualization #define the location of the ground plane x_ground = np.array([[0],[0]]) len_ground_line = 5 #define the location of the force transducer x_transducer = x_ground + np.array([[8],[0]]) len_transducer_line = 5 #define location and shape of head x_H = x_ground + np.array([[0],[0]]) x_H_width = 1 x_H_height = 4 #define the extents of the grasper protraction/retraction path grasper_origin = x_H + np.array([[0],[0]]) grasper_full = grasper_origin + np.array([[1],[0]]) #define the starting position for the bottom of the grasper along this track x_R = grasper_origin + np.array([[0],[0]]) #specify vectors based on the grasper in the upright position theta_grasper_initial = math.pi/2 #specify the grasper radius r_grasper = 1 grasper_offset = 1 #define the positions of the I2 muscle origins x_I2_Borigin = grasper_origin + np.array([[0],[0]]) x_I2_Aorigin = grasper_origin + np.array([[0],[2*r_grasper]]) #define the position of the hinge origin x_hinge_origin = grasper_origin + np.array([[0],[0]]) #specify the angle relative to horizontal for each of the attachment points fixed on the grasper surface theta_s = 0 theta_I2_A = math.pi/6 theta_I2_B = math.pi/6 #plot line representing ground line_ground =[] #plot a dot at the origin dot_ground =[] #plot line representing force transducer line_transducer =[] #plot line representing track line_grapser_track =[] #plot line from R to G line_RG =[] #plot dot at point R dot_R =[] #plot dot at point G dot_G =[] #plot dot at point S dot_S =[] #plot dot at I2 attachment point A dot_I2_A =[] #plot dot at I2 attachment point B dot_I2_B =[] #plot dot at I2 attachment point A dot_I2_Aorigin =[] #plot dot at I2 attachment point B dot_I2_Borigin =[] #draw grasper draw_circle =[] #draw head head =[] dot_H_spring =[] #draw head spring as dashed line line_H_spring =[] #draw grasper to head spring as dashed line line_G_spring =[] preset_inputs = 0 generat_plots_toggle = 0 init_reward = 0.0 init_force_level = 'low' high_threshold = 4 low_threshold = 40 output_expert_mean = np.load('output_expert_mean.npy') output_expert_std = np.load('output_expert_std.npy') def __init__(self, foo=0, max_steps=1000, threshold=-1000.0, delay=1, patience = 20, cr_threshold = -1000): self.output_expert_mean = np.load('output_expert_mean.npy') self.output_expert_std = np.load('output_expert_std.npy') self.biomechanicsModel = 1 self.generat_plots_toggle = 0 self.verbose = 0 self.cr_threshold = cr_threshold self.patience = patience self.delta_gm = 0 self.idle_count = 0 self.gfs = 0 self.foo = foo self.threshold = threshold self.total_reward = 0 self.total_reward_log = [self.total_reward] self.reward_range = (-1e6, 1e6) self.P_I4 = 0 self.A_I4 = 0.05 self.P_I3_anterior = 0 self.A_I3_anterior = 0.05 self.T_I3 = 0.05 self.A_I3 = 0.05 self.T_I2 = 0.05 self.A_I2 = 0.05 self.T_hinge = 0 self.A_hinge = 0.05 self.x_h = 0.0 self.x_g = 0.0 self.force_on_object = 0 #Friction coefficients self.mu_s_g = 0.4 #mu_s coefficient of static friction at grasper self.mu_k_g = 0.3 #mu_k coefficient of kinetic friction at grasper self.mu_s_h = 0.3 #mu_s coefficient of static friction at jaws self.mu_k_h = 0.3 #mu_k coefficient of kinetic friction at jaws #Maximum muscle forces self.max_I4 = 1.75 #Maximum pressure grasper can exert on food self.max_I3ant = 0.6 #Maximum I3 anterior force self.max_I3 = 1 #Maximum I3 force self.max_I2 = 1.5 #Maximum I2 force self.max_hinge = 0.2 #Maximum hinge force #Muscle time constants self.tau_I4 = 1.0/np.sqrt(2) #time constant (in seconds) for I4 activation self.tau_I3anterior = 2.0/np.sqrt(2) #time constant (in seconds) for I3anterior activation self.tau_I2_ingestion = 0.5*1/np.sqrt(2) #time constant (in seconds) for I2 activation during ingestion self.tau_I2_egestion = 1.4*1/np.sqrt(2) #time constant (in seconds) for I2 activation during egestion self.tau_I3 = 1.0/np.sqrt(2) #time constant (in seconds) for I3 activation self.tau_hinge = 1.0/np.sqrt(2) #time constant (in seconds) for hinge activation self.TimeStep_h = 0.05 #body time constants self.c_g = 1.0 #time constant (in seconds) for grapser motion self.c_h = 1.0 #time constant (in seconds) for body motion #Spring constants self.K_sp_h = 2.0 #spring constant representing neck and body between head and ground self.K_sp_g = 0.1 #spring constant representing attachment between buccal mass and head #Reference points for springs self.x_h_ref = 0.0 #head spring reference position self.x_gh_ref = 0.4 #grasper spring reference position self.seaweed_strength = 100 self.x_g_threshold = 1 self.x_h_threshold = 1 self.sens_mechanical_grasper = 1 high = np.array([self.x_h_threshold*2, self.x_g_threshold*2, np.finfo(np.float32).max, np.finfo(np.float32).max, np.finfo(np.float32).max, 1,1], dtype=np.float32) self.action_space = gym.spaces.Discrete(32) self.observation_space = gym.spaces.Box(low = -high, high = high, dtype = np.float32) self._state = np.array([0,0,0,0,0,1,0]) self._episode_ended = False self.steps_beyond_done = None self.max_steps = max_steps self.current_step = 1 self.sens_mechanical_grasper_history = np.zeros((1,self.max_steps+1)) self.sens_chemical_lips_history = np.zeros((1,self.max_steps+1)) self.sens_mechanical_lips_history = np.zeros((1,self.max_steps+1)) self.CBI2_history = np.zeros((1,self.max_steps+1)) self.CBI3_history = np.zeros((1,self.max_steps+1)) self.CBI4_history = np.zeros((1,self.max_steps+1)) self.B64_history = np.zeros((1,self.max_steps+1)) self.B20_history = np.zeros((1,self.max_steps+1)) self.B40B30_history = np.zeros((1,self.max_steps+1)) self.B4B5_history = np.zeros((1,self.max_steps+1)) self.x_g_history=np.zeros((1,self.max_steps+1)) self.x_h_history=np.zeros((1,self.max_steps+1)) self.force_history=np.zeros((1,self.max_steps+1)) self.grasper_friction_state_history=np.zeros((1,self.max_steps+1)) self.B8_history=np.zeros((1,self.max_steps+1)) self.B38_history=np.zeros((1,self.max_steps+1)) self.B7_history=np.zeros((1,self.max_steps+1)) self.B31B32_history=np.zeros((1,self.max_steps+1)) self.B6B9B3_history=np.zeros((1,self.max_steps+1)) self.P_I4_history=np.zeros((1,self.max_steps+1)) self.P_I3_anterior_history=np.zeros((1,self.max_steps+1)) self.T_I3_history=np.zeros((1,self.max_steps+1)) self.T_I2_history=np.zeros((1,self.max_steps+1)) self.T_hinge_history=np.zeros((1,self.max_steps+1)) self.theta_g=np.zeros((1,self.max_steps+1)) # ok self.x_g_history[0,0] = self.x_g self.x_h_history[0,0] = self.x_h self.force_history[0,0]=0 self.grasper_friction_state_history[0,0] = 0 self.theta_g[0,0] = 0 self.StartingTime = 0 self.TimeStep = 0.05 self.EndTime = self.max_steps*0.05 def set_plotting(self,toggle): self.generat_plots_toggle = toggle def set_verbose(self, inp): self.verbose = inp def step(self,action): term_stat = -1 # 0: reach max_steps. 1: out of bound if self._episode_ended: return self.reset() if self.current_step == self.max_steps: term_stat = 0 if self.verbose == 1: print('reset - current_step == self.max_steps') self._episode_ended = True elif (self.total_reward < self.cr_threshold) or (self.total_reward < self.threshold and self.current_step > 6*20): if self.verbose == 1: print('reset early stop- total_reward={}@step {}'.format(self.total_reward, self.current_step)) self._episode_ended = True elif self.idle_count >= 100: # 5 s, 20 steps/s --> if idle for >= 90 steps, early stop if self.verbose == 1: print('reset early stop- idle too long:{} steps'.format(self.idle_count)) self._episode_ended = True elif self.x_h < -0.2 or self.x_h > 1.2 or self.x_g < -0.2 or self.x_g > 1.2: term_stat = 1 if self.verbose == 1: print('reset - x_h or x_g out!: x_h: {} x_g: {}'.format(self.x_h, self.x_g)) self._episode_ended = True else: # obtain current x_h, x_g, force_on_object [x_h, x_g, force_on_object, pressure_grasper, pressure_jaws, edible, grasper_friction_state] = self._state if edible == 1: self.fixation_type = 1 else: self.fixation_type = 0 tmp = self.Biomechanics_001() reward = tmp * 100 self.MuscleActivations_001(action) self._state = np.array([self.x_h, self.x_g, self.force_on_object,self.P_I4, self.P_I3_anterior,edible, self.grasper_friction_state],dtype=np.float32) self.current_step += 1 self.x_g_history[0,self.current_step] = self.x_g self.x_h_history[0,self.current_step] = self.x_h self.force_history[0,self.current_step] = self.force_on_object self.grasper_friction_state_history[0,self.current_step] = self.grasper_friction_state if self.grasper_friction_state == self.gfs and self.delta_gm == 0: self.idle_count += 1 else: self.idle_count = 0 self.gfs = self.grasper_friction_state if self.idle_count >= self.patience: reward -= 1 self.B8_history[0,self.current_step] = self.B8 self.B38_history[0,self.current_step] = self.B38 self.B6B9B3_history[0,self.current_step] = self.B6B9B3 self.B31B32_history[0,self.current_step] = self.B31B32 self.B7_history[0,self.current_step] = self.B7 #history self.P_I4_history[0,self.current_step] = self.P_I4 self.P_I3_anterior_history[0,self.current_step] = self.P_I3_anterior self.T_I3_history[0,self.current_step] =self.T_I3 self.T_I2_history[0,self.current_step] = self.T_I2 self.T_hinge_history[0,self.current_step] =self.T_hinge self.sens_mechanical_grasper_history[0,self.current_step] = math.nan self.sens_chemical_lips_history[0,self.current_step] = math.nan self.sens_mechanical_lips_history[0,self.current_step] = math.nan self.CBI2_history[0,self.current_step] = math.nan self.CBI3_history[0,self.current_step] = math.nan self.CBI4_history[0,self.current_step] = math.nan self.B64_history[0,self.current_step] = math.nan self.B20_history[0,self.current_step] = math.nan self.B40B30_history[0,self.current_step] = math.nan self.B4B5_history[0,self.current_step] = math.nan if self._episode_ended: reward = 0.0 if self.generat_plots_toggle == 1: self.GeneratePlots('Plot_'+str(date.today())) elif self.generat_plots_toggle == 2: self.GeneratePlots_training('Plot_'+str(date.today())) self.total_reward += reward self.total_reward_log.append(self.total_reward) return self._state, reward, True, {} else: self.total_reward += reward self.total_reward_log.append(self.total_reward) return self._state, reward, False, {} def reset(self): lb, ub = 0.0, 0.05 self.x_h = random.uniform(lb, ub) self.x_g = random.uniform(lb, ub) self.force_on_object =random.uniform(lb, ub) pressure_grasper = random.uniform(lb, ub) pressure_jaws = random.uniform(lb, ub) edible = 1 self._state = np.array([self.x_h, self.x_g, self.force_on_object,pressure_grasper, pressure_jaws,edible,0],dtype=np.float32) self._episode_ended = False self.current_step = 1 self.total_reward = 0 self.total_reward_log = [self.total_reward] self.gfs = 0 self.idle_count = 0 self.delta_gm = 0 self.sens_mechanical_grasper_history = np.zeros((1,self.max_steps+1)) self.sens_chemical_lips_history = np.zeros((1,self.max_steps+1)) self.sens_mechanical_lips_history = np.zeros((1,self.max_steps+1)) self.CBI2_history = np.zeros((1,self.max_steps+1)) self.CBI3_history = np.zeros((1,self.max_steps+1)) self.CBI4_history = np.zeros((1,self.max_steps+1)) self.B64_history = np.zeros((1,self.max_steps+1)) self.B20_history = np.zeros((1,self.max_steps+1)) self.B40B30_history = np.zeros((1,self.max_steps+1)) self.B4B5_history = np.zeros((1,self.max_steps+1)) self.x_g_history=np.zeros((1,self.max_steps+1)) self.x_h_history=np.zeros((1,self.max_steps+1)) self.force_history=np.zeros((1,self.max_steps+1)) self.grasper_friction_state_history=np.zeros((1,self.max_steps+1)) self.B8_history=np.zeros((1,self.max_steps+1)) self.B38_history=np.zeros((1,self.max_steps+1)) self.B7_history=np.zeros((1,self.max_steps+1)) self.B31B32_history=np.zeros((1,self.max_steps+1)) self.B6B9B3_history=np.zeros((1,self.max_steps+1)) self.P_I4_history=np.zeros((1,self.max_steps+1)) self.P_I3_anterior_history=np.zeros((1,self.max_steps+1)) self.T_I3_history=np.zeros((1,self.max_steps+1)) self.T_I2_history=np.zeros((1,self.max_steps+1)) self.T_hinge_history=np.zeros((1,self.max_steps+1)) self.x_g_history[0,0] = self.x_g self.x_h_history[0,0] = self.x_h self.force_history[0,0]=0 self.grasper_friction_state_history[0,0] = 0 self.StartingTime = 0 self.TimeStep = 0.05 self.EndTime = self.max_steps*0.05 return self._state def to_binary(self, num): tmp = np.binary_repr(num) # e.g., '11001' if len(tmp) < 5: tmp = '0'* (5-len(tmp)) + tmp return [int(i) for i in tmp] def MuscleActivations_001(self,action): if isinstance(action, (int, np.integer)): action = self.to_binary(action) if self.preset_inputs == 1: self.B8 = action[2] self.B38 = action[4] self.B6B9B3 = action[1] self.B31B32 = action[3] self.B7 = action[0] #the following code works with the python environment without a tf wrappe elif isinstance(action, list): self.B8 = action[2] self.B38 = action[4] self.B6B9B3 = action[1] self.B31B32 = action[3] self.B7 = action[0] else: self.B8 = action[0,2] self.B38 = action[0,4] self.B6B9B3 = action[0,1] self.B31B32 = action[0,3] self.B7 = action[0,0] edible = self._state[5] ## Update I4: If food present, and grasper closed, then approaches # pmax pressure as dp/dt=(B8*pmax-p)/tau_p. Use a quasi-backward-Euler self.P_I4=((self.tau_I4*self.P_I4+self.A_I4*self.TimeStep_h)/(self.tau_I4+self.TimeStep_h))#old -- keep this version self.A_I4=((self.tau_I4*self.A_I4+self.B8*self.TimeStep_h)/(self.tau_I4+self.TimeStep_h)) ## Update pinch force: If food present, and grasper closed, then approaches # pmax pressure as dp/dt=(B8*pmax-p)/tau_p. Use a quasi-backward-Euler self.P_I3_anterior=(self.tau_I3anterior*self.P_I3_anterior+self.A_I3_anterior*self.TimeStep_h)/(self.tau_I3anterior+self.TimeStep_h) self.A_I3_anterior=(self.tau_I3anterior*self.A_I3_anterior+(self.B38+self.B6B9B3)*self.TimeStep_h)/(self.tau_I3anterior+self.TimeStep_h) ## Update I3 (retractor) activation: dm/dt=(B6-m)/tau_m self.T_I3=(self.tau_I3*self.T_I3+self.TimeStep_h*self.A_I3)/(self.tau_I3+self.TimeStep_h) self.A_I3=(self.tau_I3*self.A_I3+self.TimeStep_h*self.B6B9B3)/(self.tau_I3+self.TimeStep_h) ## Update I2 (protractor) activation: dm/dt=(B31-m)/tau_m. quasi-B-Eul. self.T_I2=((self.tau_I2_ingestion*edible+self.tau_I2_egestion*(1-edible))*self.T_I2+self.TimeStep_h*self.A_I2)/((self.tau_I2_ingestion*edible+self.tau_I2_egestion*(1-edible))+self.TimeStep_h) self.A_I2=((self.tau_I2_ingestion*edible+self.tau_I2_egestion*(1-edible))*self.A_I2+self.TimeStep_h*self.B31B32)/((self.tau_I2_ingestion*edible+self.tau_I2_egestion*(1-edible))+self.TimeStep_h) ## Update Hinge activation: dm/dt=(B7-m)/tau_m. quasi-B-Eul. #bvec(12,j+1)=(tau_m*hinge_last+dt*B7_last)/(tau_m+dt)#old self.T_hinge=(self.tau_hinge*self.T_hinge+self.TimeStep_h*self.A_hinge)/(self.tau_hinge+self.TimeStep_h)#new self.A_hinge=(self.tau_hinge*self.A_hinge+self.TimeStep_h*self.B7)/(self.tau_hinge+self.TimeStep_h) def Biomechanics_001(self): edible = self._state[5] old_gm = np.array([self.x_g - self.x_h]) ## Biomechanics unbroken = 1 #tracking variable to keep track of seaweed being broken off during feeding x_gh = self.x_g-self.x_h ## Grasper Forces #all forces in form F = Ax+b x_vec = np.array([[self.x_h],[self.x_g]]) F_I2 = self.max_I2*self.T_I2*np.dot(np.array([1,-1]),x_vec) + self.max_I2*self.T_I2*1 #FI2 = FI2_max*T_I2*(1-(xg-xh)) F_I3 = self.max_I3*self.T_I3*np.dot(np.array([-1,1]),x_vec)-self.max_I3*self.T_I3*0 #FI3 = FI3_max*T_I3*((xg-xh)-0) F_hinge = (x_gh>0.5)*self.max_hinge*self.T_hinge*np.dot(np.array([-1,1]),x_vec)-(x_gh>0.5)*self.max_hinge*self.T_hinge*0.5 #F_hinge = [hinge stretched]*F_hinge_Max*T_hinge*((xg-xh)-0.5) F_sp_g = self.K_sp_g*np.dot(np.array([1,-1]),x_vec)+self.K_sp_g*self.x_gh_ref #F_sp,g = K_g((xghref-(xg-xh)) F_I4 = self.max_I4*self.P_I4 F_I3_ant = (self.max_I3ant*self.P_I3_anterior*np.dot(np.array([1,-1]),x_vec)+self.max_I3ant* self.P_I3_anterior*1)#: pinch force #calculate F_f for grasper if(self.fixation_type == 0): #object is not fixed to a contrained surface #F_g = F_I2+F_sp_g-F_I3-F_hinge #if the object is unconstrained it does not apply a resistive force back on the grasper. Therefore the force is just due to the muscles A2 = (1/self.c_g*(self.max_I2*self.T_I2*np.array([1,-1])+self.K_sp_g*np.array([1,-1]) -self.max_I3*self.T_I3*np.array([-1,1])-self.max_hinge*self.T_hinge* (x_gh>0.5)*np.array([-1,1]))) B2 = (1/self.c_g*(self.max_I2*self.T_I2*1+self.K_sp_g*self.x_gh_ref+self.max_I3*self.T_I3* 0+(x_gh>0.5)*self.max_hinge*self.T_hinge*0.5)) A21 = A2[0] A22 = A2[1] #the force on the object is approximated based on the friction if(abs(F_I2+F_sp_g-F_I3-F_hinge) <= abs(self.mu_s_g*F_I4)): # static friction is true F_f_g = -self.sens_mechanical_grasper*(F_I2+F_sp_g-F_I3-F_hinge) self.grasper_friction_state = 1 else: F_f_g = self.sens_mechanical_grasper*self.mu_k_g*F_I4 #specify sign of friction force F_f_g = -(F_I2+F_sp_g-F_I3-F_hinge)/abs(F_I2+F_sp_g-F_I3-F_hinge)*F_f_g self.grasper_friction_state = 0 elif (self.fixation_type == 1): #object is fixed to a contrained surface if unbroken: if(abs(F_I2+F_sp_g-F_I3-F_hinge) <= abs(self.mu_s_g*F_I4)): # static friction is true F_f_g = -self.sens_mechanical_grasper*(F_I2+F_sp_g-F_I3-F_hinge) #F_g = F_I2+F_sp_g-F_I3-F_hinge + F_f_g self.grasper_friction_state = 1 #identify matrix components for semi-implicit integration A21 = 0 A22 = 0 B2 = 0 else: F_f_g = -np.sign(F_I2+F_sp_g-F_I3-F_hinge)[0]*self.sens_mechanical_grasper*self.mu_k_g*F_I4 #specify sign of friction force #F_g = F_I2+F_sp_g-F_I3-F_hinge + F_f_g self.grasper_friction_state = 0 #identify matrix components for semi-implicit integration A2 = (1/self.c_g*(self.max_I2*self.T_I2*np.array([1,-1])+self.K_sp_g*np.array([1,-1]) -self.max_I3*self.T_I3*np.array([-1,1])-self.max_hinge*self.T_hinge* (x_gh>0.5)*np.array([-1,1]))) B2 = (1/self.c_g*(self.max_I2*self.T_I2*1+self.K_sp_g*self.x_gh_ref+self.max_I3*self.T_I3 *0+(x_gh>0.5)*self.max_hinge*self.T_hinge*0.5+F_f_g)) A21 = A2[0] A22 = A2[1] else: #F_g = F_I2+F_sp_g-F_I3-F_hinge #if the object is unconstrained it does not apply a resistive force back on the grasper. Therefore the force is just due to the muscles A2 = (1/self.c_g*(self.max_I2*self.T_I2*np.array([1,-1])+self.K_sp_g*np.array([1,-1])-self.max_I3 *self.T_I3*np.array([-1,1])-self.max_hinge*self.T_hinge*(x_gh>0.5) *np.array([-1,1]))) B2 = (1/self.c_g*(self.max_I2*self.T_I2*1+self.K_sp_g*self.x_gh_ref+self.max_I3*self.T_I3* 0+(x_gh>0.5)*self.max_hinge*self.T_hinge*0.5)) A21 = A2[0] A22 = A2[1] #the force on the object is approximated based on the friction if(abs(F_I2+F_sp_g-F_I3-F_hinge) <= abs(self.mu_s_g*F_I4)): # static friction is true F_f_g = -self.sens_mechanical_grasper*(F_I2+F_sp_g-F_I3-F_hinge) self.grasper_friction_state = 1 else: F_f_g = self.sens_mechanical_grasper*self.mu_k_g*F_I4 #specify sign of friction force F_f_g = -(F_I2+F_sp_g-F_I3-F_hinge)/abs(F_I2+F_sp_g-F_I3-F_hinge)*F_f_g self.grasper_friction_state = 0 #[j*dt position_grasper_relative I2 F_sp I3 hinge GrapserPressure_last F_g] ## Body Forces #all forces in the form F = Ax+b F_sp_h = self.K_sp_h*np.dot(np.array([-1,0]),x_vec)+self.x_h_ref*self.K_sp_h #all muscle forces are equal and opposite if(self.fixation_type == 0): #object is not constrained #F_h = F_sp_h #If the object is unconstrained it does not apply a force back on the head. Therefore the force is just due to the head spring. A1 = 1/self.c_h*self.K_sp_h*np.array([-1,0]) B1 = 1/self.c_h*self.x_h_ref*self.K_sp_h A11 = A1[0] A12 = A1[1] if(abs(F_sp_h+F_f_g) <= abs(self.mu_s_h*F_I3_ant)): # static friction is true F_f_h = -self.sens_mechanical_grasper*(F_sp_h+F_f_g) #only calculate the force if an object is actually present self.jaw_friction_state = 1 else: F_f_h = -np.sign(F_sp_h+F_f_g)[0]*self.sens_mechanical_grasper*self.mu_k_h*F_I3_ant #only calculate the force if an object is actually present self.jaw_friction_state = 0 elif (self.fixation_type == 1): #calcuate friction due to jaws if unbroken: #if the seaweed is intact if(abs(F_sp_h+F_f_g) <= abs(self.mu_s_h*F_I3_ant)): # static friction is true F_f_h = -self.sens_mechanical_grasper*(F_sp_h+F_f_g) #only calculate the force if an object is actually present #F_h = F_sp_h+F_f_g + F_f_h self.jaw_friction_state = 1 A11 = 0 A12 = 0 B1 = 0 else: F_f_h = -np.sign(F_sp_h+F_f_g)[0]*self.sens_mechanical_grasper*self.mu_k_h*F_I3_ant #only calculate the force if an object is actually present #F_h = F_sp_h+F_f_g + F_f_h self.jaw_friction_state = 0 if (self.grasper_friction_state == 1): #object is fixed and grasper is static # F_f_g = -mechanical_in_grasper*(F_I2+F_sp_g-F_I3-F_Hi) A1 = (1/self.c_h*(self.K_sp_h*np.array([-1,0])+(-self.sens_mechanical_grasper* (self.max_I2*self.T_I2*np.array([1,-1]) +self.K_sp_g*np.array([1,-1])-self.max_I3* self.T_I3*np.array([-1,1])-self.max_hinge* self.T_hinge*(x_gh>0.5)*np.array([-1,1])) -np.sign(F_sp_h+F_f_g)[0]*self.sens_mechanical_grasper*self.mu_k_h* self.max_I3ant*self.P_I3_anterior *np.array([1,-1])))) B1 = (1/self.c_h*(self.x_h_ref*self.K_sp_h+(-self.sens_mechanical_grasper*(self.max_I2*self.T_I2*1+self.K_sp_g*self.x_gh_ref+self.max_I3*self.T_I3*0+(x_gh>0.5)*self.max_hinge*self.T_hinge*0.5)) -np.sign(F_sp_h+F_f_g)[0]*self.sens_mechanical_grasper*self.mu_k_h*self.max_I3ant*self.P_I3_anterior*1)) else: #both are kinetic #F_f_g = -np.sign(F_I2+F_sp_g-F_I3-F_Hi)*mechanical_in_grasper*mu_k_g*F_I4 A1 = (1/self.c_h*(self.K_sp_h*np.array([-1,0])-np.sign(F_sp_h+F_f_g)[0] *self.sens_mechanical_grasper*self.mu_k_h*self.max_I3ant* self.P_I3_anterior*np.array([1,-1]))) B1 = (1/self.c_h*(self.x_h_ref*self.K_sp_h-np.sign(F_I2+F_sp_g-F_I3-F_hinge)[0]* self.sens_mechanical_grasper*self.mu_k_g*F_I4 -np.sign(F_sp_h+F_f_g)[0]*self.sens_mechanical_grasper* self.mu_k_h*self.max_I3ant*self.P_I3_anterior*1)) A11 = A1[0] A12 = A1[1] else: # if the seaweed is broken the jaws act as if unconstrained if(abs(F_sp_h+F_f_g) <= abs(self.mu_s_h*F_I3_ant)): # static friction is true F_f_h = -self.sens_mechanical_grasper*(F_sp_h+F_f_g) #only calculate the force if an object is actually present self.jaw_friction_state = 1 else: F_f_h = -np.sign(F_sp_h+F_f_g)[0]*self.sens_mechanical_grasper*self.mu_k_h*F_I3_ant #only calculate the force if an object is actually present self.jaw_friction_state = 0 A1 = 1/self.c_h*self.K_sp_h*[-1,0] B1 = 1/self.c_h*self.x_h_ref*self.K_sp_h A11 = A1[0] A12 = A1[1] self.jaw_friction_state = 0 A = np.array([[A11,A12],[A21,A22]]) B = np.array([[B1],[B2]]) x_last = np.array(x_vec) x_new = (1/(1-self.TimeStep_h*A.trace()))*(np.dot((np.identity(2)+self.TimeStep_h* np.array([[-A22,A12],[A21,-A11]])),x_last)+ self.TimeStep_h*B) self.x_g = x_new[1,0] self.x_h = x_new[0,0] ## calculate force on object self.force_on_object = F_f_g+F_f_h #check if seaweed is broken if (self.fixation_type ==1): if (self.force_on_object>self.seaweed_strength): print('seaweed broke') unbroken = 0 #check to see if a new cycle has started x_gh_next = self.x_g-self.x_h if (not unbroken and x_gh <0.3 and x_gh_next>x_gh): print('start a new cycle') unbroken = 1 self.force_on_object= unbroken*self.force_on_object new_gm = np.array([self.x_g - self.x_h]) # grasper motion = self.x_g - self.x_h delta_gm = new_gm - old_gm self.delta_gm = delta_gm if self.grasper_friction_state: if delta_gm < 0: reward = - delta_gm * (self.force_on_object ** self.foo) else: reward = - delta_gm if not edible: reward *= -1 else: if self.force_on_object < 0 and delta_gm > 0: reward = self.force_on_object / 100 else: reward = [0.0] return reward[0] def GeneratePlots(self,label): import math, copy self.EndTime = (self.current_step - 1) * self.TimeStep t=np.atleast_2d(np.arange(self.StartingTime,self.EndTime+self.TimeStep,self.TimeStep)) self.EndTime = self.max_steps*0.05 end_ind = t.shape[1] tmp = [1] * 15 tmp.extend([2,2]) axs = plt.figure(figsize=(10,15), constrained_layout=True).subplots(17,1, sharex=True, gridspec_kw={'height_ratios': tmp}) lineW =2 i= 0 #External Stimuli ax0 = axs[0] ax0.plot(t.transpose(),self.sens_mechanical_grasper_history[0,:end_ind].transpose(), color=[56/255, 232/255, 123/255],linewidth=2) #mechanical in grasper ax0.set_ylabel('Mech. in Grasper') i=1 ax = axs[i] ax.plot(t.transpose(),self.sens_chemical_lips_history[0,:end_ind].transpose(), color=[70/255, 84/255, 218/255],linewidth=2) #chemical at lips ax.set_ylabel('Chem. at Lips') i=i+1 ax = axs[i] ax.plot(t.transpose(),self.sens_mechanical_lips_history[0,:end_ind].transpose(), color=[47/255, 195/255, 241/255],linewidth=2) #mechanical at lips ax.set_ylabel('Mech. at Lips') i=i+1 ax = axs[i] ax.plot(t.transpose(),self.CBI2_history[0,:end_ind].transpose(),'k',linewidth=lineW) # CBI2 ax.set_ylabel('CBI-2') i=i+1 ax = axs[i] ax.plot(t.transpose(),self.CBI3_history[0,:end_ind].transpose(),'k',linewidth=lineW) # CBI3 ax.set_ylabel('CBI-3') i=i+1 ax = axs[i] ax.plot(t.transpose(),self.CBI4_history[0,:end_ind].transpose(),'k',linewidth=lineW) # CBI4 ax.set_ylabel('CBI-4') i=i+1 #Interneurons ax = axs[i] ax.plot(t.transpose(),self.B64_history[0,:end_ind].transpose(),linewidth=lineW, color=[90/255, 131/255, 198/255]) # B64 ax.set_ylabel('B64', color=[90/255, 131/255, 198/255]) i=i+1 ax = axs[i] ax.plot(t.transpose(),self.B20_history[0,:end_ind].transpose(),linewidth=lineW, color=[44/255, 166/255, 90/255]) # B20 i=i+1; ax.set_ylabel('B20', color=[44/255, 166/255, 90/255]) ax = axs[i] ax.plot(t.transpose(),self.B40B30_history[0,:end_ind].transpose(),linewidth=lineW, color=[192/255, 92/255, 185/255]) # B40/B30 i=i+1; ax.set_ylabel('B40/B30', color=[192/255, 92/255, 185/255]) ax = axs[i] ax.plot(t.transpose(),self.B4B5_history[0,:end_ind].transpose(),linewidth=lineW, color=[51/255, 185/255, 135/255]) # B4/5 i=i+1; ax.set_ylabel('B4/B5', color=[51/255, 185/255, 135/255]) #motor neurons ax = axs[i] ax.plot(t.transpose(),self.B31B32_history[0,:end_ind].transpose(),linewidth=lineW, color=[220/255, 81/255, 81/255]) # I2 input i=i+1; ax.set_ylabel('B31/B32',color=[220/255, 81/255, 81/255]) ax = axs[i] ax.plot(t.transpose(),self.B8_history[0,:end_ind].transpose(),linewidth=lineW, color=[213/255, 155/255, 196/255]) # B8a/b i=i+1; ax.set_ylabel('B8a/b', color=[213/255, 155/255, 196/255]) ax = axs[i] ax.plot(t.transpose(),self.B38_history[0,:end_ind].transpose(),linewidth=lineW, color=[238/255, 191/255, 70/255]) # B38 i=i+1; ax.set_ylabel('B38', color=[238/255, 191/255, 70/255]) ax = axs[i] ax.plot(t.transpose(),self.B6B9B3_history[0,:end_ind].transpose(),linewidth=lineW, color=[90/255, 155/255, 197/255]) # B6/9/3 i=i+1; ax.set_ylabel('B6/B9/B3', color=[90/255, 155/255, 197/255]) ax = axs[i] ax.plot(t.transpose(),self.B7_history[0,:end_ind].transpose(),linewidth=lineW, color=[56/255, 167/255, 182/255]) # B7 i=i+1; ax.set_ylabel('B7', color=[56/255, 167/255, 182/255]) #Grasper Motion plot grasper_motion = self.x_g_history - self.x_h_history ax = axs[i] ax.plot(t.transpose(),grasper_motion[0,:end_ind].transpose(),'b',linewidth=lineW) # overlay the grasper friction state as thick blue dots grasper_motion_gfs = copy.deepcopy(grasper_motion) # long t_gfs = copy.deepcopy(t) # short grasper_motion_gfs[self.grasper_friction_state_history != 1] = math.nan # long t_gfs[0, self.grasper_friction_state_history[0, :end_ind] != 1] = math.nan # short ax.plot(t_gfs.transpose(), grasper_motion_gfs[0,:end_ind].transpose(),'b', linewidth = lineW * 2) # overlay b&w bars gm_delta = np.zeros_like(grasper_motion) # long t_delta = copy.deepcopy(t) # short gm_delta[:,1:] = grasper_motion[:,1:] - grasper_motion[:,:-1] t_delta[0,gm_delta[0, :end_ind] <= 0] = math.nan gm_delta[gm_delta > 0] = 1.25 gm_delta[gm_delta != 1.25 ] = math.nan ax.plot(t.transpose(), 1.25 *
np.ones_like(t)
numpy.ones_like
# -*- coding: utf-8 -*- """ _ _ _____ _ _____ _____ | | | | ___| | | ___/ ___| | | | | |__ | | | |__ \ `--. | | | | __|| | | __| `--. \ \ \_/ / |___| |___| |___/\__/ / \___/\____/\_____|____/\____/ Created on Apr 14, 2015 ███████████████████████████████████████████████████████████████████████████████ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ███████████████████████████████████████████████████████████████████████████████ """ from cuda4py.blas import CUBLAS_OP_N, CUBLAS_OP_T import gc import numpy from veles.config import root from veles.memory import Array from veles.ocl_blas import OCLBLAS from veles.tests import AcceleratedTest, assign_backend import veles.prng as prng class TestOCLBLASBase(AcceleratedTest): ABSTRACT = True def test_veles_blas(self): for enabled in (True, False): root.common.engine.ocl.clBLAS = enabled blas = OCLBLAS(self.device) for _ in range(2): self._test_random(blas, 17, 1999, 231) gc.collect() self._test_random(blas, 7, 9, 8) gc.collect() self._test_random(blas, 9, 7, 800) gc.collect() self._test_random(blas, 1, 1, 1) gc.collect() self._test_random(blas, 7777, 17, 219) gc.collect() self._test_random(blas, 1777, 1999, 2119) gc.collect() del blas gc.collect() def _test_random(self, blas, a_size, b_size, common_size): rnd = prng.RandomGenerator(None) rnd.seed(123) a = Array(numpy.zeros([a_size, common_size], dtype=self.dtype)) b = Array(numpy.zeros([b_size, common_size], dtype=self.dtype)) c = Array(numpy.zeros([a_size, b_size], dtype=self.dtype)) rnd.fill(a.mem) rnd.fill(b.mem) c_gold = numpy.dot(a.mem, b.mem.transpose()).transpose().ravel() at = a.mem.reshape(tuple(reversed(a.shape))).transpose() bt = b.mem.reshape(tuple(reversed(b.shape))).transpose() c_gold_t = numpy.dot(at, bt.transpose()).transpose().ravel() a.initialize(self.device) b.initialize(self.device) c.initialize(self.device) alpha = numpy.ones(1, dtype=self.dtype) beta = numpy.zeros(1, dtype=self.dtype) gemm = OCLBLAS.gemm(self.dtype) gemm(blas, CUBLAS_OP_T, CUBLAS_OP_N, a_size, b_size, common_size, alpha, a.devmem, b.devmem, beta, c.devmem) c.map_read() max_diff =
numpy.fabs(c.plain - c_gold)
numpy.fabs
# Copyright (c) 2019 Microsoft Corporation # Distributed under the MIT software license import pytest import numpy as np import numpy.ma as ma import pandas as pd import scipy as sp import math from itertools import repeat, chain from ..bin import * from ..bin import _process_column_initial, _encode_categorical_existing, _process_continuous class StringHolder: def __init__(self, internal_str): self.internal_str = internal_str def __str__(self): return self.internal_str def __lt__(self, other): return True # make all objects of this type identical to detect sorting failures def __hash__(self): return 0 # make all objects of this type identical to detect hashing failures def __eq__(self,other): return True # make all objects of this type identical to detect hashing failures class DerivedStringHolder(StringHolder): def __init__(self, internal_str): StringHolder.__init__(self, internal_str) class FloatHolder: def __init__(self, internal_float): self.internal_float = internal_float def __float__(self): return self.internal_float def __lt__(self, other): return True # make all objects of this type identical to detect sorting failures def __hash__(self): return 0 # make all objects of this type identical to detect hashing failures def __eq__(self,other): return True # make all objects of this type identical to detect hashing failures class DerivedFloatHolder(FloatHolder): def __init__(self, internal_float): FloatHolder.__init__(self, internal_float) class FloatAndStringHolder: def __init__(self, internal_float, internal_str): self.internal_float = internal_float self.internal_str = internal_str def __float__(self): return self.internal_float def __str__(self): return self.internal_str def __lt__(self, other): return True # make all objects of this type identical to detect sorting failures def __hash__(self): return 0 # make all objects of this type identical to detect hashing failures def __eq__(self,other): return True # make all objects of this type identical to detect hashing failures class DerivedFloatAndStringHolder(FloatAndStringHolder): def __init__(self, internal_float, internal_str): FloatAndStringHolder.__init__(self, internal_float, internal_str) class NothingHolder: # the result of calling str(..) includes the memory address, so they won't be dependable categories def __init__(self, internal_str): self.internal_str = internal_str def check_pandas_normal(dtype, val1, val2): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([val1, val2], dtype=np.object_), dtype=dtype) feature_types_given = ['nominal'] X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) X_cols = list(unify_columns(X, [(0, None)], feature_names_in, None)) assert(len(X_cols) == 1) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(len(X_cols[0][2]) == 2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 2) assert(X_cols[0][1][0] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val2)]) c1 = {str(val1) : 1, str(val2) : 2} X_cols = list(unify_columns(X, [(0, c1)], feature_names_in, feature_types_given)) assert(len(X_cols) == 1) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c1) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 2) assert(X_cols[0][1][0] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val2)]) c2 = {str(val2) : 1, str(val1) : 2} X_cols = list(unify_columns(X, [(0, c2)], feature_names_in, feature_types_given)) assert(len(X_cols) == 1) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 2) assert(X_cols[0][1][0] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val2)]) def check_pandas_missings(dtype, val1, val2): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([val2, val1, val1], dtype=np.object_), dtype=dtype) X["feature2"] = pd.Series(np.array([None, val2, val1], dtype=np.object_), dtype=dtype) X["feature3"] = pd.Series(np.array([val1, None, val2], dtype=np.object_), dtype=dtype) X["feature4"] = pd.Series(np.array([val2, val1, None], dtype=np.object_), dtype=dtype) c1 = {str(val1) : 1, str(val2) : 2} c2 = {str(val2) : 1, str(val1) : 2} feature_types_given = ['nominal', 'nominal', 'nominal', 'nominal'] X, n_samples = clean_X(X) assert(n_samples == 3) feature_names_in = unify_feature_names(X, feature_types_given=feature_types_given) X_cols = list(unify_columns(X, [(0, None), (1, None), (2, None), (3, None)], feature_names_in, None)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(len(X_cols[0][2]) == 2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(len(X_cols[1][2]) == 2) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(len(X_cols[2][2]) == 2) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(len(X_cols[3][2]) == 2) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) X_cols = list(unify_columns(X, [(0, c1), (1, c1), (2, c1), (3, c1)], feature_names_in, feature_types_given)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c1) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(X_cols[1][2] is c1) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(X_cols[2][2] is c1) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(X_cols[3][2] is c1) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) X_cols = list(unify_columns(X, [(0, c2), (1, c2), (2, c2), (3, c2)], feature_names_in, feature_types_given)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c2) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(X_cols[1][2] is c2) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(X_cols[2][2] is c2) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(X_cols[3][2] is c2) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) X_cols = list(unify_columns(X, [(0, c1), (1, c2), (2, c1), (3, c2)], feature_names_in, feature_types_given)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'nominal') assert(X_cols[0][3] is None) assert(X_cols[0][2] is c1) assert(X_cols[0][1].dtype == np.int64) assert(len(X_cols[0][1]) == 3) assert(X_cols[0][1][0] == X_cols[0][2][str(val2)]) assert(X_cols[0][1][1] == X_cols[0][2][str(val1)]) assert(X_cols[0][1][2] == X_cols[0][2][str(val1)]) assert(X_cols[1][0] == 'nominal') assert(X_cols[1][3] is None) assert(X_cols[1][2] is c2) assert(X_cols[1][1].dtype == np.int64) assert(len(X_cols[1][1]) == 3) assert(X_cols[1][1][0] == 0) assert(X_cols[1][1][1] == X_cols[1][2][str(val2)]) assert(X_cols[1][1][2] == X_cols[1][2][str(val1)]) assert(X_cols[2][0] == 'nominal') assert(X_cols[2][3] is None) assert(X_cols[2][2] is c1) assert(X_cols[2][1].dtype == np.int64) assert(len(X_cols[2][1]) == 3) assert(X_cols[2][1][0] == X_cols[2][2][str(val1)]) assert(X_cols[2][1][1] == 0) assert(X_cols[2][1][2] == X_cols[2][2][str(val2)]) assert(X_cols[3][0] == 'nominal') assert(X_cols[3][3] is None) assert(X_cols[3][2] is c2) assert(X_cols[3][1].dtype == np.int64) assert(len(X_cols[3][1]) == 3) assert(X_cols[3][1][0] == X_cols[3][2][str(val2)]) assert(X_cols[3][1][1] == X_cols[3][2][str(val1)]) assert(X_cols[3][1][2] == 0) assert(np.array_equal(X_cols[1][1] == 0, X.iloc[:, 1].isna())) assert(np.array_equal(X_cols[2][1] == 0, X.iloc[:, 2].isna())) assert(np.array_equal(X_cols[3][1] == 0, X.iloc[:, 3].isna())) def check_pandas_float(dtype, val1, val2): X = pd.DataFrame() X["feature1"] = pd.Series(np.array([val2, val1, val1], dtype=np.object_), dtype=dtype) X["feature2"] = pd.Series(np.array([None, val2, val1], dtype=np.object_), dtype=dtype) X["feature3"] = pd.Series(np.array([val1, None, val2], dtype=np.object_), dtype=dtype) X["feature4"] = pd.Series(np.array([val2, val1, None], dtype=np.object_), dtype=dtype) X, n_samples = clean_X(X) assert(n_samples == 3) feature_names_in = unify_feature_names(X) X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in, min_unique_continuous=0)) assert(4 == len(X_cols)) assert(X_cols[0][0] == 'continuous') assert(X_cols[0][3] is None) assert(X_cols[0][2] is None) assert(X_cols[0][1].dtype == np.float64) assert(X_cols[0][1][0] == np.float64(dtype(val2))) assert(X_cols[0][1][1] == np.float64(dtype(val1))) assert(X_cols[0][1][2] == np.float64(dtype(val1))) assert(X_cols[1][0] == 'continuous') assert(X_cols[1][3] is None) assert(X_cols[1][2] is None) assert(X_cols[1][1].dtype == np.float64) assert(np.isnan(X_cols[1][1][0])) assert(X_cols[1][1][1] == np.float64(dtype(val2))) assert(X_cols[1][1][2] == np.float64(dtype(val1))) assert(X_cols[2][0] == 'continuous') assert(X_cols[2][3] is None) assert(X_cols[2][2] is None) assert(X_cols[2][1].dtype == np.float64) assert(X_cols[2][1][0] == np.float64(dtype(val1))) assert(np.isnan(X_cols[2][1][1])) assert(X_cols[2][1][2] == np.float64(dtype(val2))) assert(X_cols[3][0] == 'continuous') assert(X_cols[3][3] is None) assert(X_cols[3][2] is None) assert(X_cols[3][1].dtype == np.float64) assert(X_cols[3][1][0] == np.float64(dtype(val2))) assert(X_cols[3][1][1] == np.float64(dtype(val1))) assert(np.isnan(X_cols[3][1][2])) def check_numpy_throws(dtype_src, val1, val2): X = np.array([[val1, val2], [val1, val2]], dtype=dtype_src) X, n_samples = clean_X(X) assert(n_samples == 2) feature_names_in = unify_feature_names(X) try: X_cols = list(unify_columns(X, zip(range(len(feature_names_in)), repeat(None)), feature_names_in)) assert(False) except: pass def test_process_continuous_float64(): vals, bad = _process_continuous(np.array([3.5, 4.5], dtype=np.float64), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([3.5, 4.5], dtype=np.float64))) def test_process_continuous_float32(): vals, bad = _process_continuous(np.array([3.1, np.nan], dtype=np.float32), None) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 2) assert(vals[0] == 3.0999999046325684) assert(np.isnan(vals[1])) def test_process_continuous_int8(): vals, bad = _process_continuous(np.array([7, -9], dtype=np.int8), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([7, -9], dtype=np.float64))) def test_process_continuous_uint16_missing(): vals, bad = _process_continuous(np.array([7], dtype=np.uint16), np.array([True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 2) assert(vals[0] == 7) assert(np.isnan(vals[1])) def test_process_continuous_bool(): vals, bad = _process_continuous(np.array([False, True], dtype=np.bool_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([0, 1], dtype=np.float64))) def test_process_continuous_bool_missing(): vals, bad = _process_continuous(np.array([False, True], dtype=np.bool_), np.array([True, False, True], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 3) assert(vals[0] == 0) assert(np.isnan(vals[1])) assert(vals[2] == 1) def test_process_continuous_obj_simple(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5")], dtype=np.object_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([1, 2.5, 3, 4.5, 5.5], dtype=np.float64))) def test_process_continuous_obj_simple_missing(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5")], dtype=np.object_), np.array([True, True, True, True, True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 6) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(vals[2] == 3) assert(vals[3] == 4.5) assert(vals[4] == 5.5) assert(np.isnan(vals[5])) def test_process_continuous_obj_hard(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5"), StringHolder("6.5"), DerivedStringHolder("7.5"), FloatHolder(8.5), DerivedFloatHolder(9.5), FloatAndStringHolder(10.5, "88"), DerivedFloatAndStringHolder(11.5, "99")], dtype=np.object_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([1, 2.5, 3, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5, 11.5], dtype=np.float64))) def test_process_continuous_obj_hard_missing(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5"), StringHolder("6.5")], dtype=np.object_), np.array([True, True, True, True, True, True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 7) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(vals[2] == 3) assert(vals[3] == 4.5) assert(vals[4] == 5.5) assert(vals[5] == 6.5) assert(np.isnan(vals[6])) def test_process_continuous_obj_hard_bad(): vals, bad = _process_continuous(np.array([1, 2.5, "3", "4.5", np.float32("5.5"), StringHolder("6.5"), "bad", StringHolder("bad2"), NothingHolder("bad3")], dtype=np.object_), np.array([True, True, True, True, True, True, True, False, True, True], dtype=np.bool_)) assert(len(bad) == 10) assert(bad[0] is None) assert(bad[1] is None) assert(bad[2] is None) assert(bad[3] is None) assert(bad[4] is None) assert(bad[5] is None) assert(bad[6] == "bad") assert(bad[7] is None) assert(bad[8] == "bad2") assert(isinstance(bad[9], str)) assert(vals.dtype == np.float64) assert(len(vals) == 10) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(vals[2] == 3) assert(vals[3] == 4.5) assert(vals[4] == 5.5) assert(vals[5] == 6.5) assert(np.isnan(vals[7])) def test_process_continuous_str_simple(): vals, bad = _process_continuous(np.array(["1", "2.5"], dtype=np.unicode_), None) assert(bad is None) assert(vals.dtype == np.float64) assert(np.array_equal(vals, np.array([1, 2.5], dtype=np.float64))) def test_process_continuous_str_simple_missing(): vals, bad = _process_continuous(np.array(["1", "2.5"], dtype=np.unicode_), np.array([True, True, False], dtype=np.bool_)) assert(bad is None) assert(vals.dtype == np.float64) assert(len(vals) == 3) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(np.isnan(vals[2])) def test_process_continuous_str_hard_bad(): vals, bad = _process_continuous(np.array(["1", "2.5", "bad"], dtype=np.unicode_), np.array([True, True, True, False], dtype=np.bool_)) assert(len(bad) == 4) assert(bad[0] is None) assert(bad[1] is None) assert(bad[2] == "bad") assert(bad[3] is None) assert(vals.dtype == np.float64) assert(len(vals) == 4) assert(vals[0] == 1) assert(vals[1] == 2.5) assert(np.isnan(vals[3])) def test_process_column_initial_int_float(): # this test is hard since np.unique seems to think int(4) == float(4.0) so naively it returns just "4" encoded, c = _process_column_initial(np.array([4, 4.0], dtype=np.object_), None, None, None) assert(len(c) == 2) assert(c["4"] == 1) assert(c["4.0"] == 2) assert(np.array_equal(encoded, np.array([c["4"], c["4.0"]], dtype=np.int64))) def test_process_column_initial_float32_float64(): # np.float64(np.float32(0.1)) != np.float64(0.1) since the float32 to float64 version has the lower mantisa bits # all set to zero, and there will be another float64 that will be closer to "0.1" in float64 representation, so # they aren't the same, but if to convert them to strings first then they are identical. Strings are the # ultimate arbiter of categorical membership since strings are cross-platform and JSON encodable. np.unique # will tend to separate the float32 and the float64 values since they aren't the same, but then serialize # them to the same string. The our model has ["0.1", "0.1"] as the categories if we don't convert to float64! encoded, c = _process_column_initial(np.array([np.float32(0.1), np.float64(0.1)], dtype=np.object_), None, None, None) assert(len(c) == 2) assert(c["0.1"] == 1) assert(c["0.10000000149011612"] == 2) assert(np.array_equal(encoded, np.array([c["0.10000000149011612"], c["0.1"]], dtype=np.int64))) def test_process_column_initial_obj_obj(): encoded, c = _process_column_initial(np.array([StringHolder("abc"), StringHolder("def")], dtype=np.object_), None, None, None) assert(len(c) == 2) assert(c["abc"] == 1) assert(c["def"] == 2) assert(np.array_equal(encoded, np.array([c["abc"], c["def"]], dtype=np.int64))) def test_process_column_initial_alphabetical_nomissing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), None, 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["abc"] == 1) assert(c["xyz"] == 2) assert(np.array_equal(encoded, np.array([c["xyz"], c["abc"], c["xyz"]], dtype=np.int64))) def test_process_column_initial_alphabetical_missing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), np.array([True, True, False, True], dtype=np.bool_), 'nominal_alphabetical', None) assert(len(c) == 2) assert(c["abc"] == 1) assert(c["xyz"] == 2) assert(np.array_equal(encoded, np.array([c["xyz"], c["abc"], 0, c["xyz"]], dtype=np.int64))) def test_process_column_initial_prevalence_nomissing(): encoded, c = _process_column_initial(np.array(["xyz", "abc", "xyz"], dtype=np.unicode_), None, 'nominal_prevalence', None) assert(len(c) == 2) assert(c["xyz"] == 1) assert(c["abc"] == 2) assert(np.array_equal(encoded,
np.array([c["xyz"], c["abc"], c["xyz"]], dtype=np.int64)
numpy.array
from flask import Flask,request,json,jsonify #pip install Flask && pip install -v scikit-learn==0.23.1 import numpy as np #pip install numpy import pandas as pd app = Flask(__name__) @app.route('/recommend/',methods=['GET', 'POST']) def recommend(): data = request.get_json() cat = [] ints = [] ideas = [] for i in data['cat']: cat.append(i) for i in data['ints']: ints.append(i) for i in data['ideas']: ideas.append(i) ideas1 =[] for i in cat: x = 0 if i == ideas[x]: ideas1.append(1) else: ideas1.append(0) x +=1 cats1 =[] for i in ideas: x = 0 if i == cat[x]: cats1.append(1) else: cats1.append(0) x +=1 cats1=
np.array(cats1)
numpy.array
import pysplishsplash import gym import pickle import numpy as np import torch import argparse import os,sys import time from scipy.ndimage import gaussian_filter,gaussian_filter1d from scipy.stats import linregress from scipy.spatial.transform import Rotation as R import math import matplotlib.pyplot as plt from tqdm import tqdm,trange device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def convert_state_to_torch(state): features = torch.FloatTensor(np.array([state[0]]).reshape(1, -1)).to(device) particles = torch.FloatTensor(state[1].reshape(1,*state[1].shape)).to(device) return features,particles def evalstuff(state,action,td3): features,particles = convert_state_to_torch(state) features[-1] = 0 #td3.actor.eval() #td3.critic.eval() #print("likestuff",td3.actor(features,particles),td3.critic.Q1(features,particles, td3.actor(features,particles))) #print("action",action) q_val = policy.eval_q(state,action) #print(state[0],action,q_val) #print("chosen",q_val) #print("zero",policy.eval_q(state,[0])) #print("special",policy.eval_q(state,[1])) #print("one",policy.eval_q(state,[1,1,1])) return (q_val[0][0]+q_val[1][0])/2 def train(state,td3): batch_size = 32 all_feat = [] all_part = [] for _ in range(batch_size): f,p = convert_state_to_torch(state) all_feat.append(f) all_part.append(p) features = torch.cat(all_feat,0) particles = torch.cat(all_part,0) td3._actor_learn(features,particles) def plot_q_compare(rew_lists,q_lists,discount,path,show=False): maxi = max(len(x) for x in rew_lists) print([len(x) for x in rew_lists]) emp_rewards = [0 for _ in range(len(rew_lists))] emp_avg = [] q_avg = [] for i in range(maxi-1,-1,-1): for j in range(len(rew_lists)): emp_pot = [] q_pot = [] if len(rew_lists[j]) > i: emp_rewards[j] = emp_rewards[j]*discount + rew_lists[j][i] emp_pot.append(emp_rewards[j]) q_pot.append(q_lists[j][i]) emp_avg.append(np.mean(emp_pot)) q_avg.append(np.mean(q_pot)) emp_avg.reverse() q_avg.reverse() plt.plot(emp_avg,label="empirical Q value (discounted)") plt.plot(q_avg,label="TD3 computed Q value") plt.xlabel("time step") plt.ylabel("Q-value") plt.legend() plt.savefig(path) if show: plt.show() plt.cla() def running_mean(x, N): cumsum = np.cumsum(np.insert(x, 0, 0)) return (cumsum[N:] - cumsum[:-N]) / float(N) def smooth_compare(x_ax1,x_ax2,vals1,vals2,xlabel,ylabel,legend_vals,path,show=False,sigma=5): fig = plt.figure(figsize=(10,4)) lims = (max(min(x_ax1),min(x_ax2)),min(max(x_ax1),max(x_ax2))) v1 = gaussian_filter1d(
np.array(vals1,dtype=np.float)
numpy.array
import os import time import numpy as np os.system(r"printf '\033[2J'") field =
np.full((23, 80), " ")
numpy.full
""" Library of utilities that can be used for plotting """ import numpy as np from matplotlib import pyplot as plt from matplotlib import cm import cubedsphere.const as c from .utils import _flatten_ds def overplot_wind(ds_reg, U, V, stepsize=1): """ Quick and dirty function for overplotting wind of a regridded dataset Parameters ---------- ds_reg: xarray DataSet regridded dataset stepsize: integer specify the stepsize for which wind arrows should be plotted """ ax = plt.gca() y, x = ds_reg["lat"].values, ds_reg["lon"].values xmesh, ymesh = np.meshgrid(x, y) ax.quiver(xmesh[::stepsize, ::stepsize], ymesh[::stepsize, ::stepsize], U[::stepsize, ::stepsize], V[::stepsize, ::stepsize]) def plotCS(dr, ds, mask_size=None, **kwargs): """ A quick way to plot cubed-sphere data of resolution 6*N*N. Wrapping plotCS_quick_raw to work with xarray objects Parameters ---------- dr: xarray DataArray The dimensions must be (y,x) ds: xarray DataSet (the parent DataSet of dr) Must contain XC, YC as coordinate variables. mask_size: None or int The overlap size of individual tiles. If None is chosen one might likely experience issues **kwargs Other keyword arguments such as cmap will be passed to plotCS_quick_raw() and subsequently to plt.pcolormesh() Returns ------- ph: list List of mappabales """ # must convert xarray objects to raw numpy arrays # otherwise numpy masking functions won't work x_dim, y_dim = c.lon, c.lat if len(ds[c.lon].shape) > 2: if ds[c.lon].shape[-1] == dr.shape[-1]: x_dim = c.lon x = _flatten_ds(ds[x_dim]).values data = _flatten_ds(dr).values elif ds[c.lon_b].shape[-1] == dr.shape[-1]: x_dim = c.lon_b x = _flatten_ds(ds[x_dim]).values data = _flatten_ds(dr).values if ds[c.lat].shape[-2] == dr.shape[-2]: y_dim = c.lat y = _flatten_ds(ds[y_dim]).values elif ds[c.lat_b].shape[-2] == dr.shape[-2]: y_dim = c.lat_b y = _flatten_ds(ds[y_dim]).values else: x = ds[x_dim].values y = ds[y_dim].values data = dr.values #assert dr.shape == ds[ # x_dim].shape, f"shape mismatch. shape of data: {dr.shape}, shape of coordinates: {ds[x_dim].shape}" #assert dr.shape == ds[ # y_dim].shape, f"shape mismatch. shape of data: {dr.shape}, shape of coordinates: {ds[y_dim].shape}" if mask_size is not None: try: mask = np.abs(x - 180) < mask_size data = np.ma.masked_where(mask, data) except IndexError: print("caution: No masking possible!") return _plot_cs_raw(x, y, data, **kwargs) def _plot_cs_raw(x, y, data, projection=None, vmin=None, vmax=None, **kwargs): """ Plots 2D scalar fields on the MITgcm cubed sphere grid with pcolormesh. Adapted from MITgcmutils (https://github.com/MITgcm/MITgcm/tree/master/utils/python/MITgcmutils/MITgcmutils/cs) Parameters ---------- x: array_like 'xg', that is, x coordinate of the points one half grid cell to the left and bottom, that is vorticity points for tracers, etc. y: array_like 'yg', that is, y coordinate of same points data: array_like scalar field at tracer points projection: Basemap instance, optional used to transform if present. Unfortunatly, cylindrical and conic maps are limited to the [-180 180] range. projection = 'sphere' results in a 3D visualization on the sphere without any specific projection. Good for debugging. Returns ------- ph: list List of mappabales """ # pcol first divides the 2D cs-field(6*n,n) into six faces. Then for # each face, an extra row and colum is added from the neighboring faces in # order to fool pcolor into drawing the entire field and not just # (n-1,m-1) data points. There are two corner points that have no explicit # coordinates so that they have to be found by # interpolation/averaging. Then each face is divided into 4 tiles, # assuming cs-geometry, and each tile is plotted individually in # order to avoid problems due to ambigous longitude values (the jump # between -180 and 180, or 360 and 0 degrees). As long as the poles # are at the centers of the north and south faces and the first tile is # symmetric about its center this should work. # get the figure handle fig = plt.gcf() mapit = 0 if projection != None: mp = projection if mp == 'sphere': mapit = -1 else: mapit = 1 # convert to [-180 180[ representation x = np.where(x > 180, x - 360., x) ny, nx = data.shape # determine range for color range cax = [data.min(), data.max()] if cax[1] - cax[0] == 0: cax = [cax[0] - 1, cax[1] + 1] if vmin != None: cax[0] = vmin if vmax != None: cax[1] = vmax if mapit == -1: # set up 3D plot if len(fig.axes) > 0: # if present, remove and replace the last axis of fig geom = fig.axes[-1].get_geometry() plt.delaxes(fig.axes[-1]) else: # otherwise use full figure geom = ((1, 1, 1)) ax = fig.add_subplot(geom[0], geom[1], geom[2], projection='3d', facecolor='None') # define color range tmp = data - data.min() N = tmp / tmp.max() # use this colormap colmap = cm.jet colmap.set_bad('w', 1.0) mycolmap = colmap(N) # cm.jet(N) ph = np.array([]) jc = x.shape[0] // 2 xxf = np.empty((jc + 1, jc + 1, 4)) yyf = xxf ffld = np.empty((jc, jc, 4)) xff = [] yff = [] fldf = [] for k in range(0, 6): ix = np.arange(0, ny) + k * ny xff.append(x[0:ny, ix]) yff.append(y[0:ny, ix]) fldf.append(data[0:ny, ix]) # find the missing corners by interpolation (one in the North Atlantic) xfodd = (xff[0][-1, 0] + xff[2][-1, 0] + xff[4][-1, 0]) / 3. yfodd = (yff[0][-1, 0] + yff[2][-1, 0] + yff[4][-1, 0]) / 3. # and one south of Australia xfeven = (xff[1][0, -1] + xff[3][0, -1] + xff[5][0, -1]) / 3. yfeven = (yff[1][0, -1] + yff[3][0, -1] + yff[5][0, -1]) / 3. # loop over tiles for k in range(0, 6): kodd = 2 * (k // 2) kodd2 = kodd if kodd == 4: kodd2 = kodd - 6 keven = 2 * (k // 2) keven2 = keven if keven == 4: keven2 = keven - 6 fld = fldf[k] if np.mod(k + 1, 2): xf = np.vstack([np.column_stack([xff[k], xff[1 + kodd][:, 0]]), np.flipud(np.append(xff[2 + kodd2][:, 0], xfodd))]) yf = np.vstack([np.column_stack([yff[k], yff[1 + kodd][:, 0]]), np.flipud(np.append(yff[2 + kodd2][:, 0], yfodd))]) else: xf = np.column_stack([np.vstack([xff[k], xff[2 + keven2][0, :]]), np.flipud(np.append(xff[3 + keven2][0, :], xfeven))]) yf = np.column_stack([np.vstack([yff[k], yff[2 + keven2][0, :]]), np.flipud(np.append(yff[3 + keven2][0, :], yfeven))]) if mapit == -1: ix = np.arange(0, ny) + k * ny # no projection at all (projection argument is 'sphere'), # just convert to cartesian coordinates and plot a 3D sphere deg2rad = np.pi / 180. xcart, ycart, zcart = _sph2cart(xf * deg2rad, yf * deg2rad) ax.plot_surface(xcart, ycart, zcart, rstride=1, cstride=1, facecolors=mycolmap[0:ny, ix], linewidth=2, shade=False) ph = np.append(ph, ax) else: # divide all faces into 4 because potential problems arise at # the centers for kf in range(0, 4): if kf == 0: i0, i1, j0, j1 = 0, jc + 1, 0, jc + 1 elif kf == 1: i0, i1, j0, j1 = 0, jc + 1, jc, 2 * jc + 1 elif kf == 2: i0, i1, j0, j1 = jc, 2 * jc + 1, 0, jc + 1 elif kf == 3: i0, i1, j0, j1 = jc, 2 * jc + 1, jc, 2 * jc + 1 xx = xf[i0:i1, j0:j1] yy = yf[i0:i1, j0:j1] ff = fld[i0:i1 - 1, j0:j1 - 1] if np.median(xx) < 0: xx = np.where(xx >= 180, xx - 360., xx) else: xx = np.where(xx <= -180, xx + 360., xx) # if provided use projection if mapit == 1: xx, yy = mp(xx, yy) # now finally plot 4x6 tiles ph = np.append(ph, plt.pcolormesh(xx, yy, ff, vmin=cax[0], vmax=cax[1], **kwargs)) if mapit == -1: # ax.axis('image') ax.set_axis_off() # ax.set_visible=False # add a reasonable colormap m = cm.ScalarMappable(cmap=colmap) m.set_array(data) plt.colorbar(m) elif mapit == 0: ax = fig.axes[-1] ax.axis('image') plt.grid('on') return ph def _sph2cart(azim_sph_coord, elev_sph_coord): r =
np.cos(elev_sph_coord)
numpy.cos
# ###################################################################### # Copyright (c) 2014, Brookhaven Science Associates, Brookhaven # # National Laboratory. All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # # modification, are permitted provided that the following conditions # # are met: # # # # * Redistributions of source code must retain the above copyright # # notice, this list of conditions and the following disclaimer. # # # # * Redistributions in binary form must reproduce the above copyright # # notice this list of conditions and the following disclaimer in # # the documentation and/or other materials provided with the # # distribution. # # # # * Neither the name of the Brookhaven Science Associates, Brookhaven # # National Laboratory nor the names of its contributors may be used # # to endorse or promote products derived from this software without # # specific prior written permission. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, # # STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OTHERWISE) ARISING # # IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # # POSSIBILITY OF SUCH DAMAGE. # ######################################################################## """ This module is for test output.py saving integrated powder x-ray diffraction intensities into different file formats. (Output into different file formats, .chi, .dat, .xye, gsas) Added a test to check the GSAS file reader and file writer """ from __future__ import absolute_import, division, print_function import six import os import math import numpy as np from numpy.testing import assert_array_equal, assert_array_almost_equal import skxray.io.save_powder_output as output from skxray.io.save_powder_output import gsas_writer from skxray.io.gsas_file_reader import gsas_reader def test_save_output(): filename = "function_values" x = np.arange(0, 100, 1) y = np.exp(x) y1 = y*math.erf(0.5) output.save_output(x, y, filename, q_or_2theta="Q", err=None, dir_path=None) output.save_output(x, y, filename, q_or_2theta="2theta", ext=".dat", err=None, dir_path=None) output.save_output(x, y, filename, q_or_2theta="2theta", ext=".xye", err=y1, dir_path=None) Data_chi = np.loadtxt("function_values.chi", skiprows=7) Data_dat = np.loadtxt("function_values.dat", skiprows=7) Data_xye = np.loadtxt("function_values.xye", skiprows=7) assert_array_almost_equal(x, Data_chi[:, 0]) assert_array_almost_equal(y, Data_chi[:, 1]) assert_array_almost_equal(x, Data_dat[:, 0]) assert_array_almost_equal(y, Data_dat[:, 1]) assert_array_almost_equal(x, Data_xye[:, 0])
assert_array_almost_equal(y, Data_xye[:, 1])
numpy.testing.assert_array_almost_equal
from __future__ import division import warnings from pycircstat import CI from pycircstat.iterators import index_bootstrap import numpy as np from scipy import stats import pandas as pd class BaseRegressor(object): """ Basic regressor object. Mother class to all other regressors. Regressors support indexing which is passed to the coefficients. Regressors also support calling. In this case the prediction function is called. """ def __init__(self): self._coef = None def istrained(self): """ Returns whether the regressor is trained of not. :return: True if trained """ return self._coef is not None def train(self, *args, **kwargs): raise NotImplementedError(u"{0:s}.train not implemented".format(self.__class__.__name__)) def test(self, *args, **kwargs): raise NotImplementedError(u"{0:s}.test not implemented".format(self.__class__.__name__)) def loss(self, x, y, lossfunc, ci=None, bootstrap_iter=1000): """ Computes loss function between the predictions f(x) and the true y. :param x: inputs in radians. If multidimensional, each row must be a specimen and each column a feature. :param y: desired outputs in radians. If multidimensional, each row must be a specimen and each column a feature. :param lossfunc: loss function, must take an array of input and outputs and compute the loss. :param ci: confidence interval in [0,1]. If not None, bootstrapping is performed. :param bootstrap_iter: number of bootstrap iterations if :return: loss as computed by the loss function. """ if ci is not None: yhat = self.predict(x) l = [lossfunc(y[idx], yhat[idx]) for idx in index_bootstrap(x.shape[0], bootstrap_iter)] mu = np.mean(l) q = 1 - ci return mu, CI(np.percentile(l, q / 2. * 100), np.percentile(l, 1 - q / 2. * 100)) return lossfunc(y, self.predict(x)) def predict(self, *args, **kwargs): raise NotImplementedError(u"{0:s}.predict not implemented".format(self.__class__.__name__)) def __getitem__(self, item): return self._coef.__getitem__(item) def __setitem__(self, key, value): return self._coef.__getitem__(key, value) def __call__(self, *args, **kwargs): assert self.istrained(), "Regressor must be trained first." return self.predict(*args, **kwargs) class CL1stOrderRegression(BaseRegressor): """ Implements a circular linear regression model of the form .. math:: x = m + a \\cos(\\alpha - \\alpha_0) The actual model is equivalently implemented as .. math:: x = c_1 \\cos(\\alpha) + c_2 \\sin(\\alpha) + m References: [Jammalamadaka2001]_ """ def __init__(self): super(CL1stOrderRegression, self).__init__() def train(self, alpha, x): """ Estimates the regression coefficients. Only works for 1D data. :param alpha: independent variable, angles in radians :param x: dependent variable """ assert alpha.shape == x.shape, "x and alpha need to have the same shape" assert len(alpha.shape) == 1, "regression only implemented for 1D data" assert len(x.shape) == 1, "regression only implemented for 1D data" X = np.c_[np.cos(alpha), np.sin(alpha), np.ones_like(alpha)] c = np.dot(np.linalg.pinv(X), x) self._coef = c def predict(self, alpha): """ Predicts linear values from the angles. :param alpha: inputs, angles in radians :return: predictions """ X = np.c_[np.cos(alpha), np.sin(alpha), np.ones_like(alpha)] return np.dot(X, self._coef) def test(self, alpha, x): """ Tests whether alpha and x are significantly correlated. The test assumes that x is normally distributed. The test function uses a Shapiro-Wilk test to test this assumption. :param alpha: independent variable, angles in radians :param x: dependent variable :return: test results of Shapiro-Wilk and Liddell-Ord test :rtype: pandas.DataFrame References: [Jammalamadaka2001]_ """ w, psw = stats.shapiro(x) if psw < 0.05: warnings.warn("This test requires Gaussian distributed x") rxc, rxs, rcs = np.corrcoef(x, np.cos(alpha))[0,1], np.corrcoef(x, np.sin(alpha))[0,1], \ np.corrcoef(np.cos(alpha), np.sin(alpha))[0,1] n = len(alpha) r2 = (rxc**2 + rxs**2 - 2*rxc*rxs*rcs)/(1 - rcs**2) f = (n-3)*r2/(1-r2) p = stats.f.sf(f, 2, n-3) df = pd.DataFrame(dict( test = ['Shapiro-Wilk','Liddell-Ord'], statistics = [w, f], p = [psw, p], dof = [None, (2, n-3)] )).set_index('test') return df class CCTrigonometricPolynomialRegression(BaseRegressor): """ Implements a circular circular regression model of the form .. math:: \\cos(\\beta) = a_0 + \\sum_{k=1}^d a_k \\cos(k\\alpha) + b_k \\sin(k\\alpha) \\sin(\\beta) = c_0 + \\sum_{k=1}^d c_k \\cos(k\\alpha) + d_k \\sin(k\\alpha) The angles :math:`\\beta` are estimated via :math:`\\hat\\beta = atan2(\\sin(\\beta), \\cos(\\beta))` :param degree: degree d of the trigonometric polynomials References: [Jammalamadaka2001]_ """ def __init__(self, degree=3): super(CCTrigonometricPolynomialRegression, self).__init__() self.degree = degree def train(self, alpha, beta): """ Estimates the regression coefficients. Only works for 1D data. :param alpha: independent variable, angles in radians :param beta: dependent variable, angles in radians """ X = np.vstack([np.ones_like(alpha)] + [np.cos(alpha*k) for k in
np.arange(1., self.degree+1)
numpy.arange
""" wbutils.py Copyright (c) 2022 Sony Group Corporation This software is released under the MIT License. http://opensource.org/licenses/mit-license.php """ import numpy as np def polarAWB_achromatic(imean, weight): pixels_r = np.copy(imean[..., 0]) pixels_g =
np.copy(imean[..., 1])
numpy.copy
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den =
N.array([1,1,3])
numpy.array
## main reference: https://github.com/fspaolo/captoolkit ## author: <NAME>; ## create: 2021.8.8; import numpy as np from utils.make_grid import make_grid from utils.spatial_filter import spatial_filter from scipy.ndimage import map_coordinates from scipy.spatial import cKDTree from scipy.spatial.distance import cdist from scipy.interpolate import InterpolatedUnivariateSpline ### ------------------------------ ### ### 1-d interpolation ### ### ------------------------------ ### def interp1d(x, y, xi, n = 1): """ des: 1D interpolation (spline) args: x,y: coord_x and coord_y of the given points. xi: the interpolation point. n: degree of the smoothing spline. must be 1 <= n <= 5. return: interpolated yi value. """ idx =
np.argsort(x)
numpy.argsort
import signatures.fisherVector as fv import numpy as np from sklearn.mixture import GaussianMixture from sklearn.preprocessing import Normalizer def teste(): import csv import itertools path = '/Users/romuere/Dropbox/Berkeley/workspace/pycbir 2/files/' file_train_features = 'feature_vectors_cnn_training.csv' file_test_features = 'feature_vectors_cnn_test.csv' file_train_labels = 'labels_cnn_training.csv' file_test_labels = 'labels_cnn_test.csv' reader = csv.reader(open(path+file_train_features),delimiter=',') x = list(reader) train_features =
np.array(x)
numpy.array
from __future__ import absolute_import import numpy as np import scipy as sp import logging from scipy import stats from fastlmm.pyplink.snpreader.Bed import Bed #from fastlmm.association.gwas import LeaveOneChromosomeOut, LocoGwas, FastGwas, load_intersect from fastlmm.association.LeaveOneChromosomeOut import LeaveOneChromosomeOut from fastlmm.association.PrecomputeLocoPcs import load_intersect from fastlmm.association.LocoGwas import FastGwas, LocoGwas from fastlmm.util import run_fastlmmc from fastlmm.inference import LMM import unittest import os.path import time from six.moves import range currentFolder = os.path.dirname(os.path.realpath(__file__)) class TestGwas(unittest.TestCase): @classmethod def setUpClass(self): #self.snpreader_bed = Bed(currentFolder + "../feature_selection/examples/toydata") #self.pheno_fn = currentFolder + "../feature_selection/examples/toydata.phe" self.meh = True def test_loco(self): """ test leave one chromosome out iterator """ names = ["a", "b", "a", "c", "b", "c", "b"] loco = LeaveOneChromosomeOut(names) expect = [[[1,3,4,5,6],[0,2]], [[0,2,3,5],[1,4,6]], [[0,1,2,4,6],[3,5]]] for i, (train_idx, test_idx) in enumerate(loco): assert (expect[i][0] == train_idx).all() assert (expect[i][1] == test_idx).all() #def xtest_results_identical_with_fastlmmcX(self): # """ # make sure gwas yields same results as fastlmmC # """ # os.chdir(r"d:\data\carlk\cachebio\genetics\wtccc\data") # bed_fn = "filtered/wtcfb" # pheno_fn = r'pheno\cad.txt' # logging.info("Loading Bed") # snp_reader = Bed(bed_fn) # import fastlmm.pyplink.snpset.PositionRange as PositionRange # snp_set = PositionRange(0,201) # logging.info("Intersecting and standardizing") # G, y, _, _ = load_intersect(snp_reader, pheno_fn, snp_set) # snp_pos = snp_reader.rs # idx_sim = range(0, 200) # idx_test = range(200,201) # #snp_pos_sim = snp_pos[idx_sim] # #snp_pos_test = snp_pos[idx_test] # G_chr1, G_chr2 = G[:,idx_sim], G[:,idx_test] # delta = 4.0 # REML = False # #gwas_c = GwasTest(bed_fn, pheno_fn, snp_pos_sim, snp_pos_test, delta, REML=REML) # #gwas_c.run_gwas() # logging.info("Creating GwasPrototype") # gwas = GwasPrototype(G_chr1, G_chr2, y, delta, REML=REML) # logging.info("running GwasPrototype") # gwas.run_gwas() # logging.info("finished GwasPrototype") # #gwas_f = FastGwas(G_chr1, G_chr2, y, delta, findh2=False) # #gwas_f.run_gwas() # sorted_snps = snp_pos_test[gwas.p_idx] ## make sure we get p-values right #np.testing.assert_array_almost_equal(gwas.p_values, gwas_c.p_values, decimal=3) #np.testing.assert_array_almost_equal(gwas.p_values, gwas_f.p_values, decimal=3) #np.testing.assert_array_almost_equal(gwas.sorted_p_values, gwas_c.sorted_p_values, decimal=3) #np.testing.assert_array_almost_equal(gwas.sorted_p_values, gwas_f.sorted_p_values, decimal=3) def test_results_identical_with_fastlmmc(self): """ make sure gwas yields same results as fastlmmC """ currentFolder = os.path.dirname(os.path.realpath(__file__)) #prefix = r"C:\Users\chwidmer\Documents\Projects\sandbox\data\test" #bed_fn = prefix + "/jax_gt.up.filt.M" #dat_fn = prefix + "/jax_M_expression.1-18.dat" #pheno_fn = prefix + "/jax_M_expression.19.phe.txt" bed_fn = os.path.join(currentFolder, "../../feature_selection/examples/toydata") pheno_fn = os.path.join(currentFolder, "../../feature_selection/examples/toydata.phe") #prefix = "../../../tests\datasets\mouse" #bed_fn = os.path.join(prefix, "alldata") #pheno_fn = os.path.join(prefix, "pheno.txt") snp_reader = Bed(bed_fn) G, y, _, _ = load_intersect(snp_reader, pheno_fn) snp_pos = snp_reader.rs idx_sim = list(range(0, 5000)) idx_test = list(range(5000, 10000)) snp_pos_sim = snp_pos[idx_sim] snp_pos_test = snp_pos[idx_test] G_chr1, G_chr2 = G[:,idx_sim], G[:,idx_test] delta = 1.0 ################################### # REML IN lmm.py is BROKEN!! # we compare REML=False in lmm.py to fastlmmc REML = False gwas_c_reml = GwasTest(bed_fn, pheno_fn, snp_pos_sim, snp_pos_test, delta, REML=REML) gwas_c_reml.run_gwas() gwas = GwasPrototype(G_chr1, G_chr2, y, delta, REML=False) gwas.run_gwas() # check p-values in log-space! np.testing.assert_array_almost_equal(np.log(gwas.p_values), np.log(gwas_c_reml.p_values), decimal=3) if False: import pylab pylab.plot(np.log(gwas_c_reml.p_values), np.log(gwas_f.p_values_F), "x") pylab.plot(list(range(-66,0,1)), list(range(-66,0,1))) pylab.show() # we compare lmm_cov.py to fastlmmc with REML=False gwas_c = GwasTest(bed_fn, pheno_fn, snp_pos_sim, snp_pos_test, delta, REML=True) gwas_c.run_gwas() gwas_f = FastGwas(G_chr1, G_chr2, y, delta, findh2=False) gwas_f.run_gwas() np.testing.assert_array_almost_equal(np.log(gwas_c.p_values), np.log(gwas_f.p_values_F), decimal=2) # additional testing code for the new wrapper functions # Fix delta from pysnptools.snpreader import Bed as BedSnpReader from fastlmm.association.single_snp import single_snp snpreader = BedSnpReader(bed_fn,count_A1=False) frame = single_snp(test_snps=snpreader[:,idx_test], pheno=pheno_fn, G0=snpreader[:,idx_sim],h2=1.0/(delta+1.0),leave_out_one_chrom=False,count_A1=False) sid_list,pvalue_list = frame['SNP'].values,frame['PValue'].values np.testing.assert_allclose(gwas_f.sorted_p_values_F, pvalue_list, rtol=1e-10) p_vals_by_genomic_pos = frame.sort_values(["Chr", "ChrPos"])["PValue"].tolist() np.testing.assert_allclose(gwas_c_reml.p_values, p_vals_by_genomic_pos, rtol=.1) np.testing.assert_allclose(gwas_c_reml.p_values, gwas_f.p_values_F, rtol=.1) np.testing.assert_allclose(gwas_f.sorted_p_values_F, gwas_c_reml.sorted_p_values, rtol=.1) # Search over delta gwas_c_reml_search = GwasTest(bed_fn, pheno_fn, snp_pos_sim, snp_pos_test, delta=None, REML=True) gwas_c_reml_search.run_gwas() frame_search = single_snp(test_snps=snpreader[:,idx_test], pheno=pheno_fn, G0=snpreader[:,idx_sim],h2=None,leave_out_one_chrom=False,count_A1=False) _,pvalue_list_search = frame_search['SNP'].values,frame_search['PValue'].values p_vals_by_genomic_pos = frame_search.sort_values(["Chr", "ChrPos"])["PValue"].tolist() np.testing.assert_allclose(gwas_c_reml_search.p_values, p_vals_by_genomic_pos, rtol=.001) np.testing.assert_allclose(gwas_c_reml_search.sorted_p_values, pvalue_list_search, rtol=.001) class GwasPrototype(object): """ class to perform genome-wide scan """ def __init__(self, train_snps, test_snps, phen, delta=None, cov=None, REML=False, train_pcs=None, mixing=0.0): """ set up GWAS object """ self.REML = REML self.train_snps = train_snps self.test_snps = test_snps self.phen = phen if delta is None: self.delta=None else: self.delta = delta * train_snps.shape[1] self.n_test = test_snps.shape[1] self.n_ind = len(self.phen) self.train_pcs = train_pcs self.mixing = mixing # add bias if no covariates are used if cov is None: self.cov = np.ones((self.n_ind, 1)) else: self.cov = cov self.n_cov = self.cov.shape[1] self.lmm = None self.res_null = None self.res_alt = [] self.ll_null = None self.ll_alt = np.zeros(self.n_test) self.p_values = np.zeros(self.n_test) self.sorted_p_values = np.zeros(self.n_test) # merge covariates and test snps self.X = np.hstack((self.cov, self.test_snps)) def precompute_UX(self, X): ''' precompute UX for all snps to be tested -------------------------------------------------------------------------- Input: X : [N*D] 2-dimensional array of covariates -------------------------------------------------------------------------- ''' logging.info("precomputing UX") self.UX = self.lmm.U.T.dot(X) self.k = self.lmm.S.shape[0] self.N = self.lmm.X.shape[0] if (self.k<self.N): self.UUX = X - self.lmm.U.dot(self.UX) logging.info("done.") def train_null(self): """ train model under null hypothesis """ logging.info("training null model") # use LMM self.lmm = LMM() self.lmm.setG(self.train_snps, self.train_pcs, a2=self.mixing) self.lmm.setX(self.cov) self.lmm.sety(self.phen) logging.info("finding delta") if self.delta is None: result = self.lmm.findH2(REML=self.REML, minH2=0.00001 ) self.delta = 1.0/result['h2']-1.0 # UX = lmm_null.U.dot(test_snps) self.res_null = self.lmm.nLLeval(delta=self.delta, REML=self.REML) self.ll_null = -self.res_null["nLL"] def set_current_UX(self, idx): """ set the current UX to pre-trained LMM """ si = idx + self.n_cov self.lmm.X = np.hstack((self.X[:,0:self.n_cov], self.X[:,si:si+1])) self.lmm.UX =
np.hstack((self.UX[:,0:self.n_cov], self.UX[:,si:si+1]))
numpy.hstack
""" Code based on random_transform in keras.processing.image from 2016. (https://github.com/fchollet/keras) Keras copyright: All contributions by <NAME>: Copyright (c) 2015, <NAME>. All contributions by Google: Copyright (c) 2015, Google, Inc. All contributions by Microsoft: Copyright (c) 2017, Microsoft, Inc. All other contributions: Copyright (c) 2015-2017, the respective contributors. (All rights reserved by copyright holders of all contributions.) Modified: Copyright 2017, <NAME> Copyright 2016, <NAME> Copyright 2016, <NAME> """ import os import numpy as np import scipy.ndimage as ndi import SimpleITK as sitk """ Apply data augmentation to all images in an N-dimensional stack. Assumes the final two axes are spatial axes (not considering the channel axis). Arguments are as defined for image_random_transform. """ def image_stack_random_transform(x, *args, y=None, channel_axis=1, **kwargs): # Make sure these are numpy arrays. x_arr = np.array(x) if y is not None: y_arr = np.array(y) x_shape = list(x_arr.shape) y_shape = list(y_arr.shape) x_shape[channel_axis] = None y_shape[channel_axis] = None if x_shape!=y_shape: raise ValueError("Error: inputs x and y to " "image_stack_random_transform must have the same " "shape. Shapes are {} and {} for x, y." "".format(x_arr.shape, y_arr.shape)) # Move channel axis to just before spatial axes. std_channel_axis = x_arr.ndim-1-2 if channel_axis!=std_channel_axis: x_arr = np.moveaxis(x_arr, source=channel_axis, destination=std_channel_axis) if y is not None: x_arr = np.moveaxis(y_arr, source=channel_axis, destination=std_channel_axis) # Compute indices to iterate over (everything except channel and spatial). x_indices = np.ndindex(x_arr.shape[:-3]) if y is not None: y_indices = np.ndindex(y_arr.shape[:-3]) # Random transform on each value. x_out, y_out = None, None if y is not None: for idx_x, idx_y in zip(np.ndindex(x_arr.shape[:-3]), np.ndindex(y_arr.shape[:-3])): xt, yt = image_random_transform(x_arr[idx_x], y_arr[idx_y], *args, channel_axis=0, **kwargs) out_shape_x = x_arr.shape[:-2]+xt.shape[-2:] out_shape_y = y_arr.shape[:-2]+xt.shape[-2:] if x_out is None: x_out = np.zeros(out_shape_x, dtype=np.float32) if y_out is None: y_out = np.zeros(out_shape_y, dtype=np.float32) x_out[idx_x], y_out[idx_y] = xt, yt else: for idx_x in np.ndindex(x_arr.shape[:-3]): xt = image_random_transform(x_arr[idx_x], *args, channel_axis=0, **kwargs) out_shape = x_arr.shape[:-2]+xt.shape[-2:] if x_out is None: x_out = np.zeros(out_shape, dtype=np.float32) x_out[idx_x] = xt # Move channel axis back to where it was. if channel_axis!=std_channel_axis: x_out = np.moveaxis(x_out, source=std_channel_axis, destination=channel_axis) if y is not None: y_out = np.moveaxis(y_out, source=std_channel_axis, destination=channel_axis) if y is not None: return x_out, y_out return x_out """ Data augmentation for 2D images using random image transformations. This code handles on input images alone or jointly on input images and their corresponding output images (eg. input images and corresponding segmentation masks). x : A single 2D input image (ndim=3, channel and 2 spatial dims). y : A single output image or mask. rotation_range : Positive degree value, specifying the maximum amount to rotate the image in any direction about its center. width_shift_range : Float specifying the maximum distance by which to shift the image horizontally, as a fraction of the image's width. height_shift_range : Float specifying the maximum distance by which to shift the image vertically, as a fraction of the image's height. shear_range : Positive degree value, specifying the maximum horizontal sheer of the image. zoom_range : The maximum absolute deviation of the image scale from one. (I.e. zoom_range of 0.2 allows zooming the image to scales within the range [0.8, 1.2]). intensity_shift_range : The maximum absolute value by which to shift image intensities up or down. fill_mode : Once an image is spatially transformed, fill any empty space with the 'nearest', 'reflect', or 'constant' strategy. Mode 'nearest' fills the space with the values of the nearest pixels; mode 'reflect' fills the space with a mirror image of the image along its nearest border or corner; 'constant' fills it with the constant value defined in `cval`. cval : The constant value with which to fill any empty space in a transformed input image when using `fill_mode='constant'`. cvalMask : The constant value with which to fill any empty space in a transformed target image when using `fill_mode='constant'`. horizontal_flip : Boolean, whether to randomly flip images horizontally. vertical_flip : Boolean, whether to randomly flip images vertically. spline_warp : Boolean, whether to apply a b-spline nonlineary warp. warp_sigma : Standard deviation of control point jitter in spline warp. warp_grid_size : Integer s specifying an a grid with s by s control points. crop_size : Tuple specifying the size of random crops taken of transformed images. Crops are always taken from within the transformed image, with no padding. channel_axis : The axis in the input images that corresponds to the channel. Remaining axes are the two spatial axes. rng : A numpy random number generator. """ def image_random_transform(x, y=None, rotation_range=0., width_shift_range=0., height_shift_range=0., shear_range=0., zoom_range=0., intensity_shift_range=0., fill_mode='nearest', cval_x=0., cval_y=0., horizontal_flip=False, vertical_flip=False, spline_warp=False, warp_sigma=0.1, warp_grid_size=3, crop_size=None, channel_axis=0, n_warp_threads=None, rng=None): # Set random number generator if rng is None: rng = np.random.RandomState() # x is a single image, so we don't have batch dimension assert(x.ndim == 3) if y is not None: assert(y.ndim == 3) img_row_index = 1 img_col_index = 2 img_channel_index = channel_axis # Nonlinear spline warping if spline_warp: if n_warp_threads is None: n_warp_threads = os.cpu_count() warp_field = _gen_warp_field(shape=x.shape[-2:], sigma=warp_sigma, grid_size=warp_grid_size, n_threads=n_warp_threads, rng=rng) x = _apply_warp(x, warp_field, interpolator=sitk.sitkNearestNeighbor, fill_mode=fill_mode, cval=cval_x, n_threads=n_warp_threads) if y is not None: y = np.round(_apply_warp(y, warp_field, interpolator=sitk.sitkNearestNeighbor, fill_mode=fill_mode, cval=cval_y, n_threads=n_warp_threads)) # use composition of homographies to generate final transform that needs # to be applied if np.isscalar(zoom_range): zoom_range = [1 - zoom_range, 1 + zoom_range] elif len(zoom_range) == 2: zoom_range = [zoom_range[0], zoom_range[1]] else: raise Exception('zoom_range should be a float or ' 'a tuple or list of two floats. ' 'Received arg: ', zoom_range) if zoom_range[0] == 1 and zoom_range[1] == 1: zx, zy = 1, 1 else: zx, zy = rng.uniform(zoom_range[0], zoom_range[1], 2) zoom_matrix = np.array([[zx, 0, 0], [0, zy, 0], [0, 0, 1]]) if rotation_range: theta = np.pi / 180 * rng.uniform(-rotation_range, rotation_range) else: theta = 0 rotation_matrix = np.array([[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [0, 0, 1]]) if height_shift_range: tx = rng.uniform(-height_shift_range, height_shift_range) \ * x.shape[img_row_index] else: tx = 0 if width_shift_range: ty = rng.uniform(-width_shift_range, width_shift_range) \ * x.shape[img_col_index] else: ty = 0 translation_matrix = np.array([[1, 0, tx], [0, 1, ty], [0, 0, 1]]) if shear_range: shear = np.pi / 180 * rng.uniform(-shear_range, shear_range) else: shear = 0 shear_matrix = np.array([[1, -np.sin(shear), 0], [0, np.cos(shear), 0], [0, 0, 1]]) transform_matrix = np.dot(np.dot(
np.dot(rotation_matrix, shear_matrix)
numpy.dot
import numpy as np import matplotlib.pyplot as plt from typing import Tuple def rand_orientation_mat( k: int, p: int, xi: int, seed: None ) -> Tuple[np.ndarray, np.ndarray]: """Generates a random orientation matrix B* Arguments: k {int} -- grid dimension (how many dimensions grid has) p {int} -- grid level (how many points in grid) xi {int} -- elementary effect step size Returns: Bs {np.ndarray} -- Random orientation matrix B* Ps {np.ndarray} -- Matrix indicating which vars change """ if seed != None: np.random.seed(seed) m = k + 1 delta = xi / (p - 1) v = np.random.choice([-1, 1], size=k, p=[0.5, 0.5]) Ds = np.diag(v) J = np.ones((m, k)) B = np.tril(J, k=-1) sv = np.arange(0, (1 - delta) + 1 / (p - 1), 1 / (p - 1)) xs = np.random.choice(sv, size=k, p=np.ones((len(sv),)) / len(sv))[None, :] ind = np.arange(k) np.random.shuffle(ind) Ps = np.eye(k)[:, ind] Bs = (J[:, 0][:, None] * xs + (delta / 2) * ((2 * B - J) @ Ds + J)) @ Ps return Bs, Ps def sampling_matrix( k: int, p: int, xi: int, r: int, seed=None ) -> Tuple[np.ndarray, np.ndarray]: """Generates a sampling matrix X consisting of r random orientation matrices B* Arguments: k {int} -- grid dimension (how many dimensions grid has) p {int} -- grid level (how many points in grid) xi {int} -- elementary effect step size r {int} -- number of elementary effects Returns: X {np.ndarray} -- r Random orientation matrices B* row concatenated P {np.ndarray} -- Matrix indicating which vars change """ X = np.zeros(((k + 1) * r, k)) P =
np.zeros((k * r, k))
numpy.zeros
import numpy as np import torch def getIndeices(shape,height,width,stride,dialation, offset): H, W = shape outHeight = (H - dialation*(height-1)-1) // stride +1 outWidth = (W - dialation*(width-1)-1) // stride +1 i0 = np.repeat(np.arange(height)*dialation, width) i1 = stride * np.repeat(
np.arange(outHeight)
numpy.arange
import matplotlib.pyplot as plt # 导入数据集生成工具 import numpy as np import seaborn as sns from sklearn.datasets import make_moons from sklearn.model_selection import train_test_split from tensorflow.keras import layers, Sequential, regularizers from mpl_toolkits.mplot3d import Axes3D plt.rcParams["font.size"] = 16 plt.rcParams["font.family"] = ["STKaiti"] plt.rcParams["axes.unicode_minus"] = False OUTPUT_DIR = "output_dir" N_EPOCHS = 500 def load_dataset(): # 采样点数 N_SAMPLES = 1000 # 测试数量比率 TEST_SIZE = None # 从 moon 分布中随机采样 1000 个点,并切分为训练集-测试集 X, y = make_moons(n_samples=N_SAMPLES, noise=0.25, random_state=100) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=TEST_SIZE, random_state=42 ) return X, y, X_train, X_test, y_train, y_test def make_plot( X, y, plot_name, file_name, XX=None, YY=None, preds=None, dark=False, output_dir=OUTPUT_DIR, ): # 绘制数据集的分布, X 为 2D 坐标, y 为数据点的标签 if dark: plt.style.use("dark_background") else: sns.set_style("whitegrid") axes = plt.gca() axes.set_xlim([-2, 3]) axes.set_ylim([-1.5, 2]) axes.set(xlabel="$x_1$", ylabel="$x_2$") plt.title(plot_name, fontsize=20, fontproperties="SimHei") plt.subplots_adjust(left=0.20) plt.subplots_adjust(right=0.80) if XX is not None and YY is not None and preds is not None: plt.contourf( XX, YY, preds.reshape(XX.shape), 25, alpha=0.08, cmap=plt.cm.Spectral ) plt.contour( XX, YY, preds.reshape(XX.shape), levels=[0.5], cmap="Greys", vmin=0, vmax=0.6, ) # 绘制散点图,根据标签区分颜色m=markers markers = ["o" if i == 1 else "s" for i in y.ravel()] mscatter( X[:, 0], X[:, 1], c=y.ravel(), s=20, cmap=plt.cm.Spectral, edgecolors="none", m=markers, ax=axes, ) # 保存矢量图 plt.savefig(output_dir + "/" + file_name) plt.close() def mscatter(x, y, ax=None, m=None, **kw): import matplotlib.markers as mmarkers if not ax: ax = plt.gca() sc = ax.scatter(x, y, **kw) if (m is not None) and (len(m) == len(x)): paths = [] for marker in m: if isinstance(marker, mmarkers.MarkerStyle): marker_obj = marker else: marker_obj = mmarkers.MarkerStyle(marker) path = marker_obj.get_path().transformed(marker_obj.get_transform()) paths.append(path) sc.set_paths(paths) return sc def network_layers_influence(X_train, y_train): # 构建 5 种不同层数的网络 for n in range(5): # 创建容器 model = Sequential() # 创建第一层 model.add(layers.Dense(8, input_dim=2, activation="relu")) # 添加 n 层,共 n+2 层 for _ in range(n): model.add(layers.Dense(32, activation="relu")) # 创建最末层 model.add(layers.Dense(1, activation="sigmoid")) # 模型装配与训练 model.compile( loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"] ) model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1) # 绘制不同层数的网络决策边界曲线 # 可视化的 x 坐标范围为[-2, 3] xx = np.arange(-2, 3, 0.01) # 可视化的 y 坐标范围为[-1.5, 2] yy =
np.arange(-1.5, 2, 0.01)
numpy.arange
########## # Code from: https://github.com/tobiasbaumann1/Adaptive_Mechanism_Design ########## import copy import logging import numpy as np import tensorflow as tf logging.basicConfig(filename='Planning_Agent.log', level=logging.DEBUG, filemode='w') from marltoolbox.algos.adaptive_mechanism_design.agent import Agent, convert_from_rllib_env_format from tensorflow.python.ops import math_ops def var_shape(x): out = x.get_shape().as_list() return out def intprod(x): return int(np.prod(x)) def numel(x): return intprod(var_shape(x)) class Planning_Agent(Agent): def __init__(self, env, underlying_agents, learning_rate=0.01, gamma=0.95, max_reward_strength=None, cost_param=0, with_redistribution=False, value_fn_variant='exact', n_units=None, weight_decay=0.0, convert_a_to_one_hot=False, mean_theta=0.0, loss_mul_planner=1.0, std_theta=0.1, planner_clip_norm=0.5, normalize_planner=False, add_state_grad=False, planner_momentum=0.9, use_adam_optimizer=True, use_softmax_hot=True, square_cost=False, normalize_against_v=False, use_v_pl=False, normalize_against_vp=False, normalize_vp_separated=False): super().__init__(env, learning_rate, gamma) self.underlying_agents = underlying_agents self.log = [] self.max_reward_strength = max_reward_strength n_players = len(underlying_agents) self.with_redistribution = with_redistribution self.value_fn_variant = value_fn_variant self.convert_a_to_one_hot = convert_a_to_one_hot self.env_name = env.NAME self.env = env self.loss_mul_planner = loss_mul_planner with tf.variable_scope('Planner'): self.s = tf.placeholder(tf.float32, [1, env.n_features], "state_pl") self.a_players = tf.placeholder(tf.float32, [1, n_players], "player_actions") self.convertion_to_one_hot(use_softmax_hot) if value_fn_variant == 'exact': if self.convert_a_to_one_hot: self.p_players = tf.placeholder(tf.float32, [1, n_players, env.NUM_ACTIONS], "player_action_probs") else: self.p_players = tf.placeholder(tf.float32, [1, n_players], "player_action_probs") self.a_plan = tf.placeholder(tf.float32, [2, 2], "conditional_planning_actions") # works only for matrix games self.r_players = tf.placeholder(tf.float32, [1, n_players], "player_rewards") if self.convert_a_to_one_hot: self.inputs = tf.concat([self.s, self.a_players_one_hot_reshape], 1) else: self.inputs = tf.concat([self.s, self.a_players], 1) if normalize_planner: self.inputs = self.inputs-0.5 with tf.variable_scope('Policy_p'): if self.convert_a_to_one_hot: ma_action_space_dim = 2 * env.NUM_ACTIONS else: ma_action_space_dim = env.NUM_ACTIONS if not isinstance(n_units, list): units = [env.n_features + ma_action_space_dim, n_units, n_players] else: units = [env.n_features + ma_action_space_dim] + n_units + [n_players] self.create_multi_layer_fc(units, mean_theta, std_theta) if max_reward_strength is None: self.action_layer = self.l1 else: self.action_layer = tf.sigmoid(self.l1) with tf.variable_scope('Vp'): if max_reward_strength is not None: self.vp = 2 * max_reward_strength * (self.action_layer - 0.5) else: self.vp = self.action_layer with tf.variable_scope('V_total'): if value_fn_variant == 'proxy': self.v = 2 * self.a_players - 1 # if value_fn_variant == 'estimated': if value_fn_variant == 'estimated' or value_fn_variant == 'exact': if "CoinGame" in self.env_name: self.v = tf.reduce_sum(self.r_players) else: self.v = tf.reduce_sum(self.r_players) - 1.9 # if value_fn_variant == 'exact': # self.v = tf.placeholder(tf.float32, [1, n_players], "player_values") with tf.variable_scope('cost_function'): if value_fn_variant == 'estimated': self.g_log_pi = tf.placeholder(tf.float32, [env.n_features, n_players], "player_gradients") cost_list = [] for underlying_agent in underlying_agents: # policy gradient theorem idx = underlying_agent.agent_idx if value_fn_variant == 'estimated': if "CoinGame" in self.env_name: # or True: self.g_Vp = self.g_log_pi[:, idx] * self.vp[:, idx] self.g_V = self.g_log_pi[:, idx] * (self.v[:, idx] if value_fn_variant == 'proxy' else self.v) else: self.g_Vp = self.g_log_pi[0, idx] * self.vp[0, idx] self.g_V = self.g_log_pi[0, idx] * (self.v[0, idx] if value_fn_variant == 'proxy' else self.v) if value_fn_variant == 'exact': act_idx = tf.cast(self.a_players[0, idx], tf.int32) if self.convert_a_to_one_hot: self.g_p = self.p_players[0, idx, act_idx] * (1 - self.p_players[0, idx, act_idx]) self.p_opp = self.p_players[0, 1 - idx, act_idx] grad = tf.gradients(ys=self.vp[0, idx], xs=self.a_players) if add_state_grad: grad_s = tf.gradients(ys=self.vp[0, idx], xs=self.s) self.g_Vp = self.g_p * grad[0][0, idx] if add_state_grad: self.g_Vp += self.g_p * tf.reduce_sum(grad_s) else: self.g_p = self.p_players[0, idx] * (1 - self.p_players[0, idx]) self.p_opp = self.p_players[0, 1 - idx] grad = tf.gradients(ys=self.vp[0, idx], xs=self.a_players) if add_state_grad: grad_s = tf.gradients(ys=self.vp[0, idx], xs=self.s) self.g_Vp = self.g_p * grad[0][0, idx] if add_state_grad: self.g_Vp += self.g_p * tf.reduce_sum(grad_s) if "CoinGame" in self.env_name: if add_state_grad: self.g_Vp = self.g_Vp / (3*9+4) self.g_V = self.g_p * tf.reduce_sum(self.v) else: if add_state_grad: self.g_Vp = self.g_Vp / (5+1) if not use_v_pl: self.g_V = self.g_p * (self.p_opp * (2 * env.R - env.T - env.S) + (1 - self.p_opp) * (env.T + env.S - 2 * env.P)) else: self.g_V = self.g_p * tf.reduce_sum(self.v) cost_list.append(- underlying_agent.learning_rate * self.g_Vp * self.g_V) if with_redistribution: if square_cost: self.extra_loss = cost_param * tf.norm(self.vp - tf.reduce_mean(self.vp)) * \ tf.norm(self.vp - tf.reduce_mean(self.vp)) else: self.extra_loss = cost_param * tf.norm(self.vp - tf.reduce_mean(self.vp)) else: if square_cost: self.extra_loss = cost_param * tf.norm(self.vp) * tf.norm(self.vp) else: self.extra_loss = cost_param * tf.norm(self.vp) if not normalize_vp_separated: self.cost = tf.reduce_sum(tf.stack(cost_list)) else: self.cost = tf.stack(cost_list, axis=0) self.dynamic_scaling_vp(normalize_against_vp, max_reward_strength, normalize_vp_separated) self.dynamic_scaling_v(normalize_against_v) if planner_clip_norm is not None: self.cost = tf.clip_by_norm(self.cost, planner_clip_norm, axes=None, name=None) self.loss = (self.cost + self.extra_loss) if weight_decay > 0.0: self.loss += weight_decay * self.weights_norm with tf.variable_scope('trainPlanningAgent'): #AdamOptimizer if use_adam_optimizer: self.train_op = tf.train.AdamOptimizer(self.loss_mul_planner *learning_rate).minimize(self.loss, var_list=tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope='Planner/Policy_p')) else: self.train_op = tf.train.MomentumOptimizer(self.loss_mul_planner *learning_rate, momentum=planner_momentum).minimize(self.loss, var_list=tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope='Planner/Policy_p')) self.sess.run(tf.global_variables_initializer()) def convertion_to_one_hot(self, use_softmax_hot): if "CoinGame" in self.env_name: values = tf.stack([ -tf.math.abs(-self.a_players), -tf.math.abs(1 - self.a_players), -tf.math.abs(2 - self.a_players), -tf.math.abs(3 - self.a_players), ], 2) values = tf.where(tf.equal(values, -2), values+1, values) values = tf.where(tf.equal(values, -3), values+2, values) else: values = tf.stack([ -tf.math.abs(-self.a_players), -tf.math.abs(1 - self.a_players), ], 2) if use_softmax_hot: self.a_players_one_hot = tf.nn.softmax(values) else: self.a_players_one_hot = values + 1 self.a_players_one_hot_reshape = tf.reshape(self.a_players_one_hot, (1, -1)) def create_multi_layer_fc(self, units, mean_theta, std_theta): print("units", units) var_list = [] input_ = self.inputs for i in range(len(units)): with tf.variable_scope("planner_layer_{}".format(i)): n_in = units[i] n_out = units[i + 1] print("i", i) print("n_in", n_in) print("n_out", n_out) if i + 1 == len(units) - 1: break w_l1 = tf.Variable(tf.random_normal([n_in, n_out], mean=0.0, stddev=std_theta)) b_l1 = tf.Variable(tf.random_normal([n_out], mean=0.0, stddev=std_theta)) l1 = tf.nn.leaky_relu(tf.matmul(input_, w_l1) + b_l1) var_list.extend([w_l1, b_l1]) input_ = l1 self.w_pi0 = tf.Variable(tf.random_normal([n_in, n_out], mean=0.0, stddev=std_theta)) self.b_pi0 = tf.Variable(tf.random_normal([n_out], mean=mean_theta, stddev=std_theta)) self.l1 = tf.matmul(input_, self.w_pi0) + self.b_pi0 var_list.extend([self.w_pi0, self.b_pi0]) self.parameters = tf.concat(axis=0, values=[tf.reshape(v, [numel(v)]) for v in var_list]) weights_norm = math_ops.reduce_sum(self.parameters * self.parameters, None, keepdims=True) self.weights_norm = tf.sqrt(tf.reduce_sum(weights_norm)) def dynamic_scaling_vp(self, normalize_against_vp, max_reward_strength, normalize_vp_separated): if "CoinGame" in self.env_name: init_v = 0.1 else: init_v = 0.0 if not normalize_vp_separated: self.mean_vp_np = init_v * normalize_against_vp self.mean_vp_in = tf.placeholder(tf.float32, shape=(), name="mean_vp") else: temp_v = init_v * normalize_against_vp self.mean_vp_np = [temp_v, temp_v] self.mean_vp_in = tf.placeholder(tf.float32, shape=(2,), name="mean_vp") if normalize_against_vp: if not normalize_vp_separated: null = 0.0 self.mean_vp_out = ((1 - (1 / normalize_against_vp)) * self.mean_vp_in + tf.math.abs(tf.reduce_sum(self.vp))) self.cost = tf.cond(tf.equal(self.mean_vp_out, null), lambda: null, lambda: self.cost / ( self.mean_vp_out / normalize_against_vp * 10 / max_reward_strength)) else: null = 0.0 self.mean_vp_out = ((1 - (1 / normalize_against_vp)) * self.mean_vp_in + tf.math.abs(tf.reduce_sum(self.vp, axis=0))) cost_list = [] cost_list.append(tf.cond(tf.equal(self.mean_vp_out[0], 0.0), lambda: null, lambda: self.cost[0] / ( self.mean_vp_out[0] / normalize_against_vp * 10 / max_reward_strength))) cost_list.append(tf.cond(tf.equal(self.mean_vp_out[1], 0.0), lambda: null, lambda: self.cost[1] / ( self.mean_vp_out[1] / normalize_against_vp * 10 / max_reward_strength))) self.cost = tf.reduce_sum(tf.stack(cost_list)) else: self.mean_vp_out = self.mean_vp_in def dynamic_scaling_v(self, normalize_against_v): if "CoinGame" in self.env_name: self.mean_v_np = 0.2 * normalize_against_v else: self.mean_v_np = 0.0 self.mean_v_in = tf.placeholder(tf.float32, name="mean_v") if normalize_against_v: self.mean_v_out = ((1-(1/normalize_against_v)) * self.mean_v_in + tf.reduce_sum(tf.math.abs(self.v))) self.cost = tf.cond(tf.equal(self.mean_v_out, 0.0), lambda:0.0, lambda:self.cost / (self.mean_v_out/normalize_against_v)) else: self.mean_v_out = self.mean_v_in def get_weigths(self): return self.sess.run(self.parameters, {}) def learn(self, s, a_players, coin_game=False, env_rewards=None): s = s[np.newaxis, :] if env_rewards is None: if coin_game: # TODO remove hardcoded policy_id actions = {"player_red": a_players[0], "player_blue": a_players[1]} r_players_rllib_format = self.env._compute_rewards(s, actions) else: r_players_rllib_format = self.env._compute_rewards(*a_players) r_players = convert_from_rllib_env_format(r_players_rllib_format, self.env.players_ids) else: r_players = env_rewards a_players = np.asarray(a_players) if self.convert_a_to_one_hot: a_players_one_hot = self.np_action_to_one_hot(a_players) feed_dict = {self.s: s, self.a_players: a_players[np.newaxis, ...], self.r_players: r_players[np.newaxis, :]} if self.value_fn_variant == 'estimated': g_log_pi_list = [] for underlying_agent in self.underlying_agents: idx = underlying_agent.agent_idx # if "CoinGame" in self.env_name: g_log_pi_list.append(underlying_agent.calc_g_log_pi(s, a_players_one_hot[idx])[0][0, ...]) # else: # g_log_pi_list.append(underlying_agent.calc_g_log_pi(s, a_players[idx])) # if "CoinGame" in self.env_name: g_log_pi_arr = np.stack(g_log_pi_list, axis=1) # else: # g_log_pi_arr = np.reshape(np.asarray(g_log_pi_list), [1, -1]) # print("g_log_pi_arr", g_log_pi_arr.shape) feed_dict[self.g_log_pi] = g_log_pi_arr if self.value_fn_variant == 'exact': p_players_list = [] for underlying_agent in self.underlying_agents: idx = underlying_agent.agent_idx if self.convert_a_to_one_hot: p_players_list.append(underlying_agent.calc_action_probs(s, add_dim=False)) else: p_players_list.append(underlying_agent.calc_action_probs(s)[0, -1]) # Only 2 actions # if "CoinGame" in self.env_name: # v_list.append(underlying_agent.calcul_value(s, add_dim=False)) if self.convert_a_to_one_hot: p_players_arr = np.stack(p_players_list, axis=1) else: p_players_arr = np.reshape(np.asarray(p_players_list), [1, -1]) feed_dict[self.p_players] = p_players_arr # if "CoinGame" in self.env_name: # v_players_arr = np.reshape(np.asarray(v_list), [1, -1]) # feed_dict[self.v] = v_players_arr # if "CoinGame" not in self.env_name: # feed_dict[self.a_plan] = self.calc_conditional_planning_actions(s) feed_dict[self.mean_v_in] = self.mean_v_np feed_dict[self.mean_vp_in] = self.mean_vp_np (_, action, loss, g_Vp, g_V, cost, extra_loss, l1, mean_v, vp, v, mean_vp) = self.sess.run([self.train_op, self.vp, self.loss, self.g_Vp, self.g_V, self.cost, self.extra_loss, self.l1, self.mean_v_out, self.vp, self.v, self.mean_vp_out], feed_dict) self.mean_v_np = mean_v self.mean_vp_np = mean_vp return action, loss, g_Vp, g_V, r_players, cost, extra_loss, l1, mean_v, vp, v, mean_vp def get_log(self): return self.log def np_action_to_one_hot(self, a_players): a_players_one_hot = np.zeros((len(a_players), self.env.NUM_ACTIONS)) for idx, act in enumerate(a_players.tolist()): a_players_one_hot[idx, act] = 1 return a_players_one_hot def choose_action(self, s, a_players): s = s[np.newaxis, :] a_players = np.asarray(a_players) a_plan = self.sess.run(self.vp, {self.s: s, self.a_players: a_players[np.newaxis, ...]})[0, :] # self.log.append(self.calc_conditional_planning_actions(s)) return a_plan def calc_conditional_planning_actions(self, s): assert "CoinGame" not in self.env_name # Planning actions in each of the 4 cases: DD, CD, DC, CC a_plan_DD = self.sess.run(self.action_layer, {self.s: s, self.a_players: np.array([0, 0])[np.newaxis, :]}) a_plan_CD = self.sess.run(self.action_layer, {self.s: s, self.a_players: np.array([1, 0])[np.newaxis, :]}) a_plan_DC = self.sess.run(self.action_layer, {self.s: s, self.a_players: np.array([0, 1])[np.newaxis, :]}) a_plan_CC = self.sess.run(self.action_layer, {self.s: s, self.a_players: np.array([1, 1])[np.newaxis, :]}) l_temp = [a_plan_DD, a_plan_CD, a_plan_DC, a_plan_CC] if self.max_reward_strength is not None: l = [2 * self.max_reward_strength * (a_plan_X[0, 0] - 0.5) for a_plan_X in l_temp] else: l = [a_plan_X[0, 0] for a_plan_X in l_temp] if self.with_redistribution: if self.max_reward_strength is not None: l2 = [2 * self.max_reward_strength * (a_plan_X[0, 1] - 0.5) for a_plan_X in l_temp] else: l2 = [a_plan_X[0, 1] for a_plan_X in l_temp] l = [0.5 * (elt[0] - elt[1]) for elt in zip(l, l2)] return np.transpose(np.reshape(
np.asarray(l)
numpy.asarray
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # License: BSD 3-clause import matplotlib.pyplot as plt import networkx as nx import numpy as np def singleplot(data, horizon, title, filepath, xy_labels=None): """ Simple plot of a data array. :param data: Data array :param horizon: Length of the x-axis :param title: Figure title :param xy_labels: Axis labels :param filepath: Absolute path to save figure on the filesystem """ x_axis = np.arange(0.0, horizon, 1.0) plt.plot(x_axis, data) plt.title(title) if xy_labels: plt.xlabel(xy_labels[0]) plt.ylabel(xy_labels[1]) plt.savefig(filepath) plt.clf() # List of (algo_name, data), horizon, file descriptor def multiplot(lines_tuple, horizon, title, filepath, xy_labels=None): # Plotting mean reward as a function of time """ Plot multiple graphs on the same figure :param lines_tuple: List of tuples each containing (name, data) :param horizon: Length of the x-axis :param title: Figure title :param xy_labels: Axis labels :param filepath: Absolute path to save figure on the filesystem """ x_axis =
np.arange(0.0, horizon, 1.0)
numpy.arange
# https://pypi.org/project/cykooz.heif/ # Modified by <NAME> from https://shuangz.com/projects/materialgan-sa20/ import sys import numpy as np from matplotlib import pyplot as plt import shutil import cv2 import os import pickle import glob import obj_points from PIL import Image sys.path.insert(1, 'materialGAN/src/') from util import * np.set_printoptions(precision=4, suppress=True) def rotate_needed(img): img = np.array(img.convert('L')) arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_APRILTAG_36h11) arucoParams = cv2.aruco.DetectorParameters_create() (corners, ids, rejected) = cv2.aruco.detectMarkers(img, arucoDict, parameters=arucoParams) # Get the first corner c = corners[0][0] c1 = c[1] c2 = c[0] c3 = c[3] c4 = c[2] if abs((c1[0]+c2[0])-(c3[0]+c4[0])) < abs((c1[1]+c2[1])-(c3[1]+c4[1])): if (c1[0]+c4[0]) < (c2[0]+c3[0]): return 0 else: return 180 else: if (c1[0]+c2[0]) < (c3[0]+c4[0]): return -90 else: return 90 def marker_detection(img, in_dir, idx, flag=True): img_gray = np.array(img) arucoDict = cv2.aruco.Dictionary_get(cv2.aruco.DICT_APRILTAG_36h11) arucoParams = cv2.aruco.DetectorParameters_create() (corners, ids, rejected) = cv2.aruco.detectMarkers(img_gray, arucoDict, parameters=arucoParams) tag_id_list = [] corners_list = [] for tag in ids: tag_id_list.append(tag[0]) for corner in corners: # Convert order from 0123 to 1032 coord = corner[0] new_corner = [coord[0], coord[1], coord[2], coord[3]] corners_list.append(np.array(new_corner, dtype='float32')) if flag: plt.imshow(np.array(img)) for corners in corners_list: plt.plot(corners[0,0], corners[0,1], 'r.') plt.plot(corners[1,0], corners[1,1], 'g.') plt.plot(corners[2,0], corners[2,1], 'b.') plt.plot(corners[3,0], corners[3,1], 'y.') plt.title(idx) plt.savefig(os.path.join(in_dir, 'detect_%02d.jpg' % idx)) plt.close() imagePoints = np.vstack(corners_list) print('%d points are detected in image %d' % (imagePoints.shape[0], idx)) return imagePoints, tag_id_list def preprocess(in_dir, tmp_dir): print(os.path.join(in_dir, '*.*')) dir_list = sorted(glob.glob(os.path.join(in_dir, '*.*'))) if len(dir_list) == 0: print('No inputs given!') exit() for idx, dir in enumerate(dir_list): img = Image.open(dir) rot = rotate_needed(img) img = img.rotate(rot, expand=True) img.save(os.path.join(tmp_dir, 'orig_%02d.png' % idx), 'JPEG') def calibrate(imgs, in_dir, objectPoints, flag): N = len(imgs) W = imgs[0].width H = imgs[0].height objectPoints_list = [] imagePoints_list = [] for idx in range(N): print('Calibrate image: %d' % idx) img = imgs[idx] imagePoints_this, tag_list = marker_detection(img, in_dir, idx, flag) imagePoints_list.append(imagePoints_this) objectPoints_this = [] for tag in tag_list: objectPoints_this.append(objectPoints[tag*4:(tag+1)*4, :]) objectPoints_this = np.vstack(objectPoints_this) objectPoints_list.append(objectPoints_this) ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera( objectPoints_list, imagePoints_list, (W,H), None, None) return mtx, dist, list(rvecs), list(tvecs), objectPoints_list, imagePoints_list def reorder(arr, list1, list2, list3, list4, list5): def move_row_to_end(mat, id): mat = np.append(mat, np.reshape(mat[id,:], (-1,3)), axis=0) mat =
np.delete(mat, id, axis=0)
numpy.delete
import os import sys import yaml import logging import logging.config import time import random import math import numpy as np from numpy import array import torch from src import INIT_TYPE, TEST_TYPE, GEN_TYPE from train_grasp import TrainGrasp from eval_grasp import EvaluateGrasp from util.misc import * from util.mesh import * def generate_by_chaining_2D(prim_dir_list, new_dir, num_new, keep_concave_part): """ Generate new objects by randomly chaining primitives """ num_obj_new = 0 height_all = [] prim_dir_obj_all = [] for prim_dir in prim_dir_list: prim_dir_obj_all += [fnmatch.filter(os.listdir(prim_dir), '*.stl')] while 1: # Randomly choose one from each dir, and then chain them; or choose multiple ones from the same dir chosen_prim_path_list = [] if len(prim_dir_list) > 1: for dir_ind, prim_dir in enumerate(prim_dir_list): chosen_prim = random.choice(prim_dir_obj_all[dir_ind]) chosen_prim_path_list += [prim_dir+chosen_prim] else: chosen_prim = random.sample(prim_dir_obj_all[0], k=2) chosen_prim_path_list = [prim_dir_list[0]+prim for prim in chosen_prim] try: chained_mesh = chain_mesh_2D(prim_path_list=chosen_prim_path_list) processed_mesh = process_mesh(chained_mesh, scale_down=False, random_scale=True) ensure_directory_hard(new_dir + str(num_obj_new) + '/') convex_pieces = save_convex_urdf(processed_mesh, new_dir, num_obj_new, mass=0.1, keep_concave_part=keep_concave_part) height_all +=[processed_mesh.bounds[1,2]-processed_mesh.bounds[0,2]] except: print('Cannot chain!') continue # Skip if too many convex pieces if len(convex_pieces) > 20: print('Too concave!') continue # Count num_obj_new += 1 if num_obj_new == num_new: return height_all def generate_by_chaining_3D(prim_dir_list, new_dir, num_new, keep_concave_part, target_xy_range, max_z): """ Generate new objects by randomly chaining primitives """ num_obj_new = 0 height_all = [] prim_dir_obj_all = [] for prim_dir in prim_dir_list: prim_dir_obj_all += [fnmatch.filter(os.listdir(prim_dir), '*.stl')] max_num_attempt = num_new*5 num_attempt = 0 while 1: num_attempt += 1 if num_attempt == max_num_attempt: raise ValueError('Chaining failed too often') # Randomly choose one from each dir, and then chain them; or choose multiple ones from the same dir chosen_prim_path_list = [] if len(prim_dir_list) > 1: for dir_ind, prim_dir in enumerate(prim_dir_list): chosen_prim = random.choice(prim_dir_obj_all[dir_ind]) chosen_prim_path_list += [prim_dir+chosen_prim] else: chosen_prim = random.sample(prim_dir_obj_all[0], k=2) # chain 2 parts chosen_prim_path_list = [prim_dir_list[0]+prim for prim in chosen_prim] # try: chained_mesh = chain_mesh_3D(prim_path_list=chosen_prim_path_list) if chained_mesh is None: print('Cannot chain!') continue try: processed_mesh = process_mesh(chained_mesh, remove_body=False, #! scale_down=False, random_scale=False) processed_mesh = random_scale_down_mesh(processed_mesh, target_xy_range=target_xy_range, max_z=max_z) ensure_directory_hard(new_dir + str(num_obj_new) + '/') convex_pieces = save_convex_urdf(processed_mesh, new_dir, num_obj_new, mass=0.1, keep_concave_part=keep_concave_part) except: print('Cannot process!') continue # Skip if too many convex pieces if len(convex_pieces) > 20: print('Too concave!') continue # Count height_all += [processed_mesh.bounds[1,2]-processed_mesh.bounds[0,2]] num_obj_new += 1 if num_obj_new == num_new: return height_all if __name__ == '__main__': # from IPython import embed; embed() if os.cpu_count() > 20: # somehow on server, the default fork method does not work with pytorch, but works fine on desktop import multiprocessing multiprocessing.set_start_method('forkserver') # Read config yaml_file_name = sys.argv[1] yaml_path = 'configs/'+yaml_file_name with open(yaml_path+'.yaml', 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) # Fix seeds seed = config['seed'] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.benchmark = True # Hardware cuda_idx = config['cuda_idx'] device = 'cuda:'+str(cuda_idx) # Misc num_eval_per_env = config['num_eval_per_env'] # Data initial_env_dir_list = config['initial_env_dir_list'] num_env_per_initial_dir = config['num_env_per_initial_dir'] test_env_dir_list = config['test_env_dir_list'] num_env_per_test_dir = config['num_env_per_test_dir'] # Domain Randomization (chaining primitives) dr_method = config['dr_method'] target_xy_range = config['target_xy_range'] max_z = config['max_z'] keep_concave_part = config['keep_concave_part'] num_retrain = config['num_retrain'] num_env_per_gen = config['num_env_per_gen'] num_env_per_retrain = config['num_env_per_retrain'] retrain_sample_recency = config['retrain_sample_recency'] mu_list = config['mu_list'] mu = config['mu'] sigma = config['sigma'] retrain_args = config['retrain_args'] eval_args = config['eval_args'] # Initialize folders data_parent_dir = config['data_parent_dir'] result_dir = 'result/'+yaml_file_name+'/' data_dir = data_parent_dir+yaml_file_name+'/' ensure_directory(result_dir) ensure_directory(data_dir) # Initialize dir dict: key is dir_path, value is a tuple of (1) id list and (2) type (0 for initial, 1 for test, 2 for gen) env_dir_dict = {} for env_dir in initial_env_dir_list: height_all =list(np.load(env_dir+'dim.npy')[:num_env_per_initial_dir,2]) env_dir_dict[env_dir] = ([*range(num_env_per_initial_dir)], height_all, INIT_TYPE) # Save a copy of configuration with open(result_dir+'config.yaml', 'w') as f: yaml.dump(config, f, sort_keys=False) # Initialize evaluating policy (always cpu) evaluator = EvaluateGrasp(initial_policy_path=None, mu_list=mu_list, mu=mu, sigma=sigma, **eval_args) # Initialize training policy trainer = TrainGrasp(result_dir=result_dir, device=device, mu=mu, sigma=sigma, **retrain_args) # Training details to be recorded train_success_list = [] # using initial objects test_success_list = [] # Add test dir to dict for env_dir in test_env_dir_list: height_all = list(np.load(env_dir+'dim.npy')[:num_env_per_test_dir,2]) env_dir_dict[env_dir] = ([*range(num_env_per_test_dir)], height_all, TEST_TYPE) # Name of saved training details train_details_path = None # Logging logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': True, }) logging.basicConfig(filename=result_dir+'log.txt', level=logging.NOTSET, format='%(process)d-%(levelname)s-%(asctime)s-%(message)s', datefmt='%m/%d/%Y %I:%M:%S') logging.info('start') # Run for epoch in range(num_retrain): # Record time for each epoch epoch_start_time = time.time() ######################### New ######################### if epoch > 0 and dr_method: # no gen at the beginning # Declare new path new_gen_dir = data_dir + 'gen_' + str(epoch) + '/' ensure_directory(new_gen_dir) print('Generating new...') if dr_method == 'chain_3D': dr_func = generate_by_chaining_3D elif dr_method == 'chain': dr_func = generate_by_chaining_2D height_all = dr_func(prim_dir_list=initial_env_dir_list, new_dir=new_gen_dir, num_new=num_env_per_gen, keep_concave_part=keep_concave_part, target_xy_range=target_xy_range, max_z=max_z) new_env_id_list = np.arange(num_env_per_gen) # Evaluate label of new envs - use mu_list print('Evaluating newly generated...') mu_batch = array(evaluator.evaluate(obj_dir=new_gen_dir, obj_id_list=new_env_id_list, obj_height_list=height_all, num_eval=num_eval_per_env)[1], dtype='float') label_batch = get_label_from_mu(mu_batch, mu_list) print('Reward of newly generated: ', np.mean(label_batch)) logging.info(f'Reward of newly generated: {np.mean(label_batch)}') # Add to dir dict env_dir_dict[new_gen_dir] = (new_env_id_list, height_all, GEN_TYPE) ######################### Retrain ######################### print(f'Retraining policy {epoch}...') logging.info(f'Retraining policy {epoch}...') # Pick which envs for training retrain_env_path_available_all = [] retrain_env_height_available_all = [] retrain_env_weight_all = [] gen_dir_count = 0 for env_dir, (env_id_list, height_list, dir_type) in env_dir_dict.items(): if dir_type != TEST_TYPE: retrain_env_path_available_all += [env_dir+str(id)+'.urdf' for id in env_id_list] retrain_env_height_available_all += height_list if dir_type == INIT_TYPE: retrain_env_weight_all += [1]*len(env_id_list) elif dir_type == GEN_TYPE: retrain_env_weight_all += [math.exp(gen_dir_count*retrain_sample_recency)]*len(env_id_list) gen_dir_count += 1 retrain_env_weight_all = array(retrain_env_weight_all)/np.sum(array(retrain_env_weight_all)) retrain_env_path_list, chosen_id_list = weighted_sample_without_replacement(retrain_env_path_available_all, retrain_env_weight_all, k=min(num_env_per_retrain, len(retrain_env_path_available_all))) retrain_env_height_list = list(array(retrain_env_height_available_all)[chosen_id_list]) # Use more itrs at 1st retrain retrain_args_copy = dict(retrain_args) # make a copy retrain_args_copy.pop('num_step_initial', None) if epoch == 0: retrain_args_copy['num_step'] = retrain_args['num_step_initial'] new_policy_path = trainer.run(obj_path_all=retrain_env_path_list, obj_height_all=retrain_env_height_list, prefix='epoch_'+str(epoch), **retrain_args_copy) logging.info(f'Epoch {epoch} retrain, new policy {new_policy_path}') # Update evaluator trainer.load_policy(new_policy_path) evaluator.load_policy(new_policy_path) ######################### Re-evaluate ######################### # INIT - eval for train_success and label train_success_batch = np.empty((0), dtype='float') train_success_dirs = [] for env_dir, (env_id_list, height_list, dir_type) in env_dir_dict.items(): if dir_type == INIT_TYPE: mu_batch = array(evaluator.evaluate(obj_dir=env_dir, obj_id_list=env_id_list, obj_height_list=height_list, num_eval=num_eval_per_env)[1], dtype='float') label_batch = get_label_from_mu(mu_batch, mu_list) train_success_batch = np.concatenate((train_success_batch, label_batch)) train_success_dirs += [
np.mean(label_batch)
numpy.mean
from typing import Tuple import numpy as np import scipy.linalg as spla import scipy.stats as spst from iliad.statistics import normal from iliad.integrators.states import State, LagrangianLeapfrogState, RiemannianLeapfrogState, SoftAbsLeapfrogState from odyssey.distribution import Distribution def mean_and_invcov_and_logdet( state: RiemannianLeapfrogState, eps: float, langevin_type: str ) -> Tuple[np.ndarray, np.ndarray, float]: """Computes the mean, inverse covariance, and log-determinant of the covariance matrix for the proposal distribution of the Riemannian Metropolis-adjusted Langevin algorithm. Args: state: An object containing the position and momentum variables of the state in phase space, and possibly previously computed log-posterior, metrics, and gradients. eps: The discretization step-size. langevin_type: Indicates what kind of Langevin stochastic differential equation to integrator. Returns: mean: Mean of the MMALA proposal. invcov: Inverse covariance of the MMALA proposal. logdet: The log-determinant of the MMALA covariance matrix. gamma: Riemannian component of the drift function. """ if langevin_type == 'mala': q = state.position k = len(q) glp = state.grad_log_posterior invcov = np.eye(k) / eps**2 logdet = 2*k*np.log(eps) mean = q + 0.5*eps**2*glp gamma = 0.0 return mean, invcov, logdet, gamma elif langevin_type == 'mmala': q = state.position k = len(q) glp = state.grad_log_posterior G = state.metric iG = state.inv_metric L = state.sqrtm_metric dG = state.jac_metric n = 0.5*iG.dot(glp) gamma = -0.5*np.sum(np.einsum('ik,jk->ij', iG, np.einsum('mkj,mj->jk', dG, iG)), axis=-1) mean = q + eps**2*(n + gamma) invcov = G / eps**2 logdet = -2*np.sum(np.log(np.diag(L))) + 2*k*np.log(eps) return mean, invcov, logdet, gamma elif langevin_type == 'smala': q = state.position k = len(q) glp = state.grad_log_posterior G = state.metric iG = state.inv_metric L = state.sqrtm_metric n = 0.5*iG.dot(glp) gamma = 0.0 mean = q + eps**2*(n + gamma) invcov = G / eps**2 logdet = -2*np.sum(np.log(
np.diag(L)
numpy.diag
#!/usr/bin/env python3 import argparse import sys from os import system, devnull from math import log from math import ceil import numpy as np from scipy.signal import argrelextrema # hetkmers dependencies from collections import defaultdict from itertools import combinations version = '0.2.3dev_rn' ############################ # processing of user input # ############################ class Parser: def __init__(self): argparser = argparse.ArgumentParser( # description='Inference of ploidy and heterozygosity structure using whole genome sequencing data', usage='''smudgeplot <task> [options] \n tasks: cutoff Calculate meaningful values for lower/upper kmer histogram cutoff. hetkmers Calculate unique kmer pairs from a Jellyfish or KMC dump file. aggregate Retrieve unique k-mer pairs from files containing IDs. plot Generate 2d histogram; infere ploidy and plot a smudgeplot. \n\n''') argparser.add_argument('task', help='Task to execute; for task specific options execute smudgeplot <task> -h') argparser.add_argument('-v', '--version', action="store_true", default=False, help="print the version and exit") # print version is a special case if len(sys.argv) > 1: if sys.argv[1] in ['-v', '--version']: self.task = "version" return # the following line either prints help and die; or assign the name of task to variable task self.task = argparser.parse_args([sys.argv[1]]).task else: self.task = "" # if the task is known (i.e. defined in this file); if hasattr(self, self.task): # load arguments of that task getattr(self, self.task)() else: argparser.print_usage() sys.stderr.write('"' + self.task + '" is not a valid task name\n') exit(1) def hetkmers(self): """ Calculate unique kmer pairs from a Jellyfish or KMC dump file. """ argparser = argparse.ArgumentParser(prog='smudgeplot hetkmers', description='Calculate unique kmer pairs from a Jellyfish or KMC dump ' 'file.') argparser.add_argument('infile', nargs='?', type=argparse.FileType('r'), default=sys.stdin, help='Alphabetically sorted Jellyfish or KMC dump file (stdin).') argparser.add_argument('-o', help='The pattern used to name the output (kmerpairs).', default='kmerpairs') argparser.add_argument('--pos', help='Position in k-mer to look for pairs, 0-based, min(1) - max(k-2)', dest='pos', type=int) self.arguments = argparser.parse_args(sys.argv[2:]) def plot(self): """ Generate 2d histogram; infer ploidy and plot a smudgeplot. """ argparser = argparse.ArgumentParser(prog='smudgeplot plot', description='Generate 2d histogram for smudgeplot') argparser.add_argument('infile', nargs='?', help='name of the input tsv file with covarages (default \"coverages_2.tsv\")."') argparser.add_argument('-o', help='The pattern used to name the output (smudgeplot).', default='smudgeplot') argparser.add_argument('-q', help='Remove kmer pairs with coverage over the specified quantile; (default none).', type=float, default=1) argparser.add_argument('-L', help='The lower boundary used when dumping kmers (default min(total_pair_cov) / 2).', type=int, default=0) argparser.add_argument('-n', help='The expected haploid coverage (default estimated from data).', type=float, default=0) argparser.add_argument('-t', '--title', help='name printed at the top of the smudgeplot (default none).', default='') # argparser.add_argument('-m', # '-method', # help='The algorithm for annotation of smudges (default \'local_aggregation\')', # default='local_aggregation') argparser.add_argument('-nbins', help='The number of nbins used for ' 'smudgeplot matrix (nbins x nbins) (default autodetection).', type=int, default=0) argparser.add_argument('-k', help='The length of the kmer.', default=21) # argparser.add_argument('-kmer_file', # help='Name of the input files containing kmer sequences ' # '(assuming the same order as in the coverage file)', # default="") argparser.add_argument('--homozygous', action="store_true", default=False, help="Assume no heterozygosity in the " "genome - plotting a paralog structure; (default False).") self.arguments = argparser.parse_args(sys.argv[2:]) def aggregate(self): """ Retrieve unique k-mer pairs from files containing IDs. """ argparser = argparse.ArgumentParser(prog='smudgeplot aggregate', description='Retrieve unique k-mer pairs from files containing IDs.') argparser.add_argument('--infile', required=True, type=argparse.FileType('r'), help='Alphabetically sorted Jellyfish or KMC dump file.') argparser.add_argument('--index_files', required=True, nargs='*', type=argparse.FileType('r'), help='Multiple indices files output of smudgeplot.py hetkmers --pos.') argparser.add_argument('-o', help='The pattern used to name the output (kmerpairs).', default='kmerpairs') argparser.add_argument('--cov_only', action='store_true', default=False, help='Only write one file for the coverage of the pairs.') self.arguments = argparser.parse_args(sys.argv[2:]) def cutoff(self): """ Calculate meaningful values for lower/upper kmer histogram cutoff. """ argparser = argparse.ArgumentParser(prog='smudgeplot cutoff', description='Calculate meaningful values for lower/upper kmer ' 'histogram cutoff.') argparser.add_argument('infile', type=argparse.FileType('r'), help='Name of the input kmer histogram file (default \"kmer.hist\")."') argparser.add_argument('boundary', help='Which bounary to compute L (lower) or U (upper)') self.arguments = argparser.parse_args(sys.argv[2:]) ############### # task cutoff # ############### def round_up_nice(x): digits = ceil(log(x, 10)) if digits <= 1: multiplier = 10 ** (digits - 1) else: multiplier = 10 ** (digits - 2) return ceil(x / multiplier) * multiplier def cutoff(args): # kmer_hist = open("data/Mflo2/kmer.hist","r") kmer_hist = args.infile hist = np.array([int(line.split()[1]) for line in kmer_hist]) if args.boundary == "L": local_minima = argrelextrema(hist, np.less)[0][0] L = max(10, int(round(local_minima * 1.25))) sys.stdout.write(str(L)) else: # take 99.8 quantile of kmers that are more than one in the read set hist_rel_cumsum = np.cumsum(hist[1:]) / np.sum(hist[1:]) U = round_up_nice(
np.argmax(hist_rel_cumsum > 0.998)
numpy.argmax
# Copyright (c) 2017-2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import glob from nvidia.dali.pipeline import Pipeline import nvidia.dali.ops as ops import nvidia.dali.types as types import nvidia.dali.tfrecord as tfrec import nvidia.dali as dali from nvidia.dali.backend_impl import TensorListGPU from timeit import default_timer as timer import numpy as np from numpy.testing import assert_array_equal, assert_allclose import os import random from PIL import Image from test_utils import check_batch from test_utils import compare_pipelines from test_utils import get_dali_extra_path test_data_root = get_dali_extra_path() caffe_db_folder = os.path.join(test_data_root, 'db', 'lmdb') c2lmdb_db_folder = os.path.join(test_data_root, 'db', 'c2lmdb') recordio_db_folder = os.path.join(test_data_root, 'db', 'recordio') tfrecord_db_folder = os.path.join(test_data_root, 'db', 'tfrecord') jpeg_folder = os.path.join(test_data_root, 'db', 'single', 'jpeg') coco_image_folder = os.path.join(test_data_root, 'db', 'coco', 'images') coco_annotation_file = os.path.join(test_data_root, 'db', 'coco', 'instances.json') test_data_video = os.path.join(test_data_root, 'db', 'optical_flow', 'sintel_trailer') def test_tensor_multiple_uses(): batch_size = 128 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(HybridPipe, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.res = ops.Resize(device="cpu", resize_x=224, resize_y=224) self.dump_cpu = ops.DumpImage(device = "cpu", suffix = "cpu") self.dump_gpu = ops.DumpImage(device = "gpu", suffix = "gpu") def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) images = self.res(images) images_cpu = self.dump_cpu(images) images_gpu = self.dump_gpu(images.gpu()) return (images, images_cpu, images_gpu) pipe = HybridPipe(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) pipe.build() out = pipe.run() assert(out[0].is_dense_tensor()) assert(out[1].is_dense_tensor()) assert(out[2].is_dense_tensor()) assert(out[0].as_tensor().shape() == out[1].as_tensor().shape()) assert(out[0].as_tensor().shape() == out[2].as_tensor().shape()) a_raw = out[0] a_cpu = out[1] a_gpu = out[2].as_cpu() for i in range(batch_size): t_raw = a_raw.at(i) t_cpu = a_cpu.at(i) assert(np.sum(np.abs(t_cpu - t_raw)) == 0) t_cpu = a_cpu.at(i) t_gpu = a_gpu.at(i) assert(np.sum(np.abs(t_cpu - t_gpu)) == 0) def test_multiple_input_sets(): batch_size = 32 file_root = os.path.join(test_data_root, 'db', 'coco', 'images') annotations_file = os.path.join(test_data_root, 'db', 'coco', 'instances.json') class MISPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(MISPipe, self).__init__(batch_size, num_threads, device_id, num_gpus) # Reading COCO dataset self.input = ops.COCOReader( file_root=file_root, annotations_file=annotations_file, shard_id=device_id, num_shards=num_gpus, ratio=True, ltrb=True, random_shuffle=False) self.decode_cpu = ops.ImageDecoder(device="cpu", output_type=types.RGB) self.decode_crop = ops.ImageDecoderSlice(device="cpu", output_type=types.RGB) self.ssd_crop = ops.SSDRandomCrop(device="cpu", num_attempts=1, seed=0) default_boxes = [0.0, 0.0, 1.0, 1.0] self.box_encoder_cpu = ops.BoxEncoder(device="cpu", criteria=0.5, anchors=default_boxes) def define_graph(self): # Do separate augmentations inputs0, boxes0, labels0 = self.input(name="Reader0") image0 = self.decode_cpu(inputs0) image_ssd0, boxes_ssd0, labels_ssd0 = self.ssd_crop(image0, boxes0, labels0) inputs1, boxes1, labels1 = self.input(name="Reader1") image1 = self.decode_cpu(inputs1) image_ssd1, boxes_ssd1, labels_ssd1 = self.ssd_crop(image1, boxes1, labels1) encoded_boxes0, encoded_labels0 = self.box_encoder_cpu(boxes_ssd0, labels_ssd0) encoded_boxes1, encoded_labels1 = self.box_encoder_cpu(boxes_ssd1, labels_ssd1) # Pack into Multiple Input Sets and gather multiple output lists boxes = [boxes_ssd0, boxes_ssd1] labels = [labels_ssd0, labels_ssd1] enc_boxes0, enc_labels0 = self.box_encoder_cpu(boxes, labels) # Test one list with one _EdgeReference enc_boxes1, enc_labels1 = self.box_encoder_cpu(boxes, labels_ssd0) # Return everything (only _EdgeReference allowed) return (encoded_boxes0, encoded_labels0, encoded_boxes1, encoded_labels1, enc_boxes0[0], enc_labels0[0], enc_boxes0[1], enc_labels0[1], enc_boxes1[0], enc_labels1[0], enc_boxes1[1], enc_labels1[1]) pipe = MISPipe(batch_size = batch_size, num_threads = 1, device_id = 0, num_gpus = 1) pipe.build() out = pipe.run() for i in range(batch_size): for j in range(0, len(out) - 2, 2): # All boxes should be the same assert(np.array_equal(out[j].at(i), out[j + 2].at(i))) # All labels should be the same assert(np.array_equal(out[j + 1].at(i), out[j + 3].at(i))) def test_pipeline_separated_exec_setup(): batch_size = 128 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus, prefetch_queue_depth): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, prefetch_queue_depth = prefetch_queue_depth) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.res = ops.Resize(device="cpu", resize_x=224, resize_y=224) self.dump_cpu = ops.DumpImage(device = "cpu", suffix = "cpu") self.dump_gpu = ops.DumpImage(device = "gpu", suffix = "gpu") def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) images = self.res(images) images_cpu = self.dump_cpu(images) images_gpu = self.dump_gpu(images.gpu()) return (images, images_cpu, images_gpu) pipe = HybridPipe(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1, prefetch_queue_depth = {"cpu_size": 5, "gpu_size": 3}) pipe.build() out = pipe.run() assert(out[0].is_dense_tensor()) assert(out[1].is_dense_tensor()) assert(out[2].is_dense_tensor()) assert(out[0].as_tensor().shape() == out[1].as_tensor().shape()) assert(out[0].as_tensor().shape() == out[2].as_tensor().shape()) a_raw = out[0] a_cpu = out[1] a_gpu = out[2].as_cpu() for i in range(batch_size): t_raw = a_raw.at(i) t_cpu = a_cpu.at(i) assert(np.sum(np.abs(t_cpu - t_raw)) == 0) t_cpu = a_cpu.at(i) t_gpu = a_gpu.at(i) assert(np.sum(np.abs(t_cpu - t_gpu)) == 0) def test_pipeline_simple_sync_no_prefetch(): batch_size = 16 n_iters = 12 class HybridPipe(Pipeline): def __init__(self, batch_size): super(HybridPipe, self).__init__(batch_size, num_threads=1, device_id=0, prefetch_queue_depth=1, exec_async=False, exec_pipelined=False) self.input = ops.CaffeReader(path = caffe_db_folder) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.dump_gpu = ops.DumpImage(device = "gpu", suffix = "gpu") def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) images_gpu = self.dump_gpu(images.gpu()) return (images, images_gpu) pipe = HybridPipe(batch_size=batch_size) pipe.build() for _ in range(n_iters): out = pipe.run() def test_use_twice(): batch_size = 128 class Pipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(Pipe, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.res = ops.Resize(device="cpu", resize_x=224, resize_y=224) def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) images0 = self.res(images) images1 = self.res(images) return (images0, images1) pipe = Pipe(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) pipe.build() out = pipe.run() assert(out[0].is_dense_tensor()) assert(out[1].is_dense_tensor()) assert(out[0].as_tensor().shape() == out[1].as_tensor().shape()) for i in range(batch_size): assert(np.array_equal(out[0].at(i), out[0].at(i))) def test_cropmirrornormalize_layout(): batch_size = 128 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(HybridPipe, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.cmnp_nhwc = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NHWC, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.cmnp_nchw = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NCHW, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) output_nhwc = self.cmnp_nhwc(images.gpu()) output_nchw = self.cmnp_nchw(images.gpu()) return (output_nchw, output_nhwc) pipe = HybridPipe(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) pipe.build() out = pipe.run() assert(out[0].is_dense_tensor()) assert(out[1].is_dense_tensor()) shape_nchw = out[0].as_tensor().shape() shape_nhwc = out[1].as_tensor().shape() assert(shape_nchw[0] == shape_nhwc[0]) a_nchw = out[0].as_cpu() a_nhwc = out[1].as_cpu() for i in range(batch_size): t_nchw = a_nchw.at(i) t_nhwc = a_nhwc.at(i) assert(t_nchw.shape == (3,224,224)) assert(t_nhwc.shape == (224,224,3)) assert(np.sum(np.abs(np.transpose(t_nchw, (1,2,0)) - t_nhwc)) == 0) def test_cropmirrornormalize_pad(): batch_size = 128 class HybridPipe(Pipeline): def __init__(self, layout, batch_size, num_threads, device_id, num_gpus): super(HybridPipe, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.cmnp_pad = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = layout, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.], pad_output = True) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = layout, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.], pad_output = False) def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) output_pad = self.cmnp_pad(images.gpu()) output = self.cmnp(images.gpu()) return (output, output_pad) for layout in [types.NCHW, types.NHWC]: pipe = HybridPipe(layout, batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) pipe.build() out = pipe.run() assert(out[0].is_dense_tensor()) assert(out[1].is_dense_tensor()) shape = out[0].as_tensor().shape() shape_pad = out[1].as_tensor().shape() assert(shape[0] == shape_pad[0]) a = out[0].as_cpu() a_pad = out[1].as_cpu() for i in range(batch_size): t = a.at(i) t_pad = a_pad.at(i) if (layout == types.NCHW): assert(t.shape == (3,224,224)) assert(t_pad.shape == (4,224,224)) assert(np.sum(np.abs(t - t_pad[:3,:,:])) == 0) assert(np.sum(np.abs(t_pad[3,:,:])) == 0) else: assert(t.shape == (224,224,3)) assert(t_pad.shape == (224,224,4)) assert(np.sum(np.abs(t - t_pad[:,:,:3])) == 0) assert(np.sum(np.abs(t_pad[:,:,3])) == 0) def test_cropmirrornormalize_multiple_inputs(): batch_size = 13 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads=1, device_id=0, num_gpus=1, device="cpu"): super(HybridPipe, self).__init__(batch_size, num_threads, device_id) self.device = device self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.decode2 = ops.ImageDecoder(device = "cpu", output_type = types.RGB) self.cmnp = ops.CropMirrorNormalize(device = device, output_dtype = types.FLOAT, output_layout = types.NHWC, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) def define_graph(self): inputs, labels = self.input(name="Reader") images = self.decode(inputs) images2 = self.decode2(inputs) images_device = images if self.device == "cpu" else images.gpu() images2_device = images2 if self.device == "cpu" else images2.gpu() output1, output2 = self.cmnp([images_device, images2_device]) output3 = self.cmnp([images_device]) output4 = self.cmnp([images2_device]) return (output1, output2, output3, output4) for device in ["cpu", "gpu"]: pipe = HybridPipe(batch_size=batch_size, device=device) pipe.build() for _ in range(5): out1, out2, out3, out4 = pipe.run() outs = [out.as_cpu() if device == 'gpu' else out for out in [out1, out2, out3, out4] ] check_batch(outs[0], outs[1], batch_size) check_batch(outs[0], outs[2], batch_size) check_batch(outs[1], outs[3], batch_size) def test_seed(): batch_size = 64 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, seed = 12) self.input = ops.CaffeReader(path = caffe_db_folder, random_shuffle = True) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.coin = ops.CoinFlip() self.uniform = ops.Uniform(range = (0.0,1.0)) self.iter = 0 def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) mirror = self.coin() output = self.cmnp(images, mirror = mirror, crop_pos_x = self.uniform(), crop_pos_y = self.uniform()) return (output, self.labels) n = 30 for i in range(50): pipe = HybridPipe(batch_size=batch_size, num_threads=2, device_id = 0) pipe.build() pipe_out = pipe.run() pipe_out_cpu = pipe_out[0].as_cpu() img_chw_test = pipe_out_cpu.at(n) if i == 0: img_chw = img_chw_test assert(np.sum(np.abs(img_chw - img_chw_test)) == 0) def test_as_array(): batch_size = 64 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, seed = 12) self.input = ops.CaffeReader(path = caffe_db_folder, random_shuffle = True) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.coin = ops.CoinFlip() self.uniform = ops.Uniform(range = (0.0,1.0)) self.iter = 0 def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) mirror = self.coin() output = self.cmnp(images, mirror = mirror, crop_pos_x = self.uniform(), crop_pos_y = self.uniform()) return (output, self.labels) n = 30 for i in range(50): pipe = HybridPipe(batch_size=batch_size, num_threads=2, device_id = 0) pipe.build() pipe_out = pipe.run() pipe_out_cpu = pipe_out[0].as_cpu() img_chw_test = pipe_out_cpu.as_array() if i == 0: img_chw = img_chw_test assert(img_chw_test.shape == (batch_size,3,224,224)) assert(np.sum(np.abs(img_chw - img_chw_test)) == 0) def test_seed_serialize(): batch_size = 64 class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, seed = 12) self.input = ops.CaffeReader(path = caffe_db_folder, random_shuffle = True) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.coin = ops.CoinFlip() self.uniform = ops.Uniform(range = (0.0,1.0)) self.iter = 0 def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) mirror = self.coin() output = self.cmnp(images, mirror = mirror, crop_pos_x = self.uniform(), crop_pos_y = self.uniform()) return (output, self.labels) n = 30 orig_pipe = HybridPipe(batch_size=batch_size, num_threads=2, device_id = 0) s = orig_pipe.serialize() for i in range(50): pipe = Pipeline() pipe.deserialize_and_build(s) pipe_out = pipe.run() pipe_out_cpu = pipe_out[0].as_cpu() img_chw_test = pipe_out_cpu.at(n) if i == 0: img_chw = img_chw_test assert(np.sum(np.abs(img_chw - img_chw_test)) == 0) def test_make_continuous_serialize(): batch_size = 32 class COCOPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(COCOPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.COCOReader(file_root=coco_image_folder, annotations_file=coco_annotation_file, ratio=True, ltrb=True) self.decode = ops.ImageDecoder(device="mixed") self.crop = ops.RandomBBoxCrop(device="cpu", seed = 12) self.slice = ops.Slice(device="gpu") def define_graph(self): inputs, bboxes, labels = self.input() images = self.decode(inputs) crop_begin, crop_size, bboxes, labels = self.crop(bboxes, labels) images = self.slice(images, crop_begin, crop_size) return images pipe = COCOPipeline(batch_size=batch_size, num_threads=2, device_id=0) serialized_pipeline = pipe.serialize() del(pipe) new_pipe = Pipeline(batch_size=batch_size, num_threads=2, device_id=0) new_pipe.deserialize_and_build(serialized_pipeline) def test_make_continuous_serialize_and_use(): batch_size = 2 class COCOPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(COCOPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.COCOReader(file_root=coco_image_folder, annotations_file=coco_annotation_file, ratio=True, ltrb=True) self.decode = ops.ImageDecoder(device="mixed") self.crop = ops.RandomBBoxCrop(device="cpu", seed = 25) self.slice = ops.Slice(device="gpu") def define_graph(self): inputs, bboxes, labels = self.input() images = self.decode(inputs) crop_begin, crop_size, bboxes, labels = self.crop(bboxes, labels) images = self.slice(images, crop_begin, crop_size) return images pipe = COCOPipeline(batch_size=batch_size, num_threads=2, device_id=0) serialized_pipeline = pipe.serialize() new_pipe = Pipeline(batch_size=batch_size, num_threads=2, device_id=0) new_pipe.deserialize_and_build(serialized_pipeline) compare_pipelines(pipe, new_pipe, batch_size, 50) def test_warpaffine(): class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, seed = 12) self.input = ops.CaffeReader(path = caffe_db_folder, random_shuffle = True) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NHWC, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.affine = ops.WarpAffine(device = "gpu", matrix = [1.0, 0.8, -0.8*112, 0.0, 1.2, -0.2*112], fill_value = 128, interp_type = types.INTERP_LINEAR) self.iter = 0 def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) outputs = self.cmnp([images, images]) outputs[1] = self.affine(outputs[1]) return [self.labels] + outputs pipe = HybridPipe(batch_size=128, num_threads=2, device_id = 0) pipe.build() pipe_out = pipe.run() import cv2 orig_cpu = pipe_out[1].as_cpu() for i in range(128): orig = orig_cpu.at(i) # apply 0.5 correction for opencv's not-so-good notion of pixel centers M = np.array([1.0, 0.8, -0.8*(112 - 0.5), 0.0, 1.2, -0.2*(112 - 0.5)]).reshape((2,3)) out = cv2.warpAffine(orig, M, (224,224), borderMode=cv2.BORDER_CONSTANT, borderValue = (128, 128, 128), flags = (cv2.WARP_INVERSE_MAP + cv2.INTER_LINEAR)) dali_output = pipe_out[2].as_cpu().at(i) maxdif = np.max(cv2.absdiff(out, dali_output)/255.0) assert(maxdif < 0.025) def test_type_conversion(): class HybridPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(HybridPipe, self).__init__(batch_size, num_threads, device_id, seed = 12) self.input = ops.CaffeReader(path = caffe_db_folder, random_shuffle = True) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.cmnp_all = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NHWC, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.cmnp_int = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NHWC, crop = (224, 224), image_type = types.RGB, mean = [128, 128, 128], std = [1., 1, 1]) # Left 1 of the arguments as float to test whether mixing types works self.cmnp_1arg = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, output_layout = types.NHWC, crop = (224, 224), image_type = types.RGB, mean = 128, std = 1) self.uniform = ops.Uniform(range = (0,1)) def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) outputs = [ None for i in range(3)] crop_pos_x = self.uniform() crop_pos_y = self.uniform() outputs[0] = self.cmnp_all(images, crop_pos_x = crop_pos_x, crop_pos_y = crop_pos_y) outputs[1] = self.cmnp_int(images, crop_pos_x = crop_pos_x, crop_pos_y = crop_pos_y) outputs[2] = self.cmnp_1arg(images, crop_pos_x = crop_pos_x, crop_pos_y = crop_pos_y) return [self.labels] + outputs pipe = HybridPipe(batch_size=128, num_threads=2, device_id = 0) pipe.build() for i in range(10): pipe_out = pipe.run() orig_cpu = pipe_out[1].as_cpu().as_tensor() int_cpu = pipe_out[2].as_cpu().as_tensor() arg1_cpu = pipe_out[3].as_cpu().as_tensor() assert_array_equal(orig_cpu, int_cpu) assert_array_equal(orig_cpu, arg1_cpu) def test_crop(): class CMNvsCropPipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(CMNvsCropPipe, self).__init__(batch_size, num_threads, device_id, seed = 12) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = 1) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.cmn = ops.CropMirrorNormalize(device = "gpu", output_layout = types.NHWC, output_dtype = types.FLOAT, crop = (224, 224), image_type = types.RGB, mean = [0., 0., 0.], std = [1., 1., 1.]) self.crop = ops.Crop(device = "gpu", crop = (224, 224), image_type = types.RGB) self.uniform = ops.Uniform(range = (0.0, 1.0)) self.cast = ops.Cast(device = "gpu", dtype = types.INT32) def define_graph(self): inputs, labels = self.input() images = self.decode(inputs) crop_x = self.uniform() crop_y = self.uniform() output_cmn = self.cmn(images, crop_pos_x = crop_x, crop_pos_y = crop_y) output_crop = self.crop(images, crop_pos_x = crop_x, crop_pos_y = crop_y) output_cmn = self.cast(output_cmn) output_crop = self.cast(output_crop) return (output_cmn, output_crop, labels.gpu()) batch_size = 8 iterations = 8 pipe = CMNvsCropPipe(batch_size=batch_size, num_threads=2, device_id = 0) pipe.build() for _ in range(iterations): pipe_out = pipe.run() cmn_img_batch_cpu = pipe_out[0].as_cpu() crop_img_batch_cpu = pipe_out[1].as_cpu() for b in range(batch_size): img_cmn = cmn_img_batch_cpu.at(b) img_crop = crop_img_batch_cpu.at(b) assert(np.array_equal(img_cmn, img_crop)) def test_transpose(): class TransposePipe(Pipeline): def __init__(self, batch_size, num_threads, device_id): super(TransposePipe, self).__init__(batch_size, num_threads, device_id, seed=12) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = 1) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.crop = ops.Crop(device = "gpu", crop = (224, 224), image_type = types.RGB) self.transpose = ops.Transpose(device="gpu", perm=[2, 0, 1]) def define_graph(self): imgs, labels = self.input() output = self.decode(imgs) cropped = self.crop(output) transposed = self.transpose(cropped) return (cropped, transposed, labels.gpu()) batch_size = 8 iterations = 8 pipe = TransposePipe(batch_size=batch_size, num_threads=2, device_id = 0) pipe.build() for _ in range(iterations): pipe_out = pipe.run() images = pipe_out[0].asCPU().as_array() images_transposed = pipe_out[1].asCPU().as_array() for b in range(batch_size): np_transposed = images[b].transpose((2, 0, 1)) np_transposed = np.ascontiguousarray(np_transposed) assert(np.array_equal(np_transposed, images_transposed[b])) def test_equal_ImageDecoderCrop_ImageDecoder(): """ Comparing results of pipeline: (ImageDecoder -> Crop), with the same operation performed by fused operator """ batch_size =128 class NonFusedPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(NonFusedPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.pos_rng_x = ops.Uniform(range = (0.0, 1.0), seed=1234) self.pos_rng_y = ops.Uniform(range = (0.0, 1.0), seed=5678) self.crop = ops.Crop(device="gpu", crop =(224,224)) def define_graph(self): self.jpegs, self.labels = self.input() pos_x = self.pos_rng_x() pos_y = self.pos_rng_y() images = self.decode(self.jpegs) crop = self.crop(images, crop_pos_x=pos_x, crop_pos_y=pos_y) return (crop, self.labels) class FusedPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(FusedPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.pos_rng_x = ops.Uniform(range = (0.0, 1.0), seed=1234) self.pos_rng_y = ops.Uniform(range = (0.0, 1.0), seed=5678) self.decode = ops.ImageDecoderCrop(device = 'mixed', output_type = types.RGB, crop = (224, 224)) def define_graph(self): self.jpegs, self.labels = self.input() pos_x = self.pos_rng_x() pos_y = self.pos_rng_y() images = self.decode(self.jpegs, crop_pos_x=pos_x, crop_pos_y=pos_y) return (images, self.labels) nonfused_pipe = NonFusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) nonfused_pipe.build() nonfused_pipe_out = nonfused_pipe.run() fused_pipe = FusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) fused_pipe.build() fused_pipe_out = fused_pipe.run() for i in range(batch_size): nonfused_pipe_out_cpu = nonfused_pipe_out[0].as_cpu() fused_pipe_out_cpu = fused_pipe_out[0].as_cpu() assert(np.sum(np.abs(nonfused_pipe_out_cpu.at(i)-fused_pipe_out_cpu.at(i)))==0) def test_equal_ImageDecoderRandomCrop_ImageDecoder(): """ Comparing results of pipeline: (ImageDecoder -> RandomCrop), with the same operation performed by fused operator """ batch_size =128 class NonFusedPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus, seed): super(NonFusedPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus, seed = seed) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.res = ops.RandomResizedCrop(device="gpu", size =(224,224), seed=seed) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.coin = ops.CoinFlip(seed = seed) def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) resized_images = self.res(images) mirror = self.coin() output = self.cmnp(resized_images, mirror = mirror) return (output, resized_images, self.labels) class FusedPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus, seed): super(FusedPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus, seed = seed) self.decode = ops.ImageDecoderRandomCrop(device = "mixed", output_type = types.RGB, seed=seed) self.res = ops.Resize(device="gpu", resize_x=224, resize_y=224) self.cmnp = ops.CropMirrorNormalize(device = "gpu", output_dtype = types.FLOAT, crop = (224, 224), image_type = types.RGB, mean = [128., 128., 128.], std = [1., 1., 1.]) self.coin = ops.CoinFlip(seed = seed) def define_graph(self): self.jpegs, self.labels = self.input() images = self.decode(self.jpegs) resized_images = self.res(images) mirror = self.coin() output = self.cmnp(resized_images, mirror = mirror) return (output, resized_images, self.labels) random_seed = 123456 nonfused_pipe = NonFusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1, seed = random_seed) nonfused_pipe.build() nonfused_pipe_out = nonfused_pipe.run() fused_pipe = FusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1, seed = random_seed) fused_pipe.build() fused_pipe_out = fused_pipe.run() nonfused_pipe_out_cpu = nonfused_pipe_out[0].as_cpu() fused_pipe_out_cpu = fused_pipe_out[0].as_cpu() for i in range(batch_size): assert(np.mean(np.abs(nonfused_pipe_out_cpu.at(i)-fused_pipe_out_cpu.at(i))) < 0.5) class ExternalInputIterator(object): def __init__(self, batch_size): self.batch_size = batch_size def __iter__(self): self.i = 0 self.n = self.batch_size return self def __next__(self): pos = [] size = [] for _ in range(self.batch_size): pos.append(np.asarray([0.4, 0.2], dtype=np.float32)) size.append(np.asarray([0.3, 0.5], dtype=np.float32)) self.i = (self.i + 1) % self.n return (pos, size) next = __next__ class LazyPipeline(Pipeline): def __init__(self, batch_size, db_folder, lazy_type, num_threads=1, device_id=0, num_gpus=1): super(LazyPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = db_folder, shard_id = device_id, num_shards = num_gpus, lazy_init = lazy_type) self.decode = ops.ImageDecoder(device = "mixed", output_type = types.RGB) self.pos_rng_x = ops.Uniform(range = (0.0, 1.0), seed=1234) self.pos_rng_y = ops.Uniform(range = (0.0, 1.0), seed=5678) self.crop = ops.Crop(device="gpu", crop =(224,224)) def define_graph(self): self.jpegs, self.labels = self.input() pos_x = self.pos_rng_x() pos_y = self.pos_rng_y() images = self.decode(self.jpegs) crop = self.crop(images, crop_pos_x=pos_x, crop_pos_y=pos_y) return (crop, self.labels) def test_lazy_init_empty_data_path(): empty_db_folder="/data/empty" batch_size = 128 nonlazy_pipe = LazyPipeline(batch_size, empty_db_folder, lazy_type=False) try: nonlazy_pipe.build() assert(False) except RuntimeError: assert(True) lazy_pipe = LazyPipeline(batch_size, empty_db_folder, lazy_type=True) try: lazy_pipe.build() assert(True) except BaseException: assert(False) def test_lazy_init(): """ Comparing results of pipeline: lazy_init false and lazy_init true with empty folder and real folder """ batch_size =128 compare_pipelines(LazyPipeline(batch_size, caffe_db_folder, lazy_type=False), LazyPipeline(batch_size, caffe_db_folder, lazy_type=True), batch_size=batch_size, N_iterations=20) def test_equal_ImageDecoderSlice_ImageDecoder(): """ Comparing results of pipeline: (ImageDecoder -> Slice), with the same operation performed by fused operator """ batch_size =128 eii = ExternalInputIterator(128) pos_size_iter = iter(eii) class NonFusedPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(NonFusedPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.input_crop_pos = ops.ExternalSource() self.input_crop_size = ops.ExternalSource() self.input_crop = ops.ExternalSource() self.decode = ops.ImageDecoder(device='mixed', output_type=types.RGB) self.slice = ops.Slice(device = 'gpu') def define_graph(self): jpegs, labels = self.input() self.crop_pos = self.input_crop_pos() self.crop_size = self.input_crop_size() images = self.decode(jpegs) slice = self.slice(images, self.crop_pos, self.crop_size) return (slice, labels) def iter_setup(self): (crop_pos, crop_size) = pos_size_iter.next() self.feed_input(self.crop_pos, crop_pos) self.feed_input(self.crop_size, crop_size) class FusedPipeline(Pipeline): def __init__(self, batch_size, num_threads, device_id, num_gpus): super(FusedPipeline, self).__init__(batch_size, num_threads, device_id) self.input = ops.CaffeReader(path = caffe_db_folder, shard_id = device_id, num_shards = num_gpus) self.input_crop_pos = ops.ExternalSource() self.input_crop_size = ops.ExternalSource() self.input_crop = ops.ExternalSource() self.decode = ops.ImageDecoderSlice(device = 'mixed', output_type = types.RGB) def define_graph(self): jpegs, labels = self.input() self.crop_pos = self.input_crop_pos() self.crop_size = self.input_crop_size() images = self.decode(jpegs, self.crop_pos, self.crop_size) return (images, labels) def iter_setup(self): (crop_pos, crop_size) = pos_size_iter.next() self.feed_input(self.crop_pos, crop_pos) self.feed_input(self.crop_size, crop_size) nonfused_pipe = NonFusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) nonfused_pipe.build() nonfused_pipe_out = nonfused_pipe.run() fused_pipe = FusedPipeline(batch_size=batch_size, num_threads=1, device_id = 0, num_gpus = 1) fused_pipe.build() fused_pipe_out = fused_pipe.run() for i in range(batch_size): nonfused_pipe_out_cpu = nonfused_pipe_out[0].as_cpu() fused_pipe_out_cpu = fused_pipe_out[0].as_cpu() assert(np.sum(np.abs(nonfused_pipe_out_cpu.at(i)-fused_pipe_out_cpu.at(i)))==0) def test_iter_setup(): class TestIterator(): def __init__(self, n): self.n = n def __iter__(self): self.i = 0 return self def __next__(self): batch = [] if self.i < self.n: batch.append(np.arange(0, 1, dtype=np.float)) self.i += 1 return batch else: self.i = 0 raise StopIteration next = __next__ class IterSetupPipeline(Pipeline): def __init__(self, iterator, num_threads, device_id): super(IterSetupPipeline, self).__init__(1, num_threads, device_id) self.input = ops.ExternalSource() self.iterator = iterator def define_graph(self): self.batch = self.input() return self.batch def iter_setup(self): batch = next(self.iterator) self.feed_input(self.batch, batch) iter_num = 5 iterator = iter(TestIterator(iter_num)) i = 0 while True: try: batch = next(iterator) i += 1 except StopIteration: break assert(iter_num == i) iterator = iter(TestIterator(iter_num)) pipe = IterSetupPipeline(iterator, 3, 0) pipe.build() i = 0 while True: try: pipe_out = pipe.run() i += 1 except StopIteration: break assert(iter_num == i) pipe.reset() i = 0 while True: try: pipe_out = pipe.run() i += 1 except StopIteration: break assert(iter_num == i) def test_external_source(): class TestIterator(): def __init__(self, n): self.n = n def __iter__(self): self.i = 0 return self def __next__(self): batch_1 = [] batch_2 = [] if self.i < self.n: batch_1.append(
np.arange(0, 1, dtype=np.float)
numpy.arange
"""Implementation of different methods that integrate planning with learning""" import argparse import numpy as np import plot as plt import random from abc import ABC from collections import defaultdict, namedtuple from env import Action, Easy21, State from heapq import heapify, heappop, heappush from policy import EpsilonGreedyPolicy, Policy, RandomPolicy from tqdm import tqdm from typing import List # For reproducibility random.seed(0) Trajectory = namedtuple("Trajectory", ["state", "action", "reward"]) class Planning(ABC): """A base class defining a planning algorithm""" def __init__(self): self._env = Easy21(seed=24) self.Q = np.zeros((*self._env.state_space, self._env.action_space)) # Model of the world represented by approximations of the transition and reward functions # We initialize the transition function with a very small value greater than 0 to avoid # division by zero when computing transition probabilities for trajectories that haven't been encountered self.T = np.full((*self._env.state_space, self._env.action_space, *self._env.state_space), 0.00001) self.R = np.zeros((*self._env.state_space, self._env.action_space)) def _update_model(self, s, a, r, s_prime, done): if not done: # We only update the transition model for non-terminal states since the terminal state # is most likely an "invalid" state for this environment, e.g. a player's sum over 21 self.T[s.dealer_first_card, s.player_sum, a, s_prime.dealer_first_card, s_prime.player_sum] += 1 # We update the model of the reward by learning it similarly to the action values # This is not specified in Sutton & Barto's book but I learned it during my Master's self.R[s.dealer_first_card, s.player_sum, a] += 0.2 * (r - self.R[s.dealer_first_card, s.player_sum, a]) def _learn(self, pi, s, a, r, s_prime, done, alpha, gamma): if done: td_target = r else: td_target = r + gamma * np.max(self.Q[s_prime.dealer_first_card, s_prime.player_sum, :]) td_error = td_target - self.Q[s.dealer_first_card, s.player_sum, a] # Prediction self.Q[s.dealer_first_card, s.player_sum, a] += alpha * td_error # Improvement pi[s] = np.argmax(self.Q[s.dealer_first_card, s.player_sum, :]) class DynaQ(Planning): """Dyna-Q algorithm""" def learn(self, epochs=200, n=100, alpha=0.5, gamma=0.9, verbose=False, **kwargs) -> np.ndarray: """ Learns the optimal value function. :param int epochs: The number of epochs to take to learn the value function :param int n: The planning iterations to use :param float alpha: The learning rate :param float gamma: The discount factor :param bool verbose: Whether to use verbose mode or not :param dict kwargs: Extra arguments, ignored :return: The optimal value function :rtype: np.ndarray """ pi = EpsilonGreedyPolicy(seed=24) for _ in tqdm(range(epochs), disable=not verbose): done = False s = self._env.reset() while not done: a = pi[s] s_prime, r, done = self._env.step(a) # Learning phase self._learn(pi, s, a, r, s_prime, done, alpha, gamma) # Planning phase if n > 0: self._update_model(s, a, r, s_prime, done) self._plan(pi, done, n, alpha, gamma) s = s_prime # Compute the optimal value function which is simply the value of the best action (last dimension) in each state return np.max(self.Q, axis=2) def _plan(self, pi, done, n, alpha, gamma): # Compute the probabilities of each s,a -> s' transition over all possible transitions from each s,a transition_probs = self.T /
np.sum(self.T, axis=(0, 1, 2))
numpy.sum
# This file is part of Frhodo. Copyright © 2020, UChicago Argonne, LLC # and licensed under BSD-3-Clause. See License.txt in the top-level # directory for license and copyright information. from tabulate import tabulate import matplotlib as mpl import numpy as np from scipy import stats from convert_units import OoM from plot.base_plot import Base_Plot from plot.draggable import Draggable def shape_data(x, y): return np.transpose(np.vstack((x, y))) class Plot(Base_Plot): def __init__(self, parent, widget, mpl_layout): super().__init__(parent, widget, mpl_layout) self.show_unc_shading = False # Connect Signals self.canvas.mpl_connect('resize_event', self._resize_event) parent.num_sim_lines_box.valueChanged.connect(self.set_history_lines) def info_table_text(self): parent = self.parent # TODO: Fix variables when implementing zone 2 and 5 option shock_zone = parent.display_shock['zone'] if shock_zone == 2: display_vars = ['T2', 'P2'] elif shock_zone == 5: display_vars = ['T5', 'P5'] table = [['Shock {:d}'.format(parent.var['shock_choice']), '']] # This sets the info table to have the units selected in the shock properties window if not np.isnan([parent.display_shock[key] for key in display_vars]).all(): T_unit = eval('str(parent.' + display_vars[0] + '_units_box.currentText())') P_unit = eval('str(parent.' + display_vars[1] + '_units_box.currentText())') T_value = parent.convert_units(parent.display_shock[display_vars[0]], T_unit, 'out') P_value = parent.convert_units(parent.display_shock[display_vars[1]], P_unit, 'out') table.append(['T{:.0f} {:s}'.format(shock_zone, T_unit), '{:.2f}'.format(T_value)]) table.append(['P{:.0f} {:s}'.format(shock_zone, P_unit), '{:.2f}'.format(P_value)]) for species, mol_frac in parent.display_shock['thermo_mix'].items(): table.append(['{:s}'.format(species), '{:g}'.format(mol_frac)]) table = tabulate(table).split('\n')[1:-1] # removes header and footer table_left_justified = [] max_len = len(max(table, key=len)) for line in table: table_left_justified.append('{:<{max_len}}'.format(line, max_len=max_len)) return '\n'.join(table_left_justified) def create_canvas(self): self.ax = [] ## Set upper plots ## self.ax.append(self.fig.add_subplot(4,1,1)) self.ax[0].item = {} self.ax[0].item['weight_unc_fcn'] = self.ax[0].add_line(mpl.lines.Line2D([],[], c = '#800000', zorder=1)) markers = {'weight_shift': {'marker': 'o', 'markersize': 7}, 'weight_k': {'marker': '$'+'\u2194'+'$', 'markersize': 12}, 'weight_extrema': {'marker': '$'+u'\u2195'+'$', 'markersize': 12}, 'unc_shift': {'marker': 'o', 'markersize': 7}, 'unc_k': {'marker': '$'+'\u2194'+'$', 'markersize': 12}, 'unc_extrema': {'marker': '$'+u'\u2195'+'$', 'markersize': 12}} for name, attr in markers.items(): self.ax[0].item[name] = self.ax[0].add_line(mpl.lines.Line2D([],[], marker=attr['marker'], markersize=attr['markersize'], markerfacecolor='#BF0000', markeredgecolor='None', linestyle='None', zorder=2)) self.ax[0].item['sim_info_text'] = self.ax[0].text(.98,.92, '', fontsize=10, fontname='DejaVu Sans Mono', horizontalalignment='right', verticalalignment='top', transform=self.ax[0].transAxes) self.ax[0].set_ylim(-0.1, 1.1) self.ax[0].tick_params(labelbottom=False) self.ax[0].item['title'] = self.ax[0].text(.5,.95,'Weighting', fontsize='large', horizontalalignment='center', verticalalignment='top', transform=self.ax[0].transAxes) self.fig.subplots_adjust(left=0.06, bottom=0.065, right=0.98, top=0.98, hspace=0, wspace=0.12) ## Set lower plots ## self.ax.append(self.fig.add_subplot(4,1,(2,4), sharex = self.ax[0])) self.ax[1].item = {} self.ax[1].item['exp_data'] = self.ax[1].scatter([],[], color='0', facecolors='0', linewidth=0.5, alpha = 0.85, zorder=2) self.ax[1].item['sim_data'] = self.ax[1].add_line(mpl.lines.Line2D([],[], c='#0C94FC', zorder=4)) nan_array = [np.nan, np.nan] self.ax[1].item['unc_shading'] = self.ax[1].fill_between(nan_array, nan_array, nan_array, color='#0C94FC', alpha=0.2, linewidth=0, zorder=0) self.ax[1].item['unc_shading'].empty_verts = [path._vertices for path in self.ax[1].item['unc_shading'].get_paths()] self.ax[1].item['unc_shading'].empty_codes = [path._codes for path in self.ax[1].item['unc_shading'].get_paths()] self.ax[1].item['history_data'] = [] self.ax[1].item['cutoff_line'] = [self.ax[1].axvline(x=np.nan, ls='--', c='#BF0000', zorder=5), self.ax[1].axvline(x=np.nan, ls='--', c='#BF0000', zorder=5)] self.lastRxnNum = None self.ax[1].text(.5,.98,'Observable', fontsize='large', horizontalalignment='center', verticalalignment='top', transform=self.ax[1].transAxes) self.parent.rxn_change_history = [] self.set_history_lines() # Create colorbar legend self.cbax = self.fig.add_axes([0.90, 0.575, 0.02, 0.15], zorder=3) self.cb = mpl.colorbar.ColorbarBase(self.cbax, cmap=mpl.cm.gray, ticks=[0, 0.5, 1], orientation='vertical') self.cbax.invert_yaxis() self.cbax.set_yticklabels(['1', '0.5', '0']) # horizontal colorbar self.cb.set_label('Weighting') # Create canvas from Base super().create_canvas() self._set_scale('y', 'abslog', self.ax[1]) # set Signal/SIM y axis to abslog # Add draggable lines draggable_items = [[0, 'weight_shift'], [0, 'weight_k'], [0, 'weight_extrema'], [0, 'unc_shift'], [0, 'unc_k'], [0, 'unc_extrema'], [1, 'sim_data'], [1, 'cutoff_line']] for pair in draggable_items: n, name = pair # n is the axis number, name is the item key items = self.ax[n].item[name] if not isinstance(items, list): # check if the type is a list items = [self.ax[n].item[name]] for item in items: update_fcn = lambda x, y, item=item: self.draggable_update_fcn(item, x, y) press_fcn = lambda x, y, item=item: self.draggable_press_fcn(item, x, y) release_fcn = lambda item=item: self.draggable_release_fcn(item) item.draggable = Draggable(self, item, update_fcn, press_fcn, release_fcn) def set_history_lines(self): old_num_hist_lines = len(self.ax[1].item['history_data']) num_hist_lines = self.parent.num_sim_lines_box.value() - 1 numDiff = np.abs(old_num_hist_lines - num_hist_lines) if old_num_hist_lines > num_hist_lines: del self.ax[1].item['history_data'][0:numDiff] elif old_num_hist_lines < num_hist_lines: for n in range(old_num_hist_lines, old_num_hist_lines+numDiff): line = mpl.lines.Line2D([],[]) self.ax[1].item['history_data'].append({'line': self.ax[1].add_line(line), 'rxnNum': None}, zorder=3) color = mpl.cm.nipy_spectral(np.linspace(0.05, 0.95, num_hist_lines)[::-1]) for n, item in enumerate(self.ax[1].item['history_data']): item['line'].set_color(color[n]) if hasattr(self, 'canvas'): # this can be deleted after testing color changes self._draw_items_artist() def draggable_press_fcn(self, item, x, y): x0, xpress, xnew, xpressnew = x['0'], x['press'], x['new'], x['press_new'] y0, ypress, ynew, ypressnew = y['0'], y['press'], y['new'], y['press_new'] xy_data = item.get_xydata() xy_press = np.array([xpress, ypress]) xy_OoM = 10**OoM(xy_press) # calculate distance from press and points, don't need sqrt for comparison, divide by OoM for large differences in x/y OoM distance_cmp = np.sum(np.subtract(xy_data/xy_OoM, xy_press/xy_OoM)**2, axis=1) item.draggable.nearest_index = np.nanargmin(distance_cmp) # choose closest point to press def draggable_release_fcn(self, item): item.draggable.nearest_index = 0 # reset nearest_index def draggable_update_fcn(self, item, x, y): parent = self.parent x = {key: np.array(val)/parent.var['reactor']['t_unit_conv'] for key, val in x.items()} # scale with unit choice x0, xpress, xnew, xpressnew = x['0'], x['press'], x['new'], x['press_new'] y0, ypress, ynew, ypressnew = y['0'], y['press'], y['new'], y['press_new'] exp_data = parent.display_shock['exp_data'] if item is self.ax[1].item['sim_data']: time_offset = np.round(xnew[0]/0.01)*0.01 for box in parent.time_offset_box.twin: box.blockSignals(True) box.setValue(time_offset) box.blockSignals(False) parent.var['time_offset'] = parent.time_offset_box.value()*parent.var['reactor']['t_unit_conv'] parent.tree._copy_expanded_tab_rates() # update rates/time offset autocopy self.update_sim(parent.SIM.independent_var, parent.SIM.observable) elif item in self.ax[1].item['cutoff_line']: for n in range(0,2): if item is self.ax[1].item['cutoff_line'][n]: break t_conv = parent.var['reactor']['t_unit_conv'] t = exp_data[:,0] t_min = np.min(t) cutoff_perc = (xnew*t_conv- t_min)/(np.max(t) - t_min) parent.exp_unc.boxes['unc_cutoff'][n].setValue(cutoff_perc*100) elif item is self.ax[0].item['weight_shift'] or item is self.ax[0].item['unc_shift']: if item is self.ax[0].item['weight_shift']: plot_type = 'weight' box_type = plot_type elif item is self.ax[0].item['unc_shift']: plot_type = 'unc' box_type = 'exp_unc' t_conv = parent.var['reactor']['t_unit_conv'] n = item.draggable.nearest_index # shift must be within the experiment xnew = (xnew[n]*t_conv - exp_data[0,0])/(exp_data[-1,0] - exp_data[0,0])*100 if n == 0: if xnew < 0.0: xnew = 0.0 elif xnew > parent.display_shock[f'{plot_type}_shift'][1]: xnew = parent.display_shock[f'{plot_type}_shift'][1] elif n == 1: if xnew < parent.display_shock[f'{plot_type}_shift'][0]: xnew = parent.display_shock[f'{plot_type}_shift'][0] elif xnew > 100: xnew = 100 eval(f'parent.{box_type}.boxes["{plot_type}_shift"][n].setValue(xnew)') elif item is self.ax[0].item['weight_k'] or item is self.ax[0].item['unc_k']: # save n on press, erase on release if item is self.ax[0].item['weight_k']: plot_type = 'weight' box_type = plot_type elif item is self.ax[0].item['unc_k']: plot_type = 'unc' box_type = 'exp_unc' xy_data = item.get_xydata() n = item.draggable.nearest_index i = n // 2 shift = parent.display_shock[f'{plot_type}_shift'][i] shift = shift/100*(exp_data[-1,0] - exp_data[0,0]) + exp_data[0,0] shift /= parent.var['reactor']['t_unit_conv'] # Calculate new sigma, shift - sigma or sigma - shift based on which point is selected sigma_new = -((-1)**(n))*(xnew[n] - shift) if sigma_new < 0: # Sigma must be greater than 0 sigma_new = 0 eval(f'parent.{box_type}.boxes["{plot_type}_k"][i].setValue(sigma_new)') elif item is self.ax[0].item['weight_extrema'] or item is self.ax[0].item['unc_extrema']: # TODO: FIX SCALE NOT CHANGING WHEN ALTERING THROUGH PLOT xy_data = item.get_xydata() n = item.draggable.nearest_index if item is self.ax[0].item['weight_extrema']: plot_type = 'weight' box_type = plot_type if n != 1: weight_type = 'weight_min' i = n // 2 else: weight_type = 'weight_max' i = 0 elif item is self.ax[0].item['unc_extrema']: plot_type = 'unc' box_type = 'exp_unc' if n != 1: weight_type = 'unc_max' i = n // 2 else: weight_type = 'unc_min' i = 0 box = eval(f'parent.{box_type}.boxes["{weight_type}"][i]') extrema_new = ynew[n] if self.parent.exp_unc.unc_type == '%': GUI_max = parent.display_shock[weight_type][i]/100 extrema_new = ynew[n] + GUI_max - xy_data[n][1] # account for fcn not reaching maximum # Must be greater than 0 and less than 0.99 if extrema_new < box.minimum(): extrema_new = box.minimum() # Let the GUI decide low end elif extrema_new > box.maximum(): extrema_new = box.maximum() box.setValue(extrema_new*100) else: GUI_max = parent.display_shock[weight_type][i] extrema_new = ynew[n] + GUI_max - xy_data[n][1] # account for fcn not reaching maximum box.setValue(extrema_new) # Update plot if data exists if exp_data.size > 0: parent.update_user_settings() self.update() def _resize_event(self, event=None): canvas_width = self.canvas.size().width() left = -7.6E-08*canvas_width**2 + 2.2E-04*canvas_width + 7.55E-01 # Might be better to adjust by pixels self.cbax.set_position([left, 0.575, 0.02, 0.15]) def _clear_event(self, event=None): # unused self.fig.clear() def update(self, update_lim=False): parent = self.parent if parent.display_shock['exp_data'].size == 0: return t = parent.display_shock['exp_data'][:,0] data = parent.display_shock['exp_data'][:,1] # Update upper plot obj_fcn_type = parent.obj_fcn_type_box.currentText() if obj_fcn_type == 'Residual': self.update_weight_plot() else: self.update_uncertainty_plot() self.update_uncertainty_shading() # Update lower plot weights = parent.display_shock['weights'] self.ax[1].item['exp_data'].set_offsets(shape_data(t, data)) self.ax[1].item['exp_data'].set_facecolor(np.char.mod('%f', 1-weights)) self.update_info_text() if update_lim: self.update_xylim(self.ax[1]) def update_weight_plot(self): parent = self.parent if parent.display_shock['exp_data'].size == 0: return t = parent.display_shock['exp_data'][:,0] shift = np.array(parent.display_shock['weight_shift'])/100*(t[-1] - t[0]) + t[0] inv_growth_rate = np.array(parent.display_shock['weight_k'])*self.parent.var['reactor']['t_unit_conv'] weight_fcn = parent.series.weights weights = parent.display_shock['weights'] = weight_fcn(t) self.ax[0].item['weight_unc_fcn'].set_xdata(t) self.ax[0].item['weight_unc_fcn'].set_ydata(weights) # calculate mu markers mu = shift f_mu = weight_fcn(mu, calcIntegral=False) # calculate extrema markers t_range = np.max(t) - np.min(t) t_extrema = np.array([np.min(t), np.mean(mu), np.max(t)]) + np.array([0.0125, 0, -0.025])*t_range # put arrow at 95% of x data # calculate sigma markers ones_shape = (np.shape(f_mu)[0], 2) sigma = np.ones(ones_shape)*mu + (np.ones(ones_shape)*np.array([-1, 1])).T*inv_growth_rate sigma = sigma.T # sort may be unnecessary f_sigma = np.reshape(weight_fcn(sigma.flatten(), calcIntegral=False), ones_shape) for i in np.argwhere(inv_growth_rate == 0.0): f = weight_fcn(np.array([(1.0-1E-3), (1.0+1E-3)])*mu[i], calcIntegral=False) f_mu[i] = np.mean(f) perc = 0.1824 f_sigma[i] = [(1-perc)*f[0] + perc*f[1], perc*f[0] + (1-perc)*f[1]] sigma = sigma.flatten() f_sigma = f_sigma.flatten() if sigma[1] >= 0.80*t_extrema[1] + 0.20*mu[0]: # hide sigma symbols if too close to center extrema sigma[1] = np.nan if sigma[2] <= 0.75*t_extrema[1] + 0.25*mu[1]: sigma[2] = np.nan # Set markers self.ax[0].item['weight_shift'].set_xdata(mu) self.ax[0].item['weight_shift'].set_ydata(f_mu) self.ax[0].item['weight_k'].set_xdata(sigma.flatten()) self.ax[0].item['weight_k'].set_ydata(f_sigma.flatten()) self.ax[0].item['weight_extrema'].set_xdata(t_extrema) self.ax[0].item['weight_extrema'].set_ydata(weight_fcn(t_extrema, calcIntegral=False)) def update_uncertainty_plot(self): parent = self.parent if parent.display_shock['exp_data'].size == 0: return t = parent.display_shock['exp_data'][:,0] shift = np.array(parent.display_shock['unc_shift'])/100*(t[-1] - t[0]) + t[0] inv_growth_rate = np.array(parent.display_shock['unc_k'])*self.parent.var['reactor']['t_unit_conv'] unc_fcn = parent.series.uncertainties uncertainties = unc_fcn(t, calcWeights=True) parent.display_shock['uncertainties'] = uncertainties self.ax[0].item['weight_unc_fcn'].set_xdata(t) self.ax[0].item['weight_unc_fcn'].set_ydata(uncertainties) # calculate mu markers mu = shift f_mu = unc_fcn(mu) # calculate extrema markers t_min =np.min(t) t_max =np.max(t) t_range = t_max - t_min t_extrema = np.array([t_min, np.mean(mu), t_max]) + np.array([0.0125, 0, -0.025])*t_range # put arrow at 95% of x data # calculate sigma markers ones_shape = (np.shape(f_mu)[0], 2) sigma = np.ones(ones_shape)*mu + (
np.ones(ones_shape)
numpy.ones
from numpy.linalg import norm as _norm import numpy as _np r""" Pore-scale models related to topology of the network. """ def coordination_number(target): r""" Find the number of neighbors for each pore """ network = target.network N = network.num_neighbors(pores=network.Ps, flatten=False) return N def pore_to_pore_distance(target): r""" Find the center to center distance between each pair of pores """ network = target.project.network cn = network['throat.conns'] C1 = network['pore.coords'][cn[:, 0]] C2 = network['pore.coords'][cn[:, 1]] values = _norm(C1 - C2, axis=1) return values def distance_to_nearest_neighbor(target): r""" Find the distance between each pore and its closest topological neighbor """ network = target.project.network cn = network['throat.conns'] C1 = network['pore.coords'][cn[:, 0]] C2 = network['pore.coords'][cn[:, 1]] D = _norm(C1 - C2, axis=1) im = network.create_incidence_matrix() values = _np.ones((network.Np, ))*_np.inf _np.minimum.at(values, im.row, D[im.col]) return _np.array(values) def distance_to_furthest_neighbor(target): r""" Find the distance between each pore and its furthest topological neighbor """ network = target.project.network throats = network.map_throats(throats=target.Ts, origin=target) cn = network['throat.conns'][throats] C1 = network['pore.coords'][cn[:, 0]] C2 = network['pore.coords'][cn[:, 1]] D = _norm(C1 - C2, axis=1) im = network.create_incidence_matrix() values = _np.zeros((network.Np, )) _np.maximum.at(values, im.row, D[im.col]) return _np.array(values) def cluster_number(target): r""" Assign a cluster number to each pore """ net = target.network from scipy.sparse import csgraph as csg am = net.create_adjacency_matrix(fmt='coo', triu=True) N, Cs = csg.connected_components(am, directed=False) return Cs def cluster_size(target, cluster=None): r""" Find the size of the cluster to which each pore belongs Parameters ---------- network : dict The OpenPNM network object cluster : str, optional Dict key pointing to the array containing the cluster number of each pore. If not provided then it will be calculated. Returns ------- cluster_size : ndarray An Np-long array containing the size of the cluster to which each pore belongs """ net = target.network if cluster is None: from scipy.sparse import csgraph as csg am = net.create_adjacency_matrix(fmt='coo', triu=True) N, cluster_num = csg.connected_components(am, directed=False) else: cluster_num = net[cluster] Cs, ind, N = _np.unique(cluster_num, return_inverse=True, return_counts=True) values = N[ind] return values def isolated_pores(target): r""" find which pores, if any, are not connected to a throat """ net = target.network values = _np.ones(net.Np, dtype=bool) hits = _np.unique(net.conns) values[hits] = False return values def reversed_throats(target): r""" Find any throat connections that are pointing from j -> i where j > i """ net = target.network hits = net.conns[:, 0] > net.conns[:, 1] return hits def looped_throats(target): r""" Find any throats that are connected to the same pore on both ends """ net = target.network hits = net.conns[:, 0] == net.conns[:, 1] return hits def headless_throats(target): r""" Find any throats that point to a non-existent pore """ net = target.network hits = _np.any(net.conns > (net.Np -1), axis=1) return hits def duplicate_throats(target): r""" Find repeat occurrences of throat connections """ net = target.network conns = net.conns iconns = conns[:, 0] + 1j*conns[:, 1] hits, inds = _np.unique(iconns, return_inverse=True) values = _np.ones(net.Nt, dtype=bool) values[inds] = False return values def distance_to_nearest_pore(target): r""" Find distance to and index of nearest pore even if not topologically connected """ import scipy.spatial as sptl net = target.network coords = net.coords tree = sptl.KDTree(coords) ds, ids = tree.query(coords, k=2) values = ds[:, 1] return values def count_coincident_pores(target, thresh=1e-6): r""" Count number of pores that are spatially coincident with other pores Parameters ---------- network : dict The OpenPNM network object thresh : float The distance below which two pores are considered spatially coincident Returns ------- count : ndarray A numpy array of Np length containing the number coincident pores """ # This needs to be a bit complicated because it cannot be assumed # the coincident pores are topologically connected import scipy.spatial as sptl net = target.network coords = net.coords tree = sptl.KDTree(coords) hits = tree.query_pairs(r=thresh) arr = _np.array(list(hits)).flatten() v, n = _np.unique(arr, return_counts=True) values =
_np.zeros(net.Np, dtype=int)
numpy.zeros
# -*- coding: utf-8 -*- """ Class definition of YOLO_v3 style detection model on image and video """ import colorsys import os from timeit import default_timer as timer import numpy as np from keras import backend as K from keras.models import load_model from keras.layers import Input from PIL import Image, ImageFont, ImageDraw from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body from yolo3.utils import letterbox_image import os from keras.utils import multi_gpu_model from tracker.centroidtracker import CentroidTracker from tracker.trackableobject import TrackableObject import cv2 class YOLO(object): _defaults = { "model_path": 'model_data/yolo-tiny.h5', "anchors_path": 'model_data/tiny_yolo_anchors.txt', "classes_path": 'model_data/coco_classes.txt', "score" : 0.3, "iou" : 0.45, "model_image_size" : (416, 416), "gpu_num" : 1, } @classmethod def get_defaults(cls, n): if n in cls._defaults: return cls._defaults[n] else: return "Unrecognized attribute name '" + n + "'" def __init__(self, **kwargs): self.__dict__.update(self._defaults) # set up default values self.__dict__.update(kwargs) # and update with user overrides self.class_names = self._get_class() self.anchors = self._get_anchors() self.sess = K.get_session() self.boxes, self.scores, self.classes = self.generate() def _get_class(self): classes_path = os.path.expanduser(self.classes_path) with open(classes_path) as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names def _get_anchors(self): anchors_path = os.path.expanduser(self.anchors_path) with open(anchors_path) as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] return np.array(anchors).reshape(-1, 2) def generate(self): model_path = os.path.expanduser(self.model_path) assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.' # Load model, or construct model and load weights. num_anchors = len(self.anchors) num_classes = len(self.class_names) is_tiny_version = num_anchors==6 # default setting try: self.yolo_model = load_model(model_path, compile=False) except: self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \ if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes) self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match else: assert self.yolo_model.layers[-1].output_shape[-1] == \ num_anchors/len(self.yolo_model.output) * (num_classes + 5), \ 'Mismatch between model and given anchor and class sizes' print('{} model, anchors, and classes loaded.'.format(model_path)) # Generate colors for drawing bounding boxes. hsv_tuples = [(x / len(self.class_names), 1., 1.) for x in range(len(self.class_names))] self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) self.colors = list( map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), self.colors)) np.random.seed(10101) # Fixed seed for consistent colors across runs. np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes. np.random.seed(None) # Reset seed to default. # Generate output tensor targets for filtered bounding boxes. self.input_image_shape = K.placeholder(shape=(2, )) if self.gpu_num>=2: self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num) boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors, len(self.class_names), self.input_image_shape, score_threshold=self.score, iou_threshold=self.iou) return boxes, scores, classes def detect_image(self, image): start = timer() if self.model_image_size != (None, None): assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required' assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required' boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size))) else: new_image_size = (image.width - (image.width % 32), image.height - (image.height % 32)) boxed_image = letterbox_image(image, new_image_size) image_data = np.array(boxed_image, dtype='float32') # print(image_data.shape) image_data /= 255. image_data = np.expand_dims(image_data, 0) # Add batch dimension. out_boxes, out_scores, out_classes = self.sess.run( [self.boxes, self.scores, self.classes], feed_dict={ self.yolo_model.input: image_data, self.input_image_shape: [image.size[1], image.size[0]], K.learning_phase(): 0 }) out_boxes2 = [] out_scores2 = [] out_classes2 = [] for i, c in enumerate(out_classes): if c == 2: out_boxes2.append(out_boxes[i]) out_scores2.append(out_scores[i]) out_classes2.append(out_classes[i]) # font = ImageFont.truetype(font='font/FiraMono-Medium.otf', # size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32')) thickness = (image.size[0] + image.size[1]) // 300 if len(out_classes2) != 0: for i, c in reversed(list(enumerate(out_classes2))): predicted_class = self.class_names[c] box = out_boxes2[i] score = out_scores2[i] label = '{} {:.2f}'.format(predicted_class, score) draw = ImageDraw.Draw(image) # label_size = draw.textsize(label, font) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0,
np.floor(left + 0.5)
numpy.floor
""" After training with p1_training_inverse_model.py, run this for p1 Then run p1_make_vids.py to generate the videos """ import torch import logging import torch.nn as nn from dataset import ObjPushDataset from model_learners import InverseModel from torch.utils.data import Dataset, DataLoader from push_env import PushingEnv import numpy as np import pandas as pd device = "cuda" if torch.cuda.is_available() else "cpu" logger = logging.getLogger(__name__) logging.basicConfig() logger.setLevel(logging.INFO) ##### HYPERPARAMETERS ###### start_state_dims = 2 next_state_dims = 2 action_dims = 4 nn_layer_1_size = 64 nn_layer_2_size = 32 criterion = nn.MSELoss() lr = 8e-4 seed = 0 num_epochs = 140 bsize = 512 num_pushes = 10 ############################ def main(): logger.info("Instantiating model and importing weights") # instantiate forward model and import pretrained weights inv_model = InverseModel(start_state_dims=start_state_dims, next_state_dims=next_state_dims, action_dims=action_dims, latent_var_1=nn_layer_1_size, latent_var_2=nn_layer_2_size, criterion=criterion, lr=lr, seed=seed) inv_model.load_state_dict(torch.load("invmodel_learned_params.pt")) # Load in data logger.info("Importing test data") test_dir = 'push_dataset/test' # only want 1 push each time, so set batch_size to 1 test_loader = DataLoader(ObjPushDataset(test_dir), batch_size=1, shuffle=True) env = PushingEnv() errors = [] true_pushes = [] pred_pushes = [] logger.info("Running loop") for i, (start_state, goal_state, true_action) in enumerate(test_loader): logger.info(f'Iteration #{i}') # Convert inputs to floats start_state = start_state.float() goal_state = goal_state.float() true_action = true_action.float() # Use inverse model to predict action given the start and goal states combined_input = torch.cat((start_state, goal_state), dim=1) pred_action = inv_model(combined_input) # Switch output from tensors to numpy for easy use later start_state = start_state.data.numpy()[0] goal_state = goal_state.data.numpy()[0] true_action = true_action.data.numpy()[0] pred_action = pred_action.data.numpy()[0] start_x, start_y, end_x, end_y = pred_action _, end_state = env.execute_push(start_x, start_y, end_x, end_y) end_state = np.array(end_state) # Calculate errors action_error = np.linalg.norm(true_action - pred_action) state_error =
np.linalg.norm(goal_state - end_state)
numpy.linalg.norm
import comet_ml, json import numpy as np import torch from torch import optim from misc import clear_gradients from lib import create_agent from util.env_util import create_env from util.plot_util import load_checkpoint from lib.distributions import kl_divergence from local_vars import PROJECT_NAME, WORKSPACE, LOADING_API_KEY, LOGGING_API_KEY alim = [-1, 1] aint = 0.01 BATCH_SIZE = 256 N_ACTION_SAMPLES = 100 # Reacher Experiments: # direct: 48edb0b9aca847c09c6893793c982884 # iterative: 58ec5bc5273044e59ae30a969c3d7de4 def estimate_opt_landscape(exp_key, states=None, ckpt_timestep=None, device_id=None): """ Estimates the optimization landscape for a checkpointed agent. Also gets the policy estimates during inference optimization. Args: exp_key (str): the comet experiment ID state (list of torch.Tensor, optional): the state(s) used for estimation ckpt_timestep (int, optional): the checkpoint for estimation device_id (int, optional): the GPU ID """ # load the experiment comet_api = comet_ml.API(api_key=LOADING_API_KEY) experiment = comet_api.get_experiment(project_name=PROJECT_NAME, workspace=WORKSPACE, experiment=exp_key) # create the environment (just to create agent) param_summary = experiment.get_parameters_summary() env_name = [a for a in param_summary if a['name'] == 'env'][0]['valueCurrent'] env = create_env(env_name) # create the agent asset_list = experiment.get_asset_list() agent_config_asset_list = [a for a in asset_list if 'agent_args' in a['fileName']] agent_args = None if len(agent_config_asset_list) > 0: # if we've saved the agent config dict, load it agent_args = experiment.get_asset(agent_config_asset_list[0]['assetId']) agent_args = json.loads(agent_args) agent_args = agent_args if 'opt_type' in agent_args['inference_optimizer_args'] else None agent = create_agent(env, agent_args=agent_args, device_id=device_id)[0] # load the checkpoint load_checkpoint(agent, exp_key, ckpt_timestep) if states is None: # load a random state from the most recently collected episode state_asset = None if ckpt_timestep is not None: # load the corresponding episode if it is present state_asset_list = [a for a in asset_list if 'episode_step_' + str(ckpt_timestep) + '_state' in a['fileName']] if len(state_asset_list) > 0: state_asset = state_asset_list[0] if state_asset is None: # get most recently collected episode asset_times = [asset['createdAt'] for asset in asset_list if 'state' in asset['fileName']] state_asset = [a for a in asset_list if a['createdAt'] == max(asset_times)][0] episode_states = experiment.get_asset(state_asset['assetId']) episode_states = json.loads(episode_states) # state_timestep = [np.random.randint(len(episode_states)) for _ in range(100)] state_timesteps = range(100) states = [torch.from_numpy(np.array(episode_states[state_timestep])).view(1, -1).type(torch.FloatTensor) for state_timestep in state_timesteps] # n_actions = int(((alim[1] - alim[0]) / aint) ** n_action_dims) n_action_dims = env.action_space.shape[0] a = np.arange(alim[0], alim[1], aint) a_args = n_action_dims * [a] a_coords = np.meshgrid(*a_args) stacked_action_means = np.stack([a_coord.reshape(-1) for a_coord in a_coords]).T n_batches = len(stacked_action_means) // BATCH_SIZE + 1 n_samples = agent.n_action_samples if N_ACTION_SAMPLES is None else N_ACTION_SAMPLES q_estimates_list = [] log_ratios_list = [] approx_posts_list = [] for state_ind, state in enumerate(states): if state_ind % 5 == 0: print('Processing state ' + str(state_ind+1) + ' of ' + str(len(states)) + '.') q_estimates = np.zeros(len(stacked_action_means)) log_ratios = np.zeros(len(stacked_action_means)) # perform inference on the state batch_expanded_state = state.repeat(BATCH_SIZE, 1) sample_expanded_state = batch_expanded_state.repeat(n_samples, 1) agent.reset(batch_size=BATCH_SIZE); agent.eval() agent.act(batch_expanded_state) approx_posts = agent.inference_optimizer.dist_params # loop over actions, get value estimates for batch_ind in range(n_batches): if batch_ind % 25 == 0: print(' Processing batch ' + str(batch_ind+1) + ' of ' + str(n_batches) + '.') # get a batch of actions start_ind = batch_ind * BATCH_SIZE end_ind = min((batch_ind + 1) * BATCH_SIZE, len(stacked_action_means)) action_mean_batch = stacked_action_means[start_ind:end_ind] # evaluate the value estimate of the action in the state if action_mean_batch.shape[0] != BATCH_SIZE: # fill out the rest of the batch with zeros temp_action_mean_batch = np.zeros((BATCH_SIZE, n_action_dims)) temp_action_mean_batch[:action_mean_batch.shape[0]] = action_mean_batch action_mean_batch = temp_action_mean_batch action_mean_batch = torch.from_numpy(action_mean_batch).type(torch.FloatTensor) # reset approx post, sample actions agent.reset(batch_size=BATCH_SIZE); agent.eval() agent.approx_post.reset(batch_size=BATCH_SIZE, dist_params={'loc': action_mean_batch.clone().requires_grad_()}) # agent.inference_optimizer(agent, batch_expanded_state) action_batch = agent.approx_post.sample(n_samples) q_values = agent.q_value_estimator(agent, sample_expanded_state, action_batch) q_values = q_values.view(n_samples, -1, 1).mean(dim=0) kls = kl_divergence(agent.approx_post, agent.prior, n_samples=n_samples, sample=action_batch).sum(dim=1, keepdim=True) q_estimates[start_ind:end_ind] = q_values[:end_ind-start_ind].view(-1).detach().cpu().numpy() log_ratios[start_ind:end_ind] = kls[:end_ind-start_ind].view(-1).detach().cpu().numpy() q_estimates = q_estimates.reshape(n_action_dims * [int((alim[1] - alim[0]) / aint)]) log_ratios = log_ratios.reshape(n_action_dims * [int((alim[1] - alim[0]) / aint)]) q_estimates_list.append(q_estimates) log_ratios_list.append(log_ratios) approx_posts_list.append(approx_posts) return {'q_estimates': q_estimates_list, 'log_ratios': log_ratios_list, 'alpha_pi': agent.alphas['pi'].detach().cpu().numpy(), 'approx_posts': approx_posts_list} def vis_inference(exp_key, action_indices, state_ind=0): """ Plots a 2D analysis of direct inference, comparing with gradient ascent. Args: exp_key (str): the experiment key state_ind (int): state index to plot action_indices (list): two action indices to vary """ # load the experiment comet_api = comet_ml.API(api_key=LOADING_API_KEY) experiment = comet_api.get_experiment(project_name=PROJECT_NAME, workspace=WORKSPACE, experiment=exp_key) # create the environment param_summary = experiment.get_parameters_summary() env_name = [a for a in param_summary if a['name'] == 'env'][0]['valueCurrent'] env = create_env(env_name) # create the agent asset_list = experiment.get_asset_list() agent_config_asset_list = [a for a in asset_list if 'agent_args' in a['fileName']] agent_args = None if len(agent_config_asset_list) > 0: # if we've saved the agent config dict, load it agent_args = experiment.get_asset(agent_config_asset_list[0]['assetId']) agent_args = json.loads(agent_args) agent_args = agent_args if 'opt_type' in agent_args['inference_optimizer_args'] else None agent = create_agent(env, agent_args=agent_args)[0] # load the checkpoint load_checkpoint(agent, exp_key) # load the state from the most recently collected episode asset_times = [asset['createdAt'] for asset in asset_list if 'state' in asset['fileName']] state_asset = [a for a in asset_list if a['createdAt'] == max(asset_times)][0] episode_states = json.loads(experiment.get_asset(state_asset['assetId'])) state = torch.from_numpy(np.array(episode_states[state_ind])).view(1, -1).type(torch.FloatTensor) print('STATE: ') print(state) # perform inference, get the direct approx post agent.reset(); agent.eval() agent.act(state) loc = agent.approx_post.dist.loc.detach().clone(); scale = agent.approx_post.dist.scale.detach().clone() direct_approx_post = {'loc': loc.clone().cpu().numpy(), 'scale': scale.clone().cpu().numpy()} print('DIRECT APPROX. POST.: ') print(direct_approx_post) print('Performing gradient-based optimization...') LR = 0.1 agent.n_action_samples = 100 # update the approx post using gradient descent on the 2 dims of the mean sgd_objectives = [np.inf] sgd_locs = [agent.approx_post.dist.loc.detach().cpu().numpy()] # dist_params = {k: v.data.requires_grad_() for k, v in agent.approx_post.get_dist_params().items()} sgd_loc = agent.approx_post.dist.loc.clone().detach().requires_grad_() sgd_scale = agent.approx_post.dist.scale.clone().detach() dist_params = {'loc': sgd_loc, 'scale': sgd_scale} agent.approx_post.reset(dist_params=dist_params) # dist_param_list = [param for _, param in dist_params.items()] # just perform SGD on the mean dist_param_list = [sgd_loc] # optimizer = optim.SGD(dist_param_list, lr=LR, momentum=0.9) optimizer = optim.Adam(dist_param_list, lr=LR) optimizer.zero_grad() actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) sgd_objectives.append(-obj.detach()) for _ in range(250): obj.sum().backward(retain_graph=True) for a_dim in range(agent.approx_post.dist.loc.shape[1]): if a_dim not in action_indices: agent.approx_post.dist.loc.grad[:, a_dim] = 0. optimizer.step() optimizer.zero_grad() agent.approx_post._sample = None # reset the non-optimized dimensions # for a_dim in range(agent.approx_post.dist.loc.shape[1]): # if a_dim not in action_indices: # agent.approx_post.dist.loc[:, a_dim] = loc[:, a_dim] # agent.approx_post.dist.scale = scale sgd_locs.append(agent.approx_post.dist.loc.clone().detach().cpu().numpy()) # reset the optimizer, pretty hacky... # sgd_loc = agent.approx_post.dist.loc.clone().detach().requires_grad_() # sgd_scale = agent.approx_post.dist.scale.clone().detach() # dist_params = {'loc': sgd_loc, 'scale': sgd_scale} # agent.approx_post.reset(dist_params=dist_params) # # dist_param_list = [param for _, param in dist_params.items()] # # just perform SGD on the mean # dist_param_list = [sgd_loc] # optimizer = optim.Adam(dist_param_list, lr=LR) # optimizer.zero_grad() actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) sgd_objectives.append(-obj.detach()) clear_gradients(agent.generative_parameters()) agent.n_action_samples = 10 print('Done.') print('Estimating objectives...') agent.n_action_samples = 10 # get all action means a = np.arange(alim[0], alim[1], aint) a_args = 2 * [a] a_coords = np.meshgrid(*a_args) stacked_action_means = np.stack([a_coord.reshape(-1) for a_coord in a_coords]).T n_batches = len(stacked_action_means) // BATCH_SIZE + 1 n_samples = agent.n_action_samples batch_expanded_state = state.repeat(BATCH_SIZE, 1) batch_expanded_loc = loc.repeat(BATCH_SIZE, 1) batch_expanded_scale = scale.repeat(BATCH_SIZE, 1) objectives = np.zeros((len(stacked_action_means), 1)) # estimate the objective at all action means for batch_ind in range(n_batches): if batch_ind % 25 == 0: print(' Processing batch ' + str(batch_ind+1) + ' of ' + str(n_batches) + '.') # get a batch of actions start_ind = batch_ind * BATCH_SIZE end_ind = min((batch_ind + 1) * BATCH_SIZE, len(stacked_action_means)) action_mean_batch = stacked_action_means[start_ind:end_ind] if action_mean_batch.shape[0] != BATCH_SIZE: # fill out the rest of the batch with zeros if at the end temp_action_mean_batch = np.zeros((BATCH_SIZE, 2)) temp_action_mean_batch[:action_mean_batch.shape[0]] = action_mean_batch action_mean_batch = temp_action_mean_batch action_mean_batch = torch.from_numpy(np.arctanh(action_mean_batch + 1e-6)).type(torch.FloatTensor) # reset approx post, sample actions agent.reset(batch_size=BATCH_SIZE); agent.eval() loc_batch = batch_expanded_loc loc_batch[:, action_indices[0]] = action_mean_batch[:, 0] loc_batch[:, action_indices[1]] = action_mean_batch[:, 1] scale_batch = batch_expanded_scale agent.approx_post.reset(batch_size=BATCH_SIZE, dist_params={'loc': loc_batch.clone().requires_grad_(), 'scale': scale_batch.clone()}) action_batch = agent.approx_post.sample(n_samples) # evaluate the value estimate of the action in the state objective = agent.estimate_objective(batch_expanded_state, action_batch).view(n_samples, -1, 1).mean(dim=0).detach().cpu().numpy() objectives[start_ind:end_ind] = objective[:end_ind-start_ind] objectives = objectives.reshape(2 * [int((alim[1] - alim[0]) / aint)]) agent.n_action_samples = 10 print('Done.') return {'objectives': objectives, 'stacked_action_means': stacked_action_means, 'direct_approx_post': direct_approx_post, 'action_indices': action_indices, 'sgd_approx_post_means': sgd_locs, 'sgd_objectives': sgd_objectives} # from util.analysis import vis_it_inference # import numpy as np # import pickle # # state = [0.7380273938179016, # 0.9774200916290283, # 0.014780346304178238, # -0.053389377892017365, # -0.20391426980495453, # 0.09159323573112488, # 1.2636744976043701, # 0.49291884899139404, # -0.8514286279678345, # 0.027635907754302025, # -0.523140549659729, # -0.26849716901779175, # 0.7275161147117615, # 1.7905492782592773, # 1.1246192455291748, # 1.2539386749267578, # -0.29752910137176514, # 0.5522995591163635, # -1.4331533908843994, # 1.4389076232910156, # 1.911720633506775, # -1.2782995700836182, # -3.6260697841644287, # -2.3452537059783936, # -0.010221259668469429, # 3.8292510509490967, # -1.393014907836914] # # np_state = np.array(state) def vis_it_inference(exp_key, action_indices, state_ind=0, state=None): """ Plots a 2D analysis of iterative inference. Args: exp_key (str): the experiment key state_ind (int): state index to plot action_indices (list): two action indices to vary state (np.array): the state to evaluate """ # load the experiment comet_api = comet_ml.API(api_key=LOADING_API_KEY) experiment = comet_api.get_experiment(project_name=PROJECT_NAME, workspace=WORKSPACE, experiment=exp_key) # create the environment param_summary = experiment.get_parameters_summary() env_name = [a for a in param_summary if a['name'] == 'env'][0]['valueCurrent'] env = create_env(env_name) # create the agent asset_list = experiment.get_asset_list() agent_config_asset_list = [a for a in asset_list if 'agent_args' in a['fileName']] agent_args = None if len(agent_config_asset_list) > 0: # if we've saved the agent config dict, load it agent_args = experiment.get_asset(agent_config_asset_list[0]['assetId']) agent_args = json.loads(agent_args) agent_args = agent_args if 'opt_type' in agent_args['inference_optimizer_args'] else None agent = create_agent(env, agent_args=agent_args)[0] # load the checkpoint load_checkpoint(agent, exp_key) if state is None: # load the state from the most recently collected episode asset_times = [asset['createdAt'] for asset in asset_list if 'state' in asset['fileName']] state_asset = [a for a in asset_list if a['createdAt'] == max(asset_times)][0] episode_states = json.loads(experiment.get_asset(state_asset['assetId'])) state = torch.from_numpy(np.array(episode_states[state_ind])).view(1, -1).type(torch.FloatTensor) else: state = torch.from_numpy(state).view(1,-1).type(torch.FloatTensor) print('STATE: ') print(state) # perform iterative inference, get the approx post agent.reset(); agent.eval() agent.act(state) loc = agent.approx_post.dist.loc.detach().clone(); scale = agent.approx_post.dist.scale.detach().clone() it_approx_post = {'loc': loc.clone().cpu().numpy(), 'scale': scale.clone().cpu().numpy()} print('ITERATIVE APPROX. POST.: ') print(it_approx_post) print('Performing iterative inference...') # only optimize two of the means agent.n_action_samples = 10 total_it_locs = [] total_it_objs = [] for inf_seed in range(10): agent.reset(); agent.eval() # random Gaussian init for the mean agent.approx_post.reset(dist_params={'loc': 0.3*agent.approx_post.dist.loc.clone().detach().normal_(), 'scale': agent.approx_post.dist.scale.clone().detach()}) iterative_locs = [] iterative_objectives = [] # for inf_it in range(agent.inference_optimizer.n_inf_iters): if False: # gradient-based LR = 0.05 sgd_loc = agent.approx_post.dist.loc.clone().detach().requires_grad_() sgd_scale = agent.approx_post.dist.scale.clone().detach() dist_params = {'loc': sgd_loc, 'scale': sgd_scale} agent.approx_post.reset(dist_params=dist_params) # only perform SGD on the mean dist_param_list = [sgd_loc] optimizer = optim.Adam(dist_param_list, lr=LR) optimizer.zero_grad() actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) iterative_objectives.append(-obj.detach()) iterative_locs.append(agent.approx_post.dist.loc.clone().detach().cpu().numpy()) for _ in range(50): obj.sum().backward(retain_graph=True) for a_dim in range(agent.approx_post.dist.loc.shape[1]): if a_dim not in action_indices: agent.approx_post.dist.loc.grad[:, a_dim] = 0. optimizer.step() optimizer.zero_grad() agent.approx_post._sample = None iterative_locs.append(agent.approx_post.dist.loc.clone().detach().cpu().numpy()) actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) iterative_objectives.append(-obj.detach()) clear_gradients(agent.generative_parameters()) else: # amortized for inf_it in range(50): # reset the approx post dist it_loc = agent.approx_post.dist.loc.clone().detach() for a_dim in range(it_loc.shape[1]): if a_dim not in action_indices: it_loc[:, a_dim] = loc[:, a_dim] it_scale = scale dist_params = {'loc': it_loc.requires_grad_(), 'scale': it_scale.requires_grad_()} agent.approx_post.reset(dist_params=dist_params) iterative_locs.append(agent.approx_post.dist.loc.detach().cpu().numpy()) # estimate the objective, backprop actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) iterative_objectives.append(-obj.detach()) obj.sum().backward(retain_graph=True) # update params, grads = agent.approx_post.params_and_grads() inf_input = agent.inference_optimizer.inference_model(params=params, grads=grads, state=state) agent.approx_post.step(inf_input) agent.approx_post.retain_grads() # reset the approx post dist it_loc = agent.approx_post.dist.loc.clone().detach() for a_dim in range(it_loc.shape[1]): if a_dim not in action_indices: it_loc[:, a_dim] = loc[:, a_dim] it_scale = scale dist_params = {'loc': it_loc, 'scale': it_scale} agent.approx_post.reset(dist_params=dist_params) iterative_locs.append(agent.approx_post.dist.loc.detach().cpu().numpy()) total_it_locs.append(np.array(iterative_locs)) total_it_objs.append(
np.array(iterative_objectives)
numpy.array